xref: /linux/net/ipv4/tcp_output.c (revision 4e0ae876f77bc01a7e77724dea57b4b82bd53244)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
45 
46 #include <trace/events/tcp.h>
47 
48 /* Refresh clocks of a TCP socket,
49  * ensuring monotically increasing values.
50  */
51 void tcp_mstamp_refresh(struct tcp_sock *tp)
52 {
53 	u64 val = tcp_clock_ns();
54 
55 	if (val > tp->tcp_clock_cache)
56 		tp->tcp_clock_cache = val;
57 
58 	val = div_u64(val, NSEC_PER_USEC);
59 	if (val > tp->tcp_mstamp)
60 		tp->tcp_mstamp = val;
61 }
62 
63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
64 			   int push_one, gfp_t gfp);
65 
66 /* Account for new data that has been sent to the network. */
67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
68 {
69 	struct inet_connection_sock *icsk = inet_csk(sk);
70 	struct tcp_sock *tp = tcp_sk(sk);
71 	unsigned int prior_packets = tp->packets_out;
72 
73 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
74 
75 	__skb_unlink(skb, &sk->sk_write_queue);
76 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 		tcp_rearm_rto(sk);
81 
82 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 		      tcp_skb_pcount(skb));
84 }
85 
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87  * window scaling factor due to loss of precision.
88  * If window has been shrunk, what should we make? It is not clear at all.
89  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91  * invalid. OK, let's make this for now:
92  */
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 	const struct tcp_sock *tp = tcp_sk(sk);
96 
97 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 	    (tp->rx_opt.wscale_ok &&
99 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 		return tp->snd_nxt;
101 	else
102 		return tcp_wnd_end(tp);
103 }
104 
105 /* Calculate mss to advertise in SYN segment.
106  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107  *
108  * 1. It is independent of path mtu.
109  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111  *    attached devices, because some buggy hosts are confused by
112  *    large MSS.
113  * 4. We do not make 3, we advertise MSS, calculated from first
114  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
115  *    This may be overridden via information stored in routing table.
116  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117  *    probably even Jumbo".
118  */
119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 	struct tcp_sock *tp = tcp_sk(sk);
122 	const struct dst_entry *dst = __sk_dst_get(sk);
123 	int mss = tp->advmss;
124 
125 	if (dst) {
126 		unsigned int metric = dst_metric_advmss(dst);
127 
128 		if (metric < mss) {
129 			mss = metric;
130 			tp->advmss = mss;
131 		}
132 	}
133 
134 	return (__u16)mss;
135 }
136 
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138  * This is the first part of cwnd validation mechanism.
139  */
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 	struct tcp_sock *tp = tcp_sk(sk);
143 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 	u32 cwnd = tp->snd_cwnd;
145 
146 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147 
148 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 	restart_cwnd = min(restart_cwnd, cwnd);
150 
151 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 		cwnd >>= 1;
153 	tp->snd_cwnd = max(cwnd, restart_cwnd);
154 	tp->snd_cwnd_stamp = tcp_jiffies32;
155 	tp->snd_cwnd_used = 0;
156 }
157 
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 				struct sock *sk)
161 {
162 	struct inet_connection_sock *icsk = inet_csk(sk);
163 	const u32 now = tcp_jiffies32;
164 
165 	if (tcp_packets_in_flight(tp) == 0)
166 		tcp_ca_event(sk, CA_EVENT_TX_START);
167 
168 	/* If this is the first data packet sent in response to the
169 	 * previous received data,
170 	 * and it is a reply for ato after last received packet,
171 	 * increase pingpong count.
172 	 */
173 	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
174 	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
175 		inet_csk_inc_pingpong_cnt(sk);
176 
177 	tp->lsndtime = now;
178 }
179 
180 /* Account for an ACK we sent. */
181 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
182 				      u32 rcv_nxt)
183 {
184 	struct tcp_sock *tp = tcp_sk(sk);
185 
186 	if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
187 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
188 			      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
189 		tp->compressed_ack = TCP_FASTRETRANS_THRESH;
190 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
191 			__sock_put(sk);
192 	}
193 
194 	if (unlikely(rcv_nxt != tp->rcv_nxt))
195 		return;  /* Special ACK sent by DCTCP to reflect ECN */
196 	tcp_dec_quickack_mode(sk, pkts);
197 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
198 }
199 
200 /* Determine a window scaling and initial window to offer.
201  * Based on the assumption that the given amount of space
202  * will be offered. Store the results in the tp structure.
203  * NOTE: for smooth operation initial space offering should
204  * be a multiple of mss if possible. We assume here that mss >= 1.
205  * This MUST be enforced by all callers.
206  */
207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
208 			       __u32 *rcv_wnd, __u32 *window_clamp,
209 			       int wscale_ok, __u8 *rcv_wscale,
210 			       __u32 init_rcv_wnd)
211 {
212 	unsigned int space = (__space < 0 ? 0 : __space);
213 
214 	/* If no clamp set the clamp to the max possible scaled window */
215 	if (*window_clamp == 0)
216 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
217 	space = min(*window_clamp, space);
218 
219 	/* Quantize space offering to a multiple of mss if possible. */
220 	if (space > mss)
221 		space = rounddown(space, mss);
222 
223 	/* NOTE: offering an initial window larger than 32767
224 	 * will break some buggy TCP stacks. If the admin tells us
225 	 * it is likely we could be speaking with such a buggy stack
226 	 * we will truncate our initial window offering to 32K-1
227 	 * unless the remote has sent us a window scaling option,
228 	 * which we interpret as a sign the remote TCP is not
229 	 * misinterpreting the window field as a signed quantity.
230 	 */
231 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
232 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
233 	else
234 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
235 
236 	if (init_rcv_wnd)
237 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
238 
239 	*rcv_wscale = 0;
240 	if (wscale_ok) {
241 		/* Set window scaling on max possible window */
242 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
243 		space = max_t(u32, space, sysctl_rmem_max);
244 		space = min_t(u32, space, *window_clamp);
245 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
246 				      0, TCP_MAX_WSCALE);
247 	}
248 	/* Set the clamp no higher than max representable value */
249 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
250 }
251 EXPORT_SYMBOL(tcp_select_initial_window);
252 
253 /* Chose a new window to advertise, update state in tcp_sock for the
254  * socket, and return result with RFC1323 scaling applied.  The return
255  * value can be stuffed directly into th->window for an outgoing
256  * frame.
257  */
258 static u16 tcp_select_window(struct sock *sk)
259 {
260 	struct tcp_sock *tp = tcp_sk(sk);
261 	u32 old_win = tp->rcv_wnd;
262 	u32 cur_win = tcp_receive_window(tp);
263 	u32 new_win = __tcp_select_window(sk);
264 
265 	/* Never shrink the offered window */
266 	if (new_win < cur_win) {
267 		/* Danger Will Robinson!
268 		 * Don't update rcv_wup/rcv_wnd here or else
269 		 * we will not be able to advertise a zero
270 		 * window in time.  --DaveM
271 		 *
272 		 * Relax Will Robinson.
273 		 */
274 		if (new_win == 0)
275 			NET_INC_STATS(sock_net(sk),
276 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
277 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
278 	}
279 	tp->rcv_wnd = new_win;
280 	tp->rcv_wup = tp->rcv_nxt;
281 
282 	/* Make sure we do not exceed the maximum possible
283 	 * scaled window.
284 	 */
285 	if (!tp->rx_opt.rcv_wscale &&
286 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
287 		new_win = min(new_win, MAX_TCP_WINDOW);
288 	else
289 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
290 
291 	/* RFC1323 scaling applied */
292 	new_win >>= tp->rx_opt.rcv_wscale;
293 
294 	/* If we advertise zero window, disable fast path. */
295 	if (new_win == 0) {
296 		tp->pred_flags = 0;
297 		if (old_win)
298 			NET_INC_STATS(sock_net(sk),
299 				      LINUX_MIB_TCPTOZEROWINDOWADV);
300 	} else if (old_win == 0) {
301 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
302 	}
303 
304 	return new_win;
305 }
306 
307 /* Packet ECN state for a SYN-ACK */
308 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
309 {
310 	const struct tcp_sock *tp = tcp_sk(sk);
311 
312 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
313 	if (!(tp->ecn_flags & TCP_ECN_OK))
314 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
315 	else if (tcp_ca_needs_ecn(sk) ||
316 		 tcp_bpf_ca_needs_ecn(sk))
317 		INET_ECN_xmit(sk);
318 }
319 
320 /* Packet ECN state for a SYN.  */
321 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
322 {
323 	struct tcp_sock *tp = tcp_sk(sk);
324 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
325 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
326 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
327 
328 	if (!use_ecn) {
329 		const struct dst_entry *dst = __sk_dst_get(sk);
330 
331 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
332 			use_ecn = true;
333 	}
334 
335 	tp->ecn_flags = 0;
336 
337 	if (use_ecn) {
338 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
339 		tp->ecn_flags = TCP_ECN_OK;
340 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
341 			INET_ECN_xmit(sk);
342 	}
343 }
344 
345 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
346 {
347 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
348 		/* tp->ecn_flags are cleared at a later point in time when
349 		 * SYN ACK is ultimatively being received.
350 		 */
351 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
352 }
353 
354 static void
355 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
356 {
357 	if (inet_rsk(req)->ecn_ok)
358 		th->ece = 1;
359 }
360 
361 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
362  * be sent.
363  */
364 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
365 			 struct tcphdr *th, int tcp_header_len)
366 {
367 	struct tcp_sock *tp = tcp_sk(sk);
368 
369 	if (tp->ecn_flags & TCP_ECN_OK) {
370 		/* Not-retransmitted data segment: set ECT and inject CWR. */
371 		if (skb->len != tcp_header_len &&
372 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
373 			INET_ECN_xmit(sk);
374 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
375 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
376 				th->cwr = 1;
377 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
378 			}
379 		} else if (!tcp_ca_needs_ecn(sk)) {
380 			/* ACK or retransmitted segment: clear ECT|CE */
381 			INET_ECN_dontxmit(sk);
382 		}
383 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
384 			th->ece = 1;
385 	}
386 }
387 
388 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
389  * auto increment end seqno.
390  */
391 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
392 {
393 	skb->ip_summed = CHECKSUM_PARTIAL;
394 
395 	TCP_SKB_CB(skb)->tcp_flags = flags;
396 	TCP_SKB_CB(skb)->sacked = 0;
397 
398 	tcp_skb_pcount_set(skb, 1);
399 
400 	TCP_SKB_CB(skb)->seq = seq;
401 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
402 		seq++;
403 	TCP_SKB_CB(skb)->end_seq = seq;
404 }
405 
406 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
407 {
408 	return tp->snd_una != tp->snd_up;
409 }
410 
411 #define OPTION_SACK_ADVERTISE	(1 << 0)
412 #define OPTION_TS		(1 << 1)
413 #define OPTION_MD5		(1 << 2)
414 #define OPTION_WSCALE		(1 << 3)
415 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
416 #define OPTION_SMC		(1 << 9)
417 
418 static void smc_options_write(__be32 *ptr, u16 *options)
419 {
420 #if IS_ENABLED(CONFIG_SMC)
421 	if (static_branch_unlikely(&tcp_have_smc)) {
422 		if (unlikely(OPTION_SMC & *options)) {
423 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
424 				       (TCPOPT_NOP  << 16) |
425 				       (TCPOPT_EXP <<  8) |
426 				       (TCPOLEN_EXP_SMC_BASE));
427 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
428 		}
429 	}
430 #endif
431 }
432 
433 struct tcp_out_options {
434 	u16 options;		/* bit field of OPTION_* */
435 	u16 mss;		/* 0 to disable */
436 	u8 ws;			/* window scale, 0 to disable */
437 	u8 num_sack_blocks;	/* number of SACK blocks to include */
438 	u8 hash_size;		/* bytes in hash_location */
439 	__u8 *hash_location;	/* temporary pointer, overloaded */
440 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
441 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
442 };
443 
444 /* Write previously computed TCP options to the packet.
445  *
446  * Beware: Something in the Internet is very sensitive to the ordering of
447  * TCP options, we learned this through the hard way, so be careful here.
448  * Luckily we can at least blame others for their non-compliance but from
449  * inter-operability perspective it seems that we're somewhat stuck with
450  * the ordering which we have been using if we want to keep working with
451  * those broken things (not that it currently hurts anybody as there isn't
452  * particular reason why the ordering would need to be changed).
453  *
454  * At least SACK_PERM as the first option is known to lead to a disaster
455  * (but it may well be that other scenarios fail similarly).
456  */
457 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
458 			      struct tcp_out_options *opts)
459 {
460 	u16 options = opts->options;	/* mungable copy */
461 
462 	if (unlikely(OPTION_MD5 & options)) {
463 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
464 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
465 		/* overload cookie hash location */
466 		opts->hash_location = (__u8 *)ptr;
467 		ptr += 4;
468 	}
469 
470 	if (unlikely(opts->mss)) {
471 		*ptr++ = htonl((TCPOPT_MSS << 24) |
472 			       (TCPOLEN_MSS << 16) |
473 			       opts->mss);
474 	}
475 
476 	if (likely(OPTION_TS & options)) {
477 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
478 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
479 				       (TCPOLEN_SACK_PERM << 16) |
480 				       (TCPOPT_TIMESTAMP << 8) |
481 				       TCPOLEN_TIMESTAMP);
482 			options &= ~OPTION_SACK_ADVERTISE;
483 		} else {
484 			*ptr++ = htonl((TCPOPT_NOP << 24) |
485 				       (TCPOPT_NOP << 16) |
486 				       (TCPOPT_TIMESTAMP << 8) |
487 				       TCPOLEN_TIMESTAMP);
488 		}
489 		*ptr++ = htonl(opts->tsval);
490 		*ptr++ = htonl(opts->tsecr);
491 	}
492 
493 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
494 		*ptr++ = htonl((TCPOPT_NOP << 24) |
495 			       (TCPOPT_NOP << 16) |
496 			       (TCPOPT_SACK_PERM << 8) |
497 			       TCPOLEN_SACK_PERM);
498 	}
499 
500 	if (unlikely(OPTION_WSCALE & options)) {
501 		*ptr++ = htonl((TCPOPT_NOP << 24) |
502 			       (TCPOPT_WINDOW << 16) |
503 			       (TCPOLEN_WINDOW << 8) |
504 			       opts->ws);
505 	}
506 
507 	if (unlikely(opts->num_sack_blocks)) {
508 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
509 			tp->duplicate_sack : tp->selective_acks;
510 		int this_sack;
511 
512 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
513 			       (TCPOPT_NOP  << 16) |
514 			       (TCPOPT_SACK <<  8) |
515 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
516 						     TCPOLEN_SACK_PERBLOCK)));
517 
518 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
519 		     ++this_sack) {
520 			*ptr++ = htonl(sp[this_sack].start_seq);
521 			*ptr++ = htonl(sp[this_sack].end_seq);
522 		}
523 
524 		tp->rx_opt.dsack = 0;
525 	}
526 
527 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
528 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
529 		u8 *p = (u8 *)ptr;
530 		u32 len; /* Fast Open option length */
531 
532 		if (foc->exp) {
533 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
534 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
535 				     TCPOPT_FASTOPEN_MAGIC);
536 			p += TCPOLEN_EXP_FASTOPEN_BASE;
537 		} else {
538 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
539 			*p++ = TCPOPT_FASTOPEN;
540 			*p++ = len;
541 		}
542 
543 		memcpy(p, foc->val, foc->len);
544 		if ((len & 3) == 2) {
545 			p[foc->len] = TCPOPT_NOP;
546 			p[foc->len + 1] = TCPOPT_NOP;
547 		}
548 		ptr += (len + 3) >> 2;
549 	}
550 
551 	smc_options_write(ptr, &options);
552 }
553 
554 static void smc_set_option(const struct tcp_sock *tp,
555 			   struct tcp_out_options *opts,
556 			   unsigned int *remaining)
557 {
558 #if IS_ENABLED(CONFIG_SMC)
559 	if (static_branch_unlikely(&tcp_have_smc)) {
560 		if (tp->syn_smc) {
561 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
562 				opts->options |= OPTION_SMC;
563 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
564 			}
565 		}
566 	}
567 #endif
568 }
569 
570 static void smc_set_option_cond(const struct tcp_sock *tp,
571 				const struct inet_request_sock *ireq,
572 				struct tcp_out_options *opts,
573 				unsigned int *remaining)
574 {
575 #if IS_ENABLED(CONFIG_SMC)
576 	if (static_branch_unlikely(&tcp_have_smc)) {
577 		if (tp->syn_smc && ireq->smc_ok) {
578 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
579 				opts->options |= OPTION_SMC;
580 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
581 			}
582 		}
583 	}
584 #endif
585 }
586 
587 /* Compute TCP options for SYN packets. This is not the final
588  * network wire format yet.
589  */
590 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
591 				struct tcp_out_options *opts,
592 				struct tcp_md5sig_key **md5)
593 {
594 	struct tcp_sock *tp = tcp_sk(sk);
595 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
596 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
597 
598 	*md5 = NULL;
599 #ifdef CONFIG_TCP_MD5SIG
600 	if (static_branch_unlikely(&tcp_md5_needed) &&
601 	    rcu_access_pointer(tp->md5sig_info)) {
602 		*md5 = tp->af_specific->md5_lookup(sk, sk);
603 		if (*md5) {
604 			opts->options |= OPTION_MD5;
605 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
606 		}
607 	}
608 #endif
609 
610 	/* We always get an MSS option.  The option bytes which will be seen in
611 	 * normal data packets should timestamps be used, must be in the MSS
612 	 * advertised.  But we subtract them from tp->mss_cache so that
613 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
614 	 * fact here if necessary.  If we don't do this correctly, as a
615 	 * receiver we won't recognize data packets as being full sized when we
616 	 * should, and thus we won't abide by the delayed ACK rules correctly.
617 	 * SACKs don't matter, we never delay an ACK when we have any of those
618 	 * going out.  */
619 	opts->mss = tcp_advertise_mss(sk);
620 	remaining -= TCPOLEN_MSS_ALIGNED;
621 
622 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
623 		opts->options |= OPTION_TS;
624 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
625 		opts->tsecr = tp->rx_opt.ts_recent;
626 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
627 	}
628 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
629 		opts->ws = tp->rx_opt.rcv_wscale;
630 		opts->options |= OPTION_WSCALE;
631 		remaining -= TCPOLEN_WSCALE_ALIGNED;
632 	}
633 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
634 		opts->options |= OPTION_SACK_ADVERTISE;
635 		if (unlikely(!(OPTION_TS & opts->options)))
636 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
637 	}
638 
639 	if (fastopen && fastopen->cookie.len >= 0) {
640 		u32 need = fastopen->cookie.len;
641 
642 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
643 					       TCPOLEN_FASTOPEN_BASE;
644 		need = (need + 3) & ~3U;  /* Align to 32 bits */
645 		if (remaining >= need) {
646 			opts->options |= OPTION_FAST_OPEN_COOKIE;
647 			opts->fastopen_cookie = &fastopen->cookie;
648 			remaining -= need;
649 			tp->syn_fastopen = 1;
650 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
651 		}
652 	}
653 
654 	smc_set_option(tp, opts, &remaining);
655 
656 	return MAX_TCP_OPTION_SPACE - remaining;
657 }
658 
659 /* Set up TCP options for SYN-ACKs. */
660 static unsigned int tcp_synack_options(const struct sock *sk,
661 				       struct request_sock *req,
662 				       unsigned int mss, struct sk_buff *skb,
663 				       struct tcp_out_options *opts,
664 				       const struct tcp_md5sig_key *md5,
665 				       struct tcp_fastopen_cookie *foc)
666 {
667 	struct inet_request_sock *ireq = inet_rsk(req);
668 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
669 
670 #ifdef CONFIG_TCP_MD5SIG
671 	if (md5) {
672 		opts->options |= OPTION_MD5;
673 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
674 
675 		/* We can't fit any SACK blocks in a packet with MD5 + TS
676 		 * options. There was discussion about disabling SACK
677 		 * rather than TS in order to fit in better with old,
678 		 * buggy kernels, but that was deemed to be unnecessary.
679 		 */
680 		ireq->tstamp_ok &= !ireq->sack_ok;
681 	}
682 #endif
683 
684 	/* We always send an MSS option. */
685 	opts->mss = mss;
686 	remaining -= TCPOLEN_MSS_ALIGNED;
687 
688 	if (likely(ireq->wscale_ok)) {
689 		opts->ws = ireq->rcv_wscale;
690 		opts->options |= OPTION_WSCALE;
691 		remaining -= TCPOLEN_WSCALE_ALIGNED;
692 	}
693 	if (likely(ireq->tstamp_ok)) {
694 		opts->options |= OPTION_TS;
695 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
696 		opts->tsecr = req->ts_recent;
697 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
698 	}
699 	if (likely(ireq->sack_ok)) {
700 		opts->options |= OPTION_SACK_ADVERTISE;
701 		if (unlikely(!ireq->tstamp_ok))
702 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
703 	}
704 	if (foc != NULL && foc->len >= 0) {
705 		u32 need = foc->len;
706 
707 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
708 				   TCPOLEN_FASTOPEN_BASE;
709 		need = (need + 3) & ~3U;  /* Align to 32 bits */
710 		if (remaining >= need) {
711 			opts->options |= OPTION_FAST_OPEN_COOKIE;
712 			opts->fastopen_cookie = foc;
713 			remaining -= need;
714 		}
715 	}
716 
717 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
718 
719 	return MAX_TCP_OPTION_SPACE - remaining;
720 }
721 
722 /* Compute TCP options for ESTABLISHED sockets. This is not the
723  * final wire format yet.
724  */
725 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
726 					struct tcp_out_options *opts,
727 					struct tcp_md5sig_key **md5)
728 {
729 	struct tcp_sock *tp = tcp_sk(sk);
730 	unsigned int size = 0;
731 	unsigned int eff_sacks;
732 
733 	opts->options = 0;
734 
735 	*md5 = NULL;
736 #ifdef CONFIG_TCP_MD5SIG
737 	if (static_branch_unlikely(&tcp_md5_needed) &&
738 	    rcu_access_pointer(tp->md5sig_info)) {
739 		*md5 = tp->af_specific->md5_lookup(sk, sk);
740 		if (*md5) {
741 			opts->options |= OPTION_MD5;
742 			size += TCPOLEN_MD5SIG_ALIGNED;
743 		}
744 	}
745 #endif
746 
747 	if (likely(tp->rx_opt.tstamp_ok)) {
748 		opts->options |= OPTION_TS;
749 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
750 		opts->tsecr = tp->rx_opt.ts_recent;
751 		size += TCPOLEN_TSTAMP_ALIGNED;
752 	}
753 
754 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
755 	if (unlikely(eff_sacks)) {
756 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
757 		opts->num_sack_blocks =
758 			min_t(unsigned int, eff_sacks,
759 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
760 			      TCPOLEN_SACK_PERBLOCK);
761 		size += TCPOLEN_SACK_BASE_ALIGNED +
762 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
763 	}
764 
765 	return size;
766 }
767 
768 
769 /* TCP SMALL QUEUES (TSQ)
770  *
771  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
772  * to reduce RTT and bufferbloat.
773  * We do this using a special skb destructor (tcp_wfree).
774  *
775  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
776  * needs to be reallocated in a driver.
777  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
778  *
779  * Since transmit from skb destructor is forbidden, we use a tasklet
780  * to process all sockets that eventually need to send more skbs.
781  * We use one tasklet per cpu, with its own queue of sockets.
782  */
783 struct tsq_tasklet {
784 	struct tasklet_struct	tasklet;
785 	struct list_head	head; /* queue of tcp sockets */
786 };
787 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
788 
789 static void tcp_tsq_write(struct sock *sk)
790 {
791 	if ((1 << sk->sk_state) &
792 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
793 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
794 		struct tcp_sock *tp = tcp_sk(sk);
795 
796 		if (tp->lost_out > tp->retrans_out &&
797 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
798 			tcp_mstamp_refresh(tp);
799 			tcp_xmit_retransmit_queue(sk);
800 		}
801 
802 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
803 			       0, GFP_ATOMIC);
804 	}
805 }
806 
807 static void tcp_tsq_handler(struct sock *sk)
808 {
809 	bh_lock_sock(sk);
810 	if (!sock_owned_by_user(sk))
811 		tcp_tsq_write(sk);
812 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
813 		sock_hold(sk);
814 	bh_unlock_sock(sk);
815 }
816 /*
817  * One tasklet per cpu tries to send more skbs.
818  * We run in tasklet context but need to disable irqs when
819  * transferring tsq->head because tcp_wfree() might
820  * interrupt us (non NAPI drivers)
821  */
822 static void tcp_tasklet_func(unsigned long data)
823 {
824 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
825 	LIST_HEAD(list);
826 	unsigned long flags;
827 	struct list_head *q, *n;
828 	struct tcp_sock *tp;
829 	struct sock *sk;
830 
831 	local_irq_save(flags);
832 	list_splice_init(&tsq->head, &list);
833 	local_irq_restore(flags);
834 
835 	list_for_each_safe(q, n, &list) {
836 		tp = list_entry(q, struct tcp_sock, tsq_node);
837 		list_del(&tp->tsq_node);
838 
839 		sk = (struct sock *)tp;
840 		smp_mb__before_atomic();
841 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
842 
843 		tcp_tsq_handler(sk);
844 		sk_free(sk);
845 	}
846 }
847 
848 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
849 			  TCPF_WRITE_TIMER_DEFERRED |	\
850 			  TCPF_DELACK_TIMER_DEFERRED |	\
851 			  TCPF_MTU_REDUCED_DEFERRED)
852 /**
853  * tcp_release_cb - tcp release_sock() callback
854  * @sk: socket
855  *
856  * called from release_sock() to perform protocol dependent
857  * actions before socket release.
858  */
859 void tcp_release_cb(struct sock *sk)
860 {
861 	unsigned long flags, nflags;
862 
863 	/* perform an atomic operation only if at least one flag is set */
864 	do {
865 		flags = sk->sk_tsq_flags;
866 		if (!(flags & TCP_DEFERRED_ALL))
867 			return;
868 		nflags = flags & ~TCP_DEFERRED_ALL;
869 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
870 
871 	if (flags & TCPF_TSQ_DEFERRED) {
872 		tcp_tsq_write(sk);
873 		__sock_put(sk);
874 	}
875 	/* Here begins the tricky part :
876 	 * We are called from release_sock() with :
877 	 * 1) BH disabled
878 	 * 2) sk_lock.slock spinlock held
879 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
880 	 *
881 	 * But following code is meant to be called from BH handlers,
882 	 * so we should keep BH disabled, but early release socket ownership
883 	 */
884 	sock_release_ownership(sk);
885 
886 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
887 		tcp_write_timer_handler(sk);
888 		__sock_put(sk);
889 	}
890 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
891 		tcp_delack_timer_handler(sk);
892 		__sock_put(sk);
893 	}
894 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
895 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
896 		__sock_put(sk);
897 	}
898 }
899 EXPORT_SYMBOL(tcp_release_cb);
900 
901 void __init tcp_tasklet_init(void)
902 {
903 	int i;
904 
905 	for_each_possible_cpu(i) {
906 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
907 
908 		INIT_LIST_HEAD(&tsq->head);
909 		tasklet_init(&tsq->tasklet,
910 			     tcp_tasklet_func,
911 			     (unsigned long)tsq);
912 	}
913 }
914 
915 /*
916  * Write buffer destructor automatically called from kfree_skb.
917  * We can't xmit new skbs from this context, as we might already
918  * hold qdisc lock.
919  */
920 void tcp_wfree(struct sk_buff *skb)
921 {
922 	struct sock *sk = skb->sk;
923 	struct tcp_sock *tp = tcp_sk(sk);
924 	unsigned long flags, nval, oval;
925 
926 	/* Keep one reference on sk_wmem_alloc.
927 	 * Will be released by sk_free() from here or tcp_tasklet_func()
928 	 */
929 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
930 
931 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
932 	 * Wait until our queues (qdisc + devices) are drained.
933 	 * This gives :
934 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
935 	 * - chance for incoming ACK (processed by another cpu maybe)
936 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
937 	 */
938 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
939 		goto out;
940 
941 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
942 		struct tsq_tasklet *tsq;
943 		bool empty;
944 
945 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
946 			goto out;
947 
948 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
949 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
950 		if (nval != oval)
951 			continue;
952 
953 		/* queue this socket to tasklet queue */
954 		local_irq_save(flags);
955 		tsq = this_cpu_ptr(&tsq_tasklet);
956 		empty = list_empty(&tsq->head);
957 		list_add(&tp->tsq_node, &tsq->head);
958 		if (empty)
959 			tasklet_schedule(&tsq->tasklet);
960 		local_irq_restore(flags);
961 		return;
962 	}
963 out:
964 	sk_free(sk);
965 }
966 
967 /* Note: Called under soft irq.
968  * We can call TCP stack right away, unless socket is owned by user.
969  */
970 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
971 {
972 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
973 	struct sock *sk = (struct sock *)tp;
974 
975 	tcp_tsq_handler(sk);
976 	sock_put(sk);
977 
978 	return HRTIMER_NORESTART;
979 }
980 
981 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
982 				      u64 prior_wstamp)
983 {
984 	struct tcp_sock *tp = tcp_sk(sk);
985 
986 	if (sk->sk_pacing_status != SK_PACING_NONE) {
987 		unsigned long rate = sk->sk_pacing_rate;
988 
989 		/* Original sch_fq does not pace first 10 MSS
990 		 * Note that tp->data_segs_out overflows after 2^32 packets,
991 		 * this is a minor annoyance.
992 		 */
993 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
994 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
995 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
996 
997 			/* take into account OS jitter */
998 			len_ns -= min_t(u64, len_ns / 2, credit);
999 			tp->tcp_wstamp_ns += len_ns;
1000 		}
1001 	}
1002 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1003 }
1004 
1005 /* This routine actually transmits TCP packets queued in by
1006  * tcp_do_sendmsg().  This is used by both the initial
1007  * transmission and possible later retransmissions.
1008  * All SKB's seen here are completely headerless.  It is our
1009  * job to build the TCP header, and pass the packet down to
1010  * IP so it can do the same plus pass the packet off to the
1011  * device.
1012  *
1013  * We are working here with either a clone of the original
1014  * SKB, or a fresh unique copy made by the retransmit engine.
1015  */
1016 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1017 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1018 {
1019 	const struct inet_connection_sock *icsk = inet_csk(sk);
1020 	struct inet_sock *inet;
1021 	struct tcp_sock *tp;
1022 	struct tcp_skb_cb *tcb;
1023 	struct tcp_out_options opts;
1024 	unsigned int tcp_options_size, tcp_header_size;
1025 	struct sk_buff *oskb = NULL;
1026 	struct tcp_md5sig_key *md5;
1027 	struct tcphdr *th;
1028 	u64 prior_wstamp;
1029 	int err;
1030 
1031 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1032 	tp = tcp_sk(sk);
1033 	prior_wstamp = tp->tcp_wstamp_ns;
1034 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1035 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1036 	if (clone_it) {
1037 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1038 			- tp->snd_una;
1039 		oskb = skb;
1040 
1041 		tcp_skb_tsorted_save(oskb) {
1042 			if (unlikely(skb_cloned(oskb)))
1043 				skb = pskb_copy(oskb, gfp_mask);
1044 			else
1045 				skb = skb_clone(oskb, gfp_mask);
1046 		} tcp_skb_tsorted_restore(oskb);
1047 
1048 		if (unlikely(!skb))
1049 			return -ENOBUFS;
1050 	}
1051 
1052 	inet = inet_sk(sk);
1053 	tcb = TCP_SKB_CB(skb);
1054 	memset(&opts, 0, sizeof(opts));
1055 
1056 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1057 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1058 	else
1059 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1060 							   &md5);
1061 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1062 
1063 	/* if no packet is in qdisc/device queue, then allow XPS to select
1064 	 * another queue. We can be called from tcp_tsq_handler()
1065 	 * which holds one reference to sk.
1066 	 *
1067 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1068 	 * One way to get this would be to set skb->truesize = 2 on them.
1069 	 */
1070 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1071 
1072 	/* If we had to use memory reserve to allocate this skb,
1073 	 * this might cause drops if packet is looped back :
1074 	 * Other socket might not have SOCK_MEMALLOC.
1075 	 * Packets not looped back do not care about pfmemalloc.
1076 	 */
1077 	skb->pfmemalloc = 0;
1078 
1079 	skb_push(skb, tcp_header_size);
1080 	skb_reset_transport_header(skb);
1081 
1082 	skb_orphan(skb);
1083 	skb->sk = sk;
1084 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1085 	skb_set_hash_from_sk(skb, sk);
1086 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1087 
1088 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1089 
1090 	/* Build TCP header and checksum it. */
1091 	th = (struct tcphdr *)skb->data;
1092 	th->source		= inet->inet_sport;
1093 	th->dest		= inet->inet_dport;
1094 	th->seq			= htonl(tcb->seq);
1095 	th->ack_seq		= htonl(rcv_nxt);
1096 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1097 					tcb->tcp_flags);
1098 
1099 	th->check		= 0;
1100 	th->urg_ptr		= 0;
1101 
1102 	/* The urg_mode check is necessary during a below snd_una win probe */
1103 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1104 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1105 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1106 			th->urg = 1;
1107 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1108 			th->urg_ptr = htons(0xFFFF);
1109 			th->urg = 1;
1110 		}
1111 	}
1112 
1113 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1114 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1115 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1116 		th->window      = htons(tcp_select_window(sk));
1117 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1118 	} else {
1119 		/* RFC1323: The window in SYN & SYN/ACK segments
1120 		 * is never scaled.
1121 		 */
1122 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1123 	}
1124 #ifdef CONFIG_TCP_MD5SIG
1125 	/* Calculate the MD5 hash, as we have all we need now */
1126 	if (md5) {
1127 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1128 		tp->af_specific->calc_md5_hash(opts.hash_location,
1129 					       md5, sk, skb);
1130 	}
1131 #endif
1132 
1133 	icsk->icsk_af_ops->send_check(sk, skb);
1134 
1135 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1136 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1137 
1138 	if (skb->len != tcp_header_size) {
1139 		tcp_event_data_sent(tp, sk);
1140 		tp->data_segs_out += tcp_skb_pcount(skb);
1141 		tp->bytes_sent += skb->len - tcp_header_size;
1142 	}
1143 
1144 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1145 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1146 			      tcp_skb_pcount(skb));
1147 
1148 	tp->segs_out += tcp_skb_pcount(skb);
1149 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1150 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1151 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1152 
1153 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1154 
1155 	/* Cleanup our debris for IP stacks */
1156 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1157 			       sizeof(struct inet6_skb_parm)));
1158 
1159 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1160 
1161 	if (unlikely(err > 0)) {
1162 		tcp_enter_cwr(sk);
1163 		err = net_xmit_eval(err);
1164 	}
1165 	if (!err && oskb) {
1166 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1167 		tcp_rate_skb_sent(sk, oskb);
1168 	}
1169 	return err;
1170 }
1171 
1172 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1173 			    gfp_t gfp_mask)
1174 {
1175 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1176 				  tcp_sk(sk)->rcv_nxt);
1177 }
1178 
1179 /* This routine just queues the buffer for sending.
1180  *
1181  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1182  * otherwise socket can stall.
1183  */
1184 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1185 {
1186 	struct tcp_sock *tp = tcp_sk(sk);
1187 
1188 	/* Advance write_seq and place onto the write_queue. */
1189 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1190 	__skb_header_release(skb);
1191 	tcp_add_write_queue_tail(sk, skb);
1192 	sk->sk_wmem_queued += skb->truesize;
1193 	sk_mem_charge(sk, skb->truesize);
1194 }
1195 
1196 /* Initialize TSO segments for a packet. */
1197 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1198 {
1199 	if (skb->len <= mss_now) {
1200 		/* Avoid the costly divide in the normal
1201 		 * non-TSO case.
1202 		 */
1203 		tcp_skb_pcount_set(skb, 1);
1204 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1205 	} else {
1206 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1207 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1208 	}
1209 }
1210 
1211 /* Pcount in the middle of the write queue got changed, we need to do various
1212  * tweaks to fix counters
1213  */
1214 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1215 {
1216 	struct tcp_sock *tp = tcp_sk(sk);
1217 
1218 	tp->packets_out -= decr;
1219 
1220 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1221 		tp->sacked_out -= decr;
1222 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1223 		tp->retrans_out -= decr;
1224 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1225 		tp->lost_out -= decr;
1226 
1227 	/* Reno case is special. Sigh... */
1228 	if (tcp_is_reno(tp) && decr > 0)
1229 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1230 
1231 	if (tp->lost_skb_hint &&
1232 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1233 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1234 		tp->lost_cnt_hint -= decr;
1235 
1236 	tcp_verify_left_out(tp);
1237 }
1238 
1239 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1240 {
1241 	return TCP_SKB_CB(skb)->txstamp_ack ||
1242 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1243 }
1244 
1245 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1246 {
1247 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1248 
1249 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1250 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1251 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1252 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1253 
1254 		shinfo->tx_flags &= ~tsflags;
1255 		shinfo2->tx_flags |= tsflags;
1256 		swap(shinfo->tskey, shinfo2->tskey);
1257 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1258 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1259 	}
1260 }
1261 
1262 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1263 {
1264 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1265 	TCP_SKB_CB(skb)->eor = 0;
1266 }
1267 
1268 /* Insert buff after skb on the write or rtx queue of sk.  */
1269 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1270 					 struct sk_buff *buff,
1271 					 struct sock *sk,
1272 					 enum tcp_queue tcp_queue)
1273 {
1274 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1275 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1276 	else
1277 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1278 }
1279 
1280 /* Function to create two new TCP segments.  Shrinks the given segment
1281  * to the specified size and appends a new segment with the rest of the
1282  * packet to the list.  This won't be called frequently, I hope.
1283  * Remember, these are still headerless SKBs at this point.
1284  */
1285 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1286 		 struct sk_buff *skb, u32 len,
1287 		 unsigned int mss_now, gfp_t gfp)
1288 {
1289 	struct tcp_sock *tp = tcp_sk(sk);
1290 	struct sk_buff *buff;
1291 	int nsize, old_factor;
1292 	int nlen;
1293 	u8 flags;
1294 
1295 	if (WARN_ON(len > skb->len))
1296 		return -EINVAL;
1297 
1298 	nsize = skb_headlen(skb) - len;
1299 	if (nsize < 0)
1300 		nsize = 0;
1301 
1302 	if (skb_unclone(skb, gfp))
1303 		return -ENOMEM;
1304 
1305 	/* Get a new skb... force flag on. */
1306 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1307 	if (!buff)
1308 		return -ENOMEM; /* We'll just try again later. */
1309 
1310 	sk->sk_wmem_queued += buff->truesize;
1311 	sk_mem_charge(sk, buff->truesize);
1312 	nlen = skb->len - len - nsize;
1313 	buff->truesize += nlen;
1314 	skb->truesize -= nlen;
1315 
1316 	/* Correct the sequence numbers. */
1317 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1318 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1319 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1320 
1321 	/* PSH and FIN should only be set in the second packet. */
1322 	flags = TCP_SKB_CB(skb)->tcp_flags;
1323 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1324 	TCP_SKB_CB(buff)->tcp_flags = flags;
1325 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1326 	tcp_skb_fragment_eor(skb, buff);
1327 
1328 	skb_split(skb, buff, len);
1329 
1330 	buff->ip_summed = CHECKSUM_PARTIAL;
1331 
1332 	buff->tstamp = skb->tstamp;
1333 	tcp_fragment_tstamp(skb, buff);
1334 
1335 	old_factor = tcp_skb_pcount(skb);
1336 
1337 	/* Fix up tso_factor for both original and new SKB.  */
1338 	tcp_set_skb_tso_segs(skb, mss_now);
1339 	tcp_set_skb_tso_segs(buff, mss_now);
1340 
1341 	/* Update delivered info for the new segment */
1342 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1343 
1344 	/* If this packet has been sent out already, we must
1345 	 * adjust the various packet counters.
1346 	 */
1347 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1348 		int diff = old_factor - tcp_skb_pcount(skb) -
1349 			tcp_skb_pcount(buff);
1350 
1351 		if (diff)
1352 			tcp_adjust_pcount(sk, skb, diff);
1353 	}
1354 
1355 	/* Link BUFF into the send queue. */
1356 	__skb_header_release(buff);
1357 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1358 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1359 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1360 
1361 	return 0;
1362 }
1363 
1364 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1365  * data is not copied, but immediately discarded.
1366  */
1367 static int __pskb_trim_head(struct sk_buff *skb, int len)
1368 {
1369 	struct skb_shared_info *shinfo;
1370 	int i, k, eat;
1371 
1372 	eat = min_t(int, len, skb_headlen(skb));
1373 	if (eat) {
1374 		__skb_pull(skb, eat);
1375 		len -= eat;
1376 		if (!len)
1377 			return 0;
1378 	}
1379 	eat = len;
1380 	k = 0;
1381 	shinfo = skb_shinfo(skb);
1382 	for (i = 0; i < shinfo->nr_frags; i++) {
1383 		int size = skb_frag_size(&shinfo->frags[i]);
1384 
1385 		if (size <= eat) {
1386 			skb_frag_unref(skb, i);
1387 			eat -= size;
1388 		} else {
1389 			shinfo->frags[k] = shinfo->frags[i];
1390 			if (eat) {
1391 				shinfo->frags[k].page_offset += eat;
1392 				skb_frag_size_sub(&shinfo->frags[k], eat);
1393 				eat = 0;
1394 			}
1395 			k++;
1396 		}
1397 	}
1398 	shinfo->nr_frags = k;
1399 
1400 	skb->data_len -= len;
1401 	skb->len = skb->data_len;
1402 	return len;
1403 }
1404 
1405 /* Remove acked data from a packet in the transmit queue. */
1406 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1407 {
1408 	u32 delta_truesize;
1409 
1410 	if (skb_unclone(skb, GFP_ATOMIC))
1411 		return -ENOMEM;
1412 
1413 	delta_truesize = __pskb_trim_head(skb, len);
1414 
1415 	TCP_SKB_CB(skb)->seq += len;
1416 	skb->ip_summed = CHECKSUM_PARTIAL;
1417 
1418 	if (delta_truesize) {
1419 		skb->truesize	   -= delta_truesize;
1420 		sk->sk_wmem_queued -= delta_truesize;
1421 		sk_mem_uncharge(sk, delta_truesize);
1422 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1423 	}
1424 
1425 	/* Any change of skb->len requires recalculation of tso factor. */
1426 	if (tcp_skb_pcount(skb) > 1)
1427 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1428 
1429 	return 0;
1430 }
1431 
1432 /* Calculate MSS not accounting any TCP options.  */
1433 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1434 {
1435 	const struct tcp_sock *tp = tcp_sk(sk);
1436 	const struct inet_connection_sock *icsk = inet_csk(sk);
1437 	int mss_now;
1438 
1439 	/* Calculate base mss without TCP options:
1440 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1441 	 */
1442 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1443 
1444 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1445 	if (icsk->icsk_af_ops->net_frag_header_len) {
1446 		const struct dst_entry *dst = __sk_dst_get(sk);
1447 
1448 		if (dst && dst_allfrag(dst))
1449 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1450 	}
1451 
1452 	/* Clamp it (mss_clamp does not include tcp options) */
1453 	if (mss_now > tp->rx_opt.mss_clamp)
1454 		mss_now = tp->rx_opt.mss_clamp;
1455 
1456 	/* Now subtract optional transport overhead */
1457 	mss_now -= icsk->icsk_ext_hdr_len;
1458 
1459 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1460 	if (mss_now < 48)
1461 		mss_now = 48;
1462 	return mss_now;
1463 }
1464 
1465 /* Calculate MSS. Not accounting for SACKs here.  */
1466 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1467 {
1468 	/* Subtract TCP options size, not including SACKs */
1469 	return __tcp_mtu_to_mss(sk, pmtu) -
1470 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1471 }
1472 
1473 /* Inverse of above */
1474 int tcp_mss_to_mtu(struct sock *sk, int mss)
1475 {
1476 	const struct tcp_sock *tp = tcp_sk(sk);
1477 	const struct inet_connection_sock *icsk = inet_csk(sk);
1478 	int mtu;
1479 
1480 	mtu = mss +
1481 	      tp->tcp_header_len +
1482 	      icsk->icsk_ext_hdr_len +
1483 	      icsk->icsk_af_ops->net_header_len;
1484 
1485 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1486 	if (icsk->icsk_af_ops->net_frag_header_len) {
1487 		const struct dst_entry *dst = __sk_dst_get(sk);
1488 
1489 		if (dst && dst_allfrag(dst))
1490 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1491 	}
1492 	return mtu;
1493 }
1494 EXPORT_SYMBOL(tcp_mss_to_mtu);
1495 
1496 /* MTU probing init per socket */
1497 void tcp_mtup_init(struct sock *sk)
1498 {
1499 	struct tcp_sock *tp = tcp_sk(sk);
1500 	struct inet_connection_sock *icsk = inet_csk(sk);
1501 	struct net *net = sock_net(sk);
1502 
1503 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1504 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1505 			       icsk->icsk_af_ops->net_header_len;
1506 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1507 	icsk->icsk_mtup.probe_size = 0;
1508 	if (icsk->icsk_mtup.enabled)
1509 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1510 }
1511 EXPORT_SYMBOL(tcp_mtup_init);
1512 
1513 /* This function synchronize snd mss to current pmtu/exthdr set.
1514 
1515    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1516    for TCP options, but includes only bare TCP header.
1517 
1518    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1519    It is minimum of user_mss and mss received with SYN.
1520    It also does not include TCP options.
1521 
1522    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1523 
1524    tp->mss_cache is current effective sending mss, including
1525    all tcp options except for SACKs. It is evaluated,
1526    taking into account current pmtu, but never exceeds
1527    tp->rx_opt.mss_clamp.
1528 
1529    NOTE1. rfc1122 clearly states that advertised MSS
1530    DOES NOT include either tcp or ip options.
1531 
1532    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1533    are READ ONLY outside this function.		--ANK (980731)
1534  */
1535 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1536 {
1537 	struct tcp_sock *tp = tcp_sk(sk);
1538 	struct inet_connection_sock *icsk = inet_csk(sk);
1539 	int mss_now;
1540 
1541 	if (icsk->icsk_mtup.search_high > pmtu)
1542 		icsk->icsk_mtup.search_high = pmtu;
1543 
1544 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1545 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1546 
1547 	/* And store cached results */
1548 	icsk->icsk_pmtu_cookie = pmtu;
1549 	if (icsk->icsk_mtup.enabled)
1550 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1551 	tp->mss_cache = mss_now;
1552 
1553 	return mss_now;
1554 }
1555 EXPORT_SYMBOL(tcp_sync_mss);
1556 
1557 /* Compute the current effective MSS, taking SACKs and IP options,
1558  * and even PMTU discovery events into account.
1559  */
1560 unsigned int tcp_current_mss(struct sock *sk)
1561 {
1562 	const struct tcp_sock *tp = tcp_sk(sk);
1563 	const struct dst_entry *dst = __sk_dst_get(sk);
1564 	u32 mss_now;
1565 	unsigned int header_len;
1566 	struct tcp_out_options opts;
1567 	struct tcp_md5sig_key *md5;
1568 
1569 	mss_now = tp->mss_cache;
1570 
1571 	if (dst) {
1572 		u32 mtu = dst_mtu(dst);
1573 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1574 			mss_now = tcp_sync_mss(sk, mtu);
1575 	}
1576 
1577 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1578 		     sizeof(struct tcphdr);
1579 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1580 	 * some common options. If this is an odd packet (because we have SACK
1581 	 * blocks etc) then our calculated header_len will be different, and
1582 	 * we have to adjust mss_now correspondingly */
1583 	if (header_len != tp->tcp_header_len) {
1584 		int delta = (int) header_len - tp->tcp_header_len;
1585 		mss_now -= delta;
1586 	}
1587 
1588 	return mss_now;
1589 }
1590 
1591 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1592  * As additional protections, we do not touch cwnd in retransmission phases,
1593  * and if application hit its sndbuf limit recently.
1594  */
1595 static void tcp_cwnd_application_limited(struct sock *sk)
1596 {
1597 	struct tcp_sock *tp = tcp_sk(sk);
1598 
1599 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1600 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1601 		/* Limited by application or receiver window. */
1602 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1603 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1604 		if (win_used < tp->snd_cwnd) {
1605 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1606 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1607 		}
1608 		tp->snd_cwnd_used = 0;
1609 	}
1610 	tp->snd_cwnd_stamp = tcp_jiffies32;
1611 }
1612 
1613 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1614 {
1615 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1616 	struct tcp_sock *tp = tcp_sk(sk);
1617 
1618 	/* Track the maximum number of outstanding packets in each
1619 	 * window, and remember whether we were cwnd-limited then.
1620 	 */
1621 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1622 	    tp->packets_out > tp->max_packets_out) {
1623 		tp->max_packets_out = tp->packets_out;
1624 		tp->max_packets_seq = tp->snd_nxt;
1625 		tp->is_cwnd_limited = is_cwnd_limited;
1626 	}
1627 
1628 	if (tcp_is_cwnd_limited(sk)) {
1629 		/* Network is feed fully. */
1630 		tp->snd_cwnd_used = 0;
1631 		tp->snd_cwnd_stamp = tcp_jiffies32;
1632 	} else {
1633 		/* Network starves. */
1634 		if (tp->packets_out > tp->snd_cwnd_used)
1635 			tp->snd_cwnd_used = tp->packets_out;
1636 
1637 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1638 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1639 		    !ca_ops->cong_control)
1640 			tcp_cwnd_application_limited(sk);
1641 
1642 		/* The following conditions together indicate the starvation
1643 		 * is caused by insufficient sender buffer:
1644 		 * 1) just sent some data (see tcp_write_xmit)
1645 		 * 2) not cwnd limited (this else condition)
1646 		 * 3) no more data to send (tcp_write_queue_empty())
1647 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1648 		 */
1649 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1650 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1651 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1652 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1653 	}
1654 }
1655 
1656 /* Minshall's variant of the Nagle send check. */
1657 static bool tcp_minshall_check(const struct tcp_sock *tp)
1658 {
1659 	return after(tp->snd_sml, tp->snd_una) &&
1660 		!after(tp->snd_sml, tp->snd_nxt);
1661 }
1662 
1663 /* Update snd_sml if this skb is under mss
1664  * Note that a TSO packet might end with a sub-mss segment
1665  * The test is really :
1666  * if ((skb->len % mss) != 0)
1667  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1668  * But we can avoid doing the divide again given we already have
1669  *  skb_pcount = skb->len / mss_now
1670  */
1671 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1672 				const struct sk_buff *skb)
1673 {
1674 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1675 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1676 }
1677 
1678 /* Return false, if packet can be sent now without violation Nagle's rules:
1679  * 1. It is full sized. (provided by caller in %partial bool)
1680  * 2. Or it contains FIN. (already checked by caller)
1681  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1682  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1683  *    With Minshall's modification: all sent small packets are ACKed.
1684  */
1685 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1686 			    int nonagle)
1687 {
1688 	return partial &&
1689 		((nonagle & TCP_NAGLE_CORK) ||
1690 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1691 }
1692 
1693 /* Return how many segs we'd like on a TSO packet,
1694  * to send one TSO packet per ms
1695  */
1696 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1697 			    int min_tso_segs)
1698 {
1699 	u32 bytes, segs;
1700 
1701 	bytes = min_t(unsigned long,
1702 		      sk->sk_pacing_rate >> sk->sk_pacing_shift,
1703 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1704 
1705 	/* Goal is to send at least one packet per ms,
1706 	 * not one big TSO packet every 100 ms.
1707 	 * This preserves ACK clocking and is consistent
1708 	 * with tcp_tso_should_defer() heuristic.
1709 	 */
1710 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1711 
1712 	return segs;
1713 }
1714 
1715 /* Return the number of segments we want in the skb we are transmitting.
1716  * See if congestion control module wants to decide; otherwise, autosize.
1717  */
1718 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1719 {
1720 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1721 	u32 min_tso, tso_segs;
1722 
1723 	min_tso = ca_ops->min_tso_segs ?
1724 			ca_ops->min_tso_segs(sk) :
1725 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1726 
1727 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1728 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1729 }
1730 
1731 /* Returns the portion of skb which can be sent right away */
1732 static unsigned int tcp_mss_split_point(const struct sock *sk,
1733 					const struct sk_buff *skb,
1734 					unsigned int mss_now,
1735 					unsigned int max_segs,
1736 					int nonagle)
1737 {
1738 	const struct tcp_sock *tp = tcp_sk(sk);
1739 	u32 partial, needed, window, max_len;
1740 
1741 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1742 	max_len = mss_now * max_segs;
1743 
1744 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1745 		return max_len;
1746 
1747 	needed = min(skb->len, window);
1748 
1749 	if (max_len <= needed)
1750 		return max_len;
1751 
1752 	partial = needed % mss_now;
1753 	/* If last segment is not a full MSS, check if Nagle rules allow us
1754 	 * to include this last segment in this skb.
1755 	 * Otherwise, we'll split the skb at last MSS boundary
1756 	 */
1757 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1758 		return needed - partial;
1759 
1760 	return needed;
1761 }
1762 
1763 /* Can at least one segment of SKB be sent right now, according to the
1764  * congestion window rules?  If so, return how many segments are allowed.
1765  */
1766 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1767 					 const struct sk_buff *skb)
1768 {
1769 	u32 in_flight, cwnd, halfcwnd;
1770 
1771 	/* Don't be strict about the congestion window for the final FIN.  */
1772 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1773 	    tcp_skb_pcount(skb) == 1)
1774 		return 1;
1775 
1776 	in_flight = tcp_packets_in_flight(tp);
1777 	cwnd = tp->snd_cwnd;
1778 	if (in_flight >= cwnd)
1779 		return 0;
1780 
1781 	/* For better scheduling, ensure we have at least
1782 	 * 2 GSO packets in flight.
1783 	 */
1784 	halfcwnd = max(cwnd >> 1, 1U);
1785 	return min(halfcwnd, cwnd - in_flight);
1786 }
1787 
1788 /* Initialize TSO state of a skb.
1789  * This must be invoked the first time we consider transmitting
1790  * SKB onto the wire.
1791  */
1792 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1793 {
1794 	int tso_segs = tcp_skb_pcount(skb);
1795 
1796 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1797 		tcp_set_skb_tso_segs(skb, mss_now);
1798 		tso_segs = tcp_skb_pcount(skb);
1799 	}
1800 	return tso_segs;
1801 }
1802 
1803 
1804 /* Return true if the Nagle test allows this packet to be
1805  * sent now.
1806  */
1807 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1808 				  unsigned int cur_mss, int nonagle)
1809 {
1810 	/* Nagle rule does not apply to frames, which sit in the middle of the
1811 	 * write_queue (they have no chances to get new data).
1812 	 *
1813 	 * This is implemented in the callers, where they modify the 'nonagle'
1814 	 * argument based upon the location of SKB in the send queue.
1815 	 */
1816 	if (nonagle & TCP_NAGLE_PUSH)
1817 		return true;
1818 
1819 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1820 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1821 		return true;
1822 
1823 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1824 		return true;
1825 
1826 	return false;
1827 }
1828 
1829 /* Does at least the first segment of SKB fit into the send window? */
1830 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1831 			     const struct sk_buff *skb,
1832 			     unsigned int cur_mss)
1833 {
1834 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1835 
1836 	if (skb->len > cur_mss)
1837 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1838 
1839 	return !after(end_seq, tcp_wnd_end(tp));
1840 }
1841 
1842 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1843  * which is put after SKB on the list.  It is very much like
1844  * tcp_fragment() except that it may make several kinds of assumptions
1845  * in order to speed up the splitting operation.  In particular, we
1846  * know that all the data is in scatter-gather pages, and that the
1847  * packet has never been sent out before (and thus is not cloned).
1848  */
1849 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1850 			unsigned int mss_now, gfp_t gfp)
1851 {
1852 	int nlen = skb->len - len;
1853 	struct sk_buff *buff;
1854 	u8 flags;
1855 
1856 	/* All of a TSO frame must be composed of paged data.  */
1857 	if (skb->len != skb->data_len)
1858 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1859 				    skb, len, mss_now, gfp);
1860 
1861 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1862 	if (unlikely(!buff))
1863 		return -ENOMEM;
1864 
1865 	sk->sk_wmem_queued += buff->truesize;
1866 	sk_mem_charge(sk, buff->truesize);
1867 	buff->truesize += nlen;
1868 	skb->truesize -= nlen;
1869 
1870 	/* Correct the sequence numbers. */
1871 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1872 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1873 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1874 
1875 	/* PSH and FIN should only be set in the second packet. */
1876 	flags = TCP_SKB_CB(skb)->tcp_flags;
1877 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1878 	TCP_SKB_CB(buff)->tcp_flags = flags;
1879 
1880 	/* This packet was never sent out yet, so no SACK bits. */
1881 	TCP_SKB_CB(buff)->sacked = 0;
1882 
1883 	tcp_skb_fragment_eor(skb, buff);
1884 
1885 	buff->ip_summed = CHECKSUM_PARTIAL;
1886 	skb_split(skb, buff, len);
1887 	tcp_fragment_tstamp(skb, buff);
1888 
1889 	/* Fix up tso_factor for both original and new SKB.  */
1890 	tcp_set_skb_tso_segs(skb, mss_now);
1891 	tcp_set_skb_tso_segs(buff, mss_now);
1892 
1893 	/* Link BUFF into the send queue. */
1894 	__skb_header_release(buff);
1895 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
1896 
1897 	return 0;
1898 }
1899 
1900 /* Try to defer sending, if possible, in order to minimize the amount
1901  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1902  *
1903  * This algorithm is from John Heffner.
1904  */
1905 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1906 				 bool *is_cwnd_limited,
1907 				 bool *is_rwnd_limited,
1908 				 u32 max_segs)
1909 {
1910 	const struct inet_connection_sock *icsk = inet_csk(sk);
1911 	u32 send_win, cong_win, limit, in_flight;
1912 	struct tcp_sock *tp = tcp_sk(sk);
1913 	struct sk_buff *head;
1914 	int win_divisor;
1915 	s64 delta;
1916 
1917 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1918 		goto send_now;
1919 
1920 	/* Avoid bursty behavior by allowing defer
1921 	 * only if the last write was recent (1 ms).
1922 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
1923 	 * packets waiting in a qdisc or device for EDT delivery.
1924 	 */
1925 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
1926 	if (delta > 0)
1927 		goto send_now;
1928 
1929 	in_flight = tcp_packets_in_flight(tp);
1930 
1931 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1932 	BUG_ON(tp->snd_cwnd <= in_flight);
1933 
1934 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1935 
1936 	/* From in_flight test above, we know that cwnd > in_flight.  */
1937 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1938 
1939 	limit = min(send_win, cong_win);
1940 
1941 	/* If a full-sized TSO skb can be sent, do it. */
1942 	if (limit >= max_segs * tp->mss_cache)
1943 		goto send_now;
1944 
1945 	/* Middle in queue won't get any more data, full sendable already? */
1946 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1947 		goto send_now;
1948 
1949 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1950 	if (win_divisor) {
1951 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1952 
1953 		/* If at least some fraction of a window is available,
1954 		 * just use it.
1955 		 */
1956 		chunk /= win_divisor;
1957 		if (limit >= chunk)
1958 			goto send_now;
1959 	} else {
1960 		/* Different approach, try not to defer past a single
1961 		 * ACK.  Receiver should ACK every other full sized
1962 		 * frame, so if we have space for more than 3 frames
1963 		 * then send now.
1964 		 */
1965 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1966 			goto send_now;
1967 	}
1968 
1969 	/* TODO : use tsorted_sent_queue ? */
1970 	head = tcp_rtx_queue_head(sk);
1971 	if (!head)
1972 		goto send_now;
1973 	delta = tp->tcp_clock_cache - head->tstamp;
1974 	/* If next ACK is likely to come too late (half srtt), do not defer */
1975 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
1976 		goto send_now;
1977 
1978 	/* Ok, it looks like it is advisable to defer.
1979 	 * Three cases are tracked :
1980 	 * 1) We are cwnd-limited
1981 	 * 2) We are rwnd-limited
1982 	 * 3) We are application limited.
1983 	 */
1984 	if (cong_win < send_win) {
1985 		if (cong_win <= skb->len) {
1986 			*is_cwnd_limited = true;
1987 			return true;
1988 		}
1989 	} else {
1990 		if (send_win <= skb->len) {
1991 			*is_rwnd_limited = true;
1992 			return true;
1993 		}
1994 	}
1995 
1996 	/* If this packet won't get more data, do not wait. */
1997 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
1998 	    TCP_SKB_CB(skb)->eor)
1999 		goto send_now;
2000 
2001 	return true;
2002 
2003 send_now:
2004 	return false;
2005 }
2006 
2007 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2008 {
2009 	struct inet_connection_sock *icsk = inet_csk(sk);
2010 	struct tcp_sock *tp = tcp_sk(sk);
2011 	struct net *net = sock_net(sk);
2012 	u32 interval;
2013 	s32 delta;
2014 
2015 	interval = net->ipv4.sysctl_tcp_probe_interval;
2016 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2017 	if (unlikely(delta >= interval * HZ)) {
2018 		int mss = tcp_current_mss(sk);
2019 
2020 		/* Update current search range */
2021 		icsk->icsk_mtup.probe_size = 0;
2022 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2023 			sizeof(struct tcphdr) +
2024 			icsk->icsk_af_ops->net_header_len;
2025 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2026 
2027 		/* Update probe time stamp */
2028 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2029 	}
2030 }
2031 
2032 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2033 {
2034 	struct sk_buff *skb, *next;
2035 
2036 	skb = tcp_send_head(sk);
2037 	tcp_for_write_queue_from_safe(skb, next, sk) {
2038 		if (len <= skb->len)
2039 			break;
2040 
2041 		if (unlikely(TCP_SKB_CB(skb)->eor))
2042 			return false;
2043 
2044 		len -= skb->len;
2045 	}
2046 
2047 	return true;
2048 }
2049 
2050 /* Create a new MTU probe if we are ready.
2051  * MTU probe is regularly attempting to increase the path MTU by
2052  * deliberately sending larger packets.  This discovers routing
2053  * changes resulting in larger path MTUs.
2054  *
2055  * Returns 0 if we should wait to probe (no cwnd available),
2056  *         1 if a probe was sent,
2057  *         -1 otherwise
2058  */
2059 static int tcp_mtu_probe(struct sock *sk)
2060 {
2061 	struct inet_connection_sock *icsk = inet_csk(sk);
2062 	struct tcp_sock *tp = tcp_sk(sk);
2063 	struct sk_buff *skb, *nskb, *next;
2064 	struct net *net = sock_net(sk);
2065 	int probe_size;
2066 	int size_needed;
2067 	int copy, len;
2068 	int mss_now;
2069 	int interval;
2070 
2071 	/* Not currently probing/verifying,
2072 	 * not in recovery,
2073 	 * have enough cwnd, and
2074 	 * not SACKing (the variable headers throw things off)
2075 	 */
2076 	if (likely(!icsk->icsk_mtup.enabled ||
2077 		   icsk->icsk_mtup.probe_size ||
2078 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2079 		   tp->snd_cwnd < 11 ||
2080 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2081 		return -1;
2082 
2083 	/* Use binary search for probe_size between tcp_mss_base,
2084 	 * and current mss_clamp. if (search_high - search_low)
2085 	 * smaller than a threshold, backoff from probing.
2086 	 */
2087 	mss_now = tcp_current_mss(sk);
2088 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2089 				    icsk->icsk_mtup.search_low) >> 1);
2090 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2091 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2092 	/* When misfortune happens, we are reprobing actively,
2093 	 * and then reprobe timer has expired. We stick with current
2094 	 * probing process by not resetting search range to its orignal.
2095 	 */
2096 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2097 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2098 		/* Check whether enough time has elaplased for
2099 		 * another round of probing.
2100 		 */
2101 		tcp_mtu_check_reprobe(sk);
2102 		return -1;
2103 	}
2104 
2105 	/* Have enough data in the send queue to probe? */
2106 	if (tp->write_seq - tp->snd_nxt < size_needed)
2107 		return -1;
2108 
2109 	if (tp->snd_wnd < size_needed)
2110 		return -1;
2111 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2112 		return 0;
2113 
2114 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2115 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2116 		if (!tcp_packets_in_flight(tp))
2117 			return -1;
2118 		else
2119 			return 0;
2120 	}
2121 
2122 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2123 		return -1;
2124 
2125 	/* We're allowed to probe.  Build it now. */
2126 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2127 	if (!nskb)
2128 		return -1;
2129 	sk->sk_wmem_queued += nskb->truesize;
2130 	sk_mem_charge(sk, nskb->truesize);
2131 
2132 	skb = tcp_send_head(sk);
2133 
2134 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2135 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2136 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2137 	TCP_SKB_CB(nskb)->sacked = 0;
2138 	nskb->csum = 0;
2139 	nskb->ip_summed = CHECKSUM_PARTIAL;
2140 
2141 	tcp_insert_write_queue_before(nskb, skb, sk);
2142 	tcp_highest_sack_replace(sk, skb, nskb);
2143 
2144 	len = 0;
2145 	tcp_for_write_queue_from_safe(skb, next, sk) {
2146 		copy = min_t(int, skb->len, probe_size - len);
2147 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2148 
2149 		if (skb->len <= copy) {
2150 			/* We've eaten all the data from this skb.
2151 			 * Throw it away. */
2152 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2153 			/* If this is the last SKB we copy and eor is set
2154 			 * we need to propagate it to the new skb.
2155 			 */
2156 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2157 			tcp_unlink_write_queue(skb, sk);
2158 			sk_wmem_free_skb(sk, skb);
2159 		} else {
2160 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2161 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2162 			if (!skb_shinfo(skb)->nr_frags) {
2163 				skb_pull(skb, copy);
2164 			} else {
2165 				__pskb_trim_head(skb, copy);
2166 				tcp_set_skb_tso_segs(skb, mss_now);
2167 			}
2168 			TCP_SKB_CB(skb)->seq += copy;
2169 		}
2170 
2171 		len += copy;
2172 
2173 		if (len >= probe_size)
2174 			break;
2175 	}
2176 	tcp_init_tso_segs(nskb, nskb->len);
2177 
2178 	/* We're ready to send.  If this fails, the probe will
2179 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2180 	 */
2181 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2182 		/* Decrement cwnd here because we are sending
2183 		 * effectively two packets. */
2184 		tp->snd_cwnd--;
2185 		tcp_event_new_data_sent(sk, nskb);
2186 
2187 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2188 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2189 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2190 
2191 		return 1;
2192 	}
2193 
2194 	return -1;
2195 }
2196 
2197 static bool tcp_pacing_check(struct sock *sk)
2198 {
2199 	struct tcp_sock *tp = tcp_sk(sk);
2200 
2201 	if (!tcp_needs_internal_pacing(sk))
2202 		return false;
2203 
2204 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2205 		return false;
2206 
2207 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2208 		hrtimer_start(&tp->pacing_timer,
2209 			      ns_to_ktime(tp->tcp_wstamp_ns),
2210 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2211 		sock_hold(sk);
2212 	}
2213 	return true;
2214 }
2215 
2216 /* TCP Small Queues :
2217  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2218  * (These limits are doubled for retransmits)
2219  * This allows for :
2220  *  - better RTT estimation and ACK scheduling
2221  *  - faster recovery
2222  *  - high rates
2223  * Alas, some drivers / subsystems require a fair amount
2224  * of queued bytes to ensure line rate.
2225  * One example is wifi aggregation (802.11 AMPDU)
2226  */
2227 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2228 				  unsigned int factor)
2229 {
2230 	unsigned long limit;
2231 
2232 	limit = max_t(unsigned long,
2233 		      2 * skb->truesize,
2234 		      sk->sk_pacing_rate >> sk->sk_pacing_shift);
2235 	if (sk->sk_pacing_status == SK_PACING_NONE)
2236 		limit = min_t(unsigned long, limit,
2237 			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2238 	limit <<= factor;
2239 
2240 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2241 		/* Always send skb if rtx queue is empty.
2242 		 * No need to wait for TX completion to call us back,
2243 		 * after softirq/tasklet schedule.
2244 		 * This helps when TX completions are delayed too much.
2245 		 */
2246 		if (tcp_rtx_queue_empty(sk))
2247 			return false;
2248 
2249 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2250 		/* It is possible TX completion already happened
2251 		 * before we set TSQ_THROTTLED, so we must
2252 		 * test again the condition.
2253 		 */
2254 		smp_mb__after_atomic();
2255 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2256 			return true;
2257 	}
2258 	return false;
2259 }
2260 
2261 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2262 {
2263 	const u32 now = tcp_jiffies32;
2264 	enum tcp_chrono old = tp->chrono_type;
2265 
2266 	if (old > TCP_CHRONO_UNSPEC)
2267 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2268 	tp->chrono_start = now;
2269 	tp->chrono_type = new;
2270 }
2271 
2272 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2273 {
2274 	struct tcp_sock *tp = tcp_sk(sk);
2275 
2276 	/* If there are multiple conditions worthy of tracking in a
2277 	 * chronograph then the highest priority enum takes precedence
2278 	 * over the other conditions. So that if something "more interesting"
2279 	 * starts happening, stop the previous chrono and start a new one.
2280 	 */
2281 	if (type > tp->chrono_type)
2282 		tcp_chrono_set(tp, type);
2283 }
2284 
2285 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2286 {
2287 	struct tcp_sock *tp = tcp_sk(sk);
2288 
2289 
2290 	/* There are multiple conditions worthy of tracking in a
2291 	 * chronograph, so that the highest priority enum takes
2292 	 * precedence over the other conditions (see tcp_chrono_start).
2293 	 * If a condition stops, we only stop chrono tracking if
2294 	 * it's the "most interesting" or current chrono we are
2295 	 * tracking and starts busy chrono if we have pending data.
2296 	 */
2297 	if (tcp_rtx_and_write_queues_empty(sk))
2298 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2299 	else if (type == tp->chrono_type)
2300 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2301 }
2302 
2303 /* This routine writes packets to the network.  It advances the
2304  * send_head.  This happens as incoming acks open up the remote
2305  * window for us.
2306  *
2307  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2308  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2309  * account rare use of URG, this is not a big flaw.
2310  *
2311  * Send at most one packet when push_one > 0. Temporarily ignore
2312  * cwnd limit to force at most one packet out when push_one == 2.
2313 
2314  * Returns true, if no segments are in flight and we have queued segments,
2315  * but cannot send anything now because of SWS or another problem.
2316  */
2317 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2318 			   int push_one, gfp_t gfp)
2319 {
2320 	struct tcp_sock *tp = tcp_sk(sk);
2321 	struct sk_buff *skb;
2322 	unsigned int tso_segs, sent_pkts;
2323 	int cwnd_quota;
2324 	int result;
2325 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2326 	u32 max_segs;
2327 
2328 	sent_pkts = 0;
2329 
2330 	tcp_mstamp_refresh(tp);
2331 	if (!push_one) {
2332 		/* Do MTU probing. */
2333 		result = tcp_mtu_probe(sk);
2334 		if (!result) {
2335 			return false;
2336 		} else if (result > 0) {
2337 			sent_pkts = 1;
2338 		}
2339 	}
2340 
2341 	max_segs = tcp_tso_segs(sk, mss_now);
2342 	while ((skb = tcp_send_head(sk))) {
2343 		unsigned int limit;
2344 
2345 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2346 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2347 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2348 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2349 			tcp_init_tso_segs(skb, mss_now);
2350 			goto repair; /* Skip network transmission */
2351 		}
2352 
2353 		if (tcp_pacing_check(sk))
2354 			break;
2355 
2356 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2357 		BUG_ON(!tso_segs);
2358 
2359 		cwnd_quota = tcp_cwnd_test(tp, skb);
2360 		if (!cwnd_quota) {
2361 			if (push_one == 2)
2362 				/* Force out a loss probe pkt. */
2363 				cwnd_quota = 1;
2364 			else
2365 				break;
2366 		}
2367 
2368 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2369 			is_rwnd_limited = true;
2370 			break;
2371 		}
2372 
2373 		if (tso_segs == 1) {
2374 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2375 						     (tcp_skb_is_last(sk, skb) ?
2376 						      nonagle : TCP_NAGLE_PUSH))))
2377 				break;
2378 		} else {
2379 			if (!push_one &&
2380 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2381 						 &is_rwnd_limited, max_segs))
2382 				break;
2383 		}
2384 
2385 		limit = mss_now;
2386 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2387 			limit = tcp_mss_split_point(sk, skb, mss_now,
2388 						    min_t(unsigned int,
2389 							  cwnd_quota,
2390 							  max_segs),
2391 						    nonagle);
2392 
2393 		if (skb->len > limit &&
2394 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2395 			break;
2396 
2397 		if (tcp_small_queue_check(sk, skb, 0))
2398 			break;
2399 
2400 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2401 			break;
2402 
2403 repair:
2404 		/* Advance the send_head.  This one is sent out.
2405 		 * This call will increment packets_out.
2406 		 */
2407 		tcp_event_new_data_sent(sk, skb);
2408 
2409 		tcp_minshall_update(tp, mss_now, skb);
2410 		sent_pkts += tcp_skb_pcount(skb);
2411 
2412 		if (push_one)
2413 			break;
2414 	}
2415 
2416 	if (is_rwnd_limited)
2417 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2418 	else
2419 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2420 
2421 	if (likely(sent_pkts)) {
2422 		if (tcp_in_cwnd_reduction(sk))
2423 			tp->prr_out += sent_pkts;
2424 
2425 		/* Send one loss probe per tail loss episode. */
2426 		if (push_one != 2)
2427 			tcp_schedule_loss_probe(sk, false);
2428 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2429 		tcp_cwnd_validate(sk, is_cwnd_limited);
2430 		return false;
2431 	}
2432 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2433 }
2434 
2435 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2436 {
2437 	struct inet_connection_sock *icsk = inet_csk(sk);
2438 	struct tcp_sock *tp = tcp_sk(sk);
2439 	u32 timeout, rto_delta_us;
2440 	int early_retrans;
2441 
2442 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2443 	 * finishes.
2444 	 */
2445 	if (tp->fastopen_rsk)
2446 		return false;
2447 
2448 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2449 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2450 	 * not in loss recovery, that are either limited by cwnd or application.
2451 	 */
2452 	if ((early_retrans != 3 && early_retrans != 4) ||
2453 	    !tp->packets_out || !tcp_is_sack(tp) ||
2454 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2455 	     icsk->icsk_ca_state != TCP_CA_CWR))
2456 		return false;
2457 
2458 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2459 	 * for delayed ack when there's one outstanding packet. If no RTT
2460 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2461 	 */
2462 	if (tp->srtt_us) {
2463 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2464 		if (tp->packets_out == 1)
2465 			timeout += TCP_RTO_MIN;
2466 		else
2467 			timeout += TCP_TIMEOUT_MIN;
2468 	} else {
2469 		timeout = TCP_TIMEOUT_INIT;
2470 	}
2471 
2472 	/* If the RTO formula yields an earlier time, then use that time. */
2473 	rto_delta_us = advancing_rto ?
2474 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2475 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2476 	if (rto_delta_us > 0)
2477 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2478 
2479 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2480 			     TCP_RTO_MAX, NULL);
2481 	return true;
2482 }
2483 
2484 /* Thanks to skb fast clones, we can detect if a prior transmit of
2485  * a packet is still in a qdisc or driver queue.
2486  * In this case, there is very little point doing a retransmit !
2487  */
2488 static bool skb_still_in_host_queue(const struct sock *sk,
2489 				    const struct sk_buff *skb)
2490 {
2491 	if (unlikely(skb_fclone_busy(sk, skb))) {
2492 		NET_INC_STATS(sock_net(sk),
2493 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2494 		return true;
2495 	}
2496 	return false;
2497 }
2498 
2499 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2500  * retransmit the last segment.
2501  */
2502 void tcp_send_loss_probe(struct sock *sk)
2503 {
2504 	struct tcp_sock *tp = tcp_sk(sk);
2505 	struct sk_buff *skb;
2506 	int pcount;
2507 	int mss = tcp_current_mss(sk);
2508 
2509 	skb = tcp_send_head(sk);
2510 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2511 		pcount = tp->packets_out;
2512 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2513 		if (tp->packets_out > pcount)
2514 			goto probe_sent;
2515 		goto rearm_timer;
2516 	}
2517 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2518 	if (unlikely(!skb)) {
2519 		WARN_ONCE(tp->packets_out,
2520 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2521 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2522 		inet_csk(sk)->icsk_pending = 0;
2523 		return;
2524 	}
2525 
2526 	/* At most one outstanding TLP retransmission. */
2527 	if (tp->tlp_high_seq)
2528 		goto rearm_timer;
2529 
2530 	if (skb_still_in_host_queue(sk, skb))
2531 		goto rearm_timer;
2532 
2533 	pcount = tcp_skb_pcount(skb);
2534 	if (WARN_ON(!pcount))
2535 		goto rearm_timer;
2536 
2537 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2538 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2539 					  (pcount - 1) * mss, mss,
2540 					  GFP_ATOMIC)))
2541 			goto rearm_timer;
2542 		skb = skb_rb_next(skb);
2543 	}
2544 
2545 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2546 		goto rearm_timer;
2547 
2548 	if (__tcp_retransmit_skb(sk, skb, 1))
2549 		goto rearm_timer;
2550 
2551 	/* Record snd_nxt for loss detection. */
2552 	tp->tlp_high_seq = tp->snd_nxt;
2553 
2554 probe_sent:
2555 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2556 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2557 	inet_csk(sk)->icsk_pending = 0;
2558 rearm_timer:
2559 	tcp_rearm_rto(sk);
2560 }
2561 
2562 /* Push out any pending frames which were held back due to
2563  * TCP_CORK or attempt at coalescing tiny packets.
2564  * The socket must be locked by the caller.
2565  */
2566 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2567 			       int nonagle)
2568 {
2569 	/* If we are closed, the bytes will have to remain here.
2570 	 * In time closedown will finish, we empty the write queue and
2571 	 * all will be happy.
2572 	 */
2573 	if (unlikely(sk->sk_state == TCP_CLOSE))
2574 		return;
2575 
2576 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2577 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2578 		tcp_check_probe_timer(sk);
2579 }
2580 
2581 /* Send _single_ skb sitting at the send head. This function requires
2582  * true push pending frames to setup probe timer etc.
2583  */
2584 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2585 {
2586 	struct sk_buff *skb = tcp_send_head(sk);
2587 
2588 	BUG_ON(!skb || skb->len < mss_now);
2589 
2590 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2591 }
2592 
2593 /* This function returns the amount that we can raise the
2594  * usable window based on the following constraints
2595  *
2596  * 1. The window can never be shrunk once it is offered (RFC 793)
2597  * 2. We limit memory per socket
2598  *
2599  * RFC 1122:
2600  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2601  *  RECV.NEXT + RCV.WIN fixed until:
2602  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2603  *
2604  * i.e. don't raise the right edge of the window until you can raise
2605  * it at least MSS bytes.
2606  *
2607  * Unfortunately, the recommended algorithm breaks header prediction,
2608  * since header prediction assumes th->window stays fixed.
2609  *
2610  * Strictly speaking, keeping th->window fixed violates the receiver
2611  * side SWS prevention criteria. The problem is that under this rule
2612  * a stream of single byte packets will cause the right side of the
2613  * window to always advance by a single byte.
2614  *
2615  * Of course, if the sender implements sender side SWS prevention
2616  * then this will not be a problem.
2617  *
2618  * BSD seems to make the following compromise:
2619  *
2620  *	If the free space is less than the 1/4 of the maximum
2621  *	space available and the free space is less than 1/2 mss,
2622  *	then set the window to 0.
2623  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2624  *	Otherwise, just prevent the window from shrinking
2625  *	and from being larger than the largest representable value.
2626  *
2627  * This prevents incremental opening of the window in the regime
2628  * where TCP is limited by the speed of the reader side taking
2629  * data out of the TCP receive queue. It does nothing about
2630  * those cases where the window is constrained on the sender side
2631  * because the pipeline is full.
2632  *
2633  * BSD also seems to "accidentally" limit itself to windows that are a
2634  * multiple of MSS, at least until the free space gets quite small.
2635  * This would appear to be a side effect of the mbuf implementation.
2636  * Combining these two algorithms results in the observed behavior
2637  * of having a fixed window size at almost all times.
2638  *
2639  * Below we obtain similar behavior by forcing the offered window to
2640  * a multiple of the mss when it is feasible to do so.
2641  *
2642  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2643  * Regular options like TIMESTAMP are taken into account.
2644  */
2645 u32 __tcp_select_window(struct sock *sk)
2646 {
2647 	struct inet_connection_sock *icsk = inet_csk(sk);
2648 	struct tcp_sock *tp = tcp_sk(sk);
2649 	/* MSS for the peer's data.  Previous versions used mss_clamp
2650 	 * here.  I don't know if the value based on our guesses
2651 	 * of peer's MSS is better for the performance.  It's more correct
2652 	 * but may be worse for the performance because of rcv_mss
2653 	 * fluctuations.  --SAW  1998/11/1
2654 	 */
2655 	int mss = icsk->icsk_ack.rcv_mss;
2656 	int free_space = tcp_space(sk);
2657 	int allowed_space = tcp_full_space(sk);
2658 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2659 	int window;
2660 
2661 	if (unlikely(mss > full_space)) {
2662 		mss = full_space;
2663 		if (mss <= 0)
2664 			return 0;
2665 	}
2666 	if (free_space < (full_space >> 1)) {
2667 		icsk->icsk_ack.quick = 0;
2668 
2669 		if (tcp_under_memory_pressure(sk))
2670 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2671 					       4U * tp->advmss);
2672 
2673 		/* free_space might become our new window, make sure we don't
2674 		 * increase it due to wscale.
2675 		 */
2676 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2677 
2678 		/* if free space is less than mss estimate, or is below 1/16th
2679 		 * of the maximum allowed, try to move to zero-window, else
2680 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2681 		 * new incoming data is dropped due to memory limits.
2682 		 * With large window, mss test triggers way too late in order
2683 		 * to announce zero window in time before rmem limit kicks in.
2684 		 */
2685 		if (free_space < (allowed_space >> 4) || free_space < mss)
2686 			return 0;
2687 	}
2688 
2689 	if (free_space > tp->rcv_ssthresh)
2690 		free_space = tp->rcv_ssthresh;
2691 
2692 	/* Don't do rounding if we are using window scaling, since the
2693 	 * scaled window will not line up with the MSS boundary anyway.
2694 	 */
2695 	if (tp->rx_opt.rcv_wscale) {
2696 		window = free_space;
2697 
2698 		/* Advertise enough space so that it won't get scaled away.
2699 		 * Import case: prevent zero window announcement if
2700 		 * 1<<rcv_wscale > mss.
2701 		 */
2702 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2703 	} else {
2704 		window = tp->rcv_wnd;
2705 		/* Get the largest window that is a nice multiple of mss.
2706 		 * Window clamp already applied above.
2707 		 * If our current window offering is within 1 mss of the
2708 		 * free space we just keep it. This prevents the divide
2709 		 * and multiply from happening most of the time.
2710 		 * We also don't do any window rounding when the free space
2711 		 * is too small.
2712 		 */
2713 		if (window <= free_space - mss || window > free_space)
2714 			window = rounddown(free_space, mss);
2715 		else if (mss == full_space &&
2716 			 free_space > window + (full_space >> 1))
2717 			window = free_space;
2718 	}
2719 
2720 	return window;
2721 }
2722 
2723 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2724 			     const struct sk_buff *next_skb)
2725 {
2726 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2727 		const struct skb_shared_info *next_shinfo =
2728 			skb_shinfo(next_skb);
2729 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2730 
2731 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2732 		shinfo->tskey = next_shinfo->tskey;
2733 		TCP_SKB_CB(skb)->txstamp_ack |=
2734 			TCP_SKB_CB(next_skb)->txstamp_ack;
2735 	}
2736 }
2737 
2738 /* Collapses two adjacent SKB's during retransmission. */
2739 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2740 {
2741 	struct tcp_sock *tp = tcp_sk(sk);
2742 	struct sk_buff *next_skb = skb_rb_next(skb);
2743 	int next_skb_size;
2744 
2745 	next_skb_size = next_skb->len;
2746 
2747 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2748 
2749 	if (next_skb_size) {
2750 		if (next_skb_size <= skb_availroom(skb))
2751 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2752 				      next_skb_size);
2753 		else if (!skb_shift(skb, next_skb, next_skb_size))
2754 			return false;
2755 	}
2756 	tcp_highest_sack_replace(sk, next_skb, skb);
2757 
2758 	/* Update sequence range on original skb. */
2759 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2760 
2761 	/* Merge over control information. This moves PSH/FIN etc. over */
2762 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2763 
2764 	/* All done, get rid of second SKB and account for it so
2765 	 * packet counting does not break.
2766 	 */
2767 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2768 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2769 
2770 	/* changed transmit queue under us so clear hints */
2771 	tcp_clear_retrans_hints_partial(tp);
2772 	if (next_skb == tp->retransmit_skb_hint)
2773 		tp->retransmit_skb_hint = skb;
2774 
2775 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2776 
2777 	tcp_skb_collapse_tstamp(skb, next_skb);
2778 
2779 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2780 	return true;
2781 }
2782 
2783 /* Check if coalescing SKBs is legal. */
2784 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2785 {
2786 	if (tcp_skb_pcount(skb) > 1)
2787 		return false;
2788 	if (skb_cloned(skb))
2789 		return false;
2790 	/* Some heuristics for collapsing over SACK'd could be invented */
2791 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2792 		return false;
2793 
2794 	return true;
2795 }
2796 
2797 /* Collapse packets in the retransmit queue to make to create
2798  * less packets on the wire. This is only done on retransmission.
2799  */
2800 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2801 				     int space)
2802 {
2803 	struct tcp_sock *tp = tcp_sk(sk);
2804 	struct sk_buff *skb = to, *tmp;
2805 	bool first = true;
2806 
2807 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2808 		return;
2809 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2810 		return;
2811 
2812 	skb_rbtree_walk_from_safe(skb, tmp) {
2813 		if (!tcp_can_collapse(sk, skb))
2814 			break;
2815 
2816 		if (!tcp_skb_can_collapse_to(to))
2817 			break;
2818 
2819 		space -= skb->len;
2820 
2821 		if (first) {
2822 			first = false;
2823 			continue;
2824 		}
2825 
2826 		if (space < 0)
2827 			break;
2828 
2829 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2830 			break;
2831 
2832 		if (!tcp_collapse_retrans(sk, to))
2833 			break;
2834 	}
2835 }
2836 
2837 /* This retransmits one SKB.  Policy decisions and retransmit queue
2838  * state updates are done by the caller.  Returns non-zero if an
2839  * error occurred which prevented the send.
2840  */
2841 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2842 {
2843 	struct inet_connection_sock *icsk = inet_csk(sk);
2844 	struct tcp_sock *tp = tcp_sk(sk);
2845 	unsigned int cur_mss;
2846 	int diff, len, err;
2847 
2848 
2849 	/* Inconclusive MTU probe */
2850 	if (icsk->icsk_mtup.probe_size)
2851 		icsk->icsk_mtup.probe_size = 0;
2852 
2853 	/* Do not sent more than we queued. 1/4 is reserved for possible
2854 	 * copying overhead: fragmentation, tunneling, mangling etc.
2855 	 */
2856 	if (refcount_read(&sk->sk_wmem_alloc) >
2857 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2858 		  sk->sk_sndbuf))
2859 		return -EAGAIN;
2860 
2861 	if (skb_still_in_host_queue(sk, skb))
2862 		return -EBUSY;
2863 
2864 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2865 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2866 			WARN_ON_ONCE(1);
2867 			return -EINVAL;
2868 		}
2869 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2870 			return -ENOMEM;
2871 	}
2872 
2873 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2874 		return -EHOSTUNREACH; /* Routing failure or similar. */
2875 
2876 	cur_mss = tcp_current_mss(sk);
2877 
2878 	/* If receiver has shrunk his window, and skb is out of
2879 	 * new window, do not retransmit it. The exception is the
2880 	 * case, when window is shrunk to zero. In this case
2881 	 * our retransmit serves as a zero window probe.
2882 	 */
2883 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2884 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2885 		return -EAGAIN;
2886 
2887 	len = cur_mss * segs;
2888 	if (skb->len > len) {
2889 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2890 				 cur_mss, GFP_ATOMIC))
2891 			return -ENOMEM; /* We'll try again later. */
2892 	} else {
2893 		if (skb_unclone(skb, GFP_ATOMIC))
2894 			return -ENOMEM;
2895 
2896 		diff = tcp_skb_pcount(skb);
2897 		tcp_set_skb_tso_segs(skb, cur_mss);
2898 		diff -= tcp_skb_pcount(skb);
2899 		if (diff)
2900 			tcp_adjust_pcount(sk, skb, diff);
2901 		if (skb->len < cur_mss)
2902 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2903 	}
2904 
2905 	/* RFC3168, section 6.1.1.1. ECN fallback */
2906 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2907 		tcp_ecn_clear_syn(sk, skb);
2908 
2909 	/* Update global and local TCP statistics. */
2910 	segs = tcp_skb_pcount(skb);
2911 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2912 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2913 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2914 	tp->total_retrans += segs;
2915 	tp->bytes_retrans += skb->len;
2916 
2917 	/* make sure skb->data is aligned on arches that require it
2918 	 * and check if ack-trimming & collapsing extended the headroom
2919 	 * beyond what csum_start can cover.
2920 	 */
2921 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2922 		     skb_headroom(skb) >= 0xFFFF)) {
2923 		struct sk_buff *nskb;
2924 
2925 		tcp_skb_tsorted_save(skb) {
2926 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2927 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2928 				     -ENOBUFS;
2929 		} tcp_skb_tsorted_restore(skb);
2930 
2931 		if (!err) {
2932 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
2933 			tcp_rate_skb_sent(sk, skb);
2934 		}
2935 	} else {
2936 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2937 	}
2938 
2939 	/* To avoid taking spuriously low RTT samples based on a timestamp
2940 	 * for a transmit that never happened, always mark EVER_RETRANS
2941 	 */
2942 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2943 
2944 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2945 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2946 				  TCP_SKB_CB(skb)->seq, segs, err);
2947 
2948 	if (likely(!err)) {
2949 		trace_tcp_retransmit_skb(sk, skb);
2950 	} else if (err != -EBUSY) {
2951 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2952 	}
2953 	return err;
2954 }
2955 
2956 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2957 {
2958 	struct tcp_sock *tp = tcp_sk(sk);
2959 	int err = __tcp_retransmit_skb(sk, skb, segs);
2960 
2961 	if (err == 0) {
2962 #if FASTRETRANS_DEBUG > 0
2963 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2964 			net_dbg_ratelimited("retrans_out leaked\n");
2965 		}
2966 #endif
2967 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2968 		tp->retrans_out += tcp_skb_pcount(skb);
2969 	}
2970 
2971 	/* Save stamp of the first (attempted) retransmit. */
2972 	if (!tp->retrans_stamp)
2973 		tp->retrans_stamp = tcp_skb_timestamp(skb);
2974 
2975 	if (tp->undo_retrans < 0)
2976 		tp->undo_retrans = 0;
2977 	tp->undo_retrans += tcp_skb_pcount(skb);
2978 	return err;
2979 }
2980 
2981 /* This gets called after a retransmit timeout, and the initially
2982  * retransmitted data is acknowledged.  It tries to continue
2983  * resending the rest of the retransmit queue, until either
2984  * we've sent it all or the congestion window limit is reached.
2985  */
2986 void tcp_xmit_retransmit_queue(struct sock *sk)
2987 {
2988 	const struct inet_connection_sock *icsk = inet_csk(sk);
2989 	struct sk_buff *skb, *rtx_head, *hole = NULL;
2990 	struct tcp_sock *tp = tcp_sk(sk);
2991 	u32 max_segs;
2992 	int mib_idx;
2993 
2994 	if (!tp->packets_out)
2995 		return;
2996 
2997 	rtx_head = tcp_rtx_queue_head(sk);
2998 	skb = tp->retransmit_skb_hint ?: rtx_head;
2999 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3000 	skb_rbtree_walk_from(skb) {
3001 		__u8 sacked;
3002 		int segs;
3003 
3004 		if (tcp_pacing_check(sk))
3005 			break;
3006 
3007 		/* we could do better than to assign each time */
3008 		if (!hole)
3009 			tp->retransmit_skb_hint = skb;
3010 
3011 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3012 		if (segs <= 0)
3013 			return;
3014 		sacked = TCP_SKB_CB(skb)->sacked;
3015 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3016 		 * we need to make sure not sending too bigs TSO packets
3017 		 */
3018 		segs = min_t(int, segs, max_segs);
3019 
3020 		if (tp->retrans_out >= tp->lost_out) {
3021 			break;
3022 		} else if (!(sacked & TCPCB_LOST)) {
3023 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3024 				hole = skb;
3025 			continue;
3026 
3027 		} else {
3028 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3029 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3030 			else
3031 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3032 		}
3033 
3034 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3035 			continue;
3036 
3037 		if (tcp_small_queue_check(sk, skb, 1))
3038 			return;
3039 
3040 		if (tcp_retransmit_skb(sk, skb, segs))
3041 			return;
3042 
3043 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3044 
3045 		if (tcp_in_cwnd_reduction(sk))
3046 			tp->prr_out += tcp_skb_pcount(skb);
3047 
3048 		if (skb == rtx_head &&
3049 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3050 			tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3051 					     inet_csk(sk)->icsk_rto,
3052 					     TCP_RTO_MAX,
3053 					     skb);
3054 	}
3055 }
3056 
3057 /* We allow to exceed memory limits for FIN packets to expedite
3058  * connection tear down and (memory) recovery.
3059  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3060  * or even be forced to close flow without any FIN.
3061  * In general, we want to allow one skb per socket to avoid hangs
3062  * with edge trigger epoll()
3063  */
3064 void sk_forced_mem_schedule(struct sock *sk, int size)
3065 {
3066 	int amt;
3067 
3068 	if (size <= sk->sk_forward_alloc)
3069 		return;
3070 	amt = sk_mem_pages(size);
3071 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3072 	sk_memory_allocated_add(sk, amt);
3073 
3074 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3075 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3076 }
3077 
3078 /* Send a FIN. The caller locks the socket for us.
3079  * We should try to send a FIN packet really hard, but eventually give up.
3080  */
3081 void tcp_send_fin(struct sock *sk)
3082 {
3083 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3084 	struct tcp_sock *tp = tcp_sk(sk);
3085 
3086 	/* Optimization, tack on the FIN if we have one skb in write queue and
3087 	 * this skb was not yet sent, or we are under memory pressure.
3088 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3089 	 * as TCP stack thinks it has already been transmitted.
3090 	 */
3091 	if (!tskb && tcp_under_memory_pressure(sk))
3092 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3093 
3094 	if (tskb) {
3095 coalesce:
3096 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3097 		TCP_SKB_CB(tskb)->end_seq++;
3098 		tp->write_seq++;
3099 		if (tcp_write_queue_empty(sk)) {
3100 			/* This means tskb was already sent.
3101 			 * Pretend we included the FIN on previous transmit.
3102 			 * We need to set tp->snd_nxt to the value it would have
3103 			 * if FIN had been sent. This is because retransmit path
3104 			 * does not change tp->snd_nxt.
3105 			 */
3106 			tp->snd_nxt++;
3107 			return;
3108 		}
3109 	} else {
3110 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3111 		if (unlikely(!skb)) {
3112 			if (tskb)
3113 				goto coalesce;
3114 			return;
3115 		}
3116 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3117 		skb_reserve(skb, MAX_TCP_HEADER);
3118 		sk_forced_mem_schedule(sk, skb->truesize);
3119 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3120 		tcp_init_nondata_skb(skb, tp->write_seq,
3121 				     TCPHDR_ACK | TCPHDR_FIN);
3122 		tcp_queue_skb(sk, skb);
3123 	}
3124 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3125 }
3126 
3127 /* We get here when a process closes a file descriptor (either due to
3128  * an explicit close() or as a byproduct of exit()'ing) and there
3129  * was unread data in the receive queue.  This behavior is recommended
3130  * by RFC 2525, section 2.17.  -DaveM
3131  */
3132 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3133 {
3134 	struct sk_buff *skb;
3135 
3136 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3137 
3138 	/* NOTE: No TCP options attached and we never retransmit this. */
3139 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3140 	if (!skb) {
3141 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3142 		return;
3143 	}
3144 
3145 	/* Reserve space for headers and prepare control bits. */
3146 	skb_reserve(skb, MAX_TCP_HEADER);
3147 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3148 			     TCPHDR_ACK | TCPHDR_RST);
3149 	tcp_mstamp_refresh(tcp_sk(sk));
3150 	/* Send it off. */
3151 	if (tcp_transmit_skb(sk, skb, 0, priority))
3152 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3153 
3154 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3155 	 * skb here is different to the troublesome skb, so use NULL
3156 	 */
3157 	trace_tcp_send_reset(sk, NULL);
3158 }
3159 
3160 /* Send a crossed SYN-ACK during socket establishment.
3161  * WARNING: This routine must only be called when we have already sent
3162  * a SYN packet that crossed the incoming SYN that caused this routine
3163  * to get called. If this assumption fails then the initial rcv_wnd
3164  * and rcv_wscale values will not be correct.
3165  */
3166 int tcp_send_synack(struct sock *sk)
3167 {
3168 	struct sk_buff *skb;
3169 
3170 	skb = tcp_rtx_queue_head(sk);
3171 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3172 		pr_err("%s: wrong queue state\n", __func__);
3173 		return -EFAULT;
3174 	}
3175 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3176 		if (skb_cloned(skb)) {
3177 			struct sk_buff *nskb;
3178 
3179 			tcp_skb_tsorted_save(skb) {
3180 				nskb = skb_copy(skb, GFP_ATOMIC);
3181 			} tcp_skb_tsorted_restore(skb);
3182 			if (!nskb)
3183 				return -ENOMEM;
3184 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3185 			tcp_rtx_queue_unlink_and_free(skb, sk);
3186 			__skb_header_release(nskb);
3187 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3188 			sk->sk_wmem_queued += nskb->truesize;
3189 			sk_mem_charge(sk, nskb->truesize);
3190 			skb = nskb;
3191 		}
3192 
3193 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3194 		tcp_ecn_send_synack(sk, skb);
3195 	}
3196 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3197 }
3198 
3199 /**
3200  * tcp_make_synack - Prepare a SYN-ACK.
3201  * sk: listener socket
3202  * dst: dst entry attached to the SYNACK
3203  * req: request_sock pointer
3204  *
3205  * Allocate one skb and build a SYNACK packet.
3206  * @dst is consumed : Caller should not use it again.
3207  */
3208 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3209 				struct request_sock *req,
3210 				struct tcp_fastopen_cookie *foc,
3211 				enum tcp_synack_type synack_type)
3212 {
3213 	struct inet_request_sock *ireq = inet_rsk(req);
3214 	const struct tcp_sock *tp = tcp_sk(sk);
3215 	struct tcp_md5sig_key *md5 = NULL;
3216 	struct tcp_out_options opts;
3217 	struct sk_buff *skb;
3218 	int tcp_header_size;
3219 	struct tcphdr *th;
3220 	int mss;
3221 
3222 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3223 	if (unlikely(!skb)) {
3224 		dst_release(dst);
3225 		return NULL;
3226 	}
3227 	/* Reserve space for headers. */
3228 	skb_reserve(skb, MAX_TCP_HEADER);
3229 
3230 	switch (synack_type) {
3231 	case TCP_SYNACK_NORMAL:
3232 		skb_set_owner_w(skb, req_to_sk(req));
3233 		break;
3234 	case TCP_SYNACK_COOKIE:
3235 		/* Under synflood, we do not attach skb to a socket,
3236 		 * to avoid false sharing.
3237 		 */
3238 		break;
3239 	case TCP_SYNACK_FASTOPEN:
3240 		/* sk is a const pointer, because we want to express multiple
3241 		 * cpu might call us concurrently.
3242 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3243 		 */
3244 		skb_set_owner_w(skb, (struct sock *)sk);
3245 		break;
3246 	}
3247 	skb_dst_set(skb, dst);
3248 
3249 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3250 
3251 	memset(&opts, 0, sizeof(opts));
3252 #ifdef CONFIG_SYN_COOKIES
3253 	if (unlikely(req->cookie_ts))
3254 		skb->skb_mstamp_ns = cookie_init_timestamp(req);
3255 	else
3256 #endif
3257 		skb->skb_mstamp_ns = tcp_clock_ns();
3258 
3259 #ifdef CONFIG_TCP_MD5SIG
3260 	rcu_read_lock();
3261 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3262 #endif
3263 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3264 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3265 					     foc) + sizeof(*th);
3266 
3267 	skb_push(skb, tcp_header_size);
3268 	skb_reset_transport_header(skb);
3269 
3270 	th = (struct tcphdr *)skb->data;
3271 	memset(th, 0, sizeof(struct tcphdr));
3272 	th->syn = 1;
3273 	th->ack = 1;
3274 	tcp_ecn_make_synack(req, th);
3275 	th->source = htons(ireq->ir_num);
3276 	th->dest = ireq->ir_rmt_port;
3277 	skb->mark = ireq->ir_mark;
3278 	skb->ip_summed = CHECKSUM_PARTIAL;
3279 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3280 	/* XXX data is queued and acked as is. No buffer/window check */
3281 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3282 
3283 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3284 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3285 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3286 	th->doff = (tcp_header_size >> 2);
3287 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3288 
3289 #ifdef CONFIG_TCP_MD5SIG
3290 	/* Okay, we have all we need - do the md5 hash if needed */
3291 	if (md5)
3292 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3293 					       md5, req_to_sk(req), skb);
3294 	rcu_read_unlock();
3295 #endif
3296 
3297 	/* Do not fool tcpdump (if any), clean our debris */
3298 	skb->tstamp = 0;
3299 	return skb;
3300 }
3301 EXPORT_SYMBOL(tcp_make_synack);
3302 
3303 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3304 {
3305 	struct inet_connection_sock *icsk = inet_csk(sk);
3306 	const struct tcp_congestion_ops *ca;
3307 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3308 
3309 	if (ca_key == TCP_CA_UNSPEC)
3310 		return;
3311 
3312 	rcu_read_lock();
3313 	ca = tcp_ca_find_key(ca_key);
3314 	if (likely(ca && try_module_get(ca->owner))) {
3315 		module_put(icsk->icsk_ca_ops->owner);
3316 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3317 		icsk->icsk_ca_ops = ca;
3318 	}
3319 	rcu_read_unlock();
3320 }
3321 
3322 /* Do all connect socket setups that can be done AF independent. */
3323 static void tcp_connect_init(struct sock *sk)
3324 {
3325 	const struct dst_entry *dst = __sk_dst_get(sk);
3326 	struct tcp_sock *tp = tcp_sk(sk);
3327 	__u8 rcv_wscale;
3328 	u32 rcv_wnd;
3329 
3330 	/* We'll fix this up when we get a response from the other end.
3331 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3332 	 */
3333 	tp->tcp_header_len = sizeof(struct tcphdr);
3334 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3335 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3336 
3337 #ifdef CONFIG_TCP_MD5SIG
3338 	if (tp->af_specific->md5_lookup(sk, sk))
3339 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3340 #endif
3341 
3342 	/* If user gave his TCP_MAXSEG, record it to clamp */
3343 	if (tp->rx_opt.user_mss)
3344 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3345 	tp->max_window = 0;
3346 	tcp_mtup_init(sk);
3347 	tcp_sync_mss(sk, dst_mtu(dst));
3348 
3349 	tcp_ca_dst_init(sk, dst);
3350 
3351 	if (!tp->window_clamp)
3352 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3353 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3354 
3355 	tcp_initialize_rcv_mss(sk);
3356 
3357 	/* limit the window selection if the user enforce a smaller rx buffer */
3358 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3359 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3360 		tp->window_clamp = tcp_full_space(sk);
3361 
3362 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3363 	if (rcv_wnd == 0)
3364 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3365 
3366 	tcp_select_initial_window(sk, tcp_full_space(sk),
3367 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3368 				  &tp->rcv_wnd,
3369 				  &tp->window_clamp,
3370 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3371 				  &rcv_wscale,
3372 				  rcv_wnd);
3373 
3374 	tp->rx_opt.rcv_wscale = rcv_wscale;
3375 	tp->rcv_ssthresh = tp->rcv_wnd;
3376 
3377 	sk->sk_err = 0;
3378 	sock_reset_flag(sk, SOCK_DONE);
3379 	tp->snd_wnd = 0;
3380 	tcp_init_wl(tp, 0);
3381 	tcp_write_queue_purge(sk);
3382 	tp->snd_una = tp->write_seq;
3383 	tp->snd_sml = tp->write_seq;
3384 	tp->snd_up = tp->write_seq;
3385 	tp->snd_nxt = tp->write_seq;
3386 
3387 	if (likely(!tp->repair))
3388 		tp->rcv_nxt = 0;
3389 	else
3390 		tp->rcv_tstamp = tcp_jiffies32;
3391 	tp->rcv_wup = tp->rcv_nxt;
3392 	tp->copied_seq = tp->rcv_nxt;
3393 
3394 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3395 	inet_csk(sk)->icsk_retransmits = 0;
3396 	tcp_clear_retrans(tp);
3397 }
3398 
3399 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3400 {
3401 	struct tcp_sock *tp = tcp_sk(sk);
3402 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3403 
3404 	tcb->end_seq += skb->len;
3405 	__skb_header_release(skb);
3406 	sk->sk_wmem_queued += skb->truesize;
3407 	sk_mem_charge(sk, skb->truesize);
3408 	tp->write_seq = tcb->end_seq;
3409 	tp->packets_out += tcp_skb_pcount(skb);
3410 }
3411 
3412 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3413  * queue a data-only packet after the regular SYN, such that regular SYNs
3414  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3415  * only the SYN sequence, the data are retransmitted in the first ACK.
3416  * If cookie is not cached or other error occurs, falls back to send a
3417  * regular SYN with Fast Open cookie request option.
3418  */
3419 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3420 {
3421 	struct tcp_sock *tp = tcp_sk(sk);
3422 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3423 	int space, err = 0;
3424 	struct sk_buff *syn_data;
3425 
3426 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3427 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3428 		goto fallback;
3429 
3430 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3431 	 * user-MSS. Reserve maximum option space for middleboxes that add
3432 	 * private TCP options. The cost is reduced data space in SYN :(
3433 	 */
3434 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3435 
3436 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3437 		MAX_TCP_OPTION_SPACE;
3438 
3439 	space = min_t(size_t, space, fo->size);
3440 
3441 	/* limit to order-0 allocations */
3442 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3443 
3444 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3445 	if (!syn_data)
3446 		goto fallback;
3447 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3448 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3449 	if (space) {
3450 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3451 					    &fo->data->msg_iter);
3452 		if (unlikely(!copied)) {
3453 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3454 			kfree_skb(syn_data);
3455 			goto fallback;
3456 		}
3457 		if (copied != space) {
3458 			skb_trim(syn_data, copied);
3459 			space = copied;
3460 		}
3461 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3462 	}
3463 	/* No more data pending in inet_wait_for_connect() */
3464 	if (space == fo->size)
3465 		fo->data = NULL;
3466 	fo->copied = space;
3467 
3468 	tcp_connect_queue_skb(sk, syn_data);
3469 	if (syn_data->len)
3470 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3471 
3472 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3473 
3474 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3475 
3476 	/* Now full SYN+DATA was cloned and sent (or not),
3477 	 * remove the SYN from the original skb (syn_data)
3478 	 * we keep in write queue in case of a retransmit, as we
3479 	 * also have the SYN packet (with no data) in the same queue.
3480 	 */
3481 	TCP_SKB_CB(syn_data)->seq++;
3482 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3483 	if (!err) {
3484 		tp->syn_data = (fo->copied > 0);
3485 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3486 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3487 		goto done;
3488 	}
3489 
3490 	/* data was not sent, put it in write_queue */
3491 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3492 	tp->packets_out -= tcp_skb_pcount(syn_data);
3493 
3494 fallback:
3495 	/* Send a regular SYN with Fast Open cookie request option */
3496 	if (fo->cookie.len > 0)
3497 		fo->cookie.len = 0;
3498 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3499 	if (err)
3500 		tp->syn_fastopen = 0;
3501 done:
3502 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3503 	return err;
3504 }
3505 
3506 /* Build a SYN and send it off. */
3507 int tcp_connect(struct sock *sk)
3508 {
3509 	struct tcp_sock *tp = tcp_sk(sk);
3510 	struct sk_buff *buff;
3511 	int err;
3512 
3513 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3514 
3515 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3516 		return -EHOSTUNREACH; /* Routing failure or similar. */
3517 
3518 	tcp_connect_init(sk);
3519 
3520 	if (unlikely(tp->repair)) {
3521 		tcp_finish_connect(sk, NULL);
3522 		return 0;
3523 	}
3524 
3525 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3526 	if (unlikely(!buff))
3527 		return -ENOBUFS;
3528 
3529 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3530 	tcp_mstamp_refresh(tp);
3531 	tp->retrans_stamp = tcp_time_stamp(tp);
3532 	tcp_connect_queue_skb(sk, buff);
3533 	tcp_ecn_send_syn(sk, buff);
3534 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3535 
3536 	/* Send off SYN; include data in Fast Open. */
3537 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3538 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3539 	if (err == -ECONNREFUSED)
3540 		return err;
3541 
3542 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3543 	 * in order to make this packet get counted in tcpOutSegs.
3544 	 */
3545 	tp->snd_nxt = tp->write_seq;
3546 	tp->pushed_seq = tp->write_seq;
3547 	buff = tcp_send_head(sk);
3548 	if (unlikely(buff)) {
3549 		tp->snd_nxt	= TCP_SKB_CB(buff)->seq;
3550 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3551 	}
3552 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3553 
3554 	/* Timer for repeating the SYN until an answer. */
3555 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3556 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3557 	return 0;
3558 }
3559 EXPORT_SYMBOL(tcp_connect);
3560 
3561 /* Send out a delayed ack, the caller does the policy checking
3562  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3563  * for details.
3564  */
3565 void tcp_send_delayed_ack(struct sock *sk)
3566 {
3567 	struct inet_connection_sock *icsk = inet_csk(sk);
3568 	int ato = icsk->icsk_ack.ato;
3569 	unsigned long timeout;
3570 
3571 	if (ato > TCP_DELACK_MIN) {
3572 		const struct tcp_sock *tp = tcp_sk(sk);
3573 		int max_ato = HZ / 2;
3574 
3575 		if (inet_csk_in_pingpong_mode(sk) ||
3576 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3577 			max_ato = TCP_DELACK_MAX;
3578 
3579 		/* Slow path, intersegment interval is "high". */
3580 
3581 		/* If some rtt estimate is known, use it to bound delayed ack.
3582 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3583 		 * directly.
3584 		 */
3585 		if (tp->srtt_us) {
3586 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3587 					TCP_DELACK_MIN);
3588 
3589 			if (rtt < max_ato)
3590 				max_ato = rtt;
3591 		}
3592 
3593 		ato = min(ato, max_ato);
3594 	}
3595 
3596 	/* Stay within the limit we were given */
3597 	timeout = jiffies + ato;
3598 
3599 	/* Use new timeout only if there wasn't a older one earlier. */
3600 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3601 		/* If delack timer was blocked or is about to expire,
3602 		 * send ACK now.
3603 		 */
3604 		if (icsk->icsk_ack.blocked ||
3605 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3606 			tcp_send_ack(sk);
3607 			return;
3608 		}
3609 
3610 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3611 			timeout = icsk->icsk_ack.timeout;
3612 	}
3613 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3614 	icsk->icsk_ack.timeout = timeout;
3615 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3616 }
3617 
3618 /* This routine sends an ack and also updates the window. */
3619 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3620 {
3621 	struct sk_buff *buff;
3622 
3623 	/* If we have been reset, we may not send again. */
3624 	if (sk->sk_state == TCP_CLOSE)
3625 		return;
3626 
3627 	/* We are not putting this on the write queue, so
3628 	 * tcp_transmit_skb() will set the ownership to this
3629 	 * sock.
3630 	 */
3631 	buff = alloc_skb(MAX_TCP_HEADER,
3632 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3633 	if (unlikely(!buff)) {
3634 		inet_csk_schedule_ack(sk);
3635 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3636 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3637 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3638 		return;
3639 	}
3640 
3641 	/* Reserve space for headers and prepare control bits. */
3642 	skb_reserve(buff, MAX_TCP_HEADER);
3643 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3644 
3645 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3646 	 * too much.
3647 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3648 	 */
3649 	skb_set_tcp_pure_ack(buff);
3650 
3651 	/* Send it off, this clears delayed acks for us. */
3652 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3653 }
3654 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3655 
3656 void tcp_send_ack(struct sock *sk)
3657 {
3658 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3659 }
3660 
3661 /* This routine sends a packet with an out of date sequence
3662  * number. It assumes the other end will try to ack it.
3663  *
3664  * Question: what should we make while urgent mode?
3665  * 4.4BSD forces sending single byte of data. We cannot send
3666  * out of window data, because we have SND.NXT==SND.MAX...
3667  *
3668  * Current solution: to send TWO zero-length segments in urgent mode:
3669  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3670  * out-of-date with SND.UNA-1 to probe window.
3671  */
3672 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3673 {
3674 	struct tcp_sock *tp = tcp_sk(sk);
3675 	struct sk_buff *skb;
3676 
3677 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3678 	skb = alloc_skb(MAX_TCP_HEADER,
3679 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3680 	if (!skb)
3681 		return -1;
3682 
3683 	/* Reserve space for headers and set control bits. */
3684 	skb_reserve(skb, MAX_TCP_HEADER);
3685 	/* Use a previous sequence.  This should cause the other
3686 	 * end to send an ack.  Don't queue or clone SKB, just
3687 	 * send it.
3688 	 */
3689 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3690 	NET_INC_STATS(sock_net(sk), mib);
3691 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3692 }
3693 
3694 /* Called from setsockopt( ... TCP_REPAIR ) */
3695 void tcp_send_window_probe(struct sock *sk)
3696 {
3697 	if (sk->sk_state == TCP_ESTABLISHED) {
3698 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3699 		tcp_mstamp_refresh(tcp_sk(sk));
3700 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3701 	}
3702 }
3703 
3704 /* Initiate keepalive or window probe from timer. */
3705 int tcp_write_wakeup(struct sock *sk, int mib)
3706 {
3707 	struct tcp_sock *tp = tcp_sk(sk);
3708 	struct sk_buff *skb;
3709 
3710 	if (sk->sk_state == TCP_CLOSE)
3711 		return -1;
3712 
3713 	skb = tcp_send_head(sk);
3714 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3715 		int err;
3716 		unsigned int mss = tcp_current_mss(sk);
3717 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3718 
3719 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3720 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3721 
3722 		/* We are probing the opening of a window
3723 		 * but the window size is != 0
3724 		 * must have been a result SWS avoidance ( sender )
3725 		 */
3726 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3727 		    skb->len > mss) {
3728 			seg_size = min(seg_size, mss);
3729 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3730 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3731 					 skb, seg_size, mss, GFP_ATOMIC))
3732 				return -1;
3733 		} else if (!tcp_skb_pcount(skb))
3734 			tcp_set_skb_tso_segs(skb, mss);
3735 
3736 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3737 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3738 		if (!err)
3739 			tcp_event_new_data_sent(sk, skb);
3740 		return err;
3741 	} else {
3742 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3743 			tcp_xmit_probe_skb(sk, 1, mib);
3744 		return tcp_xmit_probe_skb(sk, 0, mib);
3745 	}
3746 }
3747 
3748 /* A window probe timeout has occurred.  If window is not closed send
3749  * a partial packet else a zero probe.
3750  */
3751 void tcp_send_probe0(struct sock *sk)
3752 {
3753 	struct inet_connection_sock *icsk = inet_csk(sk);
3754 	struct tcp_sock *tp = tcp_sk(sk);
3755 	struct net *net = sock_net(sk);
3756 	unsigned long timeout;
3757 	int err;
3758 
3759 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3760 
3761 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3762 		/* Cancel probe timer, if it is not required. */
3763 		icsk->icsk_probes_out = 0;
3764 		icsk->icsk_backoff = 0;
3765 		return;
3766 	}
3767 
3768 	icsk->icsk_probes_out++;
3769 	if (err <= 0) {
3770 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3771 			icsk->icsk_backoff++;
3772 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3773 	} else {
3774 		/* If packet was not sent due to local congestion,
3775 		 * Let senders fight for local resources conservatively.
3776 		 */
3777 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
3778 	}
3779 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL);
3780 }
3781 
3782 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3783 {
3784 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3785 	struct flowi fl;
3786 	int res;
3787 
3788 	tcp_rsk(req)->txhash = net_tx_rndhash();
3789 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3790 	if (!res) {
3791 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3792 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3793 		if (unlikely(tcp_passive_fastopen(sk)))
3794 			tcp_sk(sk)->total_retrans++;
3795 		trace_tcp_retransmit_synack(sk, req);
3796 	}
3797 	return res;
3798 }
3799 EXPORT_SYMBOL(tcp_rtx_synack);
3800