1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 66 int push_one, gfp_t gfp); 67 68 /* Account for new data that has been sent to the network. */ 69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 70 { 71 struct inet_connection_sock *icsk = inet_csk(sk); 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 tcp_advance_send_head(sk, skb); 76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 80 tcp_rearm_rto(sk); 81 82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 83 tcp_skb_pcount(skb)); 84 } 85 86 /* SND.NXT, if window was not shrunk. 87 * If window has been shrunk, what should we make? It is not clear at all. 88 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 89 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 90 * invalid. OK, let's make this for now: 91 */ 92 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 93 { 94 const struct tcp_sock *tp = tcp_sk(sk); 95 96 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 97 return tp->snd_nxt; 98 else 99 return tcp_wnd_end(tp); 100 } 101 102 /* Calculate mss to advertise in SYN segment. 103 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 104 * 105 * 1. It is independent of path mtu. 106 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 107 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 108 * attached devices, because some buggy hosts are confused by 109 * large MSS. 110 * 4. We do not make 3, we advertise MSS, calculated from first 111 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 112 * This may be overridden via information stored in routing table. 113 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 114 * probably even Jumbo". 115 */ 116 static __u16 tcp_advertise_mss(struct sock *sk) 117 { 118 struct tcp_sock *tp = tcp_sk(sk); 119 const struct dst_entry *dst = __sk_dst_get(sk); 120 int mss = tp->advmss; 121 122 if (dst) { 123 unsigned int metric = dst_metric_advmss(dst); 124 125 if (metric < mss) { 126 mss = metric; 127 tp->advmss = mss; 128 } 129 } 130 131 return (__u16)mss; 132 } 133 134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 135 * This is the first part of cwnd validation mechanism. 136 */ 137 void tcp_cwnd_restart(struct sock *sk, s32 delta) 138 { 139 struct tcp_sock *tp = tcp_sk(sk); 140 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 141 u32 cwnd = tp->snd_cwnd; 142 143 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 144 145 tp->snd_ssthresh = tcp_current_ssthresh(sk); 146 restart_cwnd = min(restart_cwnd, cwnd); 147 148 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 149 cwnd >>= 1; 150 tp->snd_cwnd = max(cwnd, restart_cwnd); 151 tp->snd_cwnd_stamp = tcp_time_stamp; 152 tp->snd_cwnd_used = 0; 153 } 154 155 /* Congestion state accounting after a packet has been sent. */ 156 static void tcp_event_data_sent(struct tcp_sock *tp, 157 struct sock *sk) 158 { 159 struct inet_connection_sock *icsk = inet_csk(sk); 160 const u32 now = tcp_time_stamp; 161 162 if (tcp_packets_in_flight(tp) == 0) 163 tcp_ca_event(sk, CA_EVENT_TX_START); 164 165 tp->lsndtime = now; 166 167 /* If it is a reply for ato after last received 168 * packet, enter pingpong mode. 169 */ 170 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 171 icsk->icsk_ack.pingpong = 1; 172 } 173 174 /* Account for an ACK we sent. */ 175 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 176 { 177 tcp_dec_quickack_mode(sk, pkts); 178 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 179 } 180 181 182 u32 tcp_default_init_rwnd(u32 mss) 183 { 184 /* Initial receive window should be twice of TCP_INIT_CWND to 185 * enable proper sending of new unsent data during fast recovery 186 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 187 * limit when mss is larger than 1460. 188 */ 189 u32 init_rwnd = TCP_INIT_CWND * 2; 190 191 if (mss > 1460) 192 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 193 return init_rwnd; 194 } 195 196 /* Determine a window scaling and initial window to offer. 197 * Based on the assumption that the given amount of space 198 * will be offered. Store the results in the tp structure. 199 * NOTE: for smooth operation initial space offering should 200 * be a multiple of mss if possible. We assume here that mss >= 1. 201 * This MUST be enforced by all callers. 202 */ 203 void tcp_select_initial_window(int __space, __u32 mss, 204 __u32 *rcv_wnd, __u32 *window_clamp, 205 int wscale_ok, __u8 *rcv_wscale, 206 __u32 init_rcv_wnd) 207 { 208 unsigned int space = (__space < 0 ? 0 : __space); 209 210 /* If no clamp set the clamp to the max possible scaled window */ 211 if (*window_clamp == 0) 212 (*window_clamp) = (65535 << 14); 213 space = min(*window_clamp, space); 214 215 /* Quantize space offering to a multiple of mss if possible. */ 216 if (space > mss) 217 space = (space / mss) * mss; 218 219 /* NOTE: offering an initial window larger than 32767 220 * will break some buggy TCP stacks. If the admin tells us 221 * it is likely we could be speaking with such a buggy stack 222 * we will truncate our initial window offering to 32K-1 223 * unless the remote has sent us a window scaling option, 224 * which we interpret as a sign the remote TCP is not 225 * misinterpreting the window field as a signed quantity. 226 */ 227 if (sysctl_tcp_workaround_signed_windows) 228 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 229 else 230 (*rcv_wnd) = space; 231 232 (*rcv_wscale) = 0; 233 if (wscale_ok) { 234 /* Set window scaling on max possible window 235 * See RFC1323 for an explanation of the limit to 14 236 */ 237 space = max_t(u32, space, sysctl_tcp_rmem[2]); 238 space = max_t(u32, space, sysctl_rmem_max); 239 space = min_t(u32, space, *window_clamp); 240 while (space > 65535 && (*rcv_wscale) < 14) { 241 space >>= 1; 242 (*rcv_wscale)++; 243 } 244 } 245 246 if (mss > (1 << *rcv_wscale)) { 247 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 248 init_rcv_wnd = tcp_default_init_rwnd(mss); 249 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 250 } 251 252 /* Set the clamp no higher than max representable value */ 253 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 254 } 255 EXPORT_SYMBOL(tcp_select_initial_window); 256 257 /* Chose a new window to advertise, update state in tcp_sock for the 258 * socket, and return result with RFC1323 scaling applied. The return 259 * value can be stuffed directly into th->window for an outgoing 260 * frame. 261 */ 262 static u16 tcp_select_window(struct sock *sk) 263 { 264 struct tcp_sock *tp = tcp_sk(sk); 265 u32 old_win = tp->rcv_wnd; 266 u32 cur_win = tcp_receive_window(tp); 267 u32 new_win = __tcp_select_window(sk); 268 269 /* Never shrink the offered window */ 270 if (new_win < cur_win) { 271 /* Danger Will Robinson! 272 * Don't update rcv_wup/rcv_wnd here or else 273 * we will not be able to advertise a zero 274 * window in time. --DaveM 275 * 276 * Relax Will Robinson. 277 */ 278 if (new_win == 0) 279 NET_INC_STATS(sock_net(sk), 280 LINUX_MIB_TCPWANTZEROWINDOWADV); 281 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 282 } 283 tp->rcv_wnd = new_win; 284 tp->rcv_wup = tp->rcv_nxt; 285 286 /* Make sure we do not exceed the maximum possible 287 * scaled window. 288 */ 289 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 290 new_win = min(new_win, MAX_TCP_WINDOW); 291 else 292 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 293 294 /* RFC1323 scaling applied */ 295 new_win >>= tp->rx_opt.rcv_wscale; 296 297 /* If we advertise zero window, disable fast path. */ 298 if (new_win == 0) { 299 tp->pred_flags = 0; 300 if (old_win) 301 NET_INC_STATS(sock_net(sk), 302 LINUX_MIB_TCPTOZEROWINDOWADV); 303 } else if (old_win == 0) { 304 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 305 } 306 307 return new_win; 308 } 309 310 /* Packet ECN state for a SYN-ACK */ 311 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 312 { 313 const struct tcp_sock *tp = tcp_sk(sk); 314 315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 316 if (!(tp->ecn_flags & TCP_ECN_OK)) 317 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 318 else if (tcp_ca_needs_ecn(sk)) 319 INET_ECN_xmit(sk); 320 } 321 322 /* Packet ECN state for a SYN. */ 323 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 324 { 325 struct tcp_sock *tp = tcp_sk(sk); 326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 327 tcp_ca_needs_ecn(sk); 328 329 if (!use_ecn) { 330 const struct dst_entry *dst = __sk_dst_get(sk); 331 332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 333 use_ecn = true; 334 } 335 336 tp->ecn_flags = 0; 337 338 if (use_ecn) { 339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 340 tp->ecn_flags = TCP_ECN_OK; 341 if (tcp_ca_needs_ecn(sk)) 342 INET_ECN_xmit(sk); 343 } 344 } 345 346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 347 { 348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 349 /* tp->ecn_flags are cleared at a later point in time when 350 * SYN ACK is ultimatively being received. 351 */ 352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 353 } 354 355 static void 356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 357 { 358 if (inet_rsk(req)->ecn_ok) 359 th->ece = 1; 360 } 361 362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 363 * be sent. 364 */ 365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 366 struct tcphdr *th, int tcp_header_len) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 370 if (tp->ecn_flags & TCP_ECN_OK) { 371 /* Not-retransmitted data segment: set ECT and inject CWR. */ 372 if (skb->len != tcp_header_len && 373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 374 INET_ECN_xmit(sk); 375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 377 th->cwr = 1; 378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 379 } 380 } else if (!tcp_ca_needs_ecn(sk)) { 381 /* ACK or retransmitted segment: clear ECT|CE */ 382 INET_ECN_dontxmit(sk); 383 } 384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 385 th->ece = 1; 386 } 387 } 388 389 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 390 * auto increment end seqno. 391 */ 392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 393 { 394 skb->ip_summed = CHECKSUM_PARTIAL; 395 skb->csum = 0; 396 397 TCP_SKB_CB(skb)->tcp_flags = flags; 398 TCP_SKB_CB(skb)->sacked = 0; 399 400 tcp_skb_pcount_set(skb, 1); 401 402 TCP_SKB_CB(skb)->seq = seq; 403 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 404 seq++; 405 TCP_SKB_CB(skb)->end_seq = seq; 406 } 407 408 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 409 { 410 return tp->snd_una != tp->snd_up; 411 } 412 413 #define OPTION_SACK_ADVERTISE (1 << 0) 414 #define OPTION_TS (1 << 1) 415 #define OPTION_MD5 (1 << 2) 416 #define OPTION_WSCALE (1 << 3) 417 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 418 419 struct tcp_out_options { 420 u16 options; /* bit field of OPTION_* */ 421 u16 mss; /* 0 to disable */ 422 u8 ws; /* window scale, 0 to disable */ 423 u8 num_sack_blocks; /* number of SACK blocks to include */ 424 u8 hash_size; /* bytes in hash_location */ 425 __u8 *hash_location; /* temporary pointer, overloaded */ 426 __u32 tsval, tsecr; /* need to include OPTION_TS */ 427 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 428 }; 429 430 /* Write previously computed TCP options to the packet. 431 * 432 * Beware: Something in the Internet is very sensitive to the ordering of 433 * TCP options, we learned this through the hard way, so be careful here. 434 * Luckily we can at least blame others for their non-compliance but from 435 * inter-operability perspective it seems that we're somewhat stuck with 436 * the ordering which we have been using if we want to keep working with 437 * those broken things (not that it currently hurts anybody as there isn't 438 * particular reason why the ordering would need to be changed). 439 * 440 * At least SACK_PERM as the first option is known to lead to a disaster 441 * (but it may well be that other scenarios fail similarly). 442 */ 443 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 444 struct tcp_out_options *opts) 445 { 446 u16 options = opts->options; /* mungable copy */ 447 448 if (unlikely(OPTION_MD5 & options)) { 449 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 450 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 451 /* overload cookie hash location */ 452 opts->hash_location = (__u8 *)ptr; 453 ptr += 4; 454 } 455 456 if (unlikely(opts->mss)) { 457 *ptr++ = htonl((TCPOPT_MSS << 24) | 458 (TCPOLEN_MSS << 16) | 459 opts->mss); 460 } 461 462 if (likely(OPTION_TS & options)) { 463 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 464 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 465 (TCPOLEN_SACK_PERM << 16) | 466 (TCPOPT_TIMESTAMP << 8) | 467 TCPOLEN_TIMESTAMP); 468 options &= ~OPTION_SACK_ADVERTISE; 469 } else { 470 *ptr++ = htonl((TCPOPT_NOP << 24) | 471 (TCPOPT_NOP << 16) | 472 (TCPOPT_TIMESTAMP << 8) | 473 TCPOLEN_TIMESTAMP); 474 } 475 *ptr++ = htonl(opts->tsval); 476 *ptr++ = htonl(opts->tsecr); 477 } 478 479 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 480 *ptr++ = htonl((TCPOPT_NOP << 24) | 481 (TCPOPT_NOP << 16) | 482 (TCPOPT_SACK_PERM << 8) | 483 TCPOLEN_SACK_PERM); 484 } 485 486 if (unlikely(OPTION_WSCALE & options)) { 487 *ptr++ = htonl((TCPOPT_NOP << 24) | 488 (TCPOPT_WINDOW << 16) | 489 (TCPOLEN_WINDOW << 8) | 490 opts->ws); 491 } 492 493 if (unlikely(opts->num_sack_blocks)) { 494 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 495 tp->duplicate_sack : tp->selective_acks; 496 int this_sack; 497 498 *ptr++ = htonl((TCPOPT_NOP << 24) | 499 (TCPOPT_NOP << 16) | 500 (TCPOPT_SACK << 8) | 501 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 502 TCPOLEN_SACK_PERBLOCK))); 503 504 for (this_sack = 0; this_sack < opts->num_sack_blocks; 505 ++this_sack) { 506 *ptr++ = htonl(sp[this_sack].start_seq); 507 *ptr++ = htonl(sp[this_sack].end_seq); 508 } 509 510 tp->rx_opt.dsack = 0; 511 } 512 513 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 514 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 515 u8 *p = (u8 *)ptr; 516 u32 len; /* Fast Open option length */ 517 518 if (foc->exp) { 519 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 520 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 521 TCPOPT_FASTOPEN_MAGIC); 522 p += TCPOLEN_EXP_FASTOPEN_BASE; 523 } else { 524 len = TCPOLEN_FASTOPEN_BASE + foc->len; 525 *p++ = TCPOPT_FASTOPEN; 526 *p++ = len; 527 } 528 529 memcpy(p, foc->val, foc->len); 530 if ((len & 3) == 2) { 531 p[foc->len] = TCPOPT_NOP; 532 p[foc->len + 1] = TCPOPT_NOP; 533 } 534 ptr += (len + 3) >> 2; 535 } 536 } 537 538 /* Compute TCP options for SYN packets. This is not the final 539 * network wire format yet. 540 */ 541 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 542 struct tcp_out_options *opts, 543 struct tcp_md5sig_key **md5) 544 { 545 struct tcp_sock *tp = tcp_sk(sk); 546 unsigned int remaining = MAX_TCP_OPTION_SPACE; 547 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 548 549 #ifdef CONFIG_TCP_MD5SIG 550 *md5 = tp->af_specific->md5_lookup(sk, sk); 551 if (*md5) { 552 opts->options |= OPTION_MD5; 553 remaining -= TCPOLEN_MD5SIG_ALIGNED; 554 } 555 #else 556 *md5 = NULL; 557 #endif 558 559 /* We always get an MSS option. The option bytes which will be seen in 560 * normal data packets should timestamps be used, must be in the MSS 561 * advertised. But we subtract them from tp->mss_cache so that 562 * calculations in tcp_sendmsg are simpler etc. So account for this 563 * fact here if necessary. If we don't do this correctly, as a 564 * receiver we won't recognize data packets as being full sized when we 565 * should, and thus we won't abide by the delayed ACK rules correctly. 566 * SACKs don't matter, we never delay an ACK when we have any of those 567 * going out. */ 568 opts->mss = tcp_advertise_mss(sk); 569 remaining -= TCPOLEN_MSS_ALIGNED; 570 571 if (likely(sysctl_tcp_timestamps && !*md5)) { 572 opts->options |= OPTION_TS; 573 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 574 opts->tsecr = tp->rx_opt.ts_recent; 575 remaining -= TCPOLEN_TSTAMP_ALIGNED; 576 } 577 if (likely(sysctl_tcp_window_scaling)) { 578 opts->ws = tp->rx_opt.rcv_wscale; 579 opts->options |= OPTION_WSCALE; 580 remaining -= TCPOLEN_WSCALE_ALIGNED; 581 } 582 if (likely(sysctl_tcp_sack)) { 583 opts->options |= OPTION_SACK_ADVERTISE; 584 if (unlikely(!(OPTION_TS & opts->options))) 585 remaining -= TCPOLEN_SACKPERM_ALIGNED; 586 } 587 588 if (fastopen && fastopen->cookie.len >= 0) { 589 u32 need = fastopen->cookie.len; 590 591 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 592 TCPOLEN_FASTOPEN_BASE; 593 need = (need + 3) & ~3U; /* Align to 32 bits */ 594 if (remaining >= need) { 595 opts->options |= OPTION_FAST_OPEN_COOKIE; 596 opts->fastopen_cookie = &fastopen->cookie; 597 remaining -= need; 598 tp->syn_fastopen = 1; 599 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 600 } 601 } 602 603 return MAX_TCP_OPTION_SPACE - remaining; 604 } 605 606 /* Set up TCP options for SYN-ACKs. */ 607 static unsigned int tcp_synack_options(struct request_sock *req, 608 unsigned int mss, struct sk_buff *skb, 609 struct tcp_out_options *opts, 610 const struct tcp_md5sig_key *md5, 611 struct tcp_fastopen_cookie *foc) 612 { 613 struct inet_request_sock *ireq = inet_rsk(req); 614 unsigned int remaining = MAX_TCP_OPTION_SPACE; 615 616 #ifdef CONFIG_TCP_MD5SIG 617 if (md5) { 618 opts->options |= OPTION_MD5; 619 remaining -= TCPOLEN_MD5SIG_ALIGNED; 620 621 /* We can't fit any SACK blocks in a packet with MD5 + TS 622 * options. There was discussion about disabling SACK 623 * rather than TS in order to fit in better with old, 624 * buggy kernels, but that was deemed to be unnecessary. 625 */ 626 ireq->tstamp_ok &= !ireq->sack_ok; 627 } 628 #endif 629 630 /* We always send an MSS option. */ 631 opts->mss = mss; 632 remaining -= TCPOLEN_MSS_ALIGNED; 633 634 if (likely(ireq->wscale_ok)) { 635 opts->ws = ireq->rcv_wscale; 636 opts->options |= OPTION_WSCALE; 637 remaining -= TCPOLEN_WSCALE_ALIGNED; 638 } 639 if (likely(ireq->tstamp_ok)) { 640 opts->options |= OPTION_TS; 641 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 642 opts->tsecr = req->ts_recent; 643 remaining -= TCPOLEN_TSTAMP_ALIGNED; 644 } 645 if (likely(ireq->sack_ok)) { 646 opts->options |= OPTION_SACK_ADVERTISE; 647 if (unlikely(!ireq->tstamp_ok)) 648 remaining -= TCPOLEN_SACKPERM_ALIGNED; 649 } 650 if (foc != NULL && foc->len >= 0) { 651 u32 need = foc->len; 652 653 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 654 TCPOLEN_FASTOPEN_BASE; 655 need = (need + 3) & ~3U; /* Align to 32 bits */ 656 if (remaining >= need) { 657 opts->options |= OPTION_FAST_OPEN_COOKIE; 658 opts->fastopen_cookie = foc; 659 remaining -= need; 660 } 661 } 662 663 return MAX_TCP_OPTION_SPACE - remaining; 664 } 665 666 /* Compute TCP options for ESTABLISHED sockets. This is not the 667 * final wire format yet. 668 */ 669 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 670 struct tcp_out_options *opts, 671 struct tcp_md5sig_key **md5) 672 { 673 struct tcp_sock *tp = tcp_sk(sk); 674 unsigned int size = 0; 675 unsigned int eff_sacks; 676 677 opts->options = 0; 678 679 #ifdef CONFIG_TCP_MD5SIG 680 *md5 = tp->af_specific->md5_lookup(sk, sk); 681 if (unlikely(*md5)) { 682 opts->options |= OPTION_MD5; 683 size += TCPOLEN_MD5SIG_ALIGNED; 684 } 685 #else 686 *md5 = NULL; 687 #endif 688 689 if (likely(tp->rx_opt.tstamp_ok)) { 690 opts->options |= OPTION_TS; 691 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 692 opts->tsecr = tp->rx_opt.ts_recent; 693 size += TCPOLEN_TSTAMP_ALIGNED; 694 } 695 696 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 697 if (unlikely(eff_sacks)) { 698 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 699 opts->num_sack_blocks = 700 min_t(unsigned int, eff_sacks, 701 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 702 TCPOLEN_SACK_PERBLOCK); 703 size += TCPOLEN_SACK_BASE_ALIGNED + 704 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 705 } 706 707 return size; 708 } 709 710 711 /* TCP SMALL QUEUES (TSQ) 712 * 713 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 714 * to reduce RTT and bufferbloat. 715 * We do this using a special skb destructor (tcp_wfree). 716 * 717 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 718 * needs to be reallocated in a driver. 719 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 720 * 721 * Since transmit from skb destructor is forbidden, we use a tasklet 722 * to process all sockets that eventually need to send more skbs. 723 * We use one tasklet per cpu, with its own queue of sockets. 724 */ 725 struct tsq_tasklet { 726 struct tasklet_struct tasklet; 727 struct list_head head; /* queue of tcp sockets */ 728 }; 729 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 730 731 static void tcp_tsq_handler(struct sock *sk) 732 { 733 if ((1 << sk->sk_state) & 734 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 735 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 736 struct tcp_sock *tp = tcp_sk(sk); 737 738 if (tp->lost_out > tp->retrans_out && 739 tp->snd_cwnd > tcp_packets_in_flight(tp)) 740 tcp_xmit_retransmit_queue(sk); 741 742 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 743 0, GFP_ATOMIC); 744 } 745 } 746 /* 747 * One tasklet per cpu tries to send more skbs. 748 * We run in tasklet context but need to disable irqs when 749 * transferring tsq->head because tcp_wfree() might 750 * interrupt us (non NAPI drivers) 751 */ 752 static void tcp_tasklet_func(unsigned long data) 753 { 754 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 755 LIST_HEAD(list); 756 unsigned long flags; 757 struct list_head *q, *n; 758 struct tcp_sock *tp; 759 struct sock *sk; 760 761 local_irq_save(flags); 762 list_splice_init(&tsq->head, &list); 763 local_irq_restore(flags); 764 765 list_for_each_safe(q, n, &list) { 766 tp = list_entry(q, struct tcp_sock, tsq_node); 767 list_del(&tp->tsq_node); 768 769 sk = (struct sock *)tp; 770 smp_mb__before_atomic(); 771 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 772 773 if (!sk->sk_lock.owned && 774 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 775 bh_lock_sock(sk); 776 if (!sock_owned_by_user(sk)) { 777 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 778 tcp_tsq_handler(sk); 779 } 780 bh_unlock_sock(sk); 781 } 782 783 sk_free(sk); 784 } 785 } 786 787 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 788 TCPF_WRITE_TIMER_DEFERRED | \ 789 TCPF_DELACK_TIMER_DEFERRED | \ 790 TCPF_MTU_REDUCED_DEFERRED) 791 /** 792 * tcp_release_cb - tcp release_sock() callback 793 * @sk: socket 794 * 795 * called from release_sock() to perform protocol dependent 796 * actions before socket release. 797 */ 798 void tcp_release_cb(struct sock *sk) 799 { 800 unsigned long flags, nflags; 801 802 /* perform an atomic operation only if at least one flag is set */ 803 do { 804 flags = sk->sk_tsq_flags; 805 if (!(flags & TCP_DEFERRED_ALL)) 806 return; 807 nflags = flags & ~TCP_DEFERRED_ALL; 808 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 809 810 if (flags & TCPF_TSQ_DEFERRED) 811 tcp_tsq_handler(sk); 812 813 /* Here begins the tricky part : 814 * We are called from release_sock() with : 815 * 1) BH disabled 816 * 2) sk_lock.slock spinlock held 817 * 3) socket owned by us (sk->sk_lock.owned == 1) 818 * 819 * But following code is meant to be called from BH handlers, 820 * so we should keep BH disabled, but early release socket ownership 821 */ 822 sock_release_ownership(sk); 823 824 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 825 tcp_write_timer_handler(sk); 826 __sock_put(sk); 827 } 828 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 829 tcp_delack_timer_handler(sk); 830 __sock_put(sk); 831 } 832 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 833 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 834 __sock_put(sk); 835 } 836 } 837 EXPORT_SYMBOL(tcp_release_cb); 838 839 void __init tcp_tasklet_init(void) 840 { 841 int i; 842 843 for_each_possible_cpu(i) { 844 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 845 846 INIT_LIST_HEAD(&tsq->head); 847 tasklet_init(&tsq->tasklet, 848 tcp_tasklet_func, 849 (unsigned long)tsq); 850 } 851 } 852 853 /* 854 * Write buffer destructor automatically called from kfree_skb. 855 * We can't xmit new skbs from this context, as we might already 856 * hold qdisc lock. 857 */ 858 void tcp_wfree(struct sk_buff *skb) 859 { 860 struct sock *sk = skb->sk; 861 struct tcp_sock *tp = tcp_sk(sk); 862 unsigned long flags, nval, oval; 863 int wmem; 864 865 /* Keep one reference on sk_wmem_alloc. 866 * Will be released by sk_free() from here or tcp_tasklet_func() 867 */ 868 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 869 870 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 871 * Wait until our queues (qdisc + devices) are drained. 872 * This gives : 873 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 874 * - chance for incoming ACK (processed by another cpu maybe) 875 * to migrate this flow (skb->ooo_okay will be eventually set) 876 */ 877 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 878 goto out; 879 880 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 881 struct tsq_tasklet *tsq; 882 bool empty; 883 884 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 885 goto out; 886 887 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 888 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 889 if (nval != oval) 890 continue; 891 892 /* queue this socket to tasklet queue */ 893 local_irq_save(flags); 894 tsq = this_cpu_ptr(&tsq_tasklet); 895 empty = list_empty(&tsq->head); 896 list_add(&tp->tsq_node, &tsq->head); 897 if (empty) 898 tasklet_schedule(&tsq->tasklet); 899 local_irq_restore(flags); 900 return; 901 } 902 out: 903 sk_free(sk); 904 } 905 906 /* This routine actually transmits TCP packets queued in by 907 * tcp_do_sendmsg(). This is used by both the initial 908 * transmission and possible later retransmissions. 909 * All SKB's seen here are completely headerless. It is our 910 * job to build the TCP header, and pass the packet down to 911 * IP so it can do the same plus pass the packet off to the 912 * device. 913 * 914 * We are working here with either a clone of the original 915 * SKB, or a fresh unique copy made by the retransmit engine. 916 */ 917 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 918 gfp_t gfp_mask) 919 { 920 const struct inet_connection_sock *icsk = inet_csk(sk); 921 struct inet_sock *inet; 922 struct tcp_sock *tp; 923 struct tcp_skb_cb *tcb; 924 struct tcp_out_options opts; 925 unsigned int tcp_options_size, tcp_header_size; 926 struct tcp_md5sig_key *md5; 927 struct tcphdr *th; 928 int err; 929 930 BUG_ON(!skb || !tcp_skb_pcount(skb)); 931 tp = tcp_sk(sk); 932 933 if (clone_it) { 934 skb_mstamp_get(&skb->skb_mstamp); 935 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 936 - tp->snd_una; 937 tcp_rate_skb_sent(sk, skb); 938 939 if (unlikely(skb_cloned(skb))) 940 skb = pskb_copy(skb, gfp_mask); 941 else 942 skb = skb_clone(skb, gfp_mask); 943 if (unlikely(!skb)) 944 return -ENOBUFS; 945 } 946 947 inet = inet_sk(sk); 948 tcb = TCP_SKB_CB(skb); 949 memset(&opts, 0, sizeof(opts)); 950 951 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 952 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 953 else 954 tcp_options_size = tcp_established_options(sk, skb, &opts, 955 &md5); 956 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 957 958 /* if no packet is in qdisc/device queue, then allow XPS to select 959 * another queue. We can be called from tcp_tsq_handler() 960 * which holds one reference to sk_wmem_alloc. 961 * 962 * TODO: Ideally, in-flight pure ACK packets should not matter here. 963 * One way to get this would be to set skb->truesize = 2 on them. 964 */ 965 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 966 967 /* If we had to use memory reserve to allocate this skb, 968 * this might cause drops if packet is looped back : 969 * Other socket might not have SOCK_MEMALLOC. 970 * Packets not looped back do not care about pfmemalloc. 971 */ 972 skb->pfmemalloc = 0; 973 974 skb_push(skb, tcp_header_size); 975 skb_reset_transport_header(skb); 976 977 skb_orphan(skb); 978 skb->sk = sk; 979 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 980 skb_set_hash_from_sk(skb, sk); 981 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 982 983 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 984 985 /* Build TCP header and checksum it. */ 986 th = (struct tcphdr *)skb->data; 987 th->source = inet->inet_sport; 988 th->dest = inet->inet_dport; 989 th->seq = htonl(tcb->seq); 990 th->ack_seq = htonl(tp->rcv_nxt); 991 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 992 tcb->tcp_flags); 993 994 th->check = 0; 995 th->urg_ptr = 0; 996 997 /* The urg_mode check is necessary during a below snd_una win probe */ 998 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 999 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1000 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1001 th->urg = 1; 1002 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1003 th->urg_ptr = htons(0xFFFF); 1004 th->urg = 1; 1005 } 1006 } 1007 1008 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1009 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1010 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1011 th->window = htons(tcp_select_window(sk)); 1012 tcp_ecn_send(sk, skb, th, tcp_header_size); 1013 } else { 1014 /* RFC1323: The window in SYN & SYN/ACK segments 1015 * is never scaled. 1016 */ 1017 th->window = htons(min(tp->rcv_wnd, 65535U)); 1018 } 1019 #ifdef CONFIG_TCP_MD5SIG 1020 /* Calculate the MD5 hash, as we have all we need now */ 1021 if (md5) { 1022 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1023 tp->af_specific->calc_md5_hash(opts.hash_location, 1024 md5, sk, skb); 1025 } 1026 #endif 1027 1028 icsk->icsk_af_ops->send_check(sk, skb); 1029 1030 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1031 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1032 1033 if (skb->len != tcp_header_size) { 1034 tcp_event_data_sent(tp, sk); 1035 tp->data_segs_out += tcp_skb_pcount(skb); 1036 } 1037 1038 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1039 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1040 tcp_skb_pcount(skb)); 1041 1042 tp->segs_out += tcp_skb_pcount(skb); 1043 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1044 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1045 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1046 1047 /* Our usage of tstamp should remain private */ 1048 skb->tstamp = 0; 1049 1050 /* Cleanup our debris for IP stacks */ 1051 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1052 sizeof(struct inet6_skb_parm))); 1053 1054 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1055 1056 if (likely(err <= 0)) 1057 return err; 1058 1059 tcp_enter_cwr(sk); 1060 1061 return net_xmit_eval(err); 1062 } 1063 1064 /* This routine just queues the buffer for sending. 1065 * 1066 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1067 * otherwise socket can stall. 1068 */ 1069 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1070 { 1071 struct tcp_sock *tp = tcp_sk(sk); 1072 1073 /* Advance write_seq and place onto the write_queue. */ 1074 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1075 __skb_header_release(skb); 1076 tcp_add_write_queue_tail(sk, skb); 1077 sk->sk_wmem_queued += skb->truesize; 1078 sk_mem_charge(sk, skb->truesize); 1079 } 1080 1081 /* Initialize TSO segments for a packet. */ 1082 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1083 { 1084 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1085 /* Avoid the costly divide in the normal 1086 * non-TSO case. 1087 */ 1088 tcp_skb_pcount_set(skb, 1); 1089 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1090 } else { 1091 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1092 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1093 } 1094 } 1095 1096 /* When a modification to fackets out becomes necessary, we need to check 1097 * skb is counted to fackets_out or not. 1098 */ 1099 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1100 int decr) 1101 { 1102 struct tcp_sock *tp = tcp_sk(sk); 1103 1104 if (!tp->sacked_out || tcp_is_reno(tp)) 1105 return; 1106 1107 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1108 tp->fackets_out -= decr; 1109 } 1110 1111 /* Pcount in the middle of the write queue got changed, we need to do various 1112 * tweaks to fix counters 1113 */ 1114 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1115 { 1116 struct tcp_sock *tp = tcp_sk(sk); 1117 1118 tp->packets_out -= decr; 1119 1120 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1121 tp->sacked_out -= decr; 1122 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1123 tp->retrans_out -= decr; 1124 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1125 tp->lost_out -= decr; 1126 1127 /* Reno case is special. Sigh... */ 1128 if (tcp_is_reno(tp) && decr > 0) 1129 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1130 1131 tcp_adjust_fackets_out(sk, skb, decr); 1132 1133 if (tp->lost_skb_hint && 1134 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1135 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1136 tp->lost_cnt_hint -= decr; 1137 1138 tcp_verify_left_out(tp); 1139 } 1140 1141 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1142 { 1143 return TCP_SKB_CB(skb)->txstamp_ack || 1144 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1145 } 1146 1147 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1148 { 1149 struct skb_shared_info *shinfo = skb_shinfo(skb); 1150 1151 if (unlikely(tcp_has_tx_tstamp(skb)) && 1152 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1153 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1154 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1155 1156 shinfo->tx_flags &= ~tsflags; 1157 shinfo2->tx_flags |= tsflags; 1158 swap(shinfo->tskey, shinfo2->tskey); 1159 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1160 TCP_SKB_CB(skb)->txstamp_ack = 0; 1161 } 1162 } 1163 1164 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1165 { 1166 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1167 TCP_SKB_CB(skb)->eor = 0; 1168 } 1169 1170 /* Function to create two new TCP segments. Shrinks the given segment 1171 * to the specified size and appends a new segment with the rest of the 1172 * packet to the list. This won't be called frequently, I hope. 1173 * Remember, these are still headerless SKBs at this point. 1174 */ 1175 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1176 unsigned int mss_now, gfp_t gfp) 1177 { 1178 struct tcp_sock *tp = tcp_sk(sk); 1179 struct sk_buff *buff; 1180 int nsize, old_factor; 1181 int nlen; 1182 u8 flags; 1183 1184 if (WARN_ON(len > skb->len)) 1185 return -EINVAL; 1186 1187 nsize = skb_headlen(skb) - len; 1188 if (nsize < 0) 1189 nsize = 0; 1190 1191 if (skb_unclone(skb, gfp)) 1192 return -ENOMEM; 1193 1194 /* Get a new skb... force flag on. */ 1195 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1196 if (!buff) 1197 return -ENOMEM; /* We'll just try again later. */ 1198 1199 sk->sk_wmem_queued += buff->truesize; 1200 sk_mem_charge(sk, buff->truesize); 1201 nlen = skb->len - len - nsize; 1202 buff->truesize += nlen; 1203 skb->truesize -= nlen; 1204 1205 /* Correct the sequence numbers. */ 1206 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1207 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1208 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1209 1210 /* PSH and FIN should only be set in the second packet. */ 1211 flags = TCP_SKB_CB(skb)->tcp_flags; 1212 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1213 TCP_SKB_CB(buff)->tcp_flags = flags; 1214 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1215 tcp_skb_fragment_eor(skb, buff); 1216 1217 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1218 /* Copy and checksum data tail into the new buffer. */ 1219 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1220 skb_put(buff, nsize), 1221 nsize, 0); 1222 1223 skb_trim(skb, len); 1224 1225 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1226 } else { 1227 skb->ip_summed = CHECKSUM_PARTIAL; 1228 skb_split(skb, buff, len); 1229 } 1230 1231 buff->ip_summed = skb->ip_summed; 1232 1233 buff->tstamp = skb->tstamp; 1234 tcp_fragment_tstamp(skb, buff); 1235 1236 old_factor = tcp_skb_pcount(skb); 1237 1238 /* Fix up tso_factor for both original and new SKB. */ 1239 tcp_set_skb_tso_segs(skb, mss_now); 1240 tcp_set_skb_tso_segs(buff, mss_now); 1241 1242 /* Update delivered info for the new segment */ 1243 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1244 1245 /* If this packet has been sent out already, we must 1246 * adjust the various packet counters. 1247 */ 1248 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1249 int diff = old_factor - tcp_skb_pcount(skb) - 1250 tcp_skb_pcount(buff); 1251 1252 if (diff) 1253 tcp_adjust_pcount(sk, skb, diff); 1254 } 1255 1256 /* Link BUFF into the send queue. */ 1257 __skb_header_release(buff); 1258 tcp_insert_write_queue_after(skb, buff, sk); 1259 1260 return 0; 1261 } 1262 1263 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1264 * eventually). The difference is that pulled data not copied, but 1265 * immediately discarded. 1266 */ 1267 static void __pskb_trim_head(struct sk_buff *skb, int len) 1268 { 1269 struct skb_shared_info *shinfo; 1270 int i, k, eat; 1271 1272 eat = min_t(int, len, skb_headlen(skb)); 1273 if (eat) { 1274 __skb_pull(skb, eat); 1275 len -= eat; 1276 if (!len) 1277 return; 1278 } 1279 eat = len; 1280 k = 0; 1281 shinfo = skb_shinfo(skb); 1282 for (i = 0; i < shinfo->nr_frags; i++) { 1283 int size = skb_frag_size(&shinfo->frags[i]); 1284 1285 if (size <= eat) { 1286 skb_frag_unref(skb, i); 1287 eat -= size; 1288 } else { 1289 shinfo->frags[k] = shinfo->frags[i]; 1290 if (eat) { 1291 shinfo->frags[k].page_offset += eat; 1292 skb_frag_size_sub(&shinfo->frags[k], eat); 1293 eat = 0; 1294 } 1295 k++; 1296 } 1297 } 1298 shinfo->nr_frags = k; 1299 1300 skb_reset_tail_pointer(skb); 1301 skb->data_len -= len; 1302 skb->len = skb->data_len; 1303 } 1304 1305 /* Remove acked data from a packet in the transmit queue. */ 1306 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1307 { 1308 if (skb_unclone(skb, GFP_ATOMIC)) 1309 return -ENOMEM; 1310 1311 __pskb_trim_head(skb, len); 1312 1313 TCP_SKB_CB(skb)->seq += len; 1314 skb->ip_summed = CHECKSUM_PARTIAL; 1315 1316 skb->truesize -= len; 1317 sk->sk_wmem_queued -= len; 1318 sk_mem_uncharge(sk, len); 1319 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1320 1321 /* Any change of skb->len requires recalculation of tso factor. */ 1322 if (tcp_skb_pcount(skb) > 1) 1323 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1324 1325 return 0; 1326 } 1327 1328 /* Calculate MSS not accounting any TCP options. */ 1329 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1330 { 1331 const struct tcp_sock *tp = tcp_sk(sk); 1332 const struct inet_connection_sock *icsk = inet_csk(sk); 1333 int mss_now; 1334 1335 /* Calculate base mss without TCP options: 1336 It is MMS_S - sizeof(tcphdr) of rfc1122 1337 */ 1338 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1339 1340 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1341 if (icsk->icsk_af_ops->net_frag_header_len) { 1342 const struct dst_entry *dst = __sk_dst_get(sk); 1343 1344 if (dst && dst_allfrag(dst)) 1345 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1346 } 1347 1348 /* Clamp it (mss_clamp does not include tcp options) */ 1349 if (mss_now > tp->rx_opt.mss_clamp) 1350 mss_now = tp->rx_opt.mss_clamp; 1351 1352 /* Now subtract optional transport overhead */ 1353 mss_now -= icsk->icsk_ext_hdr_len; 1354 1355 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1356 if (mss_now < 48) 1357 mss_now = 48; 1358 return mss_now; 1359 } 1360 1361 /* Calculate MSS. Not accounting for SACKs here. */ 1362 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1363 { 1364 /* Subtract TCP options size, not including SACKs */ 1365 return __tcp_mtu_to_mss(sk, pmtu) - 1366 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1367 } 1368 1369 /* Inverse of above */ 1370 int tcp_mss_to_mtu(struct sock *sk, int mss) 1371 { 1372 const struct tcp_sock *tp = tcp_sk(sk); 1373 const struct inet_connection_sock *icsk = inet_csk(sk); 1374 int mtu; 1375 1376 mtu = mss + 1377 tp->tcp_header_len + 1378 icsk->icsk_ext_hdr_len + 1379 icsk->icsk_af_ops->net_header_len; 1380 1381 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1382 if (icsk->icsk_af_ops->net_frag_header_len) { 1383 const struct dst_entry *dst = __sk_dst_get(sk); 1384 1385 if (dst && dst_allfrag(dst)) 1386 mtu += icsk->icsk_af_ops->net_frag_header_len; 1387 } 1388 return mtu; 1389 } 1390 EXPORT_SYMBOL(tcp_mss_to_mtu); 1391 1392 /* MTU probing init per socket */ 1393 void tcp_mtup_init(struct sock *sk) 1394 { 1395 struct tcp_sock *tp = tcp_sk(sk); 1396 struct inet_connection_sock *icsk = inet_csk(sk); 1397 struct net *net = sock_net(sk); 1398 1399 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1400 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1401 icsk->icsk_af_ops->net_header_len; 1402 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1403 icsk->icsk_mtup.probe_size = 0; 1404 if (icsk->icsk_mtup.enabled) 1405 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1406 } 1407 EXPORT_SYMBOL(tcp_mtup_init); 1408 1409 /* This function synchronize snd mss to current pmtu/exthdr set. 1410 1411 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1412 for TCP options, but includes only bare TCP header. 1413 1414 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1415 It is minimum of user_mss and mss received with SYN. 1416 It also does not include TCP options. 1417 1418 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1419 1420 tp->mss_cache is current effective sending mss, including 1421 all tcp options except for SACKs. It is evaluated, 1422 taking into account current pmtu, but never exceeds 1423 tp->rx_opt.mss_clamp. 1424 1425 NOTE1. rfc1122 clearly states that advertised MSS 1426 DOES NOT include either tcp or ip options. 1427 1428 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1429 are READ ONLY outside this function. --ANK (980731) 1430 */ 1431 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1432 { 1433 struct tcp_sock *tp = tcp_sk(sk); 1434 struct inet_connection_sock *icsk = inet_csk(sk); 1435 int mss_now; 1436 1437 if (icsk->icsk_mtup.search_high > pmtu) 1438 icsk->icsk_mtup.search_high = pmtu; 1439 1440 mss_now = tcp_mtu_to_mss(sk, pmtu); 1441 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1442 1443 /* And store cached results */ 1444 icsk->icsk_pmtu_cookie = pmtu; 1445 if (icsk->icsk_mtup.enabled) 1446 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1447 tp->mss_cache = mss_now; 1448 1449 return mss_now; 1450 } 1451 EXPORT_SYMBOL(tcp_sync_mss); 1452 1453 /* Compute the current effective MSS, taking SACKs and IP options, 1454 * and even PMTU discovery events into account. 1455 */ 1456 unsigned int tcp_current_mss(struct sock *sk) 1457 { 1458 const struct tcp_sock *tp = tcp_sk(sk); 1459 const struct dst_entry *dst = __sk_dst_get(sk); 1460 u32 mss_now; 1461 unsigned int header_len; 1462 struct tcp_out_options opts; 1463 struct tcp_md5sig_key *md5; 1464 1465 mss_now = tp->mss_cache; 1466 1467 if (dst) { 1468 u32 mtu = dst_mtu(dst); 1469 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1470 mss_now = tcp_sync_mss(sk, mtu); 1471 } 1472 1473 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1474 sizeof(struct tcphdr); 1475 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1476 * some common options. If this is an odd packet (because we have SACK 1477 * blocks etc) then our calculated header_len will be different, and 1478 * we have to adjust mss_now correspondingly */ 1479 if (header_len != tp->tcp_header_len) { 1480 int delta = (int) header_len - tp->tcp_header_len; 1481 mss_now -= delta; 1482 } 1483 1484 return mss_now; 1485 } 1486 1487 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1488 * As additional protections, we do not touch cwnd in retransmission phases, 1489 * and if application hit its sndbuf limit recently. 1490 */ 1491 static void tcp_cwnd_application_limited(struct sock *sk) 1492 { 1493 struct tcp_sock *tp = tcp_sk(sk); 1494 1495 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1496 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1497 /* Limited by application or receiver window. */ 1498 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1499 u32 win_used = max(tp->snd_cwnd_used, init_win); 1500 if (win_used < tp->snd_cwnd) { 1501 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1502 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1503 } 1504 tp->snd_cwnd_used = 0; 1505 } 1506 tp->snd_cwnd_stamp = tcp_time_stamp; 1507 } 1508 1509 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1510 { 1511 struct tcp_sock *tp = tcp_sk(sk); 1512 1513 /* Track the maximum number of outstanding packets in each 1514 * window, and remember whether we were cwnd-limited then. 1515 */ 1516 if (!before(tp->snd_una, tp->max_packets_seq) || 1517 tp->packets_out > tp->max_packets_out) { 1518 tp->max_packets_out = tp->packets_out; 1519 tp->max_packets_seq = tp->snd_nxt; 1520 tp->is_cwnd_limited = is_cwnd_limited; 1521 } 1522 1523 if (tcp_is_cwnd_limited(sk)) { 1524 /* Network is feed fully. */ 1525 tp->snd_cwnd_used = 0; 1526 tp->snd_cwnd_stamp = tcp_time_stamp; 1527 } else { 1528 /* Network starves. */ 1529 if (tp->packets_out > tp->snd_cwnd_used) 1530 tp->snd_cwnd_used = tp->packets_out; 1531 1532 if (sysctl_tcp_slow_start_after_idle && 1533 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1534 tcp_cwnd_application_limited(sk); 1535 1536 /* The following conditions together indicate the starvation 1537 * is caused by insufficient sender buffer: 1538 * 1) just sent some data (see tcp_write_xmit) 1539 * 2) not cwnd limited (this else condition) 1540 * 3) no more data to send (null tcp_send_head ) 1541 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1542 */ 1543 if (!tcp_send_head(sk) && sk->sk_socket && 1544 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1545 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1546 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1547 } 1548 } 1549 1550 /* Minshall's variant of the Nagle send check. */ 1551 static bool tcp_minshall_check(const struct tcp_sock *tp) 1552 { 1553 return after(tp->snd_sml, tp->snd_una) && 1554 !after(tp->snd_sml, tp->snd_nxt); 1555 } 1556 1557 /* Update snd_sml if this skb is under mss 1558 * Note that a TSO packet might end with a sub-mss segment 1559 * The test is really : 1560 * if ((skb->len % mss) != 0) 1561 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1562 * But we can avoid doing the divide again given we already have 1563 * skb_pcount = skb->len / mss_now 1564 */ 1565 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1566 const struct sk_buff *skb) 1567 { 1568 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1569 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1570 } 1571 1572 /* Return false, if packet can be sent now without violation Nagle's rules: 1573 * 1. It is full sized. (provided by caller in %partial bool) 1574 * 2. Or it contains FIN. (already checked by caller) 1575 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1576 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1577 * With Minshall's modification: all sent small packets are ACKed. 1578 */ 1579 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1580 int nonagle) 1581 { 1582 return partial && 1583 ((nonagle & TCP_NAGLE_CORK) || 1584 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1585 } 1586 1587 /* Return how many segs we'd like on a TSO packet, 1588 * to send one TSO packet per ms 1589 */ 1590 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1591 int min_tso_segs) 1592 { 1593 u32 bytes, segs; 1594 1595 bytes = min(sk->sk_pacing_rate >> 10, 1596 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1597 1598 /* Goal is to send at least one packet per ms, 1599 * not one big TSO packet every 100 ms. 1600 * This preserves ACK clocking and is consistent 1601 * with tcp_tso_should_defer() heuristic. 1602 */ 1603 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1604 1605 return min_t(u32, segs, sk->sk_gso_max_segs); 1606 } 1607 EXPORT_SYMBOL(tcp_tso_autosize); 1608 1609 /* Return the number of segments we want in the skb we are transmitting. 1610 * See if congestion control module wants to decide; otherwise, autosize. 1611 */ 1612 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1613 { 1614 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1615 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0; 1616 1617 return tso_segs ? : 1618 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs); 1619 } 1620 1621 /* Returns the portion of skb which can be sent right away */ 1622 static unsigned int tcp_mss_split_point(const struct sock *sk, 1623 const struct sk_buff *skb, 1624 unsigned int mss_now, 1625 unsigned int max_segs, 1626 int nonagle) 1627 { 1628 const struct tcp_sock *tp = tcp_sk(sk); 1629 u32 partial, needed, window, max_len; 1630 1631 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1632 max_len = mss_now * max_segs; 1633 1634 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1635 return max_len; 1636 1637 needed = min(skb->len, window); 1638 1639 if (max_len <= needed) 1640 return max_len; 1641 1642 partial = needed % mss_now; 1643 /* If last segment is not a full MSS, check if Nagle rules allow us 1644 * to include this last segment in this skb. 1645 * Otherwise, we'll split the skb at last MSS boundary 1646 */ 1647 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1648 return needed - partial; 1649 1650 return needed; 1651 } 1652 1653 /* Can at least one segment of SKB be sent right now, according to the 1654 * congestion window rules? If so, return how many segments are allowed. 1655 */ 1656 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1657 const struct sk_buff *skb) 1658 { 1659 u32 in_flight, cwnd, halfcwnd; 1660 1661 /* Don't be strict about the congestion window for the final FIN. */ 1662 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1663 tcp_skb_pcount(skb) == 1) 1664 return 1; 1665 1666 in_flight = tcp_packets_in_flight(tp); 1667 cwnd = tp->snd_cwnd; 1668 if (in_flight >= cwnd) 1669 return 0; 1670 1671 /* For better scheduling, ensure we have at least 1672 * 2 GSO packets in flight. 1673 */ 1674 halfcwnd = max(cwnd >> 1, 1U); 1675 return min(halfcwnd, cwnd - in_flight); 1676 } 1677 1678 /* Initialize TSO state of a skb. 1679 * This must be invoked the first time we consider transmitting 1680 * SKB onto the wire. 1681 */ 1682 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1683 { 1684 int tso_segs = tcp_skb_pcount(skb); 1685 1686 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1687 tcp_set_skb_tso_segs(skb, mss_now); 1688 tso_segs = tcp_skb_pcount(skb); 1689 } 1690 return tso_segs; 1691 } 1692 1693 1694 /* Return true if the Nagle test allows this packet to be 1695 * sent now. 1696 */ 1697 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1698 unsigned int cur_mss, int nonagle) 1699 { 1700 /* Nagle rule does not apply to frames, which sit in the middle of the 1701 * write_queue (they have no chances to get new data). 1702 * 1703 * This is implemented in the callers, where they modify the 'nonagle' 1704 * argument based upon the location of SKB in the send queue. 1705 */ 1706 if (nonagle & TCP_NAGLE_PUSH) 1707 return true; 1708 1709 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1710 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1711 return true; 1712 1713 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1714 return true; 1715 1716 return false; 1717 } 1718 1719 /* Does at least the first segment of SKB fit into the send window? */ 1720 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1721 const struct sk_buff *skb, 1722 unsigned int cur_mss) 1723 { 1724 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1725 1726 if (skb->len > cur_mss) 1727 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1728 1729 return !after(end_seq, tcp_wnd_end(tp)); 1730 } 1731 1732 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1733 * should be put on the wire right now. If so, it returns the number of 1734 * packets allowed by the congestion window. 1735 */ 1736 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1737 unsigned int cur_mss, int nonagle) 1738 { 1739 const struct tcp_sock *tp = tcp_sk(sk); 1740 unsigned int cwnd_quota; 1741 1742 tcp_init_tso_segs(skb, cur_mss); 1743 1744 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1745 return 0; 1746 1747 cwnd_quota = tcp_cwnd_test(tp, skb); 1748 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1749 cwnd_quota = 0; 1750 1751 return cwnd_quota; 1752 } 1753 1754 /* Test if sending is allowed right now. */ 1755 bool tcp_may_send_now(struct sock *sk) 1756 { 1757 const struct tcp_sock *tp = tcp_sk(sk); 1758 struct sk_buff *skb = tcp_send_head(sk); 1759 1760 return skb && 1761 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1762 (tcp_skb_is_last(sk, skb) ? 1763 tp->nonagle : TCP_NAGLE_PUSH)); 1764 } 1765 1766 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1767 * which is put after SKB on the list. It is very much like 1768 * tcp_fragment() except that it may make several kinds of assumptions 1769 * in order to speed up the splitting operation. In particular, we 1770 * know that all the data is in scatter-gather pages, and that the 1771 * packet has never been sent out before (and thus is not cloned). 1772 */ 1773 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1774 unsigned int mss_now, gfp_t gfp) 1775 { 1776 struct sk_buff *buff; 1777 int nlen = skb->len - len; 1778 u8 flags; 1779 1780 /* All of a TSO frame must be composed of paged data. */ 1781 if (skb->len != skb->data_len) 1782 return tcp_fragment(sk, skb, len, mss_now, gfp); 1783 1784 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1785 if (unlikely(!buff)) 1786 return -ENOMEM; 1787 1788 sk->sk_wmem_queued += buff->truesize; 1789 sk_mem_charge(sk, buff->truesize); 1790 buff->truesize += nlen; 1791 skb->truesize -= nlen; 1792 1793 /* Correct the sequence numbers. */ 1794 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1795 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1796 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1797 1798 /* PSH and FIN should only be set in the second packet. */ 1799 flags = TCP_SKB_CB(skb)->tcp_flags; 1800 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1801 TCP_SKB_CB(buff)->tcp_flags = flags; 1802 1803 /* This packet was never sent out yet, so no SACK bits. */ 1804 TCP_SKB_CB(buff)->sacked = 0; 1805 1806 tcp_skb_fragment_eor(skb, buff); 1807 1808 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1809 skb_split(skb, buff, len); 1810 tcp_fragment_tstamp(skb, buff); 1811 1812 /* Fix up tso_factor for both original and new SKB. */ 1813 tcp_set_skb_tso_segs(skb, mss_now); 1814 tcp_set_skb_tso_segs(buff, mss_now); 1815 1816 /* Link BUFF into the send queue. */ 1817 __skb_header_release(buff); 1818 tcp_insert_write_queue_after(skb, buff, sk); 1819 1820 return 0; 1821 } 1822 1823 /* Try to defer sending, if possible, in order to minimize the amount 1824 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1825 * 1826 * This algorithm is from John Heffner. 1827 */ 1828 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1829 bool *is_cwnd_limited, u32 max_segs) 1830 { 1831 const struct inet_connection_sock *icsk = inet_csk(sk); 1832 u32 age, send_win, cong_win, limit, in_flight; 1833 struct tcp_sock *tp = tcp_sk(sk); 1834 struct skb_mstamp now; 1835 struct sk_buff *head; 1836 int win_divisor; 1837 1838 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1839 goto send_now; 1840 1841 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1842 goto send_now; 1843 1844 /* Avoid bursty behavior by allowing defer 1845 * only if the last write was recent. 1846 */ 1847 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0) 1848 goto send_now; 1849 1850 in_flight = tcp_packets_in_flight(tp); 1851 1852 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1853 1854 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1855 1856 /* From in_flight test above, we know that cwnd > in_flight. */ 1857 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1858 1859 limit = min(send_win, cong_win); 1860 1861 /* If a full-sized TSO skb can be sent, do it. */ 1862 if (limit >= max_segs * tp->mss_cache) 1863 goto send_now; 1864 1865 /* Middle in queue won't get any more data, full sendable already? */ 1866 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1867 goto send_now; 1868 1869 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1870 if (win_divisor) { 1871 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1872 1873 /* If at least some fraction of a window is available, 1874 * just use it. 1875 */ 1876 chunk /= win_divisor; 1877 if (limit >= chunk) 1878 goto send_now; 1879 } else { 1880 /* Different approach, try not to defer past a single 1881 * ACK. Receiver should ACK every other full sized 1882 * frame, so if we have space for more than 3 frames 1883 * then send now. 1884 */ 1885 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1886 goto send_now; 1887 } 1888 1889 head = tcp_write_queue_head(sk); 1890 skb_mstamp_get(&now); 1891 age = skb_mstamp_us_delta(&now, &head->skb_mstamp); 1892 /* If next ACK is likely to come too late (half srtt), do not defer */ 1893 if (age < (tp->srtt_us >> 4)) 1894 goto send_now; 1895 1896 /* Ok, it looks like it is advisable to defer. */ 1897 1898 if (cong_win < send_win && cong_win <= skb->len) 1899 *is_cwnd_limited = true; 1900 1901 return true; 1902 1903 send_now: 1904 return false; 1905 } 1906 1907 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1908 { 1909 struct inet_connection_sock *icsk = inet_csk(sk); 1910 struct tcp_sock *tp = tcp_sk(sk); 1911 struct net *net = sock_net(sk); 1912 u32 interval; 1913 s32 delta; 1914 1915 interval = net->ipv4.sysctl_tcp_probe_interval; 1916 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp; 1917 if (unlikely(delta >= interval * HZ)) { 1918 int mss = tcp_current_mss(sk); 1919 1920 /* Update current search range */ 1921 icsk->icsk_mtup.probe_size = 0; 1922 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1923 sizeof(struct tcphdr) + 1924 icsk->icsk_af_ops->net_header_len; 1925 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1926 1927 /* Update probe time stamp */ 1928 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1929 } 1930 } 1931 1932 /* Create a new MTU probe if we are ready. 1933 * MTU probe is regularly attempting to increase the path MTU by 1934 * deliberately sending larger packets. This discovers routing 1935 * changes resulting in larger path MTUs. 1936 * 1937 * Returns 0 if we should wait to probe (no cwnd available), 1938 * 1 if a probe was sent, 1939 * -1 otherwise 1940 */ 1941 static int tcp_mtu_probe(struct sock *sk) 1942 { 1943 struct inet_connection_sock *icsk = inet_csk(sk); 1944 struct tcp_sock *tp = tcp_sk(sk); 1945 struct sk_buff *skb, *nskb, *next; 1946 struct net *net = sock_net(sk); 1947 int probe_size; 1948 int size_needed; 1949 int copy, len; 1950 int mss_now; 1951 int interval; 1952 1953 /* Not currently probing/verifying, 1954 * not in recovery, 1955 * have enough cwnd, and 1956 * not SACKing (the variable headers throw things off) 1957 */ 1958 if (likely(!icsk->icsk_mtup.enabled || 1959 icsk->icsk_mtup.probe_size || 1960 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1961 tp->snd_cwnd < 11 || 1962 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 1963 return -1; 1964 1965 /* Use binary search for probe_size between tcp_mss_base, 1966 * and current mss_clamp. if (search_high - search_low) 1967 * smaller than a threshold, backoff from probing. 1968 */ 1969 mss_now = tcp_current_mss(sk); 1970 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 1971 icsk->icsk_mtup.search_low) >> 1); 1972 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1973 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 1974 /* When misfortune happens, we are reprobing actively, 1975 * and then reprobe timer has expired. We stick with current 1976 * probing process by not resetting search range to its orignal. 1977 */ 1978 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 1979 interval < net->ipv4.sysctl_tcp_probe_threshold) { 1980 /* Check whether enough time has elaplased for 1981 * another round of probing. 1982 */ 1983 tcp_mtu_check_reprobe(sk); 1984 return -1; 1985 } 1986 1987 /* Have enough data in the send queue to probe? */ 1988 if (tp->write_seq - tp->snd_nxt < size_needed) 1989 return -1; 1990 1991 if (tp->snd_wnd < size_needed) 1992 return -1; 1993 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1994 return 0; 1995 1996 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1997 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1998 if (!tcp_packets_in_flight(tp)) 1999 return -1; 2000 else 2001 return 0; 2002 } 2003 2004 /* We're allowed to probe. Build it now. */ 2005 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2006 if (!nskb) 2007 return -1; 2008 sk->sk_wmem_queued += nskb->truesize; 2009 sk_mem_charge(sk, nskb->truesize); 2010 2011 skb = tcp_send_head(sk); 2012 2013 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2014 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2015 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2016 TCP_SKB_CB(nskb)->sacked = 0; 2017 nskb->csum = 0; 2018 nskb->ip_summed = skb->ip_summed; 2019 2020 tcp_insert_write_queue_before(nskb, skb, sk); 2021 2022 len = 0; 2023 tcp_for_write_queue_from_safe(skb, next, sk) { 2024 copy = min_t(int, skb->len, probe_size - len); 2025 if (nskb->ip_summed) { 2026 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2027 } else { 2028 __wsum csum = skb_copy_and_csum_bits(skb, 0, 2029 skb_put(nskb, copy), 2030 copy, 0); 2031 nskb->csum = csum_block_add(nskb->csum, csum, len); 2032 } 2033 2034 if (skb->len <= copy) { 2035 /* We've eaten all the data from this skb. 2036 * Throw it away. */ 2037 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2038 tcp_unlink_write_queue(skb, sk); 2039 sk_wmem_free_skb(sk, skb); 2040 } else { 2041 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2042 ~(TCPHDR_FIN|TCPHDR_PSH); 2043 if (!skb_shinfo(skb)->nr_frags) { 2044 skb_pull(skb, copy); 2045 if (skb->ip_summed != CHECKSUM_PARTIAL) 2046 skb->csum = csum_partial(skb->data, 2047 skb->len, 0); 2048 } else { 2049 __pskb_trim_head(skb, copy); 2050 tcp_set_skb_tso_segs(skb, mss_now); 2051 } 2052 TCP_SKB_CB(skb)->seq += copy; 2053 } 2054 2055 len += copy; 2056 2057 if (len >= probe_size) 2058 break; 2059 } 2060 tcp_init_tso_segs(nskb, nskb->len); 2061 2062 /* We're ready to send. If this fails, the probe will 2063 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2064 */ 2065 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2066 /* Decrement cwnd here because we are sending 2067 * effectively two packets. */ 2068 tp->snd_cwnd--; 2069 tcp_event_new_data_sent(sk, nskb); 2070 2071 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2072 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2073 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2074 2075 return 1; 2076 } 2077 2078 return -1; 2079 } 2080 2081 /* TCP Small Queues : 2082 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2083 * (These limits are doubled for retransmits) 2084 * This allows for : 2085 * - better RTT estimation and ACK scheduling 2086 * - faster recovery 2087 * - high rates 2088 * Alas, some drivers / subsystems require a fair amount 2089 * of queued bytes to ensure line rate. 2090 * One example is wifi aggregation (802.11 AMPDU) 2091 */ 2092 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2093 unsigned int factor) 2094 { 2095 unsigned int limit; 2096 2097 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2098 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2099 limit <<= factor; 2100 2101 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2102 /* Always send the 1st or 2nd skb in write queue. 2103 * No need to wait for TX completion to call us back, 2104 * after softirq/tasklet schedule. 2105 * This helps when TX completions are delayed too much. 2106 */ 2107 if (skb == sk->sk_write_queue.next || 2108 skb->prev == sk->sk_write_queue.next) 2109 return false; 2110 2111 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2112 /* It is possible TX completion already happened 2113 * before we set TSQ_THROTTLED, so we must 2114 * test again the condition. 2115 */ 2116 smp_mb__after_atomic(); 2117 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2118 return true; 2119 } 2120 return false; 2121 } 2122 2123 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2124 { 2125 const u32 now = tcp_time_stamp; 2126 2127 if (tp->chrono_type > TCP_CHRONO_UNSPEC) 2128 tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start; 2129 tp->chrono_start = now; 2130 tp->chrono_type = new; 2131 } 2132 2133 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2134 { 2135 struct tcp_sock *tp = tcp_sk(sk); 2136 2137 /* If there are multiple conditions worthy of tracking in a 2138 * chronograph then the highest priority enum takes precedence 2139 * over the other conditions. So that if something "more interesting" 2140 * starts happening, stop the previous chrono and start a new one. 2141 */ 2142 if (type > tp->chrono_type) 2143 tcp_chrono_set(tp, type); 2144 } 2145 2146 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2147 { 2148 struct tcp_sock *tp = tcp_sk(sk); 2149 2150 2151 /* There are multiple conditions worthy of tracking in a 2152 * chronograph, so that the highest priority enum takes 2153 * precedence over the other conditions (see tcp_chrono_start). 2154 * If a condition stops, we only stop chrono tracking if 2155 * it's the "most interesting" or current chrono we are 2156 * tracking and starts busy chrono if we have pending data. 2157 */ 2158 if (tcp_write_queue_empty(sk)) 2159 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2160 else if (type == tp->chrono_type) 2161 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2162 } 2163 2164 /* This routine writes packets to the network. It advances the 2165 * send_head. This happens as incoming acks open up the remote 2166 * window for us. 2167 * 2168 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2169 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2170 * account rare use of URG, this is not a big flaw. 2171 * 2172 * Send at most one packet when push_one > 0. Temporarily ignore 2173 * cwnd limit to force at most one packet out when push_one == 2. 2174 2175 * Returns true, if no segments are in flight and we have queued segments, 2176 * but cannot send anything now because of SWS or another problem. 2177 */ 2178 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2179 int push_one, gfp_t gfp) 2180 { 2181 struct tcp_sock *tp = tcp_sk(sk); 2182 struct sk_buff *skb; 2183 unsigned int tso_segs, sent_pkts; 2184 int cwnd_quota; 2185 int result; 2186 bool is_cwnd_limited = false, is_rwnd_limited = false; 2187 u32 max_segs; 2188 2189 sent_pkts = 0; 2190 2191 if (!push_one) { 2192 /* Do MTU probing. */ 2193 result = tcp_mtu_probe(sk); 2194 if (!result) { 2195 return false; 2196 } else if (result > 0) { 2197 sent_pkts = 1; 2198 } 2199 } 2200 2201 max_segs = tcp_tso_segs(sk, mss_now); 2202 while ((skb = tcp_send_head(sk))) { 2203 unsigned int limit; 2204 2205 tso_segs = tcp_init_tso_segs(skb, mss_now); 2206 BUG_ON(!tso_segs); 2207 2208 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2209 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2210 skb_mstamp_get(&skb->skb_mstamp); 2211 goto repair; /* Skip network transmission */ 2212 } 2213 2214 cwnd_quota = tcp_cwnd_test(tp, skb); 2215 if (!cwnd_quota) { 2216 if (push_one == 2) 2217 /* Force out a loss probe pkt. */ 2218 cwnd_quota = 1; 2219 else 2220 break; 2221 } 2222 2223 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2224 is_rwnd_limited = true; 2225 break; 2226 } 2227 2228 if (tso_segs == 1) { 2229 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2230 (tcp_skb_is_last(sk, skb) ? 2231 nonagle : TCP_NAGLE_PUSH)))) 2232 break; 2233 } else { 2234 if (!push_one && 2235 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2236 max_segs)) 2237 break; 2238 } 2239 2240 limit = mss_now; 2241 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2242 limit = tcp_mss_split_point(sk, skb, mss_now, 2243 min_t(unsigned int, 2244 cwnd_quota, 2245 max_segs), 2246 nonagle); 2247 2248 if (skb->len > limit && 2249 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2250 break; 2251 2252 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2253 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2254 if (tcp_small_queue_check(sk, skb, 0)) 2255 break; 2256 2257 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2258 break; 2259 2260 repair: 2261 /* Advance the send_head. This one is sent out. 2262 * This call will increment packets_out. 2263 */ 2264 tcp_event_new_data_sent(sk, skb); 2265 2266 tcp_minshall_update(tp, mss_now, skb); 2267 sent_pkts += tcp_skb_pcount(skb); 2268 2269 if (push_one) 2270 break; 2271 } 2272 2273 if (is_rwnd_limited) 2274 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2275 else 2276 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2277 2278 if (likely(sent_pkts)) { 2279 if (tcp_in_cwnd_reduction(sk)) 2280 tp->prr_out += sent_pkts; 2281 2282 /* Send one loss probe per tail loss episode. */ 2283 if (push_one != 2) 2284 tcp_schedule_loss_probe(sk); 2285 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2286 tcp_cwnd_validate(sk, is_cwnd_limited); 2287 return false; 2288 } 2289 return !tp->packets_out && tcp_send_head(sk); 2290 } 2291 2292 bool tcp_schedule_loss_probe(struct sock *sk) 2293 { 2294 struct inet_connection_sock *icsk = inet_csk(sk); 2295 struct tcp_sock *tp = tcp_sk(sk); 2296 u32 timeout, tlp_time_stamp, rto_time_stamp; 2297 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2298 2299 /* No consecutive loss probes. */ 2300 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2301 tcp_rearm_rto(sk); 2302 return false; 2303 } 2304 /* Don't do any loss probe on a Fast Open connection before 3WHS 2305 * finishes. 2306 */ 2307 if (tp->fastopen_rsk) 2308 return false; 2309 2310 /* TLP is only scheduled when next timer event is RTO. */ 2311 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2312 return false; 2313 2314 /* Schedule a loss probe in 2*RTT for SACK capable connections 2315 * in Open state, that are either limited by cwnd or application. 2316 */ 2317 if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) || 2318 !tp->packets_out || !tcp_is_sack(tp) || 2319 icsk->icsk_ca_state != TCP_CA_Open) 2320 return false; 2321 2322 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2323 tcp_send_head(sk)) 2324 return false; 2325 2326 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2327 * for delayed ack when there's one outstanding packet. If no RTT 2328 * sample is available then probe after TCP_TIMEOUT_INIT. 2329 */ 2330 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT; 2331 if (tp->packets_out == 1) 2332 timeout = max_t(u32, timeout, 2333 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2334 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2335 2336 /* If RTO is shorter, just schedule TLP in its place. */ 2337 tlp_time_stamp = tcp_time_stamp + timeout; 2338 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2339 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2340 s32 delta = rto_time_stamp - tcp_time_stamp; 2341 if (delta > 0) 2342 timeout = delta; 2343 } 2344 2345 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2346 TCP_RTO_MAX); 2347 return true; 2348 } 2349 2350 /* Thanks to skb fast clones, we can detect if a prior transmit of 2351 * a packet is still in a qdisc or driver queue. 2352 * In this case, there is very little point doing a retransmit ! 2353 */ 2354 static bool skb_still_in_host_queue(const struct sock *sk, 2355 const struct sk_buff *skb) 2356 { 2357 if (unlikely(skb_fclone_busy(sk, skb))) { 2358 NET_INC_STATS(sock_net(sk), 2359 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2360 return true; 2361 } 2362 return false; 2363 } 2364 2365 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2366 * retransmit the last segment. 2367 */ 2368 void tcp_send_loss_probe(struct sock *sk) 2369 { 2370 struct tcp_sock *tp = tcp_sk(sk); 2371 struct sk_buff *skb; 2372 int pcount; 2373 int mss = tcp_current_mss(sk); 2374 2375 skb = tcp_send_head(sk); 2376 if (skb) { 2377 if (tcp_snd_wnd_test(tp, skb, mss)) { 2378 pcount = tp->packets_out; 2379 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2380 if (tp->packets_out > pcount) 2381 goto probe_sent; 2382 goto rearm_timer; 2383 } 2384 skb = tcp_write_queue_prev(sk, skb); 2385 } else { 2386 skb = tcp_write_queue_tail(sk); 2387 } 2388 2389 /* At most one outstanding TLP retransmission. */ 2390 if (tp->tlp_high_seq) 2391 goto rearm_timer; 2392 2393 /* Retransmit last segment. */ 2394 if (WARN_ON(!skb)) 2395 goto rearm_timer; 2396 2397 if (skb_still_in_host_queue(sk, skb)) 2398 goto rearm_timer; 2399 2400 pcount = tcp_skb_pcount(skb); 2401 if (WARN_ON(!pcount)) 2402 goto rearm_timer; 2403 2404 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2405 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2406 GFP_ATOMIC))) 2407 goto rearm_timer; 2408 skb = tcp_write_queue_next(sk, skb); 2409 } 2410 2411 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2412 goto rearm_timer; 2413 2414 if (__tcp_retransmit_skb(sk, skb, 1)) 2415 goto rearm_timer; 2416 2417 /* Record snd_nxt for loss detection. */ 2418 tp->tlp_high_seq = tp->snd_nxt; 2419 2420 probe_sent: 2421 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2422 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2423 inet_csk(sk)->icsk_pending = 0; 2424 rearm_timer: 2425 tcp_rearm_rto(sk); 2426 } 2427 2428 /* Push out any pending frames which were held back due to 2429 * TCP_CORK or attempt at coalescing tiny packets. 2430 * The socket must be locked by the caller. 2431 */ 2432 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2433 int nonagle) 2434 { 2435 /* If we are closed, the bytes will have to remain here. 2436 * In time closedown will finish, we empty the write queue and 2437 * all will be happy. 2438 */ 2439 if (unlikely(sk->sk_state == TCP_CLOSE)) 2440 return; 2441 2442 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2443 sk_gfp_mask(sk, GFP_ATOMIC))) 2444 tcp_check_probe_timer(sk); 2445 } 2446 2447 /* Send _single_ skb sitting at the send head. This function requires 2448 * true push pending frames to setup probe timer etc. 2449 */ 2450 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2451 { 2452 struct sk_buff *skb = tcp_send_head(sk); 2453 2454 BUG_ON(!skb || skb->len < mss_now); 2455 2456 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2457 } 2458 2459 /* This function returns the amount that we can raise the 2460 * usable window based on the following constraints 2461 * 2462 * 1. The window can never be shrunk once it is offered (RFC 793) 2463 * 2. We limit memory per socket 2464 * 2465 * RFC 1122: 2466 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2467 * RECV.NEXT + RCV.WIN fixed until: 2468 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2469 * 2470 * i.e. don't raise the right edge of the window until you can raise 2471 * it at least MSS bytes. 2472 * 2473 * Unfortunately, the recommended algorithm breaks header prediction, 2474 * since header prediction assumes th->window stays fixed. 2475 * 2476 * Strictly speaking, keeping th->window fixed violates the receiver 2477 * side SWS prevention criteria. The problem is that under this rule 2478 * a stream of single byte packets will cause the right side of the 2479 * window to always advance by a single byte. 2480 * 2481 * Of course, if the sender implements sender side SWS prevention 2482 * then this will not be a problem. 2483 * 2484 * BSD seems to make the following compromise: 2485 * 2486 * If the free space is less than the 1/4 of the maximum 2487 * space available and the free space is less than 1/2 mss, 2488 * then set the window to 0. 2489 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2490 * Otherwise, just prevent the window from shrinking 2491 * and from being larger than the largest representable value. 2492 * 2493 * This prevents incremental opening of the window in the regime 2494 * where TCP is limited by the speed of the reader side taking 2495 * data out of the TCP receive queue. It does nothing about 2496 * those cases where the window is constrained on the sender side 2497 * because the pipeline is full. 2498 * 2499 * BSD also seems to "accidentally" limit itself to windows that are a 2500 * multiple of MSS, at least until the free space gets quite small. 2501 * This would appear to be a side effect of the mbuf implementation. 2502 * Combining these two algorithms results in the observed behavior 2503 * of having a fixed window size at almost all times. 2504 * 2505 * Below we obtain similar behavior by forcing the offered window to 2506 * a multiple of the mss when it is feasible to do so. 2507 * 2508 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2509 * Regular options like TIMESTAMP are taken into account. 2510 */ 2511 u32 __tcp_select_window(struct sock *sk) 2512 { 2513 struct inet_connection_sock *icsk = inet_csk(sk); 2514 struct tcp_sock *tp = tcp_sk(sk); 2515 /* MSS for the peer's data. Previous versions used mss_clamp 2516 * here. I don't know if the value based on our guesses 2517 * of peer's MSS is better for the performance. It's more correct 2518 * but may be worse for the performance because of rcv_mss 2519 * fluctuations. --SAW 1998/11/1 2520 */ 2521 int mss = icsk->icsk_ack.rcv_mss; 2522 int free_space = tcp_space(sk); 2523 int allowed_space = tcp_full_space(sk); 2524 int full_space = min_t(int, tp->window_clamp, allowed_space); 2525 int window; 2526 2527 if (unlikely(mss > full_space)) { 2528 mss = full_space; 2529 if (mss <= 0) 2530 return 0; 2531 } 2532 if (free_space < (full_space >> 1)) { 2533 icsk->icsk_ack.quick = 0; 2534 2535 if (tcp_under_memory_pressure(sk)) 2536 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2537 4U * tp->advmss); 2538 2539 /* free_space might become our new window, make sure we don't 2540 * increase it due to wscale. 2541 */ 2542 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2543 2544 /* if free space is less than mss estimate, or is below 1/16th 2545 * of the maximum allowed, try to move to zero-window, else 2546 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2547 * new incoming data is dropped due to memory limits. 2548 * With large window, mss test triggers way too late in order 2549 * to announce zero window in time before rmem limit kicks in. 2550 */ 2551 if (free_space < (allowed_space >> 4) || free_space < mss) 2552 return 0; 2553 } 2554 2555 if (free_space > tp->rcv_ssthresh) 2556 free_space = tp->rcv_ssthresh; 2557 2558 /* Don't do rounding if we are using window scaling, since the 2559 * scaled window will not line up with the MSS boundary anyway. 2560 */ 2561 window = tp->rcv_wnd; 2562 if (tp->rx_opt.rcv_wscale) { 2563 window = free_space; 2564 2565 /* Advertise enough space so that it won't get scaled away. 2566 * Import case: prevent zero window announcement if 2567 * 1<<rcv_wscale > mss. 2568 */ 2569 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2570 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2571 << tp->rx_opt.rcv_wscale); 2572 } else { 2573 /* Get the largest window that is a nice multiple of mss. 2574 * Window clamp already applied above. 2575 * If our current window offering is within 1 mss of the 2576 * free space we just keep it. This prevents the divide 2577 * and multiply from happening most of the time. 2578 * We also don't do any window rounding when the free space 2579 * is too small. 2580 */ 2581 if (window <= free_space - mss || window > free_space) 2582 window = (free_space / mss) * mss; 2583 else if (mss == full_space && 2584 free_space > window + (full_space >> 1)) 2585 window = free_space; 2586 } 2587 2588 return window; 2589 } 2590 2591 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2592 const struct sk_buff *next_skb) 2593 { 2594 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2595 const struct skb_shared_info *next_shinfo = 2596 skb_shinfo(next_skb); 2597 struct skb_shared_info *shinfo = skb_shinfo(skb); 2598 2599 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2600 shinfo->tskey = next_shinfo->tskey; 2601 TCP_SKB_CB(skb)->txstamp_ack |= 2602 TCP_SKB_CB(next_skb)->txstamp_ack; 2603 } 2604 } 2605 2606 /* Collapses two adjacent SKB's during retransmission. */ 2607 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2608 { 2609 struct tcp_sock *tp = tcp_sk(sk); 2610 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2611 int skb_size, next_skb_size; 2612 2613 skb_size = skb->len; 2614 next_skb_size = next_skb->len; 2615 2616 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2617 2618 if (next_skb_size) { 2619 if (next_skb_size <= skb_availroom(skb)) 2620 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2621 next_skb_size); 2622 else if (!skb_shift(skb, next_skb, next_skb_size)) 2623 return false; 2624 } 2625 tcp_highest_sack_combine(sk, next_skb, skb); 2626 2627 tcp_unlink_write_queue(next_skb, sk); 2628 2629 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2630 skb->ip_summed = CHECKSUM_PARTIAL; 2631 2632 if (skb->ip_summed != CHECKSUM_PARTIAL) 2633 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2634 2635 /* Update sequence range on original skb. */ 2636 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2637 2638 /* Merge over control information. This moves PSH/FIN etc. over */ 2639 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2640 2641 /* All done, get rid of second SKB and account for it so 2642 * packet counting does not break. 2643 */ 2644 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2645 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2646 2647 /* changed transmit queue under us so clear hints */ 2648 tcp_clear_retrans_hints_partial(tp); 2649 if (next_skb == tp->retransmit_skb_hint) 2650 tp->retransmit_skb_hint = skb; 2651 2652 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2653 2654 tcp_skb_collapse_tstamp(skb, next_skb); 2655 2656 sk_wmem_free_skb(sk, next_skb); 2657 return true; 2658 } 2659 2660 /* Check if coalescing SKBs is legal. */ 2661 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2662 { 2663 if (tcp_skb_pcount(skb) > 1) 2664 return false; 2665 if (skb_cloned(skb)) 2666 return false; 2667 if (skb == tcp_send_head(sk)) 2668 return false; 2669 /* Some heuristics for collapsing over SACK'd could be invented */ 2670 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2671 return false; 2672 2673 return true; 2674 } 2675 2676 /* Collapse packets in the retransmit queue to make to create 2677 * less packets on the wire. This is only done on retransmission. 2678 */ 2679 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2680 int space) 2681 { 2682 struct tcp_sock *tp = tcp_sk(sk); 2683 struct sk_buff *skb = to, *tmp; 2684 bool first = true; 2685 2686 if (!sysctl_tcp_retrans_collapse) 2687 return; 2688 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2689 return; 2690 2691 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2692 if (!tcp_can_collapse(sk, skb)) 2693 break; 2694 2695 if (!tcp_skb_can_collapse_to(to)) 2696 break; 2697 2698 space -= skb->len; 2699 2700 if (first) { 2701 first = false; 2702 continue; 2703 } 2704 2705 if (space < 0) 2706 break; 2707 2708 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2709 break; 2710 2711 if (!tcp_collapse_retrans(sk, to)) 2712 break; 2713 } 2714 } 2715 2716 /* This retransmits one SKB. Policy decisions and retransmit queue 2717 * state updates are done by the caller. Returns non-zero if an 2718 * error occurred which prevented the send. 2719 */ 2720 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2721 { 2722 struct inet_connection_sock *icsk = inet_csk(sk); 2723 struct tcp_sock *tp = tcp_sk(sk); 2724 unsigned int cur_mss; 2725 int diff, len, err; 2726 2727 2728 /* Inconclusive MTU probe */ 2729 if (icsk->icsk_mtup.probe_size) 2730 icsk->icsk_mtup.probe_size = 0; 2731 2732 /* Do not sent more than we queued. 1/4 is reserved for possible 2733 * copying overhead: fragmentation, tunneling, mangling etc. 2734 */ 2735 if (atomic_read(&sk->sk_wmem_alloc) > 2736 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2737 sk->sk_sndbuf)) 2738 return -EAGAIN; 2739 2740 if (skb_still_in_host_queue(sk, skb)) 2741 return -EBUSY; 2742 2743 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2744 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2745 BUG(); 2746 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2747 return -ENOMEM; 2748 } 2749 2750 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2751 return -EHOSTUNREACH; /* Routing failure or similar. */ 2752 2753 cur_mss = tcp_current_mss(sk); 2754 2755 /* If receiver has shrunk his window, and skb is out of 2756 * new window, do not retransmit it. The exception is the 2757 * case, when window is shrunk to zero. In this case 2758 * our retransmit serves as a zero window probe. 2759 */ 2760 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2761 TCP_SKB_CB(skb)->seq != tp->snd_una) 2762 return -EAGAIN; 2763 2764 len = cur_mss * segs; 2765 if (skb->len > len) { 2766 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC)) 2767 return -ENOMEM; /* We'll try again later. */ 2768 } else { 2769 if (skb_unclone(skb, GFP_ATOMIC)) 2770 return -ENOMEM; 2771 2772 diff = tcp_skb_pcount(skb); 2773 tcp_set_skb_tso_segs(skb, cur_mss); 2774 diff -= tcp_skb_pcount(skb); 2775 if (diff) 2776 tcp_adjust_pcount(sk, skb, diff); 2777 if (skb->len < cur_mss) 2778 tcp_retrans_try_collapse(sk, skb, cur_mss); 2779 } 2780 2781 /* RFC3168, section 6.1.1.1. ECN fallback */ 2782 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2783 tcp_ecn_clear_syn(sk, skb); 2784 2785 /* Update global and local TCP statistics. */ 2786 segs = tcp_skb_pcount(skb); 2787 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2788 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2789 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2790 tp->total_retrans += segs; 2791 2792 /* make sure skb->data is aligned on arches that require it 2793 * and check if ack-trimming & collapsing extended the headroom 2794 * beyond what csum_start can cover. 2795 */ 2796 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2797 skb_headroom(skb) >= 0xFFFF)) { 2798 struct sk_buff *nskb; 2799 2800 skb_mstamp_get(&skb->skb_mstamp); 2801 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2802 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2803 -ENOBUFS; 2804 } else { 2805 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2806 } 2807 2808 if (likely(!err)) { 2809 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2810 } else if (err != -EBUSY) { 2811 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2812 } 2813 return err; 2814 } 2815 2816 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2817 { 2818 struct tcp_sock *tp = tcp_sk(sk); 2819 int err = __tcp_retransmit_skb(sk, skb, segs); 2820 2821 if (err == 0) { 2822 #if FASTRETRANS_DEBUG > 0 2823 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2824 net_dbg_ratelimited("retrans_out leaked\n"); 2825 } 2826 #endif 2827 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2828 tp->retrans_out += tcp_skb_pcount(skb); 2829 2830 /* Save stamp of the first retransmit. */ 2831 if (!tp->retrans_stamp) 2832 tp->retrans_stamp = tcp_skb_timestamp(skb); 2833 2834 } 2835 2836 if (tp->undo_retrans < 0) 2837 tp->undo_retrans = 0; 2838 tp->undo_retrans += tcp_skb_pcount(skb); 2839 return err; 2840 } 2841 2842 /* This gets called after a retransmit timeout, and the initially 2843 * retransmitted data is acknowledged. It tries to continue 2844 * resending the rest of the retransmit queue, until either 2845 * we've sent it all or the congestion window limit is reached. 2846 * If doing SACK, the first ACK which comes back for a timeout 2847 * based retransmit packet might feed us FACK information again. 2848 * If so, we use it to avoid unnecessarily retransmissions. 2849 */ 2850 void tcp_xmit_retransmit_queue(struct sock *sk) 2851 { 2852 const struct inet_connection_sock *icsk = inet_csk(sk); 2853 struct tcp_sock *tp = tcp_sk(sk); 2854 struct sk_buff *skb; 2855 struct sk_buff *hole = NULL; 2856 u32 max_segs; 2857 int mib_idx; 2858 2859 if (!tp->packets_out) 2860 return; 2861 2862 if (tp->retransmit_skb_hint) { 2863 skb = tp->retransmit_skb_hint; 2864 } else { 2865 skb = tcp_write_queue_head(sk); 2866 } 2867 2868 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2869 tcp_for_write_queue_from(skb, sk) { 2870 __u8 sacked; 2871 int segs; 2872 2873 if (skb == tcp_send_head(sk)) 2874 break; 2875 /* we could do better than to assign each time */ 2876 if (!hole) 2877 tp->retransmit_skb_hint = skb; 2878 2879 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2880 if (segs <= 0) 2881 return; 2882 sacked = TCP_SKB_CB(skb)->sacked; 2883 /* In case tcp_shift_skb_data() have aggregated large skbs, 2884 * we need to make sure not sending too bigs TSO packets 2885 */ 2886 segs = min_t(int, segs, max_segs); 2887 2888 if (tp->retrans_out >= tp->lost_out) { 2889 break; 2890 } else if (!(sacked & TCPCB_LOST)) { 2891 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2892 hole = skb; 2893 continue; 2894 2895 } else { 2896 if (icsk->icsk_ca_state != TCP_CA_Loss) 2897 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2898 else 2899 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2900 } 2901 2902 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2903 continue; 2904 2905 if (tcp_small_queue_check(sk, skb, 1)) 2906 return; 2907 2908 if (tcp_retransmit_skb(sk, skb, segs)) 2909 return; 2910 2911 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 2912 2913 if (tcp_in_cwnd_reduction(sk)) 2914 tp->prr_out += tcp_skb_pcount(skb); 2915 2916 if (skb == tcp_write_queue_head(sk) && 2917 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 2918 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2919 inet_csk(sk)->icsk_rto, 2920 TCP_RTO_MAX); 2921 } 2922 } 2923 2924 /* We allow to exceed memory limits for FIN packets to expedite 2925 * connection tear down and (memory) recovery. 2926 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2927 * or even be forced to close flow without any FIN. 2928 * In general, we want to allow one skb per socket to avoid hangs 2929 * with edge trigger epoll() 2930 */ 2931 void sk_forced_mem_schedule(struct sock *sk, int size) 2932 { 2933 int amt; 2934 2935 if (size <= sk->sk_forward_alloc) 2936 return; 2937 amt = sk_mem_pages(size); 2938 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2939 sk_memory_allocated_add(sk, amt); 2940 2941 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2942 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 2943 } 2944 2945 /* Send a FIN. The caller locks the socket for us. 2946 * We should try to send a FIN packet really hard, but eventually give up. 2947 */ 2948 void tcp_send_fin(struct sock *sk) 2949 { 2950 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 2951 struct tcp_sock *tp = tcp_sk(sk); 2952 2953 /* Optimization, tack on the FIN if we have one skb in write queue and 2954 * this skb was not yet sent, or we are under memory pressure. 2955 * Note: in the latter case, FIN packet will be sent after a timeout, 2956 * as TCP stack thinks it has already been transmitted. 2957 */ 2958 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 2959 coalesce: 2960 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 2961 TCP_SKB_CB(tskb)->end_seq++; 2962 tp->write_seq++; 2963 if (!tcp_send_head(sk)) { 2964 /* This means tskb was already sent. 2965 * Pretend we included the FIN on previous transmit. 2966 * We need to set tp->snd_nxt to the value it would have 2967 * if FIN had been sent. This is because retransmit path 2968 * does not change tp->snd_nxt. 2969 */ 2970 tp->snd_nxt++; 2971 return; 2972 } 2973 } else { 2974 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 2975 if (unlikely(!skb)) { 2976 if (tskb) 2977 goto coalesce; 2978 return; 2979 } 2980 skb_reserve(skb, MAX_TCP_HEADER); 2981 sk_forced_mem_schedule(sk, skb->truesize); 2982 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2983 tcp_init_nondata_skb(skb, tp->write_seq, 2984 TCPHDR_ACK | TCPHDR_FIN); 2985 tcp_queue_skb(sk, skb); 2986 } 2987 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 2988 } 2989 2990 /* We get here when a process closes a file descriptor (either due to 2991 * an explicit close() or as a byproduct of exit()'ing) and there 2992 * was unread data in the receive queue. This behavior is recommended 2993 * by RFC 2525, section 2.17. -DaveM 2994 */ 2995 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2996 { 2997 struct sk_buff *skb; 2998 2999 /* NOTE: No TCP options attached and we never retransmit this. */ 3000 skb = alloc_skb(MAX_TCP_HEADER, priority); 3001 if (!skb) { 3002 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3003 return; 3004 } 3005 3006 /* Reserve space for headers and prepare control bits. */ 3007 skb_reserve(skb, MAX_TCP_HEADER); 3008 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3009 TCPHDR_ACK | TCPHDR_RST); 3010 skb_mstamp_get(&skb->skb_mstamp); 3011 /* Send it off. */ 3012 if (tcp_transmit_skb(sk, skb, 0, priority)) 3013 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3014 3015 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3016 } 3017 3018 /* Send a crossed SYN-ACK during socket establishment. 3019 * WARNING: This routine must only be called when we have already sent 3020 * a SYN packet that crossed the incoming SYN that caused this routine 3021 * to get called. If this assumption fails then the initial rcv_wnd 3022 * and rcv_wscale values will not be correct. 3023 */ 3024 int tcp_send_synack(struct sock *sk) 3025 { 3026 struct sk_buff *skb; 3027 3028 skb = tcp_write_queue_head(sk); 3029 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3030 pr_debug("%s: wrong queue state\n", __func__); 3031 return -EFAULT; 3032 } 3033 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3034 if (skb_cloned(skb)) { 3035 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 3036 if (!nskb) 3037 return -ENOMEM; 3038 tcp_unlink_write_queue(skb, sk); 3039 __skb_header_release(nskb); 3040 __tcp_add_write_queue_head(sk, nskb); 3041 sk_wmem_free_skb(sk, skb); 3042 sk->sk_wmem_queued += nskb->truesize; 3043 sk_mem_charge(sk, nskb->truesize); 3044 skb = nskb; 3045 } 3046 3047 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3048 tcp_ecn_send_synack(sk, skb); 3049 } 3050 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3051 } 3052 3053 /** 3054 * tcp_make_synack - Prepare a SYN-ACK. 3055 * sk: listener socket 3056 * dst: dst entry attached to the SYNACK 3057 * req: request_sock pointer 3058 * 3059 * Allocate one skb and build a SYNACK packet. 3060 * @dst is consumed : Caller should not use it again. 3061 */ 3062 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3063 struct request_sock *req, 3064 struct tcp_fastopen_cookie *foc, 3065 enum tcp_synack_type synack_type) 3066 { 3067 struct inet_request_sock *ireq = inet_rsk(req); 3068 const struct tcp_sock *tp = tcp_sk(sk); 3069 struct tcp_md5sig_key *md5 = NULL; 3070 struct tcp_out_options opts; 3071 struct sk_buff *skb; 3072 int tcp_header_size; 3073 struct tcphdr *th; 3074 int mss; 3075 3076 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3077 if (unlikely(!skb)) { 3078 dst_release(dst); 3079 return NULL; 3080 } 3081 /* Reserve space for headers. */ 3082 skb_reserve(skb, MAX_TCP_HEADER); 3083 3084 switch (synack_type) { 3085 case TCP_SYNACK_NORMAL: 3086 skb_set_owner_w(skb, req_to_sk(req)); 3087 break; 3088 case TCP_SYNACK_COOKIE: 3089 /* Under synflood, we do not attach skb to a socket, 3090 * to avoid false sharing. 3091 */ 3092 break; 3093 case TCP_SYNACK_FASTOPEN: 3094 /* sk is a const pointer, because we want to express multiple 3095 * cpu might call us concurrently. 3096 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3097 */ 3098 skb_set_owner_w(skb, (struct sock *)sk); 3099 break; 3100 } 3101 skb_dst_set(skb, dst); 3102 3103 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3104 3105 memset(&opts, 0, sizeof(opts)); 3106 #ifdef CONFIG_SYN_COOKIES 3107 if (unlikely(req->cookie_ts)) 3108 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 3109 else 3110 #endif 3111 skb_mstamp_get(&skb->skb_mstamp); 3112 3113 #ifdef CONFIG_TCP_MD5SIG 3114 rcu_read_lock(); 3115 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3116 #endif 3117 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3118 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 3119 sizeof(*th); 3120 3121 skb_push(skb, tcp_header_size); 3122 skb_reset_transport_header(skb); 3123 3124 th = (struct tcphdr *)skb->data; 3125 memset(th, 0, sizeof(struct tcphdr)); 3126 th->syn = 1; 3127 th->ack = 1; 3128 tcp_ecn_make_synack(req, th); 3129 th->source = htons(ireq->ir_num); 3130 th->dest = ireq->ir_rmt_port; 3131 /* Setting of flags are superfluous here for callers (and ECE is 3132 * not even correctly set) 3133 */ 3134 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3135 TCPHDR_SYN | TCPHDR_ACK); 3136 3137 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3138 /* XXX data is queued and acked as is. No buffer/window check */ 3139 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3140 3141 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3142 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3143 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3144 th->doff = (tcp_header_size >> 2); 3145 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3146 3147 #ifdef CONFIG_TCP_MD5SIG 3148 /* Okay, we have all we need - do the md5 hash if needed */ 3149 if (md5) 3150 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3151 md5, req_to_sk(req), skb); 3152 rcu_read_unlock(); 3153 #endif 3154 3155 /* Do not fool tcpdump (if any), clean our debris */ 3156 skb->tstamp = 0; 3157 return skb; 3158 } 3159 EXPORT_SYMBOL(tcp_make_synack); 3160 3161 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3162 { 3163 struct inet_connection_sock *icsk = inet_csk(sk); 3164 const struct tcp_congestion_ops *ca; 3165 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3166 3167 if (ca_key == TCP_CA_UNSPEC) 3168 return; 3169 3170 rcu_read_lock(); 3171 ca = tcp_ca_find_key(ca_key); 3172 if (likely(ca && try_module_get(ca->owner))) { 3173 module_put(icsk->icsk_ca_ops->owner); 3174 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3175 icsk->icsk_ca_ops = ca; 3176 } 3177 rcu_read_unlock(); 3178 } 3179 3180 /* Do all connect socket setups that can be done AF independent. */ 3181 static void tcp_connect_init(struct sock *sk) 3182 { 3183 const struct dst_entry *dst = __sk_dst_get(sk); 3184 struct tcp_sock *tp = tcp_sk(sk); 3185 __u8 rcv_wscale; 3186 3187 /* We'll fix this up when we get a response from the other end. 3188 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3189 */ 3190 tp->tcp_header_len = sizeof(struct tcphdr) + 3191 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 3192 3193 #ifdef CONFIG_TCP_MD5SIG 3194 if (tp->af_specific->md5_lookup(sk, sk)) 3195 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3196 #endif 3197 3198 /* If user gave his TCP_MAXSEG, record it to clamp */ 3199 if (tp->rx_opt.user_mss) 3200 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3201 tp->max_window = 0; 3202 tcp_mtup_init(sk); 3203 tcp_sync_mss(sk, dst_mtu(dst)); 3204 3205 tcp_ca_dst_init(sk, dst); 3206 3207 if (!tp->window_clamp) 3208 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3209 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3210 3211 tcp_initialize_rcv_mss(sk); 3212 3213 /* limit the window selection if the user enforce a smaller rx buffer */ 3214 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3215 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3216 tp->window_clamp = tcp_full_space(sk); 3217 3218 tcp_select_initial_window(tcp_full_space(sk), 3219 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3220 &tp->rcv_wnd, 3221 &tp->window_clamp, 3222 sysctl_tcp_window_scaling, 3223 &rcv_wscale, 3224 dst_metric(dst, RTAX_INITRWND)); 3225 3226 tp->rx_opt.rcv_wscale = rcv_wscale; 3227 tp->rcv_ssthresh = tp->rcv_wnd; 3228 3229 sk->sk_err = 0; 3230 sock_reset_flag(sk, SOCK_DONE); 3231 tp->snd_wnd = 0; 3232 tcp_init_wl(tp, 0); 3233 tp->snd_una = tp->write_seq; 3234 tp->snd_sml = tp->write_seq; 3235 tp->snd_up = tp->write_seq; 3236 tp->snd_nxt = tp->write_seq; 3237 3238 if (likely(!tp->repair)) 3239 tp->rcv_nxt = 0; 3240 else 3241 tp->rcv_tstamp = tcp_time_stamp; 3242 tp->rcv_wup = tp->rcv_nxt; 3243 tp->copied_seq = tp->rcv_nxt; 3244 3245 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3246 inet_csk(sk)->icsk_retransmits = 0; 3247 tcp_clear_retrans(tp); 3248 } 3249 3250 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3251 { 3252 struct tcp_sock *tp = tcp_sk(sk); 3253 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3254 3255 tcb->end_seq += skb->len; 3256 __skb_header_release(skb); 3257 __tcp_add_write_queue_tail(sk, skb); 3258 sk->sk_wmem_queued += skb->truesize; 3259 sk_mem_charge(sk, skb->truesize); 3260 tp->write_seq = tcb->end_seq; 3261 tp->packets_out += tcp_skb_pcount(skb); 3262 } 3263 3264 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3265 * queue a data-only packet after the regular SYN, such that regular SYNs 3266 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3267 * only the SYN sequence, the data are retransmitted in the first ACK. 3268 * If cookie is not cached or other error occurs, falls back to send a 3269 * regular SYN with Fast Open cookie request option. 3270 */ 3271 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3272 { 3273 struct tcp_sock *tp = tcp_sk(sk); 3274 struct tcp_fastopen_request *fo = tp->fastopen_req; 3275 int space, err = 0; 3276 struct sk_buff *syn_data; 3277 3278 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3279 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3280 goto fallback; 3281 3282 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3283 * user-MSS. Reserve maximum option space for middleboxes that add 3284 * private TCP options. The cost is reduced data space in SYN :( 3285 */ 3286 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3287 3288 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3289 MAX_TCP_OPTION_SPACE; 3290 3291 space = min_t(size_t, space, fo->size); 3292 3293 /* limit to order-0 allocations */ 3294 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3295 3296 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3297 if (!syn_data) 3298 goto fallback; 3299 syn_data->ip_summed = CHECKSUM_PARTIAL; 3300 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3301 if (space) { 3302 int copied = copy_from_iter(skb_put(syn_data, space), space, 3303 &fo->data->msg_iter); 3304 if (unlikely(!copied)) { 3305 kfree_skb(syn_data); 3306 goto fallback; 3307 } 3308 if (copied != space) { 3309 skb_trim(syn_data, copied); 3310 space = copied; 3311 } 3312 } 3313 /* No more data pending in inet_wait_for_connect() */ 3314 if (space == fo->size) 3315 fo->data = NULL; 3316 fo->copied = space; 3317 3318 tcp_connect_queue_skb(sk, syn_data); 3319 if (syn_data->len) 3320 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3321 3322 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3323 3324 syn->skb_mstamp = syn_data->skb_mstamp; 3325 3326 /* Now full SYN+DATA was cloned and sent (or not), 3327 * remove the SYN from the original skb (syn_data) 3328 * we keep in write queue in case of a retransmit, as we 3329 * also have the SYN packet (with no data) in the same queue. 3330 */ 3331 TCP_SKB_CB(syn_data)->seq++; 3332 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3333 if (!err) { 3334 tp->syn_data = (fo->copied > 0); 3335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3336 goto done; 3337 } 3338 3339 fallback: 3340 /* Send a regular SYN with Fast Open cookie request option */ 3341 if (fo->cookie.len > 0) 3342 fo->cookie.len = 0; 3343 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3344 if (err) 3345 tp->syn_fastopen = 0; 3346 done: 3347 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3348 return err; 3349 } 3350 3351 /* Build a SYN and send it off. */ 3352 int tcp_connect(struct sock *sk) 3353 { 3354 struct tcp_sock *tp = tcp_sk(sk); 3355 struct sk_buff *buff; 3356 int err; 3357 3358 tcp_connect_init(sk); 3359 3360 if (unlikely(tp->repair)) { 3361 tcp_finish_connect(sk, NULL); 3362 return 0; 3363 } 3364 3365 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3366 if (unlikely(!buff)) 3367 return -ENOBUFS; 3368 3369 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3370 tp->retrans_stamp = tcp_time_stamp; 3371 tcp_connect_queue_skb(sk, buff); 3372 tcp_ecn_send_syn(sk, buff); 3373 3374 /* Send off SYN; include data in Fast Open. */ 3375 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3376 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3377 if (err == -ECONNREFUSED) 3378 return err; 3379 3380 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3381 * in order to make this packet get counted in tcpOutSegs. 3382 */ 3383 tp->snd_nxt = tp->write_seq; 3384 tp->pushed_seq = tp->write_seq; 3385 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3386 3387 /* Timer for repeating the SYN until an answer. */ 3388 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3389 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3390 return 0; 3391 } 3392 EXPORT_SYMBOL(tcp_connect); 3393 3394 /* Send out a delayed ack, the caller does the policy checking 3395 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3396 * for details. 3397 */ 3398 void tcp_send_delayed_ack(struct sock *sk) 3399 { 3400 struct inet_connection_sock *icsk = inet_csk(sk); 3401 int ato = icsk->icsk_ack.ato; 3402 unsigned long timeout; 3403 3404 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3405 3406 if (ato > TCP_DELACK_MIN) { 3407 const struct tcp_sock *tp = tcp_sk(sk); 3408 int max_ato = HZ / 2; 3409 3410 if (icsk->icsk_ack.pingpong || 3411 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3412 max_ato = TCP_DELACK_MAX; 3413 3414 /* Slow path, intersegment interval is "high". */ 3415 3416 /* If some rtt estimate is known, use it to bound delayed ack. 3417 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3418 * directly. 3419 */ 3420 if (tp->srtt_us) { 3421 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3422 TCP_DELACK_MIN); 3423 3424 if (rtt < max_ato) 3425 max_ato = rtt; 3426 } 3427 3428 ato = min(ato, max_ato); 3429 } 3430 3431 /* Stay within the limit we were given */ 3432 timeout = jiffies + ato; 3433 3434 /* Use new timeout only if there wasn't a older one earlier. */ 3435 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3436 /* If delack timer was blocked or is about to expire, 3437 * send ACK now. 3438 */ 3439 if (icsk->icsk_ack.blocked || 3440 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3441 tcp_send_ack(sk); 3442 return; 3443 } 3444 3445 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3446 timeout = icsk->icsk_ack.timeout; 3447 } 3448 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3449 icsk->icsk_ack.timeout = timeout; 3450 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3451 } 3452 3453 /* This routine sends an ack and also updates the window. */ 3454 void tcp_send_ack(struct sock *sk) 3455 { 3456 struct sk_buff *buff; 3457 3458 /* If we have been reset, we may not send again. */ 3459 if (sk->sk_state == TCP_CLOSE) 3460 return; 3461 3462 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3463 3464 /* We are not putting this on the write queue, so 3465 * tcp_transmit_skb() will set the ownership to this 3466 * sock. 3467 */ 3468 buff = alloc_skb(MAX_TCP_HEADER, 3469 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3470 if (unlikely(!buff)) { 3471 inet_csk_schedule_ack(sk); 3472 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3473 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3474 TCP_DELACK_MAX, TCP_RTO_MAX); 3475 return; 3476 } 3477 3478 /* Reserve space for headers and prepare control bits. */ 3479 skb_reserve(buff, MAX_TCP_HEADER); 3480 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3481 3482 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3483 * too much. 3484 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3485 */ 3486 skb_set_tcp_pure_ack(buff); 3487 3488 /* Send it off, this clears delayed acks for us. */ 3489 skb_mstamp_get(&buff->skb_mstamp); 3490 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3491 } 3492 EXPORT_SYMBOL_GPL(tcp_send_ack); 3493 3494 /* This routine sends a packet with an out of date sequence 3495 * number. It assumes the other end will try to ack it. 3496 * 3497 * Question: what should we make while urgent mode? 3498 * 4.4BSD forces sending single byte of data. We cannot send 3499 * out of window data, because we have SND.NXT==SND.MAX... 3500 * 3501 * Current solution: to send TWO zero-length segments in urgent mode: 3502 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3503 * out-of-date with SND.UNA-1 to probe window. 3504 */ 3505 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3506 { 3507 struct tcp_sock *tp = tcp_sk(sk); 3508 struct sk_buff *skb; 3509 3510 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3511 skb = alloc_skb(MAX_TCP_HEADER, 3512 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3513 if (!skb) 3514 return -1; 3515 3516 /* Reserve space for headers and set control bits. */ 3517 skb_reserve(skb, MAX_TCP_HEADER); 3518 /* Use a previous sequence. This should cause the other 3519 * end to send an ack. Don't queue or clone SKB, just 3520 * send it. 3521 */ 3522 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3523 skb_mstamp_get(&skb->skb_mstamp); 3524 NET_INC_STATS(sock_net(sk), mib); 3525 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3526 } 3527 3528 void tcp_send_window_probe(struct sock *sk) 3529 { 3530 if (sk->sk_state == TCP_ESTABLISHED) { 3531 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3532 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3533 } 3534 } 3535 3536 /* Initiate keepalive or window probe from timer. */ 3537 int tcp_write_wakeup(struct sock *sk, int mib) 3538 { 3539 struct tcp_sock *tp = tcp_sk(sk); 3540 struct sk_buff *skb; 3541 3542 if (sk->sk_state == TCP_CLOSE) 3543 return -1; 3544 3545 skb = tcp_send_head(sk); 3546 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3547 int err; 3548 unsigned int mss = tcp_current_mss(sk); 3549 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3550 3551 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3552 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3553 3554 /* We are probing the opening of a window 3555 * but the window size is != 0 3556 * must have been a result SWS avoidance ( sender ) 3557 */ 3558 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3559 skb->len > mss) { 3560 seg_size = min(seg_size, mss); 3561 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3562 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3563 return -1; 3564 } else if (!tcp_skb_pcount(skb)) 3565 tcp_set_skb_tso_segs(skb, mss); 3566 3567 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3568 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3569 if (!err) 3570 tcp_event_new_data_sent(sk, skb); 3571 return err; 3572 } else { 3573 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3574 tcp_xmit_probe_skb(sk, 1, mib); 3575 return tcp_xmit_probe_skb(sk, 0, mib); 3576 } 3577 } 3578 3579 /* A window probe timeout has occurred. If window is not closed send 3580 * a partial packet else a zero probe. 3581 */ 3582 void tcp_send_probe0(struct sock *sk) 3583 { 3584 struct inet_connection_sock *icsk = inet_csk(sk); 3585 struct tcp_sock *tp = tcp_sk(sk); 3586 struct net *net = sock_net(sk); 3587 unsigned long probe_max; 3588 int err; 3589 3590 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3591 3592 if (tp->packets_out || !tcp_send_head(sk)) { 3593 /* Cancel probe timer, if it is not required. */ 3594 icsk->icsk_probes_out = 0; 3595 icsk->icsk_backoff = 0; 3596 return; 3597 } 3598 3599 if (err <= 0) { 3600 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3601 icsk->icsk_backoff++; 3602 icsk->icsk_probes_out++; 3603 probe_max = TCP_RTO_MAX; 3604 } else { 3605 /* If packet was not sent due to local congestion, 3606 * do not backoff and do not remember icsk_probes_out. 3607 * Let local senders to fight for local resources. 3608 * 3609 * Use accumulated backoff yet. 3610 */ 3611 if (!icsk->icsk_probes_out) 3612 icsk->icsk_probes_out = 1; 3613 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3614 } 3615 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3616 tcp_probe0_when(sk, probe_max), 3617 TCP_RTO_MAX); 3618 } 3619 3620 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3621 { 3622 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3623 struct flowi fl; 3624 int res; 3625 3626 tcp_rsk(req)->txhash = net_tx_rndhash(); 3627 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3628 if (!res) { 3629 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3630 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3631 if (unlikely(tcp_passive_fastopen(sk))) 3632 tcp_sk(sk)->total_retrans++; 3633 } 3634 return res; 3635 } 3636 EXPORT_SYMBOL(tcp_rtx_synack); 3637