xref: /linux/net/ipv4/tcp_output.c (revision 4cb584e0ee7df70fd0376aee60cf701855ea8c81)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 			   int push_one, gfp_t gfp);
67 
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 	struct inet_connection_sock *icsk = inet_csk(sk);
72 	struct tcp_sock *tp = tcp_sk(sk);
73 	unsigned int prior_packets = tp->packets_out;
74 
75 	tcp_advance_send_head(sk, skb);
76 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 		tcp_rearm_rto(sk);
81 
82 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 		      tcp_skb_pcount(skb));
84 }
85 
86 /* SND.NXT, if window was not shrunk.
87  * If window has been shrunk, what should we make? It is not clear at all.
88  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
89  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
90  * invalid. OK, let's make this for now:
91  */
92 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
93 {
94 	const struct tcp_sock *tp = tcp_sk(sk);
95 
96 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
97 		return tp->snd_nxt;
98 	else
99 		return tcp_wnd_end(tp);
100 }
101 
102 /* Calculate mss to advertise in SYN segment.
103  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
104  *
105  * 1. It is independent of path mtu.
106  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
107  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
108  *    attached devices, because some buggy hosts are confused by
109  *    large MSS.
110  * 4. We do not make 3, we advertise MSS, calculated from first
111  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
112  *    This may be overridden via information stored in routing table.
113  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
114  *    probably even Jumbo".
115  */
116 static __u16 tcp_advertise_mss(struct sock *sk)
117 {
118 	struct tcp_sock *tp = tcp_sk(sk);
119 	const struct dst_entry *dst = __sk_dst_get(sk);
120 	int mss = tp->advmss;
121 
122 	if (dst) {
123 		unsigned int metric = dst_metric_advmss(dst);
124 
125 		if (metric < mss) {
126 			mss = metric;
127 			tp->advmss = mss;
128 		}
129 	}
130 
131 	return (__u16)mss;
132 }
133 
134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
135  * This is the first part of cwnd validation mechanism.
136  */
137 void tcp_cwnd_restart(struct sock *sk, s32 delta)
138 {
139 	struct tcp_sock *tp = tcp_sk(sk);
140 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
141 	u32 cwnd = tp->snd_cwnd;
142 
143 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
144 
145 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
146 	restart_cwnd = min(restart_cwnd, cwnd);
147 
148 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
149 		cwnd >>= 1;
150 	tp->snd_cwnd = max(cwnd, restart_cwnd);
151 	tp->snd_cwnd_stamp = tcp_time_stamp;
152 	tp->snd_cwnd_used = 0;
153 }
154 
155 /* Congestion state accounting after a packet has been sent. */
156 static void tcp_event_data_sent(struct tcp_sock *tp,
157 				struct sock *sk)
158 {
159 	struct inet_connection_sock *icsk = inet_csk(sk);
160 	const u32 now = tcp_time_stamp;
161 
162 	if (tcp_packets_in_flight(tp) == 0)
163 		tcp_ca_event(sk, CA_EVENT_TX_START);
164 
165 	tp->lsndtime = now;
166 
167 	/* If it is a reply for ato after last received
168 	 * packet, enter pingpong mode.
169 	 */
170 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
171 		icsk->icsk_ack.pingpong = 1;
172 }
173 
174 /* Account for an ACK we sent. */
175 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
176 {
177 	tcp_dec_quickack_mode(sk, pkts);
178 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
179 }
180 
181 
182 u32 tcp_default_init_rwnd(u32 mss)
183 {
184 	/* Initial receive window should be twice of TCP_INIT_CWND to
185 	 * enable proper sending of new unsent data during fast recovery
186 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
187 	 * limit when mss is larger than 1460.
188 	 */
189 	u32 init_rwnd = TCP_INIT_CWND * 2;
190 
191 	if (mss > 1460)
192 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
193 	return init_rwnd;
194 }
195 
196 /* Determine a window scaling and initial window to offer.
197  * Based on the assumption that the given amount of space
198  * will be offered. Store the results in the tp structure.
199  * NOTE: for smooth operation initial space offering should
200  * be a multiple of mss if possible. We assume here that mss >= 1.
201  * This MUST be enforced by all callers.
202  */
203 void tcp_select_initial_window(int __space, __u32 mss,
204 			       __u32 *rcv_wnd, __u32 *window_clamp,
205 			       int wscale_ok, __u8 *rcv_wscale,
206 			       __u32 init_rcv_wnd)
207 {
208 	unsigned int space = (__space < 0 ? 0 : __space);
209 
210 	/* If no clamp set the clamp to the max possible scaled window */
211 	if (*window_clamp == 0)
212 		(*window_clamp) = (65535 << 14);
213 	space = min(*window_clamp, space);
214 
215 	/* Quantize space offering to a multiple of mss if possible. */
216 	if (space > mss)
217 		space = (space / mss) * mss;
218 
219 	/* NOTE: offering an initial window larger than 32767
220 	 * will break some buggy TCP stacks. If the admin tells us
221 	 * it is likely we could be speaking with such a buggy stack
222 	 * we will truncate our initial window offering to 32K-1
223 	 * unless the remote has sent us a window scaling option,
224 	 * which we interpret as a sign the remote TCP is not
225 	 * misinterpreting the window field as a signed quantity.
226 	 */
227 	if (sysctl_tcp_workaround_signed_windows)
228 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
229 	else
230 		(*rcv_wnd) = space;
231 
232 	(*rcv_wscale) = 0;
233 	if (wscale_ok) {
234 		/* Set window scaling on max possible window
235 		 * See RFC1323 for an explanation of the limit to 14
236 		 */
237 		space = max_t(u32, space, sysctl_tcp_rmem[2]);
238 		space = max_t(u32, space, sysctl_rmem_max);
239 		space = min_t(u32, space, *window_clamp);
240 		while (space > 65535 && (*rcv_wscale) < 14) {
241 			space >>= 1;
242 			(*rcv_wscale)++;
243 		}
244 	}
245 
246 	if (mss > (1 << *rcv_wscale)) {
247 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
248 			init_rcv_wnd = tcp_default_init_rwnd(mss);
249 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
250 	}
251 
252 	/* Set the clamp no higher than max representable value */
253 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
254 }
255 EXPORT_SYMBOL(tcp_select_initial_window);
256 
257 /* Chose a new window to advertise, update state in tcp_sock for the
258  * socket, and return result with RFC1323 scaling applied.  The return
259  * value can be stuffed directly into th->window for an outgoing
260  * frame.
261  */
262 static u16 tcp_select_window(struct sock *sk)
263 {
264 	struct tcp_sock *tp = tcp_sk(sk);
265 	u32 old_win = tp->rcv_wnd;
266 	u32 cur_win = tcp_receive_window(tp);
267 	u32 new_win = __tcp_select_window(sk);
268 
269 	/* Never shrink the offered window */
270 	if (new_win < cur_win) {
271 		/* Danger Will Robinson!
272 		 * Don't update rcv_wup/rcv_wnd here or else
273 		 * we will not be able to advertise a zero
274 		 * window in time.  --DaveM
275 		 *
276 		 * Relax Will Robinson.
277 		 */
278 		if (new_win == 0)
279 			NET_INC_STATS(sock_net(sk),
280 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
281 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
282 	}
283 	tp->rcv_wnd = new_win;
284 	tp->rcv_wup = tp->rcv_nxt;
285 
286 	/* Make sure we do not exceed the maximum possible
287 	 * scaled window.
288 	 */
289 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
290 		new_win = min(new_win, MAX_TCP_WINDOW);
291 	else
292 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
293 
294 	/* RFC1323 scaling applied */
295 	new_win >>= tp->rx_opt.rcv_wscale;
296 
297 	/* If we advertise zero window, disable fast path. */
298 	if (new_win == 0) {
299 		tp->pred_flags = 0;
300 		if (old_win)
301 			NET_INC_STATS(sock_net(sk),
302 				      LINUX_MIB_TCPTOZEROWINDOWADV);
303 	} else if (old_win == 0) {
304 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
305 	}
306 
307 	return new_win;
308 }
309 
310 /* Packet ECN state for a SYN-ACK */
311 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
312 {
313 	const struct tcp_sock *tp = tcp_sk(sk);
314 
315 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
316 	if (!(tp->ecn_flags & TCP_ECN_OK))
317 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
318 	else if (tcp_ca_needs_ecn(sk))
319 		INET_ECN_xmit(sk);
320 }
321 
322 /* Packet ECN state for a SYN.  */
323 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
324 {
325 	struct tcp_sock *tp = tcp_sk(sk);
326 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
327 		       tcp_ca_needs_ecn(sk);
328 
329 	if (!use_ecn) {
330 		const struct dst_entry *dst = __sk_dst_get(sk);
331 
332 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
333 			use_ecn = true;
334 	}
335 
336 	tp->ecn_flags = 0;
337 
338 	if (use_ecn) {
339 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340 		tp->ecn_flags = TCP_ECN_OK;
341 		if (tcp_ca_needs_ecn(sk))
342 			INET_ECN_xmit(sk);
343 	}
344 }
345 
346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
347 {
348 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
349 		/* tp->ecn_flags are cleared at a later point in time when
350 		 * SYN ACK is ultimatively being received.
351 		 */
352 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
353 }
354 
355 static void
356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
357 {
358 	if (inet_rsk(req)->ecn_ok)
359 		th->ece = 1;
360 }
361 
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
363  * be sent.
364  */
365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366 			 struct tcphdr *th, int tcp_header_len)
367 {
368 	struct tcp_sock *tp = tcp_sk(sk);
369 
370 	if (tp->ecn_flags & TCP_ECN_OK) {
371 		/* Not-retransmitted data segment: set ECT and inject CWR. */
372 		if (skb->len != tcp_header_len &&
373 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
374 			INET_ECN_xmit(sk);
375 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
377 				th->cwr = 1;
378 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
379 			}
380 		} else if (!tcp_ca_needs_ecn(sk)) {
381 			/* ACK or retransmitted segment: clear ECT|CE */
382 			INET_ECN_dontxmit(sk);
383 		}
384 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
385 			th->ece = 1;
386 	}
387 }
388 
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390  * auto increment end seqno.
391  */
392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
393 {
394 	skb->ip_summed = CHECKSUM_PARTIAL;
395 	skb->csum = 0;
396 
397 	TCP_SKB_CB(skb)->tcp_flags = flags;
398 	TCP_SKB_CB(skb)->sacked = 0;
399 
400 	tcp_skb_pcount_set(skb, 1);
401 
402 	TCP_SKB_CB(skb)->seq = seq;
403 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
404 		seq++;
405 	TCP_SKB_CB(skb)->end_seq = seq;
406 }
407 
408 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
409 {
410 	return tp->snd_una != tp->snd_up;
411 }
412 
413 #define OPTION_SACK_ADVERTISE	(1 << 0)
414 #define OPTION_TS		(1 << 1)
415 #define OPTION_MD5		(1 << 2)
416 #define OPTION_WSCALE		(1 << 3)
417 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
418 
419 struct tcp_out_options {
420 	u16 options;		/* bit field of OPTION_* */
421 	u16 mss;		/* 0 to disable */
422 	u8 ws;			/* window scale, 0 to disable */
423 	u8 num_sack_blocks;	/* number of SACK blocks to include */
424 	u8 hash_size;		/* bytes in hash_location */
425 	__u8 *hash_location;	/* temporary pointer, overloaded */
426 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
427 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
428 };
429 
430 /* Write previously computed TCP options to the packet.
431  *
432  * Beware: Something in the Internet is very sensitive to the ordering of
433  * TCP options, we learned this through the hard way, so be careful here.
434  * Luckily we can at least blame others for their non-compliance but from
435  * inter-operability perspective it seems that we're somewhat stuck with
436  * the ordering which we have been using if we want to keep working with
437  * those broken things (not that it currently hurts anybody as there isn't
438  * particular reason why the ordering would need to be changed).
439  *
440  * At least SACK_PERM as the first option is known to lead to a disaster
441  * (but it may well be that other scenarios fail similarly).
442  */
443 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
444 			      struct tcp_out_options *opts)
445 {
446 	u16 options = opts->options;	/* mungable copy */
447 
448 	if (unlikely(OPTION_MD5 & options)) {
449 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
450 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
451 		/* overload cookie hash location */
452 		opts->hash_location = (__u8 *)ptr;
453 		ptr += 4;
454 	}
455 
456 	if (unlikely(opts->mss)) {
457 		*ptr++ = htonl((TCPOPT_MSS << 24) |
458 			       (TCPOLEN_MSS << 16) |
459 			       opts->mss);
460 	}
461 
462 	if (likely(OPTION_TS & options)) {
463 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
464 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
465 				       (TCPOLEN_SACK_PERM << 16) |
466 				       (TCPOPT_TIMESTAMP << 8) |
467 				       TCPOLEN_TIMESTAMP);
468 			options &= ~OPTION_SACK_ADVERTISE;
469 		} else {
470 			*ptr++ = htonl((TCPOPT_NOP << 24) |
471 				       (TCPOPT_NOP << 16) |
472 				       (TCPOPT_TIMESTAMP << 8) |
473 				       TCPOLEN_TIMESTAMP);
474 		}
475 		*ptr++ = htonl(opts->tsval);
476 		*ptr++ = htonl(opts->tsecr);
477 	}
478 
479 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
480 		*ptr++ = htonl((TCPOPT_NOP << 24) |
481 			       (TCPOPT_NOP << 16) |
482 			       (TCPOPT_SACK_PERM << 8) |
483 			       TCPOLEN_SACK_PERM);
484 	}
485 
486 	if (unlikely(OPTION_WSCALE & options)) {
487 		*ptr++ = htonl((TCPOPT_NOP << 24) |
488 			       (TCPOPT_WINDOW << 16) |
489 			       (TCPOLEN_WINDOW << 8) |
490 			       opts->ws);
491 	}
492 
493 	if (unlikely(opts->num_sack_blocks)) {
494 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
495 			tp->duplicate_sack : tp->selective_acks;
496 		int this_sack;
497 
498 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
499 			       (TCPOPT_NOP  << 16) |
500 			       (TCPOPT_SACK <<  8) |
501 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
502 						     TCPOLEN_SACK_PERBLOCK)));
503 
504 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
505 		     ++this_sack) {
506 			*ptr++ = htonl(sp[this_sack].start_seq);
507 			*ptr++ = htonl(sp[this_sack].end_seq);
508 		}
509 
510 		tp->rx_opt.dsack = 0;
511 	}
512 
513 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
514 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
515 		u8 *p = (u8 *)ptr;
516 		u32 len; /* Fast Open option length */
517 
518 		if (foc->exp) {
519 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
520 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
521 				     TCPOPT_FASTOPEN_MAGIC);
522 			p += TCPOLEN_EXP_FASTOPEN_BASE;
523 		} else {
524 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
525 			*p++ = TCPOPT_FASTOPEN;
526 			*p++ = len;
527 		}
528 
529 		memcpy(p, foc->val, foc->len);
530 		if ((len & 3) == 2) {
531 			p[foc->len] = TCPOPT_NOP;
532 			p[foc->len + 1] = TCPOPT_NOP;
533 		}
534 		ptr += (len + 3) >> 2;
535 	}
536 }
537 
538 /* Compute TCP options for SYN packets. This is not the final
539  * network wire format yet.
540  */
541 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
542 				struct tcp_out_options *opts,
543 				struct tcp_md5sig_key **md5)
544 {
545 	struct tcp_sock *tp = tcp_sk(sk);
546 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
547 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
548 
549 #ifdef CONFIG_TCP_MD5SIG
550 	*md5 = tp->af_specific->md5_lookup(sk, sk);
551 	if (*md5) {
552 		opts->options |= OPTION_MD5;
553 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
554 	}
555 #else
556 	*md5 = NULL;
557 #endif
558 
559 	/* We always get an MSS option.  The option bytes which will be seen in
560 	 * normal data packets should timestamps be used, must be in the MSS
561 	 * advertised.  But we subtract them from tp->mss_cache so that
562 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
563 	 * fact here if necessary.  If we don't do this correctly, as a
564 	 * receiver we won't recognize data packets as being full sized when we
565 	 * should, and thus we won't abide by the delayed ACK rules correctly.
566 	 * SACKs don't matter, we never delay an ACK when we have any of those
567 	 * going out.  */
568 	opts->mss = tcp_advertise_mss(sk);
569 	remaining -= TCPOLEN_MSS_ALIGNED;
570 
571 	if (likely(sysctl_tcp_timestamps && !*md5)) {
572 		opts->options |= OPTION_TS;
573 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
574 		opts->tsecr = tp->rx_opt.ts_recent;
575 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
576 	}
577 	if (likely(sysctl_tcp_window_scaling)) {
578 		opts->ws = tp->rx_opt.rcv_wscale;
579 		opts->options |= OPTION_WSCALE;
580 		remaining -= TCPOLEN_WSCALE_ALIGNED;
581 	}
582 	if (likely(sysctl_tcp_sack)) {
583 		opts->options |= OPTION_SACK_ADVERTISE;
584 		if (unlikely(!(OPTION_TS & opts->options)))
585 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
586 	}
587 
588 	if (fastopen && fastopen->cookie.len >= 0) {
589 		u32 need = fastopen->cookie.len;
590 
591 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
592 					       TCPOLEN_FASTOPEN_BASE;
593 		need = (need + 3) & ~3U;  /* Align to 32 bits */
594 		if (remaining >= need) {
595 			opts->options |= OPTION_FAST_OPEN_COOKIE;
596 			opts->fastopen_cookie = &fastopen->cookie;
597 			remaining -= need;
598 			tp->syn_fastopen = 1;
599 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
600 		}
601 	}
602 
603 	return MAX_TCP_OPTION_SPACE - remaining;
604 }
605 
606 /* Set up TCP options for SYN-ACKs. */
607 static unsigned int tcp_synack_options(struct request_sock *req,
608 				       unsigned int mss, struct sk_buff *skb,
609 				       struct tcp_out_options *opts,
610 				       const struct tcp_md5sig_key *md5,
611 				       struct tcp_fastopen_cookie *foc)
612 {
613 	struct inet_request_sock *ireq = inet_rsk(req);
614 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
615 
616 #ifdef CONFIG_TCP_MD5SIG
617 	if (md5) {
618 		opts->options |= OPTION_MD5;
619 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
620 
621 		/* We can't fit any SACK blocks in a packet with MD5 + TS
622 		 * options. There was discussion about disabling SACK
623 		 * rather than TS in order to fit in better with old,
624 		 * buggy kernels, but that was deemed to be unnecessary.
625 		 */
626 		ireq->tstamp_ok &= !ireq->sack_ok;
627 	}
628 #endif
629 
630 	/* We always send an MSS option. */
631 	opts->mss = mss;
632 	remaining -= TCPOLEN_MSS_ALIGNED;
633 
634 	if (likely(ireq->wscale_ok)) {
635 		opts->ws = ireq->rcv_wscale;
636 		opts->options |= OPTION_WSCALE;
637 		remaining -= TCPOLEN_WSCALE_ALIGNED;
638 	}
639 	if (likely(ireq->tstamp_ok)) {
640 		opts->options |= OPTION_TS;
641 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
642 		opts->tsecr = req->ts_recent;
643 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
644 	}
645 	if (likely(ireq->sack_ok)) {
646 		opts->options |= OPTION_SACK_ADVERTISE;
647 		if (unlikely(!ireq->tstamp_ok))
648 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
649 	}
650 	if (foc != NULL && foc->len >= 0) {
651 		u32 need = foc->len;
652 
653 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
654 				   TCPOLEN_FASTOPEN_BASE;
655 		need = (need + 3) & ~3U;  /* Align to 32 bits */
656 		if (remaining >= need) {
657 			opts->options |= OPTION_FAST_OPEN_COOKIE;
658 			opts->fastopen_cookie = foc;
659 			remaining -= need;
660 		}
661 	}
662 
663 	return MAX_TCP_OPTION_SPACE - remaining;
664 }
665 
666 /* Compute TCP options for ESTABLISHED sockets. This is not the
667  * final wire format yet.
668  */
669 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
670 					struct tcp_out_options *opts,
671 					struct tcp_md5sig_key **md5)
672 {
673 	struct tcp_sock *tp = tcp_sk(sk);
674 	unsigned int size = 0;
675 	unsigned int eff_sacks;
676 
677 	opts->options = 0;
678 
679 #ifdef CONFIG_TCP_MD5SIG
680 	*md5 = tp->af_specific->md5_lookup(sk, sk);
681 	if (unlikely(*md5)) {
682 		opts->options |= OPTION_MD5;
683 		size += TCPOLEN_MD5SIG_ALIGNED;
684 	}
685 #else
686 	*md5 = NULL;
687 #endif
688 
689 	if (likely(tp->rx_opt.tstamp_ok)) {
690 		opts->options |= OPTION_TS;
691 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
692 		opts->tsecr = tp->rx_opt.ts_recent;
693 		size += TCPOLEN_TSTAMP_ALIGNED;
694 	}
695 
696 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
697 	if (unlikely(eff_sacks)) {
698 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
699 		opts->num_sack_blocks =
700 			min_t(unsigned int, eff_sacks,
701 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
702 			      TCPOLEN_SACK_PERBLOCK);
703 		size += TCPOLEN_SACK_BASE_ALIGNED +
704 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
705 	}
706 
707 	return size;
708 }
709 
710 
711 /* TCP SMALL QUEUES (TSQ)
712  *
713  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
714  * to reduce RTT and bufferbloat.
715  * We do this using a special skb destructor (tcp_wfree).
716  *
717  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
718  * needs to be reallocated in a driver.
719  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
720  *
721  * Since transmit from skb destructor is forbidden, we use a tasklet
722  * to process all sockets that eventually need to send more skbs.
723  * We use one tasklet per cpu, with its own queue of sockets.
724  */
725 struct tsq_tasklet {
726 	struct tasklet_struct	tasklet;
727 	struct list_head	head; /* queue of tcp sockets */
728 };
729 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
730 
731 static void tcp_tsq_handler(struct sock *sk)
732 {
733 	if ((1 << sk->sk_state) &
734 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
735 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
736 		struct tcp_sock *tp = tcp_sk(sk);
737 
738 		if (tp->lost_out > tp->retrans_out &&
739 		    tp->snd_cwnd > tcp_packets_in_flight(tp))
740 			tcp_xmit_retransmit_queue(sk);
741 
742 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
743 			       0, GFP_ATOMIC);
744 	}
745 }
746 /*
747  * One tasklet per cpu tries to send more skbs.
748  * We run in tasklet context but need to disable irqs when
749  * transferring tsq->head because tcp_wfree() might
750  * interrupt us (non NAPI drivers)
751  */
752 static void tcp_tasklet_func(unsigned long data)
753 {
754 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
755 	LIST_HEAD(list);
756 	unsigned long flags;
757 	struct list_head *q, *n;
758 	struct tcp_sock *tp;
759 	struct sock *sk;
760 
761 	local_irq_save(flags);
762 	list_splice_init(&tsq->head, &list);
763 	local_irq_restore(flags);
764 
765 	list_for_each_safe(q, n, &list) {
766 		tp = list_entry(q, struct tcp_sock, tsq_node);
767 		list_del(&tp->tsq_node);
768 
769 		sk = (struct sock *)tp;
770 		smp_mb__before_atomic();
771 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
772 
773 		if (!sk->sk_lock.owned &&
774 		    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
775 			bh_lock_sock(sk);
776 			if (!sock_owned_by_user(sk)) {
777 				clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
778 				tcp_tsq_handler(sk);
779 			}
780 			bh_unlock_sock(sk);
781 		}
782 
783 		sk_free(sk);
784 	}
785 }
786 
787 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
788 			  TCPF_WRITE_TIMER_DEFERRED |	\
789 			  TCPF_DELACK_TIMER_DEFERRED |	\
790 			  TCPF_MTU_REDUCED_DEFERRED)
791 /**
792  * tcp_release_cb - tcp release_sock() callback
793  * @sk: socket
794  *
795  * called from release_sock() to perform protocol dependent
796  * actions before socket release.
797  */
798 void tcp_release_cb(struct sock *sk)
799 {
800 	unsigned long flags, nflags;
801 
802 	/* perform an atomic operation only if at least one flag is set */
803 	do {
804 		flags = sk->sk_tsq_flags;
805 		if (!(flags & TCP_DEFERRED_ALL))
806 			return;
807 		nflags = flags & ~TCP_DEFERRED_ALL;
808 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
809 
810 	if (flags & TCPF_TSQ_DEFERRED)
811 		tcp_tsq_handler(sk);
812 
813 	/* Here begins the tricky part :
814 	 * We are called from release_sock() with :
815 	 * 1) BH disabled
816 	 * 2) sk_lock.slock spinlock held
817 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
818 	 *
819 	 * But following code is meant to be called from BH handlers,
820 	 * so we should keep BH disabled, but early release socket ownership
821 	 */
822 	sock_release_ownership(sk);
823 
824 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
825 		tcp_write_timer_handler(sk);
826 		__sock_put(sk);
827 	}
828 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
829 		tcp_delack_timer_handler(sk);
830 		__sock_put(sk);
831 	}
832 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
833 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
834 		__sock_put(sk);
835 	}
836 }
837 EXPORT_SYMBOL(tcp_release_cb);
838 
839 void __init tcp_tasklet_init(void)
840 {
841 	int i;
842 
843 	for_each_possible_cpu(i) {
844 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
845 
846 		INIT_LIST_HEAD(&tsq->head);
847 		tasklet_init(&tsq->tasklet,
848 			     tcp_tasklet_func,
849 			     (unsigned long)tsq);
850 	}
851 }
852 
853 /*
854  * Write buffer destructor automatically called from kfree_skb.
855  * We can't xmit new skbs from this context, as we might already
856  * hold qdisc lock.
857  */
858 void tcp_wfree(struct sk_buff *skb)
859 {
860 	struct sock *sk = skb->sk;
861 	struct tcp_sock *tp = tcp_sk(sk);
862 	unsigned long flags, nval, oval;
863 	int wmem;
864 
865 	/* Keep one reference on sk_wmem_alloc.
866 	 * Will be released by sk_free() from here or tcp_tasklet_func()
867 	 */
868 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
869 
870 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
871 	 * Wait until our queues (qdisc + devices) are drained.
872 	 * This gives :
873 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
874 	 * - chance for incoming ACK (processed by another cpu maybe)
875 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
876 	 */
877 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
878 		goto out;
879 
880 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
881 		struct tsq_tasklet *tsq;
882 		bool empty;
883 
884 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
885 			goto out;
886 
887 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
888 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
889 		if (nval != oval)
890 			continue;
891 
892 		/* queue this socket to tasklet queue */
893 		local_irq_save(flags);
894 		tsq = this_cpu_ptr(&tsq_tasklet);
895 		empty = list_empty(&tsq->head);
896 		list_add(&tp->tsq_node, &tsq->head);
897 		if (empty)
898 			tasklet_schedule(&tsq->tasklet);
899 		local_irq_restore(flags);
900 		return;
901 	}
902 out:
903 	sk_free(sk);
904 }
905 
906 /* This routine actually transmits TCP packets queued in by
907  * tcp_do_sendmsg().  This is used by both the initial
908  * transmission and possible later retransmissions.
909  * All SKB's seen here are completely headerless.  It is our
910  * job to build the TCP header, and pass the packet down to
911  * IP so it can do the same plus pass the packet off to the
912  * device.
913  *
914  * We are working here with either a clone of the original
915  * SKB, or a fresh unique copy made by the retransmit engine.
916  */
917 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
918 			    gfp_t gfp_mask)
919 {
920 	const struct inet_connection_sock *icsk = inet_csk(sk);
921 	struct inet_sock *inet;
922 	struct tcp_sock *tp;
923 	struct tcp_skb_cb *tcb;
924 	struct tcp_out_options opts;
925 	unsigned int tcp_options_size, tcp_header_size;
926 	struct tcp_md5sig_key *md5;
927 	struct tcphdr *th;
928 	int err;
929 
930 	BUG_ON(!skb || !tcp_skb_pcount(skb));
931 	tp = tcp_sk(sk);
932 
933 	if (clone_it) {
934 		skb_mstamp_get(&skb->skb_mstamp);
935 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
936 			- tp->snd_una;
937 		tcp_rate_skb_sent(sk, skb);
938 
939 		if (unlikely(skb_cloned(skb)))
940 			skb = pskb_copy(skb, gfp_mask);
941 		else
942 			skb = skb_clone(skb, gfp_mask);
943 		if (unlikely(!skb))
944 			return -ENOBUFS;
945 	}
946 
947 	inet = inet_sk(sk);
948 	tcb = TCP_SKB_CB(skb);
949 	memset(&opts, 0, sizeof(opts));
950 
951 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
952 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
953 	else
954 		tcp_options_size = tcp_established_options(sk, skb, &opts,
955 							   &md5);
956 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
957 
958 	/* if no packet is in qdisc/device queue, then allow XPS to select
959 	 * another queue. We can be called from tcp_tsq_handler()
960 	 * which holds one reference to sk_wmem_alloc.
961 	 *
962 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
963 	 * One way to get this would be to set skb->truesize = 2 on them.
964 	 */
965 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
966 
967 	/* If we had to use memory reserve to allocate this skb,
968 	 * this might cause drops if packet is looped back :
969 	 * Other socket might not have SOCK_MEMALLOC.
970 	 * Packets not looped back do not care about pfmemalloc.
971 	 */
972 	skb->pfmemalloc = 0;
973 
974 	skb_push(skb, tcp_header_size);
975 	skb_reset_transport_header(skb);
976 
977 	skb_orphan(skb);
978 	skb->sk = sk;
979 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
980 	skb_set_hash_from_sk(skb, sk);
981 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
982 
983 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
984 
985 	/* Build TCP header and checksum it. */
986 	th = (struct tcphdr *)skb->data;
987 	th->source		= inet->inet_sport;
988 	th->dest		= inet->inet_dport;
989 	th->seq			= htonl(tcb->seq);
990 	th->ack_seq		= htonl(tp->rcv_nxt);
991 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
992 					tcb->tcp_flags);
993 
994 	th->check		= 0;
995 	th->urg_ptr		= 0;
996 
997 	/* The urg_mode check is necessary during a below snd_una win probe */
998 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
999 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1000 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1001 			th->urg = 1;
1002 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1003 			th->urg_ptr = htons(0xFFFF);
1004 			th->urg = 1;
1005 		}
1006 	}
1007 
1008 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1009 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1010 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1011 		th->window      = htons(tcp_select_window(sk));
1012 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1013 	} else {
1014 		/* RFC1323: The window in SYN & SYN/ACK segments
1015 		 * is never scaled.
1016 		 */
1017 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1018 	}
1019 #ifdef CONFIG_TCP_MD5SIG
1020 	/* Calculate the MD5 hash, as we have all we need now */
1021 	if (md5) {
1022 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1023 		tp->af_specific->calc_md5_hash(opts.hash_location,
1024 					       md5, sk, skb);
1025 	}
1026 #endif
1027 
1028 	icsk->icsk_af_ops->send_check(sk, skb);
1029 
1030 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1031 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1032 
1033 	if (skb->len != tcp_header_size) {
1034 		tcp_event_data_sent(tp, sk);
1035 		tp->data_segs_out += tcp_skb_pcount(skb);
1036 	}
1037 
1038 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1039 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1040 			      tcp_skb_pcount(skb));
1041 
1042 	tp->segs_out += tcp_skb_pcount(skb);
1043 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1044 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1045 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1046 
1047 	/* Our usage of tstamp should remain private */
1048 	skb->tstamp = 0;
1049 
1050 	/* Cleanup our debris for IP stacks */
1051 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1052 			       sizeof(struct inet6_skb_parm)));
1053 
1054 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1055 
1056 	if (likely(err <= 0))
1057 		return err;
1058 
1059 	tcp_enter_cwr(sk);
1060 
1061 	return net_xmit_eval(err);
1062 }
1063 
1064 /* This routine just queues the buffer for sending.
1065  *
1066  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1067  * otherwise socket can stall.
1068  */
1069 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1070 {
1071 	struct tcp_sock *tp = tcp_sk(sk);
1072 
1073 	/* Advance write_seq and place onto the write_queue. */
1074 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1075 	__skb_header_release(skb);
1076 	tcp_add_write_queue_tail(sk, skb);
1077 	sk->sk_wmem_queued += skb->truesize;
1078 	sk_mem_charge(sk, skb->truesize);
1079 }
1080 
1081 /* Initialize TSO segments for a packet. */
1082 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1083 {
1084 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1085 		/* Avoid the costly divide in the normal
1086 		 * non-TSO case.
1087 		 */
1088 		tcp_skb_pcount_set(skb, 1);
1089 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1090 	} else {
1091 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1092 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1093 	}
1094 }
1095 
1096 /* When a modification to fackets out becomes necessary, we need to check
1097  * skb is counted to fackets_out or not.
1098  */
1099 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1100 				   int decr)
1101 {
1102 	struct tcp_sock *tp = tcp_sk(sk);
1103 
1104 	if (!tp->sacked_out || tcp_is_reno(tp))
1105 		return;
1106 
1107 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1108 		tp->fackets_out -= decr;
1109 }
1110 
1111 /* Pcount in the middle of the write queue got changed, we need to do various
1112  * tweaks to fix counters
1113  */
1114 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1115 {
1116 	struct tcp_sock *tp = tcp_sk(sk);
1117 
1118 	tp->packets_out -= decr;
1119 
1120 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1121 		tp->sacked_out -= decr;
1122 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1123 		tp->retrans_out -= decr;
1124 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1125 		tp->lost_out -= decr;
1126 
1127 	/* Reno case is special. Sigh... */
1128 	if (tcp_is_reno(tp) && decr > 0)
1129 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1130 
1131 	tcp_adjust_fackets_out(sk, skb, decr);
1132 
1133 	if (tp->lost_skb_hint &&
1134 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1135 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1136 		tp->lost_cnt_hint -= decr;
1137 
1138 	tcp_verify_left_out(tp);
1139 }
1140 
1141 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1142 {
1143 	return TCP_SKB_CB(skb)->txstamp_ack ||
1144 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1145 }
1146 
1147 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1148 {
1149 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1150 
1151 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1152 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1153 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1154 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1155 
1156 		shinfo->tx_flags &= ~tsflags;
1157 		shinfo2->tx_flags |= tsflags;
1158 		swap(shinfo->tskey, shinfo2->tskey);
1159 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1160 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1161 	}
1162 }
1163 
1164 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1165 {
1166 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1167 	TCP_SKB_CB(skb)->eor = 0;
1168 }
1169 
1170 /* Function to create two new TCP segments.  Shrinks the given segment
1171  * to the specified size and appends a new segment with the rest of the
1172  * packet to the list.  This won't be called frequently, I hope.
1173  * Remember, these are still headerless SKBs at this point.
1174  */
1175 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1176 		 unsigned int mss_now, gfp_t gfp)
1177 {
1178 	struct tcp_sock *tp = tcp_sk(sk);
1179 	struct sk_buff *buff;
1180 	int nsize, old_factor;
1181 	int nlen;
1182 	u8 flags;
1183 
1184 	if (WARN_ON(len > skb->len))
1185 		return -EINVAL;
1186 
1187 	nsize = skb_headlen(skb) - len;
1188 	if (nsize < 0)
1189 		nsize = 0;
1190 
1191 	if (skb_unclone(skb, gfp))
1192 		return -ENOMEM;
1193 
1194 	/* Get a new skb... force flag on. */
1195 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1196 	if (!buff)
1197 		return -ENOMEM; /* We'll just try again later. */
1198 
1199 	sk->sk_wmem_queued += buff->truesize;
1200 	sk_mem_charge(sk, buff->truesize);
1201 	nlen = skb->len - len - nsize;
1202 	buff->truesize += nlen;
1203 	skb->truesize -= nlen;
1204 
1205 	/* Correct the sequence numbers. */
1206 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1207 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1208 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1209 
1210 	/* PSH and FIN should only be set in the second packet. */
1211 	flags = TCP_SKB_CB(skb)->tcp_flags;
1212 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1213 	TCP_SKB_CB(buff)->tcp_flags = flags;
1214 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1215 	tcp_skb_fragment_eor(skb, buff);
1216 
1217 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1218 		/* Copy and checksum data tail into the new buffer. */
1219 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1220 						       skb_put(buff, nsize),
1221 						       nsize, 0);
1222 
1223 		skb_trim(skb, len);
1224 
1225 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1226 	} else {
1227 		skb->ip_summed = CHECKSUM_PARTIAL;
1228 		skb_split(skb, buff, len);
1229 	}
1230 
1231 	buff->ip_summed = skb->ip_summed;
1232 
1233 	buff->tstamp = skb->tstamp;
1234 	tcp_fragment_tstamp(skb, buff);
1235 
1236 	old_factor = tcp_skb_pcount(skb);
1237 
1238 	/* Fix up tso_factor for both original and new SKB.  */
1239 	tcp_set_skb_tso_segs(skb, mss_now);
1240 	tcp_set_skb_tso_segs(buff, mss_now);
1241 
1242 	/* Update delivered info for the new segment */
1243 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1244 
1245 	/* If this packet has been sent out already, we must
1246 	 * adjust the various packet counters.
1247 	 */
1248 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1249 		int diff = old_factor - tcp_skb_pcount(skb) -
1250 			tcp_skb_pcount(buff);
1251 
1252 		if (diff)
1253 			tcp_adjust_pcount(sk, skb, diff);
1254 	}
1255 
1256 	/* Link BUFF into the send queue. */
1257 	__skb_header_release(buff);
1258 	tcp_insert_write_queue_after(skb, buff, sk);
1259 
1260 	return 0;
1261 }
1262 
1263 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1264  * eventually). The difference is that pulled data not copied, but
1265  * immediately discarded.
1266  */
1267 static void __pskb_trim_head(struct sk_buff *skb, int len)
1268 {
1269 	struct skb_shared_info *shinfo;
1270 	int i, k, eat;
1271 
1272 	eat = min_t(int, len, skb_headlen(skb));
1273 	if (eat) {
1274 		__skb_pull(skb, eat);
1275 		len -= eat;
1276 		if (!len)
1277 			return;
1278 	}
1279 	eat = len;
1280 	k = 0;
1281 	shinfo = skb_shinfo(skb);
1282 	for (i = 0; i < shinfo->nr_frags; i++) {
1283 		int size = skb_frag_size(&shinfo->frags[i]);
1284 
1285 		if (size <= eat) {
1286 			skb_frag_unref(skb, i);
1287 			eat -= size;
1288 		} else {
1289 			shinfo->frags[k] = shinfo->frags[i];
1290 			if (eat) {
1291 				shinfo->frags[k].page_offset += eat;
1292 				skb_frag_size_sub(&shinfo->frags[k], eat);
1293 				eat = 0;
1294 			}
1295 			k++;
1296 		}
1297 	}
1298 	shinfo->nr_frags = k;
1299 
1300 	skb_reset_tail_pointer(skb);
1301 	skb->data_len -= len;
1302 	skb->len = skb->data_len;
1303 }
1304 
1305 /* Remove acked data from a packet in the transmit queue. */
1306 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1307 {
1308 	if (skb_unclone(skb, GFP_ATOMIC))
1309 		return -ENOMEM;
1310 
1311 	__pskb_trim_head(skb, len);
1312 
1313 	TCP_SKB_CB(skb)->seq += len;
1314 	skb->ip_summed = CHECKSUM_PARTIAL;
1315 
1316 	skb->truesize	     -= len;
1317 	sk->sk_wmem_queued   -= len;
1318 	sk_mem_uncharge(sk, len);
1319 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1320 
1321 	/* Any change of skb->len requires recalculation of tso factor. */
1322 	if (tcp_skb_pcount(skb) > 1)
1323 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1324 
1325 	return 0;
1326 }
1327 
1328 /* Calculate MSS not accounting any TCP options.  */
1329 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1330 {
1331 	const struct tcp_sock *tp = tcp_sk(sk);
1332 	const struct inet_connection_sock *icsk = inet_csk(sk);
1333 	int mss_now;
1334 
1335 	/* Calculate base mss without TCP options:
1336 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1337 	 */
1338 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1339 
1340 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1341 	if (icsk->icsk_af_ops->net_frag_header_len) {
1342 		const struct dst_entry *dst = __sk_dst_get(sk);
1343 
1344 		if (dst && dst_allfrag(dst))
1345 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1346 	}
1347 
1348 	/* Clamp it (mss_clamp does not include tcp options) */
1349 	if (mss_now > tp->rx_opt.mss_clamp)
1350 		mss_now = tp->rx_opt.mss_clamp;
1351 
1352 	/* Now subtract optional transport overhead */
1353 	mss_now -= icsk->icsk_ext_hdr_len;
1354 
1355 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1356 	if (mss_now < 48)
1357 		mss_now = 48;
1358 	return mss_now;
1359 }
1360 
1361 /* Calculate MSS. Not accounting for SACKs here.  */
1362 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1363 {
1364 	/* Subtract TCP options size, not including SACKs */
1365 	return __tcp_mtu_to_mss(sk, pmtu) -
1366 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1367 }
1368 
1369 /* Inverse of above */
1370 int tcp_mss_to_mtu(struct sock *sk, int mss)
1371 {
1372 	const struct tcp_sock *tp = tcp_sk(sk);
1373 	const struct inet_connection_sock *icsk = inet_csk(sk);
1374 	int mtu;
1375 
1376 	mtu = mss +
1377 	      tp->tcp_header_len +
1378 	      icsk->icsk_ext_hdr_len +
1379 	      icsk->icsk_af_ops->net_header_len;
1380 
1381 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1382 	if (icsk->icsk_af_ops->net_frag_header_len) {
1383 		const struct dst_entry *dst = __sk_dst_get(sk);
1384 
1385 		if (dst && dst_allfrag(dst))
1386 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1387 	}
1388 	return mtu;
1389 }
1390 EXPORT_SYMBOL(tcp_mss_to_mtu);
1391 
1392 /* MTU probing init per socket */
1393 void tcp_mtup_init(struct sock *sk)
1394 {
1395 	struct tcp_sock *tp = tcp_sk(sk);
1396 	struct inet_connection_sock *icsk = inet_csk(sk);
1397 	struct net *net = sock_net(sk);
1398 
1399 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1400 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1401 			       icsk->icsk_af_ops->net_header_len;
1402 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1403 	icsk->icsk_mtup.probe_size = 0;
1404 	if (icsk->icsk_mtup.enabled)
1405 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1406 }
1407 EXPORT_SYMBOL(tcp_mtup_init);
1408 
1409 /* This function synchronize snd mss to current pmtu/exthdr set.
1410 
1411    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1412    for TCP options, but includes only bare TCP header.
1413 
1414    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1415    It is minimum of user_mss and mss received with SYN.
1416    It also does not include TCP options.
1417 
1418    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1419 
1420    tp->mss_cache is current effective sending mss, including
1421    all tcp options except for SACKs. It is evaluated,
1422    taking into account current pmtu, but never exceeds
1423    tp->rx_opt.mss_clamp.
1424 
1425    NOTE1. rfc1122 clearly states that advertised MSS
1426    DOES NOT include either tcp or ip options.
1427 
1428    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1429    are READ ONLY outside this function.		--ANK (980731)
1430  */
1431 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1432 {
1433 	struct tcp_sock *tp = tcp_sk(sk);
1434 	struct inet_connection_sock *icsk = inet_csk(sk);
1435 	int mss_now;
1436 
1437 	if (icsk->icsk_mtup.search_high > pmtu)
1438 		icsk->icsk_mtup.search_high = pmtu;
1439 
1440 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1441 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1442 
1443 	/* And store cached results */
1444 	icsk->icsk_pmtu_cookie = pmtu;
1445 	if (icsk->icsk_mtup.enabled)
1446 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1447 	tp->mss_cache = mss_now;
1448 
1449 	return mss_now;
1450 }
1451 EXPORT_SYMBOL(tcp_sync_mss);
1452 
1453 /* Compute the current effective MSS, taking SACKs and IP options,
1454  * and even PMTU discovery events into account.
1455  */
1456 unsigned int tcp_current_mss(struct sock *sk)
1457 {
1458 	const struct tcp_sock *tp = tcp_sk(sk);
1459 	const struct dst_entry *dst = __sk_dst_get(sk);
1460 	u32 mss_now;
1461 	unsigned int header_len;
1462 	struct tcp_out_options opts;
1463 	struct tcp_md5sig_key *md5;
1464 
1465 	mss_now = tp->mss_cache;
1466 
1467 	if (dst) {
1468 		u32 mtu = dst_mtu(dst);
1469 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1470 			mss_now = tcp_sync_mss(sk, mtu);
1471 	}
1472 
1473 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1474 		     sizeof(struct tcphdr);
1475 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1476 	 * some common options. If this is an odd packet (because we have SACK
1477 	 * blocks etc) then our calculated header_len will be different, and
1478 	 * we have to adjust mss_now correspondingly */
1479 	if (header_len != tp->tcp_header_len) {
1480 		int delta = (int) header_len - tp->tcp_header_len;
1481 		mss_now -= delta;
1482 	}
1483 
1484 	return mss_now;
1485 }
1486 
1487 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1488  * As additional protections, we do not touch cwnd in retransmission phases,
1489  * and if application hit its sndbuf limit recently.
1490  */
1491 static void tcp_cwnd_application_limited(struct sock *sk)
1492 {
1493 	struct tcp_sock *tp = tcp_sk(sk);
1494 
1495 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1496 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1497 		/* Limited by application or receiver window. */
1498 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1499 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1500 		if (win_used < tp->snd_cwnd) {
1501 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1502 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1503 		}
1504 		tp->snd_cwnd_used = 0;
1505 	}
1506 	tp->snd_cwnd_stamp = tcp_time_stamp;
1507 }
1508 
1509 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1510 {
1511 	struct tcp_sock *tp = tcp_sk(sk);
1512 
1513 	/* Track the maximum number of outstanding packets in each
1514 	 * window, and remember whether we were cwnd-limited then.
1515 	 */
1516 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1517 	    tp->packets_out > tp->max_packets_out) {
1518 		tp->max_packets_out = tp->packets_out;
1519 		tp->max_packets_seq = tp->snd_nxt;
1520 		tp->is_cwnd_limited = is_cwnd_limited;
1521 	}
1522 
1523 	if (tcp_is_cwnd_limited(sk)) {
1524 		/* Network is feed fully. */
1525 		tp->snd_cwnd_used = 0;
1526 		tp->snd_cwnd_stamp = tcp_time_stamp;
1527 	} else {
1528 		/* Network starves. */
1529 		if (tp->packets_out > tp->snd_cwnd_used)
1530 			tp->snd_cwnd_used = tp->packets_out;
1531 
1532 		if (sysctl_tcp_slow_start_after_idle &&
1533 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1534 			tcp_cwnd_application_limited(sk);
1535 
1536 		/* The following conditions together indicate the starvation
1537 		 * is caused by insufficient sender buffer:
1538 		 * 1) just sent some data (see tcp_write_xmit)
1539 		 * 2) not cwnd limited (this else condition)
1540 		 * 3) no more data to send (null tcp_send_head )
1541 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1542 		 */
1543 		if (!tcp_send_head(sk) && sk->sk_socket &&
1544 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1545 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1546 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1547 	}
1548 }
1549 
1550 /* Minshall's variant of the Nagle send check. */
1551 static bool tcp_minshall_check(const struct tcp_sock *tp)
1552 {
1553 	return after(tp->snd_sml, tp->snd_una) &&
1554 		!after(tp->snd_sml, tp->snd_nxt);
1555 }
1556 
1557 /* Update snd_sml if this skb is under mss
1558  * Note that a TSO packet might end with a sub-mss segment
1559  * The test is really :
1560  * if ((skb->len % mss) != 0)
1561  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1562  * But we can avoid doing the divide again given we already have
1563  *  skb_pcount = skb->len / mss_now
1564  */
1565 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1566 				const struct sk_buff *skb)
1567 {
1568 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1569 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1570 }
1571 
1572 /* Return false, if packet can be sent now without violation Nagle's rules:
1573  * 1. It is full sized. (provided by caller in %partial bool)
1574  * 2. Or it contains FIN. (already checked by caller)
1575  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1576  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1577  *    With Minshall's modification: all sent small packets are ACKed.
1578  */
1579 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1580 			    int nonagle)
1581 {
1582 	return partial &&
1583 		((nonagle & TCP_NAGLE_CORK) ||
1584 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1585 }
1586 
1587 /* Return how many segs we'd like on a TSO packet,
1588  * to send one TSO packet per ms
1589  */
1590 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1591 		     int min_tso_segs)
1592 {
1593 	u32 bytes, segs;
1594 
1595 	bytes = min(sk->sk_pacing_rate >> 10,
1596 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1597 
1598 	/* Goal is to send at least one packet per ms,
1599 	 * not one big TSO packet every 100 ms.
1600 	 * This preserves ACK clocking and is consistent
1601 	 * with tcp_tso_should_defer() heuristic.
1602 	 */
1603 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1604 
1605 	return min_t(u32, segs, sk->sk_gso_max_segs);
1606 }
1607 EXPORT_SYMBOL(tcp_tso_autosize);
1608 
1609 /* Return the number of segments we want in the skb we are transmitting.
1610  * See if congestion control module wants to decide; otherwise, autosize.
1611  */
1612 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1613 {
1614 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1615 	u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1616 
1617 	return tso_segs ? :
1618 		tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1619 }
1620 
1621 /* Returns the portion of skb which can be sent right away */
1622 static unsigned int tcp_mss_split_point(const struct sock *sk,
1623 					const struct sk_buff *skb,
1624 					unsigned int mss_now,
1625 					unsigned int max_segs,
1626 					int nonagle)
1627 {
1628 	const struct tcp_sock *tp = tcp_sk(sk);
1629 	u32 partial, needed, window, max_len;
1630 
1631 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1632 	max_len = mss_now * max_segs;
1633 
1634 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1635 		return max_len;
1636 
1637 	needed = min(skb->len, window);
1638 
1639 	if (max_len <= needed)
1640 		return max_len;
1641 
1642 	partial = needed % mss_now;
1643 	/* If last segment is not a full MSS, check if Nagle rules allow us
1644 	 * to include this last segment in this skb.
1645 	 * Otherwise, we'll split the skb at last MSS boundary
1646 	 */
1647 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1648 		return needed - partial;
1649 
1650 	return needed;
1651 }
1652 
1653 /* Can at least one segment of SKB be sent right now, according to the
1654  * congestion window rules?  If so, return how many segments are allowed.
1655  */
1656 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1657 					 const struct sk_buff *skb)
1658 {
1659 	u32 in_flight, cwnd, halfcwnd;
1660 
1661 	/* Don't be strict about the congestion window for the final FIN.  */
1662 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1663 	    tcp_skb_pcount(skb) == 1)
1664 		return 1;
1665 
1666 	in_flight = tcp_packets_in_flight(tp);
1667 	cwnd = tp->snd_cwnd;
1668 	if (in_flight >= cwnd)
1669 		return 0;
1670 
1671 	/* For better scheduling, ensure we have at least
1672 	 * 2 GSO packets in flight.
1673 	 */
1674 	halfcwnd = max(cwnd >> 1, 1U);
1675 	return min(halfcwnd, cwnd - in_flight);
1676 }
1677 
1678 /* Initialize TSO state of a skb.
1679  * This must be invoked the first time we consider transmitting
1680  * SKB onto the wire.
1681  */
1682 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1683 {
1684 	int tso_segs = tcp_skb_pcount(skb);
1685 
1686 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1687 		tcp_set_skb_tso_segs(skb, mss_now);
1688 		tso_segs = tcp_skb_pcount(skb);
1689 	}
1690 	return tso_segs;
1691 }
1692 
1693 
1694 /* Return true if the Nagle test allows this packet to be
1695  * sent now.
1696  */
1697 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1698 				  unsigned int cur_mss, int nonagle)
1699 {
1700 	/* Nagle rule does not apply to frames, which sit in the middle of the
1701 	 * write_queue (they have no chances to get new data).
1702 	 *
1703 	 * This is implemented in the callers, where they modify the 'nonagle'
1704 	 * argument based upon the location of SKB in the send queue.
1705 	 */
1706 	if (nonagle & TCP_NAGLE_PUSH)
1707 		return true;
1708 
1709 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1710 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1711 		return true;
1712 
1713 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1714 		return true;
1715 
1716 	return false;
1717 }
1718 
1719 /* Does at least the first segment of SKB fit into the send window? */
1720 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1721 			     const struct sk_buff *skb,
1722 			     unsigned int cur_mss)
1723 {
1724 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1725 
1726 	if (skb->len > cur_mss)
1727 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1728 
1729 	return !after(end_seq, tcp_wnd_end(tp));
1730 }
1731 
1732 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1733  * should be put on the wire right now.  If so, it returns the number of
1734  * packets allowed by the congestion window.
1735  */
1736 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1737 				 unsigned int cur_mss, int nonagle)
1738 {
1739 	const struct tcp_sock *tp = tcp_sk(sk);
1740 	unsigned int cwnd_quota;
1741 
1742 	tcp_init_tso_segs(skb, cur_mss);
1743 
1744 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1745 		return 0;
1746 
1747 	cwnd_quota = tcp_cwnd_test(tp, skb);
1748 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1749 		cwnd_quota = 0;
1750 
1751 	return cwnd_quota;
1752 }
1753 
1754 /* Test if sending is allowed right now. */
1755 bool tcp_may_send_now(struct sock *sk)
1756 {
1757 	const struct tcp_sock *tp = tcp_sk(sk);
1758 	struct sk_buff *skb = tcp_send_head(sk);
1759 
1760 	return skb &&
1761 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1762 			     (tcp_skb_is_last(sk, skb) ?
1763 			      tp->nonagle : TCP_NAGLE_PUSH));
1764 }
1765 
1766 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1767  * which is put after SKB on the list.  It is very much like
1768  * tcp_fragment() except that it may make several kinds of assumptions
1769  * in order to speed up the splitting operation.  In particular, we
1770  * know that all the data is in scatter-gather pages, and that the
1771  * packet has never been sent out before (and thus is not cloned).
1772  */
1773 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1774 			unsigned int mss_now, gfp_t gfp)
1775 {
1776 	struct sk_buff *buff;
1777 	int nlen = skb->len - len;
1778 	u8 flags;
1779 
1780 	/* All of a TSO frame must be composed of paged data.  */
1781 	if (skb->len != skb->data_len)
1782 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1783 
1784 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1785 	if (unlikely(!buff))
1786 		return -ENOMEM;
1787 
1788 	sk->sk_wmem_queued += buff->truesize;
1789 	sk_mem_charge(sk, buff->truesize);
1790 	buff->truesize += nlen;
1791 	skb->truesize -= nlen;
1792 
1793 	/* Correct the sequence numbers. */
1794 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1795 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1796 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1797 
1798 	/* PSH and FIN should only be set in the second packet. */
1799 	flags = TCP_SKB_CB(skb)->tcp_flags;
1800 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1801 	TCP_SKB_CB(buff)->tcp_flags = flags;
1802 
1803 	/* This packet was never sent out yet, so no SACK bits. */
1804 	TCP_SKB_CB(buff)->sacked = 0;
1805 
1806 	tcp_skb_fragment_eor(skb, buff);
1807 
1808 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1809 	skb_split(skb, buff, len);
1810 	tcp_fragment_tstamp(skb, buff);
1811 
1812 	/* Fix up tso_factor for both original and new SKB.  */
1813 	tcp_set_skb_tso_segs(skb, mss_now);
1814 	tcp_set_skb_tso_segs(buff, mss_now);
1815 
1816 	/* Link BUFF into the send queue. */
1817 	__skb_header_release(buff);
1818 	tcp_insert_write_queue_after(skb, buff, sk);
1819 
1820 	return 0;
1821 }
1822 
1823 /* Try to defer sending, if possible, in order to minimize the amount
1824  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1825  *
1826  * This algorithm is from John Heffner.
1827  */
1828 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1829 				 bool *is_cwnd_limited, u32 max_segs)
1830 {
1831 	const struct inet_connection_sock *icsk = inet_csk(sk);
1832 	u32 age, send_win, cong_win, limit, in_flight;
1833 	struct tcp_sock *tp = tcp_sk(sk);
1834 	struct skb_mstamp now;
1835 	struct sk_buff *head;
1836 	int win_divisor;
1837 
1838 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1839 		goto send_now;
1840 
1841 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1842 		goto send_now;
1843 
1844 	/* Avoid bursty behavior by allowing defer
1845 	 * only if the last write was recent.
1846 	 */
1847 	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1848 		goto send_now;
1849 
1850 	in_flight = tcp_packets_in_flight(tp);
1851 
1852 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1853 
1854 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1855 
1856 	/* From in_flight test above, we know that cwnd > in_flight.  */
1857 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1858 
1859 	limit = min(send_win, cong_win);
1860 
1861 	/* If a full-sized TSO skb can be sent, do it. */
1862 	if (limit >= max_segs * tp->mss_cache)
1863 		goto send_now;
1864 
1865 	/* Middle in queue won't get any more data, full sendable already? */
1866 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1867 		goto send_now;
1868 
1869 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1870 	if (win_divisor) {
1871 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1872 
1873 		/* If at least some fraction of a window is available,
1874 		 * just use it.
1875 		 */
1876 		chunk /= win_divisor;
1877 		if (limit >= chunk)
1878 			goto send_now;
1879 	} else {
1880 		/* Different approach, try not to defer past a single
1881 		 * ACK.  Receiver should ACK every other full sized
1882 		 * frame, so if we have space for more than 3 frames
1883 		 * then send now.
1884 		 */
1885 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1886 			goto send_now;
1887 	}
1888 
1889 	head = tcp_write_queue_head(sk);
1890 	skb_mstamp_get(&now);
1891 	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1892 	/* If next ACK is likely to come too late (half srtt), do not defer */
1893 	if (age < (tp->srtt_us >> 4))
1894 		goto send_now;
1895 
1896 	/* Ok, it looks like it is advisable to defer. */
1897 
1898 	if (cong_win < send_win && cong_win <= skb->len)
1899 		*is_cwnd_limited = true;
1900 
1901 	return true;
1902 
1903 send_now:
1904 	return false;
1905 }
1906 
1907 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1908 {
1909 	struct inet_connection_sock *icsk = inet_csk(sk);
1910 	struct tcp_sock *tp = tcp_sk(sk);
1911 	struct net *net = sock_net(sk);
1912 	u32 interval;
1913 	s32 delta;
1914 
1915 	interval = net->ipv4.sysctl_tcp_probe_interval;
1916 	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1917 	if (unlikely(delta >= interval * HZ)) {
1918 		int mss = tcp_current_mss(sk);
1919 
1920 		/* Update current search range */
1921 		icsk->icsk_mtup.probe_size = 0;
1922 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1923 			sizeof(struct tcphdr) +
1924 			icsk->icsk_af_ops->net_header_len;
1925 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1926 
1927 		/* Update probe time stamp */
1928 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1929 	}
1930 }
1931 
1932 /* Create a new MTU probe if we are ready.
1933  * MTU probe is regularly attempting to increase the path MTU by
1934  * deliberately sending larger packets.  This discovers routing
1935  * changes resulting in larger path MTUs.
1936  *
1937  * Returns 0 if we should wait to probe (no cwnd available),
1938  *         1 if a probe was sent,
1939  *         -1 otherwise
1940  */
1941 static int tcp_mtu_probe(struct sock *sk)
1942 {
1943 	struct inet_connection_sock *icsk = inet_csk(sk);
1944 	struct tcp_sock *tp = tcp_sk(sk);
1945 	struct sk_buff *skb, *nskb, *next;
1946 	struct net *net = sock_net(sk);
1947 	int probe_size;
1948 	int size_needed;
1949 	int copy, len;
1950 	int mss_now;
1951 	int interval;
1952 
1953 	/* Not currently probing/verifying,
1954 	 * not in recovery,
1955 	 * have enough cwnd, and
1956 	 * not SACKing (the variable headers throw things off)
1957 	 */
1958 	if (likely(!icsk->icsk_mtup.enabled ||
1959 		   icsk->icsk_mtup.probe_size ||
1960 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1961 		   tp->snd_cwnd < 11 ||
1962 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
1963 		return -1;
1964 
1965 	/* Use binary search for probe_size between tcp_mss_base,
1966 	 * and current mss_clamp. if (search_high - search_low)
1967 	 * smaller than a threshold, backoff from probing.
1968 	 */
1969 	mss_now = tcp_current_mss(sk);
1970 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1971 				    icsk->icsk_mtup.search_low) >> 1);
1972 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1973 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1974 	/* When misfortune happens, we are reprobing actively,
1975 	 * and then reprobe timer has expired. We stick with current
1976 	 * probing process by not resetting search range to its orignal.
1977 	 */
1978 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1979 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1980 		/* Check whether enough time has elaplased for
1981 		 * another round of probing.
1982 		 */
1983 		tcp_mtu_check_reprobe(sk);
1984 		return -1;
1985 	}
1986 
1987 	/* Have enough data in the send queue to probe? */
1988 	if (tp->write_seq - tp->snd_nxt < size_needed)
1989 		return -1;
1990 
1991 	if (tp->snd_wnd < size_needed)
1992 		return -1;
1993 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1994 		return 0;
1995 
1996 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1997 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1998 		if (!tcp_packets_in_flight(tp))
1999 			return -1;
2000 		else
2001 			return 0;
2002 	}
2003 
2004 	/* We're allowed to probe.  Build it now. */
2005 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2006 	if (!nskb)
2007 		return -1;
2008 	sk->sk_wmem_queued += nskb->truesize;
2009 	sk_mem_charge(sk, nskb->truesize);
2010 
2011 	skb = tcp_send_head(sk);
2012 
2013 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2014 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2015 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2016 	TCP_SKB_CB(nskb)->sacked = 0;
2017 	nskb->csum = 0;
2018 	nskb->ip_summed = skb->ip_summed;
2019 
2020 	tcp_insert_write_queue_before(nskb, skb, sk);
2021 
2022 	len = 0;
2023 	tcp_for_write_queue_from_safe(skb, next, sk) {
2024 		copy = min_t(int, skb->len, probe_size - len);
2025 		if (nskb->ip_summed) {
2026 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2027 		} else {
2028 			__wsum csum = skb_copy_and_csum_bits(skb, 0,
2029 							     skb_put(nskb, copy),
2030 							     copy, 0);
2031 			nskb->csum = csum_block_add(nskb->csum, csum, len);
2032 		}
2033 
2034 		if (skb->len <= copy) {
2035 			/* We've eaten all the data from this skb.
2036 			 * Throw it away. */
2037 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2038 			tcp_unlink_write_queue(skb, sk);
2039 			sk_wmem_free_skb(sk, skb);
2040 		} else {
2041 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2042 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2043 			if (!skb_shinfo(skb)->nr_frags) {
2044 				skb_pull(skb, copy);
2045 				if (skb->ip_summed != CHECKSUM_PARTIAL)
2046 					skb->csum = csum_partial(skb->data,
2047 								 skb->len, 0);
2048 			} else {
2049 				__pskb_trim_head(skb, copy);
2050 				tcp_set_skb_tso_segs(skb, mss_now);
2051 			}
2052 			TCP_SKB_CB(skb)->seq += copy;
2053 		}
2054 
2055 		len += copy;
2056 
2057 		if (len >= probe_size)
2058 			break;
2059 	}
2060 	tcp_init_tso_segs(nskb, nskb->len);
2061 
2062 	/* We're ready to send.  If this fails, the probe will
2063 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2064 	 */
2065 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2066 		/* Decrement cwnd here because we are sending
2067 		 * effectively two packets. */
2068 		tp->snd_cwnd--;
2069 		tcp_event_new_data_sent(sk, nskb);
2070 
2071 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2072 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2073 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2074 
2075 		return 1;
2076 	}
2077 
2078 	return -1;
2079 }
2080 
2081 /* TCP Small Queues :
2082  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2083  * (These limits are doubled for retransmits)
2084  * This allows for :
2085  *  - better RTT estimation and ACK scheduling
2086  *  - faster recovery
2087  *  - high rates
2088  * Alas, some drivers / subsystems require a fair amount
2089  * of queued bytes to ensure line rate.
2090  * One example is wifi aggregation (802.11 AMPDU)
2091  */
2092 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2093 				  unsigned int factor)
2094 {
2095 	unsigned int limit;
2096 
2097 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2098 	limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2099 	limit <<= factor;
2100 
2101 	if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2102 		/* Always send the 1st or 2nd skb in write queue.
2103 		 * No need to wait for TX completion to call us back,
2104 		 * after softirq/tasklet schedule.
2105 		 * This helps when TX completions are delayed too much.
2106 		 */
2107 		if (skb == sk->sk_write_queue.next ||
2108 		    skb->prev == sk->sk_write_queue.next)
2109 			return false;
2110 
2111 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2112 		/* It is possible TX completion already happened
2113 		 * before we set TSQ_THROTTLED, so we must
2114 		 * test again the condition.
2115 		 */
2116 		smp_mb__after_atomic();
2117 		if (atomic_read(&sk->sk_wmem_alloc) > limit)
2118 			return true;
2119 	}
2120 	return false;
2121 }
2122 
2123 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2124 {
2125 	const u32 now = tcp_time_stamp;
2126 
2127 	if (tp->chrono_type > TCP_CHRONO_UNSPEC)
2128 		tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
2129 	tp->chrono_start = now;
2130 	tp->chrono_type = new;
2131 }
2132 
2133 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2134 {
2135 	struct tcp_sock *tp = tcp_sk(sk);
2136 
2137 	/* If there are multiple conditions worthy of tracking in a
2138 	 * chronograph then the highest priority enum takes precedence
2139 	 * over the other conditions. So that if something "more interesting"
2140 	 * starts happening, stop the previous chrono and start a new one.
2141 	 */
2142 	if (type > tp->chrono_type)
2143 		tcp_chrono_set(tp, type);
2144 }
2145 
2146 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2147 {
2148 	struct tcp_sock *tp = tcp_sk(sk);
2149 
2150 
2151 	/* There are multiple conditions worthy of tracking in a
2152 	 * chronograph, so that the highest priority enum takes
2153 	 * precedence over the other conditions (see tcp_chrono_start).
2154 	 * If a condition stops, we only stop chrono tracking if
2155 	 * it's the "most interesting" or current chrono we are
2156 	 * tracking and starts busy chrono if we have pending data.
2157 	 */
2158 	if (tcp_write_queue_empty(sk))
2159 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2160 	else if (type == tp->chrono_type)
2161 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2162 }
2163 
2164 /* This routine writes packets to the network.  It advances the
2165  * send_head.  This happens as incoming acks open up the remote
2166  * window for us.
2167  *
2168  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2169  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2170  * account rare use of URG, this is not a big flaw.
2171  *
2172  * Send at most one packet when push_one > 0. Temporarily ignore
2173  * cwnd limit to force at most one packet out when push_one == 2.
2174 
2175  * Returns true, if no segments are in flight and we have queued segments,
2176  * but cannot send anything now because of SWS or another problem.
2177  */
2178 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2179 			   int push_one, gfp_t gfp)
2180 {
2181 	struct tcp_sock *tp = tcp_sk(sk);
2182 	struct sk_buff *skb;
2183 	unsigned int tso_segs, sent_pkts;
2184 	int cwnd_quota;
2185 	int result;
2186 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2187 	u32 max_segs;
2188 
2189 	sent_pkts = 0;
2190 
2191 	if (!push_one) {
2192 		/* Do MTU probing. */
2193 		result = tcp_mtu_probe(sk);
2194 		if (!result) {
2195 			return false;
2196 		} else if (result > 0) {
2197 			sent_pkts = 1;
2198 		}
2199 	}
2200 
2201 	max_segs = tcp_tso_segs(sk, mss_now);
2202 	while ((skb = tcp_send_head(sk))) {
2203 		unsigned int limit;
2204 
2205 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2206 		BUG_ON(!tso_segs);
2207 
2208 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2209 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2210 			skb_mstamp_get(&skb->skb_mstamp);
2211 			goto repair; /* Skip network transmission */
2212 		}
2213 
2214 		cwnd_quota = tcp_cwnd_test(tp, skb);
2215 		if (!cwnd_quota) {
2216 			if (push_one == 2)
2217 				/* Force out a loss probe pkt. */
2218 				cwnd_quota = 1;
2219 			else
2220 				break;
2221 		}
2222 
2223 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2224 			is_rwnd_limited = true;
2225 			break;
2226 		}
2227 
2228 		if (tso_segs == 1) {
2229 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2230 						     (tcp_skb_is_last(sk, skb) ?
2231 						      nonagle : TCP_NAGLE_PUSH))))
2232 				break;
2233 		} else {
2234 			if (!push_one &&
2235 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2236 						 max_segs))
2237 				break;
2238 		}
2239 
2240 		limit = mss_now;
2241 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2242 			limit = tcp_mss_split_point(sk, skb, mss_now,
2243 						    min_t(unsigned int,
2244 							  cwnd_quota,
2245 							  max_segs),
2246 						    nonagle);
2247 
2248 		if (skb->len > limit &&
2249 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2250 			break;
2251 
2252 		if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2253 			clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2254 		if (tcp_small_queue_check(sk, skb, 0))
2255 			break;
2256 
2257 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2258 			break;
2259 
2260 repair:
2261 		/* Advance the send_head.  This one is sent out.
2262 		 * This call will increment packets_out.
2263 		 */
2264 		tcp_event_new_data_sent(sk, skb);
2265 
2266 		tcp_minshall_update(tp, mss_now, skb);
2267 		sent_pkts += tcp_skb_pcount(skb);
2268 
2269 		if (push_one)
2270 			break;
2271 	}
2272 
2273 	if (is_rwnd_limited)
2274 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2275 	else
2276 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2277 
2278 	if (likely(sent_pkts)) {
2279 		if (tcp_in_cwnd_reduction(sk))
2280 			tp->prr_out += sent_pkts;
2281 
2282 		/* Send one loss probe per tail loss episode. */
2283 		if (push_one != 2)
2284 			tcp_schedule_loss_probe(sk);
2285 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2286 		tcp_cwnd_validate(sk, is_cwnd_limited);
2287 		return false;
2288 	}
2289 	return !tp->packets_out && tcp_send_head(sk);
2290 }
2291 
2292 bool tcp_schedule_loss_probe(struct sock *sk)
2293 {
2294 	struct inet_connection_sock *icsk = inet_csk(sk);
2295 	struct tcp_sock *tp = tcp_sk(sk);
2296 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2297 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2298 
2299 	/* No consecutive loss probes. */
2300 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2301 		tcp_rearm_rto(sk);
2302 		return false;
2303 	}
2304 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2305 	 * finishes.
2306 	 */
2307 	if (tp->fastopen_rsk)
2308 		return false;
2309 
2310 	/* TLP is only scheduled when next timer event is RTO. */
2311 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2312 		return false;
2313 
2314 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2315 	 * in Open state, that are either limited by cwnd or application.
2316 	 */
2317 	if ((sysctl_tcp_early_retrans != 3 && sysctl_tcp_early_retrans != 4) ||
2318 	    !tp->packets_out || !tcp_is_sack(tp) ||
2319 	    icsk->icsk_ca_state != TCP_CA_Open)
2320 		return false;
2321 
2322 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2323 	     tcp_send_head(sk))
2324 		return false;
2325 
2326 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2327 	 * for delayed ack when there's one outstanding packet. If no RTT
2328 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2329 	 */
2330 	timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2331 	if (tp->packets_out == 1)
2332 		timeout = max_t(u32, timeout,
2333 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2334 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2335 
2336 	/* If RTO is shorter, just schedule TLP in its place. */
2337 	tlp_time_stamp = tcp_time_stamp + timeout;
2338 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2339 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2340 		s32 delta = rto_time_stamp - tcp_time_stamp;
2341 		if (delta > 0)
2342 			timeout = delta;
2343 	}
2344 
2345 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2346 				  TCP_RTO_MAX);
2347 	return true;
2348 }
2349 
2350 /* Thanks to skb fast clones, we can detect if a prior transmit of
2351  * a packet is still in a qdisc or driver queue.
2352  * In this case, there is very little point doing a retransmit !
2353  */
2354 static bool skb_still_in_host_queue(const struct sock *sk,
2355 				    const struct sk_buff *skb)
2356 {
2357 	if (unlikely(skb_fclone_busy(sk, skb))) {
2358 		NET_INC_STATS(sock_net(sk),
2359 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2360 		return true;
2361 	}
2362 	return false;
2363 }
2364 
2365 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2366  * retransmit the last segment.
2367  */
2368 void tcp_send_loss_probe(struct sock *sk)
2369 {
2370 	struct tcp_sock *tp = tcp_sk(sk);
2371 	struct sk_buff *skb;
2372 	int pcount;
2373 	int mss = tcp_current_mss(sk);
2374 
2375 	skb = tcp_send_head(sk);
2376 	if (skb) {
2377 		if (tcp_snd_wnd_test(tp, skb, mss)) {
2378 			pcount = tp->packets_out;
2379 			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2380 			if (tp->packets_out > pcount)
2381 				goto probe_sent;
2382 			goto rearm_timer;
2383 		}
2384 		skb = tcp_write_queue_prev(sk, skb);
2385 	} else {
2386 		skb = tcp_write_queue_tail(sk);
2387 	}
2388 
2389 	/* At most one outstanding TLP retransmission. */
2390 	if (tp->tlp_high_seq)
2391 		goto rearm_timer;
2392 
2393 	/* Retransmit last segment. */
2394 	if (WARN_ON(!skb))
2395 		goto rearm_timer;
2396 
2397 	if (skb_still_in_host_queue(sk, skb))
2398 		goto rearm_timer;
2399 
2400 	pcount = tcp_skb_pcount(skb);
2401 	if (WARN_ON(!pcount))
2402 		goto rearm_timer;
2403 
2404 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2405 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2406 					  GFP_ATOMIC)))
2407 			goto rearm_timer;
2408 		skb = tcp_write_queue_next(sk, skb);
2409 	}
2410 
2411 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2412 		goto rearm_timer;
2413 
2414 	if (__tcp_retransmit_skb(sk, skb, 1))
2415 		goto rearm_timer;
2416 
2417 	/* Record snd_nxt for loss detection. */
2418 	tp->tlp_high_seq = tp->snd_nxt;
2419 
2420 probe_sent:
2421 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2422 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2423 	inet_csk(sk)->icsk_pending = 0;
2424 rearm_timer:
2425 	tcp_rearm_rto(sk);
2426 }
2427 
2428 /* Push out any pending frames which were held back due to
2429  * TCP_CORK or attempt at coalescing tiny packets.
2430  * The socket must be locked by the caller.
2431  */
2432 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2433 			       int nonagle)
2434 {
2435 	/* If we are closed, the bytes will have to remain here.
2436 	 * In time closedown will finish, we empty the write queue and
2437 	 * all will be happy.
2438 	 */
2439 	if (unlikely(sk->sk_state == TCP_CLOSE))
2440 		return;
2441 
2442 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2443 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2444 		tcp_check_probe_timer(sk);
2445 }
2446 
2447 /* Send _single_ skb sitting at the send head. This function requires
2448  * true push pending frames to setup probe timer etc.
2449  */
2450 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2451 {
2452 	struct sk_buff *skb = tcp_send_head(sk);
2453 
2454 	BUG_ON(!skb || skb->len < mss_now);
2455 
2456 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2457 }
2458 
2459 /* This function returns the amount that we can raise the
2460  * usable window based on the following constraints
2461  *
2462  * 1. The window can never be shrunk once it is offered (RFC 793)
2463  * 2. We limit memory per socket
2464  *
2465  * RFC 1122:
2466  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2467  *  RECV.NEXT + RCV.WIN fixed until:
2468  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2469  *
2470  * i.e. don't raise the right edge of the window until you can raise
2471  * it at least MSS bytes.
2472  *
2473  * Unfortunately, the recommended algorithm breaks header prediction,
2474  * since header prediction assumes th->window stays fixed.
2475  *
2476  * Strictly speaking, keeping th->window fixed violates the receiver
2477  * side SWS prevention criteria. The problem is that under this rule
2478  * a stream of single byte packets will cause the right side of the
2479  * window to always advance by a single byte.
2480  *
2481  * Of course, if the sender implements sender side SWS prevention
2482  * then this will not be a problem.
2483  *
2484  * BSD seems to make the following compromise:
2485  *
2486  *	If the free space is less than the 1/4 of the maximum
2487  *	space available and the free space is less than 1/2 mss,
2488  *	then set the window to 0.
2489  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2490  *	Otherwise, just prevent the window from shrinking
2491  *	and from being larger than the largest representable value.
2492  *
2493  * This prevents incremental opening of the window in the regime
2494  * where TCP is limited by the speed of the reader side taking
2495  * data out of the TCP receive queue. It does nothing about
2496  * those cases where the window is constrained on the sender side
2497  * because the pipeline is full.
2498  *
2499  * BSD also seems to "accidentally" limit itself to windows that are a
2500  * multiple of MSS, at least until the free space gets quite small.
2501  * This would appear to be a side effect of the mbuf implementation.
2502  * Combining these two algorithms results in the observed behavior
2503  * of having a fixed window size at almost all times.
2504  *
2505  * Below we obtain similar behavior by forcing the offered window to
2506  * a multiple of the mss when it is feasible to do so.
2507  *
2508  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2509  * Regular options like TIMESTAMP are taken into account.
2510  */
2511 u32 __tcp_select_window(struct sock *sk)
2512 {
2513 	struct inet_connection_sock *icsk = inet_csk(sk);
2514 	struct tcp_sock *tp = tcp_sk(sk);
2515 	/* MSS for the peer's data.  Previous versions used mss_clamp
2516 	 * here.  I don't know if the value based on our guesses
2517 	 * of peer's MSS is better for the performance.  It's more correct
2518 	 * but may be worse for the performance because of rcv_mss
2519 	 * fluctuations.  --SAW  1998/11/1
2520 	 */
2521 	int mss = icsk->icsk_ack.rcv_mss;
2522 	int free_space = tcp_space(sk);
2523 	int allowed_space = tcp_full_space(sk);
2524 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2525 	int window;
2526 
2527 	if (unlikely(mss > full_space)) {
2528 		mss = full_space;
2529 		if (mss <= 0)
2530 			return 0;
2531 	}
2532 	if (free_space < (full_space >> 1)) {
2533 		icsk->icsk_ack.quick = 0;
2534 
2535 		if (tcp_under_memory_pressure(sk))
2536 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2537 					       4U * tp->advmss);
2538 
2539 		/* free_space might become our new window, make sure we don't
2540 		 * increase it due to wscale.
2541 		 */
2542 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2543 
2544 		/* if free space is less than mss estimate, or is below 1/16th
2545 		 * of the maximum allowed, try to move to zero-window, else
2546 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2547 		 * new incoming data is dropped due to memory limits.
2548 		 * With large window, mss test triggers way too late in order
2549 		 * to announce zero window in time before rmem limit kicks in.
2550 		 */
2551 		if (free_space < (allowed_space >> 4) || free_space < mss)
2552 			return 0;
2553 	}
2554 
2555 	if (free_space > tp->rcv_ssthresh)
2556 		free_space = tp->rcv_ssthresh;
2557 
2558 	/* Don't do rounding if we are using window scaling, since the
2559 	 * scaled window will not line up with the MSS boundary anyway.
2560 	 */
2561 	window = tp->rcv_wnd;
2562 	if (tp->rx_opt.rcv_wscale) {
2563 		window = free_space;
2564 
2565 		/* Advertise enough space so that it won't get scaled away.
2566 		 * Import case: prevent zero window announcement if
2567 		 * 1<<rcv_wscale > mss.
2568 		 */
2569 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2570 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2571 				  << tp->rx_opt.rcv_wscale);
2572 	} else {
2573 		/* Get the largest window that is a nice multiple of mss.
2574 		 * Window clamp already applied above.
2575 		 * If our current window offering is within 1 mss of the
2576 		 * free space we just keep it. This prevents the divide
2577 		 * and multiply from happening most of the time.
2578 		 * We also don't do any window rounding when the free space
2579 		 * is too small.
2580 		 */
2581 		if (window <= free_space - mss || window > free_space)
2582 			window = (free_space / mss) * mss;
2583 		else if (mss == full_space &&
2584 			 free_space > window + (full_space >> 1))
2585 			window = free_space;
2586 	}
2587 
2588 	return window;
2589 }
2590 
2591 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2592 			     const struct sk_buff *next_skb)
2593 {
2594 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2595 		const struct skb_shared_info *next_shinfo =
2596 			skb_shinfo(next_skb);
2597 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2598 
2599 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2600 		shinfo->tskey = next_shinfo->tskey;
2601 		TCP_SKB_CB(skb)->txstamp_ack |=
2602 			TCP_SKB_CB(next_skb)->txstamp_ack;
2603 	}
2604 }
2605 
2606 /* Collapses two adjacent SKB's during retransmission. */
2607 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2608 {
2609 	struct tcp_sock *tp = tcp_sk(sk);
2610 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2611 	int skb_size, next_skb_size;
2612 
2613 	skb_size = skb->len;
2614 	next_skb_size = next_skb->len;
2615 
2616 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2617 
2618 	if (next_skb_size) {
2619 		if (next_skb_size <= skb_availroom(skb))
2620 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2621 				      next_skb_size);
2622 		else if (!skb_shift(skb, next_skb, next_skb_size))
2623 			return false;
2624 	}
2625 	tcp_highest_sack_combine(sk, next_skb, skb);
2626 
2627 	tcp_unlink_write_queue(next_skb, sk);
2628 
2629 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2630 		skb->ip_summed = CHECKSUM_PARTIAL;
2631 
2632 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2633 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2634 
2635 	/* Update sequence range on original skb. */
2636 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2637 
2638 	/* Merge over control information. This moves PSH/FIN etc. over */
2639 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2640 
2641 	/* All done, get rid of second SKB and account for it so
2642 	 * packet counting does not break.
2643 	 */
2644 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2645 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2646 
2647 	/* changed transmit queue under us so clear hints */
2648 	tcp_clear_retrans_hints_partial(tp);
2649 	if (next_skb == tp->retransmit_skb_hint)
2650 		tp->retransmit_skb_hint = skb;
2651 
2652 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2653 
2654 	tcp_skb_collapse_tstamp(skb, next_skb);
2655 
2656 	sk_wmem_free_skb(sk, next_skb);
2657 	return true;
2658 }
2659 
2660 /* Check if coalescing SKBs is legal. */
2661 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2662 {
2663 	if (tcp_skb_pcount(skb) > 1)
2664 		return false;
2665 	if (skb_cloned(skb))
2666 		return false;
2667 	if (skb == tcp_send_head(sk))
2668 		return false;
2669 	/* Some heuristics for collapsing over SACK'd could be invented */
2670 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2671 		return false;
2672 
2673 	return true;
2674 }
2675 
2676 /* Collapse packets in the retransmit queue to make to create
2677  * less packets on the wire. This is only done on retransmission.
2678  */
2679 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2680 				     int space)
2681 {
2682 	struct tcp_sock *tp = tcp_sk(sk);
2683 	struct sk_buff *skb = to, *tmp;
2684 	bool first = true;
2685 
2686 	if (!sysctl_tcp_retrans_collapse)
2687 		return;
2688 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2689 		return;
2690 
2691 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2692 		if (!tcp_can_collapse(sk, skb))
2693 			break;
2694 
2695 		if (!tcp_skb_can_collapse_to(to))
2696 			break;
2697 
2698 		space -= skb->len;
2699 
2700 		if (first) {
2701 			first = false;
2702 			continue;
2703 		}
2704 
2705 		if (space < 0)
2706 			break;
2707 
2708 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2709 			break;
2710 
2711 		if (!tcp_collapse_retrans(sk, to))
2712 			break;
2713 	}
2714 }
2715 
2716 /* This retransmits one SKB.  Policy decisions and retransmit queue
2717  * state updates are done by the caller.  Returns non-zero if an
2718  * error occurred which prevented the send.
2719  */
2720 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2721 {
2722 	struct inet_connection_sock *icsk = inet_csk(sk);
2723 	struct tcp_sock *tp = tcp_sk(sk);
2724 	unsigned int cur_mss;
2725 	int diff, len, err;
2726 
2727 
2728 	/* Inconclusive MTU probe */
2729 	if (icsk->icsk_mtup.probe_size)
2730 		icsk->icsk_mtup.probe_size = 0;
2731 
2732 	/* Do not sent more than we queued. 1/4 is reserved for possible
2733 	 * copying overhead: fragmentation, tunneling, mangling etc.
2734 	 */
2735 	if (atomic_read(&sk->sk_wmem_alloc) >
2736 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2737 		  sk->sk_sndbuf))
2738 		return -EAGAIN;
2739 
2740 	if (skb_still_in_host_queue(sk, skb))
2741 		return -EBUSY;
2742 
2743 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2744 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2745 			BUG();
2746 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2747 			return -ENOMEM;
2748 	}
2749 
2750 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2751 		return -EHOSTUNREACH; /* Routing failure or similar. */
2752 
2753 	cur_mss = tcp_current_mss(sk);
2754 
2755 	/* If receiver has shrunk his window, and skb is out of
2756 	 * new window, do not retransmit it. The exception is the
2757 	 * case, when window is shrunk to zero. In this case
2758 	 * our retransmit serves as a zero window probe.
2759 	 */
2760 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2761 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2762 		return -EAGAIN;
2763 
2764 	len = cur_mss * segs;
2765 	if (skb->len > len) {
2766 		if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2767 			return -ENOMEM; /* We'll try again later. */
2768 	} else {
2769 		if (skb_unclone(skb, GFP_ATOMIC))
2770 			return -ENOMEM;
2771 
2772 		diff = tcp_skb_pcount(skb);
2773 		tcp_set_skb_tso_segs(skb, cur_mss);
2774 		diff -= tcp_skb_pcount(skb);
2775 		if (diff)
2776 			tcp_adjust_pcount(sk, skb, diff);
2777 		if (skb->len < cur_mss)
2778 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2779 	}
2780 
2781 	/* RFC3168, section 6.1.1.1. ECN fallback */
2782 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2783 		tcp_ecn_clear_syn(sk, skb);
2784 
2785 	/* Update global and local TCP statistics. */
2786 	segs = tcp_skb_pcount(skb);
2787 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2788 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2789 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2790 	tp->total_retrans += segs;
2791 
2792 	/* make sure skb->data is aligned on arches that require it
2793 	 * and check if ack-trimming & collapsing extended the headroom
2794 	 * beyond what csum_start can cover.
2795 	 */
2796 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2797 		     skb_headroom(skb) >= 0xFFFF)) {
2798 		struct sk_buff *nskb;
2799 
2800 		skb_mstamp_get(&skb->skb_mstamp);
2801 		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2802 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2803 			     -ENOBUFS;
2804 	} else {
2805 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2806 	}
2807 
2808 	if (likely(!err)) {
2809 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2810 	} else if (err != -EBUSY) {
2811 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2812 	}
2813 	return err;
2814 }
2815 
2816 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2817 {
2818 	struct tcp_sock *tp = tcp_sk(sk);
2819 	int err = __tcp_retransmit_skb(sk, skb, segs);
2820 
2821 	if (err == 0) {
2822 #if FASTRETRANS_DEBUG > 0
2823 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2824 			net_dbg_ratelimited("retrans_out leaked\n");
2825 		}
2826 #endif
2827 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2828 		tp->retrans_out += tcp_skb_pcount(skb);
2829 
2830 		/* Save stamp of the first retransmit. */
2831 		if (!tp->retrans_stamp)
2832 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2833 
2834 	}
2835 
2836 	if (tp->undo_retrans < 0)
2837 		tp->undo_retrans = 0;
2838 	tp->undo_retrans += tcp_skb_pcount(skb);
2839 	return err;
2840 }
2841 
2842 /* This gets called after a retransmit timeout, and the initially
2843  * retransmitted data is acknowledged.  It tries to continue
2844  * resending the rest of the retransmit queue, until either
2845  * we've sent it all or the congestion window limit is reached.
2846  * If doing SACK, the first ACK which comes back for a timeout
2847  * based retransmit packet might feed us FACK information again.
2848  * If so, we use it to avoid unnecessarily retransmissions.
2849  */
2850 void tcp_xmit_retransmit_queue(struct sock *sk)
2851 {
2852 	const struct inet_connection_sock *icsk = inet_csk(sk);
2853 	struct tcp_sock *tp = tcp_sk(sk);
2854 	struct sk_buff *skb;
2855 	struct sk_buff *hole = NULL;
2856 	u32 max_segs;
2857 	int mib_idx;
2858 
2859 	if (!tp->packets_out)
2860 		return;
2861 
2862 	if (tp->retransmit_skb_hint) {
2863 		skb = tp->retransmit_skb_hint;
2864 	} else {
2865 		skb = tcp_write_queue_head(sk);
2866 	}
2867 
2868 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2869 	tcp_for_write_queue_from(skb, sk) {
2870 		__u8 sacked;
2871 		int segs;
2872 
2873 		if (skb == tcp_send_head(sk))
2874 			break;
2875 		/* we could do better than to assign each time */
2876 		if (!hole)
2877 			tp->retransmit_skb_hint = skb;
2878 
2879 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2880 		if (segs <= 0)
2881 			return;
2882 		sacked = TCP_SKB_CB(skb)->sacked;
2883 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2884 		 * we need to make sure not sending too bigs TSO packets
2885 		 */
2886 		segs = min_t(int, segs, max_segs);
2887 
2888 		if (tp->retrans_out >= tp->lost_out) {
2889 			break;
2890 		} else if (!(sacked & TCPCB_LOST)) {
2891 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2892 				hole = skb;
2893 			continue;
2894 
2895 		} else {
2896 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2897 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2898 			else
2899 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2900 		}
2901 
2902 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2903 			continue;
2904 
2905 		if (tcp_small_queue_check(sk, skb, 1))
2906 			return;
2907 
2908 		if (tcp_retransmit_skb(sk, skb, segs))
2909 			return;
2910 
2911 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2912 
2913 		if (tcp_in_cwnd_reduction(sk))
2914 			tp->prr_out += tcp_skb_pcount(skb);
2915 
2916 		if (skb == tcp_write_queue_head(sk) &&
2917 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
2918 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2919 						  inet_csk(sk)->icsk_rto,
2920 						  TCP_RTO_MAX);
2921 	}
2922 }
2923 
2924 /* We allow to exceed memory limits for FIN packets to expedite
2925  * connection tear down and (memory) recovery.
2926  * Otherwise tcp_send_fin() could be tempted to either delay FIN
2927  * or even be forced to close flow without any FIN.
2928  * In general, we want to allow one skb per socket to avoid hangs
2929  * with edge trigger epoll()
2930  */
2931 void sk_forced_mem_schedule(struct sock *sk, int size)
2932 {
2933 	int amt;
2934 
2935 	if (size <= sk->sk_forward_alloc)
2936 		return;
2937 	amt = sk_mem_pages(size);
2938 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2939 	sk_memory_allocated_add(sk, amt);
2940 
2941 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2942 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2943 }
2944 
2945 /* Send a FIN. The caller locks the socket for us.
2946  * We should try to send a FIN packet really hard, but eventually give up.
2947  */
2948 void tcp_send_fin(struct sock *sk)
2949 {
2950 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2951 	struct tcp_sock *tp = tcp_sk(sk);
2952 
2953 	/* Optimization, tack on the FIN if we have one skb in write queue and
2954 	 * this skb was not yet sent, or we are under memory pressure.
2955 	 * Note: in the latter case, FIN packet will be sent after a timeout,
2956 	 * as TCP stack thinks it has already been transmitted.
2957 	 */
2958 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2959 coalesce:
2960 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2961 		TCP_SKB_CB(tskb)->end_seq++;
2962 		tp->write_seq++;
2963 		if (!tcp_send_head(sk)) {
2964 			/* This means tskb was already sent.
2965 			 * Pretend we included the FIN on previous transmit.
2966 			 * We need to set tp->snd_nxt to the value it would have
2967 			 * if FIN had been sent. This is because retransmit path
2968 			 * does not change tp->snd_nxt.
2969 			 */
2970 			tp->snd_nxt++;
2971 			return;
2972 		}
2973 	} else {
2974 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2975 		if (unlikely(!skb)) {
2976 			if (tskb)
2977 				goto coalesce;
2978 			return;
2979 		}
2980 		skb_reserve(skb, MAX_TCP_HEADER);
2981 		sk_forced_mem_schedule(sk, skb->truesize);
2982 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2983 		tcp_init_nondata_skb(skb, tp->write_seq,
2984 				     TCPHDR_ACK | TCPHDR_FIN);
2985 		tcp_queue_skb(sk, skb);
2986 	}
2987 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2988 }
2989 
2990 /* We get here when a process closes a file descriptor (either due to
2991  * an explicit close() or as a byproduct of exit()'ing) and there
2992  * was unread data in the receive queue.  This behavior is recommended
2993  * by RFC 2525, section 2.17.  -DaveM
2994  */
2995 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2996 {
2997 	struct sk_buff *skb;
2998 
2999 	/* NOTE: No TCP options attached and we never retransmit this. */
3000 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3001 	if (!skb) {
3002 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3003 		return;
3004 	}
3005 
3006 	/* Reserve space for headers and prepare control bits. */
3007 	skb_reserve(skb, MAX_TCP_HEADER);
3008 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3009 			     TCPHDR_ACK | TCPHDR_RST);
3010 	skb_mstamp_get(&skb->skb_mstamp);
3011 	/* Send it off. */
3012 	if (tcp_transmit_skb(sk, skb, 0, priority))
3013 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3014 
3015 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3016 }
3017 
3018 /* Send a crossed SYN-ACK during socket establishment.
3019  * WARNING: This routine must only be called when we have already sent
3020  * a SYN packet that crossed the incoming SYN that caused this routine
3021  * to get called. If this assumption fails then the initial rcv_wnd
3022  * and rcv_wscale values will not be correct.
3023  */
3024 int tcp_send_synack(struct sock *sk)
3025 {
3026 	struct sk_buff *skb;
3027 
3028 	skb = tcp_write_queue_head(sk);
3029 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3030 		pr_debug("%s: wrong queue state\n", __func__);
3031 		return -EFAULT;
3032 	}
3033 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3034 		if (skb_cloned(skb)) {
3035 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3036 			if (!nskb)
3037 				return -ENOMEM;
3038 			tcp_unlink_write_queue(skb, sk);
3039 			__skb_header_release(nskb);
3040 			__tcp_add_write_queue_head(sk, nskb);
3041 			sk_wmem_free_skb(sk, skb);
3042 			sk->sk_wmem_queued += nskb->truesize;
3043 			sk_mem_charge(sk, nskb->truesize);
3044 			skb = nskb;
3045 		}
3046 
3047 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3048 		tcp_ecn_send_synack(sk, skb);
3049 	}
3050 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3051 }
3052 
3053 /**
3054  * tcp_make_synack - Prepare a SYN-ACK.
3055  * sk: listener socket
3056  * dst: dst entry attached to the SYNACK
3057  * req: request_sock pointer
3058  *
3059  * Allocate one skb and build a SYNACK packet.
3060  * @dst is consumed : Caller should not use it again.
3061  */
3062 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3063 				struct request_sock *req,
3064 				struct tcp_fastopen_cookie *foc,
3065 				enum tcp_synack_type synack_type)
3066 {
3067 	struct inet_request_sock *ireq = inet_rsk(req);
3068 	const struct tcp_sock *tp = tcp_sk(sk);
3069 	struct tcp_md5sig_key *md5 = NULL;
3070 	struct tcp_out_options opts;
3071 	struct sk_buff *skb;
3072 	int tcp_header_size;
3073 	struct tcphdr *th;
3074 	int mss;
3075 
3076 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3077 	if (unlikely(!skb)) {
3078 		dst_release(dst);
3079 		return NULL;
3080 	}
3081 	/* Reserve space for headers. */
3082 	skb_reserve(skb, MAX_TCP_HEADER);
3083 
3084 	switch (synack_type) {
3085 	case TCP_SYNACK_NORMAL:
3086 		skb_set_owner_w(skb, req_to_sk(req));
3087 		break;
3088 	case TCP_SYNACK_COOKIE:
3089 		/* Under synflood, we do not attach skb to a socket,
3090 		 * to avoid false sharing.
3091 		 */
3092 		break;
3093 	case TCP_SYNACK_FASTOPEN:
3094 		/* sk is a const pointer, because we want to express multiple
3095 		 * cpu might call us concurrently.
3096 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3097 		 */
3098 		skb_set_owner_w(skb, (struct sock *)sk);
3099 		break;
3100 	}
3101 	skb_dst_set(skb, dst);
3102 
3103 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3104 
3105 	memset(&opts, 0, sizeof(opts));
3106 #ifdef CONFIG_SYN_COOKIES
3107 	if (unlikely(req->cookie_ts))
3108 		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3109 	else
3110 #endif
3111 	skb_mstamp_get(&skb->skb_mstamp);
3112 
3113 #ifdef CONFIG_TCP_MD5SIG
3114 	rcu_read_lock();
3115 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3116 #endif
3117 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3118 	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3119 			  sizeof(*th);
3120 
3121 	skb_push(skb, tcp_header_size);
3122 	skb_reset_transport_header(skb);
3123 
3124 	th = (struct tcphdr *)skb->data;
3125 	memset(th, 0, sizeof(struct tcphdr));
3126 	th->syn = 1;
3127 	th->ack = 1;
3128 	tcp_ecn_make_synack(req, th);
3129 	th->source = htons(ireq->ir_num);
3130 	th->dest = ireq->ir_rmt_port;
3131 	/* Setting of flags are superfluous here for callers (and ECE is
3132 	 * not even correctly set)
3133 	 */
3134 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3135 			     TCPHDR_SYN | TCPHDR_ACK);
3136 
3137 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3138 	/* XXX data is queued and acked as is. No buffer/window check */
3139 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3140 
3141 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3142 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3143 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3144 	th->doff = (tcp_header_size >> 2);
3145 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3146 
3147 #ifdef CONFIG_TCP_MD5SIG
3148 	/* Okay, we have all we need - do the md5 hash if needed */
3149 	if (md5)
3150 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3151 					       md5, req_to_sk(req), skb);
3152 	rcu_read_unlock();
3153 #endif
3154 
3155 	/* Do not fool tcpdump (if any), clean our debris */
3156 	skb->tstamp = 0;
3157 	return skb;
3158 }
3159 EXPORT_SYMBOL(tcp_make_synack);
3160 
3161 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3162 {
3163 	struct inet_connection_sock *icsk = inet_csk(sk);
3164 	const struct tcp_congestion_ops *ca;
3165 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3166 
3167 	if (ca_key == TCP_CA_UNSPEC)
3168 		return;
3169 
3170 	rcu_read_lock();
3171 	ca = tcp_ca_find_key(ca_key);
3172 	if (likely(ca && try_module_get(ca->owner))) {
3173 		module_put(icsk->icsk_ca_ops->owner);
3174 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3175 		icsk->icsk_ca_ops = ca;
3176 	}
3177 	rcu_read_unlock();
3178 }
3179 
3180 /* Do all connect socket setups that can be done AF independent. */
3181 static void tcp_connect_init(struct sock *sk)
3182 {
3183 	const struct dst_entry *dst = __sk_dst_get(sk);
3184 	struct tcp_sock *tp = tcp_sk(sk);
3185 	__u8 rcv_wscale;
3186 
3187 	/* We'll fix this up when we get a response from the other end.
3188 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3189 	 */
3190 	tp->tcp_header_len = sizeof(struct tcphdr) +
3191 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3192 
3193 #ifdef CONFIG_TCP_MD5SIG
3194 	if (tp->af_specific->md5_lookup(sk, sk))
3195 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3196 #endif
3197 
3198 	/* If user gave his TCP_MAXSEG, record it to clamp */
3199 	if (tp->rx_opt.user_mss)
3200 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3201 	tp->max_window = 0;
3202 	tcp_mtup_init(sk);
3203 	tcp_sync_mss(sk, dst_mtu(dst));
3204 
3205 	tcp_ca_dst_init(sk, dst);
3206 
3207 	if (!tp->window_clamp)
3208 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3209 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3210 
3211 	tcp_initialize_rcv_mss(sk);
3212 
3213 	/* limit the window selection if the user enforce a smaller rx buffer */
3214 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3215 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3216 		tp->window_clamp = tcp_full_space(sk);
3217 
3218 	tcp_select_initial_window(tcp_full_space(sk),
3219 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3220 				  &tp->rcv_wnd,
3221 				  &tp->window_clamp,
3222 				  sysctl_tcp_window_scaling,
3223 				  &rcv_wscale,
3224 				  dst_metric(dst, RTAX_INITRWND));
3225 
3226 	tp->rx_opt.rcv_wscale = rcv_wscale;
3227 	tp->rcv_ssthresh = tp->rcv_wnd;
3228 
3229 	sk->sk_err = 0;
3230 	sock_reset_flag(sk, SOCK_DONE);
3231 	tp->snd_wnd = 0;
3232 	tcp_init_wl(tp, 0);
3233 	tp->snd_una = tp->write_seq;
3234 	tp->snd_sml = tp->write_seq;
3235 	tp->snd_up = tp->write_seq;
3236 	tp->snd_nxt = tp->write_seq;
3237 
3238 	if (likely(!tp->repair))
3239 		tp->rcv_nxt = 0;
3240 	else
3241 		tp->rcv_tstamp = tcp_time_stamp;
3242 	tp->rcv_wup = tp->rcv_nxt;
3243 	tp->copied_seq = tp->rcv_nxt;
3244 
3245 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3246 	inet_csk(sk)->icsk_retransmits = 0;
3247 	tcp_clear_retrans(tp);
3248 }
3249 
3250 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3251 {
3252 	struct tcp_sock *tp = tcp_sk(sk);
3253 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3254 
3255 	tcb->end_seq += skb->len;
3256 	__skb_header_release(skb);
3257 	__tcp_add_write_queue_tail(sk, skb);
3258 	sk->sk_wmem_queued += skb->truesize;
3259 	sk_mem_charge(sk, skb->truesize);
3260 	tp->write_seq = tcb->end_seq;
3261 	tp->packets_out += tcp_skb_pcount(skb);
3262 }
3263 
3264 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3265  * queue a data-only packet after the regular SYN, such that regular SYNs
3266  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3267  * only the SYN sequence, the data are retransmitted in the first ACK.
3268  * If cookie is not cached or other error occurs, falls back to send a
3269  * regular SYN with Fast Open cookie request option.
3270  */
3271 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3272 {
3273 	struct tcp_sock *tp = tcp_sk(sk);
3274 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3275 	int space, err = 0;
3276 	struct sk_buff *syn_data;
3277 
3278 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3279 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3280 		goto fallback;
3281 
3282 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3283 	 * user-MSS. Reserve maximum option space for middleboxes that add
3284 	 * private TCP options. The cost is reduced data space in SYN :(
3285 	 */
3286 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3287 
3288 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3289 		MAX_TCP_OPTION_SPACE;
3290 
3291 	space = min_t(size_t, space, fo->size);
3292 
3293 	/* limit to order-0 allocations */
3294 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3295 
3296 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3297 	if (!syn_data)
3298 		goto fallback;
3299 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3300 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3301 	if (space) {
3302 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3303 					    &fo->data->msg_iter);
3304 		if (unlikely(!copied)) {
3305 			kfree_skb(syn_data);
3306 			goto fallback;
3307 		}
3308 		if (copied != space) {
3309 			skb_trim(syn_data, copied);
3310 			space = copied;
3311 		}
3312 	}
3313 	/* No more data pending in inet_wait_for_connect() */
3314 	if (space == fo->size)
3315 		fo->data = NULL;
3316 	fo->copied = space;
3317 
3318 	tcp_connect_queue_skb(sk, syn_data);
3319 	if (syn_data->len)
3320 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3321 
3322 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3323 
3324 	syn->skb_mstamp = syn_data->skb_mstamp;
3325 
3326 	/* Now full SYN+DATA was cloned and sent (or not),
3327 	 * remove the SYN from the original skb (syn_data)
3328 	 * we keep in write queue in case of a retransmit, as we
3329 	 * also have the SYN packet (with no data) in the same queue.
3330 	 */
3331 	TCP_SKB_CB(syn_data)->seq++;
3332 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3333 	if (!err) {
3334 		tp->syn_data = (fo->copied > 0);
3335 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3336 		goto done;
3337 	}
3338 
3339 fallback:
3340 	/* Send a regular SYN with Fast Open cookie request option */
3341 	if (fo->cookie.len > 0)
3342 		fo->cookie.len = 0;
3343 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3344 	if (err)
3345 		tp->syn_fastopen = 0;
3346 done:
3347 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3348 	return err;
3349 }
3350 
3351 /* Build a SYN and send it off. */
3352 int tcp_connect(struct sock *sk)
3353 {
3354 	struct tcp_sock *tp = tcp_sk(sk);
3355 	struct sk_buff *buff;
3356 	int err;
3357 
3358 	tcp_connect_init(sk);
3359 
3360 	if (unlikely(tp->repair)) {
3361 		tcp_finish_connect(sk, NULL);
3362 		return 0;
3363 	}
3364 
3365 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3366 	if (unlikely(!buff))
3367 		return -ENOBUFS;
3368 
3369 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3370 	tp->retrans_stamp = tcp_time_stamp;
3371 	tcp_connect_queue_skb(sk, buff);
3372 	tcp_ecn_send_syn(sk, buff);
3373 
3374 	/* Send off SYN; include data in Fast Open. */
3375 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3376 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3377 	if (err == -ECONNREFUSED)
3378 		return err;
3379 
3380 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3381 	 * in order to make this packet get counted in tcpOutSegs.
3382 	 */
3383 	tp->snd_nxt = tp->write_seq;
3384 	tp->pushed_seq = tp->write_seq;
3385 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3386 
3387 	/* Timer for repeating the SYN until an answer. */
3388 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3389 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3390 	return 0;
3391 }
3392 EXPORT_SYMBOL(tcp_connect);
3393 
3394 /* Send out a delayed ack, the caller does the policy checking
3395  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3396  * for details.
3397  */
3398 void tcp_send_delayed_ack(struct sock *sk)
3399 {
3400 	struct inet_connection_sock *icsk = inet_csk(sk);
3401 	int ato = icsk->icsk_ack.ato;
3402 	unsigned long timeout;
3403 
3404 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3405 
3406 	if (ato > TCP_DELACK_MIN) {
3407 		const struct tcp_sock *tp = tcp_sk(sk);
3408 		int max_ato = HZ / 2;
3409 
3410 		if (icsk->icsk_ack.pingpong ||
3411 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3412 			max_ato = TCP_DELACK_MAX;
3413 
3414 		/* Slow path, intersegment interval is "high". */
3415 
3416 		/* If some rtt estimate is known, use it to bound delayed ack.
3417 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3418 		 * directly.
3419 		 */
3420 		if (tp->srtt_us) {
3421 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3422 					TCP_DELACK_MIN);
3423 
3424 			if (rtt < max_ato)
3425 				max_ato = rtt;
3426 		}
3427 
3428 		ato = min(ato, max_ato);
3429 	}
3430 
3431 	/* Stay within the limit we were given */
3432 	timeout = jiffies + ato;
3433 
3434 	/* Use new timeout only if there wasn't a older one earlier. */
3435 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3436 		/* If delack timer was blocked or is about to expire,
3437 		 * send ACK now.
3438 		 */
3439 		if (icsk->icsk_ack.blocked ||
3440 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3441 			tcp_send_ack(sk);
3442 			return;
3443 		}
3444 
3445 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3446 			timeout = icsk->icsk_ack.timeout;
3447 	}
3448 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3449 	icsk->icsk_ack.timeout = timeout;
3450 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3451 }
3452 
3453 /* This routine sends an ack and also updates the window. */
3454 void tcp_send_ack(struct sock *sk)
3455 {
3456 	struct sk_buff *buff;
3457 
3458 	/* If we have been reset, we may not send again. */
3459 	if (sk->sk_state == TCP_CLOSE)
3460 		return;
3461 
3462 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3463 
3464 	/* We are not putting this on the write queue, so
3465 	 * tcp_transmit_skb() will set the ownership to this
3466 	 * sock.
3467 	 */
3468 	buff = alloc_skb(MAX_TCP_HEADER,
3469 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3470 	if (unlikely(!buff)) {
3471 		inet_csk_schedule_ack(sk);
3472 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3473 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3474 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3475 		return;
3476 	}
3477 
3478 	/* Reserve space for headers and prepare control bits. */
3479 	skb_reserve(buff, MAX_TCP_HEADER);
3480 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3481 
3482 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3483 	 * too much.
3484 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3485 	 */
3486 	skb_set_tcp_pure_ack(buff);
3487 
3488 	/* Send it off, this clears delayed acks for us. */
3489 	skb_mstamp_get(&buff->skb_mstamp);
3490 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3491 }
3492 EXPORT_SYMBOL_GPL(tcp_send_ack);
3493 
3494 /* This routine sends a packet with an out of date sequence
3495  * number. It assumes the other end will try to ack it.
3496  *
3497  * Question: what should we make while urgent mode?
3498  * 4.4BSD forces sending single byte of data. We cannot send
3499  * out of window data, because we have SND.NXT==SND.MAX...
3500  *
3501  * Current solution: to send TWO zero-length segments in urgent mode:
3502  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3503  * out-of-date with SND.UNA-1 to probe window.
3504  */
3505 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3506 {
3507 	struct tcp_sock *tp = tcp_sk(sk);
3508 	struct sk_buff *skb;
3509 
3510 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3511 	skb = alloc_skb(MAX_TCP_HEADER,
3512 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3513 	if (!skb)
3514 		return -1;
3515 
3516 	/* Reserve space for headers and set control bits. */
3517 	skb_reserve(skb, MAX_TCP_HEADER);
3518 	/* Use a previous sequence.  This should cause the other
3519 	 * end to send an ack.  Don't queue or clone SKB, just
3520 	 * send it.
3521 	 */
3522 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3523 	skb_mstamp_get(&skb->skb_mstamp);
3524 	NET_INC_STATS(sock_net(sk), mib);
3525 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3526 }
3527 
3528 void tcp_send_window_probe(struct sock *sk)
3529 {
3530 	if (sk->sk_state == TCP_ESTABLISHED) {
3531 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3532 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3533 	}
3534 }
3535 
3536 /* Initiate keepalive or window probe from timer. */
3537 int tcp_write_wakeup(struct sock *sk, int mib)
3538 {
3539 	struct tcp_sock *tp = tcp_sk(sk);
3540 	struct sk_buff *skb;
3541 
3542 	if (sk->sk_state == TCP_CLOSE)
3543 		return -1;
3544 
3545 	skb = tcp_send_head(sk);
3546 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3547 		int err;
3548 		unsigned int mss = tcp_current_mss(sk);
3549 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3550 
3551 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3552 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3553 
3554 		/* We are probing the opening of a window
3555 		 * but the window size is != 0
3556 		 * must have been a result SWS avoidance ( sender )
3557 		 */
3558 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3559 		    skb->len > mss) {
3560 			seg_size = min(seg_size, mss);
3561 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3562 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3563 				return -1;
3564 		} else if (!tcp_skb_pcount(skb))
3565 			tcp_set_skb_tso_segs(skb, mss);
3566 
3567 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3568 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3569 		if (!err)
3570 			tcp_event_new_data_sent(sk, skb);
3571 		return err;
3572 	} else {
3573 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3574 			tcp_xmit_probe_skb(sk, 1, mib);
3575 		return tcp_xmit_probe_skb(sk, 0, mib);
3576 	}
3577 }
3578 
3579 /* A window probe timeout has occurred.  If window is not closed send
3580  * a partial packet else a zero probe.
3581  */
3582 void tcp_send_probe0(struct sock *sk)
3583 {
3584 	struct inet_connection_sock *icsk = inet_csk(sk);
3585 	struct tcp_sock *tp = tcp_sk(sk);
3586 	struct net *net = sock_net(sk);
3587 	unsigned long probe_max;
3588 	int err;
3589 
3590 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3591 
3592 	if (tp->packets_out || !tcp_send_head(sk)) {
3593 		/* Cancel probe timer, if it is not required. */
3594 		icsk->icsk_probes_out = 0;
3595 		icsk->icsk_backoff = 0;
3596 		return;
3597 	}
3598 
3599 	if (err <= 0) {
3600 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3601 			icsk->icsk_backoff++;
3602 		icsk->icsk_probes_out++;
3603 		probe_max = TCP_RTO_MAX;
3604 	} else {
3605 		/* If packet was not sent due to local congestion,
3606 		 * do not backoff and do not remember icsk_probes_out.
3607 		 * Let local senders to fight for local resources.
3608 		 *
3609 		 * Use accumulated backoff yet.
3610 		 */
3611 		if (!icsk->icsk_probes_out)
3612 			icsk->icsk_probes_out = 1;
3613 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3614 	}
3615 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3616 				  tcp_probe0_when(sk, probe_max),
3617 				  TCP_RTO_MAX);
3618 }
3619 
3620 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3621 {
3622 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3623 	struct flowi fl;
3624 	int res;
3625 
3626 	tcp_rsk(req)->txhash = net_tx_rndhash();
3627 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3628 	if (!res) {
3629 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3630 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3631 		if (unlikely(tcp_passive_fastopen(sk)))
3632 			tcp_sk(sk)->total_retrans++;
3633 	}
3634 	return res;
3635 }
3636 EXPORT_SYMBOL(tcp_rtx_synack);
3637