1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of four TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 66 int push_one, gfp_t gfp); 67 68 /* Account for new data that has been sent to the network. */ 69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 70 { 71 struct inet_connection_sock *icsk = inet_csk(sk); 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 tcp_advance_send_head(sk, skb); 76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 77 78 tp->packets_out += tcp_skb_pcount(skb); 79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 80 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 81 tcp_rearm_rto(sk); 82 } 83 84 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 85 tcp_skb_pcount(skb)); 86 } 87 88 /* SND.NXT, if window was not shrunk. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 99 return tp->snd_nxt; 100 else 101 return tcp_wnd_end(tp); 102 } 103 104 /* Calculate mss to advertise in SYN segment. 105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 106 * 107 * 1. It is independent of path mtu. 108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 110 * attached devices, because some buggy hosts are confused by 111 * large MSS. 112 * 4. We do not make 3, we advertise MSS, calculated from first 113 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 114 * This may be overridden via information stored in routing table. 115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 116 * probably even Jumbo". 117 */ 118 static __u16 tcp_advertise_mss(struct sock *sk) 119 { 120 struct tcp_sock *tp = tcp_sk(sk); 121 const struct dst_entry *dst = __sk_dst_get(sk); 122 int mss = tp->advmss; 123 124 if (dst) { 125 unsigned int metric = dst_metric_advmss(dst); 126 127 if (metric < mss) { 128 mss = metric; 129 tp->advmss = mss; 130 } 131 } 132 133 return (__u16)mss; 134 } 135 136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 137 * This is the first part of cwnd validation mechanism. 138 */ 139 void tcp_cwnd_restart(struct sock *sk, s32 delta) 140 { 141 struct tcp_sock *tp = tcp_sk(sk); 142 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 143 u32 cwnd = tp->snd_cwnd; 144 145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 146 147 tp->snd_ssthresh = tcp_current_ssthresh(sk); 148 restart_cwnd = min(restart_cwnd, cwnd); 149 150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 151 cwnd >>= 1; 152 tp->snd_cwnd = max(cwnd, restart_cwnd); 153 tp->snd_cwnd_stamp = tcp_time_stamp; 154 tp->snd_cwnd_used = 0; 155 } 156 157 /* Congestion state accounting after a packet has been sent. */ 158 static void tcp_event_data_sent(struct tcp_sock *tp, 159 struct sock *sk) 160 { 161 struct inet_connection_sock *icsk = inet_csk(sk); 162 const u32 now = tcp_time_stamp; 163 164 if (tcp_packets_in_flight(tp) == 0) 165 tcp_ca_event(sk, CA_EVENT_TX_START); 166 167 tp->lsndtime = now; 168 169 /* If it is a reply for ato after last received 170 * packet, enter pingpong mode. 171 */ 172 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 173 icsk->icsk_ack.pingpong = 1; 174 } 175 176 /* Account for an ACK we sent. */ 177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 178 { 179 tcp_dec_quickack_mode(sk, pkts); 180 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 181 } 182 183 184 u32 tcp_default_init_rwnd(u32 mss) 185 { 186 /* Initial receive window should be twice of TCP_INIT_CWND to 187 * enable proper sending of new unsent data during fast recovery 188 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 189 * limit when mss is larger than 1460. 190 */ 191 u32 init_rwnd = TCP_INIT_CWND * 2; 192 193 if (mss > 1460) 194 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 195 return init_rwnd; 196 } 197 198 /* Determine a window scaling and initial window to offer. 199 * Based on the assumption that the given amount of space 200 * will be offered. Store the results in the tp structure. 201 * NOTE: for smooth operation initial space offering should 202 * be a multiple of mss if possible. We assume here that mss >= 1. 203 * This MUST be enforced by all callers. 204 */ 205 void tcp_select_initial_window(int __space, __u32 mss, 206 __u32 *rcv_wnd, __u32 *window_clamp, 207 int wscale_ok, __u8 *rcv_wscale, 208 __u32 init_rcv_wnd) 209 { 210 unsigned int space = (__space < 0 ? 0 : __space); 211 212 /* If no clamp set the clamp to the max possible scaled window */ 213 if (*window_clamp == 0) 214 (*window_clamp) = (65535 << 14); 215 space = min(*window_clamp, space); 216 217 /* Quantize space offering to a multiple of mss if possible. */ 218 if (space > mss) 219 space = (space / mss) * mss; 220 221 /* NOTE: offering an initial window larger than 32767 222 * will break some buggy TCP stacks. If the admin tells us 223 * it is likely we could be speaking with such a buggy stack 224 * we will truncate our initial window offering to 32K-1 225 * unless the remote has sent us a window scaling option, 226 * which we interpret as a sign the remote TCP is not 227 * misinterpreting the window field as a signed quantity. 228 */ 229 if (sysctl_tcp_workaround_signed_windows) 230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 231 else 232 (*rcv_wnd) = space; 233 234 (*rcv_wscale) = 0; 235 if (wscale_ok) { 236 /* Set window scaling on max possible window 237 * See RFC1323 for an explanation of the limit to 14 238 */ 239 space = max_t(u32, space, sysctl_tcp_rmem[2]); 240 space = max_t(u32, space, sysctl_rmem_max); 241 space = min_t(u32, space, *window_clamp); 242 while (space > 65535 && (*rcv_wscale) < 14) { 243 space >>= 1; 244 (*rcv_wscale)++; 245 } 246 } 247 248 if (mss > (1 << *rcv_wscale)) { 249 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 250 init_rcv_wnd = tcp_default_init_rwnd(mss); 251 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 252 } 253 254 /* Set the clamp no higher than max representable value */ 255 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 256 } 257 EXPORT_SYMBOL(tcp_select_initial_window); 258 259 /* Chose a new window to advertise, update state in tcp_sock for the 260 * socket, and return result with RFC1323 scaling applied. The return 261 * value can be stuffed directly into th->window for an outgoing 262 * frame. 263 */ 264 static u16 tcp_select_window(struct sock *sk) 265 { 266 struct tcp_sock *tp = tcp_sk(sk); 267 u32 old_win = tp->rcv_wnd; 268 u32 cur_win = tcp_receive_window(tp); 269 u32 new_win = __tcp_select_window(sk); 270 271 /* Never shrink the offered window */ 272 if (new_win < cur_win) { 273 /* Danger Will Robinson! 274 * Don't update rcv_wup/rcv_wnd here or else 275 * we will not be able to advertise a zero 276 * window in time. --DaveM 277 * 278 * Relax Will Robinson. 279 */ 280 if (new_win == 0) 281 NET_INC_STATS(sock_net(sk), 282 LINUX_MIB_TCPWANTZEROWINDOWADV); 283 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 284 } 285 tp->rcv_wnd = new_win; 286 tp->rcv_wup = tp->rcv_nxt; 287 288 /* Make sure we do not exceed the maximum possible 289 * scaled window. 290 */ 291 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 292 new_win = min(new_win, MAX_TCP_WINDOW); 293 else 294 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 295 296 /* RFC1323 scaling applied */ 297 new_win >>= tp->rx_opt.rcv_wscale; 298 299 /* If we advertise zero window, disable fast path. */ 300 if (new_win == 0) { 301 tp->pred_flags = 0; 302 if (old_win) 303 NET_INC_STATS(sock_net(sk), 304 LINUX_MIB_TCPTOZEROWINDOWADV); 305 } else if (old_win == 0) { 306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 307 } 308 309 return new_win; 310 } 311 312 /* Packet ECN state for a SYN-ACK */ 313 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 314 { 315 const struct tcp_sock *tp = tcp_sk(sk); 316 317 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 318 if (!(tp->ecn_flags & TCP_ECN_OK)) 319 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 320 else if (tcp_ca_needs_ecn(sk)) 321 INET_ECN_xmit(sk); 322 } 323 324 /* Packet ECN state for a SYN. */ 325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 326 { 327 struct tcp_sock *tp = tcp_sk(sk); 328 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 329 tcp_ca_needs_ecn(sk); 330 331 if (!use_ecn) { 332 const struct dst_entry *dst = __sk_dst_get(sk); 333 334 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 335 use_ecn = true; 336 } 337 338 tp->ecn_flags = 0; 339 340 if (use_ecn) { 341 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 342 tp->ecn_flags = TCP_ECN_OK; 343 if (tcp_ca_needs_ecn(sk)) 344 INET_ECN_xmit(sk); 345 } 346 } 347 348 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 349 { 350 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 351 /* tp->ecn_flags are cleared at a later point in time when 352 * SYN ACK is ultimatively being received. 353 */ 354 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 355 } 356 357 static void 358 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 359 { 360 if (inet_rsk(req)->ecn_ok) 361 th->ece = 1; 362 } 363 364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 365 * be sent. 366 */ 367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 368 struct tcphdr *th, int tcp_header_len) 369 { 370 struct tcp_sock *tp = tcp_sk(sk); 371 372 if (tp->ecn_flags & TCP_ECN_OK) { 373 /* Not-retransmitted data segment: set ECT and inject CWR. */ 374 if (skb->len != tcp_header_len && 375 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 376 INET_ECN_xmit(sk); 377 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 378 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 379 th->cwr = 1; 380 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 381 } 382 } else if (!tcp_ca_needs_ecn(sk)) { 383 /* ACK or retransmitted segment: clear ECT|CE */ 384 INET_ECN_dontxmit(sk); 385 } 386 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 387 th->ece = 1; 388 } 389 } 390 391 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 392 * auto increment end seqno. 393 */ 394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 395 { 396 skb->ip_summed = CHECKSUM_PARTIAL; 397 skb->csum = 0; 398 399 TCP_SKB_CB(skb)->tcp_flags = flags; 400 TCP_SKB_CB(skb)->sacked = 0; 401 402 tcp_skb_pcount_set(skb, 1); 403 404 TCP_SKB_CB(skb)->seq = seq; 405 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 406 seq++; 407 TCP_SKB_CB(skb)->end_seq = seq; 408 } 409 410 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 411 { 412 return tp->snd_una != tp->snd_up; 413 } 414 415 #define OPTION_SACK_ADVERTISE (1 << 0) 416 #define OPTION_TS (1 << 1) 417 #define OPTION_MD5 (1 << 2) 418 #define OPTION_WSCALE (1 << 3) 419 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 420 421 struct tcp_out_options { 422 u16 options; /* bit field of OPTION_* */ 423 u16 mss; /* 0 to disable */ 424 u8 ws; /* window scale, 0 to disable */ 425 u8 num_sack_blocks; /* number of SACK blocks to include */ 426 u8 hash_size; /* bytes in hash_location */ 427 __u8 *hash_location; /* temporary pointer, overloaded */ 428 __u32 tsval, tsecr; /* need to include OPTION_TS */ 429 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 430 }; 431 432 /* Write previously computed TCP options to the packet. 433 * 434 * Beware: Something in the Internet is very sensitive to the ordering of 435 * TCP options, we learned this through the hard way, so be careful here. 436 * Luckily we can at least blame others for their non-compliance but from 437 * inter-operability perspective it seems that we're somewhat stuck with 438 * the ordering which we have been using if we want to keep working with 439 * those broken things (not that it currently hurts anybody as there isn't 440 * particular reason why the ordering would need to be changed). 441 * 442 * At least SACK_PERM as the first option is known to lead to a disaster 443 * (but it may well be that other scenarios fail similarly). 444 */ 445 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 446 struct tcp_out_options *opts) 447 { 448 u16 options = opts->options; /* mungable copy */ 449 450 if (unlikely(OPTION_MD5 & options)) { 451 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 452 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 453 /* overload cookie hash location */ 454 opts->hash_location = (__u8 *)ptr; 455 ptr += 4; 456 } 457 458 if (unlikely(opts->mss)) { 459 *ptr++ = htonl((TCPOPT_MSS << 24) | 460 (TCPOLEN_MSS << 16) | 461 opts->mss); 462 } 463 464 if (likely(OPTION_TS & options)) { 465 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 466 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 467 (TCPOLEN_SACK_PERM << 16) | 468 (TCPOPT_TIMESTAMP << 8) | 469 TCPOLEN_TIMESTAMP); 470 options &= ~OPTION_SACK_ADVERTISE; 471 } else { 472 *ptr++ = htonl((TCPOPT_NOP << 24) | 473 (TCPOPT_NOP << 16) | 474 (TCPOPT_TIMESTAMP << 8) | 475 TCPOLEN_TIMESTAMP); 476 } 477 *ptr++ = htonl(opts->tsval); 478 *ptr++ = htonl(opts->tsecr); 479 } 480 481 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 482 *ptr++ = htonl((TCPOPT_NOP << 24) | 483 (TCPOPT_NOP << 16) | 484 (TCPOPT_SACK_PERM << 8) | 485 TCPOLEN_SACK_PERM); 486 } 487 488 if (unlikely(OPTION_WSCALE & options)) { 489 *ptr++ = htonl((TCPOPT_NOP << 24) | 490 (TCPOPT_WINDOW << 16) | 491 (TCPOLEN_WINDOW << 8) | 492 opts->ws); 493 } 494 495 if (unlikely(opts->num_sack_blocks)) { 496 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 497 tp->duplicate_sack : tp->selective_acks; 498 int this_sack; 499 500 *ptr++ = htonl((TCPOPT_NOP << 24) | 501 (TCPOPT_NOP << 16) | 502 (TCPOPT_SACK << 8) | 503 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 504 TCPOLEN_SACK_PERBLOCK))); 505 506 for (this_sack = 0; this_sack < opts->num_sack_blocks; 507 ++this_sack) { 508 *ptr++ = htonl(sp[this_sack].start_seq); 509 *ptr++ = htonl(sp[this_sack].end_seq); 510 } 511 512 tp->rx_opt.dsack = 0; 513 } 514 515 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 516 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 517 u8 *p = (u8 *)ptr; 518 u32 len; /* Fast Open option length */ 519 520 if (foc->exp) { 521 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 522 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 523 TCPOPT_FASTOPEN_MAGIC); 524 p += TCPOLEN_EXP_FASTOPEN_BASE; 525 } else { 526 len = TCPOLEN_FASTOPEN_BASE + foc->len; 527 *p++ = TCPOPT_FASTOPEN; 528 *p++ = len; 529 } 530 531 memcpy(p, foc->val, foc->len); 532 if ((len & 3) == 2) { 533 p[foc->len] = TCPOPT_NOP; 534 p[foc->len + 1] = TCPOPT_NOP; 535 } 536 ptr += (len + 3) >> 2; 537 } 538 } 539 540 /* Compute TCP options for SYN packets. This is not the final 541 * network wire format yet. 542 */ 543 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 544 struct tcp_out_options *opts, 545 struct tcp_md5sig_key **md5) 546 { 547 struct tcp_sock *tp = tcp_sk(sk); 548 unsigned int remaining = MAX_TCP_OPTION_SPACE; 549 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 550 551 #ifdef CONFIG_TCP_MD5SIG 552 *md5 = tp->af_specific->md5_lookup(sk, sk); 553 if (*md5) { 554 opts->options |= OPTION_MD5; 555 remaining -= TCPOLEN_MD5SIG_ALIGNED; 556 } 557 #else 558 *md5 = NULL; 559 #endif 560 561 /* We always get an MSS option. The option bytes which will be seen in 562 * normal data packets should timestamps be used, must be in the MSS 563 * advertised. But we subtract them from tp->mss_cache so that 564 * calculations in tcp_sendmsg are simpler etc. So account for this 565 * fact here if necessary. If we don't do this correctly, as a 566 * receiver we won't recognize data packets as being full sized when we 567 * should, and thus we won't abide by the delayed ACK rules correctly. 568 * SACKs don't matter, we never delay an ACK when we have any of those 569 * going out. */ 570 opts->mss = tcp_advertise_mss(sk); 571 remaining -= TCPOLEN_MSS_ALIGNED; 572 573 if (likely(sysctl_tcp_timestamps && !*md5)) { 574 opts->options |= OPTION_TS; 575 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 576 opts->tsecr = tp->rx_opt.ts_recent; 577 remaining -= TCPOLEN_TSTAMP_ALIGNED; 578 } 579 if (likely(sysctl_tcp_window_scaling)) { 580 opts->ws = tp->rx_opt.rcv_wscale; 581 opts->options |= OPTION_WSCALE; 582 remaining -= TCPOLEN_WSCALE_ALIGNED; 583 } 584 if (likely(sysctl_tcp_sack)) { 585 opts->options |= OPTION_SACK_ADVERTISE; 586 if (unlikely(!(OPTION_TS & opts->options))) 587 remaining -= TCPOLEN_SACKPERM_ALIGNED; 588 } 589 590 if (fastopen && fastopen->cookie.len >= 0) { 591 u32 need = fastopen->cookie.len; 592 593 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 594 TCPOLEN_FASTOPEN_BASE; 595 need = (need + 3) & ~3U; /* Align to 32 bits */ 596 if (remaining >= need) { 597 opts->options |= OPTION_FAST_OPEN_COOKIE; 598 opts->fastopen_cookie = &fastopen->cookie; 599 remaining -= need; 600 tp->syn_fastopen = 1; 601 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 602 } 603 } 604 605 return MAX_TCP_OPTION_SPACE - remaining; 606 } 607 608 /* Set up TCP options for SYN-ACKs. */ 609 static unsigned int tcp_synack_options(struct request_sock *req, 610 unsigned int mss, struct sk_buff *skb, 611 struct tcp_out_options *opts, 612 const struct tcp_md5sig_key *md5, 613 struct tcp_fastopen_cookie *foc) 614 { 615 struct inet_request_sock *ireq = inet_rsk(req); 616 unsigned int remaining = MAX_TCP_OPTION_SPACE; 617 618 #ifdef CONFIG_TCP_MD5SIG 619 if (md5) { 620 opts->options |= OPTION_MD5; 621 remaining -= TCPOLEN_MD5SIG_ALIGNED; 622 623 /* We can't fit any SACK blocks in a packet with MD5 + TS 624 * options. There was discussion about disabling SACK 625 * rather than TS in order to fit in better with old, 626 * buggy kernels, but that was deemed to be unnecessary. 627 */ 628 ireq->tstamp_ok &= !ireq->sack_ok; 629 } 630 #endif 631 632 /* We always send an MSS option. */ 633 opts->mss = mss; 634 remaining -= TCPOLEN_MSS_ALIGNED; 635 636 if (likely(ireq->wscale_ok)) { 637 opts->ws = ireq->rcv_wscale; 638 opts->options |= OPTION_WSCALE; 639 remaining -= TCPOLEN_WSCALE_ALIGNED; 640 } 641 if (likely(ireq->tstamp_ok)) { 642 opts->options |= OPTION_TS; 643 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 644 opts->tsecr = req->ts_recent; 645 remaining -= TCPOLEN_TSTAMP_ALIGNED; 646 } 647 if (likely(ireq->sack_ok)) { 648 opts->options |= OPTION_SACK_ADVERTISE; 649 if (unlikely(!ireq->tstamp_ok)) 650 remaining -= TCPOLEN_SACKPERM_ALIGNED; 651 } 652 if (foc != NULL && foc->len >= 0) { 653 u32 need = foc->len; 654 655 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 656 TCPOLEN_FASTOPEN_BASE; 657 need = (need + 3) & ~3U; /* Align to 32 bits */ 658 if (remaining >= need) { 659 opts->options |= OPTION_FAST_OPEN_COOKIE; 660 opts->fastopen_cookie = foc; 661 remaining -= need; 662 } 663 } 664 665 return MAX_TCP_OPTION_SPACE - remaining; 666 } 667 668 /* Compute TCP options for ESTABLISHED sockets. This is not the 669 * final wire format yet. 670 */ 671 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 672 struct tcp_out_options *opts, 673 struct tcp_md5sig_key **md5) 674 { 675 struct tcp_sock *tp = tcp_sk(sk); 676 unsigned int size = 0; 677 unsigned int eff_sacks; 678 679 opts->options = 0; 680 681 #ifdef CONFIG_TCP_MD5SIG 682 *md5 = tp->af_specific->md5_lookup(sk, sk); 683 if (unlikely(*md5)) { 684 opts->options |= OPTION_MD5; 685 size += TCPOLEN_MD5SIG_ALIGNED; 686 } 687 #else 688 *md5 = NULL; 689 #endif 690 691 if (likely(tp->rx_opt.tstamp_ok)) { 692 opts->options |= OPTION_TS; 693 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 694 opts->tsecr = tp->rx_opt.ts_recent; 695 size += TCPOLEN_TSTAMP_ALIGNED; 696 } 697 698 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 699 if (unlikely(eff_sacks)) { 700 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 701 opts->num_sack_blocks = 702 min_t(unsigned int, eff_sacks, 703 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 704 TCPOLEN_SACK_PERBLOCK); 705 size += TCPOLEN_SACK_BASE_ALIGNED + 706 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 707 } 708 709 return size; 710 } 711 712 713 /* TCP SMALL QUEUES (TSQ) 714 * 715 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 716 * to reduce RTT and bufferbloat. 717 * We do this using a special skb destructor (tcp_wfree). 718 * 719 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 720 * needs to be reallocated in a driver. 721 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 722 * 723 * Since transmit from skb destructor is forbidden, we use a tasklet 724 * to process all sockets that eventually need to send more skbs. 725 * We use one tasklet per cpu, with its own queue of sockets. 726 */ 727 struct tsq_tasklet { 728 struct tasklet_struct tasklet; 729 struct list_head head; /* queue of tcp sockets */ 730 }; 731 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 732 733 static void tcp_tsq_handler(struct sock *sk) 734 { 735 if ((1 << sk->sk_state) & 736 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 737 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 738 struct tcp_sock *tp = tcp_sk(sk); 739 740 if (tp->lost_out > tp->retrans_out && 741 tp->snd_cwnd > tcp_packets_in_flight(tp)) 742 tcp_xmit_retransmit_queue(sk); 743 744 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 745 0, GFP_ATOMIC); 746 } 747 } 748 /* 749 * One tasklet per cpu tries to send more skbs. 750 * We run in tasklet context but need to disable irqs when 751 * transferring tsq->head because tcp_wfree() might 752 * interrupt us (non NAPI drivers) 753 */ 754 static void tcp_tasklet_func(unsigned long data) 755 { 756 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 757 LIST_HEAD(list); 758 unsigned long flags; 759 struct list_head *q, *n; 760 struct tcp_sock *tp; 761 struct sock *sk; 762 763 local_irq_save(flags); 764 list_splice_init(&tsq->head, &list); 765 local_irq_restore(flags); 766 767 list_for_each_safe(q, n, &list) { 768 tp = list_entry(q, struct tcp_sock, tsq_node); 769 list_del(&tp->tsq_node); 770 771 sk = (struct sock *)tp; 772 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 773 774 if (!sk->sk_lock.owned && 775 test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) { 776 bh_lock_sock(sk); 777 if (!sock_owned_by_user(sk)) { 778 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 779 tcp_tsq_handler(sk); 780 } 781 bh_unlock_sock(sk); 782 } 783 784 sk_free(sk); 785 } 786 } 787 788 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 789 TCPF_WRITE_TIMER_DEFERRED | \ 790 TCPF_DELACK_TIMER_DEFERRED | \ 791 TCPF_MTU_REDUCED_DEFERRED) 792 /** 793 * tcp_release_cb - tcp release_sock() callback 794 * @sk: socket 795 * 796 * called from release_sock() to perform protocol dependent 797 * actions before socket release. 798 */ 799 void tcp_release_cb(struct sock *sk) 800 { 801 unsigned long flags, nflags; 802 803 /* perform an atomic operation only if at least one flag is set */ 804 do { 805 flags = sk->sk_tsq_flags; 806 if (!(flags & TCP_DEFERRED_ALL)) 807 return; 808 nflags = flags & ~TCP_DEFERRED_ALL; 809 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 810 811 if (flags & TCPF_TSQ_DEFERRED) 812 tcp_tsq_handler(sk); 813 814 /* Here begins the tricky part : 815 * We are called from release_sock() with : 816 * 1) BH disabled 817 * 2) sk_lock.slock spinlock held 818 * 3) socket owned by us (sk->sk_lock.owned == 1) 819 * 820 * But following code is meant to be called from BH handlers, 821 * so we should keep BH disabled, but early release socket ownership 822 */ 823 sock_release_ownership(sk); 824 825 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 826 tcp_write_timer_handler(sk); 827 __sock_put(sk); 828 } 829 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 830 tcp_delack_timer_handler(sk); 831 __sock_put(sk); 832 } 833 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 834 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 835 __sock_put(sk); 836 } 837 } 838 EXPORT_SYMBOL(tcp_release_cb); 839 840 void __init tcp_tasklet_init(void) 841 { 842 int i; 843 844 for_each_possible_cpu(i) { 845 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 846 847 INIT_LIST_HEAD(&tsq->head); 848 tasklet_init(&tsq->tasklet, 849 tcp_tasklet_func, 850 (unsigned long)tsq); 851 } 852 } 853 854 /* 855 * Write buffer destructor automatically called from kfree_skb. 856 * We can't xmit new skbs from this context, as we might already 857 * hold qdisc lock. 858 */ 859 void tcp_wfree(struct sk_buff *skb) 860 { 861 struct sock *sk = skb->sk; 862 struct tcp_sock *tp = tcp_sk(sk); 863 unsigned long flags, nval, oval; 864 int wmem; 865 866 /* Keep one reference on sk_wmem_alloc. 867 * Will be released by sk_free() from here or tcp_tasklet_func() 868 */ 869 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 870 871 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 872 * Wait until our queues (qdisc + devices) are drained. 873 * This gives : 874 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 875 * - chance for incoming ACK (processed by another cpu maybe) 876 * to migrate this flow (skb->ooo_okay will be eventually set) 877 */ 878 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 879 goto out; 880 881 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 882 struct tsq_tasklet *tsq; 883 bool empty; 884 885 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 886 goto out; 887 888 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED | TCPF_TSQ_DEFERRED; 889 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 890 if (nval != oval) 891 continue; 892 893 /* queue this socket to tasklet queue */ 894 local_irq_save(flags); 895 tsq = this_cpu_ptr(&tsq_tasklet); 896 empty = list_empty(&tsq->head); 897 list_add(&tp->tsq_node, &tsq->head); 898 if (empty) 899 tasklet_schedule(&tsq->tasklet); 900 local_irq_restore(flags); 901 return; 902 } 903 out: 904 sk_free(sk); 905 } 906 907 /* This routine actually transmits TCP packets queued in by 908 * tcp_do_sendmsg(). This is used by both the initial 909 * transmission and possible later retransmissions. 910 * All SKB's seen here are completely headerless. It is our 911 * job to build the TCP header, and pass the packet down to 912 * IP so it can do the same plus pass the packet off to the 913 * device. 914 * 915 * We are working here with either a clone of the original 916 * SKB, or a fresh unique copy made by the retransmit engine. 917 */ 918 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 919 gfp_t gfp_mask) 920 { 921 const struct inet_connection_sock *icsk = inet_csk(sk); 922 struct inet_sock *inet; 923 struct tcp_sock *tp; 924 struct tcp_skb_cb *tcb; 925 struct tcp_out_options opts; 926 unsigned int tcp_options_size, tcp_header_size; 927 struct tcp_md5sig_key *md5; 928 struct tcphdr *th; 929 int err; 930 931 BUG_ON(!skb || !tcp_skb_pcount(skb)); 932 tp = tcp_sk(sk); 933 934 if (clone_it) { 935 skb_mstamp_get(&skb->skb_mstamp); 936 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 937 - tp->snd_una; 938 tcp_rate_skb_sent(sk, skb); 939 940 if (unlikely(skb_cloned(skb))) 941 skb = pskb_copy(skb, gfp_mask); 942 else 943 skb = skb_clone(skb, gfp_mask); 944 if (unlikely(!skb)) 945 return -ENOBUFS; 946 } 947 948 inet = inet_sk(sk); 949 tcb = TCP_SKB_CB(skb); 950 memset(&opts, 0, sizeof(opts)); 951 952 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 953 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 954 else 955 tcp_options_size = tcp_established_options(sk, skb, &opts, 956 &md5); 957 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 958 959 /* if no packet is in qdisc/device queue, then allow XPS to select 960 * another queue. We can be called from tcp_tsq_handler() 961 * which holds one reference to sk_wmem_alloc. 962 * 963 * TODO: Ideally, in-flight pure ACK packets should not matter here. 964 * One way to get this would be to set skb->truesize = 2 on them. 965 */ 966 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 967 968 skb_push(skb, tcp_header_size); 969 skb_reset_transport_header(skb); 970 971 skb_orphan(skb); 972 skb->sk = sk; 973 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 974 skb_set_hash_from_sk(skb, sk); 975 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 976 977 /* Build TCP header and checksum it. */ 978 th = (struct tcphdr *)skb->data; 979 th->source = inet->inet_sport; 980 th->dest = inet->inet_dport; 981 th->seq = htonl(tcb->seq); 982 th->ack_seq = htonl(tp->rcv_nxt); 983 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 984 tcb->tcp_flags); 985 986 th->check = 0; 987 th->urg_ptr = 0; 988 989 /* The urg_mode check is necessary during a below snd_una win probe */ 990 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 991 if (before(tp->snd_up, tcb->seq + 0x10000)) { 992 th->urg_ptr = htons(tp->snd_up - tcb->seq); 993 th->urg = 1; 994 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 995 th->urg_ptr = htons(0xFFFF); 996 th->urg = 1; 997 } 998 } 999 1000 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1001 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1002 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1003 th->window = htons(tcp_select_window(sk)); 1004 tcp_ecn_send(sk, skb, th, tcp_header_size); 1005 } else { 1006 /* RFC1323: The window in SYN & SYN/ACK segments 1007 * is never scaled. 1008 */ 1009 th->window = htons(min(tp->rcv_wnd, 65535U)); 1010 } 1011 #ifdef CONFIG_TCP_MD5SIG 1012 /* Calculate the MD5 hash, as we have all we need now */ 1013 if (md5) { 1014 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1015 tp->af_specific->calc_md5_hash(opts.hash_location, 1016 md5, sk, skb); 1017 } 1018 #endif 1019 1020 icsk->icsk_af_ops->send_check(sk, skb); 1021 1022 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1023 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1024 1025 if (skb->len != tcp_header_size) { 1026 tcp_event_data_sent(tp, sk); 1027 tp->data_segs_out += tcp_skb_pcount(skb); 1028 } 1029 1030 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1031 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1032 tcp_skb_pcount(skb)); 1033 1034 tp->segs_out += tcp_skb_pcount(skb); 1035 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1036 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1037 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1038 1039 /* Our usage of tstamp should remain private */ 1040 skb->tstamp.tv64 = 0; 1041 1042 /* Cleanup our debris for IP stacks */ 1043 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1044 sizeof(struct inet6_skb_parm))); 1045 1046 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1047 1048 if (likely(err <= 0)) 1049 return err; 1050 1051 tcp_enter_cwr(sk); 1052 1053 return net_xmit_eval(err); 1054 } 1055 1056 /* This routine just queues the buffer for sending. 1057 * 1058 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1059 * otherwise socket can stall. 1060 */ 1061 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1062 { 1063 struct tcp_sock *tp = tcp_sk(sk); 1064 1065 /* Advance write_seq and place onto the write_queue. */ 1066 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1067 __skb_header_release(skb); 1068 tcp_add_write_queue_tail(sk, skb); 1069 sk->sk_wmem_queued += skb->truesize; 1070 sk_mem_charge(sk, skb->truesize); 1071 } 1072 1073 /* Initialize TSO segments for a packet. */ 1074 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1075 { 1076 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1077 /* Avoid the costly divide in the normal 1078 * non-TSO case. 1079 */ 1080 tcp_skb_pcount_set(skb, 1); 1081 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1082 } else { 1083 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1084 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1085 } 1086 } 1087 1088 /* When a modification to fackets out becomes necessary, we need to check 1089 * skb is counted to fackets_out or not. 1090 */ 1091 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1092 int decr) 1093 { 1094 struct tcp_sock *tp = tcp_sk(sk); 1095 1096 if (!tp->sacked_out || tcp_is_reno(tp)) 1097 return; 1098 1099 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1100 tp->fackets_out -= decr; 1101 } 1102 1103 /* Pcount in the middle of the write queue got changed, we need to do various 1104 * tweaks to fix counters 1105 */ 1106 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1107 { 1108 struct tcp_sock *tp = tcp_sk(sk); 1109 1110 tp->packets_out -= decr; 1111 1112 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1113 tp->sacked_out -= decr; 1114 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1115 tp->retrans_out -= decr; 1116 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1117 tp->lost_out -= decr; 1118 1119 /* Reno case is special. Sigh... */ 1120 if (tcp_is_reno(tp) && decr > 0) 1121 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1122 1123 tcp_adjust_fackets_out(sk, skb, decr); 1124 1125 if (tp->lost_skb_hint && 1126 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1127 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1128 tp->lost_cnt_hint -= decr; 1129 1130 tcp_verify_left_out(tp); 1131 } 1132 1133 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1134 { 1135 return TCP_SKB_CB(skb)->txstamp_ack || 1136 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1137 } 1138 1139 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1140 { 1141 struct skb_shared_info *shinfo = skb_shinfo(skb); 1142 1143 if (unlikely(tcp_has_tx_tstamp(skb)) && 1144 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1145 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1146 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1147 1148 shinfo->tx_flags &= ~tsflags; 1149 shinfo2->tx_flags |= tsflags; 1150 swap(shinfo->tskey, shinfo2->tskey); 1151 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1152 TCP_SKB_CB(skb)->txstamp_ack = 0; 1153 } 1154 } 1155 1156 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1157 { 1158 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1159 TCP_SKB_CB(skb)->eor = 0; 1160 } 1161 1162 /* Function to create two new TCP segments. Shrinks the given segment 1163 * to the specified size and appends a new segment with the rest of the 1164 * packet to the list. This won't be called frequently, I hope. 1165 * Remember, these are still headerless SKBs at this point. 1166 */ 1167 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1168 unsigned int mss_now, gfp_t gfp) 1169 { 1170 struct tcp_sock *tp = tcp_sk(sk); 1171 struct sk_buff *buff; 1172 int nsize, old_factor; 1173 int nlen; 1174 u8 flags; 1175 1176 if (WARN_ON(len > skb->len)) 1177 return -EINVAL; 1178 1179 nsize = skb_headlen(skb) - len; 1180 if (nsize < 0) 1181 nsize = 0; 1182 1183 if (skb_unclone(skb, gfp)) 1184 return -ENOMEM; 1185 1186 /* Get a new skb... force flag on. */ 1187 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1188 if (!buff) 1189 return -ENOMEM; /* We'll just try again later. */ 1190 1191 sk->sk_wmem_queued += buff->truesize; 1192 sk_mem_charge(sk, buff->truesize); 1193 nlen = skb->len - len - nsize; 1194 buff->truesize += nlen; 1195 skb->truesize -= nlen; 1196 1197 /* Correct the sequence numbers. */ 1198 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1199 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1200 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1201 1202 /* PSH and FIN should only be set in the second packet. */ 1203 flags = TCP_SKB_CB(skb)->tcp_flags; 1204 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1205 TCP_SKB_CB(buff)->tcp_flags = flags; 1206 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1207 tcp_skb_fragment_eor(skb, buff); 1208 1209 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1210 /* Copy and checksum data tail into the new buffer. */ 1211 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1212 skb_put(buff, nsize), 1213 nsize, 0); 1214 1215 skb_trim(skb, len); 1216 1217 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1218 } else { 1219 skb->ip_summed = CHECKSUM_PARTIAL; 1220 skb_split(skb, buff, len); 1221 } 1222 1223 buff->ip_summed = skb->ip_summed; 1224 1225 buff->tstamp = skb->tstamp; 1226 tcp_fragment_tstamp(skb, buff); 1227 1228 old_factor = tcp_skb_pcount(skb); 1229 1230 /* Fix up tso_factor for both original and new SKB. */ 1231 tcp_set_skb_tso_segs(skb, mss_now); 1232 tcp_set_skb_tso_segs(buff, mss_now); 1233 1234 /* Update delivered info for the new segment */ 1235 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1236 1237 /* If this packet has been sent out already, we must 1238 * adjust the various packet counters. 1239 */ 1240 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1241 int diff = old_factor - tcp_skb_pcount(skb) - 1242 tcp_skb_pcount(buff); 1243 1244 if (diff) 1245 tcp_adjust_pcount(sk, skb, diff); 1246 } 1247 1248 /* Link BUFF into the send queue. */ 1249 __skb_header_release(buff); 1250 tcp_insert_write_queue_after(skb, buff, sk); 1251 1252 return 0; 1253 } 1254 1255 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1256 * eventually). The difference is that pulled data not copied, but 1257 * immediately discarded. 1258 */ 1259 static void __pskb_trim_head(struct sk_buff *skb, int len) 1260 { 1261 struct skb_shared_info *shinfo; 1262 int i, k, eat; 1263 1264 eat = min_t(int, len, skb_headlen(skb)); 1265 if (eat) { 1266 __skb_pull(skb, eat); 1267 len -= eat; 1268 if (!len) 1269 return; 1270 } 1271 eat = len; 1272 k = 0; 1273 shinfo = skb_shinfo(skb); 1274 for (i = 0; i < shinfo->nr_frags; i++) { 1275 int size = skb_frag_size(&shinfo->frags[i]); 1276 1277 if (size <= eat) { 1278 skb_frag_unref(skb, i); 1279 eat -= size; 1280 } else { 1281 shinfo->frags[k] = shinfo->frags[i]; 1282 if (eat) { 1283 shinfo->frags[k].page_offset += eat; 1284 skb_frag_size_sub(&shinfo->frags[k], eat); 1285 eat = 0; 1286 } 1287 k++; 1288 } 1289 } 1290 shinfo->nr_frags = k; 1291 1292 skb_reset_tail_pointer(skb); 1293 skb->data_len -= len; 1294 skb->len = skb->data_len; 1295 } 1296 1297 /* Remove acked data from a packet in the transmit queue. */ 1298 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1299 { 1300 if (skb_unclone(skb, GFP_ATOMIC)) 1301 return -ENOMEM; 1302 1303 __pskb_trim_head(skb, len); 1304 1305 TCP_SKB_CB(skb)->seq += len; 1306 skb->ip_summed = CHECKSUM_PARTIAL; 1307 1308 skb->truesize -= len; 1309 sk->sk_wmem_queued -= len; 1310 sk_mem_uncharge(sk, len); 1311 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1312 1313 /* Any change of skb->len requires recalculation of tso factor. */ 1314 if (tcp_skb_pcount(skb) > 1) 1315 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1316 1317 return 0; 1318 } 1319 1320 /* Calculate MSS not accounting any TCP options. */ 1321 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1322 { 1323 const struct tcp_sock *tp = tcp_sk(sk); 1324 const struct inet_connection_sock *icsk = inet_csk(sk); 1325 int mss_now; 1326 1327 /* Calculate base mss without TCP options: 1328 It is MMS_S - sizeof(tcphdr) of rfc1122 1329 */ 1330 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1331 1332 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1333 if (icsk->icsk_af_ops->net_frag_header_len) { 1334 const struct dst_entry *dst = __sk_dst_get(sk); 1335 1336 if (dst && dst_allfrag(dst)) 1337 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1338 } 1339 1340 /* Clamp it (mss_clamp does not include tcp options) */ 1341 if (mss_now > tp->rx_opt.mss_clamp) 1342 mss_now = tp->rx_opt.mss_clamp; 1343 1344 /* Now subtract optional transport overhead */ 1345 mss_now -= icsk->icsk_ext_hdr_len; 1346 1347 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1348 if (mss_now < 48) 1349 mss_now = 48; 1350 return mss_now; 1351 } 1352 1353 /* Calculate MSS. Not accounting for SACKs here. */ 1354 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1355 { 1356 /* Subtract TCP options size, not including SACKs */ 1357 return __tcp_mtu_to_mss(sk, pmtu) - 1358 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1359 } 1360 1361 /* Inverse of above */ 1362 int tcp_mss_to_mtu(struct sock *sk, int mss) 1363 { 1364 const struct tcp_sock *tp = tcp_sk(sk); 1365 const struct inet_connection_sock *icsk = inet_csk(sk); 1366 int mtu; 1367 1368 mtu = mss + 1369 tp->tcp_header_len + 1370 icsk->icsk_ext_hdr_len + 1371 icsk->icsk_af_ops->net_header_len; 1372 1373 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1374 if (icsk->icsk_af_ops->net_frag_header_len) { 1375 const struct dst_entry *dst = __sk_dst_get(sk); 1376 1377 if (dst && dst_allfrag(dst)) 1378 mtu += icsk->icsk_af_ops->net_frag_header_len; 1379 } 1380 return mtu; 1381 } 1382 EXPORT_SYMBOL(tcp_mss_to_mtu); 1383 1384 /* MTU probing init per socket */ 1385 void tcp_mtup_init(struct sock *sk) 1386 { 1387 struct tcp_sock *tp = tcp_sk(sk); 1388 struct inet_connection_sock *icsk = inet_csk(sk); 1389 struct net *net = sock_net(sk); 1390 1391 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1392 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1393 icsk->icsk_af_ops->net_header_len; 1394 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1395 icsk->icsk_mtup.probe_size = 0; 1396 if (icsk->icsk_mtup.enabled) 1397 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1398 } 1399 EXPORT_SYMBOL(tcp_mtup_init); 1400 1401 /* This function synchronize snd mss to current pmtu/exthdr set. 1402 1403 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1404 for TCP options, but includes only bare TCP header. 1405 1406 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1407 It is minimum of user_mss and mss received with SYN. 1408 It also does not include TCP options. 1409 1410 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1411 1412 tp->mss_cache is current effective sending mss, including 1413 all tcp options except for SACKs. It is evaluated, 1414 taking into account current pmtu, but never exceeds 1415 tp->rx_opt.mss_clamp. 1416 1417 NOTE1. rfc1122 clearly states that advertised MSS 1418 DOES NOT include either tcp or ip options. 1419 1420 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1421 are READ ONLY outside this function. --ANK (980731) 1422 */ 1423 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1424 { 1425 struct tcp_sock *tp = tcp_sk(sk); 1426 struct inet_connection_sock *icsk = inet_csk(sk); 1427 int mss_now; 1428 1429 if (icsk->icsk_mtup.search_high > pmtu) 1430 icsk->icsk_mtup.search_high = pmtu; 1431 1432 mss_now = tcp_mtu_to_mss(sk, pmtu); 1433 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1434 1435 /* And store cached results */ 1436 icsk->icsk_pmtu_cookie = pmtu; 1437 if (icsk->icsk_mtup.enabled) 1438 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1439 tp->mss_cache = mss_now; 1440 1441 return mss_now; 1442 } 1443 EXPORT_SYMBOL(tcp_sync_mss); 1444 1445 /* Compute the current effective MSS, taking SACKs and IP options, 1446 * and even PMTU discovery events into account. 1447 */ 1448 unsigned int tcp_current_mss(struct sock *sk) 1449 { 1450 const struct tcp_sock *tp = tcp_sk(sk); 1451 const struct dst_entry *dst = __sk_dst_get(sk); 1452 u32 mss_now; 1453 unsigned int header_len; 1454 struct tcp_out_options opts; 1455 struct tcp_md5sig_key *md5; 1456 1457 mss_now = tp->mss_cache; 1458 1459 if (dst) { 1460 u32 mtu = dst_mtu(dst); 1461 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1462 mss_now = tcp_sync_mss(sk, mtu); 1463 } 1464 1465 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1466 sizeof(struct tcphdr); 1467 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1468 * some common options. If this is an odd packet (because we have SACK 1469 * blocks etc) then our calculated header_len will be different, and 1470 * we have to adjust mss_now correspondingly */ 1471 if (header_len != tp->tcp_header_len) { 1472 int delta = (int) header_len - tp->tcp_header_len; 1473 mss_now -= delta; 1474 } 1475 1476 return mss_now; 1477 } 1478 1479 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1480 * As additional protections, we do not touch cwnd in retransmission phases, 1481 * and if application hit its sndbuf limit recently. 1482 */ 1483 static void tcp_cwnd_application_limited(struct sock *sk) 1484 { 1485 struct tcp_sock *tp = tcp_sk(sk); 1486 1487 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1488 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1489 /* Limited by application or receiver window. */ 1490 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1491 u32 win_used = max(tp->snd_cwnd_used, init_win); 1492 if (win_used < tp->snd_cwnd) { 1493 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1494 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1495 } 1496 tp->snd_cwnd_used = 0; 1497 } 1498 tp->snd_cwnd_stamp = tcp_time_stamp; 1499 } 1500 1501 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1502 { 1503 struct tcp_sock *tp = tcp_sk(sk); 1504 1505 /* Track the maximum number of outstanding packets in each 1506 * window, and remember whether we were cwnd-limited then. 1507 */ 1508 if (!before(tp->snd_una, tp->max_packets_seq) || 1509 tp->packets_out > tp->max_packets_out) { 1510 tp->max_packets_out = tp->packets_out; 1511 tp->max_packets_seq = tp->snd_nxt; 1512 tp->is_cwnd_limited = is_cwnd_limited; 1513 } 1514 1515 if (tcp_is_cwnd_limited(sk)) { 1516 /* Network is feed fully. */ 1517 tp->snd_cwnd_used = 0; 1518 tp->snd_cwnd_stamp = tcp_time_stamp; 1519 } else { 1520 /* Network starves. */ 1521 if (tp->packets_out > tp->snd_cwnd_used) 1522 tp->snd_cwnd_used = tp->packets_out; 1523 1524 if (sysctl_tcp_slow_start_after_idle && 1525 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1526 tcp_cwnd_application_limited(sk); 1527 1528 /* The following conditions together indicate the starvation 1529 * is caused by insufficient sender buffer: 1530 * 1) just sent some data (see tcp_write_xmit) 1531 * 2) not cwnd limited (this else condition) 1532 * 3) no more data to send (null tcp_send_head ) 1533 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1534 */ 1535 if (!tcp_send_head(sk) && sk->sk_socket && 1536 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1537 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1538 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1539 } 1540 } 1541 1542 /* Minshall's variant of the Nagle send check. */ 1543 static bool tcp_minshall_check(const struct tcp_sock *tp) 1544 { 1545 return after(tp->snd_sml, tp->snd_una) && 1546 !after(tp->snd_sml, tp->snd_nxt); 1547 } 1548 1549 /* Update snd_sml if this skb is under mss 1550 * Note that a TSO packet might end with a sub-mss segment 1551 * The test is really : 1552 * if ((skb->len % mss) != 0) 1553 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1554 * But we can avoid doing the divide again given we already have 1555 * skb_pcount = skb->len / mss_now 1556 */ 1557 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1558 const struct sk_buff *skb) 1559 { 1560 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1561 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1562 } 1563 1564 /* Return false, if packet can be sent now without violation Nagle's rules: 1565 * 1. It is full sized. (provided by caller in %partial bool) 1566 * 2. Or it contains FIN. (already checked by caller) 1567 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1568 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1569 * With Minshall's modification: all sent small packets are ACKed. 1570 */ 1571 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1572 int nonagle) 1573 { 1574 return partial && 1575 ((nonagle & TCP_NAGLE_CORK) || 1576 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1577 } 1578 1579 /* Return how many segs we'd like on a TSO packet, 1580 * to send one TSO packet per ms 1581 */ 1582 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1583 int min_tso_segs) 1584 { 1585 u32 bytes, segs; 1586 1587 bytes = min(sk->sk_pacing_rate >> 10, 1588 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1589 1590 /* Goal is to send at least one packet per ms, 1591 * not one big TSO packet every 100 ms. 1592 * This preserves ACK clocking and is consistent 1593 * with tcp_tso_should_defer() heuristic. 1594 */ 1595 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1596 1597 return min_t(u32, segs, sk->sk_gso_max_segs); 1598 } 1599 EXPORT_SYMBOL(tcp_tso_autosize); 1600 1601 /* Return the number of segments we want in the skb we are transmitting. 1602 * See if congestion control module wants to decide; otherwise, autosize. 1603 */ 1604 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1605 { 1606 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1607 u32 tso_segs = ca_ops->tso_segs_goal ? ca_ops->tso_segs_goal(sk) : 0; 1608 1609 return tso_segs ? : 1610 tcp_tso_autosize(sk, mss_now, sysctl_tcp_min_tso_segs); 1611 } 1612 1613 /* Returns the portion of skb which can be sent right away */ 1614 static unsigned int tcp_mss_split_point(const struct sock *sk, 1615 const struct sk_buff *skb, 1616 unsigned int mss_now, 1617 unsigned int max_segs, 1618 int nonagle) 1619 { 1620 const struct tcp_sock *tp = tcp_sk(sk); 1621 u32 partial, needed, window, max_len; 1622 1623 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1624 max_len = mss_now * max_segs; 1625 1626 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1627 return max_len; 1628 1629 needed = min(skb->len, window); 1630 1631 if (max_len <= needed) 1632 return max_len; 1633 1634 partial = needed % mss_now; 1635 /* If last segment is not a full MSS, check if Nagle rules allow us 1636 * to include this last segment in this skb. 1637 * Otherwise, we'll split the skb at last MSS boundary 1638 */ 1639 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1640 return needed - partial; 1641 1642 return needed; 1643 } 1644 1645 /* Can at least one segment of SKB be sent right now, according to the 1646 * congestion window rules? If so, return how many segments are allowed. 1647 */ 1648 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1649 const struct sk_buff *skb) 1650 { 1651 u32 in_flight, cwnd, halfcwnd; 1652 1653 /* Don't be strict about the congestion window for the final FIN. */ 1654 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1655 tcp_skb_pcount(skb) == 1) 1656 return 1; 1657 1658 in_flight = tcp_packets_in_flight(tp); 1659 cwnd = tp->snd_cwnd; 1660 if (in_flight >= cwnd) 1661 return 0; 1662 1663 /* For better scheduling, ensure we have at least 1664 * 2 GSO packets in flight. 1665 */ 1666 halfcwnd = max(cwnd >> 1, 1U); 1667 return min(halfcwnd, cwnd - in_flight); 1668 } 1669 1670 /* Initialize TSO state of a skb. 1671 * This must be invoked the first time we consider transmitting 1672 * SKB onto the wire. 1673 */ 1674 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1675 { 1676 int tso_segs = tcp_skb_pcount(skb); 1677 1678 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1679 tcp_set_skb_tso_segs(skb, mss_now); 1680 tso_segs = tcp_skb_pcount(skb); 1681 } 1682 return tso_segs; 1683 } 1684 1685 1686 /* Return true if the Nagle test allows this packet to be 1687 * sent now. 1688 */ 1689 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1690 unsigned int cur_mss, int nonagle) 1691 { 1692 /* Nagle rule does not apply to frames, which sit in the middle of the 1693 * write_queue (they have no chances to get new data). 1694 * 1695 * This is implemented in the callers, where they modify the 'nonagle' 1696 * argument based upon the location of SKB in the send queue. 1697 */ 1698 if (nonagle & TCP_NAGLE_PUSH) 1699 return true; 1700 1701 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1702 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1703 return true; 1704 1705 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1706 return true; 1707 1708 return false; 1709 } 1710 1711 /* Does at least the first segment of SKB fit into the send window? */ 1712 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1713 const struct sk_buff *skb, 1714 unsigned int cur_mss) 1715 { 1716 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1717 1718 if (skb->len > cur_mss) 1719 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1720 1721 return !after(end_seq, tcp_wnd_end(tp)); 1722 } 1723 1724 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1725 * should be put on the wire right now. If so, it returns the number of 1726 * packets allowed by the congestion window. 1727 */ 1728 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1729 unsigned int cur_mss, int nonagle) 1730 { 1731 const struct tcp_sock *tp = tcp_sk(sk); 1732 unsigned int cwnd_quota; 1733 1734 tcp_init_tso_segs(skb, cur_mss); 1735 1736 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1737 return 0; 1738 1739 cwnd_quota = tcp_cwnd_test(tp, skb); 1740 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1741 cwnd_quota = 0; 1742 1743 return cwnd_quota; 1744 } 1745 1746 /* Test if sending is allowed right now. */ 1747 bool tcp_may_send_now(struct sock *sk) 1748 { 1749 const struct tcp_sock *tp = tcp_sk(sk); 1750 struct sk_buff *skb = tcp_send_head(sk); 1751 1752 return skb && 1753 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1754 (tcp_skb_is_last(sk, skb) ? 1755 tp->nonagle : TCP_NAGLE_PUSH)); 1756 } 1757 1758 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1759 * which is put after SKB on the list. It is very much like 1760 * tcp_fragment() except that it may make several kinds of assumptions 1761 * in order to speed up the splitting operation. In particular, we 1762 * know that all the data is in scatter-gather pages, and that the 1763 * packet has never been sent out before (and thus is not cloned). 1764 */ 1765 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1766 unsigned int mss_now, gfp_t gfp) 1767 { 1768 struct sk_buff *buff; 1769 int nlen = skb->len - len; 1770 u8 flags; 1771 1772 /* All of a TSO frame must be composed of paged data. */ 1773 if (skb->len != skb->data_len) 1774 return tcp_fragment(sk, skb, len, mss_now, gfp); 1775 1776 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1777 if (unlikely(!buff)) 1778 return -ENOMEM; 1779 1780 sk->sk_wmem_queued += buff->truesize; 1781 sk_mem_charge(sk, buff->truesize); 1782 buff->truesize += nlen; 1783 skb->truesize -= nlen; 1784 1785 /* Correct the sequence numbers. */ 1786 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1787 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1788 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1789 1790 /* PSH and FIN should only be set in the second packet. */ 1791 flags = TCP_SKB_CB(skb)->tcp_flags; 1792 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1793 TCP_SKB_CB(buff)->tcp_flags = flags; 1794 1795 /* This packet was never sent out yet, so no SACK bits. */ 1796 TCP_SKB_CB(buff)->sacked = 0; 1797 1798 tcp_skb_fragment_eor(skb, buff); 1799 1800 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1801 skb_split(skb, buff, len); 1802 tcp_fragment_tstamp(skb, buff); 1803 1804 /* Fix up tso_factor for both original and new SKB. */ 1805 tcp_set_skb_tso_segs(skb, mss_now); 1806 tcp_set_skb_tso_segs(buff, mss_now); 1807 1808 /* Link BUFF into the send queue. */ 1809 __skb_header_release(buff); 1810 tcp_insert_write_queue_after(skb, buff, sk); 1811 1812 return 0; 1813 } 1814 1815 /* Try to defer sending, if possible, in order to minimize the amount 1816 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1817 * 1818 * This algorithm is from John Heffner. 1819 */ 1820 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1821 bool *is_cwnd_limited, u32 max_segs) 1822 { 1823 const struct inet_connection_sock *icsk = inet_csk(sk); 1824 u32 age, send_win, cong_win, limit, in_flight; 1825 struct tcp_sock *tp = tcp_sk(sk); 1826 struct skb_mstamp now; 1827 struct sk_buff *head; 1828 int win_divisor; 1829 1830 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1831 goto send_now; 1832 1833 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1834 goto send_now; 1835 1836 /* Avoid bursty behavior by allowing defer 1837 * only if the last write was recent. 1838 */ 1839 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0) 1840 goto send_now; 1841 1842 in_flight = tcp_packets_in_flight(tp); 1843 1844 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1845 1846 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1847 1848 /* From in_flight test above, we know that cwnd > in_flight. */ 1849 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1850 1851 limit = min(send_win, cong_win); 1852 1853 /* If a full-sized TSO skb can be sent, do it. */ 1854 if (limit >= max_segs * tp->mss_cache) 1855 goto send_now; 1856 1857 /* Middle in queue won't get any more data, full sendable already? */ 1858 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1859 goto send_now; 1860 1861 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1862 if (win_divisor) { 1863 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1864 1865 /* If at least some fraction of a window is available, 1866 * just use it. 1867 */ 1868 chunk /= win_divisor; 1869 if (limit >= chunk) 1870 goto send_now; 1871 } else { 1872 /* Different approach, try not to defer past a single 1873 * ACK. Receiver should ACK every other full sized 1874 * frame, so if we have space for more than 3 frames 1875 * then send now. 1876 */ 1877 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1878 goto send_now; 1879 } 1880 1881 head = tcp_write_queue_head(sk); 1882 skb_mstamp_get(&now); 1883 age = skb_mstamp_us_delta(&now, &head->skb_mstamp); 1884 /* If next ACK is likely to come too late (half srtt), do not defer */ 1885 if (age < (tp->srtt_us >> 4)) 1886 goto send_now; 1887 1888 /* Ok, it looks like it is advisable to defer. */ 1889 1890 if (cong_win < send_win && cong_win <= skb->len) 1891 *is_cwnd_limited = true; 1892 1893 return true; 1894 1895 send_now: 1896 return false; 1897 } 1898 1899 static inline void tcp_mtu_check_reprobe(struct sock *sk) 1900 { 1901 struct inet_connection_sock *icsk = inet_csk(sk); 1902 struct tcp_sock *tp = tcp_sk(sk); 1903 struct net *net = sock_net(sk); 1904 u32 interval; 1905 s32 delta; 1906 1907 interval = net->ipv4.sysctl_tcp_probe_interval; 1908 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp; 1909 if (unlikely(delta >= interval * HZ)) { 1910 int mss = tcp_current_mss(sk); 1911 1912 /* Update current search range */ 1913 icsk->icsk_mtup.probe_size = 0; 1914 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 1915 sizeof(struct tcphdr) + 1916 icsk->icsk_af_ops->net_header_len; 1917 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 1918 1919 /* Update probe time stamp */ 1920 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp; 1921 } 1922 } 1923 1924 /* Create a new MTU probe if we are ready. 1925 * MTU probe is regularly attempting to increase the path MTU by 1926 * deliberately sending larger packets. This discovers routing 1927 * changes resulting in larger path MTUs. 1928 * 1929 * Returns 0 if we should wait to probe (no cwnd available), 1930 * 1 if a probe was sent, 1931 * -1 otherwise 1932 */ 1933 static int tcp_mtu_probe(struct sock *sk) 1934 { 1935 struct inet_connection_sock *icsk = inet_csk(sk); 1936 struct tcp_sock *tp = tcp_sk(sk); 1937 struct sk_buff *skb, *nskb, *next; 1938 struct net *net = sock_net(sk); 1939 int probe_size; 1940 int size_needed; 1941 int copy, len; 1942 int mss_now; 1943 int interval; 1944 1945 /* Not currently probing/verifying, 1946 * not in recovery, 1947 * have enough cwnd, and 1948 * not SACKing (the variable headers throw things off) 1949 */ 1950 if (likely(!icsk->icsk_mtup.enabled || 1951 icsk->icsk_mtup.probe_size || 1952 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1953 tp->snd_cwnd < 11 || 1954 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 1955 return -1; 1956 1957 /* Use binary search for probe_size between tcp_mss_base, 1958 * and current mss_clamp. if (search_high - search_low) 1959 * smaller than a threshold, backoff from probing. 1960 */ 1961 mss_now = tcp_current_mss(sk); 1962 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 1963 icsk->icsk_mtup.search_low) >> 1); 1964 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1965 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 1966 /* When misfortune happens, we are reprobing actively, 1967 * and then reprobe timer has expired. We stick with current 1968 * probing process by not resetting search range to its orignal. 1969 */ 1970 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 1971 interval < net->ipv4.sysctl_tcp_probe_threshold) { 1972 /* Check whether enough time has elaplased for 1973 * another round of probing. 1974 */ 1975 tcp_mtu_check_reprobe(sk); 1976 return -1; 1977 } 1978 1979 /* Have enough data in the send queue to probe? */ 1980 if (tp->write_seq - tp->snd_nxt < size_needed) 1981 return -1; 1982 1983 if (tp->snd_wnd < size_needed) 1984 return -1; 1985 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1986 return 0; 1987 1988 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1989 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1990 if (!tcp_packets_in_flight(tp)) 1991 return -1; 1992 else 1993 return 0; 1994 } 1995 1996 /* We're allowed to probe. Build it now. */ 1997 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 1998 if (!nskb) 1999 return -1; 2000 sk->sk_wmem_queued += nskb->truesize; 2001 sk_mem_charge(sk, nskb->truesize); 2002 2003 skb = tcp_send_head(sk); 2004 2005 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2006 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2007 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2008 TCP_SKB_CB(nskb)->sacked = 0; 2009 nskb->csum = 0; 2010 nskb->ip_summed = skb->ip_summed; 2011 2012 tcp_insert_write_queue_before(nskb, skb, sk); 2013 2014 len = 0; 2015 tcp_for_write_queue_from_safe(skb, next, sk) { 2016 copy = min_t(int, skb->len, probe_size - len); 2017 if (nskb->ip_summed) { 2018 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2019 } else { 2020 __wsum csum = skb_copy_and_csum_bits(skb, 0, 2021 skb_put(nskb, copy), 2022 copy, 0); 2023 nskb->csum = csum_block_add(nskb->csum, csum, len); 2024 } 2025 2026 if (skb->len <= copy) { 2027 /* We've eaten all the data from this skb. 2028 * Throw it away. */ 2029 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2030 tcp_unlink_write_queue(skb, sk); 2031 sk_wmem_free_skb(sk, skb); 2032 } else { 2033 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2034 ~(TCPHDR_FIN|TCPHDR_PSH); 2035 if (!skb_shinfo(skb)->nr_frags) { 2036 skb_pull(skb, copy); 2037 if (skb->ip_summed != CHECKSUM_PARTIAL) 2038 skb->csum = csum_partial(skb->data, 2039 skb->len, 0); 2040 } else { 2041 __pskb_trim_head(skb, copy); 2042 tcp_set_skb_tso_segs(skb, mss_now); 2043 } 2044 TCP_SKB_CB(skb)->seq += copy; 2045 } 2046 2047 len += copy; 2048 2049 if (len >= probe_size) 2050 break; 2051 } 2052 tcp_init_tso_segs(nskb, nskb->len); 2053 2054 /* We're ready to send. If this fails, the probe will 2055 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2056 */ 2057 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2058 /* Decrement cwnd here because we are sending 2059 * effectively two packets. */ 2060 tp->snd_cwnd--; 2061 tcp_event_new_data_sent(sk, nskb); 2062 2063 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2064 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2065 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2066 2067 return 1; 2068 } 2069 2070 return -1; 2071 } 2072 2073 /* TCP Small Queues : 2074 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2075 * (These limits are doubled for retransmits) 2076 * This allows for : 2077 * - better RTT estimation and ACK scheduling 2078 * - faster recovery 2079 * - high rates 2080 * Alas, some drivers / subsystems require a fair amount 2081 * of queued bytes to ensure line rate. 2082 * One example is wifi aggregation (802.11 AMPDU) 2083 */ 2084 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2085 unsigned int factor) 2086 { 2087 unsigned int limit; 2088 2089 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2090 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2091 limit <<= factor; 2092 2093 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2094 /* Always send the 1st or 2nd skb in write queue. 2095 * No need to wait for TX completion to call us back, 2096 * after softirq/tasklet schedule. 2097 * This helps when TX completions are delayed too much. 2098 */ 2099 if (skb == sk->sk_write_queue.next || 2100 skb->prev == sk->sk_write_queue.next) 2101 return false; 2102 2103 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2104 /* It is possible TX completion already happened 2105 * before we set TSQ_THROTTLED, so we must 2106 * test again the condition. 2107 */ 2108 smp_mb__after_atomic(); 2109 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2110 return true; 2111 } 2112 return false; 2113 } 2114 2115 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2116 { 2117 const u32 now = tcp_time_stamp; 2118 2119 if (tp->chrono_type > TCP_CHRONO_UNSPEC) 2120 tp->chrono_stat[tp->chrono_type - 1] += now - tp->chrono_start; 2121 tp->chrono_start = now; 2122 tp->chrono_type = new; 2123 } 2124 2125 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2126 { 2127 struct tcp_sock *tp = tcp_sk(sk); 2128 2129 /* If there are multiple conditions worthy of tracking in a 2130 * chronograph then the highest priority enum takes precedence 2131 * over the other conditions. So that if something "more interesting" 2132 * starts happening, stop the previous chrono and start a new one. 2133 */ 2134 if (type > tp->chrono_type) 2135 tcp_chrono_set(tp, type); 2136 } 2137 2138 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2139 { 2140 struct tcp_sock *tp = tcp_sk(sk); 2141 2142 2143 /* There are multiple conditions worthy of tracking in a 2144 * chronograph, so that the highest priority enum takes 2145 * precedence over the other conditions (see tcp_chrono_start). 2146 * If a condition stops, we only stop chrono tracking if 2147 * it's the "most interesting" or current chrono we are 2148 * tracking and starts busy chrono if we have pending data. 2149 */ 2150 if (tcp_write_queue_empty(sk)) 2151 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2152 else if (type == tp->chrono_type) 2153 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2154 } 2155 2156 /* This routine writes packets to the network. It advances the 2157 * send_head. This happens as incoming acks open up the remote 2158 * window for us. 2159 * 2160 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2161 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2162 * account rare use of URG, this is not a big flaw. 2163 * 2164 * Send at most one packet when push_one > 0. Temporarily ignore 2165 * cwnd limit to force at most one packet out when push_one == 2. 2166 2167 * Returns true, if no segments are in flight and we have queued segments, 2168 * but cannot send anything now because of SWS or another problem. 2169 */ 2170 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2171 int push_one, gfp_t gfp) 2172 { 2173 struct tcp_sock *tp = tcp_sk(sk); 2174 struct sk_buff *skb; 2175 unsigned int tso_segs, sent_pkts; 2176 int cwnd_quota; 2177 int result; 2178 bool is_cwnd_limited = false, is_rwnd_limited = false; 2179 u32 max_segs; 2180 2181 sent_pkts = 0; 2182 2183 if (!push_one) { 2184 /* Do MTU probing. */ 2185 result = tcp_mtu_probe(sk); 2186 if (!result) { 2187 return false; 2188 } else if (result > 0) { 2189 sent_pkts = 1; 2190 } 2191 } 2192 2193 max_segs = tcp_tso_segs(sk, mss_now); 2194 while ((skb = tcp_send_head(sk))) { 2195 unsigned int limit; 2196 2197 tso_segs = tcp_init_tso_segs(skb, mss_now); 2198 BUG_ON(!tso_segs); 2199 2200 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2201 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2202 skb_mstamp_get(&skb->skb_mstamp); 2203 goto repair; /* Skip network transmission */ 2204 } 2205 2206 cwnd_quota = tcp_cwnd_test(tp, skb); 2207 if (!cwnd_quota) { 2208 if (push_one == 2) 2209 /* Force out a loss probe pkt. */ 2210 cwnd_quota = 1; 2211 else 2212 break; 2213 } 2214 2215 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2216 is_rwnd_limited = true; 2217 break; 2218 } 2219 2220 if (tso_segs == 1) { 2221 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2222 (tcp_skb_is_last(sk, skb) ? 2223 nonagle : TCP_NAGLE_PUSH)))) 2224 break; 2225 } else { 2226 if (!push_one && 2227 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2228 max_segs)) 2229 break; 2230 } 2231 2232 limit = mss_now; 2233 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2234 limit = tcp_mss_split_point(sk, skb, mss_now, 2235 min_t(unsigned int, 2236 cwnd_quota, 2237 max_segs), 2238 nonagle); 2239 2240 if (skb->len > limit && 2241 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2242 break; 2243 2244 if (test_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 2245 clear_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags); 2246 if (tcp_small_queue_check(sk, skb, 0)) 2247 break; 2248 2249 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2250 break; 2251 2252 repair: 2253 /* Advance the send_head. This one is sent out. 2254 * This call will increment packets_out. 2255 */ 2256 tcp_event_new_data_sent(sk, skb); 2257 2258 tcp_minshall_update(tp, mss_now, skb); 2259 sent_pkts += tcp_skb_pcount(skb); 2260 2261 if (push_one) 2262 break; 2263 } 2264 2265 if (is_rwnd_limited) 2266 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2267 else 2268 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2269 2270 if (likely(sent_pkts)) { 2271 if (tcp_in_cwnd_reduction(sk)) 2272 tp->prr_out += sent_pkts; 2273 2274 /* Send one loss probe per tail loss episode. */ 2275 if (push_one != 2) 2276 tcp_schedule_loss_probe(sk); 2277 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2278 tcp_cwnd_validate(sk, is_cwnd_limited); 2279 return false; 2280 } 2281 return !tp->packets_out && tcp_send_head(sk); 2282 } 2283 2284 bool tcp_schedule_loss_probe(struct sock *sk) 2285 { 2286 struct inet_connection_sock *icsk = inet_csk(sk); 2287 struct tcp_sock *tp = tcp_sk(sk); 2288 u32 timeout, tlp_time_stamp, rto_time_stamp; 2289 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2290 2291 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 2292 return false; 2293 /* No consecutive loss probes. */ 2294 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2295 tcp_rearm_rto(sk); 2296 return false; 2297 } 2298 /* Don't do any loss probe on a Fast Open connection before 3WHS 2299 * finishes. 2300 */ 2301 if (tp->fastopen_rsk) 2302 return false; 2303 2304 /* TLP is only scheduled when next timer event is RTO. */ 2305 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2306 return false; 2307 2308 /* Schedule a loss probe in 2*RTT for SACK capable connections 2309 * in Open state, that are either limited by cwnd or application. 2310 */ 2311 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out || 2312 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2313 return false; 2314 2315 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2316 tcp_send_head(sk)) 2317 return false; 2318 2319 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2320 * for delayed ack when there's one outstanding packet. If no RTT 2321 * sample is available then probe after TCP_TIMEOUT_INIT. 2322 */ 2323 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT; 2324 if (tp->packets_out == 1) 2325 timeout = max_t(u32, timeout, 2326 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2327 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2328 2329 /* If RTO is shorter, just schedule TLP in its place. */ 2330 tlp_time_stamp = tcp_time_stamp + timeout; 2331 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2332 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2333 s32 delta = rto_time_stamp - tcp_time_stamp; 2334 if (delta > 0) 2335 timeout = delta; 2336 } 2337 2338 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2339 TCP_RTO_MAX); 2340 return true; 2341 } 2342 2343 /* Thanks to skb fast clones, we can detect if a prior transmit of 2344 * a packet is still in a qdisc or driver queue. 2345 * In this case, there is very little point doing a retransmit ! 2346 */ 2347 static bool skb_still_in_host_queue(const struct sock *sk, 2348 const struct sk_buff *skb) 2349 { 2350 if (unlikely(skb_fclone_busy(sk, skb))) { 2351 NET_INC_STATS(sock_net(sk), 2352 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2353 return true; 2354 } 2355 return false; 2356 } 2357 2358 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2359 * retransmit the last segment. 2360 */ 2361 void tcp_send_loss_probe(struct sock *sk) 2362 { 2363 struct tcp_sock *tp = tcp_sk(sk); 2364 struct sk_buff *skb; 2365 int pcount; 2366 int mss = tcp_current_mss(sk); 2367 2368 skb = tcp_send_head(sk); 2369 if (skb) { 2370 if (tcp_snd_wnd_test(tp, skb, mss)) { 2371 pcount = tp->packets_out; 2372 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2373 if (tp->packets_out > pcount) 2374 goto probe_sent; 2375 goto rearm_timer; 2376 } 2377 skb = tcp_write_queue_prev(sk, skb); 2378 } else { 2379 skb = tcp_write_queue_tail(sk); 2380 } 2381 2382 /* At most one outstanding TLP retransmission. */ 2383 if (tp->tlp_high_seq) 2384 goto rearm_timer; 2385 2386 /* Retransmit last segment. */ 2387 if (WARN_ON(!skb)) 2388 goto rearm_timer; 2389 2390 if (skb_still_in_host_queue(sk, skb)) 2391 goto rearm_timer; 2392 2393 pcount = tcp_skb_pcount(skb); 2394 if (WARN_ON(!pcount)) 2395 goto rearm_timer; 2396 2397 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2398 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2399 GFP_ATOMIC))) 2400 goto rearm_timer; 2401 skb = tcp_write_queue_next(sk, skb); 2402 } 2403 2404 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2405 goto rearm_timer; 2406 2407 if (__tcp_retransmit_skb(sk, skb, 1)) 2408 goto rearm_timer; 2409 2410 /* Record snd_nxt for loss detection. */ 2411 tp->tlp_high_seq = tp->snd_nxt; 2412 2413 probe_sent: 2414 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2415 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2416 inet_csk(sk)->icsk_pending = 0; 2417 rearm_timer: 2418 tcp_rearm_rto(sk); 2419 } 2420 2421 /* Push out any pending frames which were held back due to 2422 * TCP_CORK or attempt at coalescing tiny packets. 2423 * The socket must be locked by the caller. 2424 */ 2425 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2426 int nonagle) 2427 { 2428 /* If we are closed, the bytes will have to remain here. 2429 * In time closedown will finish, we empty the write queue and 2430 * all will be happy. 2431 */ 2432 if (unlikely(sk->sk_state == TCP_CLOSE)) 2433 return; 2434 2435 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2436 sk_gfp_mask(sk, GFP_ATOMIC))) 2437 tcp_check_probe_timer(sk); 2438 } 2439 2440 /* Send _single_ skb sitting at the send head. This function requires 2441 * true push pending frames to setup probe timer etc. 2442 */ 2443 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2444 { 2445 struct sk_buff *skb = tcp_send_head(sk); 2446 2447 BUG_ON(!skb || skb->len < mss_now); 2448 2449 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2450 } 2451 2452 /* This function returns the amount that we can raise the 2453 * usable window based on the following constraints 2454 * 2455 * 1. The window can never be shrunk once it is offered (RFC 793) 2456 * 2. We limit memory per socket 2457 * 2458 * RFC 1122: 2459 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2460 * RECV.NEXT + RCV.WIN fixed until: 2461 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2462 * 2463 * i.e. don't raise the right edge of the window until you can raise 2464 * it at least MSS bytes. 2465 * 2466 * Unfortunately, the recommended algorithm breaks header prediction, 2467 * since header prediction assumes th->window stays fixed. 2468 * 2469 * Strictly speaking, keeping th->window fixed violates the receiver 2470 * side SWS prevention criteria. The problem is that under this rule 2471 * a stream of single byte packets will cause the right side of the 2472 * window to always advance by a single byte. 2473 * 2474 * Of course, if the sender implements sender side SWS prevention 2475 * then this will not be a problem. 2476 * 2477 * BSD seems to make the following compromise: 2478 * 2479 * If the free space is less than the 1/4 of the maximum 2480 * space available and the free space is less than 1/2 mss, 2481 * then set the window to 0. 2482 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2483 * Otherwise, just prevent the window from shrinking 2484 * and from being larger than the largest representable value. 2485 * 2486 * This prevents incremental opening of the window in the regime 2487 * where TCP is limited by the speed of the reader side taking 2488 * data out of the TCP receive queue. It does nothing about 2489 * those cases where the window is constrained on the sender side 2490 * because the pipeline is full. 2491 * 2492 * BSD also seems to "accidentally" limit itself to windows that are a 2493 * multiple of MSS, at least until the free space gets quite small. 2494 * This would appear to be a side effect of the mbuf implementation. 2495 * Combining these two algorithms results in the observed behavior 2496 * of having a fixed window size at almost all times. 2497 * 2498 * Below we obtain similar behavior by forcing the offered window to 2499 * a multiple of the mss when it is feasible to do so. 2500 * 2501 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2502 * Regular options like TIMESTAMP are taken into account. 2503 */ 2504 u32 __tcp_select_window(struct sock *sk) 2505 { 2506 struct inet_connection_sock *icsk = inet_csk(sk); 2507 struct tcp_sock *tp = tcp_sk(sk); 2508 /* MSS for the peer's data. Previous versions used mss_clamp 2509 * here. I don't know if the value based on our guesses 2510 * of peer's MSS is better for the performance. It's more correct 2511 * but may be worse for the performance because of rcv_mss 2512 * fluctuations. --SAW 1998/11/1 2513 */ 2514 int mss = icsk->icsk_ack.rcv_mss; 2515 int free_space = tcp_space(sk); 2516 int allowed_space = tcp_full_space(sk); 2517 int full_space = min_t(int, tp->window_clamp, allowed_space); 2518 int window; 2519 2520 if (mss > full_space) 2521 mss = full_space; 2522 2523 if (free_space < (full_space >> 1)) { 2524 icsk->icsk_ack.quick = 0; 2525 2526 if (tcp_under_memory_pressure(sk)) 2527 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2528 4U * tp->advmss); 2529 2530 /* free_space might become our new window, make sure we don't 2531 * increase it due to wscale. 2532 */ 2533 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2534 2535 /* if free space is less than mss estimate, or is below 1/16th 2536 * of the maximum allowed, try to move to zero-window, else 2537 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2538 * new incoming data is dropped due to memory limits. 2539 * With large window, mss test triggers way too late in order 2540 * to announce zero window in time before rmem limit kicks in. 2541 */ 2542 if (free_space < (allowed_space >> 4) || free_space < mss) 2543 return 0; 2544 } 2545 2546 if (free_space > tp->rcv_ssthresh) 2547 free_space = tp->rcv_ssthresh; 2548 2549 /* Don't do rounding if we are using window scaling, since the 2550 * scaled window will not line up with the MSS boundary anyway. 2551 */ 2552 window = tp->rcv_wnd; 2553 if (tp->rx_opt.rcv_wscale) { 2554 window = free_space; 2555 2556 /* Advertise enough space so that it won't get scaled away. 2557 * Import case: prevent zero window announcement if 2558 * 1<<rcv_wscale > mss. 2559 */ 2560 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2561 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2562 << tp->rx_opt.rcv_wscale); 2563 } else { 2564 /* Get the largest window that is a nice multiple of mss. 2565 * Window clamp already applied above. 2566 * If our current window offering is within 1 mss of the 2567 * free space we just keep it. This prevents the divide 2568 * and multiply from happening most of the time. 2569 * We also don't do any window rounding when the free space 2570 * is too small. 2571 */ 2572 if (window <= free_space - mss || window > free_space) 2573 window = (free_space / mss) * mss; 2574 else if (mss == full_space && 2575 free_space > window + (full_space >> 1)) 2576 window = free_space; 2577 } 2578 2579 return window; 2580 } 2581 2582 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2583 const struct sk_buff *next_skb) 2584 { 2585 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2586 const struct skb_shared_info *next_shinfo = 2587 skb_shinfo(next_skb); 2588 struct skb_shared_info *shinfo = skb_shinfo(skb); 2589 2590 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2591 shinfo->tskey = next_shinfo->tskey; 2592 TCP_SKB_CB(skb)->txstamp_ack |= 2593 TCP_SKB_CB(next_skb)->txstamp_ack; 2594 } 2595 } 2596 2597 /* Collapses two adjacent SKB's during retransmission. */ 2598 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2599 { 2600 struct tcp_sock *tp = tcp_sk(sk); 2601 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2602 int skb_size, next_skb_size; 2603 2604 skb_size = skb->len; 2605 next_skb_size = next_skb->len; 2606 2607 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2608 2609 if (next_skb_size) { 2610 if (next_skb_size <= skb_availroom(skb)) 2611 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2612 next_skb_size); 2613 else if (!skb_shift(skb, next_skb, next_skb_size)) 2614 return false; 2615 } 2616 tcp_highest_sack_combine(sk, next_skb, skb); 2617 2618 tcp_unlink_write_queue(next_skb, sk); 2619 2620 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2621 skb->ip_summed = CHECKSUM_PARTIAL; 2622 2623 if (skb->ip_summed != CHECKSUM_PARTIAL) 2624 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2625 2626 /* Update sequence range on original skb. */ 2627 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2628 2629 /* Merge over control information. This moves PSH/FIN etc. over */ 2630 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2631 2632 /* All done, get rid of second SKB and account for it so 2633 * packet counting does not break. 2634 */ 2635 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2636 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2637 2638 /* changed transmit queue under us so clear hints */ 2639 tcp_clear_retrans_hints_partial(tp); 2640 if (next_skb == tp->retransmit_skb_hint) 2641 tp->retransmit_skb_hint = skb; 2642 2643 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2644 2645 tcp_skb_collapse_tstamp(skb, next_skb); 2646 2647 sk_wmem_free_skb(sk, next_skb); 2648 return true; 2649 } 2650 2651 /* Check if coalescing SKBs is legal. */ 2652 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2653 { 2654 if (tcp_skb_pcount(skb) > 1) 2655 return false; 2656 if (skb_cloned(skb)) 2657 return false; 2658 if (skb == tcp_send_head(sk)) 2659 return false; 2660 /* Some heuristics for collapsing over SACK'd could be invented */ 2661 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2662 return false; 2663 2664 return true; 2665 } 2666 2667 /* Collapse packets in the retransmit queue to make to create 2668 * less packets on the wire. This is only done on retransmission. 2669 */ 2670 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2671 int space) 2672 { 2673 struct tcp_sock *tp = tcp_sk(sk); 2674 struct sk_buff *skb = to, *tmp; 2675 bool first = true; 2676 2677 if (!sysctl_tcp_retrans_collapse) 2678 return; 2679 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2680 return; 2681 2682 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2683 if (!tcp_can_collapse(sk, skb)) 2684 break; 2685 2686 if (!tcp_skb_can_collapse_to(to)) 2687 break; 2688 2689 space -= skb->len; 2690 2691 if (first) { 2692 first = false; 2693 continue; 2694 } 2695 2696 if (space < 0) 2697 break; 2698 2699 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2700 break; 2701 2702 if (!tcp_collapse_retrans(sk, to)) 2703 break; 2704 } 2705 } 2706 2707 /* This retransmits one SKB. Policy decisions and retransmit queue 2708 * state updates are done by the caller. Returns non-zero if an 2709 * error occurred which prevented the send. 2710 */ 2711 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2712 { 2713 struct inet_connection_sock *icsk = inet_csk(sk); 2714 struct tcp_sock *tp = tcp_sk(sk); 2715 unsigned int cur_mss; 2716 int diff, len, err; 2717 2718 2719 /* Inconclusive MTU probe */ 2720 if (icsk->icsk_mtup.probe_size) 2721 icsk->icsk_mtup.probe_size = 0; 2722 2723 /* Do not sent more than we queued. 1/4 is reserved for possible 2724 * copying overhead: fragmentation, tunneling, mangling etc. 2725 */ 2726 if (atomic_read(&sk->sk_wmem_alloc) > 2727 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2728 sk->sk_sndbuf)) 2729 return -EAGAIN; 2730 2731 if (skb_still_in_host_queue(sk, skb)) 2732 return -EBUSY; 2733 2734 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2735 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2736 BUG(); 2737 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2738 return -ENOMEM; 2739 } 2740 2741 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2742 return -EHOSTUNREACH; /* Routing failure or similar. */ 2743 2744 cur_mss = tcp_current_mss(sk); 2745 2746 /* If receiver has shrunk his window, and skb is out of 2747 * new window, do not retransmit it. The exception is the 2748 * case, when window is shrunk to zero. In this case 2749 * our retransmit serves as a zero window probe. 2750 */ 2751 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2752 TCP_SKB_CB(skb)->seq != tp->snd_una) 2753 return -EAGAIN; 2754 2755 len = cur_mss * segs; 2756 if (skb->len > len) { 2757 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC)) 2758 return -ENOMEM; /* We'll try again later. */ 2759 } else { 2760 if (skb_unclone(skb, GFP_ATOMIC)) 2761 return -ENOMEM; 2762 2763 diff = tcp_skb_pcount(skb); 2764 tcp_set_skb_tso_segs(skb, cur_mss); 2765 diff -= tcp_skb_pcount(skb); 2766 if (diff) 2767 tcp_adjust_pcount(sk, skb, diff); 2768 if (skb->len < cur_mss) 2769 tcp_retrans_try_collapse(sk, skb, cur_mss); 2770 } 2771 2772 /* RFC3168, section 6.1.1.1. ECN fallback */ 2773 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2774 tcp_ecn_clear_syn(sk, skb); 2775 2776 /* make sure skb->data is aligned on arches that require it 2777 * and check if ack-trimming & collapsing extended the headroom 2778 * beyond what csum_start can cover. 2779 */ 2780 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2781 skb_headroom(skb) >= 0xFFFF)) { 2782 struct sk_buff *nskb; 2783 2784 skb_mstamp_get(&skb->skb_mstamp); 2785 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2786 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2787 -ENOBUFS; 2788 } else { 2789 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2790 } 2791 2792 if (likely(!err)) { 2793 segs = tcp_skb_pcount(skb); 2794 2795 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2796 /* Update global TCP statistics. */ 2797 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2798 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2799 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2800 tp->total_retrans += segs; 2801 } 2802 return err; 2803 } 2804 2805 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2806 { 2807 struct tcp_sock *tp = tcp_sk(sk); 2808 int err = __tcp_retransmit_skb(sk, skb, segs); 2809 2810 if (err == 0) { 2811 #if FASTRETRANS_DEBUG > 0 2812 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2813 net_dbg_ratelimited("retrans_out leaked\n"); 2814 } 2815 #endif 2816 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2817 tp->retrans_out += tcp_skb_pcount(skb); 2818 2819 /* Save stamp of the first retransmit. */ 2820 if (!tp->retrans_stamp) 2821 tp->retrans_stamp = tcp_skb_timestamp(skb); 2822 2823 } else if (err != -EBUSY) { 2824 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2825 } 2826 2827 if (tp->undo_retrans < 0) 2828 tp->undo_retrans = 0; 2829 tp->undo_retrans += tcp_skb_pcount(skb); 2830 return err; 2831 } 2832 2833 /* Check if we forward retransmits are possible in the current 2834 * window/congestion state. 2835 */ 2836 static bool tcp_can_forward_retransmit(struct sock *sk) 2837 { 2838 const struct inet_connection_sock *icsk = inet_csk(sk); 2839 const struct tcp_sock *tp = tcp_sk(sk); 2840 2841 /* Forward retransmissions are possible only during Recovery. */ 2842 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2843 return false; 2844 2845 /* No forward retransmissions in Reno are possible. */ 2846 if (tcp_is_reno(tp)) 2847 return false; 2848 2849 /* Yeah, we have to make difficult choice between forward transmission 2850 * and retransmission... Both ways have their merits... 2851 * 2852 * For now we do not retransmit anything, while we have some new 2853 * segments to send. In the other cases, follow rule 3 for 2854 * NextSeg() specified in RFC3517. 2855 */ 2856 2857 if (tcp_may_send_now(sk)) 2858 return false; 2859 2860 return true; 2861 } 2862 2863 /* This gets called after a retransmit timeout, and the initially 2864 * retransmitted data is acknowledged. It tries to continue 2865 * resending the rest of the retransmit queue, until either 2866 * we've sent it all or the congestion window limit is reached. 2867 * If doing SACK, the first ACK which comes back for a timeout 2868 * based retransmit packet might feed us FACK information again. 2869 * If so, we use it to avoid unnecessarily retransmissions. 2870 */ 2871 void tcp_xmit_retransmit_queue(struct sock *sk) 2872 { 2873 const struct inet_connection_sock *icsk = inet_csk(sk); 2874 struct tcp_sock *tp = tcp_sk(sk); 2875 struct sk_buff *skb; 2876 struct sk_buff *hole = NULL; 2877 u32 max_segs, last_lost; 2878 int mib_idx; 2879 int fwd_rexmitting = 0; 2880 2881 if (!tp->packets_out) 2882 return; 2883 2884 if (!tp->lost_out) 2885 tp->retransmit_high = tp->snd_una; 2886 2887 if (tp->retransmit_skb_hint) { 2888 skb = tp->retransmit_skb_hint; 2889 last_lost = TCP_SKB_CB(skb)->end_seq; 2890 if (after(last_lost, tp->retransmit_high)) 2891 last_lost = tp->retransmit_high; 2892 } else { 2893 skb = tcp_write_queue_head(sk); 2894 last_lost = tp->snd_una; 2895 } 2896 2897 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 2898 tcp_for_write_queue_from(skb, sk) { 2899 __u8 sacked; 2900 int segs; 2901 2902 if (skb == tcp_send_head(sk)) 2903 break; 2904 /* we could do better than to assign each time */ 2905 if (!hole) 2906 tp->retransmit_skb_hint = skb; 2907 2908 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 2909 if (segs <= 0) 2910 return; 2911 sacked = TCP_SKB_CB(skb)->sacked; 2912 /* In case tcp_shift_skb_data() have aggregated large skbs, 2913 * we need to make sure not sending too bigs TSO packets 2914 */ 2915 segs = min_t(int, segs, max_segs); 2916 2917 if (fwd_rexmitting) { 2918 begin_fwd: 2919 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2920 break; 2921 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2922 2923 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2924 tp->retransmit_high = last_lost; 2925 if (!tcp_can_forward_retransmit(sk)) 2926 break; 2927 /* Backtrack if necessary to non-L'ed skb */ 2928 if (hole) { 2929 skb = hole; 2930 hole = NULL; 2931 } 2932 fwd_rexmitting = 1; 2933 goto begin_fwd; 2934 2935 } else if (!(sacked & TCPCB_LOST)) { 2936 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2937 hole = skb; 2938 continue; 2939 2940 } else { 2941 last_lost = TCP_SKB_CB(skb)->end_seq; 2942 if (icsk->icsk_ca_state != TCP_CA_Loss) 2943 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2944 else 2945 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2946 } 2947 2948 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2949 continue; 2950 2951 if (tcp_small_queue_check(sk, skb, 1)) 2952 return; 2953 2954 if (tcp_retransmit_skb(sk, skb, segs)) 2955 return; 2956 2957 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 2958 2959 if (tcp_in_cwnd_reduction(sk)) 2960 tp->prr_out += tcp_skb_pcount(skb); 2961 2962 if (skb == tcp_write_queue_head(sk)) 2963 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2964 inet_csk(sk)->icsk_rto, 2965 TCP_RTO_MAX); 2966 } 2967 } 2968 2969 /* We allow to exceed memory limits for FIN packets to expedite 2970 * connection tear down and (memory) recovery. 2971 * Otherwise tcp_send_fin() could be tempted to either delay FIN 2972 * or even be forced to close flow without any FIN. 2973 * In general, we want to allow one skb per socket to avoid hangs 2974 * with edge trigger epoll() 2975 */ 2976 void sk_forced_mem_schedule(struct sock *sk, int size) 2977 { 2978 int amt; 2979 2980 if (size <= sk->sk_forward_alloc) 2981 return; 2982 amt = sk_mem_pages(size); 2983 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 2984 sk_memory_allocated_add(sk, amt); 2985 2986 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 2987 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 2988 } 2989 2990 /* Send a FIN. The caller locks the socket for us. 2991 * We should try to send a FIN packet really hard, but eventually give up. 2992 */ 2993 void tcp_send_fin(struct sock *sk) 2994 { 2995 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 2996 struct tcp_sock *tp = tcp_sk(sk); 2997 2998 /* Optimization, tack on the FIN if we have one skb in write queue and 2999 * this skb was not yet sent, or we are under memory pressure. 3000 * Note: in the latter case, FIN packet will be sent after a timeout, 3001 * as TCP stack thinks it has already been transmitted. 3002 */ 3003 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) { 3004 coalesce: 3005 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3006 TCP_SKB_CB(tskb)->end_seq++; 3007 tp->write_seq++; 3008 if (!tcp_send_head(sk)) { 3009 /* This means tskb was already sent. 3010 * Pretend we included the FIN on previous transmit. 3011 * We need to set tp->snd_nxt to the value it would have 3012 * if FIN had been sent. This is because retransmit path 3013 * does not change tp->snd_nxt. 3014 */ 3015 tp->snd_nxt++; 3016 return; 3017 } 3018 } else { 3019 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3020 if (unlikely(!skb)) { 3021 if (tskb) 3022 goto coalesce; 3023 return; 3024 } 3025 skb_reserve(skb, MAX_TCP_HEADER); 3026 sk_forced_mem_schedule(sk, skb->truesize); 3027 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3028 tcp_init_nondata_skb(skb, tp->write_seq, 3029 TCPHDR_ACK | TCPHDR_FIN); 3030 tcp_queue_skb(sk, skb); 3031 } 3032 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3033 } 3034 3035 /* We get here when a process closes a file descriptor (either due to 3036 * an explicit close() or as a byproduct of exit()'ing) and there 3037 * was unread data in the receive queue. This behavior is recommended 3038 * by RFC 2525, section 2.17. -DaveM 3039 */ 3040 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3041 { 3042 struct sk_buff *skb; 3043 3044 /* NOTE: No TCP options attached and we never retransmit this. */ 3045 skb = alloc_skb(MAX_TCP_HEADER, priority); 3046 if (!skb) { 3047 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3048 return; 3049 } 3050 3051 /* Reserve space for headers and prepare control bits. */ 3052 skb_reserve(skb, MAX_TCP_HEADER); 3053 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3054 TCPHDR_ACK | TCPHDR_RST); 3055 skb_mstamp_get(&skb->skb_mstamp); 3056 /* Send it off. */ 3057 if (tcp_transmit_skb(sk, skb, 0, priority)) 3058 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3059 3060 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3061 } 3062 3063 /* Send a crossed SYN-ACK during socket establishment. 3064 * WARNING: This routine must only be called when we have already sent 3065 * a SYN packet that crossed the incoming SYN that caused this routine 3066 * to get called. If this assumption fails then the initial rcv_wnd 3067 * and rcv_wscale values will not be correct. 3068 */ 3069 int tcp_send_synack(struct sock *sk) 3070 { 3071 struct sk_buff *skb; 3072 3073 skb = tcp_write_queue_head(sk); 3074 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3075 pr_debug("%s: wrong queue state\n", __func__); 3076 return -EFAULT; 3077 } 3078 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3079 if (skb_cloned(skb)) { 3080 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 3081 if (!nskb) 3082 return -ENOMEM; 3083 tcp_unlink_write_queue(skb, sk); 3084 __skb_header_release(nskb); 3085 __tcp_add_write_queue_head(sk, nskb); 3086 sk_wmem_free_skb(sk, skb); 3087 sk->sk_wmem_queued += nskb->truesize; 3088 sk_mem_charge(sk, nskb->truesize); 3089 skb = nskb; 3090 } 3091 3092 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3093 tcp_ecn_send_synack(sk, skb); 3094 } 3095 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3096 } 3097 3098 /** 3099 * tcp_make_synack - Prepare a SYN-ACK. 3100 * sk: listener socket 3101 * dst: dst entry attached to the SYNACK 3102 * req: request_sock pointer 3103 * 3104 * Allocate one skb and build a SYNACK packet. 3105 * @dst is consumed : Caller should not use it again. 3106 */ 3107 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3108 struct request_sock *req, 3109 struct tcp_fastopen_cookie *foc, 3110 enum tcp_synack_type synack_type) 3111 { 3112 struct inet_request_sock *ireq = inet_rsk(req); 3113 const struct tcp_sock *tp = tcp_sk(sk); 3114 struct tcp_md5sig_key *md5 = NULL; 3115 struct tcp_out_options opts; 3116 struct sk_buff *skb; 3117 int tcp_header_size; 3118 struct tcphdr *th; 3119 u16 user_mss; 3120 int mss; 3121 3122 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3123 if (unlikely(!skb)) { 3124 dst_release(dst); 3125 return NULL; 3126 } 3127 /* Reserve space for headers. */ 3128 skb_reserve(skb, MAX_TCP_HEADER); 3129 3130 switch (synack_type) { 3131 case TCP_SYNACK_NORMAL: 3132 skb_set_owner_w(skb, req_to_sk(req)); 3133 break; 3134 case TCP_SYNACK_COOKIE: 3135 /* Under synflood, we do not attach skb to a socket, 3136 * to avoid false sharing. 3137 */ 3138 break; 3139 case TCP_SYNACK_FASTOPEN: 3140 /* sk is a const pointer, because we want to express multiple 3141 * cpu might call us concurrently. 3142 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3143 */ 3144 skb_set_owner_w(skb, (struct sock *)sk); 3145 break; 3146 } 3147 skb_dst_set(skb, dst); 3148 3149 mss = dst_metric_advmss(dst); 3150 user_mss = READ_ONCE(tp->rx_opt.user_mss); 3151 if (user_mss && user_mss < mss) 3152 mss = user_mss; 3153 3154 memset(&opts, 0, sizeof(opts)); 3155 #ifdef CONFIG_SYN_COOKIES 3156 if (unlikely(req->cookie_ts)) 3157 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 3158 else 3159 #endif 3160 skb_mstamp_get(&skb->skb_mstamp); 3161 3162 #ifdef CONFIG_TCP_MD5SIG 3163 rcu_read_lock(); 3164 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3165 #endif 3166 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3167 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) + 3168 sizeof(*th); 3169 3170 skb_push(skb, tcp_header_size); 3171 skb_reset_transport_header(skb); 3172 3173 th = (struct tcphdr *)skb->data; 3174 memset(th, 0, sizeof(struct tcphdr)); 3175 th->syn = 1; 3176 th->ack = 1; 3177 tcp_ecn_make_synack(req, th); 3178 th->source = htons(ireq->ir_num); 3179 th->dest = ireq->ir_rmt_port; 3180 /* Setting of flags are superfluous here for callers (and ECE is 3181 * not even correctly set) 3182 */ 3183 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 3184 TCPHDR_SYN | TCPHDR_ACK); 3185 3186 th->seq = htonl(TCP_SKB_CB(skb)->seq); 3187 /* XXX data is queued and acked as is. No buffer/window check */ 3188 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3189 3190 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3191 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3192 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3193 th->doff = (tcp_header_size >> 2); 3194 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3195 3196 #ifdef CONFIG_TCP_MD5SIG 3197 /* Okay, we have all we need - do the md5 hash if needed */ 3198 if (md5) 3199 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3200 md5, req_to_sk(req), skb); 3201 rcu_read_unlock(); 3202 #endif 3203 3204 /* Do not fool tcpdump (if any), clean our debris */ 3205 skb->tstamp.tv64 = 0; 3206 return skb; 3207 } 3208 EXPORT_SYMBOL(tcp_make_synack); 3209 3210 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3211 { 3212 struct inet_connection_sock *icsk = inet_csk(sk); 3213 const struct tcp_congestion_ops *ca; 3214 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3215 3216 if (ca_key == TCP_CA_UNSPEC) 3217 return; 3218 3219 rcu_read_lock(); 3220 ca = tcp_ca_find_key(ca_key); 3221 if (likely(ca && try_module_get(ca->owner))) { 3222 module_put(icsk->icsk_ca_ops->owner); 3223 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3224 icsk->icsk_ca_ops = ca; 3225 } 3226 rcu_read_unlock(); 3227 } 3228 3229 /* Do all connect socket setups that can be done AF independent. */ 3230 static void tcp_connect_init(struct sock *sk) 3231 { 3232 const struct dst_entry *dst = __sk_dst_get(sk); 3233 struct tcp_sock *tp = tcp_sk(sk); 3234 __u8 rcv_wscale; 3235 3236 /* We'll fix this up when we get a response from the other end. 3237 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3238 */ 3239 tp->tcp_header_len = sizeof(struct tcphdr) + 3240 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 3241 3242 #ifdef CONFIG_TCP_MD5SIG 3243 if (tp->af_specific->md5_lookup(sk, sk)) 3244 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3245 #endif 3246 3247 /* If user gave his TCP_MAXSEG, record it to clamp */ 3248 if (tp->rx_opt.user_mss) 3249 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3250 tp->max_window = 0; 3251 tcp_mtup_init(sk); 3252 tcp_sync_mss(sk, dst_mtu(dst)); 3253 3254 tcp_ca_dst_init(sk, dst); 3255 3256 if (!tp->window_clamp) 3257 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3258 tp->advmss = dst_metric_advmss(dst); 3259 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 3260 tp->advmss = tp->rx_opt.user_mss; 3261 3262 tcp_initialize_rcv_mss(sk); 3263 3264 /* limit the window selection if the user enforce a smaller rx buffer */ 3265 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3266 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3267 tp->window_clamp = tcp_full_space(sk); 3268 3269 tcp_select_initial_window(tcp_full_space(sk), 3270 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3271 &tp->rcv_wnd, 3272 &tp->window_clamp, 3273 sysctl_tcp_window_scaling, 3274 &rcv_wscale, 3275 dst_metric(dst, RTAX_INITRWND)); 3276 3277 tp->rx_opt.rcv_wscale = rcv_wscale; 3278 tp->rcv_ssthresh = tp->rcv_wnd; 3279 3280 sk->sk_err = 0; 3281 sock_reset_flag(sk, SOCK_DONE); 3282 tp->snd_wnd = 0; 3283 tcp_init_wl(tp, 0); 3284 tp->snd_una = tp->write_seq; 3285 tp->snd_sml = tp->write_seq; 3286 tp->snd_up = tp->write_seq; 3287 tp->snd_nxt = tp->write_seq; 3288 3289 if (likely(!tp->repair)) 3290 tp->rcv_nxt = 0; 3291 else 3292 tp->rcv_tstamp = tcp_time_stamp; 3293 tp->rcv_wup = tp->rcv_nxt; 3294 tp->copied_seq = tp->rcv_nxt; 3295 3296 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3297 inet_csk(sk)->icsk_retransmits = 0; 3298 tcp_clear_retrans(tp); 3299 } 3300 3301 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3302 { 3303 struct tcp_sock *tp = tcp_sk(sk); 3304 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3305 3306 tcb->end_seq += skb->len; 3307 __skb_header_release(skb); 3308 __tcp_add_write_queue_tail(sk, skb); 3309 sk->sk_wmem_queued += skb->truesize; 3310 sk_mem_charge(sk, skb->truesize); 3311 tp->write_seq = tcb->end_seq; 3312 tp->packets_out += tcp_skb_pcount(skb); 3313 } 3314 3315 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3316 * queue a data-only packet after the regular SYN, such that regular SYNs 3317 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3318 * only the SYN sequence, the data are retransmitted in the first ACK. 3319 * If cookie is not cached or other error occurs, falls back to send a 3320 * regular SYN with Fast Open cookie request option. 3321 */ 3322 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3323 { 3324 struct tcp_sock *tp = tcp_sk(sk); 3325 struct tcp_fastopen_request *fo = tp->fastopen_req; 3326 int syn_loss = 0, space, err = 0; 3327 unsigned long last_syn_loss = 0; 3328 struct sk_buff *syn_data; 3329 3330 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3331 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 3332 &syn_loss, &last_syn_loss); 3333 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 3334 if (syn_loss > 1 && 3335 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 3336 fo->cookie.len = -1; 3337 goto fallback; 3338 } 3339 3340 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 3341 fo->cookie.len = -1; 3342 else if (fo->cookie.len <= 0) 3343 goto fallback; 3344 3345 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3346 * user-MSS. Reserve maximum option space for middleboxes that add 3347 * private TCP options. The cost is reduced data space in SYN :( 3348 */ 3349 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 3350 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3351 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3352 MAX_TCP_OPTION_SPACE; 3353 3354 space = min_t(size_t, space, fo->size); 3355 3356 /* limit to order-0 allocations */ 3357 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3358 3359 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3360 if (!syn_data) 3361 goto fallback; 3362 syn_data->ip_summed = CHECKSUM_PARTIAL; 3363 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3364 if (space) { 3365 int copied = copy_from_iter(skb_put(syn_data, space), space, 3366 &fo->data->msg_iter); 3367 if (unlikely(!copied)) { 3368 kfree_skb(syn_data); 3369 goto fallback; 3370 } 3371 if (copied != space) { 3372 skb_trim(syn_data, copied); 3373 space = copied; 3374 } 3375 } 3376 /* No more data pending in inet_wait_for_connect() */ 3377 if (space == fo->size) 3378 fo->data = NULL; 3379 fo->copied = space; 3380 3381 tcp_connect_queue_skb(sk, syn_data); 3382 if (syn_data->len) 3383 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3384 3385 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3386 3387 syn->skb_mstamp = syn_data->skb_mstamp; 3388 3389 /* Now full SYN+DATA was cloned and sent (or not), 3390 * remove the SYN from the original skb (syn_data) 3391 * we keep in write queue in case of a retransmit, as we 3392 * also have the SYN packet (with no data) in the same queue. 3393 */ 3394 TCP_SKB_CB(syn_data)->seq++; 3395 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3396 if (!err) { 3397 tp->syn_data = (fo->copied > 0); 3398 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3399 goto done; 3400 } 3401 3402 fallback: 3403 /* Send a regular SYN with Fast Open cookie request option */ 3404 if (fo->cookie.len > 0) 3405 fo->cookie.len = 0; 3406 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3407 if (err) 3408 tp->syn_fastopen = 0; 3409 done: 3410 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3411 return err; 3412 } 3413 3414 /* Build a SYN and send it off. */ 3415 int tcp_connect(struct sock *sk) 3416 { 3417 struct tcp_sock *tp = tcp_sk(sk); 3418 struct sk_buff *buff; 3419 int err; 3420 3421 tcp_connect_init(sk); 3422 3423 if (unlikely(tp->repair)) { 3424 tcp_finish_connect(sk, NULL); 3425 return 0; 3426 } 3427 3428 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3429 if (unlikely(!buff)) 3430 return -ENOBUFS; 3431 3432 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3433 tp->retrans_stamp = tcp_time_stamp; 3434 tcp_connect_queue_skb(sk, buff); 3435 tcp_ecn_send_syn(sk, buff); 3436 3437 /* Send off SYN; include data in Fast Open. */ 3438 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3439 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3440 if (err == -ECONNREFUSED) 3441 return err; 3442 3443 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3444 * in order to make this packet get counted in tcpOutSegs. 3445 */ 3446 tp->snd_nxt = tp->write_seq; 3447 tp->pushed_seq = tp->write_seq; 3448 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3449 3450 /* Timer for repeating the SYN until an answer. */ 3451 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3452 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3453 return 0; 3454 } 3455 EXPORT_SYMBOL(tcp_connect); 3456 3457 /* Send out a delayed ack, the caller does the policy checking 3458 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3459 * for details. 3460 */ 3461 void tcp_send_delayed_ack(struct sock *sk) 3462 { 3463 struct inet_connection_sock *icsk = inet_csk(sk); 3464 int ato = icsk->icsk_ack.ato; 3465 unsigned long timeout; 3466 3467 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3468 3469 if (ato > TCP_DELACK_MIN) { 3470 const struct tcp_sock *tp = tcp_sk(sk); 3471 int max_ato = HZ / 2; 3472 3473 if (icsk->icsk_ack.pingpong || 3474 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3475 max_ato = TCP_DELACK_MAX; 3476 3477 /* Slow path, intersegment interval is "high". */ 3478 3479 /* If some rtt estimate is known, use it to bound delayed ack. 3480 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3481 * directly. 3482 */ 3483 if (tp->srtt_us) { 3484 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3485 TCP_DELACK_MIN); 3486 3487 if (rtt < max_ato) 3488 max_ato = rtt; 3489 } 3490 3491 ato = min(ato, max_ato); 3492 } 3493 3494 /* Stay within the limit we were given */ 3495 timeout = jiffies + ato; 3496 3497 /* Use new timeout only if there wasn't a older one earlier. */ 3498 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3499 /* If delack timer was blocked or is about to expire, 3500 * send ACK now. 3501 */ 3502 if (icsk->icsk_ack.blocked || 3503 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3504 tcp_send_ack(sk); 3505 return; 3506 } 3507 3508 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3509 timeout = icsk->icsk_ack.timeout; 3510 } 3511 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3512 icsk->icsk_ack.timeout = timeout; 3513 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3514 } 3515 3516 /* This routine sends an ack and also updates the window. */ 3517 void tcp_send_ack(struct sock *sk) 3518 { 3519 struct sk_buff *buff; 3520 3521 /* If we have been reset, we may not send again. */ 3522 if (sk->sk_state == TCP_CLOSE) 3523 return; 3524 3525 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3526 3527 /* We are not putting this on the write queue, so 3528 * tcp_transmit_skb() will set the ownership to this 3529 * sock. 3530 */ 3531 buff = alloc_skb(MAX_TCP_HEADER, 3532 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3533 if (unlikely(!buff)) { 3534 inet_csk_schedule_ack(sk); 3535 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3536 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3537 TCP_DELACK_MAX, TCP_RTO_MAX); 3538 return; 3539 } 3540 3541 /* Reserve space for headers and prepare control bits. */ 3542 skb_reserve(buff, MAX_TCP_HEADER); 3543 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3544 3545 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3546 * too much. 3547 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3548 */ 3549 skb_set_tcp_pure_ack(buff); 3550 3551 /* Send it off, this clears delayed acks for us. */ 3552 skb_mstamp_get(&buff->skb_mstamp); 3553 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0); 3554 } 3555 EXPORT_SYMBOL_GPL(tcp_send_ack); 3556 3557 /* This routine sends a packet with an out of date sequence 3558 * number. It assumes the other end will try to ack it. 3559 * 3560 * Question: what should we make while urgent mode? 3561 * 4.4BSD forces sending single byte of data. We cannot send 3562 * out of window data, because we have SND.NXT==SND.MAX... 3563 * 3564 * Current solution: to send TWO zero-length segments in urgent mode: 3565 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3566 * out-of-date with SND.UNA-1 to probe window. 3567 */ 3568 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3569 { 3570 struct tcp_sock *tp = tcp_sk(sk); 3571 struct sk_buff *skb; 3572 3573 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3574 skb = alloc_skb(MAX_TCP_HEADER, 3575 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3576 if (!skb) 3577 return -1; 3578 3579 /* Reserve space for headers and set control bits. */ 3580 skb_reserve(skb, MAX_TCP_HEADER); 3581 /* Use a previous sequence. This should cause the other 3582 * end to send an ack. Don't queue or clone SKB, just 3583 * send it. 3584 */ 3585 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3586 skb_mstamp_get(&skb->skb_mstamp); 3587 NET_INC_STATS(sock_net(sk), mib); 3588 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3589 } 3590 3591 void tcp_send_window_probe(struct sock *sk) 3592 { 3593 if (sk->sk_state == TCP_ESTABLISHED) { 3594 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3595 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3596 } 3597 } 3598 3599 /* Initiate keepalive or window probe from timer. */ 3600 int tcp_write_wakeup(struct sock *sk, int mib) 3601 { 3602 struct tcp_sock *tp = tcp_sk(sk); 3603 struct sk_buff *skb; 3604 3605 if (sk->sk_state == TCP_CLOSE) 3606 return -1; 3607 3608 skb = tcp_send_head(sk); 3609 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3610 int err; 3611 unsigned int mss = tcp_current_mss(sk); 3612 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3613 3614 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3615 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3616 3617 /* We are probing the opening of a window 3618 * but the window size is != 0 3619 * must have been a result SWS avoidance ( sender ) 3620 */ 3621 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3622 skb->len > mss) { 3623 seg_size = min(seg_size, mss); 3624 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3625 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3626 return -1; 3627 } else if (!tcp_skb_pcount(skb)) 3628 tcp_set_skb_tso_segs(skb, mss); 3629 3630 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3631 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3632 if (!err) 3633 tcp_event_new_data_sent(sk, skb); 3634 return err; 3635 } else { 3636 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3637 tcp_xmit_probe_skb(sk, 1, mib); 3638 return tcp_xmit_probe_skb(sk, 0, mib); 3639 } 3640 } 3641 3642 /* A window probe timeout has occurred. If window is not closed send 3643 * a partial packet else a zero probe. 3644 */ 3645 void tcp_send_probe0(struct sock *sk) 3646 { 3647 struct inet_connection_sock *icsk = inet_csk(sk); 3648 struct tcp_sock *tp = tcp_sk(sk); 3649 struct net *net = sock_net(sk); 3650 unsigned long probe_max; 3651 int err; 3652 3653 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3654 3655 if (tp->packets_out || !tcp_send_head(sk)) { 3656 /* Cancel probe timer, if it is not required. */ 3657 icsk->icsk_probes_out = 0; 3658 icsk->icsk_backoff = 0; 3659 return; 3660 } 3661 3662 if (err <= 0) { 3663 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3664 icsk->icsk_backoff++; 3665 icsk->icsk_probes_out++; 3666 probe_max = TCP_RTO_MAX; 3667 } else { 3668 /* If packet was not sent due to local congestion, 3669 * do not backoff and do not remember icsk_probes_out. 3670 * Let local senders to fight for local resources. 3671 * 3672 * Use accumulated backoff yet. 3673 */ 3674 if (!icsk->icsk_probes_out) 3675 icsk->icsk_probes_out = 1; 3676 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3677 } 3678 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3679 tcp_probe0_when(sk, probe_max), 3680 TCP_RTO_MAX); 3681 } 3682 3683 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3684 { 3685 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3686 struct flowi fl; 3687 int res; 3688 3689 tcp_rsk(req)->txhash = net_tx_rndhash(); 3690 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3691 if (!res) { 3692 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3693 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3694 if (unlikely(tcp_passive_fastopen(sk))) 3695 tcp_sk(sk)->total_retrans++; 3696 } 3697 return res; 3698 } 3699 EXPORT_SYMBOL(tcp_rtx_synack); 3700