1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 #include <linux/static_key.h> 45 46 #include <trace/events/tcp.h> 47 48 /* Refresh clocks of a TCP socket, 49 * ensuring monotically increasing values. 50 */ 51 void tcp_mstamp_refresh(struct tcp_sock *tp) 52 { 53 u64 val = tcp_clock_ns(); 54 55 if (val > tp->tcp_clock_cache) 56 tp->tcp_clock_cache = val; 57 58 val = div_u64(val, NSEC_PER_USEC); 59 if (val > tp->tcp_mstamp) 60 tp->tcp_mstamp = val; 61 } 62 63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 64 int push_one, gfp_t gfp); 65 66 /* Account for new data that has been sent to the network. */ 67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 68 { 69 struct inet_connection_sock *icsk = inet_csk(sk); 70 struct tcp_sock *tp = tcp_sk(sk); 71 unsigned int prior_packets = tp->packets_out; 72 73 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 74 75 __skb_unlink(skb, &sk->sk_write_queue); 76 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 80 tcp_rearm_rto(sk); 81 82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 83 tcp_skb_pcount(skb)); 84 } 85 86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 87 * window scaling factor due to loss of precision. 88 * If window has been shrunk, what should we make? It is not clear at all. 89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 91 * invalid. OK, let's make this for now: 92 */ 93 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 94 { 95 const struct tcp_sock *tp = tcp_sk(sk); 96 97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 98 (tp->rx_opt.wscale_ok && 99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 100 return tp->snd_nxt; 101 else 102 return tcp_wnd_end(tp); 103 } 104 105 /* Calculate mss to advertise in SYN segment. 106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 107 * 108 * 1. It is independent of path mtu. 109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 111 * attached devices, because some buggy hosts are confused by 112 * large MSS. 113 * 4. We do not make 3, we advertise MSS, calculated from first 114 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 115 * This may be overridden via information stored in routing table. 116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 117 * probably even Jumbo". 118 */ 119 static __u16 tcp_advertise_mss(struct sock *sk) 120 { 121 struct tcp_sock *tp = tcp_sk(sk); 122 const struct dst_entry *dst = __sk_dst_get(sk); 123 int mss = tp->advmss; 124 125 if (dst) { 126 unsigned int metric = dst_metric_advmss(dst); 127 128 if (metric < mss) { 129 mss = metric; 130 tp->advmss = mss; 131 } 132 } 133 134 return (__u16)mss; 135 } 136 137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 138 * This is the first part of cwnd validation mechanism. 139 */ 140 void tcp_cwnd_restart(struct sock *sk, s32 delta) 141 { 142 struct tcp_sock *tp = tcp_sk(sk); 143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 144 u32 cwnd = tp->snd_cwnd; 145 146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 147 148 tp->snd_ssthresh = tcp_current_ssthresh(sk); 149 restart_cwnd = min(restart_cwnd, cwnd); 150 151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 152 cwnd >>= 1; 153 tp->snd_cwnd = max(cwnd, restart_cwnd); 154 tp->snd_cwnd_stamp = tcp_jiffies32; 155 tp->snd_cwnd_used = 0; 156 } 157 158 /* Congestion state accounting after a packet has been sent. */ 159 static void tcp_event_data_sent(struct tcp_sock *tp, 160 struct sock *sk) 161 { 162 struct inet_connection_sock *icsk = inet_csk(sk); 163 const u32 now = tcp_jiffies32; 164 165 if (tcp_packets_in_flight(tp) == 0) 166 tcp_ca_event(sk, CA_EVENT_TX_START); 167 168 /* If this is the first data packet sent in response to the 169 * previous received data, 170 * and it is a reply for ato after last received packet, 171 * increase pingpong count. 172 */ 173 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 174 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 175 inet_csk_inc_pingpong_cnt(sk); 176 177 tp->lsndtime = now; 178 } 179 180 /* Account for an ACK we sent. */ 181 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 182 u32 rcv_nxt) 183 { 184 struct tcp_sock *tp = tcp_sk(sk); 185 186 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) { 187 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 188 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 189 tp->compressed_ack = TCP_FASTRETRANS_THRESH; 190 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 191 __sock_put(sk); 192 } 193 194 if (unlikely(rcv_nxt != tp->rcv_nxt)) 195 return; /* Special ACK sent by DCTCP to reflect ECN */ 196 tcp_dec_quickack_mode(sk, pkts); 197 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 198 } 199 200 /* Determine a window scaling and initial window to offer. 201 * Based on the assumption that the given amount of space 202 * will be offered. Store the results in the tp structure. 203 * NOTE: for smooth operation initial space offering should 204 * be a multiple of mss if possible. We assume here that mss >= 1. 205 * This MUST be enforced by all callers. 206 */ 207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 208 __u32 *rcv_wnd, __u32 *window_clamp, 209 int wscale_ok, __u8 *rcv_wscale, 210 __u32 init_rcv_wnd) 211 { 212 unsigned int space = (__space < 0 ? 0 : __space); 213 214 /* If no clamp set the clamp to the max possible scaled window */ 215 if (*window_clamp == 0) 216 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 217 space = min(*window_clamp, space); 218 219 /* Quantize space offering to a multiple of mss if possible. */ 220 if (space > mss) 221 space = rounddown(space, mss); 222 223 /* NOTE: offering an initial window larger than 32767 224 * will break some buggy TCP stacks. If the admin tells us 225 * it is likely we could be speaking with such a buggy stack 226 * we will truncate our initial window offering to 32K-1 227 * unless the remote has sent us a window scaling option, 228 * which we interpret as a sign the remote TCP is not 229 * misinterpreting the window field as a signed quantity. 230 */ 231 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 232 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 233 else 234 (*rcv_wnd) = min_t(u32, space, U16_MAX); 235 236 if (init_rcv_wnd) 237 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 238 239 *rcv_wscale = 0; 240 if (wscale_ok) { 241 /* Set window scaling on max possible window */ 242 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 243 space = max_t(u32, space, sysctl_rmem_max); 244 space = min_t(u32, space, *window_clamp); 245 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 246 0, TCP_MAX_WSCALE); 247 } 248 /* Set the clamp no higher than max representable value */ 249 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 250 } 251 EXPORT_SYMBOL(tcp_select_initial_window); 252 253 /* Chose a new window to advertise, update state in tcp_sock for the 254 * socket, and return result with RFC1323 scaling applied. The return 255 * value can be stuffed directly into th->window for an outgoing 256 * frame. 257 */ 258 static u16 tcp_select_window(struct sock *sk) 259 { 260 struct tcp_sock *tp = tcp_sk(sk); 261 u32 old_win = tp->rcv_wnd; 262 u32 cur_win = tcp_receive_window(tp); 263 u32 new_win = __tcp_select_window(sk); 264 265 /* Never shrink the offered window */ 266 if (new_win < cur_win) { 267 /* Danger Will Robinson! 268 * Don't update rcv_wup/rcv_wnd here or else 269 * we will not be able to advertise a zero 270 * window in time. --DaveM 271 * 272 * Relax Will Robinson. 273 */ 274 if (new_win == 0) 275 NET_INC_STATS(sock_net(sk), 276 LINUX_MIB_TCPWANTZEROWINDOWADV); 277 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 278 } 279 tp->rcv_wnd = new_win; 280 tp->rcv_wup = tp->rcv_nxt; 281 282 /* Make sure we do not exceed the maximum possible 283 * scaled window. 284 */ 285 if (!tp->rx_opt.rcv_wscale && 286 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 287 new_win = min(new_win, MAX_TCP_WINDOW); 288 else 289 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 290 291 /* RFC1323 scaling applied */ 292 new_win >>= tp->rx_opt.rcv_wscale; 293 294 /* If we advertise zero window, disable fast path. */ 295 if (new_win == 0) { 296 tp->pred_flags = 0; 297 if (old_win) 298 NET_INC_STATS(sock_net(sk), 299 LINUX_MIB_TCPTOZEROWINDOWADV); 300 } else if (old_win == 0) { 301 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 302 } 303 304 return new_win; 305 } 306 307 /* Packet ECN state for a SYN-ACK */ 308 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 309 { 310 const struct tcp_sock *tp = tcp_sk(sk); 311 312 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 313 if (!(tp->ecn_flags & TCP_ECN_OK)) 314 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 315 else if (tcp_ca_needs_ecn(sk) || 316 tcp_bpf_ca_needs_ecn(sk)) 317 INET_ECN_xmit(sk); 318 } 319 320 /* Packet ECN state for a SYN. */ 321 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 322 { 323 struct tcp_sock *tp = tcp_sk(sk); 324 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 325 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 326 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 327 328 if (!use_ecn) { 329 const struct dst_entry *dst = __sk_dst_get(sk); 330 331 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 332 use_ecn = true; 333 } 334 335 tp->ecn_flags = 0; 336 337 if (use_ecn) { 338 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 339 tp->ecn_flags = TCP_ECN_OK; 340 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 341 INET_ECN_xmit(sk); 342 } 343 } 344 345 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 346 { 347 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 348 /* tp->ecn_flags are cleared at a later point in time when 349 * SYN ACK is ultimatively being received. 350 */ 351 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 352 } 353 354 static void 355 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 356 { 357 if (inet_rsk(req)->ecn_ok) 358 th->ece = 1; 359 } 360 361 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 362 * be sent. 363 */ 364 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 365 struct tcphdr *th, int tcp_header_len) 366 { 367 struct tcp_sock *tp = tcp_sk(sk); 368 369 if (tp->ecn_flags & TCP_ECN_OK) { 370 /* Not-retransmitted data segment: set ECT and inject CWR. */ 371 if (skb->len != tcp_header_len && 372 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 373 INET_ECN_xmit(sk); 374 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 375 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 376 th->cwr = 1; 377 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 378 } 379 } else if (!tcp_ca_needs_ecn(sk)) { 380 /* ACK or retransmitted segment: clear ECT|CE */ 381 INET_ECN_dontxmit(sk); 382 } 383 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 384 th->ece = 1; 385 } 386 } 387 388 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 389 * auto increment end seqno. 390 */ 391 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 392 { 393 skb->ip_summed = CHECKSUM_PARTIAL; 394 395 TCP_SKB_CB(skb)->tcp_flags = flags; 396 TCP_SKB_CB(skb)->sacked = 0; 397 398 tcp_skb_pcount_set(skb, 1); 399 400 TCP_SKB_CB(skb)->seq = seq; 401 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 402 seq++; 403 TCP_SKB_CB(skb)->end_seq = seq; 404 } 405 406 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 407 { 408 return tp->snd_una != tp->snd_up; 409 } 410 411 #define OPTION_SACK_ADVERTISE (1 << 0) 412 #define OPTION_TS (1 << 1) 413 #define OPTION_MD5 (1 << 2) 414 #define OPTION_WSCALE (1 << 3) 415 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 416 #define OPTION_SMC (1 << 9) 417 418 static void smc_options_write(__be32 *ptr, u16 *options) 419 { 420 #if IS_ENABLED(CONFIG_SMC) 421 if (static_branch_unlikely(&tcp_have_smc)) { 422 if (unlikely(OPTION_SMC & *options)) { 423 *ptr++ = htonl((TCPOPT_NOP << 24) | 424 (TCPOPT_NOP << 16) | 425 (TCPOPT_EXP << 8) | 426 (TCPOLEN_EXP_SMC_BASE)); 427 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 428 } 429 } 430 #endif 431 } 432 433 struct tcp_out_options { 434 u16 options; /* bit field of OPTION_* */ 435 u16 mss; /* 0 to disable */ 436 u8 ws; /* window scale, 0 to disable */ 437 u8 num_sack_blocks; /* number of SACK blocks to include */ 438 u8 hash_size; /* bytes in hash_location */ 439 __u8 *hash_location; /* temporary pointer, overloaded */ 440 __u32 tsval, tsecr; /* need to include OPTION_TS */ 441 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 442 }; 443 444 /* Write previously computed TCP options to the packet. 445 * 446 * Beware: Something in the Internet is very sensitive to the ordering of 447 * TCP options, we learned this through the hard way, so be careful here. 448 * Luckily we can at least blame others for their non-compliance but from 449 * inter-operability perspective it seems that we're somewhat stuck with 450 * the ordering which we have been using if we want to keep working with 451 * those broken things (not that it currently hurts anybody as there isn't 452 * particular reason why the ordering would need to be changed). 453 * 454 * At least SACK_PERM as the first option is known to lead to a disaster 455 * (but it may well be that other scenarios fail similarly). 456 */ 457 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 458 struct tcp_out_options *opts) 459 { 460 u16 options = opts->options; /* mungable copy */ 461 462 if (unlikely(OPTION_MD5 & options)) { 463 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 464 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 465 /* overload cookie hash location */ 466 opts->hash_location = (__u8 *)ptr; 467 ptr += 4; 468 } 469 470 if (unlikely(opts->mss)) { 471 *ptr++ = htonl((TCPOPT_MSS << 24) | 472 (TCPOLEN_MSS << 16) | 473 opts->mss); 474 } 475 476 if (likely(OPTION_TS & options)) { 477 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 478 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 479 (TCPOLEN_SACK_PERM << 16) | 480 (TCPOPT_TIMESTAMP << 8) | 481 TCPOLEN_TIMESTAMP); 482 options &= ~OPTION_SACK_ADVERTISE; 483 } else { 484 *ptr++ = htonl((TCPOPT_NOP << 24) | 485 (TCPOPT_NOP << 16) | 486 (TCPOPT_TIMESTAMP << 8) | 487 TCPOLEN_TIMESTAMP); 488 } 489 *ptr++ = htonl(opts->tsval); 490 *ptr++ = htonl(opts->tsecr); 491 } 492 493 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 494 *ptr++ = htonl((TCPOPT_NOP << 24) | 495 (TCPOPT_NOP << 16) | 496 (TCPOPT_SACK_PERM << 8) | 497 TCPOLEN_SACK_PERM); 498 } 499 500 if (unlikely(OPTION_WSCALE & options)) { 501 *ptr++ = htonl((TCPOPT_NOP << 24) | 502 (TCPOPT_WINDOW << 16) | 503 (TCPOLEN_WINDOW << 8) | 504 opts->ws); 505 } 506 507 if (unlikely(opts->num_sack_blocks)) { 508 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 509 tp->duplicate_sack : tp->selective_acks; 510 int this_sack; 511 512 *ptr++ = htonl((TCPOPT_NOP << 24) | 513 (TCPOPT_NOP << 16) | 514 (TCPOPT_SACK << 8) | 515 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 516 TCPOLEN_SACK_PERBLOCK))); 517 518 for (this_sack = 0; this_sack < opts->num_sack_blocks; 519 ++this_sack) { 520 *ptr++ = htonl(sp[this_sack].start_seq); 521 *ptr++ = htonl(sp[this_sack].end_seq); 522 } 523 524 tp->rx_opt.dsack = 0; 525 } 526 527 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 528 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 529 u8 *p = (u8 *)ptr; 530 u32 len; /* Fast Open option length */ 531 532 if (foc->exp) { 533 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 534 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 535 TCPOPT_FASTOPEN_MAGIC); 536 p += TCPOLEN_EXP_FASTOPEN_BASE; 537 } else { 538 len = TCPOLEN_FASTOPEN_BASE + foc->len; 539 *p++ = TCPOPT_FASTOPEN; 540 *p++ = len; 541 } 542 543 memcpy(p, foc->val, foc->len); 544 if ((len & 3) == 2) { 545 p[foc->len] = TCPOPT_NOP; 546 p[foc->len + 1] = TCPOPT_NOP; 547 } 548 ptr += (len + 3) >> 2; 549 } 550 551 smc_options_write(ptr, &options); 552 } 553 554 static void smc_set_option(const struct tcp_sock *tp, 555 struct tcp_out_options *opts, 556 unsigned int *remaining) 557 { 558 #if IS_ENABLED(CONFIG_SMC) 559 if (static_branch_unlikely(&tcp_have_smc)) { 560 if (tp->syn_smc) { 561 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 562 opts->options |= OPTION_SMC; 563 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 564 } 565 } 566 } 567 #endif 568 } 569 570 static void smc_set_option_cond(const struct tcp_sock *tp, 571 const struct inet_request_sock *ireq, 572 struct tcp_out_options *opts, 573 unsigned int *remaining) 574 { 575 #if IS_ENABLED(CONFIG_SMC) 576 if (static_branch_unlikely(&tcp_have_smc)) { 577 if (tp->syn_smc && ireq->smc_ok) { 578 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 579 opts->options |= OPTION_SMC; 580 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 581 } 582 } 583 } 584 #endif 585 } 586 587 /* Compute TCP options for SYN packets. This is not the final 588 * network wire format yet. 589 */ 590 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 591 struct tcp_out_options *opts, 592 struct tcp_md5sig_key **md5) 593 { 594 struct tcp_sock *tp = tcp_sk(sk); 595 unsigned int remaining = MAX_TCP_OPTION_SPACE; 596 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 597 598 *md5 = NULL; 599 #ifdef CONFIG_TCP_MD5SIG 600 if (static_branch_unlikely(&tcp_md5_needed) && 601 rcu_access_pointer(tp->md5sig_info)) { 602 *md5 = tp->af_specific->md5_lookup(sk, sk); 603 if (*md5) { 604 opts->options |= OPTION_MD5; 605 remaining -= TCPOLEN_MD5SIG_ALIGNED; 606 } 607 } 608 #endif 609 610 /* We always get an MSS option. The option bytes which will be seen in 611 * normal data packets should timestamps be used, must be in the MSS 612 * advertised. But we subtract them from tp->mss_cache so that 613 * calculations in tcp_sendmsg are simpler etc. So account for this 614 * fact here if necessary. If we don't do this correctly, as a 615 * receiver we won't recognize data packets as being full sized when we 616 * should, and thus we won't abide by the delayed ACK rules correctly. 617 * SACKs don't matter, we never delay an ACK when we have any of those 618 * going out. */ 619 opts->mss = tcp_advertise_mss(sk); 620 remaining -= TCPOLEN_MSS_ALIGNED; 621 622 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 623 opts->options |= OPTION_TS; 624 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 625 opts->tsecr = tp->rx_opt.ts_recent; 626 remaining -= TCPOLEN_TSTAMP_ALIGNED; 627 } 628 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 629 opts->ws = tp->rx_opt.rcv_wscale; 630 opts->options |= OPTION_WSCALE; 631 remaining -= TCPOLEN_WSCALE_ALIGNED; 632 } 633 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 634 opts->options |= OPTION_SACK_ADVERTISE; 635 if (unlikely(!(OPTION_TS & opts->options))) 636 remaining -= TCPOLEN_SACKPERM_ALIGNED; 637 } 638 639 if (fastopen && fastopen->cookie.len >= 0) { 640 u32 need = fastopen->cookie.len; 641 642 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 643 TCPOLEN_FASTOPEN_BASE; 644 need = (need + 3) & ~3U; /* Align to 32 bits */ 645 if (remaining >= need) { 646 opts->options |= OPTION_FAST_OPEN_COOKIE; 647 opts->fastopen_cookie = &fastopen->cookie; 648 remaining -= need; 649 tp->syn_fastopen = 1; 650 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 651 } 652 } 653 654 smc_set_option(tp, opts, &remaining); 655 656 return MAX_TCP_OPTION_SPACE - remaining; 657 } 658 659 /* Set up TCP options for SYN-ACKs. */ 660 static unsigned int tcp_synack_options(const struct sock *sk, 661 struct request_sock *req, 662 unsigned int mss, struct sk_buff *skb, 663 struct tcp_out_options *opts, 664 const struct tcp_md5sig_key *md5, 665 struct tcp_fastopen_cookie *foc) 666 { 667 struct inet_request_sock *ireq = inet_rsk(req); 668 unsigned int remaining = MAX_TCP_OPTION_SPACE; 669 670 #ifdef CONFIG_TCP_MD5SIG 671 if (md5) { 672 opts->options |= OPTION_MD5; 673 remaining -= TCPOLEN_MD5SIG_ALIGNED; 674 675 /* We can't fit any SACK blocks in a packet with MD5 + TS 676 * options. There was discussion about disabling SACK 677 * rather than TS in order to fit in better with old, 678 * buggy kernels, but that was deemed to be unnecessary. 679 */ 680 ireq->tstamp_ok &= !ireq->sack_ok; 681 } 682 #endif 683 684 /* We always send an MSS option. */ 685 opts->mss = mss; 686 remaining -= TCPOLEN_MSS_ALIGNED; 687 688 if (likely(ireq->wscale_ok)) { 689 opts->ws = ireq->rcv_wscale; 690 opts->options |= OPTION_WSCALE; 691 remaining -= TCPOLEN_WSCALE_ALIGNED; 692 } 693 if (likely(ireq->tstamp_ok)) { 694 opts->options |= OPTION_TS; 695 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 696 opts->tsecr = req->ts_recent; 697 remaining -= TCPOLEN_TSTAMP_ALIGNED; 698 } 699 if (likely(ireq->sack_ok)) { 700 opts->options |= OPTION_SACK_ADVERTISE; 701 if (unlikely(!ireq->tstamp_ok)) 702 remaining -= TCPOLEN_SACKPERM_ALIGNED; 703 } 704 if (foc != NULL && foc->len >= 0) { 705 u32 need = foc->len; 706 707 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 708 TCPOLEN_FASTOPEN_BASE; 709 need = (need + 3) & ~3U; /* Align to 32 bits */ 710 if (remaining >= need) { 711 opts->options |= OPTION_FAST_OPEN_COOKIE; 712 opts->fastopen_cookie = foc; 713 remaining -= need; 714 } 715 } 716 717 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 718 719 return MAX_TCP_OPTION_SPACE - remaining; 720 } 721 722 /* Compute TCP options for ESTABLISHED sockets. This is not the 723 * final wire format yet. 724 */ 725 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 726 struct tcp_out_options *opts, 727 struct tcp_md5sig_key **md5) 728 { 729 struct tcp_sock *tp = tcp_sk(sk); 730 unsigned int size = 0; 731 unsigned int eff_sacks; 732 733 opts->options = 0; 734 735 *md5 = NULL; 736 #ifdef CONFIG_TCP_MD5SIG 737 if (static_branch_unlikely(&tcp_md5_needed) && 738 rcu_access_pointer(tp->md5sig_info)) { 739 *md5 = tp->af_specific->md5_lookup(sk, sk); 740 if (*md5) { 741 opts->options |= OPTION_MD5; 742 size += TCPOLEN_MD5SIG_ALIGNED; 743 } 744 } 745 #endif 746 747 if (likely(tp->rx_opt.tstamp_ok)) { 748 opts->options |= OPTION_TS; 749 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 750 opts->tsecr = tp->rx_opt.ts_recent; 751 size += TCPOLEN_TSTAMP_ALIGNED; 752 } 753 754 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 755 if (unlikely(eff_sacks)) { 756 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 757 opts->num_sack_blocks = 758 min_t(unsigned int, eff_sacks, 759 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 760 TCPOLEN_SACK_PERBLOCK); 761 size += TCPOLEN_SACK_BASE_ALIGNED + 762 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 763 } 764 765 return size; 766 } 767 768 769 /* TCP SMALL QUEUES (TSQ) 770 * 771 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 772 * to reduce RTT and bufferbloat. 773 * We do this using a special skb destructor (tcp_wfree). 774 * 775 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 776 * needs to be reallocated in a driver. 777 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 778 * 779 * Since transmit from skb destructor is forbidden, we use a tasklet 780 * to process all sockets that eventually need to send more skbs. 781 * We use one tasklet per cpu, with its own queue of sockets. 782 */ 783 struct tsq_tasklet { 784 struct tasklet_struct tasklet; 785 struct list_head head; /* queue of tcp sockets */ 786 }; 787 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 788 789 static void tcp_tsq_write(struct sock *sk) 790 { 791 if ((1 << sk->sk_state) & 792 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 793 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 794 struct tcp_sock *tp = tcp_sk(sk); 795 796 if (tp->lost_out > tp->retrans_out && 797 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 798 tcp_mstamp_refresh(tp); 799 tcp_xmit_retransmit_queue(sk); 800 } 801 802 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 803 0, GFP_ATOMIC); 804 } 805 } 806 807 static void tcp_tsq_handler(struct sock *sk) 808 { 809 bh_lock_sock(sk); 810 if (!sock_owned_by_user(sk)) 811 tcp_tsq_write(sk); 812 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 813 sock_hold(sk); 814 bh_unlock_sock(sk); 815 } 816 /* 817 * One tasklet per cpu tries to send more skbs. 818 * We run in tasklet context but need to disable irqs when 819 * transferring tsq->head because tcp_wfree() might 820 * interrupt us (non NAPI drivers) 821 */ 822 static void tcp_tasklet_func(unsigned long data) 823 { 824 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 825 LIST_HEAD(list); 826 unsigned long flags; 827 struct list_head *q, *n; 828 struct tcp_sock *tp; 829 struct sock *sk; 830 831 local_irq_save(flags); 832 list_splice_init(&tsq->head, &list); 833 local_irq_restore(flags); 834 835 list_for_each_safe(q, n, &list) { 836 tp = list_entry(q, struct tcp_sock, tsq_node); 837 list_del(&tp->tsq_node); 838 839 sk = (struct sock *)tp; 840 smp_mb__before_atomic(); 841 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 842 843 tcp_tsq_handler(sk); 844 sk_free(sk); 845 } 846 } 847 848 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 849 TCPF_WRITE_TIMER_DEFERRED | \ 850 TCPF_DELACK_TIMER_DEFERRED | \ 851 TCPF_MTU_REDUCED_DEFERRED) 852 /** 853 * tcp_release_cb - tcp release_sock() callback 854 * @sk: socket 855 * 856 * called from release_sock() to perform protocol dependent 857 * actions before socket release. 858 */ 859 void tcp_release_cb(struct sock *sk) 860 { 861 unsigned long flags, nflags; 862 863 /* perform an atomic operation only if at least one flag is set */ 864 do { 865 flags = sk->sk_tsq_flags; 866 if (!(flags & TCP_DEFERRED_ALL)) 867 return; 868 nflags = flags & ~TCP_DEFERRED_ALL; 869 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 870 871 if (flags & TCPF_TSQ_DEFERRED) { 872 tcp_tsq_write(sk); 873 __sock_put(sk); 874 } 875 /* Here begins the tricky part : 876 * We are called from release_sock() with : 877 * 1) BH disabled 878 * 2) sk_lock.slock spinlock held 879 * 3) socket owned by us (sk->sk_lock.owned == 1) 880 * 881 * But following code is meant to be called from BH handlers, 882 * so we should keep BH disabled, but early release socket ownership 883 */ 884 sock_release_ownership(sk); 885 886 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 887 tcp_write_timer_handler(sk); 888 __sock_put(sk); 889 } 890 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 891 tcp_delack_timer_handler(sk); 892 __sock_put(sk); 893 } 894 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 895 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 896 __sock_put(sk); 897 } 898 } 899 EXPORT_SYMBOL(tcp_release_cb); 900 901 void __init tcp_tasklet_init(void) 902 { 903 int i; 904 905 for_each_possible_cpu(i) { 906 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 907 908 INIT_LIST_HEAD(&tsq->head); 909 tasklet_init(&tsq->tasklet, 910 tcp_tasklet_func, 911 (unsigned long)tsq); 912 } 913 } 914 915 /* 916 * Write buffer destructor automatically called from kfree_skb. 917 * We can't xmit new skbs from this context, as we might already 918 * hold qdisc lock. 919 */ 920 void tcp_wfree(struct sk_buff *skb) 921 { 922 struct sock *sk = skb->sk; 923 struct tcp_sock *tp = tcp_sk(sk); 924 unsigned long flags, nval, oval; 925 926 /* Keep one reference on sk_wmem_alloc. 927 * Will be released by sk_free() from here or tcp_tasklet_func() 928 */ 929 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 930 931 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 932 * Wait until our queues (qdisc + devices) are drained. 933 * This gives : 934 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 935 * - chance for incoming ACK (processed by another cpu maybe) 936 * to migrate this flow (skb->ooo_okay will be eventually set) 937 */ 938 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 939 goto out; 940 941 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 942 struct tsq_tasklet *tsq; 943 bool empty; 944 945 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 946 goto out; 947 948 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 949 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 950 if (nval != oval) 951 continue; 952 953 /* queue this socket to tasklet queue */ 954 local_irq_save(flags); 955 tsq = this_cpu_ptr(&tsq_tasklet); 956 empty = list_empty(&tsq->head); 957 list_add(&tp->tsq_node, &tsq->head); 958 if (empty) 959 tasklet_schedule(&tsq->tasklet); 960 local_irq_restore(flags); 961 return; 962 } 963 out: 964 sk_free(sk); 965 } 966 967 /* Note: Called under soft irq. 968 * We can call TCP stack right away, unless socket is owned by user. 969 */ 970 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 971 { 972 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 973 struct sock *sk = (struct sock *)tp; 974 975 tcp_tsq_handler(sk); 976 sock_put(sk); 977 978 return HRTIMER_NORESTART; 979 } 980 981 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 982 u64 prior_wstamp) 983 { 984 struct tcp_sock *tp = tcp_sk(sk); 985 986 if (sk->sk_pacing_status != SK_PACING_NONE) { 987 unsigned long rate = sk->sk_pacing_rate; 988 989 /* Original sch_fq does not pace first 10 MSS 990 * Note that tp->data_segs_out overflows after 2^32 packets, 991 * this is a minor annoyance. 992 */ 993 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 994 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 995 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 996 997 /* take into account OS jitter */ 998 len_ns -= min_t(u64, len_ns / 2, credit); 999 tp->tcp_wstamp_ns += len_ns; 1000 } 1001 } 1002 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1003 } 1004 1005 /* This routine actually transmits TCP packets queued in by 1006 * tcp_do_sendmsg(). This is used by both the initial 1007 * transmission and possible later retransmissions. 1008 * All SKB's seen here are completely headerless. It is our 1009 * job to build the TCP header, and pass the packet down to 1010 * IP so it can do the same plus pass the packet off to the 1011 * device. 1012 * 1013 * We are working here with either a clone of the original 1014 * SKB, or a fresh unique copy made by the retransmit engine. 1015 */ 1016 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1017 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1018 { 1019 const struct inet_connection_sock *icsk = inet_csk(sk); 1020 struct inet_sock *inet; 1021 struct tcp_sock *tp; 1022 struct tcp_skb_cb *tcb; 1023 struct tcp_out_options opts; 1024 unsigned int tcp_options_size, tcp_header_size; 1025 struct sk_buff *oskb = NULL; 1026 struct tcp_md5sig_key *md5; 1027 struct tcphdr *th; 1028 u64 prior_wstamp; 1029 int err; 1030 1031 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1032 tp = tcp_sk(sk); 1033 prior_wstamp = tp->tcp_wstamp_ns; 1034 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1035 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1036 if (clone_it) { 1037 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1038 - tp->snd_una; 1039 oskb = skb; 1040 1041 tcp_skb_tsorted_save(oskb) { 1042 if (unlikely(skb_cloned(oskb))) 1043 skb = pskb_copy(oskb, gfp_mask); 1044 else 1045 skb = skb_clone(oskb, gfp_mask); 1046 } tcp_skb_tsorted_restore(oskb); 1047 1048 if (unlikely(!skb)) 1049 return -ENOBUFS; 1050 } 1051 1052 inet = inet_sk(sk); 1053 tcb = TCP_SKB_CB(skb); 1054 memset(&opts, 0, sizeof(opts)); 1055 1056 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1057 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1058 else 1059 tcp_options_size = tcp_established_options(sk, skb, &opts, 1060 &md5); 1061 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1062 1063 /* if no packet is in qdisc/device queue, then allow XPS to select 1064 * another queue. We can be called from tcp_tsq_handler() 1065 * which holds one reference to sk. 1066 * 1067 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1068 * One way to get this would be to set skb->truesize = 2 on them. 1069 */ 1070 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1071 1072 /* If we had to use memory reserve to allocate this skb, 1073 * this might cause drops if packet is looped back : 1074 * Other socket might not have SOCK_MEMALLOC. 1075 * Packets not looped back do not care about pfmemalloc. 1076 */ 1077 skb->pfmemalloc = 0; 1078 1079 skb_push(skb, tcp_header_size); 1080 skb_reset_transport_header(skb); 1081 1082 skb_orphan(skb); 1083 skb->sk = sk; 1084 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1085 skb_set_hash_from_sk(skb, sk); 1086 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1087 1088 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1089 1090 /* Build TCP header and checksum it. */ 1091 th = (struct tcphdr *)skb->data; 1092 th->source = inet->inet_sport; 1093 th->dest = inet->inet_dport; 1094 th->seq = htonl(tcb->seq); 1095 th->ack_seq = htonl(rcv_nxt); 1096 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1097 tcb->tcp_flags); 1098 1099 th->check = 0; 1100 th->urg_ptr = 0; 1101 1102 /* The urg_mode check is necessary during a below snd_una win probe */ 1103 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1104 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1105 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1106 th->urg = 1; 1107 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1108 th->urg_ptr = htons(0xFFFF); 1109 th->urg = 1; 1110 } 1111 } 1112 1113 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1114 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1115 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1116 th->window = htons(tcp_select_window(sk)); 1117 tcp_ecn_send(sk, skb, th, tcp_header_size); 1118 } else { 1119 /* RFC1323: The window in SYN & SYN/ACK segments 1120 * is never scaled. 1121 */ 1122 th->window = htons(min(tp->rcv_wnd, 65535U)); 1123 } 1124 #ifdef CONFIG_TCP_MD5SIG 1125 /* Calculate the MD5 hash, as we have all we need now */ 1126 if (md5) { 1127 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1128 tp->af_specific->calc_md5_hash(opts.hash_location, 1129 md5, sk, skb); 1130 } 1131 #endif 1132 1133 icsk->icsk_af_ops->send_check(sk, skb); 1134 1135 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1136 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1137 1138 if (skb->len != tcp_header_size) { 1139 tcp_event_data_sent(tp, sk); 1140 tp->data_segs_out += tcp_skb_pcount(skb); 1141 tp->bytes_sent += skb->len - tcp_header_size; 1142 } 1143 1144 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1145 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1146 tcp_skb_pcount(skb)); 1147 1148 tp->segs_out += tcp_skb_pcount(skb); 1149 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1150 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1151 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1152 1153 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1154 1155 /* Cleanup our debris for IP stacks */ 1156 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1157 sizeof(struct inet6_skb_parm))); 1158 1159 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1160 1161 if (unlikely(err > 0)) { 1162 tcp_enter_cwr(sk); 1163 err = net_xmit_eval(err); 1164 } 1165 if (!err && oskb) { 1166 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1167 tcp_rate_skb_sent(sk, oskb); 1168 } 1169 return err; 1170 } 1171 1172 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1173 gfp_t gfp_mask) 1174 { 1175 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1176 tcp_sk(sk)->rcv_nxt); 1177 } 1178 1179 /* This routine just queues the buffer for sending. 1180 * 1181 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1182 * otherwise socket can stall. 1183 */ 1184 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1185 { 1186 struct tcp_sock *tp = tcp_sk(sk); 1187 1188 /* Advance write_seq and place onto the write_queue. */ 1189 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1190 __skb_header_release(skb); 1191 tcp_add_write_queue_tail(sk, skb); 1192 sk->sk_wmem_queued += skb->truesize; 1193 sk_mem_charge(sk, skb->truesize); 1194 } 1195 1196 /* Initialize TSO segments for a packet. */ 1197 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1198 { 1199 if (skb->len <= mss_now) { 1200 /* Avoid the costly divide in the normal 1201 * non-TSO case. 1202 */ 1203 tcp_skb_pcount_set(skb, 1); 1204 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1205 } else { 1206 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1207 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1208 } 1209 } 1210 1211 /* Pcount in the middle of the write queue got changed, we need to do various 1212 * tweaks to fix counters 1213 */ 1214 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1215 { 1216 struct tcp_sock *tp = tcp_sk(sk); 1217 1218 tp->packets_out -= decr; 1219 1220 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1221 tp->sacked_out -= decr; 1222 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1223 tp->retrans_out -= decr; 1224 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1225 tp->lost_out -= decr; 1226 1227 /* Reno case is special. Sigh... */ 1228 if (tcp_is_reno(tp) && decr > 0) 1229 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1230 1231 if (tp->lost_skb_hint && 1232 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1233 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1234 tp->lost_cnt_hint -= decr; 1235 1236 tcp_verify_left_out(tp); 1237 } 1238 1239 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1240 { 1241 return TCP_SKB_CB(skb)->txstamp_ack || 1242 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1243 } 1244 1245 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1246 { 1247 struct skb_shared_info *shinfo = skb_shinfo(skb); 1248 1249 if (unlikely(tcp_has_tx_tstamp(skb)) && 1250 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1251 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1252 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1253 1254 shinfo->tx_flags &= ~tsflags; 1255 shinfo2->tx_flags |= tsflags; 1256 swap(shinfo->tskey, shinfo2->tskey); 1257 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1258 TCP_SKB_CB(skb)->txstamp_ack = 0; 1259 } 1260 } 1261 1262 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1263 { 1264 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1265 TCP_SKB_CB(skb)->eor = 0; 1266 } 1267 1268 /* Insert buff after skb on the write or rtx queue of sk. */ 1269 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1270 struct sk_buff *buff, 1271 struct sock *sk, 1272 enum tcp_queue tcp_queue) 1273 { 1274 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1275 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1276 else 1277 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1278 } 1279 1280 /* Function to create two new TCP segments. Shrinks the given segment 1281 * to the specified size and appends a new segment with the rest of the 1282 * packet to the list. This won't be called frequently, I hope. 1283 * Remember, these are still headerless SKBs at this point. 1284 */ 1285 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1286 struct sk_buff *skb, u32 len, 1287 unsigned int mss_now, gfp_t gfp) 1288 { 1289 struct tcp_sock *tp = tcp_sk(sk); 1290 struct sk_buff *buff; 1291 int nsize, old_factor; 1292 int nlen; 1293 u8 flags; 1294 1295 if (WARN_ON(len > skb->len)) 1296 return -EINVAL; 1297 1298 nsize = skb_headlen(skb) - len; 1299 if (nsize < 0) 1300 nsize = 0; 1301 1302 if (skb_unclone(skb, gfp)) 1303 return -ENOMEM; 1304 1305 /* Get a new skb... force flag on. */ 1306 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1307 if (!buff) 1308 return -ENOMEM; /* We'll just try again later. */ 1309 1310 sk->sk_wmem_queued += buff->truesize; 1311 sk_mem_charge(sk, buff->truesize); 1312 nlen = skb->len - len - nsize; 1313 buff->truesize += nlen; 1314 skb->truesize -= nlen; 1315 1316 /* Correct the sequence numbers. */ 1317 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1318 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1319 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1320 1321 /* PSH and FIN should only be set in the second packet. */ 1322 flags = TCP_SKB_CB(skb)->tcp_flags; 1323 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1324 TCP_SKB_CB(buff)->tcp_flags = flags; 1325 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1326 tcp_skb_fragment_eor(skb, buff); 1327 1328 skb_split(skb, buff, len); 1329 1330 buff->ip_summed = CHECKSUM_PARTIAL; 1331 1332 buff->tstamp = skb->tstamp; 1333 tcp_fragment_tstamp(skb, buff); 1334 1335 old_factor = tcp_skb_pcount(skb); 1336 1337 /* Fix up tso_factor for both original and new SKB. */ 1338 tcp_set_skb_tso_segs(skb, mss_now); 1339 tcp_set_skb_tso_segs(buff, mss_now); 1340 1341 /* Update delivered info for the new segment */ 1342 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1343 1344 /* If this packet has been sent out already, we must 1345 * adjust the various packet counters. 1346 */ 1347 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1348 int diff = old_factor - tcp_skb_pcount(skb) - 1349 tcp_skb_pcount(buff); 1350 1351 if (diff) 1352 tcp_adjust_pcount(sk, skb, diff); 1353 } 1354 1355 /* Link BUFF into the send queue. */ 1356 __skb_header_release(buff); 1357 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1358 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1359 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1360 1361 return 0; 1362 } 1363 1364 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1365 * data is not copied, but immediately discarded. 1366 */ 1367 static int __pskb_trim_head(struct sk_buff *skb, int len) 1368 { 1369 struct skb_shared_info *shinfo; 1370 int i, k, eat; 1371 1372 eat = min_t(int, len, skb_headlen(skb)); 1373 if (eat) { 1374 __skb_pull(skb, eat); 1375 len -= eat; 1376 if (!len) 1377 return 0; 1378 } 1379 eat = len; 1380 k = 0; 1381 shinfo = skb_shinfo(skb); 1382 for (i = 0; i < shinfo->nr_frags; i++) { 1383 int size = skb_frag_size(&shinfo->frags[i]); 1384 1385 if (size <= eat) { 1386 skb_frag_unref(skb, i); 1387 eat -= size; 1388 } else { 1389 shinfo->frags[k] = shinfo->frags[i]; 1390 if (eat) { 1391 shinfo->frags[k].page_offset += eat; 1392 skb_frag_size_sub(&shinfo->frags[k], eat); 1393 eat = 0; 1394 } 1395 k++; 1396 } 1397 } 1398 shinfo->nr_frags = k; 1399 1400 skb->data_len -= len; 1401 skb->len = skb->data_len; 1402 return len; 1403 } 1404 1405 /* Remove acked data from a packet in the transmit queue. */ 1406 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1407 { 1408 u32 delta_truesize; 1409 1410 if (skb_unclone(skb, GFP_ATOMIC)) 1411 return -ENOMEM; 1412 1413 delta_truesize = __pskb_trim_head(skb, len); 1414 1415 TCP_SKB_CB(skb)->seq += len; 1416 skb->ip_summed = CHECKSUM_PARTIAL; 1417 1418 if (delta_truesize) { 1419 skb->truesize -= delta_truesize; 1420 sk->sk_wmem_queued -= delta_truesize; 1421 sk_mem_uncharge(sk, delta_truesize); 1422 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1423 } 1424 1425 /* Any change of skb->len requires recalculation of tso factor. */ 1426 if (tcp_skb_pcount(skb) > 1) 1427 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1428 1429 return 0; 1430 } 1431 1432 /* Calculate MSS not accounting any TCP options. */ 1433 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1434 { 1435 const struct tcp_sock *tp = tcp_sk(sk); 1436 const struct inet_connection_sock *icsk = inet_csk(sk); 1437 int mss_now; 1438 1439 /* Calculate base mss without TCP options: 1440 It is MMS_S - sizeof(tcphdr) of rfc1122 1441 */ 1442 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1443 1444 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1445 if (icsk->icsk_af_ops->net_frag_header_len) { 1446 const struct dst_entry *dst = __sk_dst_get(sk); 1447 1448 if (dst && dst_allfrag(dst)) 1449 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1450 } 1451 1452 /* Clamp it (mss_clamp does not include tcp options) */ 1453 if (mss_now > tp->rx_opt.mss_clamp) 1454 mss_now = tp->rx_opt.mss_clamp; 1455 1456 /* Now subtract optional transport overhead */ 1457 mss_now -= icsk->icsk_ext_hdr_len; 1458 1459 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1460 if (mss_now < 48) 1461 mss_now = 48; 1462 return mss_now; 1463 } 1464 1465 /* Calculate MSS. Not accounting for SACKs here. */ 1466 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1467 { 1468 /* Subtract TCP options size, not including SACKs */ 1469 return __tcp_mtu_to_mss(sk, pmtu) - 1470 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1471 } 1472 1473 /* Inverse of above */ 1474 int tcp_mss_to_mtu(struct sock *sk, int mss) 1475 { 1476 const struct tcp_sock *tp = tcp_sk(sk); 1477 const struct inet_connection_sock *icsk = inet_csk(sk); 1478 int mtu; 1479 1480 mtu = mss + 1481 tp->tcp_header_len + 1482 icsk->icsk_ext_hdr_len + 1483 icsk->icsk_af_ops->net_header_len; 1484 1485 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1486 if (icsk->icsk_af_ops->net_frag_header_len) { 1487 const struct dst_entry *dst = __sk_dst_get(sk); 1488 1489 if (dst && dst_allfrag(dst)) 1490 mtu += icsk->icsk_af_ops->net_frag_header_len; 1491 } 1492 return mtu; 1493 } 1494 EXPORT_SYMBOL(tcp_mss_to_mtu); 1495 1496 /* MTU probing init per socket */ 1497 void tcp_mtup_init(struct sock *sk) 1498 { 1499 struct tcp_sock *tp = tcp_sk(sk); 1500 struct inet_connection_sock *icsk = inet_csk(sk); 1501 struct net *net = sock_net(sk); 1502 1503 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1504 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1505 icsk->icsk_af_ops->net_header_len; 1506 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1507 icsk->icsk_mtup.probe_size = 0; 1508 if (icsk->icsk_mtup.enabled) 1509 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1510 } 1511 EXPORT_SYMBOL(tcp_mtup_init); 1512 1513 /* This function synchronize snd mss to current pmtu/exthdr set. 1514 1515 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1516 for TCP options, but includes only bare TCP header. 1517 1518 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1519 It is minimum of user_mss and mss received with SYN. 1520 It also does not include TCP options. 1521 1522 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1523 1524 tp->mss_cache is current effective sending mss, including 1525 all tcp options except for SACKs. It is evaluated, 1526 taking into account current pmtu, but never exceeds 1527 tp->rx_opt.mss_clamp. 1528 1529 NOTE1. rfc1122 clearly states that advertised MSS 1530 DOES NOT include either tcp or ip options. 1531 1532 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1533 are READ ONLY outside this function. --ANK (980731) 1534 */ 1535 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1536 { 1537 struct tcp_sock *tp = tcp_sk(sk); 1538 struct inet_connection_sock *icsk = inet_csk(sk); 1539 int mss_now; 1540 1541 if (icsk->icsk_mtup.search_high > pmtu) 1542 icsk->icsk_mtup.search_high = pmtu; 1543 1544 mss_now = tcp_mtu_to_mss(sk, pmtu); 1545 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1546 1547 /* And store cached results */ 1548 icsk->icsk_pmtu_cookie = pmtu; 1549 if (icsk->icsk_mtup.enabled) 1550 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1551 tp->mss_cache = mss_now; 1552 1553 return mss_now; 1554 } 1555 EXPORT_SYMBOL(tcp_sync_mss); 1556 1557 /* Compute the current effective MSS, taking SACKs and IP options, 1558 * and even PMTU discovery events into account. 1559 */ 1560 unsigned int tcp_current_mss(struct sock *sk) 1561 { 1562 const struct tcp_sock *tp = tcp_sk(sk); 1563 const struct dst_entry *dst = __sk_dst_get(sk); 1564 u32 mss_now; 1565 unsigned int header_len; 1566 struct tcp_out_options opts; 1567 struct tcp_md5sig_key *md5; 1568 1569 mss_now = tp->mss_cache; 1570 1571 if (dst) { 1572 u32 mtu = dst_mtu(dst); 1573 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1574 mss_now = tcp_sync_mss(sk, mtu); 1575 } 1576 1577 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1578 sizeof(struct tcphdr); 1579 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1580 * some common options. If this is an odd packet (because we have SACK 1581 * blocks etc) then our calculated header_len will be different, and 1582 * we have to adjust mss_now correspondingly */ 1583 if (header_len != tp->tcp_header_len) { 1584 int delta = (int) header_len - tp->tcp_header_len; 1585 mss_now -= delta; 1586 } 1587 1588 return mss_now; 1589 } 1590 1591 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1592 * As additional protections, we do not touch cwnd in retransmission phases, 1593 * and if application hit its sndbuf limit recently. 1594 */ 1595 static void tcp_cwnd_application_limited(struct sock *sk) 1596 { 1597 struct tcp_sock *tp = tcp_sk(sk); 1598 1599 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1600 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1601 /* Limited by application or receiver window. */ 1602 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1603 u32 win_used = max(tp->snd_cwnd_used, init_win); 1604 if (win_used < tp->snd_cwnd) { 1605 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1606 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1607 } 1608 tp->snd_cwnd_used = 0; 1609 } 1610 tp->snd_cwnd_stamp = tcp_jiffies32; 1611 } 1612 1613 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1614 { 1615 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1616 struct tcp_sock *tp = tcp_sk(sk); 1617 1618 /* Track the maximum number of outstanding packets in each 1619 * window, and remember whether we were cwnd-limited then. 1620 */ 1621 if (!before(tp->snd_una, tp->max_packets_seq) || 1622 tp->packets_out > tp->max_packets_out) { 1623 tp->max_packets_out = tp->packets_out; 1624 tp->max_packets_seq = tp->snd_nxt; 1625 tp->is_cwnd_limited = is_cwnd_limited; 1626 } 1627 1628 if (tcp_is_cwnd_limited(sk)) { 1629 /* Network is feed fully. */ 1630 tp->snd_cwnd_used = 0; 1631 tp->snd_cwnd_stamp = tcp_jiffies32; 1632 } else { 1633 /* Network starves. */ 1634 if (tp->packets_out > tp->snd_cwnd_used) 1635 tp->snd_cwnd_used = tp->packets_out; 1636 1637 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1638 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1639 !ca_ops->cong_control) 1640 tcp_cwnd_application_limited(sk); 1641 1642 /* The following conditions together indicate the starvation 1643 * is caused by insufficient sender buffer: 1644 * 1) just sent some data (see tcp_write_xmit) 1645 * 2) not cwnd limited (this else condition) 1646 * 3) no more data to send (tcp_write_queue_empty()) 1647 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1648 */ 1649 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1650 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1651 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1652 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1653 } 1654 } 1655 1656 /* Minshall's variant of the Nagle send check. */ 1657 static bool tcp_minshall_check(const struct tcp_sock *tp) 1658 { 1659 return after(tp->snd_sml, tp->snd_una) && 1660 !after(tp->snd_sml, tp->snd_nxt); 1661 } 1662 1663 /* Update snd_sml if this skb is under mss 1664 * Note that a TSO packet might end with a sub-mss segment 1665 * The test is really : 1666 * if ((skb->len % mss) != 0) 1667 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1668 * But we can avoid doing the divide again given we already have 1669 * skb_pcount = skb->len / mss_now 1670 */ 1671 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1672 const struct sk_buff *skb) 1673 { 1674 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1675 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1676 } 1677 1678 /* Return false, if packet can be sent now without violation Nagle's rules: 1679 * 1. It is full sized. (provided by caller in %partial bool) 1680 * 2. Or it contains FIN. (already checked by caller) 1681 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1682 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1683 * With Minshall's modification: all sent small packets are ACKed. 1684 */ 1685 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1686 int nonagle) 1687 { 1688 return partial && 1689 ((nonagle & TCP_NAGLE_CORK) || 1690 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1691 } 1692 1693 /* Return how many segs we'd like on a TSO packet, 1694 * to send one TSO packet per ms 1695 */ 1696 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1697 int min_tso_segs) 1698 { 1699 u32 bytes, segs; 1700 1701 bytes = min_t(unsigned long, 1702 sk->sk_pacing_rate >> sk->sk_pacing_shift, 1703 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1704 1705 /* Goal is to send at least one packet per ms, 1706 * not one big TSO packet every 100 ms. 1707 * This preserves ACK clocking and is consistent 1708 * with tcp_tso_should_defer() heuristic. 1709 */ 1710 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1711 1712 return segs; 1713 } 1714 1715 /* Return the number of segments we want in the skb we are transmitting. 1716 * See if congestion control module wants to decide; otherwise, autosize. 1717 */ 1718 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1719 { 1720 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1721 u32 min_tso, tso_segs; 1722 1723 min_tso = ca_ops->min_tso_segs ? 1724 ca_ops->min_tso_segs(sk) : 1725 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1726 1727 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1728 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1729 } 1730 1731 /* Returns the portion of skb which can be sent right away */ 1732 static unsigned int tcp_mss_split_point(const struct sock *sk, 1733 const struct sk_buff *skb, 1734 unsigned int mss_now, 1735 unsigned int max_segs, 1736 int nonagle) 1737 { 1738 const struct tcp_sock *tp = tcp_sk(sk); 1739 u32 partial, needed, window, max_len; 1740 1741 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1742 max_len = mss_now * max_segs; 1743 1744 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1745 return max_len; 1746 1747 needed = min(skb->len, window); 1748 1749 if (max_len <= needed) 1750 return max_len; 1751 1752 partial = needed % mss_now; 1753 /* If last segment is not a full MSS, check if Nagle rules allow us 1754 * to include this last segment in this skb. 1755 * Otherwise, we'll split the skb at last MSS boundary 1756 */ 1757 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1758 return needed - partial; 1759 1760 return needed; 1761 } 1762 1763 /* Can at least one segment of SKB be sent right now, according to the 1764 * congestion window rules? If so, return how many segments are allowed. 1765 */ 1766 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1767 const struct sk_buff *skb) 1768 { 1769 u32 in_flight, cwnd, halfcwnd; 1770 1771 /* Don't be strict about the congestion window for the final FIN. */ 1772 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1773 tcp_skb_pcount(skb) == 1) 1774 return 1; 1775 1776 in_flight = tcp_packets_in_flight(tp); 1777 cwnd = tp->snd_cwnd; 1778 if (in_flight >= cwnd) 1779 return 0; 1780 1781 /* For better scheduling, ensure we have at least 1782 * 2 GSO packets in flight. 1783 */ 1784 halfcwnd = max(cwnd >> 1, 1U); 1785 return min(halfcwnd, cwnd - in_flight); 1786 } 1787 1788 /* Initialize TSO state of a skb. 1789 * This must be invoked the first time we consider transmitting 1790 * SKB onto the wire. 1791 */ 1792 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1793 { 1794 int tso_segs = tcp_skb_pcount(skb); 1795 1796 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1797 tcp_set_skb_tso_segs(skb, mss_now); 1798 tso_segs = tcp_skb_pcount(skb); 1799 } 1800 return tso_segs; 1801 } 1802 1803 1804 /* Return true if the Nagle test allows this packet to be 1805 * sent now. 1806 */ 1807 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1808 unsigned int cur_mss, int nonagle) 1809 { 1810 /* Nagle rule does not apply to frames, which sit in the middle of the 1811 * write_queue (they have no chances to get new data). 1812 * 1813 * This is implemented in the callers, where they modify the 'nonagle' 1814 * argument based upon the location of SKB in the send queue. 1815 */ 1816 if (nonagle & TCP_NAGLE_PUSH) 1817 return true; 1818 1819 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1820 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1821 return true; 1822 1823 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1824 return true; 1825 1826 return false; 1827 } 1828 1829 /* Does at least the first segment of SKB fit into the send window? */ 1830 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1831 const struct sk_buff *skb, 1832 unsigned int cur_mss) 1833 { 1834 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1835 1836 if (skb->len > cur_mss) 1837 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1838 1839 return !after(end_seq, tcp_wnd_end(tp)); 1840 } 1841 1842 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1843 * which is put after SKB on the list. It is very much like 1844 * tcp_fragment() except that it may make several kinds of assumptions 1845 * in order to speed up the splitting operation. In particular, we 1846 * know that all the data is in scatter-gather pages, and that the 1847 * packet has never been sent out before (and thus is not cloned). 1848 */ 1849 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1850 unsigned int mss_now, gfp_t gfp) 1851 { 1852 int nlen = skb->len - len; 1853 struct sk_buff *buff; 1854 u8 flags; 1855 1856 /* All of a TSO frame must be composed of paged data. */ 1857 if (skb->len != skb->data_len) 1858 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 1859 skb, len, mss_now, gfp); 1860 1861 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1862 if (unlikely(!buff)) 1863 return -ENOMEM; 1864 1865 sk->sk_wmem_queued += buff->truesize; 1866 sk_mem_charge(sk, buff->truesize); 1867 buff->truesize += nlen; 1868 skb->truesize -= nlen; 1869 1870 /* Correct the sequence numbers. */ 1871 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1872 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1873 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1874 1875 /* PSH and FIN should only be set in the second packet. */ 1876 flags = TCP_SKB_CB(skb)->tcp_flags; 1877 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1878 TCP_SKB_CB(buff)->tcp_flags = flags; 1879 1880 /* This packet was never sent out yet, so no SACK bits. */ 1881 TCP_SKB_CB(buff)->sacked = 0; 1882 1883 tcp_skb_fragment_eor(skb, buff); 1884 1885 buff->ip_summed = CHECKSUM_PARTIAL; 1886 skb_split(skb, buff, len); 1887 tcp_fragment_tstamp(skb, buff); 1888 1889 /* Fix up tso_factor for both original and new SKB. */ 1890 tcp_set_skb_tso_segs(skb, mss_now); 1891 tcp_set_skb_tso_segs(buff, mss_now); 1892 1893 /* Link BUFF into the send queue. */ 1894 __skb_header_release(buff); 1895 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 1896 1897 return 0; 1898 } 1899 1900 /* Try to defer sending, if possible, in order to minimize the amount 1901 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1902 * 1903 * This algorithm is from John Heffner. 1904 */ 1905 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1906 bool *is_cwnd_limited, 1907 bool *is_rwnd_limited, 1908 u32 max_segs) 1909 { 1910 const struct inet_connection_sock *icsk = inet_csk(sk); 1911 u32 send_win, cong_win, limit, in_flight; 1912 struct tcp_sock *tp = tcp_sk(sk); 1913 struct sk_buff *head; 1914 int win_divisor; 1915 s64 delta; 1916 1917 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1918 goto send_now; 1919 1920 /* Avoid bursty behavior by allowing defer 1921 * only if the last write was recent (1 ms). 1922 * Note that tp->tcp_wstamp_ns can be in the future if we have 1923 * packets waiting in a qdisc or device for EDT delivery. 1924 */ 1925 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 1926 if (delta > 0) 1927 goto send_now; 1928 1929 in_flight = tcp_packets_in_flight(tp); 1930 1931 BUG_ON(tcp_skb_pcount(skb) <= 1); 1932 BUG_ON(tp->snd_cwnd <= in_flight); 1933 1934 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1935 1936 /* From in_flight test above, we know that cwnd > in_flight. */ 1937 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1938 1939 limit = min(send_win, cong_win); 1940 1941 /* If a full-sized TSO skb can be sent, do it. */ 1942 if (limit >= max_segs * tp->mss_cache) 1943 goto send_now; 1944 1945 /* Middle in queue won't get any more data, full sendable already? */ 1946 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1947 goto send_now; 1948 1949 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1950 if (win_divisor) { 1951 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1952 1953 /* If at least some fraction of a window is available, 1954 * just use it. 1955 */ 1956 chunk /= win_divisor; 1957 if (limit >= chunk) 1958 goto send_now; 1959 } else { 1960 /* Different approach, try not to defer past a single 1961 * ACK. Receiver should ACK every other full sized 1962 * frame, so if we have space for more than 3 frames 1963 * then send now. 1964 */ 1965 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1966 goto send_now; 1967 } 1968 1969 /* TODO : use tsorted_sent_queue ? */ 1970 head = tcp_rtx_queue_head(sk); 1971 if (!head) 1972 goto send_now; 1973 delta = tp->tcp_clock_cache - head->tstamp; 1974 /* If next ACK is likely to come too late (half srtt), do not defer */ 1975 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 1976 goto send_now; 1977 1978 /* Ok, it looks like it is advisable to defer. 1979 * Three cases are tracked : 1980 * 1) We are cwnd-limited 1981 * 2) We are rwnd-limited 1982 * 3) We are application limited. 1983 */ 1984 if (cong_win < send_win) { 1985 if (cong_win <= skb->len) { 1986 *is_cwnd_limited = true; 1987 return true; 1988 } 1989 } else { 1990 if (send_win <= skb->len) { 1991 *is_rwnd_limited = true; 1992 return true; 1993 } 1994 } 1995 1996 /* If this packet won't get more data, do not wait. */ 1997 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 1998 TCP_SKB_CB(skb)->eor) 1999 goto send_now; 2000 2001 return true; 2002 2003 send_now: 2004 return false; 2005 } 2006 2007 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2008 { 2009 struct inet_connection_sock *icsk = inet_csk(sk); 2010 struct tcp_sock *tp = tcp_sk(sk); 2011 struct net *net = sock_net(sk); 2012 u32 interval; 2013 s32 delta; 2014 2015 interval = net->ipv4.sysctl_tcp_probe_interval; 2016 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2017 if (unlikely(delta >= interval * HZ)) { 2018 int mss = tcp_current_mss(sk); 2019 2020 /* Update current search range */ 2021 icsk->icsk_mtup.probe_size = 0; 2022 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2023 sizeof(struct tcphdr) + 2024 icsk->icsk_af_ops->net_header_len; 2025 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2026 2027 /* Update probe time stamp */ 2028 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2029 } 2030 } 2031 2032 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2033 { 2034 struct sk_buff *skb, *next; 2035 2036 skb = tcp_send_head(sk); 2037 tcp_for_write_queue_from_safe(skb, next, sk) { 2038 if (len <= skb->len) 2039 break; 2040 2041 if (unlikely(TCP_SKB_CB(skb)->eor)) 2042 return false; 2043 2044 len -= skb->len; 2045 } 2046 2047 return true; 2048 } 2049 2050 /* Create a new MTU probe if we are ready. 2051 * MTU probe is regularly attempting to increase the path MTU by 2052 * deliberately sending larger packets. This discovers routing 2053 * changes resulting in larger path MTUs. 2054 * 2055 * Returns 0 if we should wait to probe (no cwnd available), 2056 * 1 if a probe was sent, 2057 * -1 otherwise 2058 */ 2059 static int tcp_mtu_probe(struct sock *sk) 2060 { 2061 struct inet_connection_sock *icsk = inet_csk(sk); 2062 struct tcp_sock *tp = tcp_sk(sk); 2063 struct sk_buff *skb, *nskb, *next; 2064 struct net *net = sock_net(sk); 2065 int probe_size; 2066 int size_needed; 2067 int copy, len; 2068 int mss_now; 2069 int interval; 2070 2071 /* Not currently probing/verifying, 2072 * not in recovery, 2073 * have enough cwnd, and 2074 * not SACKing (the variable headers throw things off) 2075 */ 2076 if (likely(!icsk->icsk_mtup.enabled || 2077 icsk->icsk_mtup.probe_size || 2078 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2079 tp->snd_cwnd < 11 || 2080 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2081 return -1; 2082 2083 /* Use binary search for probe_size between tcp_mss_base, 2084 * and current mss_clamp. if (search_high - search_low) 2085 * smaller than a threshold, backoff from probing. 2086 */ 2087 mss_now = tcp_current_mss(sk); 2088 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2089 icsk->icsk_mtup.search_low) >> 1); 2090 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2091 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2092 /* When misfortune happens, we are reprobing actively, 2093 * and then reprobe timer has expired. We stick with current 2094 * probing process by not resetting search range to its orignal. 2095 */ 2096 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2097 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2098 /* Check whether enough time has elaplased for 2099 * another round of probing. 2100 */ 2101 tcp_mtu_check_reprobe(sk); 2102 return -1; 2103 } 2104 2105 /* Have enough data in the send queue to probe? */ 2106 if (tp->write_seq - tp->snd_nxt < size_needed) 2107 return -1; 2108 2109 if (tp->snd_wnd < size_needed) 2110 return -1; 2111 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2112 return 0; 2113 2114 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2115 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2116 if (!tcp_packets_in_flight(tp)) 2117 return -1; 2118 else 2119 return 0; 2120 } 2121 2122 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2123 return -1; 2124 2125 /* We're allowed to probe. Build it now. */ 2126 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2127 if (!nskb) 2128 return -1; 2129 sk->sk_wmem_queued += nskb->truesize; 2130 sk_mem_charge(sk, nskb->truesize); 2131 2132 skb = tcp_send_head(sk); 2133 2134 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2135 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2136 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2137 TCP_SKB_CB(nskb)->sacked = 0; 2138 nskb->csum = 0; 2139 nskb->ip_summed = CHECKSUM_PARTIAL; 2140 2141 tcp_insert_write_queue_before(nskb, skb, sk); 2142 tcp_highest_sack_replace(sk, skb, nskb); 2143 2144 len = 0; 2145 tcp_for_write_queue_from_safe(skb, next, sk) { 2146 copy = min_t(int, skb->len, probe_size - len); 2147 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2148 2149 if (skb->len <= copy) { 2150 /* We've eaten all the data from this skb. 2151 * Throw it away. */ 2152 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2153 /* If this is the last SKB we copy and eor is set 2154 * we need to propagate it to the new skb. 2155 */ 2156 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2157 tcp_unlink_write_queue(skb, sk); 2158 sk_wmem_free_skb(sk, skb); 2159 } else { 2160 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2161 ~(TCPHDR_FIN|TCPHDR_PSH); 2162 if (!skb_shinfo(skb)->nr_frags) { 2163 skb_pull(skb, copy); 2164 } else { 2165 __pskb_trim_head(skb, copy); 2166 tcp_set_skb_tso_segs(skb, mss_now); 2167 } 2168 TCP_SKB_CB(skb)->seq += copy; 2169 } 2170 2171 len += copy; 2172 2173 if (len >= probe_size) 2174 break; 2175 } 2176 tcp_init_tso_segs(nskb, nskb->len); 2177 2178 /* We're ready to send. If this fails, the probe will 2179 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2180 */ 2181 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2182 /* Decrement cwnd here because we are sending 2183 * effectively two packets. */ 2184 tp->snd_cwnd--; 2185 tcp_event_new_data_sent(sk, nskb); 2186 2187 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2188 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2189 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2190 2191 return 1; 2192 } 2193 2194 return -1; 2195 } 2196 2197 static bool tcp_pacing_check(struct sock *sk) 2198 { 2199 struct tcp_sock *tp = tcp_sk(sk); 2200 2201 if (!tcp_needs_internal_pacing(sk)) 2202 return false; 2203 2204 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2205 return false; 2206 2207 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2208 hrtimer_start(&tp->pacing_timer, 2209 ns_to_ktime(tp->tcp_wstamp_ns), 2210 HRTIMER_MODE_ABS_PINNED_SOFT); 2211 sock_hold(sk); 2212 } 2213 return true; 2214 } 2215 2216 /* TCP Small Queues : 2217 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2218 * (These limits are doubled for retransmits) 2219 * This allows for : 2220 * - better RTT estimation and ACK scheduling 2221 * - faster recovery 2222 * - high rates 2223 * Alas, some drivers / subsystems require a fair amount 2224 * of queued bytes to ensure line rate. 2225 * One example is wifi aggregation (802.11 AMPDU) 2226 */ 2227 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2228 unsigned int factor) 2229 { 2230 unsigned long limit; 2231 2232 limit = max_t(unsigned long, 2233 2 * skb->truesize, 2234 sk->sk_pacing_rate >> sk->sk_pacing_shift); 2235 if (sk->sk_pacing_status == SK_PACING_NONE) 2236 limit = min_t(unsigned long, limit, 2237 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2238 limit <<= factor; 2239 2240 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2241 /* Always send skb if rtx queue is empty. 2242 * No need to wait for TX completion to call us back, 2243 * after softirq/tasklet schedule. 2244 * This helps when TX completions are delayed too much. 2245 */ 2246 if (tcp_rtx_queue_empty(sk)) 2247 return false; 2248 2249 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2250 /* It is possible TX completion already happened 2251 * before we set TSQ_THROTTLED, so we must 2252 * test again the condition. 2253 */ 2254 smp_mb__after_atomic(); 2255 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2256 return true; 2257 } 2258 return false; 2259 } 2260 2261 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2262 { 2263 const u32 now = tcp_jiffies32; 2264 enum tcp_chrono old = tp->chrono_type; 2265 2266 if (old > TCP_CHRONO_UNSPEC) 2267 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2268 tp->chrono_start = now; 2269 tp->chrono_type = new; 2270 } 2271 2272 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2273 { 2274 struct tcp_sock *tp = tcp_sk(sk); 2275 2276 /* If there are multiple conditions worthy of tracking in a 2277 * chronograph then the highest priority enum takes precedence 2278 * over the other conditions. So that if something "more interesting" 2279 * starts happening, stop the previous chrono and start a new one. 2280 */ 2281 if (type > tp->chrono_type) 2282 tcp_chrono_set(tp, type); 2283 } 2284 2285 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2286 { 2287 struct tcp_sock *tp = tcp_sk(sk); 2288 2289 2290 /* There are multiple conditions worthy of tracking in a 2291 * chronograph, so that the highest priority enum takes 2292 * precedence over the other conditions (see tcp_chrono_start). 2293 * If a condition stops, we only stop chrono tracking if 2294 * it's the "most interesting" or current chrono we are 2295 * tracking and starts busy chrono if we have pending data. 2296 */ 2297 if (tcp_rtx_and_write_queues_empty(sk)) 2298 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2299 else if (type == tp->chrono_type) 2300 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2301 } 2302 2303 /* This routine writes packets to the network. It advances the 2304 * send_head. This happens as incoming acks open up the remote 2305 * window for us. 2306 * 2307 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2308 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2309 * account rare use of URG, this is not a big flaw. 2310 * 2311 * Send at most one packet when push_one > 0. Temporarily ignore 2312 * cwnd limit to force at most one packet out when push_one == 2. 2313 2314 * Returns true, if no segments are in flight and we have queued segments, 2315 * but cannot send anything now because of SWS or another problem. 2316 */ 2317 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2318 int push_one, gfp_t gfp) 2319 { 2320 struct tcp_sock *tp = tcp_sk(sk); 2321 struct sk_buff *skb; 2322 unsigned int tso_segs, sent_pkts; 2323 int cwnd_quota; 2324 int result; 2325 bool is_cwnd_limited = false, is_rwnd_limited = false; 2326 u32 max_segs; 2327 2328 sent_pkts = 0; 2329 2330 tcp_mstamp_refresh(tp); 2331 if (!push_one) { 2332 /* Do MTU probing. */ 2333 result = tcp_mtu_probe(sk); 2334 if (!result) { 2335 return false; 2336 } else if (result > 0) { 2337 sent_pkts = 1; 2338 } 2339 } 2340 2341 max_segs = tcp_tso_segs(sk, mss_now); 2342 while ((skb = tcp_send_head(sk))) { 2343 unsigned int limit; 2344 2345 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2346 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2347 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2348 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2349 tcp_init_tso_segs(skb, mss_now); 2350 goto repair; /* Skip network transmission */ 2351 } 2352 2353 if (tcp_pacing_check(sk)) 2354 break; 2355 2356 tso_segs = tcp_init_tso_segs(skb, mss_now); 2357 BUG_ON(!tso_segs); 2358 2359 cwnd_quota = tcp_cwnd_test(tp, skb); 2360 if (!cwnd_quota) { 2361 if (push_one == 2) 2362 /* Force out a loss probe pkt. */ 2363 cwnd_quota = 1; 2364 else 2365 break; 2366 } 2367 2368 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2369 is_rwnd_limited = true; 2370 break; 2371 } 2372 2373 if (tso_segs == 1) { 2374 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2375 (tcp_skb_is_last(sk, skb) ? 2376 nonagle : TCP_NAGLE_PUSH)))) 2377 break; 2378 } else { 2379 if (!push_one && 2380 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2381 &is_rwnd_limited, max_segs)) 2382 break; 2383 } 2384 2385 limit = mss_now; 2386 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2387 limit = tcp_mss_split_point(sk, skb, mss_now, 2388 min_t(unsigned int, 2389 cwnd_quota, 2390 max_segs), 2391 nonagle); 2392 2393 if (skb->len > limit && 2394 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2395 break; 2396 2397 if (tcp_small_queue_check(sk, skb, 0)) 2398 break; 2399 2400 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2401 break; 2402 2403 repair: 2404 /* Advance the send_head. This one is sent out. 2405 * This call will increment packets_out. 2406 */ 2407 tcp_event_new_data_sent(sk, skb); 2408 2409 tcp_minshall_update(tp, mss_now, skb); 2410 sent_pkts += tcp_skb_pcount(skb); 2411 2412 if (push_one) 2413 break; 2414 } 2415 2416 if (is_rwnd_limited) 2417 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2418 else 2419 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2420 2421 if (likely(sent_pkts)) { 2422 if (tcp_in_cwnd_reduction(sk)) 2423 tp->prr_out += sent_pkts; 2424 2425 /* Send one loss probe per tail loss episode. */ 2426 if (push_one != 2) 2427 tcp_schedule_loss_probe(sk, false); 2428 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2429 tcp_cwnd_validate(sk, is_cwnd_limited); 2430 return false; 2431 } 2432 return !tp->packets_out && !tcp_write_queue_empty(sk); 2433 } 2434 2435 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2436 { 2437 struct inet_connection_sock *icsk = inet_csk(sk); 2438 struct tcp_sock *tp = tcp_sk(sk); 2439 u32 timeout, rto_delta_us; 2440 int early_retrans; 2441 2442 /* Don't do any loss probe on a Fast Open connection before 3WHS 2443 * finishes. 2444 */ 2445 if (tp->fastopen_rsk) 2446 return false; 2447 2448 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2449 /* Schedule a loss probe in 2*RTT for SACK capable connections 2450 * not in loss recovery, that are either limited by cwnd or application. 2451 */ 2452 if ((early_retrans != 3 && early_retrans != 4) || 2453 !tp->packets_out || !tcp_is_sack(tp) || 2454 (icsk->icsk_ca_state != TCP_CA_Open && 2455 icsk->icsk_ca_state != TCP_CA_CWR)) 2456 return false; 2457 2458 /* Probe timeout is 2*rtt. Add minimum RTO to account 2459 * for delayed ack when there's one outstanding packet. If no RTT 2460 * sample is available then probe after TCP_TIMEOUT_INIT. 2461 */ 2462 if (tp->srtt_us) { 2463 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2464 if (tp->packets_out == 1) 2465 timeout += TCP_RTO_MIN; 2466 else 2467 timeout += TCP_TIMEOUT_MIN; 2468 } else { 2469 timeout = TCP_TIMEOUT_INIT; 2470 } 2471 2472 /* If the RTO formula yields an earlier time, then use that time. */ 2473 rto_delta_us = advancing_rto ? 2474 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2475 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2476 if (rto_delta_us > 0) 2477 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2478 2479 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2480 TCP_RTO_MAX, NULL); 2481 return true; 2482 } 2483 2484 /* Thanks to skb fast clones, we can detect if a prior transmit of 2485 * a packet is still in a qdisc or driver queue. 2486 * In this case, there is very little point doing a retransmit ! 2487 */ 2488 static bool skb_still_in_host_queue(const struct sock *sk, 2489 const struct sk_buff *skb) 2490 { 2491 if (unlikely(skb_fclone_busy(sk, skb))) { 2492 NET_INC_STATS(sock_net(sk), 2493 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2494 return true; 2495 } 2496 return false; 2497 } 2498 2499 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2500 * retransmit the last segment. 2501 */ 2502 void tcp_send_loss_probe(struct sock *sk) 2503 { 2504 struct tcp_sock *tp = tcp_sk(sk); 2505 struct sk_buff *skb; 2506 int pcount; 2507 int mss = tcp_current_mss(sk); 2508 2509 skb = tcp_send_head(sk); 2510 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2511 pcount = tp->packets_out; 2512 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2513 if (tp->packets_out > pcount) 2514 goto probe_sent; 2515 goto rearm_timer; 2516 } 2517 skb = skb_rb_last(&sk->tcp_rtx_queue); 2518 if (unlikely(!skb)) { 2519 WARN_ONCE(tp->packets_out, 2520 "invalid inflight: %u state %u cwnd %u mss %d\n", 2521 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2522 inet_csk(sk)->icsk_pending = 0; 2523 return; 2524 } 2525 2526 /* At most one outstanding TLP retransmission. */ 2527 if (tp->tlp_high_seq) 2528 goto rearm_timer; 2529 2530 if (skb_still_in_host_queue(sk, skb)) 2531 goto rearm_timer; 2532 2533 pcount = tcp_skb_pcount(skb); 2534 if (WARN_ON(!pcount)) 2535 goto rearm_timer; 2536 2537 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2538 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2539 (pcount - 1) * mss, mss, 2540 GFP_ATOMIC))) 2541 goto rearm_timer; 2542 skb = skb_rb_next(skb); 2543 } 2544 2545 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2546 goto rearm_timer; 2547 2548 if (__tcp_retransmit_skb(sk, skb, 1)) 2549 goto rearm_timer; 2550 2551 /* Record snd_nxt for loss detection. */ 2552 tp->tlp_high_seq = tp->snd_nxt; 2553 2554 probe_sent: 2555 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2556 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2557 inet_csk(sk)->icsk_pending = 0; 2558 rearm_timer: 2559 tcp_rearm_rto(sk); 2560 } 2561 2562 /* Push out any pending frames which were held back due to 2563 * TCP_CORK or attempt at coalescing tiny packets. 2564 * The socket must be locked by the caller. 2565 */ 2566 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2567 int nonagle) 2568 { 2569 /* If we are closed, the bytes will have to remain here. 2570 * In time closedown will finish, we empty the write queue and 2571 * all will be happy. 2572 */ 2573 if (unlikely(sk->sk_state == TCP_CLOSE)) 2574 return; 2575 2576 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2577 sk_gfp_mask(sk, GFP_ATOMIC))) 2578 tcp_check_probe_timer(sk); 2579 } 2580 2581 /* Send _single_ skb sitting at the send head. This function requires 2582 * true push pending frames to setup probe timer etc. 2583 */ 2584 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2585 { 2586 struct sk_buff *skb = tcp_send_head(sk); 2587 2588 BUG_ON(!skb || skb->len < mss_now); 2589 2590 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2591 } 2592 2593 /* This function returns the amount that we can raise the 2594 * usable window based on the following constraints 2595 * 2596 * 1. The window can never be shrunk once it is offered (RFC 793) 2597 * 2. We limit memory per socket 2598 * 2599 * RFC 1122: 2600 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2601 * RECV.NEXT + RCV.WIN fixed until: 2602 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2603 * 2604 * i.e. don't raise the right edge of the window until you can raise 2605 * it at least MSS bytes. 2606 * 2607 * Unfortunately, the recommended algorithm breaks header prediction, 2608 * since header prediction assumes th->window stays fixed. 2609 * 2610 * Strictly speaking, keeping th->window fixed violates the receiver 2611 * side SWS prevention criteria. The problem is that under this rule 2612 * a stream of single byte packets will cause the right side of the 2613 * window to always advance by a single byte. 2614 * 2615 * Of course, if the sender implements sender side SWS prevention 2616 * then this will not be a problem. 2617 * 2618 * BSD seems to make the following compromise: 2619 * 2620 * If the free space is less than the 1/4 of the maximum 2621 * space available and the free space is less than 1/2 mss, 2622 * then set the window to 0. 2623 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2624 * Otherwise, just prevent the window from shrinking 2625 * and from being larger than the largest representable value. 2626 * 2627 * This prevents incremental opening of the window in the regime 2628 * where TCP is limited by the speed of the reader side taking 2629 * data out of the TCP receive queue. It does nothing about 2630 * those cases where the window is constrained on the sender side 2631 * because the pipeline is full. 2632 * 2633 * BSD also seems to "accidentally" limit itself to windows that are a 2634 * multiple of MSS, at least until the free space gets quite small. 2635 * This would appear to be a side effect of the mbuf implementation. 2636 * Combining these two algorithms results in the observed behavior 2637 * of having a fixed window size at almost all times. 2638 * 2639 * Below we obtain similar behavior by forcing the offered window to 2640 * a multiple of the mss when it is feasible to do so. 2641 * 2642 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2643 * Regular options like TIMESTAMP are taken into account. 2644 */ 2645 u32 __tcp_select_window(struct sock *sk) 2646 { 2647 struct inet_connection_sock *icsk = inet_csk(sk); 2648 struct tcp_sock *tp = tcp_sk(sk); 2649 /* MSS for the peer's data. Previous versions used mss_clamp 2650 * here. I don't know if the value based on our guesses 2651 * of peer's MSS is better for the performance. It's more correct 2652 * but may be worse for the performance because of rcv_mss 2653 * fluctuations. --SAW 1998/11/1 2654 */ 2655 int mss = icsk->icsk_ack.rcv_mss; 2656 int free_space = tcp_space(sk); 2657 int allowed_space = tcp_full_space(sk); 2658 int full_space = min_t(int, tp->window_clamp, allowed_space); 2659 int window; 2660 2661 if (unlikely(mss > full_space)) { 2662 mss = full_space; 2663 if (mss <= 0) 2664 return 0; 2665 } 2666 if (free_space < (full_space >> 1)) { 2667 icsk->icsk_ack.quick = 0; 2668 2669 if (tcp_under_memory_pressure(sk)) 2670 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2671 4U * tp->advmss); 2672 2673 /* free_space might become our new window, make sure we don't 2674 * increase it due to wscale. 2675 */ 2676 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2677 2678 /* if free space is less than mss estimate, or is below 1/16th 2679 * of the maximum allowed, try to move to zero-window, else 2680 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2681 * new incoming data is dropped due to memory limits. 2682 * With large window, mss test triggers way too late in order 2683 * to announce zero window in time before rmem limit kicks in. 2684 */ 2685 if (free_space < (allowed_space >> 4) || free_space < mss) 2686 return 0; 2687 } 2688 2689 if (free_space > tp->rcv_ssthresh) 2690 free_space = tp->rcv_ssthresh; 2691 2692 /* Don't do rounding if we are using window scaling, since the 2693 * scaled window will not line up with the MSS boundary anyway. 2694 */ 2695 if (tp->rx_opt.rcv_wscale) { 2696 window = free_space; 2697 2698 /* Advertise enough space so that it won't get scaled away. 2699 * Import case: prevent zero window announcement if 2700 * 1<<rcv_wscale > mss. 2701 */ 2702 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2703 } else { 2704 window = tp->rcv_wnd; 2705 /* Get the largest window that is a nice multiple of mss. 2706 * Window clamp already applied above. 2707 * If our current window offering is within 1 mss of the 2708 * free space we just keep it. This prevents the divide 2709 * and multiply from happening most of the time. 2710 * We also don't do any window rounding when the free space 2711 * is too small. 2712 */ 2713 if (window <= free_space - mss || window > free_space) 2714 window = rounddown(free_space, mss); 2715 else if (mss == full_space && 2716 free_space > window + (full_space >> 1)) 2717 window = free_space; 2718 } 2719 2720 return window; 2721 } 2722 2723 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2724 const struct sk_buff *next_skb) 2725 { 2726 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2727 const struct skb_shared_info *next_shinfo = 2728 skb_shinfo(next_skb); 2729 struct skb_shared_info *shinfo = skb_shinfo(skb); 2730 2731 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2732 shinfo->tskey = next_shinfo->tskey; 2733 TCP_SKB_CB(skb)->txstamp_ack |= 2734 TCP_SKB_CB(next_skb)->txstamp_ack; 2735 } 2736 } 2737 2738 /* Collapses two adjacent SKB's during retransmission. */ 2739 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2740 { 2741 struct tcp_sock *tp = tcp_sk(sk); 2742 struct sk_buff *next_skb = skb_rb_next(skb); 2743 int next_skb_size; 2744 2745 next_skb_size = next_skb->len; 2746 2747 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2748 2749 if (next_skb_size) { 2750 if (next_skb_size <= skb_availroom(skb)) 2751 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2752 next_skb_size); 2753 else if (!skb_shift(skb, next_skb, next_skb_size)) 2754 return false; 2755 } 2756 tcp_highest_sack_replace(sk, next_skb, skb); 2757 2758 /* Update sequence range on original skb. */ 2759 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2760 2761 /* Merge over control information. This moves PSH/FIN etc. over */ 2762 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2763 2764 /* All done, get rid of second SKB and account for it so 2765 * packet counting does not break. 2766 */ 2767 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2768 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2769 2770 /* changed transmit queue under us so clear hints */ 2771 tcp_clear_retrans_hints_partial(tp); 2772 if (next_skb == tp->retransmit_skb_hint) 2773 tp->retransmit_skb_hint = skb; 2774 2775 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2776 2777 tcp_skb_collapse_tstamp(skb, next_skb); 2778 2779 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2780 return true; 2781 } 2782 2783 /* Check if coalescing SKBs is legal. */ 2784 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2785 { 2786 if (tcp_skb_pcount(skb) > 1) 2787 return false; 2788 if (skb_cloned(skb)) 2789 return false; 2790 /* Some heuristics for collapsing over SACK'd could be invented */ 2791 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2792 return false; 2793 2794 return true; 2795 } 2796 2797 /* Collapse packets in the retransmit queue to make to create 2798 * less packets on the wire. This is only done on retransmission. 2799 */ 2800 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2801 int space) 2802 { 2803 struct tcp_sock *tp = tcp_sk(sk); 2804 struct sk_buff *skb = to, *tmp; 2805 bool first = true; 2806 2807 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2808 return; 2809 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2810 return; 2811 2812 skb_rbtree_walk_from_safe(skb, tmp) { 2813 if (!tcp_can_collapse(sk, skb)) 2814 break; 2815 2816 if (!tcp_skb_can_collapse_to(to)) 2817 break; 2818 2819 space -= skb->len; 2820 2821 if (first) { 2822 first = false; 2823 continue; 2824 } 2825 2826 if (space < 0) 2827 break; 2828 2829 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2830 break; 2831 2832 if (!tcp_collapse_retrans(sk, to)) 2833 break; 2834 } 2835 } 2836 2837 /* This retransmits one SKB. Policy decisions and retransmit queue 2838 * state updates are done by the caller. Returns non-zero if an 2839 * error occurred which prevented the send. 2840 */ 2841 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2842 { 2843 struct inet_connection_sock *icsk = inet_csk(sk); 2844 struct tcp_sock *tp = tcp_sk(sk); 2845 unsigned int cur_mss; 2846 int diff, len, err; 2847 2848 2849 /* Inconclusive MTU probe */ 2850 if (icsk->icsk_mtup.probe_size) 2851 icsk->icsk_mtup.probe_size = 0; 2852 2853 /* Do not sent more than we queued. 1/4 is reserved for possible 2854 * copying overhead: fragmentation, tunneling, mangling etc. 2855 */ 2856 if (refcount_read(&sk->sk_wmem_alloc) > 2857 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2858 sk->sk_sndbuf)) 2859 return -EAGAIN; 2860 2861 if (skb_still_in_host_queue(sk, skb)) 2862 return -EBUSY; 2863 2864 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2865 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2866 WARN_ON_ONCE(1); 2867 return -EINVAL; 2868 } 2869 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2870 return -ENOMEM; 2871 } 2872 2873 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2874 return -EHOSTUNREACH; /* Routing failure or similar. */ 2875 2876 cur_mss = tcp_current_mss(sk); 2877 2878 /* If receiver has shrunk his window, and skb is out of 2879 * new window, do not retransmit it. The exception is the 2880 * case, when window is shrunk to zero. In this case 2881 * our retransmit serves as a zero window probe. 2882 */ 2883 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2884 TCP_SKB_CB(skb)->seq != tp->snd_una) 2885 return -EAGAIN; 2886 2887 len = cur_mss * segs; 2888 if (skb->len > len) { 2889 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2890 cur_mss, GFP_ATOMIC)) 2891 return -ENOMEM; /* We'll try again later. */ 2892 } else { 2893 if (skb_unclone(skb, GFP_ATOMIC)) 2894 return -ENOMEM; 2895 2896 diff = tcp_skb_pcount(skb); 2897 tcp_set_skb_tso_segs(skb, cur_mss); 2898 diff -= tcp_skb_pcount(skb); 2899 if (diff) 2900 tcp_adjust_pcount(sk, skb, diff); 2901 if (skb->len < cur_mss) 2902 tcp_retrans_try_collapse(sk, skb, cur_mss); 2903 } 2904 2905 /* RFC3168, section 6.1.1.1. ECN fallback */ 2906 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2907 tcp_ecn_clear_syn(sk, skb); 2908 2909 /* Update global and local TCP statistics. */ 2910 segs = tcp_skb_pcount(skb); 2911 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2912 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2913 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2914 tp->total_retrans += segs; 2915 tp->bytes_retrans += skb->len; 2916 2917 /* make sure skb->data is aligned on arches that require it 2918 * and check if ack-trimming & collapsing extended the headroom 2919 * beyond what csum_start can cover. 2920 */ 2921 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2922 skb_headroom(skb) >= 0xFFFF)) { 2923 struct sk_buff *nskb; 2924 2925 tcp_skb_tsorted_save(skb) { 2926 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2927 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2928 -ENOBUFS; 2929 } tcp_skb_tsorted_restore(skb); 2930 2931 if (!err) { 2932 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 2933 tcp_rate_skb_sent(sk, skb); 2934 } 2935 } else { 2936 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2937 } 2938 2939 /* To avoid taking spuriously low RTT samples based on a timestamp 2940 * for a transmit that never happened, always mark EVER_RETRANS 2941 */ 2942 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2943 2944 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2945 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2946 TCP_SKB_CB(skb)->seq, segs, err); 2947 2948 if (likely(!err)) { 2949 trace_tcp_retransmit_skb(sk, skb); 2950 } else if (err != -EBUSY) { 2951 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 2952 } 2953 return err; 2954 } 2955 2956 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2957 { 2958 struct tcp_sock *tp = tcp_sk(sk); 2959 int err = __tcp_retransmit_skb(sk, skb, segs); 2960 2961 if (err == 0) { 2962 #if FASTRETRANS_DEBUG > 0 2963 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2964 net_dbg_ratelimited("retrans_out leaked\n"); 2965 } 2966 #endif 2967 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2968 tp->retrans_out += tcp_skb_pcount(skb); 2969 } 2970 2971 /* Save stamp of the first (attempted) retransmit. */ 2972 if (!tp->retrans_stamp) 2973 tp->retrans_stamp = tcp_skb_timestamp(skb); 2974 2975 if (tp->undo_retrans < 0) 2976 tp->undo_retrans = 0; 2977 tp->undo_retrans += tcp_skb_pcount(skb); 2978 return err; 2979 } 2980 2981 /* This gets called after a retransmit timeout, and the initially 2982 * retransmitted data is acknowledged. It tries to continue 2983 * resending the rest of the retransmit queue, until either 2984 * we've sent it all or the congestion window limit is reached. 2985 */ 2986 void tcp_xmit_retransmit_queue(struct sock *sk) 2987 { 2988 const struct inet_connection_sock *icsk = inet_csk(sk); 2989 struct sk_buff *skb, *rtx_head, *hole = NULL; 2990 struct tcp_sock *tp = tcp_sk(sk); 2991 u32 max_segs; 2992 int mib_idx; 2993 2994 if (!tp->packets_out) 2995 return; 2996 2997 rtx_head = tcp_rtx_queue_head(sk); 2998 skb = tp->retransmit_skb_hint ?: rtx_head; 2999 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3000 skb_rbtree_walk_from(skb) { 3001 __u8 sacked; 3002 int segs; 3003 3004 if (tcp_pacing_check(sk)) 3005 break; 3006 3007 /* we could do better than to assign each time */ 3008 if (!hole) 3009 tp->retransmit_skb_hint = skb; 3010 3011 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3012 if (segs <= 0) 3013 return; 3014 sacked = TCP_SKB_CB(skb)->sacked; 3015 /* In case tcp_shift_skb_data() have aggregated large skbs, 3016 * we need to make sure not sending too bigs TSO packets 3017 */ 3018 segs = min_t(int, segs, max_segs); 3019 3020 if (tp->retrans_out >= tp->lost_out) { 3021 break; 3022 } else if (!(sacked & TCPCB_LOST)) { 3023 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3024 hole = skb; 3025 continue; 3026 3027 } else { 3028 if (icsk->icsk_ca_state != TCP_CA_Loss) 3029 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3030 else 3031 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3032 } 3033 3034 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3035 continue; 3036 3037 if (tcp_small_queue_check(sk, skb, 1)) 3038 return; 3039 3040 if (tcp_retransmit_skb(sk, skb, segs)) 3041 return; 3042 3043 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3044 3045 if (tcp_in_cwnd_reduction(sk)) 3046 tp->prr_out += tcp_skb_pcount(skb); 3047 3048 if (skb == rtx_head && 3049 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3050 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3051 inet_csk(sk)->icsk_rto, 3052 TCP_RTO_MAX, 3053 skb); 3054 } 3055 } 3056 3057 /* We allow to exceed memory limits for FIN packets to expedite 3058 * connection tear down and (memory) recovery. 3059 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3060 * or even be forced to close flow without any FIN. 3061 * In general, we want to allow one skb per socket to avoid hangs 3062 * with edge trigger epoll() 3063 */ 3064 void sk_forced_mem_schedule(struct sock *sk, int size) 3065 { 3066 int amt; 3067 3068 if (size <= sk->sk_forward_alloc) 3069 return; 3070 amt = sk_mem_pages(size); 3071 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3072 sk_memory_allocated_add(sk, amt); 3073 3074 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3075 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3076 } 3077 3078 /* Send a FIN. The caller locks the socket for us. 3079 * We should try to send a FIN packet really hard, but eventually give up. 3080 */ 3081 void tcp_send_fin(struct sock *sk) 3082 { 3083 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3084 struct tcp_sock *tp = tcp_sk(sk); 3085 3086 /* Optimization, tack on the FIN if we have one skb in write queue and 3087 * this skb was not yet sent, or we are under memory pressure. 3088 * Note: in the latter case, FIN packet will be sent after a timeout, 3089 * as TCP stack thinks it has already been transmitted. 3090 */ 3091 if (!tskb && tcp_under_memory_pressure(sk)) 3092 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3093 3094 if (tskb) { 3095 coalesce: 3096 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3097 TCP_SKB_CB(tskb)->end_seq++; 3098 tp->write_seq++; 3099 if (tcp_write_queue_empty(sk)) { 3100 /* This means tskb was already sent. 3101 * Pretend we included the FIN on previous transmit. 3102 * We need to set tp->snd_nxt to the value it would have 3103 * if FIN had been sent. This is because retransmit path 3104 * does not change tp->snd_nxt. 3105 */ 3106 tp->snd_nxt++; 3107 return; 3108 } 3109 } else { 3110 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3111 if (unlikely(!skb)) { 3112 if (tskb) 3113 goto coalesce; 3114 return; 3115 } 3116 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3117 skb_reserve(skb, MAX_TCP_HEADER); 3118 sk_forced_mem_schedule(sk, skb->truesize); 3119 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3120 tcp_init_nondata_skb(skb, tp->write_seq, 3121 TCPHDR_ACK | TCPHDR_FIN); 3122 tcp_queue_skb(sk, skb); 3123 } 3124 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3125 } 3126 3127 /* We get here when a process closes a file descriptor (either due to 3128 * an explicit close() or as a byproduct of exit()'ing) and there 3129 * was unread data in the receive queue. This behavior is recommended 3130 * by RFC 2525, section 2.17. -DaveM 3131 */ 3132 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3133 { 3134 struct sk_buff *skb; 3135 3136 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3137 3138 /* NOTE: No TCP options attached and we never retransmit this. */ 3139 skb = alloc_skb(MAX_TCP_HEADER, priority); 3140 if (!skb) { 3141 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3142 return; 3143 } 3144 3145 /* Reserve space for headers and prepare control bits. */ 3146 skb_reserve(skb, MAX_TCP_HEADER); 3147 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3148 TCPHDR_ACK | TCPHDR_RST); 3149 tcp_mstamp_refresh(tcp_sk(sk)); 3150 /* Send it off. */ 3151 if (tcp_transmit_skb(sk, skb, 0, priority)) 3152 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3153 3154 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3155 * skb here is different to the troublesome skb, so use NULL 3156 */ 3157 trace_tcp_send_reset(sk, NULL); 3158 } 3159 3160 /* Send a crossed SYN-ACK during socket establishment. 3161 * WARNING: This routine must only be called when we have already sent 3162 * a SYN packet that crossed the incoming SYN that caused this routine 3163 * to get called. If this assumption fails then the initial rcv_wnd 3164 * and rcv_wscale values will not be correct. 3165 */ 3166 int tcp_send_synack(struct sock *sk) 3167 { 3168 struct sk_buff *skb; 3169 3170 skb = tcp_rtx_queue_head(sk); 3171 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3172 pr_err("%s: wrong queue state\n", __func__); 3173 return -EFAULT; 3174 } 3175 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3176 if (skb_cloned(skb)) { 3177 struct sk_buff *nskb; 3178 3179 tcp_skb_tsorted_save(skb) { 3180 nskb = skb_copy(skb, GFP_ATOMIC); 3181 } tcp_skb_tsorted_restore(skb); 3182 if (!nskb) 3183 return -ENOMEM; 3184 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3185 tcp_rtx_queue_unlink_and_free(skb, sk); 3186 __skb_header_release(nskb); 3187 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3188 sk->sk_wmem_queued += nskb->truesize; 3189 sk_mem_charge(sk, nskb->truesize); 3190 skb = nskb; 3191 } 3192 3193 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3194 tcp_ecn_send_synack(sk, skb); 3195 } 3196 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3197 } 3198 3199 /** 3200 * tcp_make_synack - Prepare a SYN-ACK. 3201 * sk: listener socket 3202 * dst: dst entry attached to the SYNACK 3203 * req: request_sock pointer 3204 * 3205 * Allocate one skb and build a SYNACK packet. 3206 * @dst is consumed : Caller should not use it again. 3207 */ 3208 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3209 struct request_sock *req, 3210 struct tcp_fastopen_cookie *foc, 3211 enum tcp_synack_type synack_type) 3212 { 3213 struct inet_request_sock *ireq = inet_rsk(req); 3214 const struct tcp_sock *tp = tcp_sk(sk); 3215 struct tcp_md5sig_key *md5 = NULL; 3216 struct tcp_out_options opts; 3217 struct sk_buff *skb; 3218 int tcp_header_size; 3219 struct tcphdr *th; 3220 int mss; 3221 3222 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3223 if (unlikely(!skb)) { 3224 dst_release(dst); 3225 return NULL; 3226 } 3227 /* Reserve space for headers. */ 3228 skb_reserve(skb, MAX_TCP_HEADER); 3229 3230 switch (synack_type) { 3231 case TCP_SYNACK_NORMAL: 3232 skb_set_owner_w(skb, req_to_sk(req)); 3233 break; 3234 case TCP_SYNACK_COOKIE: 3235 /* Under synflood, we do not attach skb to a socket, 3236 * to avoid false sharing. 3237 */ 3238 break; 3239 case TCP_SYNACK_FASTOPEN: 3240 /* sk is a const pointer, because we want to express multiple 3241 * cpu might call us concurrently. 3242 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3243 */ 3244 skb_set_owner_w(skb, (struct sock *)sk); 3245 break; 3246 } 3247 skb_dst_set(skb, dst); 3248 3249 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3250 3251 memset(&opts, 0, sizeof(opts)); 3252 #ifdef CONFIG_SYN_COOKIES 3253 if (unlikely(req->cookie_ts)) 3254 skb->skb_mstamp_ns = cookie_init_timestamp(req); 3255 else 3256 #endif 3257 skb->skb_mstamp_ns = tcp_clock_ns(); 3258 3259 #ifdef CONFIG_TCP_MD5SIG 3260 rcu_read_lock(); 3261 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3262 #endif 3263 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3264 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3265 foc) + sizeof(*th); 3266 3267 skb_push(skb, tcp_header_size); 3268 skb_reset_transport_header(skb); 3269 3270 th = (struct tcphdr *)skb->data; 3271 memset(th, 0, sizeof(struct tcphdr)); 3272 th->syn = 1; 3273 th->ack = 1; 3274 tcp_ecn_make_synack(req, th); 3275 th->source = htons(ireq->ir_num); 3276 th->dest = ireq->ir_rmt_port; 3277 skb->mark = ireq->ir_mark; 3278 skb->ip_summed = CHECKSUM_PARTIAL; 3279 th->seq = htonl(tcp_rsk(req)->snt_isn); 3280 /* XXX data is queued and acked as is. No buffer/window check */ 3281 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3282 3283 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3284 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3285 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3286 th->doff = (tcp_header_size >> 2); 3287 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3288 3289 #ifdef CONFIG_TCP_MD5SIG 3290 /* Okay, we have all we need - do the md5 hash if needed */ 3291 if (md5) 3292 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3293 md5, req_to_sk(req), skb); 3294 rcu_read_unlock(); 3295 #endif 3296 3297 /* Do not fool tcpdump (if any), clean our debris */ 3298 skb->tstamp = 0; 3299 return skb; 3300 } 3301 EXPORT_SYMBOL(tcp_make_synack); 3302 3303 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3304 { 3305 struct inet_connection_sock *icsk = inet_csk(sk); 3306 const struct tcp_congestion_ops *ca; 3307 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3308 3309 if (ca_key == TCP_CA_UNSPEC) 3310 return; 3311 3312 rcu_read_lock(); 3313 ca = tcp_ca_find_key(ca_key); 3314 if (likely(ca && try_module_get(ca->owner))) { 3315 module_put(icsk->icsk_ca_ops->owner); 3316 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3317 icsk->icsk_ca_ops = ca; 3318 } 3319 rcu_read_unlock(); 3320 } 3321 3322 /* Do all connect socket setups that can be done AF independent. */ 3323 static void tcp_connect_init(struct sock *sk) 3324 { 3325 const struct dst_entry *dst = __sk_dst_get(sk); 3326 struct tcp_sock *tp = tcp_sk(sk); 3327 __u8 rcv_wscale; 3328 u32 rcv_wnd; 3329 3330 /* We'll fix this up when we get a response from the other end. 3331 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3332 */ 3333 tp->tcp_header_len = sizeof(struct tcphdr); 3334 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3335 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3336 3337 #ifdef CONFIG_TCP_MD5SIG 3338 if (tp->af_specific->md5_lookup(sk, sk)) 3339 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3340 #endif 3341 3342 /* If user gave his TCP_MAXSEG, record it to clamp */ 3343 if (tp->rx_opt.user_mss) 3344 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3345 tp->max_window = 0; 3346 tcp_mtup_init(sk); 3347 tcp_sync_mss(sk, dst_mtu(dst)); 3348 3349 tcp_ca_dst_init(sk, dst); 3350 3351 if (!tp->window_clamp) 3352 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3353 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3354 3355 tcp_initialize_rcv_mss(sk); 3356 3357 /* limit the window selection if the user enforce a smaller rx buffer */ 3358 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3359 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3360 tp->window_clamp = tcp_full_space(sk); 3361 3362 rcv_wnd = tcp_rwnd_init_bpf(sk); 3363 if (rcv_wnd == 0) 3364 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3365 3366 tcp_select_initial_window(sk, tcp_full_space(sk), 3367 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3368 &tp->rcv_wnd, 3369 &tp->window_clamp, 3370 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3371 &rcv_wscale, 3372 rcv_wnd); 3373 3374 tp->rx_opt.rcv_wscale = rcv_wscale; 3375 tp->rcv_ssthresh = tp->rcv_wnd; 3376 3377 sk->sk_err = 0; 3378 sock_reset_flag(sk, SOCK_DONE); 3379 tp->snd_wnd = 0; 3380 tcp_init_wl(tp, 0); 3381 tcp_write_queue_purge(sk); 3382 tp->snd_una = tp->write_seq; 3383 tp->snd_sml = tp->write_seq; 3384 tp->snd_up = tp->write_seq; 3385 tp->snd_nxt = tp->write_seq; 3386 3387 if (likely(!tp->repair)) 3388 tp->rcv_nxt = 0; 3389 else 3390 tp->rcv_tstamp = tcp_jiffies32; 3391 tp->rcv_wup = tp->rcv_nxt; 3392 tp->copied_seq = tp->rcv_nxt; 3393 3394 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3395 inet_csk(sk)->icsk_retransmits = 0; 3396 tcp_clear_retrans(tp); 3397 } 3398 3399 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3400 { 3401 struct tcp_sock *tp = tcp_sk(sk); 3402 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3403 3404 tcb->end_seq += skb->len; 3405 __skb_header_release(skb); 3406 sk->sk_wmem_queued += skb->truesize; 3407 sk_mem_charge(sk, skb->truesize); 3408 tp->write_seq = tcb->end_seq; 3409 tp->packets_out += tcp_skb_pcount(skb); 3410 } 3411 3412 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3413 * queue a data-only packet after the regular SYN, such that regular SYNs 3414 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3415 * only the SYN sequence, the data are retransmitted in the first ACK. 3416 * If cookie is not cached or other error occurs, falls back to send a 3417 * regular SYN with Fast Open cookie request option. 3418 */ 3419 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3420 { 3421 struct tcp_sock *tp = tcp_sk(sk); 3422 struct tcp_fastopen_request *fo = tp->fastopen_req; 3423 int space, err = 0; 3424 struct sk_buff *syn_data; 3425 3426 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3427 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3428 goto fallback; 3429 3430 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3431 * user-MSS. Reserve maximum option space for middleboxes that add 3432 * private TCP options. The cost is reduced data space in SYN :( 3433 */ 3434 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3435 3436 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3437 MAX_TCP_OPTION_SPACE; 3438 3439 space = min_t(size_t, space, fo->size); 3440 3441 /* limit to order-0 allocations */ 3442 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3443 3444 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3445 if (!syn_data) 3446 goto fallback; 3447 syn_data->ip_summed = CHECKSUM_PARTIAL; 3448 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3449 if (space) { 3450 int copied = copy_from_iter(skb_put(syn_data, space), space, 3451 &fo->data->msg_iter); 3452 if (unlikely(!copied)) { 3453 tcp_skb_tsorted_anchor_cleanup(syn_data); 3454 kfree_skb(syn_data); 3455 goto fallback; 3456 } 3457 if (copied != space) { 3458 skb_trim(syn_data, copied); 3459 space = copied; 3460 } 3461 skb_zcopy_set(syn_data, fo->uarg, NULL); 3462 } 3463 /* No more data pending in inet_wait_for_connect() */ 3464 if (space == fo->size) 3465 fo->data = NULL; 3466 fo->copied = space; 3467 3468 tcp_connect_queue_skb(sk, syn_data); 3469 if (syn_data->len) 3470 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3471 3472 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3473 3474 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3475 3476 /* Now full SYN+DATA was cloned and sent (or not), 3477 * remove the SYN from the original skb (syn_data) 3478 * we keep in write queue in case of a retransmit, as we 3479 * also have the SYN packet (with no data) in the same queue. 3480 */ 3481 TCP_SKB_CB(syn_data)->seq++; 3482 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3483 if (!err) { 3484 tp->syn_data = (fo->copied > 0); 3485 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3486 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3487 goto done; 3488 } 3489 3490 /* data was not sent, put it in write_queue */ 3491 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3492 tp->packets_out -= tcp_skb_pcount(syn_data); 3493 3494 fallback: 3495 /* Send a regular SYN with Fast Open cookie request option */ 3496 if (fo->cookie.len > 0) 3497 fo->cookie.len = 0; 3498 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3499 if (err) 3500 tp->syn_fastopen = 0; 3501 done: 3502 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3503 return err; 3504 } 3505 3506 /* Build a SYN and send it off. */ 3507 int tcp_connect(struct sock *sk) 3508 { 3509 struct tcp_sock *tp = tcp_sk(sk); 3510 struct sk_buff *buff; 3511 int err; 3512 3513 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3514 3515 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3516 return -EHOSTUNREACH; /* Routing failure or similar. */ 3517 3518 tcp_connect_init(sk); 3519 3520 if (unlikely(tp->repair)) { 3521 tcp_finish_connect(sk, NULL); 3522 return 0; 3523 } 3524 3525 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3526 if (unlikely(!buff)) 3527 return -ENOBUFS; 3528 3529 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3530 tcp_mstamp_refresh(tp); 3531 tp->retrans_stamp = tcp_time_stamp(tp); 3532 tcp_connect_queue_skb(sk, buff); 3533 tcp_ecn_send_syn(sk, buff); 3534 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3535 3536 /* Send off SYN; include data in Fast Open. */ 3537 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3538 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3539 if (err == -ECONNREFUSED) 3540 return err; 3541 3542 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3543 * in order to make this packet get counted in tcpOutSegs. 3544 */ 3545 tp->snd_nxt = tp->write_seq; 3546 tp->pushed_seq = tp->write_seq; 3547 buff = tcp_send_head(sk); 3548 if (unlikely(buff)) { 3549 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3550 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3551 } 3552 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3553 3554 /* Timer for repeating the SYN until an answer. */ 3555 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3556 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3557 return 0; 3558 } 3559 EXPORT_SYMBOL(tcp_connect); 3560 3561 /* Send out a delayed ack, the caller does the policy checking 3562 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3563 * for details. 3564 */ 3565 void tcp_send_delayed_ack(struct sock *sk) 3566 { 3567 struct inet_connection_sock *icsk = inet_csk(sk); 3568 int ato = icsk->icsk_ack.ato; 3569 unsigned long timeout; 3570 3571 if (ato > TCP_DELACK_MIN) { 3572 const struct tcp_sock *tp = tcp_sk(sk); 3573 int max_ato = HZ / 2; 3574 3575 if (inet_csk_in_pingpong_mode(sk) || 3576 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3577 max_ato = TCP_DELACK_MAX; 3578 3579 /* Slow path, intersegment interval is "high". */ 3580 3581 /* If some rtt estimate is known, use it to bound delayed ack. 3582 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3583 * directly. 3584 */ 3585 if (tp->srtt_us) { 3586 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3587 TCP_DELACK_MIN); 3588 3589 if (rtt < max_ato) 3590 max_ato = rtt; 3591 } 3592 3593 ato = min(ato, max_ato); 3594 } 3595 3596 /* Stay within the limit we were given */ 3597 timeout = jiffies + ato; 3598 3599 /* Use new timeout only if there wasn't a older one earlier. */ 3600 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3601 /* If delack timer was blocked or is about to expire, 3602 * send ACK now. 3603 */ 3604 if (icsk->icsk_ack.blocked || 3605 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3606 tcp_send_ack(sk); 3607 return; 3608 } 3609 3610 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3611 timeout = icsk->icsk_ack.timeout; 3612 } 3613 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3614 icsk->icsk_ack.timeout = timeout; 3615 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3616 } 3617 3618 /* This routine sends an ack and also updates the window. */ 3619 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3620 { 3621 struct sk_buff *buff; 3622 3623 /* If we have been reset, we may not send again. */ 3624 if (sk->sk_state == TCP_CLOSE) 3625 return; 3626 3627 /* We are not putting this on the write queue, so 3628 * tcp_transmit_skb() will set the ownership to this 3629 * sock. 3630 */ 3631 buff = alloc_skb(MAX_TCP_HEADER, 3632 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3633 if (unlikely(!buff)) { 3634 inet_csk_schedule_ack(sk); 3635 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3636 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3637 TCP_DELACK_MAX, TCP_RTO_MAX); 3638 return; 3639 } 3640 3641 /* Reserve space for headers and prepare control bits. */ 3642 skb_reserve(buff, MAX_TCP_HEADER); 3643 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3644 3645 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3646 * too much. 3647 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3648 */ 3649 skb_set_tcp_pure_ack(buff); 3650 3651 /* Send it off, this clears delayed acks for us. */ 3652 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3653 } 3654 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3655 3656 void tcp_send_ack(struct sock *sk) 3657 { 3658 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3659 } 3660 3661 /* This routine sends a packet with an out of date sequence 3662 * number. It assumes the other end will try to ack it. 3663 * 3664 * Question: what should we make while urgent mode? 3665 * 4.4BSD forces sending single byte of data. We cannot send 3666 * out of window data, because we have SND.NXT==SND.MAX... 3667 * 3668 * Current solution: to send TWO zero-length segments in urgent mode: 3669 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3670 * out-of-date with SND.UNA-1 to probe window. 3671 */ 3672 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3673 { 3674 struct tcp_sock *tp = tcp_sk(sk); 3675 struct sk_buff *skb; 3676 3677 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3678 skb = alloc_skb(MAX_TCP_HEADER, 3679 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3680 if (!skb) 3681 return -1; 3682 3683 /* Reserve space for headers and set control bits. */ 3684 skb_reserve(skb, MAX_TCP_HEADER); 3685 /* Use a previous sequence. This should cause the other 3686 * end to send an ack. Don't queue or clone SKB, just 3687 * send it. 3688 */ 3689 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3690 NET_INC_STATS(sock_net(sk), mib); 3691 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3692 } 3693 3694 /* Called from setsockopt( ... TCP_REPAIR ) */ 3695 void tcp_send_window_probe(struct sock *sk) 3696 { 3697 if (sk->sk_state == TCP_ESTABLISHED) { 3698 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3699 tcp_mstamp_refresh(tcp_sk(sk)); 3700 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3701 } 3702 } 3703 3704 /* Initiate keepalive or window probe from timer. */ 3705 int tcp_write_wakeup(struct sock *sk, int mib) 3706 { 3707 struct tcp_sock *tp = tcp_sk(sk); 3708 struct sk_buff *skb; 3709 3710 if (sk->sk_state == TCP_CLOSE) 3711 return -1; 3712 3713 skb = tcp_send_head(sk); 3714 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3715 int err; 3716 unsigned int mss = tcp_current_mss(sk); 3717 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3718 3719 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3720 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3721 3722 /* We are probing the opening of a window 3723 * but the window size is != 0 3724 * must have been a result SWS avoidance ( sender ) 3725 */ 3726 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3727 skb->len > mss) { 3728 seg_size = min(seg_size, mss); 3729 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3730 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3731 skb, seg_size, mss, GFP_ATOMIC)) 3732 return -1; 3733 } else if (!tcp_skb_pcount(skb)) 3734 tcp_set_skb_tso_segs(skb, mss); 3735 3736 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3737 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3738 if (!err) 3739 tcp_event_new_data_sent(sk, skb); 3740 return err; 3741 } else { 3742 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3743 tcp_xmit_probe_skb(sk, 1, mib); 3744 return tcp_xmit_probe_skb(sk, 0, mib); 3745 } 3746 } 3747 3748 /* A window probe timeout has occurred. If window is not closed send 3749 * a partial packet else a zero probe. 3750 */ 3751 void tcp_send_probe0(struct sock *sk) 3752 { 3753 struct inet_connection_sock *icsk = inet_csk(sk); 3754 struct tcp_sock *tp = tcp_sk(sk); 3755 struct net *net = sock_net(sk); 3756 unsigned long timeout; 3757 int err; 3758 3759 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3760 3761 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3762 /* Cancel probe timer, if it is not required. */ 3763 icsk->icsk_probes_out = 0; 3764 icsk->icsk_backoff = 0; 3765 return; 3766 } 3767 3768 icsk->icsk_probes_out++; 3769 if (err <= 0) { 3770 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3771 icsk->icsk_backoff++; 3772 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 3773 } else { 3774 /* If packet was not sent due to local congestion, 3775 * Let senders fight for local resources conservatively. 3776 */ 3777 timeout = TCP_RESOURCE_PROBE_INTERVAL; 3778 } 3779 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL); 3780 } 3781 3782 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3783 { 3784 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3785 struct flowi fl; 3786 int res; 3787 3788 tcp_rsk(req)->txhash = net_tx_rndhash(); 3789 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3790 if (!res) { 3791 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3792 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3793 if (unlikely(tcp_passive_fastopen(sk))) 3794 tcp_sk(sk)->total_retrans++; 3795 trace_tcp_retransmit_synack(sk, req); 3796 } 3797 return res; 3798 } 3799 EXPORT_SYMBOL(tcp_rtx_synack); 3800