xref: /linux/net/ipv4/tcp_output.c (revision 308d3165d8b2b98d3dc3d97d6662062735daea67)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 			   int push_one, gfp_t gfp);
67 
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 	struct inet_connection_sock *icsk = inet_csk(sk);
72 	struct tcp_sock *tp = tcp_sk(sk);
73 	unsigned int prior_packets = tp->packets_out;
74 
75 	tcp_advance_send_head(sk, skb);
76 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
80 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
81 		tcp_rearm_rto(sk);
82 	}
83 
84 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 		      tcp_skb_pcount(skb));
86 }
87 
88 /* SND.NXT, if window was not shrunk.
89  * If window has been shrunk, what should we make? It is not clear at all.
90  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92  * invalid. OK, let's make this for now:
93  */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 	const struct tcp_sock *tp = tcp_sk(sk);
97 
98 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 		return tp->snd_nxt;
100 	else
101 		return tcp_wnd_end(tp);
102 }
103 
104 /* Calculate mss to advertise in SYN segment.
105  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106  *
107  * 1. It is independent of path mtu.
108  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110  *    attached devices, because some buggy hosts are confused by
111  *    large MSS.
112  * 4. We do not make 3, we advertise MSS, calculated from first
113  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
114  *    This may be overridden via information stored in routing table.
115  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116  *    probably even Jumbo".
117  */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 	struct tcp_sock *tp = tcp_sk(sk);
121 	const struct dst_entry *dst = __sk_dst_get(sk);
122 	int mss = tp->advmss;
123 
124 	if (dst) {
125 		unsigned int metric = dst_metric_advmss(dst);
126 
127 		if (metric < mss) {
128 			mss = metric;
129 			tp->advmss = mss;
130 		}
131 	}
132 
133 	return (__u16)mss;
134 }
135 
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137  * This is the first part of cwnd validation mechanism.
138  */
139 void tcp_cwnd_restart(struct sock *sk, s32 delta)
140 {
141 	struct tcp_sock *tp = tcp_sk(sk);
142 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
143 	u32 cwnd = tp->snd_cwnd;
144 
145 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146 
147 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 	restart_cwnd = min(restart_cwnd, cwnd);
149 
150 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 		cwnd >>= 1;
152 	tp->snd_cwnd = max(cwnd, restart_cwnd);
153 	tp->snd_cwnd_stamp = tcp_time_stamp;
154 	tp->snd_cwnd_used = 0;
155 }
156 
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 				struct sock *sk)
160 {
161 	struct inet_connection_sock *icsk = inet_csk(sk);
162 	const u32 now = tcp_time_stamp;
163 
164 	if (tcp_packets_in_flight(tp) == 0)
165 		tcp_ca_event(sk, CA_EVENT_TX_START);
166 
167 	tp->lsndtime = now;
168 
169 	/* If it is a reply for ato after last received
170 	 * packet, enter pingpong mode.
171 	 */
172 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
173 		icsk->icsk_ack.pingpong = 1;
174 }
175 
176 /* Account for an ACK we sent. */
177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
178 {
179 	tcp_dec_quickack_mode(sk, pkts);
180 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
181 }
182 
183 
184 u32 tcp_default_init_rwnd(u32 mss)
185 {
186 	/* Initial receive window should be twice of TCP_INIT_CWND to
187 	 * enable proper sending of new unsent data during fast recovery
188 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
189 	 * limit when mss is larger than 1460.
190 	 */
191 	u32 init_rwnd = TCP_INIT_CWND * 2;
192 
193 	if (mss > 1460)
194 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
195 	return init_rwnd;
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
205 void tcp_select_initial_window(int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 
212 	/* If no clamp set the clamp to the max possible scaled window */
213 	if (*window_clamp == 0)
214 		(*window_clamp) = (65535 << 14);
215 	space = min(*window_clamp, space);
216 
217 	/* Quantize space offering to a multiple of mss if possible. */
218 	if (space > mss)
219 		space = (space / mss) * mss;
220 
221 	/* NOTE: offering an initial window larger than 32767
222 	 * will break some buggy TCP stacks. If the admin tells us
223 	 * it is likely we could be speaking with such a buggy stack
224 	 * we will truncate our initial window offering to 32K-1
225 	 * unless the remote has sent us a window scaling option,
226 	 * which we interpret as a sign the remote TCP is not
227 	 * misinterpreting the window field as a signed quantity.
228 	 */
229 	if (sysctl_tcp_workaround_signed_windows)
230 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 	else
232 		(*rcv_wnd) = space;
233 
234 	(*rcv_wscale) = 0;
235 	if (wscale_ok) {
236 		/* Set window scaling on max possible window
237 		 * See RFC1323 for an explanation of the limit to 14
238 		 */
239 		space = max_t(u32, space, sysctl_tcp_rmem[2]);
240 		space = max_t(u32, space, sysctl_rmem_max);
241 		space = min_t(u32, space, *window_clamp);
242 		while (space > 65535 && (*rcv_wscale) < 14) {
243 			space >>= 1;
244 			(*rcv_wscale)++;
245 		}
246 	}
247 
248 	if (mss > (1 << *rcv_wscale)) {
249 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
250 			init_rcv_wnd = tcp_default_init_rwnd(mss);
251 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
252 	}
253 
254 	/* Set the clamp no higher than max representable value */
255 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
256 }
257 EXPORT_SYMBOL(tcp_select_initial_window);
258 
259 /* Chose a new window to advertise, update state in tcp_sock for the
260  * socket, and return result with RFC1323 scaling applied.  The return
261  * value can be stuffed directly into th->window for an outgoing
262  * frame.
263  */
264 static u16 tcp_select_window(struct sock *sk)
265 {
266 	struct tcp_sock *tp = tcp_sk(sk);
267 	u32 old_win = tp->rcv_wnd;
268 	u32 cur_win = tcp_receive_window(tp);
269 	u32 new_win = __tcp_select_window(sk);
270 
271 	/* Never shrink the offered window */
272 	if (new_win < cur_win) {
273 		/* Danger Will Robinson!
274 		 * Don't update rcv_wup/rcv_wnd here or else
275 		 * we will not be able to advertise a zero
276 		 * window in time.  --DaveM
277 		 *
278 		 * Relax Will Robinson.
279 		 */
280 		if (new_win == 0)
281 			NET_INC_STATS(sock_net(sk),
282 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
283 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
284 	}
285 	tp->rcv_wnd = new_win;
286 	tp->rcv_wup = tp->rcv_nxt;
287 
288 	/* Make sure we do not exceed the maximum possible
289 	 * scaled window.
290 	 */
291 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
292 		new_win = min(new_win, MAX_TCP_WINDOW);
293 	else
294 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
295 
296 	/* RFC1323 scaling applied */
297 	new_win >>= tp->rx_opt.rcv_wscale;
298 
299 	/* If we advertise zero window, disable fast path. */
300 	if (new_win == 0) {
301 		tp->pred_flags = 0;
302 		if (old_win)
303 			NET_INC_STATS(sock_net(sk),
304 				      LINUX_MIB_TCPTOZEROWINDOWADV);
305 	} else if (old_win == 0) {
306 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
307 	}
308 
309 	return new_win;
310 }
311 
312 /* Packet ECN state for a SYN-ACK */
313 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
314 {
315 	const struct tcp_sock *tp = tcp_sk(sk);
316 
317 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
318 	if (!(tp->ecn_flags & TCP_ECN_OK))
319 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
320 	else if (tcp_ca_needs_ecn(sk))
321 		INET_ECN_xmit(sk);
322 }
323 
324 /* Packet ECN state for a SYN.  */
325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326 {
327 	struct tcp_sock *tp = tcp_sk(sk);
328 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
329 		       tcp_ca_needs_ecn(sk);
330 
331 	if (!use_ecn) {
332 		const struct dst_entry *dst = __sk_dst_get(sk);
333 
334 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
335 			use_ecn = true;
336 	}
337 
338 	tp->ecn_flags = 0;
339 
340 	if (use_ecn) {
341 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
342 		tp->ecn_flags = TCP_ECN_OK;
343 		if (tcp_ca_needs_ecn(sk))
344 			INET_ECN_xmit(sk);
345 	}
346 }
347 
348 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
349 {
350 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
351 		/* tp->ecn_flags are cleared at a later point in time when
352 		 * SYN ACK is ultimatively being received.
353 		 */
354 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
355 }
356 
357 static void
358 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
359 {
360 	if (inet_rsk(req)->ecn_ok)
361 		th->ece = 1;
362 }
363 
364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365  * be sent.
366  */
367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
368 			 struct tcphdr *th, int tcp_header_len)
369 {
370 	struct tcp_sock *tp = tcp_sk(sk);
371 
372 	if (tp->ecn_flags & TCP_ECN_OK) {
373 		/* Not-retransmitted data segment: set ECT and inject CWR. */
374 		if (skb->len != tcp_header_len &&
375 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
376 			INET_ECN_xmit(sk);
377 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
378 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
379 				th->cwr = 1;
380 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 			}
382 		} else if (!tcp_ca_needs_ecn(sk)) {
383 			/* ACK or retransmitted segment: clear ECT|CE */
384 			INET_ECN_dontxmit(sk);
385 		}
386 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
387 			th->ece = 1;
388 	}
389 }
390 
391 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
392  * auto increment end seqno.
393  */
394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 {
396 	skb->ip_summed = CHECKSUM_PARTIAL;
397 	skb->csum = 0;
398 
399 	TCP_SKB_CB(skb)->tcp_flags = flags;
400 	TCP_SKB_CB(skb)->sacked = 0;
401 
402 	tcp_skb_pcount_set(skb, 1);
403 
404 	TCP_SKB_CB(skb)->seq = seq;
405 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
406 		seq++;
407 	TCP_SKB_CB(skb)->end_seq = seq;
408 }
409 
410 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
411 {
412 	return tp->snd_una != tp->snd_up;
413 }
414 
415 #define OPTION_SACK_ADVERTISE	(1 << 0)
416 #define OPTION_TS		(1 << 1)
417 #define OPTION_MD5		(1 << 2)
418 #define OPTION_WSCALE		(1 << 3)
419 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
420 
421 struct tcp_out_options {
422 	u16 options;		/* bit field of OPTION_* */
423 	u16 mss;		/* 0 to disable */
424 	u8 ws;			/* window scale, 0 to disable */
425 	u8 num_sack_blocks;	/* number of SACK blocks to include */
426 	u8 hash_size;		/* bytes in hash_location */
427 	__u8 *hash_location;	/* temporary pointer, overloaded */
428 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
429 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
430 };
431 
432 /* Write previously computed TCP options to the packet.
433  *
434  * Beware: Something in the Internet is very sensitive to the ordering of
435  * TCP options, we learned this through the hard way, so be careful here.
436  * Luckily we can at least blame others for their non-compliance but from
437  * inter-operability perspective it seems that we're somewhat stuck with
438  * the ordering which we have been using if we want to keep working with
439  * those broken things (not that it currently hurts anybody as there isn't
440  * particular reason why the ordering would need to be changed).
441  *
442  * At least SACK_PERM as the first option is known to lead to a disaster
443  * (but it may well be that other scenarios fail similarly).
444  */
445 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
446 			      struct tcp_out_options *opts)
447 {
448 	u16 options = opts->options;	/* mungable copy */
449 
450 	if (unlikely(OPTION_MD5 & options)) {
451 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
452 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
453 		/* overload cookie hash location */
454 		opts->hash_location = (__u8 *)ptr;
455 		ptr += 4;
456 	}
457 
458 	if (unlikely(opts->mss)) {
459 		*ptr++ = htonl((TCPOPT_MSS << 24) |
460 			       (TCPOLEN_MSS << 16) |
461 			       opts->mss);
462 	}
463 
464 	if (likely(OPTION_TS & options)) {
465 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
466 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
467 				       (TCPOLEN_SACK_PERM << 16) |
468 				       (TCPOPT_TIMESTAMP << 8) |
469 				       TCPOLEN_TIMESTAMP);
470 			options &= ~OPTION_SACK_ADVERTISE;
471 		} else {
472 			*ptr++ = htonl((TCPOPT_NOP << 24) |
473 				       (TCPOPT_NOP << 16) |
474 				       (TCPOPT_TIMESTAMP << 8) |
475 				       TCPOLEN_TIMESTAMP);
476 		}
477 		*ptr++ = htonl(opts->tsval);
478 		*ptr++ = htonl(opts->tsecr);
479 	}
480 
481 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
482 		*ptr++ = htonl((TCPOPT_NOP << 24) |
483 			       (TCPOPT_NOP << 16) |
484 			       (TCPOPT_SACK_PERM << 8) |
485 			       TCPOLEN_SACK_PERM);
486 	}
487 
488 	if (unlikely(OPTION_WSCALE & options)) {
489 		*ptr++ = htonl((TCPOPT_NOP << 24) |
490 			       (TCPOPT_WINDOW << 16) |
491 			       (TCPOLEN_WINDOW << 8) |
492 			       opts->ws);
493 	}
494 
495 	if (unlikely(opts->num_sack_blocks)) {
496 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
497 			tp->duplicate_sack : tp->selective_acks;
498 		int this_sack;
499 
500 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
501 			       (TCPOPT_NOP  << 16) |
502 			       (TCPOPT_SACK <<  8) |
503 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
504 						     TCPOLEN_SACK_PERBLOCK)));
505 
506 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
507 		     ++this_sack) {
508 			*ptr++ = htonl(sp[this_sack].start_seq);
509 			*ptr++ = htonl(sp[this_sack].end_seq);
510 		}
511 
512 		tp->rx_opt.dsack = 0;
513 	}
514 
515 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
516 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
517 		u8 *p = (u8 *)ptr;
518 		u32 len; /* Fast Open option length */
519 
520 		if (foc->exp) {
521 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
522 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
523 				     TCPOPT_FASTOPEN_MAGIC);
524 			p += TCPOLEN_EXP_FASTOPEN_BASE;
525 		} else {
526 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
527 			*p++ = TCPOPT_FASTOPEN;
528 			*p++ = len;
529 		}
530 
531 		memcpy(p, foc->val, foc->len);
532 		if ((len & 3) == 2) {
533 			p[foc->len] = TCPOPT_NOP;
534 			p[foc->len + 1] = TCPOPT_NOP;
535 		}
536 		ptr += (len + 3) >> 2;
537 	}
538 }
539 
540 /* Compute TCP options for SYN packets. This is not the final
541  * network wire format yet.
542  */
543 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
544 				struct tcp_out_options *opts,
545 				struct tcp_md5sig_key **md5)
546 {
547 	struct tcp_sock *tp = tcp_sk(sk);
548 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
549 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
550 
551 #ifdef CONFIG_TCP_MD5SIG
552 	*md5 = tp->af_specific->md5_lookup(sk, sk);
553 	if (*md5) {
554 		opts->options |= OPTION_MD5;
555 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
556 	}
557 #else
558 	*md5 = NULL;
559 #endif
560 
561 	/* We always get an MSS option.  The option bytes which will be seen in
562 	 * normal data packets should timestamps be used, must be in the MSS
563 	 * advertised.  But we subtract them from tp->mss_cache so that
564 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
565 	 * fact here if necessary.  If we don't do this correctly, as a
566 	 * receiver we won't recognize data packets as being full sized when we
567 	 * should, and thus we won't abide by the delayed ACK rules correctly.
568 	 * SACKs don't matter, we never delay an ACK when we have any of those
569 	 * going out.  */
570 	opts->mss = tcp_advertise_mss(sk);
571 	remaining -= TCPOLEN_MSS_ALIGNED;
572 
573 	if (likely(sysctl_tcp_timestamps && !*md5)) {
574 		opts->options |= OPTION_TS;
575 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
576 		opts->tsecr = tp->rx_opt.ts_recent;
577 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
578 	}
579 	if (likely(sysctl_tcp_window_scaling)) {
580 		opts->ws = tp->rx_opt.rcv_wscale;
581 		opts->options |= OPTION_WSCALE;
582 		remaining -= TCPOLEN_WSCALE_ALIGNED;
583 	}
584 	if (likely(sysctl_tcp_sack)) {
585 		opts->options |= OPTION_SACK_ADVERTISE;
586 		if (unlikely(!(OPTION_TS & opts->options)))
587 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
588 	}
589 
590 	if (fastopen && fastopen->cookie.len >= 0) {
591 		u32 need = fastopen->cookie.len;
592 
593 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
594 					       TCPOLEN_FASTOPEN_BASE;
595 		need = (need + 3) & ~3U;  /* Align to 32 bits */
596 		if (remaining >= need) {
597 			opts->options |= OPTION_FAST_OPEN_COOKIE;
598 			opts->fastopen_cookie = &fastopen->cookie;
599 			remaining -= need;
600 			tp->syn_fastopen = 1;
601 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
602 		}
603 	}
604 
605 	return MAX_TCP_OPTION_SPACE - remaining;
606 }
607 
608 /* Set up TCP options for SYN-ACKs. */
609 static unsigned int tcp_synack_options(struct request_sock *req,
610 				       unsigned int mss, struct sk_buff *skb,
611 				       struct tcp_out_options *opts,
612 				       const struct tcp_md5sig_key *md5,
613 				       struct tcp_fastopen_cookie *foc)
614 {
615 	struct inet_request_sock *ireq = inet_rsk(req);
616 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
617 
618 #ifdef CONFIG_TCP_MD5SIG
619 	if (md5) {
620 		opts->options |= OPTION_MD5;
621 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
622 
623 		/* We can't fit any SACK blocks in a packet with MD5 + TS
624 		 * options. There was discussion about disabling SACK
625 		 * rather than TS in order to fit in better with old,
626 		 * buggy kernels, but that was deemed to be unnecessary.
627 		 */
628 		ireq->tstamp_ok &= !ireq->sack_ok;
629 	}
630 #endif
631 
632 	/* We always send an MSS option. */
633 	opts->mss = mss;
634 	remaining -= TCPOLEN_MSS_ALIGNED;
635 
636 	if (likely(ireq->wscale_ok)) {
637 		opts->ws = ireq->rcv_wscale;
638 		opts->options |= OPTION_WSCALE;
639 		remaining -= TCPOLEN_WSCALE_ALIGNED;
640 	}
641 	if (likely(ireq->tstamp_ok)) {
642 		opts->options |= OPTION_TS;
643 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
644 		opts->tsecr = req->ts_recent;
645 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
646 	}
647 	if (likely(ireq->sack_ok)) {
648 		opts->options |= OPTION_SACK_ADVERTISE;
649 		if (unlikely(!ireq->tstamp_ok))
650 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
651 	}
652 	if (foc != NULL && foc->len >= 0) {
653 		u32 need = foc->len;
654 
655 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
656 				   TCPOLEN_FASTOPEN_BASE;
657 		need = (need + 3) & ~3U;  /* Align to 32 bits */
658 		if (remaining >= need) {
659 			opts->options |= OPTION_FAST_OPEN_COOKIE;
660 			opts->fastopen_cookie = foc;
661 			remaining -= need;
662 		}
663 	}
664 
665 	return MAX_TCP_OPTION_SPACE - remaining;
666 }
667 
668 /* Compute TCP options for ESTABLISHED sockets. This is not the
669  * final wire format yet.
670  */
671 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
672 					struct tcp_out_options *opts,
673 					struct tcp_md5sig_key **md5)
674 {
675 	struct tcp_sock *tp = tcp_sk(sk);
676 	unsigned int size = 0;
677 	unsigned int eff_sacks;
678 
679 	opts->options = 0;
680 
681 #ifdef CONFIG_TCP_MD5SIG
682 	*md5 = tp->af_specific->md5_lookup(sk, sk);
683 	if (unlikely(*md5)) {
684 		opts->options |= OPTION_MD5;
685 		size += TCPOLEN_MD5SIG_ALIGNED;
686 	}
687 #else
688 	*md5 = NULL;
689 #endif
690 
691 	if (likely(tp->rx_opt.tstamp_ok)) {
692 		opts->options |= OPTION_TS;
693 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
694 		opts->tsecr = tp->rx_opt.ts_recent;
695 		size += TCPOLEN_TSTAMP_ALIGNED;
696 	}
697 
698 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
699 	if (unlikely(eff_sacks)) {
700 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
701 		opts->num_sack_blocks =
702 			min_t(unsigned int, eff_sacks,
703 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
704 			      TCPOLEN_SACK_PERBLOCK);
705 		size += TCPOLEN_SACK_BASE_ALIGNED +
706 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
707 	}
708 
709 	return size;
710 }
711 
712 
713 /* TCP SMALL QUEUES (TSQ)
714  *
715  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
716  * to reduce RTT and bufferbloat.
717  * We do this using a special skb destructor (tcp_wfree).
718  *
719  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
720  * needs to be reallocated in a driver.
721  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
722  *
723  * Since transmit from skb destructor is forbidden, we use a tasklet
724  * to process all sockets that eventually need to send more skbs.
725  * We use one tasklet per cpu, with its own queue of sockets.
726  */
727 struct tsq_tasklet {
728 	struct tasklet_struct	tasklet;
729 	struct list_head	head; /* queue of tcp sockets */
730 };
731 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
732 
733 static void tcp_tsq_handler(struct sock *sk)
734 {
735 	if ((1 << sk->sk_state) &
736 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
737 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
738 		struct tcp_sock *tp = tcp_sk(sk);
739 
740 		if (tp->lost_out > tp->retrans_out &&
741 		    tp->snd_cwnd > tcp_packets_in_flight(tp))
742 			tcp_xmit_retransmit_queue(sk);
743 
744 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
745 			       0, GFP_ATOMIC);
746 	}
747 }
748 /*
749  * One tasklet per cpu tries to send more skbs.
750  * We run in tasklet context but need to disable irqs when
751  * transferring tsq->head because tcp_wfree() might
752  * interrupt us (non NAPI drivers)
753  */
754 static void tcp_tasklet_func(unsigned long data)
755 {
756 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
757 	LIST_HEAD(list);
758 	unsigned long flags;
759 	struct list_head *q, *n;
760 	struct tcp_sock *tp;
761 	struct sock *sk;
762 
763 	local_irq_save(flags);
764 	list_splice_init(&tsq->head, &list);
765 	local_irq_restore(flags);
766 
767 	list_for_each_safe(q, n, &list) {
768 		tp = list_entry(q, struct tcp_sock, tsq_node);
769 		list_del(&tp->tsq_node);
770 
771 		sk = (struct sock *)tp;
772 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
773 
774 		if (!sk->sk_lock.owned &&
775 		    test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) {
776 			bh_lock_sock(sk);
777 			if (!sock_owned_by_user(sk)) {
778 				clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
779 				tcp_tsq_handler(sk);
780 			}
781 			bh_unlock_sock(sk);
782 		}
783 
784 		sk_free(sk);
785 	}
786 }
787 
788 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
789 			  TCPF_WRITE_TIMER_DEFERRED |	\
790 			  TCPF_DELACK_TIMER_DEFERRED |	\
791 			  TCPF_MTU_REDUCED_DEFERRED)
792 /**
793  * tcp_release_cb - tcp release_sock() callback
794  * @sk: socket
795  *
796  * called from release_sock() to perform protocol dependent
797  * actions before socket release.
798  */
799 void tcp_release_cb(struct sock *sk)
800 {
801 	unsigned long flags, nflags;
802 
803 	/* perform an atomic operation only if at least one flag is set */
804 	do {
805 		flags = sk->sk_tsq_flags;
806 		if (!(flags & TCP_DEFERRED_ALL))
807 			return;
808 		nflags = flags & ~TCP_DEFERRED_ALL;
809 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
810 
811 	if (flags & TCPF_TSQ_DEFERRED)
812 		tcp_tsq_handler(sk);
813 
814 	/* Here begins the tricky part :
815 	 * We are called from release_sock() with :
816 	 * 1) BH disabled
817 	 * 2) sk_lock.slock spinlock held
818 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
819 	 *
820 	 * But following code is meant to be called from BH handlers,
821 	 * so we should keep BH disabled, but early release socket ownership
822 	 */
823 	sock_release_ownership(sk);
824 
825 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
826 		tcp_write_timer_handler(sk);
827 		__sock_put(sk);
828 	}
829 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
830 		tcp_delack_timer_handler(sk);
831 		__sock_put(sk);
832 	}
833 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
834 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
835 		__sock_put(sk);
836 	}
837 }
838 EXPORT_SYMBOL(tcp_release_cb);
839 
840 void __init tcp_tasklet_init(void)
841 {
842 	int i;
843 
844 	for_each_possible_cpu(i) {
845 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
846 
847 		INIT_LIST_HEAD(&tsq->head);
848 		tasklet_init(&tsq->tasklet,
849 			     tcp_tasklet_func,
850 			     (unsigned long)tsq);
851 	}
852 }
853 
854 /*
855  * Write buffer destructor automatically called from kfree_skb.
856  * We can't xmit new skbs from this context, as we might already
857  * hold qdisc lock.
858  */
859 void tcp_wfree(struct sk_buff *skb)
860 {
861 	struct sock *sk = skb->sk;
862 	struct tcp_sock *tp = tcp_sk(sk);
863 	unsigned long flags, nval, oval;
864 	int wmem;
865 
866 	/* Keep one reference on sk_wmem_alloc.
867 	 * Will be released by sk_free() from here or tcp_tasklet_func()
868 	 */
869 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
870 
871 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
872 	 * Wait until our queues (qdisc + devices) are drained.
873 	 * This gives :
874 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
875 	 * - chance for incoming ACK (processed by another cpu maybe)
876 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
877 	 */
878 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
879 		goto out;
880 
881 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
882 		struct tsq_tasklet *tsq;
883 		bool empty;
884 
885 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
886 			goto out;
887 
888 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED;
889 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
890 		if (nval != oval)
891 			continue;
892 
893 		/* queue this socket to tasklet queue */
894 		local_irq_save(flags);
895 		tsq = this_cpu_ptr(&tsq_tasklet);
896 		empty = list_empty(&tsq->head);
897 		list_add(&tp->tsq_node, &tsq->head);
898 		if (empty)
899 			tasklet_schedule(&tsq->tasklet);
900 		local_irq_restore(flags);
901 		return;
902 	}
903 out:
904 	sk_free(sk);
905 }
906 
907 /* This routine actually transmits TCP packets queued in by
908  * tcp_do_sendmsg().  This is used by both the initial
909  * transmission and possible later retransmissions.
910  * All SKB's seen here are completely headerless.  It is our
911  * job to build the TCP header, and pass the packet down to
912  * IP so it can do the same plus pass the packet off to the
913  * device.
914  *
915  * We are working here with either a clone of the original
916  * SKB, or a fresh unique copy made by the retransmit engine.
917  */
918 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
919 			    gfp_t gfp_mask)
920 {
921 	const struct inet_connection_sock *icsk = inet_csk(sk);
922 	struct inet_sock *inet;
923 	struct tcp_sock *tp;
924 	struct tcp_skb_cb *tcb;
925 	struct tcp_out_options opts;
926 	unsigned int tcp_options_size, tcp_header_size;
927 	struct tcp_md5sig_key *md5;
928 	struct tcphdr *th;
929 	int err;
930 
931 	BUG_ON(!skb || !tcp_skb_pcount(skb));
932 	tp = tcp_sk(sk);
933 
934 	if (clone_it) {
935 		skb_mstamp_get(&skb->skb_mstamp);
936 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
937 			- tp->snd_una;
938 		tcp_rate_skb_sent(sk, skb);
939 
940 		if (unlikely(skb_cloned(skb)))
941 			skb = pskb_copy(skb, gfp_mask);
942 		else
943 			skb = skb_clone(skb, gfp_mask);
944 		if (unlikely(!skb))
945 			return -ENOBUFS;
946 	}
947 
948 	inet = inet_sk(sk);
949 	tcb = TCP_SKB_CB(skb);
950 	memset(&opts, 0, sizeof(opts));
951 
952 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
953 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
954 	else
955 		tcp_options_size = tcp_established_options(sk, skb, &opts,
956 							   &md5);
957 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
958 
959 	/* if no packet is in qdisc/device queue, then allow XPS to select
960 	 * another queue. We can be called from tcp_tsq_handler()
961 	 * which holds one reference to sk_wmem_alloc.
962 	 *
963 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
964 	 * One way to get this would be to set skb->truesize = 2 on them.
965 	 */
966 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
967 
968 	skb_push(skb, tcp_header_size);
969 	skb_reset_transport_header(skb);
970 
971 	skb_orphan(skb);
972 	skb->sk = sk;
973 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
974 	skb_set_hash_from_sk(skb, sk);
975 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
976 
977 	/* Build TCP header and checksum it. */
978 	th = (struct tcphdr *)skb->data;
979 	th->source		= inet->inet_sport;
980 	th->dest		= inet->inet_dport;
981 	th->seq			= htonl(tcb->seq);
982 	th->ack_seq		= htonl(tp->rcv_nxt);
983 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
984 					tcb->tcp_flags);
985 
986 	th->check		= 0;
987 	th->urg_ptr		= 0;
988 
989 	/* The urg_mode check is necessary during a below snd_una win probe */
990 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
991 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
992 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
993 			th->urg = 1;
994 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
995 			th->urg_ptr = htons(0xFFFF);
996 			th->urg = 1;
997 		}
998 	}
999 
1000 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1001 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1002 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1003 		th->window      = htons(tcp_select_window(sk));
1004 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1005 	} else {
1006 		/* RFC1323: The window in SYN & SYN/ACK segments
1007 		 * is never scaled.
1008 		 */
1009 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1010 	}
1011 #ifdef CONFIG_TCP_MD5SIG
1012 	/* Calculate the MD5 hash, as we have all we need now */
1013 	if (md5) {
1014 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1015 		tp->af_specific->calc_md5_hash(opts.hash_location,
1016 					       md5, sk, skb);
1017 	}
1018 #endif
1019 
1020 	icsk->icsk_af_ops->send_check(sk, skb);
1021 
1022 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1023 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1024 
1025 	if (skb->len != tcp_header_size) {
1026 		tcp_event_data_sent(tp, sk);
1027 		tp->data_segs_out += tcp_skb_pcount(skb);
1028 	}
1029 
1030 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1031 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1032 			      tcp_skb_pcount(skb));
1033 
1034 	tp->segs_out += tcp_skb_pcount(skb);
1035 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1036 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1037 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1038 
1039 	/* Our usage of tstamp should remain private */
1040 	skb->tstamp.tv64 = 0;
1041 
1042 	/* Cleanup our debris for IP stacks */
1043 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1044 			       sizeof(struct inet6_skb_parm)));
1045 
1046 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1047 
1048 	if (likely(err <= 0))
1049 		return err;
1050 
1051 	tcp_enter_cwr(sk);
1052 
1053 	return net_xmit_eval(err);
1054 }
1055 
1056 /* This routine just queues the buffer for sending.
1057  *
1058  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1059  * otherwise socket can stall.
1060  */
1061 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1062 {
1063 	struct tcp_sock *tp = tcp_sk(sk);
1064 
1065 	/* Advance write_seq and place onto the write_queue. */
1066 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1067 	__skb_header_release(skb);
1068 	tcp_add_write_queue_tail(sk, skb);
1069 	sk->sk_wmem_queued += skb->truesize;
1070 	sk_mem_charge(sk, skb->truesize);
1071 }
1072 
1073 /* Initialize TSO segments for a packet. */
1074 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1075 {
1076 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1077 		/* Avoid the costly divide in the normal
1078 		 * non-TSO case.
1079 		 */
1080 		tcp_skb_pcount_set(skb, 1);
1081 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1082 	} else {
1083 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1084 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1085 	}
1086 }
1087 
1088 /* When a modification to fackets out becomes necessary, we need to check
1089  * skb is counted to fackets_out or not.
1090  */
1091 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1092 				   int decr)
1093 {
1094 	struct tcp_sock *tp = tcp_sk(sk);
1095 
1096 	if (!tp->sacked_out || tcp_is_reno(tp))
1097 		return;
1098 
1099 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1100 		tp->fackets_out -= decr;
1101 }
1102 
1103 /* Pcount in the middle of the write queue got changed, we need to do various
1104  * tweaks to fix counters
1105  */
1106 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1107 {
1108 	struct tcp_sock *tp = tcp_sk(sk);
1109 
1110 	tp->packets_out -= decr;
1111 
1112 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1113 		tp->sacked_out -= decr;
1114 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1115 		tp->retrans_out -= decr;
1116 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1117 		tp->lost_out -= decr;
1118 
1119 	/* Reno case is special. Sigh... */
1120 	if (tcp_is_reno(tp) && decr > 0)
1121 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1122 
1123 	tcp_adjust_fackets_out(sk, skb, decr);
1124 
1125 	if (tp->lost_skb_hint &&
1126 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1127 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1128 		tp->lost_cnt_hint -= decr;
1129 
1130 	tcp_verify_left_out(tp);
1131 }
1132 
1133 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1134 {
1135 	return TCP_SKB_CB(skb)->txstamp_ack ||
1136 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1137 }
1138 
1139 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1140 {
1141 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1142 
1143 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1144 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1145 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1146 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1147 
1148 		shinfo->tx_flags &= ~tsflags;
1149 		shinfo2->tx_flags |= tsflags;
1150 		swap(shinfo->tskey, shinfo2->tskey);
1151 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1152 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1153 	}
1154 }
1155 
1156 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1157 {
1158 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1159 	TCP_SKB_CB(skb)->eor = 0;
1160 }
1161 
1162 /* Function to create two new TCP segments.  Shrinks the given segment
1163  * to the specified size and appends a new segment with the rest of the
1164  * packet to the list.  This won't be called frequently, I hope.
1165  * Remember, these are still headerless SKBs at this point.
1166  */
1167 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1168 		 unsigned int mss_now, gfp_t gfp)
1169 {
1170 	struct tcp_sock *tp = tcp_sk(sk);
1171 	struct sk_buff *buff;
1172 	int nsize, old_factor;
1173 	int nlen;
1174 	u8 flags;
1175 
1176 	if (WARN_ON(len > skb->len))
1177 		return -EINVAL;
1178 
1179 	nsize = skb_headlen(skb) - len;
1180 	if (nsize < 0)
1181 		nsize = 0;
1182 
1183 	if (skb_unclone(skb, gfp))
1184 		return -ENOMEM;
1185 
1186 	/* Get a new skb... force flag on. */
1187 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1188 	if (!buff)
1189 		return -ENOMEM; /* We'll just try again later. */
1190 
1191 	sk->sk_wmem_queued += buff->truesize;
1192 	sk_mem_charge(sk, buff->truesize);
1193 	nlen = skb->len - len - nsize;
1194 	buff->truesize += nlen;
1195 	skb->truesize -= nlen;
1196 
1197 	/* Correct the sequence numbers. */
1198 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1199 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1200 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1201 
1202 	/* PSH and FIN should only be set in the second packet. */
1203 	flags = TCP_SKB_CB(skb)->tcp_flags;
1204 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1205 	TCP_SKB_CB(buff)->tcp_flags = flags;
1206 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1207 	tcp_skb_fragment_eor(skb, buff);
1208 
1209 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1210 		/* Copy and checksum data tail into the new buffer. */
1211 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1212 						       skb_put(buff, nsize),
1213 						       nsize, 0);
1214 
1215 		skb_trim(skb, len);
1216 
1217 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1218 	} else {
1219 		skb->ip_summed = CHECKSUM_PARTIAL;
1220 		skb_split(skb, buff, len);
1221 	}
1222 
1223 	buff->ip_summed = skb->ip_summed;
1224 
1225 	buff->tstamp = skb->tstamp;
1226 	tcp_fragment_tstamp(skb, buff);
1227 
1228 	old_factor = tcp_skb_pcount(skb);
1229 
1230 	/* Fix up tso_factor for both original and new SKB.  */
1231 	tcp_set_skb_tso_segs(skb, mss_now);
1232 	tcp_set_skb_tso_segs(buff, mss_now);
1233 
1234 	/* Update delivered info for the new segment */
1235 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1236 
1237 	/* If this packet has been sent out already, we must
1238 	 * adjust the various packet counters.
1239 	 */
1240 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1241 		int diff = old_factor - tcp_skb_pcount(skb) -
1242 			tcp_skb_pcount(buff);
1243 
1244 		if (diff)
1245 			tcp_adjust_pcount(sk, skb, diff);
1246 	}
1247 
1248 	/* Link BUFF into the send queue. */
1249 	__skb_header_release(buff);
1250 	tcp_insert_write_queue_after(skb, buff, sk);
1251 
1252 	return 0;
1253 }
1254 
1255 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1256  * eventually). The difference is that pulled data not copied, but
1257  * immediately discarded.
1258  */
1259 static void __pskb_trim_head(struct sk_buff *skb, int len)
1260 {
1261 	struct skb_shared_info *shinfo;
1262 	int i, k, eat;
1263 
1264 	eat = min_t(int, len, skb_headlen(skb));
1265 	if (eat) {
1266 		__skb_pull(skb, eat);
1267 		len -= eat;
1268 		if (!len)
1269 			return;
1270 	}
1271 	eat = len;
1272 	k = 0;
1273 	shinfo = skb_shinfo(skb);
1274 	for (i = 0; i < shinfo->nr_frags; i++) {
1275 		int size = skb_frag_size(&shinfo->frags[i]);
1276 
1277 		if (size <= eat) {
1278 			skb_frag_unref(skb, i);
1279 			eat -= size;
1280 		} else {
1281 			shinfo->frags[k] = shinfo->frags[i];
1282 			if (eat) {
1283 				shinfo->frags[k].page_offset += eat;
1284 				skb_frag_size_sub(&shinfo->frags[k], eat);
1285 				eat = 0;
1286 			}
1287 			k++;
1288 		}
1289 	}
1290 	shinfo->nr_frags = k;
1291 
1292 	skb_reset_tail_pointer(skb);
1293 	skb->data_len -= len;
1294 	skb->len = skb->data_len;
1295 }
1296 
1297 /* Remove acked data from a packet in the transmit queue. */
1298 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1299 {
1300 	if (skb_unclone(skb, GFP_ATOMIC))
1301 		return -ENOMEM;
1302 
1303 	__pskb_trim_head(skb, len);
1304 
1305 	TCP_SKB_CB(skb)->seq += len;
1306 	skb->ip_summed = CHECKSUM_PARTIAL;
1307 
1308 	skb->truesize	     -= len;
1309 	sk->sk_wmem_queued   -= len;
1310 	sk_mem_uncharge(sk, len);
1311 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1312 
1313 	/* Any change of skb->len requires recalculation of tso factor. */
1314 	if (tcp_skb_pcount(skb) > 1)
1315 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1316 
1317 	return 0;
1318 }
1319 
1320 /* Calculate MSS not accounting any TCP options.  */
1321 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1322 {
1323 	const struct tcp_sock *tp = tcp_sk(sk);
1324 	const struct inet_connection_sock *icsk = inet_csk(sk);
1325 	int mss_now;
1326 
1327 	/* Calculate base mss without TCP options:
1328 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1329 	 */
1330 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1331 
1332 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1333 	if (icsk->icsk_af_ops->net_frag_header_len) {
1334 		const struct dst_entry *dst = __sk_dst_get(sk);
1335 
1336 		if (dst && dst_allfrag(dst))
1337 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1338 	}
1339 
1340 	/* Clamp it (mss_clamp does not include tcp options) */
1341 	if (mss_now > tp->rx_opt.mss_clamp)
1342 		mss_now = tp->rx_opt.mss_clamp;
1343 
1344 	/* Now subtract optional transport overhead */
1345 	mss_now -= icsk->icsk_ext_hdr_len;
1346 
1347 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1348 	if (mss_now < 48)
1349 		mss_now = 48;
1350 	return mss_now;
1351 }
1352 
1353 /* Calculate MSS. Not accounting for SACKs here.  */
1354 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1355 {
1356 	/* Subtract TCP options size, not including SACKs */
1357 	return __tcp_mtu_to_mss(sk, pmtu) -
1358 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1359 }
1360 
1361 /* Inverse of above */
1362 int tcp_mss_to_mtu(struct sock *sk, int mss)
1363 {
1364 	const struct tcp_sock *tp = tcp_sk(sk);
1365 	const struct inet_connection_sock *icsk = inet_csk(sk);
1366 	int mtu;
1367 
1368 	mtu = mss +
1369 	      tp->tcp_header_len +
1370 	      icsk->icsk_ext_hdr_len +
1371 	      icsk->icsk_af_ops->net_header_len;
1372 
1373 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1374 	if (icsk->icsk_af_ops->net_frag_header_len) {
1375 		const struct dst_entry *dst = __sk_dst_get(sk);
1376 
1377 		if (dst && dst_allfrag(dst))
1378 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1379 	}
1380 	return mtu;
1381 }
1382 EXPORT_SYMBOL(tcp_mss_to_mtu);
1383 
1384 /* MTU probing init per socket */
1385 void tcp_mtup_init(struct sock *sk)
1386 {
1387 	struct tcp_sock *tp = tcp_sk(sk);
1388 	struct inet_connection_sock *icsk = inet_csk(sk);
1389 	struct net *net = sock_net(sk);
1390 
1391 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1392 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1393 			       icsk->icsk_af_ops->net_header_len;
1394 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1395 	icsk->icsk_mtup.probe_size = 0;
1396 	if (icsk->icsk_mtup.enabled)
1397 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1398 }
1399 EXPORT_SYMBOL(tcp_mtup_init);
1400 
1401 /* This function synchronize snd mss to current pmtu/exthdr set.
1402 
1403    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1404    for TCP options, but includes only bare TCP header.
1405 
1406    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1407    It is minimum of user_mss and mss received with SYN.
1408    It also does not include TCP options.
1409 
1410    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1411 
1412    tp->mss_cache is current effective sending mss, including
1413    all tcp options except for SACKs. It is evaluated,
1414    taking into account current pmtu, but never exceeds
1415    tp->rx_opt.mss_clamp.
1416 
1417    NOTE1. rfc1122 clearly states that advertised MSS
1418    DOES NOT include either tcp or ip options.
1419 
1420    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1421    are READ ONLY outside this function.		--ANK (980731)
1422  */
1423 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1424 {
1425 	struct tcp_sock *tp = tcp_sk(sk);
1426 	struct inet_connection_sock *icsk = inet_csk(sk);
1427 	int mss_now;
1428 
1429 	if (icsk->icsk_mtup.search_high > pmtu)
1430 		icsk->icsk_mtup.search_high = pmtu;
1431 
1432 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1433 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1434 
1435 	/* And store cached results */
1436 	icsk->icsk_pmtu_cookie = pmtu;
1437 	if (icsk->icsk_mtup.enabled)
1438 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1439 	tp->mss_cache = mss_now;
1440 
1441 	return mss_now;
1442 }
1443 EXPORT_SYMBOL(tcp_sync_mss);
1444 
1445 /* Compute the current effective MSS, taking SACKs and IP options,
1446  * and even PMTU discovery events into account.
1447  */
1448 unsigned int tcp_current_mss(struct sock *sk)
1449 {
1450 	const struct tcp_sock *tp = tcp_sk(sk);
1451 	const struct dst_entry *dst = __sk_dst_get(sk);
1452 	u32 mss_now;
1453 	unsigned int header_len;
1454 	struct tcp_out_options opts;
1455 	struct tcp_md5sig_key *md5;
1456 
1457 	mss_now = tp->mss_cache;
1458 
1459 	if (dst) {
1460 		u32 mtu = dst_mtu(dst);
1461 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1462 			mss_now = tcp_sync_mss(sk, mtu);
1463 	}
1464 
1465 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1466 		     sizeof(struct tcphdr);
1467 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1468 	 * some common options. If this is an odd packet (because we have SACK
1469 	 * blocks etc) then our calculated header_len will be different, and
1470 	 * we have to adjust mss_now correspondingly */
1471 	if (header_len != tp->tcp_header_len) {
1472 		int delta = (int) header_len - tp->tcp_header_len;
1473 		mss_now -= delta;
1474 	}
1475 
1476 	return mss_now;
1477 }
1478 
1479 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1480  * As additional protections, we do not touch cwnd in retransmission phases,
1481  * and if application hit its sndbuf limit recently.
1482  */
1483 static void tcp_cwnd_application_limited(struct sock *sk)
1484 {
1485 	struct tcp_sock *tp = tcp_sk(sk);
1486 
1487 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1488 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1489 		/* Limited by application or receiver window. */
1490 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1491 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1492 		if (win_used < tp->snd_cwnd) {
1493 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1494 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1495 		}
1496 		tp->snd_cwnd_used = 0;
1497 	}
1498 	tp->snd_cwnd_stamp = tcp_time_stamp;
1499 }
1500 
1501 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1502 {
1503 	struct tcp_sock *tp = tcp_sk(sk);
1504 
1505 	/* Track the maximum number of outstanding packets in each
1506 	 * window, and remember whether we were cwnd-limited then.
1507 	 */
1508 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1509 	    tp->packets_out > tp->max_packets_out) {
1510 		tp->max_packets_out = tp->packets_out;
1511 		tp->max_packets_seq = tp->snd_nxt;
1512 		tp->is_cwnd_limited = is_cwnd_limited;
1513 	}
1514 
1515 	if (tcp_is_cwnd_limited(sk)) {
1516 		/* Network is feed fully. */
1517 		tp->snd_cwnd_used = 0;
1518 		tp->snd_cwnd_stamp = tcp_time_stamp;
1519 	} else {
1520 		/* Network starves. */
1521 		if (tp->packets_out > tp->snd_cwnd_used)
1522 			tp->snd_cwnd_used = tp->packets_out;
1523 
1524 		if (sysctl_tcp_slow_start_after_idle &&
1525 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1526 			tcp_cwnd_application_limited(sk);
1527 
1528 		/* The following conditions together indicate the starvation
1529 		 * is caused by insufficient sender buffer:
1530 		 * 1) just sent some data (see tcp_write_xmit)
1531 		 * 2) not cwnd limited (this else condition)
1532 		 * 3) no more data to send (null tcp_send_head )
1533 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1534 		 */
1535 		if (!tcp_send_head(sk) && sk->sk_socket &&
1536 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1537 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1538 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1539 	}
1540 }
1541 
1542 /* Minshall's variant of the Nagle send check. */
1543 static bool tcp_minshall_check(const struct tcp_sock *tp)
1544 {
1545 	return after(tp->snd_sml, tp->snd_una) &&
1546 		!after(tp->snd_sml, tp->snd_nxt);
1547 }
1548 
1549 /* Update snd_sml if this skb is under mss
1550  * Note that a TSO packet might end with a sub-mss segment
1551  * The test is really :
1552  * if ((skb->len % mss) != 0)
1553  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1554  * But we can avoid doing the divide again given we already have
1555  *  skb_pcount = skb->len / mss_now
1556  */
1557 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1558 				const struct sk_buff *skb)
1559 {
1560 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1561 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1562 }
1563 
1564 /* Return false, if packet can be sent now without violation Nagle's rules:
1565  * 1. It is full sized. (provided by caller in %partial bool)
1566  * 2. Or it contains FIN. (already checked by caller)
1567  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1568  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1569  *    With Minshall's modification: all sent small packets are ACKed.
1570  */
1571 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1572 			    int nonagle)
1573 {
1574 	return partial &&
1575 		((nonagle & TCP_NAGLE_CORK) ||
1576 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1577 }
1578 
1579 /* Return how many segs we'd like on a TSO packet,
1580  * to send one TSO packet per ms
1581  */
1582 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1583 		     int min_tso_segs)
1584 {
1585 	u32 bytes, segs;
1586 
1587 	bytes = min(sk->sk_pacing_rate >> 10,
1588 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1589 
1590 	/* Goal is to send at least one packet per ms,
1591 	 * not one big TSO packet every 100 ms.
1592 	 * This preserves ACK clocking and is consistent
1593 	 * with tcp_tso_should_defer() heuristic.
1594 	 */
1595 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1596 
1597 	return min_t(u32, segs, sk->sk_gso_max_segs);
1598 }
1599 EXPORT_SYMBOL(tcp_tso_autosize);
1600 
1601 /* Return the number of segments we want in the skb we are transmitting.
1602  * See if congestion control module wants to decide; otherwise, autosize.
1603  */
1604 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1605 {
1606 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1607 	u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0;
1608 
1609 	return tso_segs ? :
1610 		tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs);
1611 }
1612 
1613 /* Returns the portion of skb which can be sent right away */
1614 static unsigned int tcp_mss_split_point(const struct sock *sk,
1615 					const struct sk_buff *skb,
1616 					unsigned int mss_now,
1617 					unsigned int max_segs,
1618 					int nonagle)
1619 {
1620 	const struct tcp_sock *tp = tcp_sk(sk);
1621 	u32 partial, needed, window, max_len;
1622 
1623 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1624 	max_len = mss_now * max_segs;
1625 
1626 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1627 		return max_len;
1628 
1629 	needed = min(skb->len, window);
1630 
1631 	if (max_len <= needed)
1632 		return max_len;
1633 
1634 	partial = needed % mss_now;
1635 	/* If last segment is not a full MSS, check if Nagle rules allow us
1636 	 * to include this last segment in this skb.
1637 	 * Otherwise, we'll split the skb at last MSS boundary
1638 	 */
1639 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1640 		return needed - partial;
1641 
1642 	return needed;
1643 }
1644 
1645 /* Can at least one segment of SKB be sent right now, according to the
1646  * congestion window rules?  If so, return how many segments are allowed.
1647  */
1648 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1649 					 const struct sk_buff *skb)
1650 {
1651 	u32 in_flight, cwnd, halfcwnd;
1652 
1653 	/* Don't be strict about the congestion window for the final FIN.  */
1654 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1655 	    tcp_skb_pcount(skb) == 1)
1656 		return 1;
1657 
1658 	in_flight = tcp_packets_in_flight(tp);
1659 	cwnd = tp->snd_cwnd;
1660 	if (in_flight >= cwnd)
1661 		return 0;
1662 
1663 	/* For better scheduling, ensure we have at least
1664 	 * 2 GSO packets in flight.
1665 	 */
1666 	halfcwnd = max(cwnd >> 1, 1U);
1667 	return min(halfcwnd, cwnd - in_flight);
1668 }
1669 
1670 /* Initialize TSO state of a skb.
1671  * This must be invoked the first time we consider transmitting
1672  * SKB onto the wire.
1673  */
1674 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1675 {
1676 	int tso_segs = tcp_skb_pcount(skb);
1677 
1678 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1679 		tcp_set_skb_tso_segs(skb, mss_now);
1680 		tso_segs = tcp_skb_pcount(skb);
1681 	}
1682 	return tso_segs;
1683 }
1684 
1685 
1686 /* Return true if the Nagle test allows this packet to be
1687  * sent now.
1688  */
1689 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1690 				  unsigned int cur_mss, int nonagle)
1691 {
1692 	/* Nagle rule does not apply to frames, which sit in the middle of the
1693 	 * write_queue (they have no chances to get new data).
1694 	 *
1695 	 * This is implemented in the callers, where they modify the 'nonagle'
1696 	 * argument based upon the location of SKB in the send queue.
1697 	 */
1698 	if (nonagle & TCP_NAGLE_PUSH)
1699 		return true;
1700 
1701 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1702 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1703 		return true;
1704 
1705 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1706 		return true;
1707 
1708 	return false;
1709 }
1710 
1711 /* Does at least the first segment of SKB fit into the send window? */
1712 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1713 			     const struct sk_buff *skb,
1714 			     unsigned int cur_mss)
1715 {
1716 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1717 
1718 	if (skb->len > cur_mss)
1719 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1720 
1721 	return !after(end_seq, tcp_wnd_end(tp));
1722 }
1723 
1724 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1725  * should be put on the wire right now.  If so, it returns the number of
1726  * packets allowed by the congestion window.
1727  */
1728 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1729 				 unsigned int cur_mss, int nonagle)
1730 {
1731 	const struct tcp_sock *tp = tcp_sk(sk);
1732 	unsigned int cwnd_quota;
1733 
1734 	tcp_init_tso_segs(skb, cur_mss);
1735 
1736 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1737 		return 0;
1738 
1739 	cwnd_quota = tcp_cwnd_test(tp, skb);
1740 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1741 		cwnd_quota = 0;
1742 
1743 	return cwnd_quota;
1744 }
1745 
1746 /* Test if sending is allowed right now. */
1747 bool tcp_may_send_now(struct sock *sk)
1748 {
1749 	const struct tcp_sock *tp = tcp_sk(sk);
1750 	struct sk_buff *skb = tcp_send_head(sk);
1751 
1752 	return skb &&
1753 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1754 			     (tcp_skb_is_last(sk, skb) ?
1755 			      tp->nonagle : TCP_NAGLE_PUSH));
1756 }
1757 
1758 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1759  * which is put after SKB on the list.  It is very much like
1760  * tcp_fragment() except that it may make several kinds of assumptions
1761  * in order to speed up the splitting operation.  In particular, we
1762  * know that all the data is in scatter-gather pages, and that the
1763  * packet has never been sent out before (and thus is not cloned).
1764  */
1765 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1766 			unsigned int mss_now, gfp_t gfp)
1767 {
1768 	struct sk_buff *buff;
1769 	int nlen = skb->len - len;
1770 	u8 flags;
1771 
1772 	/* All of a TSO frame must be composed of paged data.  */
1773 	if (skb->len != skb->data_len)
1774 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1775 
1776 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1777 	if (unlikely(!buff))
1778 		return -ENOMEM;
1779 
1780 	sk->sk_wmem_queued += buff->truesize;
1781 	sk_mem_charge(sk, buff->truesize);
1782 	buff->truesize += nlen;
1783 	skb->truesize -= nlen;
1784 
1785 	/* Correct the sequence numbers. */
1786 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1787 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1788 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1789 
1790 	/* PSH and FIN should only be set in the second packet. */
1791 	flags = TCP_SKB_CB(skb)->tcp_flags;
1792 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1793 	TCP_SKB_CB(buff)->tcp_flags = flags;
1794 
1795 	/* This packet was never sent out yet, so no SACK bits. */
1796 	TCP_SKB_CB(buff)->sacked = 0;
1797 
1798 	tcp_skb_fragment_eor(skb, buff);
1799 
1800 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1801 	skb_split(skb, buff, len);
1802 	tcp_fragment_tstamp(skb, buff);
1803 
1804 	/* Fix up tso_factor for both original and new SKB.  */
1805 	tcp_set_skb_tso_segs(skb, mss_now);
1806 	tcp_set_skb_tso_segs(buff, mss_now);
1807 
1808 	/* Link BUFF into the send queue. */
1809 	__skb_header_release(buff);
1810 	tcp_insert_write_queue_after(skb, buff, sk);
1811 
1812 	return 0;
1813 }
1814 
1815 /* Try to defer sending, if possible, in order to minimize the amount
1816  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1817  *
1818  * This algorithm is from John Heffner.
1819  */
1820 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1821 				 bool *is_cwnd_limited, u32 max_segs)
1822 {
1823 	const struct inet_connection_sock *icsk = inet_csk(sk);
1824 	u32 age, send_win, cong_win, limit, in_flight;
1825 	struct tcp_sock *tp = tcp_sk(sk);
1826 	struct skb_mstamp now;
1827 	struct sk_buff *head;
1828 	int win_divisor;
1829 
1830 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1831 		goto send_now;
1832 
1833 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1834 		goto send_now;
1835 
1836 	/* Avoid bursty behavior by allowing defer
1837 	 * only if the last write was recent.
1838 	 */
1839 	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1840 		goto send_now;
1841 
1842 	in_flight = tcp_packets_in_flight(tp);
1843 
1844 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1845 
1846 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1847 
1848 	/* From in_flight test above, we know that cwnd > in_flight.  */
1849 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1850 
1851 	limit = min(send_win, cong_win);
1852 
1853 	/* If a full-sized TSO skb can be sent, do it. */
1854 	if (limit >= max_segs * tp->mss_cache)
1855 		goto send_now;
1856 
1857 	/* Middle in queue won't get any more data, full sendable already? */
1858 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1859 		goto send_now;
1860 
1861 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1862 	if (win_divisor) {
1863 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1864 
1865 		/* If at least some fraction of a window is available,
1866 		 * just use it.
1867 		 */
1868 		chunk /= win_divisor;
1869 		if (limit >= chunk)
1870 			goto send_now;
1871 	} else {
1872 		/* Different approach, try not to defer past a single
1873 		 * ACK.  Receiver should ACK every other full sized
1874 		 * frame, so if we have space for more than 3 frames
1875 		 * then send now.
1876 		 */
1877 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1878 			goto send_now;
1879 	}
1880 
1881 	head = tcp_write_queue_head(sk);
1882 	skb_mstamp_get(&now);
1883 	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1884 	/* If next ACK is likely to come too late (half srtt), do not defer */
1885 	if (age < (tp->srtt_us >> 4))
1886 		goto send_now;
1887 
1888 	/* Ok, it looks like it is advisable to defer. */
1889 
1890 	if (cong_win < send_win && cong_win <= skb->len)
1891 		*is_cwnd_limited = true;
1892 
1893 	return true;
1894 
1895 send_now:
1896 	return false;
1897 }
1898 
1899 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1900 {
1901 	struct inet_connection_sock *icsk = inet_csk(sk);
1902 	struct tcp_sock *tp = tcp_sk(sk);
1903 	struct net *net = sock_net(sk);
1904 	u32 interval;
1905 	s32 delta;
1906 
1907 	interval = net->ipv4.sysctl_tcp_probe_interval;
1908 	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1909 	if (unlikely(delta >= interval * HZ)) {
1910 		int mss = tcp_current_mss(sk);
1911 
1912 		/* Update current search range */
1913 		icsk->icsk_mtup.probe_size = 0;
1914 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1915 			sizeof(struct tcphdr) +
1916 			icsk->icsk_af_ops->net_header_len;
1917 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1918 
1919 		/* Update probe time stamp */
1920 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1921 	}
1922 }
1923 
1924 /* Create a new MTU probe if we are ready.
1925  * MTU probe is regularly attempting to increase the path MTU by
1926  * deliberately sending larger packets.  This discovers routing
1927  * changes resulting in larger path MTUs.
1928  *
1929  * Returns 0 if we should wait to probe (no cwnd available),
1930  *         1 if a probe was sent,
1931  *         -1 otherwise
1932  */
1933 static int tcp_mtu_probe(struct sock *sk)
1934 {
1935 	struct inet_connection_sock *icsk = inet_csk(sk);
1936 	struct tcp_sock *tp = tcp_sk(sk);
1937 	struct sk_buff *skb, *nskb, *next;
1938 	struct net *net = sock_net(sk);
1939 	int probe_size;
1940 	int size_needed;
1941 	int copy, len;
1942 	int mss_now;
1943 	int interval;
1944 
1945 	/* Not currently probing/verifying,
1946 	 * not in recovery,
1947 	 * have enough cwnd, and
1948 	 * not SACKing (the variable headers throw things off)
1949 	 */
1950 	if (likely(!icsk->icsk_mtup.enabled ||
1951 		   icsk->icsk_mtup.probe_size ||
1952 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1953 		   tp->snd_cwnd < 11 ||
1954 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
1955 		return -1;
1956 
1957 	/* Use binary search for probe_size between tcp_mss_base,
1958 	 * and current mss_clamp. if (search_high - search_low)
1959 	 * smaller than a threshold, backoff from probing.
1960 	 */
1961 	mss_now = tcp_current_mss(sk);
1962 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1963 				    icsk->icsk_mtup.search_low) >> 1);
1964 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1965 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1966 	/* When misfortune happens, we are reprobing actively,
1967 	 * and then reprobe timer has expired. We stick with current
1968 	 * probing process by not resetting search range to its orignal.
1969 	 */
1970 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1971 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1972 		/* Check whether enough time has elaplased for
1973 		 * another round of probing.
1974 		 */
1975 		tcp_mtu_check_reprobe(sk);
1976 		return -1;
1977 	}
1978 
1979 	/* Have enough data in the send queue to probe? */
1980 	if (tp->write_seq - tp->snd_nxt < size_needed)
1981 		return -1;
1982 
1983 	if (tp->snd_wnd < size_needed)
1984 		return -1;
1985 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1986 		return 0;
1987 
1988 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1989 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1990 		if (!tcp_packets_in_flight(tp))
1991 			return -1;
1992 		else
1993 			return 0;
1994 	}
1995 
1996 	/* We're allowed to probe.  Build it now. */
1997 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1998 	if (!nskb)
1999 		return -1;
2000 	sk->sk_wmem_queued += nskb->truesize;
2001 	sk_mem_charge(sk, nskb->truesize);
2002 
2003 	skb = tcp_send_head(sk);
2004 
2005 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2006 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2007 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2008 	TCP_SKB_CB(nskb)->sacked = 0;
2009 	nskb->csum = 0;
2010 	nskb->ip_summed = skb->ip_summed;
2011 
2012 	tcp_insert_write_queue_before(nskb, skb, sk);
2013 
2014 	len = 0;
2015 	tcp_for_write_queue_from_safe(skb, next, sk) {
2016 		copy = min_t(int, skb->len, probe_size - len);
2017 		if (nskb->ip_summed) {
2018 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2019 		} else {
2020 			__wsum csum = skb_copy_and_csum_bits(skb, 0,
2021 							     skb_put(nskb, copy),
2022 							     copy, 0);
2023 			nskb->csum = csum_block_add(nskb->csum, csum, len);
2024 		}
2025 
2026 		if (skb->len <= copy) {
2027 			/* We've eaten all the data from this skb.
2028 			 * Throw it away. */
2029 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2030 			tcp_unlink_write_queue(skb, sk);
2031 			sk_wmem_free_skb(sk, skb);
2032 		} else {
2033 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2034 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2035 			if (!skb_shinfo(skb)->nr_frags) {
2036 				skb_pull(skb, copy);
2037 				if (skb->ip_summed != CHECKSUM_PARTIAL)
2038 					skb->csum = csum_partial(skb->data,
2039 								 skb->len, 0);
2040 			} else {
2041 				__pskb_trim_head(skb, copy);
2042 				tcp_set_skb_tso_segs(skb, mss_now);
2043 			}
2044 			TCP_SKB_CB(skb)->seq += copy;
2045 		}
2046 
2047 		len += copy;
2048 
2049 		if (len >= probe_size)
2050 			break;
2051 	}
2052 	tcp_init_tso_segs(nskb, nskb->len);
2053 
2054 	/* We're ready to send.  If this fails, the probe will
2055 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2056 	 */
2057 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2058 		/* Decrement cwnd here because we are sending
2059 		 * effectively two packets. */
2060 		tp->snd_cwnd--;
2061 		tcp_event_new_data_sent(sk, nskb);
2062 
2063 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2064 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2065 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2066 
2067 		return 1;
2068 	}
2069 
2070 	return -1;
2071 }
2072 
2073 /* TCP Small Queues :
2074  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2075  * (These limits are doubled for retransmits)
2076  * This allows for :
2077  *  - better RTT estimation and ACK scheduling
2078  *  - faster recovery
2079  *  - high rates
2080  * Alas, some drivers / subsystems require a fair amount
2081  * of queued bytes to ensure line rate.
2082  * One example is wifi aggregation (802.11 AMPDU)
2083  */
2084 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2085 				  unsigned int factor)
2086 {
2087 	unsigned int limit;
2088 
2089 	limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2090 	limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2091 	limit <<= factor;
2092 
2093 	if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2094 		/* Always send the 1st or 2nd skb in write queue.
2095 		 * No need to wait for TX completion to call us back,
2096 		 * after softirq/tasklet schedule.
2097 		 * This helps when TX completions are delayed too much.
2098 		 */
2099 		if (skb == sk->sk_write_queue.next ||
2100 		    skb->prev == sk->sk_write_queue.next)
2101 			return false;
2102 
2103 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2104 		/* It is possible TX completion already happened
2105 		 * before we set TSQ_THROTTLED, so we must
2106 		 * test again the condition.
2107 		 */
2108 		smp_mb__after_atomic();
2109 		if (atomic_read(&sk->sk_wmem_alloc) > limit)
2110 			return true;
2111 	}
2112 	return false;
2113 }
2114 
2115 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2116 {
2117 	const u32 now = tcp_time_stamp;
2118 
2119 	if (tp->chrono_type > TCP_CHRONO_UNSPEC)
2120 		tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start;
2121 	tp->chrono_start = now;
2122 	tp->chrono_type = new;
2123 }
2124 
2125 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2126 {
2127 	struct tcp_sock *tp = tcp_sk(sk);
2128 
2129 	/* If there are multiple conditions worthy of tracking in a
2130 	 * chronograph then the highest priority enum takes precedence
2131 	 * over the other conditions. So that if something "more interesting"
2132 	 * starts happening, stop the previous chrono and start a new one.
2133 	 */
2134 	if (type > tp->chrono_type)
2135 		tcp_chrono_set(tp, type);
2136 }
2137 
2138 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2139 {
2140 	struct tcp_sock *tp = tcp_sk(sk);
2141 
2142 
2143 	/* There are multiple conditions worthy of tracking in a
2144 	 * chronograph, so that the highest priority enum takes
2145 	 * precedence over the other conditions (see tcp_chrono_start).
2146 	 * If a condition stops, we only stop chrono tracking if
2147 	 * it's the "most interesting" or current chrono we are
2148 	 * tracking and starts busy chrono if we have pending data.
2149 	 */
2150 	if (tcp_write_queue_empty(sk))
2151 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2152 	else if (type == tp->chrono_type)
2153 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2154 }
2155 
2156 /* This routine writes packets to the network.  It advances the
2157  * send_head.  This happens as incoming acks open up the remote
2158  * window for us.
2159  *
2160  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2161  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2162  * account rare use of URG, this is not a big flaw.
2163  *
2164  * Send at most one packet when push_one > 0. Temporarily ignore
2165  * cwnd limit to force at most one packet out when push_one == 2.
2166 
2167  * Returns true, if no segments are in flight and we have queued segments,
2168  * but cannot send anything now because of SWS or another problem.
2169  */
2170 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2171 			   int push_one, gfp_t gfp)
2172 {
2173 	struct tcp_sock *tp = tcp_sk(sk);
2174 	struct sk_buff *skb;
2175 	unsigned int tso_segs, sent_pkts;
2176 	int cwnd_quota;
2177 	int result;
2178 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2179 	u32 max_segs;
2180 
2181 	sent_pkts = 0;
2182 
2183 	if (!push_one) {
2184 		/* Do MTU probing. */
2185 		result = tcp_mtu_probe(sk);
2186 		if (!result) {
2187 			return false;
2188 		} else if (result > 0) {
2189 			sent_pkts = 1;
2190 		}
2191 	}
2192 
2193 	max_segs = tcp_tso_segs(sk, mss_now);
2194 	while ((skb = tcp_send_head(sk))) {
2195 		unsigned int limit;
2196 
2197 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2198 		BUG_ON(!tso_segs);
2199 
2200 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2201 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2202 			skb_mstamp_get(&skb->skb_mstamp);
2203 			goto repair; /* Skip network transmission */
2204 		}
2205 
2206 		cwnd_quota = tcp_cwnd_test(tp, skb);
2207 		if (!cwnd_quota) {
2208 			if (push_one == 2)
2209 				/* Force out a loss probe pkt. */
2210 				cwnd_quota = 1;
2211 			else
2212 				break;
2213 		}
2214 
2215 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2216 			is_rwnd_limited = true;
2217 			break;
2218 		}
2219 
2220 		if (tso_segs == 1) {
2221 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2222 						     (tcp_skb_is_last(sk, skb) ?
2223 						      nonagle : TCP_NAGLE_PUSH))))
2224 				break;
2225 		} else {
2226 			if (!push_one &&
2227 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2228 						 max_segs))
2229 				break;
2230 		}
2231 
2232 		limit = mss_now;
2233 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2234 			limit = tcp_mss_split_point(sk, skb, mss_now,
2235 						    min_t(unsigned int,
2236 							  cwnd_quota,
2237 							  max_segs),
2238 						    nonagle);
2239 
2240 		if (skb->len > limit &&
2241 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2242 			break;
2243 
2244 		if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
2245 			clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags);
2246 		if (tcp_small_queue_check(sk, skb, 0))
2247 			break;
2248 
2249 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2250 			break;
2251 
2252 repair:
2253 		/* Advance the send_head.  This one is sent out.
2254 		 * This call will increment packets_out.
2255 		 */
2256 		tcp_event_new_data_sent(sk, skb);
2257 
2258 		tcp_minshall_update(tp, mss_now, skb);
2259 		sent_pkts += tcp_skb_pcount(skb);
2260 
2261 		if (push_one)
2262 			break;
2263 	}
2264 
2265 	if (is_rwnd_limited)
2266 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2267 	else
2268 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2269 
2270 	if (likely(sent_pkts)) {
2271 		if (tcp_in_cwnd_reduction(sk))
2272 			tp->prr_out += sent_pkts;
2273 
2274 		/* Send one loss probe per tail loss episode. */
2275 		if (push_one != 2)
2276 			tcp_schedule_loss_probe(sk);
2277 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2278 		tcp_cwnd_validate(sk, is_cwnd_limited);
2279 		return false;
2280 	}
2281 	return !tp->packets_out && tcp_send_head(sk);
2282 }
2283 
2284 bool tcp_schedule_loss_probe(struct sock *sk)
2285 {
2286 	struct inet_connection_sock *icsk = inet_csk(sk);
2287 	struct tcp_sock *tp = tcp_sk(sk);
2288 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2289 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2290 
2291 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2292 		return false;
2293 	/* No consecutive loss probes. */
2294 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2295 		tcp_rearm_rto(sk);
2296 		return false;
2297 	}
2298 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2299 	 * finishes.
2300 	 */
2301 	if (tp->fastopen_rsk)
2302 		return false;
2303 
2304 	/* TLP is only scheduled when next timer event is RTO. */
2305 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2306 		return false;
2307 
2308 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2309 	 * in Open state, that are either limited by cwnd or application.
2310 	 */
2311 	if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2312 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2313 		return false;
2314 
2315 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2316 	     tcp_send_head(sk))
2317 		return false;
2318 
2319 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2320 	 * for delayed ack when there's one outstanding packet. If no RTT
2321 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2322 	 */
2323 	timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2324 	if (tp->packets_out == 1)
2325 		timeout = max_t(u32, timeout,
2326 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2327 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2328 
2329 	/* If RTO is shorter, just schedule TLP in its place. */
2330 	tlp_time_stamp = tcp_time_stamp + timeout;
2331 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2332 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2333 		s32 delta = rto_time_stamp - tcp_time_stamp;
2334 		if (delta > 0)
2335 			timeout = delta;
2336 	}
2337 
2338 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2339 				  TCP_RTO_MAX);
2340 	return true;
2341 }
2342 
2343 /* Thanks to skb fast clones, we can detect if a prior transmit of
2344  * a packet is still in a qdisc or driver queue.
2345  * In this case, there is very little point doing a retransmit !
2346  */
2347 static bool skb_still_in_host_queue(const struct sock *sk,
2348 				    const struct sk_buff *skb)
2349 {
2350 	if (unlikely(skb_fclone_busy(sk, skb))) {
2351 		NET_INC_STATS(sock_net(sk),
2352 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2353 		return true;
2354 	}
2355 	return false;
2356 }
2357 
2358 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2359  * retransmit the last segment.
2360  */
2361 void tcp_send_loss_probe(struct sock *sk)
2362 {
2363 	struct tcp_sock *tp = tcp_sk(sk);
2364 	struct sk_buff *skb;
2365 	int pcount;
2366 	int mss = tcp_current_mss(sk);
2367 
2368 	skb = tcp_send_head(sk);
2369 	if (skb) {
2370 		if (tcp_snd_wnd_test(tp, skb, mss)) {
2371 			pcount = tp->packets_out;
2372 			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2373 			if (tp->packets_out > pcount)
2374 				goto probe_sent;
2375 			goto rearm_timer;
2376 		}
2377 		skb = tcp_write_queue_prev(sk, skb);
2378 	} else {
2379 		skb = tcp_write_queue_tail(sk);
2380 	}
2381 
2382 	/* At most one outstanding TLP retransmission. */
2383 	if (tp->tlp_high_seq)
2384 		goto rearm_timer;
2385 
2386 	/* Retransmit last segment. */
2387 	if (WARN_ON(!skb))
2388 		goto rearm_timer;
2389 
2390 	if (skb_still_in_host_queue(sk, skb))
2391 		goto rearm_timer;
2392 
2393 	pcount = tcp_skb_pcount(skb);
2394 	if (WARN_ON(!pcount))
2395 		goto rearm_timer;
2396 
2397 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2398 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2399 					  GFP_ATOMIC)))
2400 			goto rearm_timer;
2401 		skb = tcp_write_queue_next(sk, skb);
2402 	}
2403 
2404 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2405 		goto rearm_timer;
2406 
2407 	if (__tcp_retransmit_skb(sk, skb, 1))
2408 		goto rearm_timer;
2409 
2410 	/* Record snd_nxt for loss detection. */
2411 	tp->tlp_high_seq = tp->snd_nxt;
2412 
2413 probe_sent:
2414 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2415 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2416 	inet_csk(sk)->icsk_pending = 0;
2417 rearm_timer:
2418 	tcp_rearm_rto(sk);
2419 }
2420 
2421 /* Push out any pending frames which were held back due to
2422  * TCP_CORK or attempt at coalescing tiny packets.
2423  * The socket must be locked by the caller.
2424  */
2425 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2426 			       int nonagle)
2427 {
2428 	/* If we are closed, the bytes will have to remain here.
2429 	 * In time closedown will finish, we empty the write queue and
2430 	 * all will be happy.
2431 	 */
2432 	if (unlikely(sk->sk_state == TCP_CLOSE))
2433 		return;
2434 
2435 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2436 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2437 		tcp_check_probe_timer(sk);
2438 }
2439 
2440 /* Send _single_ skb sitting at the send head. This function requires
2441  * true push pending frames to setup probe timer etc.
2442  */
2443 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2444 {
2445 	struct sk_buff *skb = tcp_send_head(sk);
2446 
2447 	BUG_ON(!skb || skb->len < mss_now);
2448 
2449 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2450 }
2451 
2452 /* This function returns the amount that we can raise the
2453  * usable window based on the following constraints
2454  *
2455  * 1. The window can never be shrunk once it is offered (RFC 793)
2456  * 2. We limit memory per socket
2457  *
2458  * RFC 1122:
2459  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2460  *  RECV.NEXT + RCV.WIN fixed until:
2461  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2462  *
2463  * i.e. don't raise the right edge of the window until you can raise
2464  * it at least MSS bytes.
2465  *
2466  * Unfortunately, the recommended algorithm breaks header prediction,
2467  * since header prediction assumes th->window stays fixed.
2468  *
2469  * Strictly speaking, keeping th->window fixed violates the receiver
2470  * side SWS prevention criteria. The problem is that under this rule
2471  * a stream of single byte packets will cause the right side of the
2472  * window to always advance by a single byte.
2473  *
2474  * Of course, if the sender implements sender side SWS prevention
2475  * then this will not be a problem.
2476  *
2477  * BSD seems to make the following compromise:
2478  *
2479  *	If the free space is less than the 1/4 of the maximum
2480  *	space available and the free space is less than 1/2 mss,
2481  *	then set the window to 0.
2482  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2483  *	Otherwise, just prevent the window from shrinking
2484  *	and from being larger than the largest representable value.
2485  *
2486  * This prevents incremental opening of the window in the regime
2487  * where TCP is limited by the speed of the reader side taking
2488  * data out of the TCP receive queue. It does nothing about
2489  * those cases where the window is constrained on the sender side
2490  * because the pipeline is full.
2491  *
2492  * BSD also seems to "accidentally" limit itself to windows that are a
2493  * multiple of MSS, at least until the free space gets quite small.
2494  * This would appear to be a side effect of the mbuf implementation.
2495  * Combining these two algorithms results in the observed behavior
2496  * of having a fixed window size at almost all times.
2497  *
2498  * Below we obtain similar behavior by forcing the offered window to
2499  * a multiple of the mss when it is feasible to do so.
2500  *
2501  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2502  * Regular options like TIMESTAMP are taken into account.
2503  */
2504 u32 __tcp_select_window(struct sock *sk)
2505 {
2506 	struct inet_connection_sock *icsk = inet_csk(sk);
2507 	struct tcp_sock *tp = tcp_sk(sk);
2508 	/* MSS for the peer's data.  Previous versions used mss_clamp
2509 	 * here.  I don't know if the value based on our guesses
2510 	 * of peer's MSS is better for the performance.  It's more correct
2511 	 * but may be worse for the performance because of rcv_mss
2512 	 * fluctuations.  --SAW  1998/11/1
2513 	 */
2514 	int mss = icsk->icsk_ack.rcv_mss;
2515 	int free_space = tcp_space(sk);
2516 	int allowed_space = tcp_full_space(sk);
2517 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2518 	int window;
2519 
2520 	if (mss > full_space)
2521 		mss = full_space;
2522 
2523 	if (free_space < (full_space >> 1)) {
2524 		icsk->icsk_ack.quick = 0;
2525 
2526 		if (tcp_under_memory_pressure(sk))
2527 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2528 					       4U * tp->advmss);
2529 
2530 		/* free_space might become our new window, make sure we don't
2531 		 * increase it due to wscale.
2532 		 */
2533 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2534 
2535 		/* if free space is less than mss estimate, or is below 1/16th
2536 		 * of the maximum allowed, try to move to zero-window, else
2537 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2538 		 * new incoming data is dropped due to memory limits.
2539 		 * With large window, mss test triggers way too late in order
2540 		 * to announce zero window in time before rmem limit kicks in.
2541 		 */
2542 		if (free_space < (allowed_space >> 4) || free_space < mss)
2543 			return 0;
2544 	}
2545 
2546 	if (free_space > tp->rcv_ssthresh)
2547 		free_space = tp->rcv_ssthresh;
2548 
2549 	/* Don't do rounding if we are using window scaling, since the
2550 	 * scaled window will not line up with the MSS boundary anyway.
2551 	 */
2552 	window = tp->rcv_wnd;
2553 	if (tp->rx_opt.rcv_wscale) {
2554 		window = free_space;
2555 
2556 		/* Advertise enough space so that it won't get scaled away.
2557 		 * Import case: prevent zero window announcement if
2558 		 * 1<<rcv_wscale > mss.
2559 		 */
2560 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2561 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2562 				  << tp->rx_opt.rcv_wscale);
2563 	} else {
2564 		/* Get the largest window that is a nice multiple of mss.
2565 		 * Window clamp already applied above.
2566 		 * If our current window offering is within 1 mss of the
2567 		 * free space we just keep it. This prevents the divide
2568 		 * and multiply from happening most of the time.
2569 		 * We also don't do any window rounding when the free space
2570 		 * is too small.
2571 		 */
2572 		if (window <= free_space - mss || window > free_space)
2573 			window = (free_space / mss) * mss;
2574 		else if (mss == full_space &&
2575 			 free_space > window + (full_space >> 1))
2576 			window = free_space;
2577 	}
2578 
2579 	return window;
2580 }
2581 
2582 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2583 			     const struct sk_buff *next_skb)
2584 {
2585 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2586 		const struct skb_shared_info *next_shinfo =
2587 			skb_shinfo(next_skb);
2588 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2589 
2590 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2591 		shinfo->tskey = next_shinfo->tskey;
2592 		TCP_SKB_CB(skb)->txstamp_ack |=
2593 			TCP_SKB_CB(next_skb)->txstamp_ack;
2594 	}
2595 }
2596 
2597 /* Collapses two adjacent SKB's during retransmission. */
2598 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2599 {
2600 	struct tcp_sock *tp = tcp_sk(sk);
2601 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2602 	int skb_size, next_skb_size;
2603 
2604 	skb_size = skb->len;
2605 	next_skb_size = next_skb->len;
2606 
2607 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2608 
2609 	if (next_skb_size) {
2610 		if (next_skb_size <= skb_availroom(skb))
2611 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2612 				      next_skb_size);
2613 		else if (!skb_shift(skb, next_skb, next_skb_size))
2614 			return false;
2615 	}
2616 	tcp_highest_sack_combine(sk, next_skb, skb);
2617 
2618 	tcp_unlink_write_queue(next_skb, sk);
2619 
2620 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2621 		skb->ip_summed = CHECKSUM_PARTIAL;
2622 
2623 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2624 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2625 
2626 	/* Update sequence range on original skb. */
2627 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2628 
2629 	/* Merge over control information. This moves PSH/FIN etc. over */
2630 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2631 
2632 	/* All done, get rid of second SKB and account for it so
2633 	 * packet counting does not break.
2634 	 */
2635 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2636 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2637 
2638 	/* changed transmit queue under us so clear hints */
2639 	tcp_clear_retrans_hints_partial(tp);
2640 	if (next_skb == tp->retransmit_skb_hint)
2641 		tp->retransmit_skb_hint = skb;
2642 
2643 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2644 
2645 	tcp_skb_collapse_tstamp(skb, next_skb);
2646 
2647 	sk_wmem_free_skb(sk, next_skb);
2648 	return true;
2649 }
2650 
2651 /* Check if coalescing SKBs is legal. */
2652 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2653 {
2654 	if (tcp_skb_pcount(skb) > 1)
2655 		return false;
2656 	if (skb_cloned(skb))
2657 		return false;
2658 	if (skb == tcp_send_head(sk))
2659 		return false;
2660 	/* Some heuristics for collapsing over SACK'd could be invented */
2661 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2662 		return false;
2663 
2664 	return true;
2665 }
2666 
2667 /* Collapse packets in the retransmit queue to make to create
2668  * less packets on the wire. This is only done on retransmission.
2669  */
2670 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2671 				     int space)
2672 {
2673 	struct tcp_sock *tp = tcp_sk(sk);
2674 	struct sk_buff *skb = to, *tmp;
2675 	bool first = true;
2676 
2677 	if (!sysctl_tcp_retrans_collapse)
2678 		return;
2679 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2680 		return;
2681 
2682 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2683 		if (!tcp_can_collapse(sk, skb))
2684 			break;
2685 
2686 		if (!tcp_skb_can_collapse_to(to))
2687 			break;
2688 
2689 		space -= skb->len;
2690 
2691 		if (first) {
2692 			first = false;
2693 			continue;
2694 		}
2695 
2696 		if (space < 0)
2697 			break;
2698 
2699 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2700 			break;
2701 
2702 		if (!tcp_collapse_retrans(sk, to))
2703 			break;
2704 	}
2705 }
2706 
2707 /* This retransmits one SKB.  Policy decisions and retransmit queue
2708  * state updates are done by the caller.  Returns non-zero if an
2709  * error occurred which prevented the send.
2710  */
2711 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2712 {
2713 	struct inet_connection_sock *icsk = inet_csk(sk);
2714 	struct tcp_sock *tp = tcp_sk(sk);
2715 	unsigned int cur_mss;
2716 	int diff, len, err;
2717 
2718 
2719 	/* Inconclusive MTU probe */
2720 	if (icsk->icsk_mtup.probe_size)
2721 		icsk->icsk_mtup.probe_size = 0;
2722 
2723 	/* Do not sent more than we queued. 1/4 is reserved for possible
2724 	 * copying overhead: fragmentation, tunneling, mangling etc.
2725 	 */
2726 	if (atomic_read(&sk->sk_wmem_alloc) >
2727 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2728 		  sk->sk_sndbuf))
2729 		return -EAGAIN;
2730 
2731 	if (skb_still_in_host_queue(sk, skb))
2732 		return -EBUSY;
2733 
2734 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2735 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2736 			BUG();
2737 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2738 			return -ENOMEM;
2739 	}
2740 
2741 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2742 		return -EHOSTUNREACH; /* Routing failure or similar. */
2743 
2744 	cur_mss = tcp_current_mss(sk);
2745 
2746 	/* If receiver has shrunk his window, and skb is out of
2747 	 * new window, do not retransmit it. The exception is the
2748 	 * case, when window is shrunk to zero. In this case
2749 	 * our retransmit serves as a zero window probe.
2750 	 */
2751 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2752 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2753 		return -EAGAIN;
2754 
2755 	len = cur_mss * segs;
2756 	if (skb->len > len) {
2757 		if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2758 			return -ENOMEM; /* We'll try again later. */
2759 	} else {
2760 		if (skb_unclone(skb, GFP_ATOMIC))
2761 			return -ENOMEM;
2762 
2763 		diff = tcp_skb_pcount(skb);
2764 		tcp_set_skb_tso_segs(skb, cur_mss);
2765 		diff -= tcp_skb_pcount(skb);
2766 		if (diff)
2767 			tcp_adjust_pcount(sk, skb, diff);
2768 		if (skb->len < cur_mss)
2769 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2770 	}
2771 
2772 	/* RFC3168, section 6.1.1.1. ECN fallback */
2773 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2774 		tcp_ecn_clear_syn(sk, skb);
2775 
2776 	/* make sure skb->data is aligned on arches that require it
2777 	 * and check if ack-trimming & collapsing extended the headroom
2778 	 * beyond what csum_start can cover.
2779 	 */
2780 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2781 		     skb_headroom(skb) >= 0xFFFF)) {
2782 		struct sk_buff *nskb;
2783 
2784 		skb_mstamp_get(&skb->skb_mstamp);
2785 		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2786 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2787 			     -ENOBUFS;
2788 	} else {
2789 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2790 	}
2791 
2792 	if (likely(!err)) {
2793 		segs = tcp_skb_pcount(skb);
2794 
2795 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2796 		/* Update global TCP statistics. */
2797 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2798 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2799 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2800 		tp->total_retrans += segs;
2801 	}
2802 	return err;
2803 }
2804 
2805 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2806 {
2807 	struct tcp_sock *tp = tcp_sk(sk);
2808 	int err = __tcp_retransmit_skb(sk, skb, segs);
2809 
2810 	if (err == 0) {
2811 #if FASTRETRANS_DEBUG > 0
2812 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2813 			net_dbg_ratelimited("retrans_out leaked\n");
2814 		}
2815 #endif
2816 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2817 		tp->retrans_out += tcp_skb_pcount(skb);
2818 
2819 		/* Save stamp of the first retransmit. */
2820 		if (!tp->retrans_stamp)
2821 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2822 
2823 	} else if (err != -EBUSY) {
2824 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2825 	}
2826 
2827 	if (tp->undo_retrans < 0)
2828 		tp->undo_retrans = 0;
2829 	tp->undo_retrans += tcp_skb_pcount(skb);
2830 	return err;
2831 }
2832 
2833 /* Check if we forward retransmits are possible in the current
2834  * window/congestion state.
2835  */
2836 static bool tcp_can_forward_retransmit(struct sock *sk)
2837 {
2838 	const struct inet_connection_sock *icsk = inet_csk(sk);
2839 	const struct tcp_sock *tp = tcp_sk(sk);
2840 
2841 	/* Forward retransmissions are possible only during Recovery. */
2842 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2843 		return false;
2844 
2845 	/* No forward retransmissions in Reno are possible. */
2846 	if (tcp_is_reno(tp))
2847 		return false;
2848 
2849 	/* Yeah, we have to make difficult choice between forward transmission
2850 	 * and retransmission... Both ways have their merits...
2851 	 *
2852 	 * For now we do not retransmit anything, while we have some new
2853 	 * segments to send. In the other cases, follow rule 3 for
2854 	 * NextSeg() specified in RFC3517.
2855 	 */
2856 
2857 	if (tcp_may_send_now(sk))
2858 		return false;
2859 
2860 	return true;
2861 }
2862 
2863 /* This gets called after a retransmit timeout, and the initially
2864  * retransmitted data is acknowledged.  It tries to continue
2865  * resending the rest of the retransmit queue, until either
2866  * we've sent it all or the congestion window limit is reached.
2867  * If doing SACK, the first ACK which comes back for a timeout
2868  * based retransmit packet might feed us FACK information again.
2869  * If so, we use it to avoid unnecessarily retransmissions.
2870  */
2871 void tcp_xmit_retransmit_queue(struct sock *sk)
2872 {
2873 	const struct inet_connection_sock *icsk = inet_csk(sk);
2874 	struct tcp_sock *tp = tcp_sk(sk);
2875 	struct sk_buff *skb;
2876 	struct sk_buff *hole = NULL;
2877 	u32 max_segs, last_lost;
2878 	int mib_idx;
2879 	int fwd_rexmitting = 0;
2880 
2881 	if (!tp->packets_out)
2882 		return;
2883 
2884 	if (!tp->lost_out)
2885 		tp->retransmit_high = tp->snd_una;
2886 
2887 	if (tp->retransmit_skb_hint) {
2888 		skb = tp->retransmit_skb_hint;
2889 		last_lost = TCP_SKB_CB(skb)->end_seq;
2890 		if (after(last_lost, tp->retransmit_high))
2891 			last_lost = tp->retransmit_high;
2892 	} else {
2893 		skb = tcp_write_queue_head(sk);
2894 		last_lost = tp->snd_una;
2895 	}
2896 
2897 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2898 	tcp_for_write_queue_from(skb, sk) {
2899 		__u8 sacked;
2900 		int segs;
2901 
2902 		if (skb == tcp_send_head(sk))
2903 			break;
2904 		/* we could do better than to assign each time */
2905 		if (!hole)
2906 			tp->retransmit_skb_hint = skb;
2907 
2908 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2909 		if (segs <= 0)
2910 			return;
2911 		sacked = TCP_SKB_CB(skb)->sacked;
2912 		/* In case tcp_shift_skb_data() have aggregated large skbs,
2913 		 * we need to make sure not sending too bigs TSO packets
2914 		 */
2915 		segs = min_t(int, segs, max_segs);
2916 
2917 		if (fwd_rexmitting) {
2918 begin_fwd:
2919 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2920 				break;
2921 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2922 
2923 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2924 			tp->retransmit_high = last_lost;
2925 			if (!tcp_can_forward_retransmit(sk))
2926 				break;
2927 			/* Backtrack if necessary to non-L'ed skb */
2928 			if (hole) {
2929 				skb = hole;
2930 				hole = NULL;
2931 			}
2932 			fwd_rexmitting = 1;
2933 			goto begin_fwd;
2934 
2935 		} else if (!(sacked & TCPCB_LOST)) {
2936 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2937 				hole = skb;
2938 			continue;
2939 
2940 		} else {
2941 			last_lost = TCP_SKB_CB(skb)->end_seq;
2942 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2943 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2944 			else
2945 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2946 		}
2947 
2948 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2949 			continue;
2950 
2951 		if (tcp_small_queue_check(sk, skb, 1))
2952 			return;
2953 
2954 		if (tcp_retransmit_skb(sk, skb, segs))
2955 			return;
2956 
2957 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2958 
2959 		if (tcp_in_cwnd_reduction(sk))
2960 			tp->prr_out += tcp_skb_pcount(skb);
2961 
2962 		if (skb == tcp_write_queue_head(sk))
2963 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2964 						  inet_csk(sk)->icsk_rto,
2965 						  TCP_RTO_MAX);
2966 	}
2967 }
2968 
2969 /* We allow to exceed memory limits for FIN packets to expedite
2970  * connection tear down and (memory) recovery.
2971  * Otherwise tcp_send_fin() could be tempted to either delay FIN
2972  * or even be forced to close flow without any FIN.
2973  * In general, we want to allow one skb per socket to avoid hangs
2974  * with edge trigger epoll()
2975  */
2976 void sk_forced_mem_schedule(struct sock *sk, int size)
2977 {
2978 	int amt;
2979 
2980 	if (size <= sk->sk_forward_alloc)
2981 		return;
2982 	amt = sk_mem_pages(size);
2983 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2984 	sk_memory_allocated_add(sk, amt);
2985 
2986 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2987 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2988 }
2989 
2990 /* Send a FIN. The caller locks the socket for us.
2991  * We should try to send a FIN packet really hard, but eventually give up.
2992  */
2993 void tcp_send_fin(struct sock *sk)
2994 {
2995 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2996 	struct tcp_sock *tp = tcp_sk(sk);
2997 
2998 	/* Optimization, tack on the FIN if we have one skb in write queue and
2999 	 * this skb was not yet sent, or we are under memory pressure.
3000 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3001 	 * as TCP stack thinks it has already been transmitted.
3002 	 */
3003 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
3004 coalesce:
3005 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3006 		TCP_SKB_CB(tskb)->end_seq++;
3007 		tp->write_seq++;
3008 		if (!tcp_send_head(sk)) {
3009 			/* This means tskb was already sent.
3010 			 * Pretend we included the FIN on previous transmit.
3011 			 * We need to set tp->snd_nxt to the value it would have
3012 			 * if FIN had been sent. This is because retransmit path
3013 			 * does not change tp->snd_nxt.
3014 			 */
3015 			tp->snd_nxt++;
3016 			return;
3017 		}
3018 	} else {
3019 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3020 		if (unlikely(!skb)) {
3021 			if (tskb)
3022 				goto coalesce;
3023 			return;
3024 		}
3025 		skb_reserve(skb, MAX_TCP_HEADER);
3026 		sk_forced_mem_schedule(sk, skb->truesize);
3027 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3028 		tcp_init_nondata_skb(skb, tp->write_seq,
3029 				     TCPHDR_ACK | TCPHDR_FIN);
3030 		tcp_queue_skb(sk, skb);
3031 	}
3032 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3033 }
3034 
3035 /* We get here when a process closes a file descriptor (either due to
3036  * an explicit close() or as a byproduct of exit()'ing) and there
3037  * was unread data in the receive queue.  This behavior is recommended
3038  * by RFC 2525, section 2.17.  -DaveM
3039  */
3040 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3041 {
3042 	struct sk_buff *skb;
3043 
3044 	/* NOTE: No TCP options attached and we never retransmit this. */
3045 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3046 	if (!skb) {
3047 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3048 		return;
3049 	}
3050 
3051 	/* Reserve space for headers and prepare control bits. */
3052 	skb_reserve(skb, MAX_TCP_HEADER);
3053 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3054 			     TCPHDR_ACK | TCPHDR_RST);
3055 	skb_mstamp_get(&skb->skb_mstamp);
3056 	/* Send it off. */
3057 	if (tcp_transmit_skb(sk, skb, 0, priority))
3058 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3059 
3060 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3061 }
3062 
3063 /* Send a crossed SYN-ACK during socket establishment.
3064  * WARNING: This routine must only be called when we have already sent
3065  * a SYN packet that crossed the incoming SYN that caused this routine
3066  * to get called. If this assumption fails then the initial rcv_wnd
3067  * and rcv_wscale values will not be correct.
3068  */
3069 int tcp_send_synack(struct sock *sk)
3070 {
3071 	struct sk_buff *skb;
3072 
3073 	skb = tcp_write_queue_head(sk);
3074 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3075 		pr_debug("%s: wrong queue state\n", __func__);
3076 		return -EFAULT;
3077 	}
3078 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3079 		if (skb_cloned(skb)) {
3080 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
3081 			if (!nskb)
3082 				return -ENOMEM;
3083 			tcp_unlink_write_queue(skb, sk);
3084 			__skb_header_release(nskb);
3085 			__tcp_add_write_queue_head(sk, nskb);
3086 			sk_wmem_free_skb(sk, skb);
3087 			sk->sk_wmem_queued += nskb->truesize;
3088 			sk_mem_charge(sk, nskb->truesize);
3089 			skb = nskb;
3090 		}
3091 
3092 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3093 		tcp_ecn_send_synack(sk, skb);
3094 	}
3095 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3096 }
3097 
3098 /**
3099  * tcp_make_synack - Prepare a SYN-ACK.
3100  * sk: listener socket
3101  * dst: dst entry attached to the SYNACK
3102  * req: request_sock pointer
3103  *
3104  * Allocate one skb and build a SYNACK packet.
3105  * @dst is consumed : Caller should not use it again.
3106  */
3107 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3108 				struct request_sock *req,
3109 				struct tcp_fastopen_cookie *foc,
3110 				enum tcp_synack_type synack_type)
3111 {
3112 	struct inet_request_sock *ireq = inet_rsk(req);
3113 	const struct tcp_sock *tp = tcp_sk(sk);
3114 	struct tcp_md5sig_key *md5 = NULL;
3115 	struct tcp_out_options opts;
3116 	struct sk_buff *skb;
3117 	int tcp_header_size;
3118 	struct tcphdr *th;
3119 	u16 user_mss;
3120 	int mss;
3121 
3122 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3123 	if (unlikely(!skb)) {
3124 		dst_release(dst);
3125 		return NULL;
3126 	}
3127 	/* Reserve space for headers. */
3128 	skb_reserve(skb, MAX_TCP_HEADER);
3129 
3130 	switch (synack_type) {
3131 	case TCP_SYNACK_NORMAL:
3132 		skb_set_owner_w(skb, req_to_sk(req));
3133 		break;
3134 	case TCP_SYNACK_COOKIE:
3135 		/* Under synflood, we do not attach skb to a socket,
3136 		 * to avoid false sharing.
3137 		 */
3138 		break;
3139 	case TCP_SYNACK_FASTOPEN:
3140 		/* sk is a const pointer, because we want to express multiple
3141 		 * cpu might call us concurrently.
3142 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3143 		 */
3144 		skb_set_owner_w(skb, (struct sock *)sk);
3145 		break;
3146 	}
3147 	skb_dst_set(skb, dst);
3148 
3149 	mss = dst_metric_advmss(dst);
3150 	user_mss = READ_ONCE(tp->rx_opt.user_mss);
3151 	if (user_mss && user_mss < mss)
3152 		mss = user_mss;
3153 
3154 	memset(&opts, 0, sizeof(opts));
3155 #ifdef CONFIG_SYN_COOKIES
3156 	if (unlikely(req->cookie_ts))
3157 		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3158 	else
3159 #endif
3160 	skb_mstamp_get(&skb->skb_mstamp);
3161 
3162 #ifdef CONFIG_TCP_MD5SIG
3163 	rcu_read_lock();
3164 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3165 #endif
3166 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3167 	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3168 			  sizeof(*th);
3169 
3170 	skb_push(skb, tcp_header_size);
3171 	skb_reset_transport_header(skb);
3172 
3173 	th = (struct tcphdr *)skb->data;
3174 	memset(th, 0, sizeof(struct tcphdr));
3175 	th->syn = 1;
3176 	th->ack = 1;
3177 	tcp_ecn_make_synack(req, th);
3178 	th->source = htons(ireq->ir_num);
3179 	th->dest = ireq->ir_rmt_port;
3180 	/* Setting of flags are superfluous here for callers (and ECE is
3181 	 * not even correctly set)
3182 	 */
3183 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3184 			     TCPHDR_SYN | TCPHDR_ACK);
3185 
3186 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3187 	/* XXX data is queued and acked as is. No buffer/window check */
3188 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3189 
3190 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3191 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3192 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3193 	th->doff = (tcp_header_size >> 2);
3194 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3195 
3196 #ifdef CONFIG_TCP_MD5SIG
3197 	/* Okay, we have all we need - do the md5 hash if needed */
3198 	if (md5)
3199 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3200 					       md5, req_to_sk(req), skb);
3201 	rcu_read_unlock();
3202 #endif
3203 
3204 	/* Do not fool tcpdump (if any), clean our debris */
3205 	skb->tstamp.tv64 = 0;
3206 	return skb;
3207 }
3208 EXPORT_SYMBOL(tcp_make_synack);
3209 
3210 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3211 {
3212 	struct inet_connection_sock *icsk = inet_csk(sk);
3213 	const struct tcp_congestion_ops *ca;
3214 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3215 
3216 	if (ca_key == TCP_CA_UNSPEC)
3217 		return;
3218 
3219 	rcu_read_lock();
3220 	ca = tcp_ca_find_key(ca_key);
3221 	if (likely(ca && try_module_get(ca->owner))) {
3222 		module_put(icsk->icsk_ca_ops->owner);
3223 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3224 		icsk->icsk_ca_ops = ca;
3225 	}
3226 	rcu_read_unlock();
3227 }
3228 
3229 /* Do all connect socket setups that can be done AF independent. */
3230 static void tcp_connect_init(struct sock *sk)
3231 {
3232 	const struct dst_entry *dst = __sk_dst_get(sk);
3233 	struct tcp_sock *tp = tcp_sk(sk);
3234 	__u8 rcv_wscale;
3235 
3236 	/* We'll fix this up when we get a response from the other end.
3237 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3238 	 */
3239 	tp->tcp_header_len = sizeof(struct tcphdr) +
3240 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3241 
3242 #ifdef CONFIG_TCP_MD5SIG
3243 	if (tp->af_specific->md5_lookup(sk, sk))
3244 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3245 #endif
3246 
3247 	/* If user gave his TCP_MAXSEG, record it to clamp */
3248 	if (tp->rx_opt.user_mss)
3249 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3250 	tp->max_window = 0;
3251 	tcp_mtup_init(sk);
3252 	tcp_sync_mss(sk, dst_mtu(dst));
3253 
3254 	tcp_ca_dst_init(sk, dst);
3255 
3256 	if (!tp->window_clamp)
3257 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3258 	tp->advmss = dst_metric_advmss(dst);
3259 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3260 		tp->advmss = tp->rx_opt.user_mss;
3261 
3262 	tcp_initialize_rcv_mss(sk);
3263 
3264 	/* limit the window selection if the user enforce a smaller rx buffer */
3265 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3266 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3267 		tp->window_clamp = tcp_full_space(sk);
3268 
3269 	tcp_select_initial_window(tcp_full_space(sk),
3270 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3271 				  &tp->rcv_wnd,
3272 				  &tp->window_clamp,
3273 				  sysctl_tcp_window_scaling,
3274 				  &rcv_wscale,
3275 				  dst_metric(dst, RTAX_INITRWND));
3276 
3277 	tp->rx_opt.rcv_wscale = rcv_wscale;
3278 	tp->rcv_ssthresh = tp->rcv_wnd;
3279 
3280 	sk->sk_err = 0;
3281 	sock_reset_flag(sk, SOCK_DONE);
3282 	tp->snd_wnd = 0;
3283 	tcp_init_wl(tp, 0);
3284 	tp->snd_una = tp->write_seq;
3285 	tp->snd_sml = tp->write_seq;
3286 	tp->snd_up = tp->write_seq;
3287 	tp->snd_nxt = tp->write_seq;
3288 
3289 	if (likely(!tp->repair))
3290 		tp->rcv_nxt = 0;
3291 	else
3292 		tp->rcv_tstamp = tcp_time_stamp;
3293 	tp->rcv_wup = tp->rcv_nxt;
3294 	tp->copied_seq = tp->rcv_nxt;
3295 
3296 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3297 	inet_csk(sk)->icsk_retransmits = 0;
3298 	tcp_clear_retrans(tp);
3299 }
3300 
3301 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3302 {
3303 	struct tcp_sock *tp = tcp_sk(sk);
3304 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3305 
3306 	tcb->end_seq += skb->len;
3307 	__skb_header_release(skb);
3308 	__tcp_add_write_queue_tail(sk, skb);
3309 	sk->sk_wmem_queued += skb->truesize;
3310 	sk_mem_charge(sk, skb->truesize);
3311 	tp->write_seq = tcb->end_seq;
3312 	tp->packets_out += tcp_skb_pcount(skb);
3313 }
3314 
3315 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3316  * queue a data-only packet after the regular SYN, such that regular SYNs
3317  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3318  * only the SYN sequence, the data are retransmitted in the first ACK.
3319  * If cookie is not cached or other error occurs, falls back to send a
3320  * regular SYN with Fast Open cookie request option.
3321  */
3322 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3323 {
3324 	struct tcp_sock *tp = tcp_sk(sk);
3325 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3326 	int syn_loss = 0, space, err = 0;
3327 	unsigned long last_syn_loss = 0;
3328 	struct sk_buff *syn_data;
3329 
3330 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3331 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3332 			       &syn_loss, &last_syn_loss);
3333 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3334 	if (syn_loss > 1 &&
3335 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3336 		fo->cookie.len = -1;
3337 		goto fallback;
3338 	}
3339 
3340 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3341 		fo->cookie.len = -1;
3342 	else if (fo->cookie.len <= 0)
3343 		goto fallback;
3344 
3345 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3346 	 * user-MSS. Reserve maximum option space for middleboxes that add
3347 	 * private TCP options. The cost is reduced data space in SYN :(
3348 	 */
3349 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3350 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3351 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3352 		MAX_TCP_OPTION_SPACE;
3353 
3354 	space = min_t(size_t, space, fo->size);
3355 
3356 	/* limit to order-0 allocations */
3357 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3358 
3359 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3360 	if (!syn_data)
3361 		goto fallback;
3362 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3363 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3364 	if (space) {
3365 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3366 					    &fo->data->msg_iter);
3367 		if (unlikely(!copied)) {
3368 			kfree_skb(syn_data);
3369 			goto fallback;
3370 		}
3371 		if (copied != space) {
3372 			skb_trim(syn_data, copied);
3373 			space = copied;
3374 		}
3375 	}
3376 	/* No more data pending in inet_wait_for_connect() */
3377 	if (space == fo->size)
3378 		fo->data = NULL;
3379 	fo->copied = space;
3380 
3381 	tcp_connect_queue_skb(sk, syn_data);
3382 	if (syn_data->len)
3383 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3384 
3385 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3386 
3387 	syn->skb_mstamp = syn_data->skb_mstamp;
3388 
3389 	/* Now full SYN+DATA was cloned and sent (or not),
3390 	 * remove the SYN from the original skb (syn_data)
3391 	 * we keep in write queue in case of a retransmit, as we
3392 	 * also have the SYN packet (with no data) in the same queue.
3393 	 */
3394 	TCP_SKB_CB(syn_data)->seq++;
3395 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3396 	if (!err) {
3397 		tp->syn_data = (fo->copied > 0);
3398 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3399 		goto done;
3400 	}
3401 
3402 fallback:
3403 	/* Send a regular SYN with Fast Open cookie request option */
3404 	if (fo->cookie.len > 0)
3405 		fo->cookie.len = 0;
3406 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3407 	if (err)
3408 		tp->syn_fastopen = 0;
3409 done:
3410 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3411 	return err;
3412 }
3413 
3414 /* Build a SYN and send it off. */
3415 int tcp_connect(struct sock *sk)
3416 {
3417 	struct tcp_sock *tp = tcp_sk(sk);
3418 	struct sk_buff *buff;
3419 	int err;
3420 
3421 	tcp_connect_init(sk);
3422 
3423 	if (unlikely(tp->repair)) {
3424 		tcp_finish_connect(sk, NULL);
3425 		return 0;
3426 	}
3427 
3428 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3429 	if (unlikely(!buff))
3430 		return -ENOBUFS;
3431 
3432 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3433 	tp->retrans_stamp = tcp_time_stamp;
3434 	tcp_connect_queue_skb(sk, buff);
3435 	tcp_ecn_send_syn(sk, buff);
3436 
3437 	/* Send off SYN; include data in Fast Open. */
3438 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3439 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3440 	if (err == -ECONNREFUSED)
3441 		return err;
3442 
3443 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3444 	 * in order to make this packet get counted in tcpOutSegs.
3445 	 */
3446 	tp->snd_nxt = tp->write_seq;
3447 	tp->pushed_seq = tp->write_seq;
3448 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3449 
3450 	/* Timer for repeating the SYN until an answer. */
3451 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3452 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3453 	return 0;
3454 }
3455 EXPORT_SYMBOL(tcp_connect);
3456 
3457 /* Send out a delayed ack, the caller does the policy checking
3458  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3459  * for details.
3460  */
3461 void tcp_send_delayed_ack(struct sock *sk)
3462 {
3463 	struct inet_connection_sock *icsk = inet_csk(sk);
3464 	int ato = icsk->icsk_ack.ato;
3465 	unsigned long timeout;
3466 
3467 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3468 
3469 	if (ato > TCP_DELACK_MIN) {
3470 		const struct tcp_sock *tp = tcp_sk(sk);
3471 		int max_ato = HZ / 2;
3472 
3473 		if (icsk->icsk_ack.pingpong ||
3474 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3475 			max_ato = TCP_DELACK_MAX;
3476 
3477 		/* Slow path, intersegment interval is "high". */
3478 
3479 		/* If some rtt estimate is known, use it to bound delayed ack.
3480 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3481 		 * directly.
3482 		 */
3483 		if (tp->srtt_us) {
3484 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3485 					TCP_DELACK_MIN);
3486 
3487 			if (rtt < max_ato)
3488 				max_ato = rtt;
3489 		}
3490 
3491 		ato = min(ato, max_ato);
3492 	}
3493 
3494 	/* Stay within the limit we were given */
3495 	timeout = jiffies + ato;
3496 
3497 	/* Use new timeout only if there wasn't a older one earlier. */
3498 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3499 		/* If delack timer was blocked or is about to expire,
3500 		 * send ACK now.
3501 		 */
3502 		if (icsk->icsk_ack.blocked ||
3503 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3504 			tcp_send_ack(sk);
3505 			return;
3506 		}
3507 
3508 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3509 			timeout = icsk->icsk_ack.timeout;
3510 	}
3511 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3512 	icsk->icsk_ack.timeout = timeout;
3513 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3514 }
3515 
3516 /* This routine sends an ack and also updates the window. */
3517 void tcp_send_ack(struct sock *sk)
3518 {
3519 	struct sk_buff *buff;
3520 
3521 	/* If we have been reset, we may not send again. */
3522 	if (sk->sk_state == TCP_CLOSE)
3523 		return;
3524 
3525 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3526 
3527 	/* We are not putting this on the write queue, so
3528 	 * tcp_transmit_skb() will set the ownership to this
3529 	 * sock.
3530 	 */
3531 	buff = alloc_skb(MAX_TCP_HEADER,
3532 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3533 	if (unlikely(!buff)) {
3534 		inet_csk_schedule_ack(sk);
3535 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3536 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3537 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3538 		return;
3539 	}
3540 
3541 	/* Reserve space for headers and prepare control bits. */
3542 	skb_reserve(buff, MAX_TCP_HEADER);
3543 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3544 
3545 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3546 	 * too much.
3547 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3548 	 */
3549 	skb_set_tcp_pure_ack(buff);
3550 
3551 	/* Send it off, this clears delayed acks for us. */
3552 	skb_mstamp_get(&buff->skb_mstamp);
3553 	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3554 }
3555 EXPORT_SYMBOL_GPL(tcp_send_ack);
3556 
3557 /* This routine sends a packet with an out of date sequence
3558  * number. It assumes the other end will try to ack it.
3559  *
3560  * Question: what should we make while urgent mode?
3561  * 4.4BSD forces sending single byte of data. We cannot send
3562  * out of window data, because we have SND.NXT==SND.MAX...
3563  *
3564  * Current solution: to send TWO zero-length segments in urgent mode:
3565  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3566  * out-of-date with SND.UNA-1 to probe window.
3567  */
3568 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3569 {
3570 	struct tcp_sock *tp = tcp_sk(sk);
3571 	struct sk_buff *skb;
3572 
3573 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3574 	skb = alloc_skb(MAX_TCP_HEADER,
3575 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3576 	if (!skb)
3577 		return -1;
3578 
3579 	/* Reserve space for headers and set control bits. */
3580 	skb_reserve(skb, MAX_TCP_HEADER);
3581 	/* Use a previous sequence.  This should cause the other
3582 	 * end to send an ack.  Don't queue or clone SKB, just
3583 	 * send it.
3584 	 */
3585 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3586 	skb_mstamp_get(&skb->skb_mstamp);
3587 	NET_INC_STATS(sock_net(sk), mib);
3588 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3589 }
3590 
3591 void tcp_send_window_probe(struct sock *sk)
3592 {
3593 	if (sk->sk_state == TCP_ESTABLISHED) {
3594 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3595 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3596 	}
3597 }
3598 
3599 /* Initiate keepalive or window probe from timer. */
3600 int tcp_write_wakeup(struct sock *sk, int mib)
3601 {
3602 	struct tcp_sock *tp = tcp_sk(sk);
3603 	struct sk_buff *skb;
3604 
3605 	if (sk->sk_state == TCP_CLOSE)
3606 		return -1;
3607 
3608 	skb = tcp_send_head(sk);
3609 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3610 		int err;
3611 		unsigned int mss = tcp_current_mss(sk);
3612 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3613 
3614 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3615 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3616 
3617 		/* We are probing the opening of a window
3618 		 * but the window size is != 0
3619 		 * must have been a result SWS avoidance ( sender )
3620 		 */
3621 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3622 		    skb->len > mss) {
3623 			seg_size = min(seg_size, mss);
3624 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3625 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3626 				return -1;
3627 		} else if (!tcp_skb_pcount(skb))
3628 			tcp_set_skb_tso_segs(skb, mss);
3629 
3630 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3631 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3632 		if (!err)
3633 			tcp_event_new_data_sent(sk, skb);
3634 		return err;
3635 	} else {
3636 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3637 			tcp_xmit_probe_skb(sk, 1, mib);
3638 		return tcp_xmit_probe_skb(sk, 0, mib);
3639 	}
3640 }
3641 
3642 /* A window probe timeout has occurred.  If window is not closed send
3643  * a partial packet else a zero probe.
3644  */
3645 void tcp_send_probe0(struct sock *sk)
3646 {
3647 	struct inet_connection_sock *icsk = inet_csk(sk);
3648 	struct tcp_sock *tp = tcp_sk(sk);
3649 	struct net *net = sock_net(sk);
3650 	unsigned long probe_max;
3651 	int err;
3652 
3653 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3654 
3655 	if (tp->packets_out || !tcp_send_head(sk)) {
3656 		/* Cancel probe timer, if it is not required. */
3657 		icsk->icsk_probes_out = 0;
3658 		icsk->icsk_backoff = 0;
3659 		return;
3660 	}
3661 
3662 	if (err <= 0) {
3663 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3664 			icsk->icsk_backoff++;
3665 		icsk->icsk_probes_out++;
3666 		probe_max = TCP_RTO_MAX;
3667 	} else {
3668 		/* If packet was not sent due to local congestion,
3669 		 * do not backoff and do not remember icsk_probes_out.
3670 		 * Let local senders to fight for local resources.
3671 		 *
3672 		 * Use accumulated backoff yet.
3673 		 */
3674 		if (!icsk->icsk_probes_out)
3675 			icsk->icsk_probes_out = 1;
3676 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3677 	}
3678 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3679 				  tcp_probe0_when(sk, probe_max),
3680 				  TCP_RTO_MAX);
3681 }
3682 
3683 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3684 {
3685 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3686 	struct flowi fl;
3687 	int res;
3688 
3689 	tcp_rsk(req)->txhash = net_tx_rndhash();
3690 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3691 	if (!res) {
3692 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3693 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3694 		if (unlikely(tcp_passive_fastopen(sk)))
3695 			tcp_sk(sk)->total_retrans++;
3696 	}
3697 	return res;
3698 }
3699 EXPORT_SYMBOL(tcp_rtx_synack);
3700