1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 } 86 87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 88 * window scaling factor due to loss of precision. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 99 (tp->rx_opt.wscale_ok && 100 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 101 return tp->snd_nxt; 102 else 103 return tcp_wnd_end(tp); 104 } 105 106 /* Calculate mss to advertise in SYN segment. 107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 108 * 109 * 1. It is independent of path mtu. 110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 112 * attached devices, because some buggy hosts are confused by 113 * large MSS. 114 * 4. We do not make 3, we advertise MSS, calculated from first 115 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 116 * This may be overridden via information stored in routing table. 117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 118 * probably even Jumbo". 119 */ 120 static __u16 tcp_advertise_mss(struct sock *sk) 121 { 122 struct tcp_sock *tp = tcp_sk(sk); 123 const struct dst_entry *dst = __sk_dst_get(sk); 124 int mss = tp->advmss; 125 126 if (dst) { 127 unsigned int metric = dst_metric_advmss(dst); 128 129 if (metric < mss) { 130 mss = metric; 131 tp->advmss = mss; 132 } 133 } 134 135 return (__u16)mss; 136 } 137 138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 139 * This is the first part of cwnd validation mechanism. 140 */ 141 void tcp_cwnd_restart(struct sock *sk, s32 delta) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 145 u32 cwnd = tp->snd_cwnd; 146 147 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 148 149 tp->snd_ssthresh = tcp_current_ssthresh(sk); 150 restart_cwnd = min(restart_cwnd, cwnd); 151 152 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 153 cwnd >>= 1; 154 tp->snd_cwnd = max(cwnd, restart_cwnd); 155 tp->snd_cwnd_stamp = tcp_jiffies32; 156 tp->snd_cwnd_used = 0; 157 } 158 159 /* Congestion state accounting after a packet has been sent. */ 160 static void tcp_event_data_sent(struct tcp_sock *tp, 161 struct sock *sk) 162 { 163 struct inet_connection_sock *icsk = inet_csk(sk); 164 const u32 now = tcp_jiffies32; 165 166 if (tcp_packets_in_flight(tp) == 0) 167 tcp_ca_event(sk, CA_EVENT_TX_START); 168 169 /* If this is the first data packet sent in response to the 170 * previous received data, 171 * and it is a reply for ato after last received packet, 172 * increase pingpong count. 173 */ 174 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 175 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_inc_pingpong_cnt(sk); 177 178 tp->lsndtime = now; 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 183 u32 rcv_nxt) 184 { 185 struct tcp_sock *tp = tcp_sk(sk); 186 187 if (unlikely(tp->compressed_ack)) { 188 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 189 tp->compressed_ack); 190 tp->compressed_ack = 0; 191 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 192 __sock_put(sk); 193 } 194 195 if (unlikely(rcv_nxt != tp->rcv_nxt)) 196 return; /* Special ACK sent by DCTCP to reflect ECN */ 197 tcp_dec_quickack_mode(sk, pkts); 198 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 199 } 200 201 /* Determine a window scaling and initial window to offer. 202 * Based on the assumption that the given amount of space 203 * will be offered. Store the results in the tp structure. 204 * NOTE: for smooth operation initial space offering should 205 * be a multiple of mss if possible. We assume here that mss >= 1. 206 * This MUST be enforced by all callers. 207 */ 208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 209 __u32 *rcv_wnd, __u32 *window_clamp, 210 int wscale_ok, __u8 *rcv_wscale, 211 __u32 init_rcv_wnd) 212 { 213 unsigned int space = (__space < 0 ? 0 : __space); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (*window_clamp == 0) 217 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 218 space = min(*window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = rounddown(space, mss); 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = min_t(u32, space, U16_MAX); 236 237 if (init_rcv_wnd) 238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 239 240 *rcv_wscale = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window */ 243 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 244 space = max_t(u32, space, sysctl_rmem_max); 245 space = min_t(u32, space, *window_clamp); 246 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 247 0, TCP_MAX_WSCALE); 248 } 249 /* Set the clamp no higher than max representable value */ 250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 251 } 252 EXPORT_SYMBOL(tcp_select_initial_window); 253 254 /* Chose a new window to advertise, update state in tcp_sock for the 255 * socket, and return result with RFC1323 scaling applied. The return 256 * value can be stuffed directly into th->window for an outgoing 257 * frame. 258 */ 259 static u16 tcp_select_window(struct sock *sk) 260 { 261 struct tcp_sock *tp = tcp_sk(sk); 262 u32 old_win = tp->rcv_wnd; 263 u32 cur_win = tcp_receive_window(tp); 264 u32 new_win = __tcp_select_window(sk); 265 266 /* Never shrink the offered window */ 267 if (new_win < cur_win) { 268 /* Danger Will Robinson! 269 * Don't update rcv_wup/rcv_wnd here or else 270 * we will not be able to advertise a zero 271 * window in time. --DaveM 272 * 273 * Relax Will Robinson. 274 */ 275 if (new_win == 0) 276 NET_INC_STATS(sock_net(sk), 277 LINUX_MIB_TCPWANTZEROWINDOWADV); 278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 279 } 280 tp->rcv_wnd = new_win; 281 tp->rcv_wup = tp->rcv_nxt; 282 283 /* Make sure we do not exceed the maximum possible 284 * scaled window. 285 */ 286 if (!tp->rx_opt.rcv_wscale && 287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 288 new_win = min(new_win, MAX_TCP_WINDOW); 289 else 290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 291 292 /* RFC1323 scaling applied */ 293 new_win >>= tp->rx_opt.rcv_wscale; 294 295 /* If we advertise zero window, disable fast path. */ 296 if (new_win == 0) { 297 tp->pred_flags = 0; 298 if (old_win) 299 NET_INC_STATS(sock_net(sk), 300 LINUX_MIB_TCPTOZEROWINDOWADV); 301 } else if (old_win == 0) { 302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 303 } 304 305 return new_win; 306 } 307 308 /* Packet ECN state for a SYN-ACK */ 309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 314 if (!(tp->ecn_flags & TCP_ECN_OK)) 315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 316 else if (tcp_ca_needs_ecn(sk) || 317 tcp_bpf_ca_needs_ecn(sk)) 318 INET_ECN_xmit(sk); 319 } 320 321 /* Packet ECN state for a SYN. */ 322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 323 { 324 struct tcp_sock *tp = tcp_sk(sk); 325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 328 329 if (!use_ecn) { 330 const struct dst_entry *dst = __sk_dst_get(sk); 331 332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 333 use_ecn = true; 334 } 335 336 tp->ecn_flags = 0; 337 338 if (use_ecn) { 339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 340 tp->ecn_flags = TCP_ECN_OK; 341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 342 INET_ECN_xmit(sk); 343 } 344 } 345 346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 347 { 348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 349 /* tp->ecn_flags are cleared at a later point in time when 350 * SYN ACK is ultimatively being received. 351 */ 352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 353 } 354 355 static void 356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 357 { 358 if (inet_rsk(req)->ecn_ok) 359 th->ece = 1; 360 } 361 362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 363 * be sent. 364 */ 365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 366 struct tcphdr *th, int tcp_header_len) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 370 if (tp->ecn_flags & TCP_ECN_OK) { 371 /* Not-retransmitted data segment: set ECT and inject CWR. */ 372 if (skb->len != tcp_header_len && 373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 374 INET_ECN_xmit(sk); 375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 377 th->cwr = 1; 378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 379 } 380 } else if (!tcp_ca_needs_ecn(sk)) { 381 /* ACK or retransmitted segment: clear ECT|CE */ 382 INET_ECN_dontxmit(sk); 383 } 384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 385 th->ece = 1; 386 } 387 } 388 389 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 390 * auto increment end seqno. 391 */ 392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 393 { 394 skb->ip_summed = CHECKSUM_PARTIAL; 395 396 TCP_SKB_CB(skb)->tcp_flags = flags; 397 TCP_SKB_CB(skb)->sacked = 0; 398 399 tcp_skb_pcount_set(skb, 1); 400 401 TCP_SKB_CB(skb)->seq = seq; 402 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 403 seq++; 404 TCP_SKB_CB(skb)->end_seq = seq; 405 } 406 407 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 408 { 409 return tp->snd_una != tp->snd_up; 410 } 411 412 #define OPTION_SACK_ADVERTISE (1 << 0) 413 #define OPTION_TS (1 << 1) 414 #define OPTION_MD5 (1 << 2) 415 #define OPTION_WSCALE (1 << 3) 416 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 417 #define OPTION_SMC (1 << 9) 418 #define OPTION_MPTCP (1 << 10) 419 420 static void smc_options_write(__be32 *ptr, u16 *options) 421 { 422 #if IS_ENABLED(CONFIG_SMC) 423 if (static_branch_unlikely(&tcp_have_smc)) { 424 if (unlikely(OPTION_SMC & *options)) { 425 *ptr++ = htonl((TCPOPT_NOP << 24) | 426 (TCPOPT_NOP << 16) | 427 (TCPOPT_EXP << 8) | 428 (TCPOLEN_EXP_SMC_BASE)); 429 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 430 } 431 } 432 #endif 433 } 434 435 struct tcp_out_options { 436 u16 options; /* bit field of OPTION_* */ 437 u16 mss; /* 0 to disable */ 438 u8 ws; /* window scale, 0 to disable */ 439 u8 num_sack_blocks; /* number of SACK blocks to include */ 440 u8 hash_size; /* bytes in hash_location */ 441 __u8 *hash_location; /* temporary pointer, overloaded */ 442 __u32 tsval, tsecr; /* need to include OPTION_TS */ 443 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 444 struct mptcp_out_options mptcp; 445 }; 446 447 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts) 448 { 449 #if IS_ENABLED(CONFIG_MPTCP) 450 if (unlikely(OPTION_MPTCP & opts->options)) 451 mptcp_write_options(ptr, &opts->mptcp); 452 #endif 453 } 454 455 /* Write previously computed TCP options to the packet. 456 * 457 * Beware: Something in the Internet is very sensitive to the ordering of 458 * TCP options, we learned this through the hard way, so be careful here. 459 * Luckily we can at least blame others for their non-compliance but from 460 * inter-operability perspective it seems that we're somewhat stuck with 461 * the ordering which we have been using if we want to keep working with 462 * those broken things (not that it currently hurts anybody as there isn't 463 * particular reason why the ordering would need to be changed). 464 * 465 * At least SACK_PERM as the first option is known to lead to a disaster 466 * (but it may well be that other scenarios fail similarly). 467 */ 468 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 469 struct tcp_out_options *opts) 470 { 471 u16 options = opts->options; /* mungable copy */ 472 473 if (unlikely(OPTION_MD5 & options)) { 474 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 475 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 476 /* overload cookie hash location */ 477 opts->hash_location = (__u8 *)ptr; 478 ptr += 4; 479 } 480 481 if (unlikely(opts->mss)) { 482 *ptr++ = htonl((TCPOPT_MSS << 24) | 483 (TCPOLEN_MSS << 16) | 484 opts->mss); 485 } 486 487 if (likely(OPTION_TS & options)) { 488 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 489 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 490 (TCPOLEN_SACK_PERM << 16) | 491 (TCPOPT_TIMESTAMP << 8) | 492 TCPOLEN_TIMESTAMP); 493 options &= ~OPTION_SACK_ADVERTISE; 494 } else { 495 *ptr++ = htonl((TCPOPT_NOP << 24) | 496 (TCPOPT_NOP << 16) | 497 (TCPOPT_TIMESTAMP << 8) | 498 TCPOLEN_TIMESTAMP); 499 } 500 *ptr++ = htonl(opts->tsval); 501 *ptr++ = htonl(opts->tsecr); 502 } 503 504 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 505 *ptr++ = htonl((TCPOPT_NOP << 24) | 506 (TCPOPT_NOP << 16) | 507 (TCPOPT_SACK_PERM << 8) | 508 TCPOLEN_SACK_PERM); 509 } 510 511 if (unlikely(OPTION_WSCALE & options)) { 512 *ptr++ = htonl((TCPOPT_NOP << 24) | 513 (TCPOPT_WINDOW << 16) | 514 (TCPOLEN_WINDOW << 8) | 515 opts->ws); 516 } 517 518 if (unlikely(opts->num_sack_blocks)) { 519 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 520 tp->duplicate_sack : tp->selective_acks; 521 int this_sack; 522 523 *ptr++ = htonl((TCPOPT_NOP << 24) | 524 (TCPOPT_NOP << 16) | 525 (TCPOPT_SACK << 8) | 526 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 527 TCPOLEN_SACK_PERBLOCK))); 528 529 for (this_sack = 0; this_sack < opts->num_sack_blocks; 530 ++this_sack) { 531 *ptr++ = htonl(sp[this_sack].start_seq); 532 *ptr++ = htonl(sp[this_sack].end_seq); 533 } 534 535 tp->rx_opt.dsack = 0; 536 } 537 538 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 539 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 540 u8 *p = (u8 *)ptr; 541 u32 len; /* Fast Open option length */ 542 543 if (foc->exp) { 544 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 545 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 546 TCPOPT_FASTOPEN_MAGIC); 547 p += TCPOLEN_EXP_FASTOPEN_BASE; 548 } else { 549 len = TCPOLEN_FASTOPEN_BASE + foc->len; 550 *p++ = TCPOPT_FASTOPEN; 551 *p++ = len; 552 } 553 554 memcpy(p, foc->val, foc->len); 555 if ((len & 3) == 2) { 556 p[foc->len] = TCPOPT_NOP; 557 p[foc->len + 1] = TCPOPT_NOP; 558 } 559 ptr += (len + 3) >> 2; 560 } 561 562 smc_options_write(ptr, &options); 563 564 mptcp_options_write(ptr, opts); 565 } 566 567 static void smc_set_option(const struct tcp_sock *tp, 568 struct tcp_out_options *opts, 569 unsigned int *remaining) 570 { 571 #if IS_ENABLED(CONFIG_SMC) 572 if (static_branch_unlikely(&tcp_have_smc)) { 573 if (tp->syn_smc) { 574 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 575 opts->options |= OPTION_SMC; 576 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 577 } 578 } 579 } 580 #endif 581 } 582 583 static void smc_set_option_cond(const struct tcp_sock *tp, 584 const struct inet_request_sock *ireq, 585 struct tcp_out_options *opts, 586 unsigned int *remaining) 587 { 588 #if IS_ENABLED(CONFIG_SMC) 589 if (static_branch_unlikely(&tcp_have_smc)) { 590 if (tp->syn_smc && ireq->smc_ok) { 591 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 592 opts->options |= OPTION_SMC; 593 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 594 } 595 } 596 } 597 #endif 598 } 599 600 static void mptcp_set_option_cond(const struct request_sock *req, 601 struct tcp_out_options *opts, 602 unsigned int *remaining) 603 { 604 if (rsk_is_mptcp(req)) { 605 unsigned int size; 606 607 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 608 if (*remaining >= size) { 609 opts->options |= OPTION_MPTCP; 610 *remaining -= size; 611 } 612 } 613 } 614 } 615 616 /* Compute TCP options for SYN packets. This is not the final 617 * network wire format yet. 618 */ 619 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 620 struct tcp_out_options *opts, 621 struct tcp_md5sig_key **md5) 622 { 623 struct tcp_sock *tp = tcp_sk(sk); 624 unsigned int remaining = MAX_TCP_OPTION_SPACE; 625 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 626 627 *md5 = NULL; 628 #ifdef CONFIG_TCP_MD5SIG 629 if (static_branch_unlikely(&tcp_md5_needed) && 630 rcu_access_pointer(tp->md5sig_info)) { 631 *md5 = tp->af_specific->md5_lookup(sk, sk); 632 if (*md5) { 633 opts->options |= OPTION_MD5; 634 remaining -= TCPOLEN_MD5SIG_ALIGNED; 635 } 636 } 637 #endif 638 639 /* We always get an MSS option. The option bytes which will be seen in 640 * normal data packets should timestamps be used, must be in the MSS 641 * advertised. But we subtract them from tp->mss_cache so that 642 * calculations in tcp_sendmsg are simpler etc. So account for this 643 * fact here if necessary. If we don't do this correctly, as a 644 * receiver we won't recognize data packets as being full sized when we 645 * should, and thus we won't abide by the delayed ACK rules correctly. 646 * SACKs don't matter, we never delay an ACK when we have any of those 647 * going out. */ 648 opts->mss = tcp_advertise_mss(sk); 649 remaining -= TCPOLEN_MSS_ALIGNED; 650 651 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 652 opts->options |= OPTION_TS; 653 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 654 opts->tsecr = tp->rx_opt.ts_recent; 655 remaining -= TCPOLEN_TSTAMP_ALIGNED; 656 } 657 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 658 opts->ws = tp->rx_opt.rcv_wscale; 659 opts->options |= OPTION_WSCALE; 660 remaining -= TCPOLEN_WSCALE_ALIGNED; 661 } 662 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 663 opts->options |= OPTION_SACK_ADVERTISE; 664 if (unlikely(!(OPTION_TS & opts->options))) 665 remaining -= TCPOLEN_SACKPERM_ALIGNED; 666 } 667 668 if (fastopen && fastopen->cookie.len >= 0) { 669 u32 need = fastopen->cookie.len; 670 671 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 672 TCPOLEN_FASTOPEN_BASE; 673 need = (need + 3) & ~3U; /* Align to 32 bits */ 674 if (remaining >= need) { 675 opts->options |= OPTION_FAST_OPEN_COOKIE; 676 opts->fastopen_cookie = &fastopen->cookie; 677 remaining -= need; 678 tp->syn_fastopen = 1; 679 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 680 } 681 } 682 683 smc_set_option(tp, opts, &remaining); 684 685 if (sk_is_mptcp(sk)) { 686 unsigned int size; 687 688 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 689 opts->options |= OPTION_MPTCP; 690 remaining -= size; 691 } 692 } 693 694 return MAX_TCP_OPTION_SPACE - remaining; 695 } 696 697 /* Set up TCP options for SYN-ACKs. */ 698 static unsigned int tcp_synack_options(const struct sock *sk, 699 struct request_sock *req, 700 unsigned int mss, struct sk_buff *skb, 701 struct tcp_out_options *opts, 702 const struct tcp_md5sig_key *md5, 703 struct tcp_fastopen_cookie *foc) 704 { 705 struct inet_request_sock *ireq = inet_rsk(req); 706 unsigned int remaining = MAX_TCP_OPTION_SPACE; 707 708 #ifdef CONFIG_TCP_MD5SIG 709 if (md5) { 710 opts->options |= OPTION_MD5; 711 remaining -= TCPOLEN_MD5SIG_ALIGNED; 712 713 /* We can't fit any SACK blocks in a packet with MD5 + TS 714 * options. There was discussion about disabling SACK 715 * rather than TS in order to fit in better with old, 716 * buggy kernels, but that was deemed to be unnecessary. 717 */ 718 ireq->tstamp_ok &= !ireq->sack_ok; 719 } 720 #endif 721 722 /* We always send an MSS option. */ 723 opts->mss = mss; 724 remaining -= TCPOLEN_MSS_ALIGNED; 725 726 if (likely(ireq->wscale_ok)) { 727 opts->ws = ireq->rcv_wscale; 728 opts->options |= OPTION_WSCALE; 729 remaining -= TCPOLEN_WSCALE_ALIGNED; 730 } 731 if (likely(ireq->tstamp_ok)) { 732 opts->options |= OPTION_TS; 733 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 734 opts->tsecr = req->ts_recent; 735 remaining -= TCPOLEN_TSTAMP_ALIGNED; 736 } 737 if (likely(ireq->sack_ok)) { 738 opts->options |= OPTION_SACK_ADVERTISE; 739 if (unlikely(!ireq->tstamp_ok)) 740 remaining -= TCPOLEN_SACKPERM_ALIGNED; 741 } 742 if (foc != NULL && foc->len >= 0) { 743 u32 need = foc->len; 744 745 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 746 TCPOLEN_FASTOPEN_BASE; 747 need = (need + 3) & ~3U; /* Align to 32 bits */ 748 if (remaining >= need) { 749 opts->options |= OPTION_FAST_OPEN_COOKIE; 750 opts->fastopen_cookie = foc; 751 remaining -= need; 752 } 753 } 754 755 mptcp_set_option_cond(req, opts, &remaining); 756 757 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 758 759 return MAX_TCP_OPTION_SPACE - remaining; 760 } 761 762 /* Compute TCP options for ESTABLISHED sockets. This is not the 763 * final wire format yet. 764 */ 765 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 766 struct tcp_out_options *opts, 767 struct tcp_md5sig_key **md5) 768 { 769 struct tcp_sock *tp = tcp_sk(sk); 770 unsigned int size = 0; 771 unsigned int eff_sacks; 772 773 opts->options = 0; 774 775 *md5 = NULL; 776 #ifdef CONFIG_TCP_MD5SIG 777 if (static_branch_unlikely(&tcp_md5_needed) && 778 rcu_access_pointer(tp->md5sig_info)) { 779 *md5 = tp->af_specific->md5_lookup(sk, sk); 780 if (*md5) { 781 opts->options |= OPTION_MD5; 782 size += TCPOLEN_MD5SIG_ALIGNED; 783 } 784 } 785 #endif 786 787 if (likely(tp->rx_opt.tstamp_ok)) { 788 opts->options |= OPTION_TS; 789 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 790 opts->tsecr = tp->rx_opt.ts_recent; 791 size += TCPOLEN_TSTAMP_ALIGNED; 792 } 793 794 /* MPTCP options have precedence over SACK for the limited TCP 795 * option space because a MPTCP connection would be forced to 796 * fall back to regular TCP if a required multipath option is 797 * missing. SACK still gets a chance to use whatever space is 798 * left. 799 */ 800 if (sk_is_mptcp(sk)) { 801 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 802 unsigned int opt_size = 0; 803 804 if (mptcp_established_options(sk, skb, &opt_size, remaining, 805 &opts->mptcp)) { 806 opts->options |= OPTION_MPTCP; 807 size += opt_size; 808 } 809 } 810 811 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 812 if (unlikely(eff_sacks)) { 813 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 814 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 815 TCPOLEN_SACK_PERBLOCK)) 816 return size; 817 818 opts->num_sack_blocks = 819 min_t(unsigned int, eff_sacks, 820 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 821 TCPOLEN_SACK_PERBLOCK); 822 823 size += TCPOLEN_SACK_BASE_ALIGNED + 824 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 825 } 826 827 return size; 828 } 829 830 831 /* TCP SMALL QUEUES (TSQ) 832 * 833 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 834 * to reduce RTT and bufferbloat. 835 * We do this using a special skb destructor (tcp_wfree). 836 * 837 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 838 * needs to be reallocated in a driver. 839 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 840 * 841 * Since transmit from skb destructor is forbidden, we use a tasklet 842 * to process all sockets that eventually need to send more skbs. 843 * We use one tasklet per cpu, with its own queue of sockets. 844 */ 845 struct tsq_tasklet { 846 struct tasklet_struct tasklet; 847 struct list_head head; /* queue of tcp sockets */ 848 }; 849 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 850 851 static void tcp_tsq_write(struct sock *sk) 852 { 853 if ((1 << sk->sk_state) & 854 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 855 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 856 struct tcp_sock *tp = tcp_sk(sk); 857 858 if (tp->lost_out > tp->retrans_out && 859 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 860 tcp_mstamp_refresh(tp); 861 tcp_xmit_retransmit_queue(sk); 862 } 863 864 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 865 0, GFP_ATOMIC); 866 } 867 } 868 869 static void tcp_tsq_handler(struct sock *sk) 870 { 871 bh_lock_sock(sk); 872 if (!sock_owned_by_user(sk)) 873 tcp_tsq_write(sk); 874 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 875 sock_hold(sk); 876 bh_unlock_sock(sk); 877 } 878 /* 879 * One tasklet per cpu tries to send more skbs. 880 * We run in tasklet context but need to disable irqs when 881 * transferring tsq->head because tcp_wfree() might 882 * interrupt us (non NAPI drivers) 883 */ 884 static void tcp_tasklet_func(unsigned long data) 885 { 886 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 887 LIST_HEAD(list); 888 unsigned long flags; 889 struct list_head *q, *n; 890 struct tcp_sock *tp; 891 struct sock *sk; 892 893 local_irq_save(flags); 894 list_splice_init(&tsq->head, &list); 895 local_irq_restore(flags); 896 897 list_for_each_safe(q, n, &list) { 898 tp = list_entry(q, struct tcp_sock, tsq_node); 899 list_del(&tp->tsq_node); 900 901 sk = (struct sock *)tp; 902 smp_mb__before_atomic(); 903 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 904 905 tcp_tsq_handler(sk); 906 sk_free(sk); 907 } 908 } 909 910 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 911 TCPF_WRITE_TIMER_DEFERRED | \ 912 TCPF_DELACK_TIMER_DEFERRED | \ 913 TCPF_MTU_REDUCED_DEFERRED) 914 /** 915 * tcp_release_cb - tcp release_sock() callback 916 * @sk: socket 917 * 918 * called from release_sock() to perform protocol dependent 919 * actions before socket release. 920 */ 921 void tcp_release_cb(struct sock *sk) 922 { 923 unsigned long flags, nflags; 924 925 /* perform an atomic operation only if at least one flag is set */ 926 do { 927 flags = sk->sk_tsq_flags; 928 if (!(flags & TCP_DEFERRED_ALL)) 929 return; 930 nflags = flags & ~TCP_DEFERRED_ALL; 931 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 932 933 if (flags & TCPF_TSQ_DEFERRED) { 934 tcp_tsq_write(sk); 935 __sock_put(sk); 936 } 937 /* Here begins the tricky part : 938 * We are called from release_sock() with : 939 * 1) BH disabled 940 * 2) sk_lock.slock spinlock held 941 * 3) socket owned by us (sk->sk_lock.owned == 1) 942 * 943 * But following code is meant to be called from BH handlers, 944 * so we should keep BH disabled, but early release socket ownership 945 */ 946 sock_release_ownership(sk); 947 948 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 949 tcp_write_timer_handler(sk); 950 __sock_put(sk); 951 } 952 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 953 tcp_delack_timer_handler(sk); 954 __sock_put(sk); 955 } 956 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 957 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 958 __sock_put(sk); 959 } 960 } 961 EXPORT_SYMBOL(tcp_release_cb); 962 963 void __init tcp_tasklet_init(void) 964 { 965 int i; 966 967 for_each_possible_cpu(i) { 968 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 969 970 INIT_LIST_HEAD(&tsq->head); 971 tasklet_init(&tsq->tasklet, 972 tcp_tasklet_func, 973 (unsigned long)tsq); 974 } 975 } 976 977 /* 978 * Write buffer destructor automatically called from kfree_skb. 979 * We can't xmit new skbs from this context, as we might already 980 * hold qdisc lock. 981 */ 982 void tcp_wfree(struct sk_buff *skb) 983 { 984 struct sock *sk = skb->sk; 985 struct tcp_sock *tp = tcp_sk(sk); 986 unsigned long flags, nval, oval; 987 988 /* Keep one reference on sk_wmem_alloc. 989 * Will be released by sk_free() from here or tcp_tasklet_func() 990 */ 991 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 992 993 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 994 * Wait until our queues (qdisc + devices) are drained. 995 * This gives : 996 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 997 * - chance for incoming ACK (processed by another cpu maybe) 998 * to migrate this flow (skb->ooo_okay will be eventually set) 999 */ 1000 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1001 goto out; 1002 1003 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 1004 struct tsq_tasklet *tsq; 1005 bool empty; 1006 1007 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1008 goto out; 1009 1010 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1011 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 1012 if (nval != oval) 1013 continue; 1014 1015 /* queue this socket to tasklet queue */ 1016 local_irq_save(flags); 1017 tsq = this_cpu_ptr(&tsq_tasklet); 1018 empty = list_empty(&tsq->head); 1019 list_add(&tp->tsq_node, &tsq->head); 1020 if (empty) 1021 tasklet_schedule(&tsq->tasklet); 1022 local_irq_restore(flags); 1023 return; 1024 } 1025 out: 1026 sk_free(sk); 1027 } 1028 1029 /* Note: Called under soft irq. 1030 * We can call TCP stack right away, unless socket is owned by user. 1031 */ 1032 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1033 { 1034 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1035 struct sock *sk = (struct sock *)tp; 1036 1037 tcp_tsq_handler(sk); 1038 sock_put(sk); 1039 1040 return HRTIMER_NORESTART; 1041 } 1042 1043 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1044 u64 prior_wstamp) 1045 { 1046 struct tcp_sock *tp = tcp_sk(sk); 1047 1048 if (sk->sk_pacing_status != SK_PACING_NONE) { 1049 unsigned long rate = sk->sk_pacing_rate; 1050 1051 /* Original sch_fq does not pace first 10 MSS 1052 * Note that tp->data_segs_out overflows after 2^32 packets, 1053 * this is a minor annoyance. 1054 */ 1055 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1056 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1057 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1058 1059 /* take into account OS jitter */ 1060 len_ns -= min_t(u64, len_ns / 2, credit); 1061 tp->tcp_wstamp_ns += len_ns; 1062 } 1063 } 1064 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1065 } 1066 1067 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1068 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1069 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1070 1071 /* This routine actually transmits TCP packets queued in by 1072 * tcp_do_sendmsg(). This is used by both the initial 1073 * transmission and possible later retransmissions. 1074 * All SKB's seen here are completely headerless. It is our 1075 * job to build the TCP header, and pass the packet down to 1076 * IP so it can do the same plus pass the packet off to the 1077 * device. 1078 * 1079 * We are working here with either a clone of the original 1080 * SKB, or a fresh unique copy made by the retransmit engine. 1081 */ 1082 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1083 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1084 { 1085 const struct inet_connection_sock *icsk = inet_csk(sk); 1086 struct inet_sock *inet; 1087 struct tcp_sock *tp; 1088 struct tcp_skb_cb *tcb; 1089 struct tcp_out_options opts; 1090 unsigned int tcp_options_size, tcp_header_size; 1091 struct sk_buff *oskb = NULL; 1092 struct tcp_md5sig_key *md5; 1093 struct tcphdr *th; 1094 u64 prior_wstamp; 1095 int err; 1096 1097 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1098 tp = tcp_sk(sk); 1099 prior_wstamp = tp->tcp_wstamp_ns; 1100 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1101 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1102 if (clone_it) { 1103 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1104 - tp->snd_una; 1105 oskb = skb; 1106 1107 tcp_skb_tsorted_save(oskb) { 1108 if (unlikely(skb_cloned(oskb))) 1109 skb = pskb_copy(oskb, gfp_mask); 1110 else 1111 skb = skb_clone(oskb, gfp_mask); 1112 } tcp_skb_tsorted_restore(oskb); 1113 1114 if (unlikely(!skb)) 1115 return -ENOBUFS; 1116 /* retransmit skbs might have a non zero value in skb->dev 1117 * because skb->dev is aliased with skb->rbnode.rb_left 1118 */ 1119 skb->dev = NULL; 1120 } 1121 1122 inet = inet_sk(sk); 1123 tcb = TCP_SKB_CB(skb); 1124 memset(&opts, 0, sizeof(opts)); 1125 1126 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1127 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1128 } else { 1129 tcp_options_size = tcp_established_options(sk, skb, &opts, 1130 &md5); 1131 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1132 * at receiver : This slightly improve GRO performance. 1133 * Note that we do not force the PSH flag for non GSO packets, 1134 * because they might be sent under high congestion events, 1135 * and in this case it is better to delay the delivery of 1-MSS 1136 * packets and thus the corresponding ACK packet that would 1137 * release the following packet. 1138 */ 1139 if (tcp_skb_pcount(skb) > 1) 1140 tcb->tcp_flags |= TCPHDR_PSH; 1141 } 1142 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1143 1144 /* if no packet is in qdisc/device queue, then allow XPS to select 1145 * another queue. We can be called from tcp_tsq_handler() 1146 * which holds one reference to sk. 1147 * 1148 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1149 * One way to get this would be to set skb->truesize = 2 on them. 1150 */ 1151 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1152 1153 /* If we had to use memory reserve to allocate this skb, 1154 * this might cause drops if packet is looped back : 1155 * Other socket might not have SOCK_MEMALLOC. 1156 * Packets not looped back do not care about pfmemalloc. 1157 */ 1158 skb->pfmemalloc = 0; 1159 1160 skb_push(skb, tcp_header_size); 1161 skb_reset_transport_header(skb); 1162 1163 skb_orphan(skb); 1164 skb->sk = sk; 1165 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1166 skb_set_hash_from_sk(skb, sk); 1167 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1168 1169 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1170 1171 /* Build TCP header and checksum it. */ 1172 th = (struct tcphdr *)skb->data; 1173 th->source = inet->inet_sport; 1174 th->dest = inet->inet_dport; 1175 th->seq = htonl(tcb->seq); 1176 th->ack_seq = htonl(rcv_nxt); 1177 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1178 tcb->tcp_flags); 1179 1180 th->check = 0; 1181 th->urg_ptr = 0; 1182 1183 /* The urg_mode check is necessary during a below snd_una win probe */ 1184 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1185 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1186 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1187 th->urg = 1; 1188 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1189 th->urg_ptr = htons(0xFFFF); 1190 th->urg = 1; 1191 } 1192 } 1193 1194 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1195 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1196 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1197 th->window = htons(tcp_select_window(sk)); 1198 tcp_ecn_send(sk, skb, th, tcp_header_size); 1199 } else { 1200 /* RFC1323: The window in SYN & SYN/ACK segments 1201 * is never scaled. 1202 */ 1203 th->window = htons(min(tp->rcv_wnd, 65535U)); 1204 } 1205 #ifdef CONFIG_TCP_MD5SIG 1206 /* Calculate the MD5 hash, as we have all we need now */ 1207 if (md5) { 1208 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1209 tp->af_specific->calc_md5_hash(opts.hash_location, 1210 md5, sk, skb); 1211 } 1212 #endif 1213 1214 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1215 tcp_v6_send_check, tcp_v4_send_check, 1216 sk, skb); 1217 1218 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1219 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1220 1221 if (skb->len != tcp_header_size) { 1222 tcp_event_data_sent(tp, sk); 1223 tp->data_segs_out += tcp_skb_pcount(skb); 1224 tp->bytes_sent += skb->len - tcp_header_size; 1225 } 1226 1227 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1228 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1229 tcp_skb_pcount(skb)); 1230 1231 tp->segs_out += tcp_skb_pcount(skb); 1232 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1233 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1234 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1235 1236 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1237 1238 /* Cleanup our debris for IP stacks */ 1239 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1240 sizeof(struct inet6_skb_parm))); 1241 1242 tcp_add_tx_delay(skb, tp); 1243 1244 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1245 inet6_csk_xmit, ip_queue_xmit, 1246 sk, skb, &inet->cork.fl); 1247 1248 if (unlikely(err > 0)) { 1249 tcp_enter_cwr(sk); 1250 err = net_xmit_eval(err); 1251 } 1252 if (!err && oskb) { 1253 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1254 tcp_rate_skb_sent(sk, oskb); 1255 } 1256 return err; 1257 } 1258 1259 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1260 gfp_t gfp_mask) 1261 { 1262 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1263 tcp_sk(sk)->rcv_nxt); 1264 } 1265 1266 /* This routine just queues the buffer for sending. 1267 * 1268 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1269 * otherwise socket can stall. 1270 */ 1271 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1272 { 1273 struct tcp_sock *tp = tcp_sk(sk); 1274 1275 /* Advance write_seq and place onto the write_queue. */ 1276 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1277 __skb_header_release(skb); 1278 tcp_add_write_queue_tail(sk, skb); 1279 sk_wmem_queued_add(sk, skb->truesize); 1280 sk_mem_charge(sk, skb->truesize); 1281 } 1282 1283 /* Initialize TSO segments for a packet. */ 1284 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1285 { 1286 if (skb->len <= mss_now) { 1287 /* Avoid the costly divide in the normal 1288 * non-TSO case. 1289 */ 1290 tcp_skb_pcount_set(skb, 1); 1291 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1292 } else { 1293 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1294 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1295 } 1296 } 1297 1298 /* Pcount in the middle of the write queue got changed, we need to do various 1299 * tweaks to fix counters 1300 */ 1301 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1302 { 1303 struct tcp_sock *tp = tcp_sk(sk); 1304 1305 tp->packets_out -= decr; 1306 1307 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1308 tp->sacked_out -= decr; 1309 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1310 tp->retrans_out -= decr; 1311 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1312 tp->lost_out -= decr; 1313 1314 /* Reno case is special. Sigh... */ 1315 if (tcp_is_reno(tp) && decr > 0) 1316 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1317 1318 if (tp->lost_skb_hint && 1319 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1320 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1321 tp->lost_cnt_hint -= decr; 1322 1323 tcp_verify_left_out(tp); 1324 } 1325 1326 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1327 { 1328 return TCP_SKB_CB(skb)->txstamp_ack || 1329 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1330 } 1331 1332 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1333 { 1334 struct skb_shared_info *shinfo = skb_shinfo(skb); 1335 1336 if (unlikely(tcp_has_tx_tstamp(skb)) && 1337 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1338 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1339 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1340 1341 shinfo->tx_flags &= ~tsflags; 1342 shinfo2->tx_flags |= tsflags; 1343 swap(shinfo->tskey, shinfo2->tskey); 1344 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1345 TCP_SKB_CB(skb)->txstamp_ack = 0; 1346 } 1347 } 1348 1349 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1350 { 1351 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1352 TCP_SKB_CB(skb)->eor = 0; 1353 } 1354 1355 /* Insert buff after skb on the write or rtx queue of sk. */ 1356 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1357 struct sk_buff *buff, 1358 struct sock *sk, 1359 enum tcp_queue tcp_queue) 1360 { 1361 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1362 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1363 else 1364 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1365 } 1366 1367 /* Function to create two new TCP segments. Shrinks the given segment 1368 * to the specified size and appends a new segment with the rest of the 1369 * packet to the list. This won't be called frequently, I hope. 1370 * Remember, these are still headerless SKBs at this point. 1371 */ 1372 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1373 struct sk_buff *skb, u32 len, 1374 unsigned int mss_now, gfp_t gfp) 1375 { 1376 struct tcp_sock *tp = tcp_sk(sk); 1377 struct sk_buff *buff; 1378 int nsize, old_factor; 1379 long limit; 1380 int nlen; 1381 u8 flags; 1382 1383 if (WARN_ON(len > skb->len)) 1384 return -EINVAL; 1385 1386 nsize = skb_headlen(skb) - len; 1387 if (nsize < 0) 1388 nsize = 0; 1389 1390 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1391 * We need some allowance to not penalize applications setting small 1392 * SO_SNDBUF values. 1393 * Also allow first and last skb in retransmit queue to be split. 1394 */ 1395 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE); 1396 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1397 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1398 skb != tcp_rtx_queue_head(sk) && 1399 skb != tcp_rtx_queue_tail(sk))) { 1400 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1401 return -ENOMEM; 1402 } 1403 1404 if (skb_unclone(skb, gfp)) 1405 return -ENOMEM; 1406 1407 /* Get a new skb... force flag on. */ 1408 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1409 if (!buff) 1410 return -ENOMEM; /* We'll just try again later. */ 1411 skb_copy_decrypted(buff, skb); 1412 1413 sk_wmem_queued_add(sk, buff->truesize); 1414 sk_mem_charge(sk, buff->truesize); 1415 nlen = skb->len - len - nsize; 1416 buff->truesize += nlen; 1417 skb->truesize -= nlen; 1418 1419 /* Correct the sequence numbers. */ 1420 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1421 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1422 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1423 1424 /* PSH and FIN should only be set in the second packet. */ 1425 flags = TCP_SKB_CB(skb)->tcp_flags; 1426 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1427 TCP_SKB_CB(buff)->tcp_flags = flags; 1428 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1429 tcp_skb_fragment_eor(skb, buff); 1430 1431 skb_split(skb, buff, len); 1432 1433 buff->ip_summed = CHECKSUM_PARTIAL; 1434 1435 buff->tstamp = skb->tstamp; 1436 tcp_fragment_tstamp(skb, buff); 1437 1438 old_factor = tcp_skb_pcount(skb); 1439 1440 /* Fix up tso_factor for both original and new SKB. */ 1441 tcp_set_skb_tso_segs(skb, mss_now); 1442 tcp_set_skb_tso_segs(buff, mss_now); 1443 1444 /* Update delivered info for the new segment */ 1445 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1446 1447 /* If this packet has been sent out already, we must 1448 * adjust the various packet counters. 1449 */ 1450 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1451 int diff = old_factor - tcp_skb_pcount(skb) - 1452 tcp_skb_pcount(buff); 1453 1454 if (diff) 1455 tcp_adjust_pcount(sk, skb, diff); 1456 } 1457 1458 /* Link BUFF into the send queue. */ 1459 __skb_header_release(buff); 1460 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1461 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1462 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1463 1464 return 0; 1465 } 1466 1467 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1468 * data is not copied, but immediately discarded. 1469 */ 1470 static int __pskb_trim_head(struct sk_buff *skb, int len) 1471 { 1472 struct skb_shared_info *shinfo; 1473 int i, k, eat; 1474 1475 eat = min_t(int, len, skb_headlen(skb)); 1476 if (eat) { 1477 __skb_pull(skb, eat); 1478 len -= eat; 1479 if (!len) 1480 return 0; 1481 } 1482 eat = len; 1483 k = 0; 1484 shinfo = skb_shinfo(skb); 1485 for (i = 0; i < shinfo->nr_frags; i++) { 1486 int size = skb_frag_size(&shinfo->frags[i]); 1487 1488 if (size <= eat) { 1489 skb_frag_unref(skb, i); 1490 eat -= size; 1491 } else { 1492 shinfo->frags[k] = shinfo->frags[i]; 1493 if (eat) { 1494 skb_frag_off_add(&shinfo->frags[k], eat); 1495 skb_frag_size_sub(&shinfo->frags[k], eat); 1496 eat = 0; 1497 } 1498 k++; 1499 } 1500 } 1501 shinfo->nr_frags = k; 1502 1503 skb->data_len -= len; 1504 skb->len = skb->data_len; 1505 return len; 1506 } 1507 1508 /* Remove acked data from a packet in the transmit queue. */ 1509 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1510 { 1511 u32 delta_truesize; 1512 1513 if (skb_unclone(skb, GFP_ATOMIC)) 1514 return -ENOMEM; 1515 1516 delta_truesize = __pskb_trim_head(skb, len); 1517 1518 TCP_SKB_CB(skb)->seq += len; 1519 skb->ip_summed = CHECKSUM_PARTIAL; 1520 1521 if (delta_truesize) { 1522 skb->truesize -= delta_truesize; 1523 sk_wmem_queued_add(sk, -delta_truesize); 1524 sk_mem_uncharge(sk, delta_truesize); 1525 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1526 } 1527 1528 /* Any change of skb->len requires recalculation of tso factor. */ 1529 if (tcp_skb_pcount(skb) > 1) 1530 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1531 1532 return 0; 1533 } 1534 1535 /* Calculate MSS not accounting any TCP options. */ 1536 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1537 { 1538 const struct tcp_sock *tp = tcp_sk(sk); 1539 const struct inet_connection_sock *icsk = inet_csk(sk); 1540 int mss_now; 1541 1542 /* Calculate base mss without TCP options: 1543 It is MMS_S - sizeof(tcphdr) of rfc1122 1544 */ 1545 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1546 1547 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1548 if (icsk->icsk_af_ops->net_frag_header_len) { 1549 const struct dst_entry *dst = __sk_dst_get(sk); 1550 1551 if (dst && dst_allfrag(dst)) 1552 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1553 } 1554 1555 /* Clamp it (mss_clamp does not include tcp options) */ 1556 if (mss_now > tp->rx_opt.mss_clamp) 1557 mss_now = tp->rx_opt.mss_clamp; 1558 1559 /* Now subtract optional transport overhead */ 1560 mss_now -= icsk->icsk_ext_hdr_len; 1561 1562 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1563 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss); 1564 return mss_now; 1565 } 1566 1567 /* Calculate MSS. Not accounting for SACKs here. */ 1568 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1569 { 1570 /* Subtract TCP options size, not including SACKs */ 1571 return __tcp_mtu_to_mss(sk, pmtu) - 1572 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1573 } 1574 1575 /* Inverse of above */ 1576 int tcp_mss_to_mtu(struct sock *sk, int mss) 1577 { 1578 const struct tcp_sock *tp = tcp_sk(sk); 1579 const struct inet_connection_sock *icsk = inet_csk(sk); 1580 int mtu; 1581 1582 mtu = mss + 1583 tp->tcp_header_len + 1584 icsk->icsk_ext_hdr_len + 1585 icsk->icsk_af_ops->net_header_len; 1586 1587 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1588 if (icsk->icsk_af_ops->net_frag_header_len) { 1589 const struct dst_entry *dst = __sk_dst_get(sk); 1590 1591 if (dst && dst_allfrag(dst)) 1592 mtu += icsk->icsk_af_ops->net_frag_header_len; 1593 } 1594 return mtu; 1595 } 1596 EXPORT_SYMBOL(tcp_mss_to_mtu); 1597 1598 /* MTU probing init per socket */ 1599 void tcp_mtup_init(struct sock *sk) 1600 { 1601 struct tcp_sock *tp = tcp_sk(sk); 1602 struct inet_connection_sock *icsk = inet_csk(sk); 1603 struct net *net = sock_net(sk); 1604 1605 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1606 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1607 icsk->icsk_af_ops->net_header_len; 1608 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1609 icsk->icsk_mtup.probe_size = 0; 1610 if (icsk->icsk_mtup.enabled) 1611 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1612 } 1613 EXPORT_SYMBOL(tcp_mtup_init); 1614 1615 /* This function synchronize snd mss to current pmtu/exthdr set. 1616 1617 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1618 for TCP options, but includes only bare TCP header. 1619 1620 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1621 It is minimum of user_mss and mss received with SYN. 1622 It also does not include TCP options. 1623 1624 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1625 1626 tp->mss_cache is current effective sending mss, including 1627 all tcp options except for SACKs. It is evaluated, 1628 taking into account current pmtu, but never exceeds 1629 tp->rx_opt.mss_clamp. 1630 1631 NOTE1. rfc1122 clearly states that advertised MSS 1632 DOES NOT include either tcp or ip options. 1633 1634 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1635 are READ ONLY outside this function. --ANK (980731) 1636 */ 1637 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1638 { 1639 struct tcp_sock *tp = tcp_sk(sk); 1640 struct inet_connection_sock *icsk = inet_csk(sk); 1641 int mss_now; 1642 1643 if (icsk->icsk_mtup.search_high > pmtu) 1644 icsk->icsk_mtup.search_high = pmtu; 1645 1646 mss_now = tcp_mtu_to_mss(sk, pmtu); 1647 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1648 1649 /* And store cached results */ 1650 icsk->icsk_pmtu_cookie = pmtu; 1651 if (icsk->icsk_mtup.enabled) 1652 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1653 tp->mss_cache = mss_now; 1654 1655 return mss_now; 1656 } 1657 EXPORT_SYMBOL(tcp_sync_mss); 1658 1659 /* Compute the current effective MSS, taking SACKs and IP options, 1660 * and even PMTU discovery events into account. 1661 */ 1662 unsigned int tcp_current_mss(struct sock *sk) 1663 { 1664 const struct tcp_sock *tp = tcp_sk(sk); 1665 const struct dst_entry *dst = __sk_dst_get(sk); 1666 u32 mss_now; 1667 unsigned int header_len; 1668 struct tcp_out_options opts; 1669 struct tcp_md5sig_key *md5; 1670 1671 mss_now = tp->mss_cache; 1672 1673 if (dst) { 1674 u32 mtu = dst_mtu(dst); 1675 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1676 mss_now = tcp_sync_mss(sk, mtu); 1677 } 1678 1679 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1680 sizeof(struct tcphdr); 1681 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1682 * some common options. If this is an odd packet (because we have SACK 1683 * blocks etc) then our calculated header_len will be different, and 1684 * we have to adjust mss_now correspondingly */ 1685 if (header_len != tp->tcp_header_len) { 1686 int delta = (int) header_len - tp->tcp_header_len; 1687 mss_now -= delta; 1688 } 1689 1690 return mss_now; 1691 } 1692 1693 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1694 * As additional protections, we do not touch cwnd in retransmission phases, 1695 * and if application hit its sndbuf limit recently. 1696 */ 1697 static void tcp_cwnd_application_limited(struct sock *sk) 1698 { 1699 struct tcp_sock *tp = tcp_sk(sk); 1700 1701 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1702 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1703 /* Limited by application or receiver window. */ 1704 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1705 u32 win_used = max(tp->snd_cwnd_used, init_win); 1706 if (win_used < tp->snd_cwnd) { 1707 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1708 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1709 } 1710 tp->snd_cwnd_used = 0; 1711 } 1712 tp->snd_cwnd_stamp = tcp_jiffies32; 1713 } 1714 1715 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1716 { 1717 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1718 struct tcp_sock *tp = tcp_sk(sk); 1719 1720 /* Track the maximum number of outstanding packets in each 1721 * window, and remember whether we were cwnd-limited then. 1722 */ 1723 if (!before(tp->snd_una, tp->max_packets_seq) || 1724 tp->packets_out > tp->max_packets_out) { 1725 tp->max_packets_out = tp->packets_out; 1726 tp->max_packets_seq = tp->snd_nxt; 1727 tp->is_cwnd_limited = is_cwnd_limited; 1728 } 1729 1730 if (tcp_is_cwnd_limited(sk)) { 1731 /* Network is feed fully. */ 1732 tp->snd_cwnd_used = 0; 1733 tp->snd_cwnd_stamp = tcp_jiffies32; 1734 } else { 1735 /* Network starves. */ 1736 if (tp->packets_out > tp->snd_cwnd_used) 1737 tp->snd_cwnd_used = tp->packets_out; 1738 1739 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1740 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1741 !ca_ops->cong_control) 1742 tcp_cwnd_application_limited(sk); 1743 1744 /* The following conditions together indicate the starvation 1745 * is caused by insufficient sender buffer: 1746 * 1) just sent some data (see tcp_write_xmit) 1747 * 2) not cwnd limited (this else condition) 1748 * 3) no more data to send (tcp_write_queue_empty()) 1749 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1750 */ 1751 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1752 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1753 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1754 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1755 } 1756 } 1757 1758 /* Minshall's variant of the Nagle send check. */ 1759 static bool tcp_minshall_check(const struct tcp_sock *tp) 1760 { 1761 return after(tp->snd_sml, tp->snd_una) && 1762 !after(tp->snd_sml, tp->snd_nxt); 1763 } 1764 1765 /* Update snd_sml if this skb is under mss 1766 * Note that a TSO packet might end with a sub-mss segment 1767 * The test is really : 1768 * if ((skb->len % mss) != 0) 1769 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1770 * But we can avoid doing the divide again given we already have 1771 * skb_pcount = skb->len / mss_now 1772 */ 1773 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1774 const struct sk_buff *skb) 1775 { 1776 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1777 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1778 } 1779 1780 /* Return false, if packet can be sent now without violation Nagle's rules: 1781 * 1. It is full sized. (provided by caller in %partial bool) 1782 * 2. Or it contains FIN. (already checked by caller) 1783 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1784 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1785 * With Minshall's modification: all sent small packets are ACKed. 1786 */ 1787 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1788 int nonagle) 1789 { 1790 return partial && 1791 ((nonagle & TCP_NAGLE_CORK) || 1792 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1793 } 1794 1795 /* Return how many segs we'd like on a TSO packet, 1796 * to send one TSO packet per ms 1797 */ 1798 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1799 int min_tso_segs) 1800 { 1801 u32 bytes, segs; 1802 1803 bytes = min_t(unsigned long, 1804 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift), 1805 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1806 1807 /* Goal is to send at least one packet per ms, 1808 * not one big TSO packet every 100 ms. 1809 * This preserves ACK clocking and is consistent 1810 * with tcp_tso_should_defer() heuristic. 1811 */ 1812 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1813 1814 return segs; 1815 } 1816 1817 /* Return the number of segments we want in the skb we are transmitting. 1818 * See if congestion control module wants to decide; otherwise, autosize. 1819 */ 1820 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1821 { 1822 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1823 u32 min_tso, tso_segs; 1824 1825 min_tso = ca_ops->min_tso_segs ? 1826 ca_ops->min_tso_segs(sk) : 1827 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1828 1829 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1830 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1831 } 1832 1833 /* Returns the portion of skb which can be sent right away */ 1834 static unsigned int tcp_mss_split_point(const struct sock *sk, 1835 const struct sk_buff *skb, 1836 unsigned int mss_now, 1837 unsigned int max_segs, 1838 int nonagle) 1839 { 1840 const struct tcp_sock *tp = tcp_sk(sk); 1841 u32 partial, needed, window, max_len; 1842 1843 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1844 max_len = mss_now * max_segs; 1845 1846 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1847 return max_len; 1848 1849 needed = min(skb->len, window); 1850 1851 if (max_len <= needed) 1852 return max_len; 1853 1854 partial = needed % mss_now; 1855 /* If last segment is not a full MSS, check if Nagle rules allow us 1856 * to include this last segment in this skb. 1857 * Otherwise, we'll split the skb at last MSS boundary 1858 */ 1859 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1860 return needed - partial; 1861 1862 return needed; 1863 } 1864 1865 /* Can at least one segment of SKB be sent right now, according to the 1866 * congestion window rules? If so, return how many segments are allowed. 1867 */ 1868 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1869 const struct sk_buff *skb) 1870 { 1871 u32 in_flight, cwnd, halfcwnd; 1872 1873 /* Don't be strict about the congestion window for the final FIN. */ 1874 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1875 tcp_skb_pcount(skb) == 1) 1876 return 1; 1877 1878 in_flight = tcp_packets_in_flight(tp); 1879 cwnd = tp->snd_cwnd; 1880 if (in_flight >= cwnd) 1881 return 0; 1882 1883 /* For better scheduling, ensure we have at least 1884 * 2 GSO packets in flight. 1885 */ 1886 halfcwnd = max(cwnd >> 1, 1U); 1887 return min(halfcwnd, cwnd - in_flight); 1888 } 1889 1890 /* Initialize TSO state of a skb. 1891 * This must be invoked the first time we consider transmitting 1892 * SKB onto the wire. 1893 */ 1894 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1895 { 1896 int tso_segs = tcp_skb_pcount(skb); 1897 1898 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1899 tcp_set_skb_tso_segs(skb, mss_now); 1900 tso_segs = tcp_skb_pcount(skb); 1901 } 1902 return tso_segs; 1903 } 1904 1905 1906 /* Return true if the Nagle test allows this packet to be 1907 * sent now. 1908 */ 1909 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1910 unsigned int cur_mss, int nonagle) 1911 { 1912 /* Nagle rule does not apply to frames, which sit in the middle of the 1913 * write_queue (they have no chances to get new data). 1914 * 1915 * This is implemented in the callers, where they modify the 'nonagle' 1916 * argument based upon the location of SKB in the send queue. 1917 */ 1918 if (nonagle & TCP_NAGLE_PUSH) 1919 return true; 1920 1921 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1922 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1923 return true; 1924 1925 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1926 return true; 1927 1928 return false; 1929 } 1930 1931 /* Does at least the first segment of SKB fit into the send window? */ 1932 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1933 const struct sk_buff *skb, 1934 unsigned int cur_mss) 1935 { 1936 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1937 1938 if (skb->len > cur_mss) 1939 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1940 1941 return !after(end_seq, tcp_wnd_end(tp)); 1942 } 1943 1944 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1945 * which is put after SKB on the list. It is very much like 1946 * tcp_fragment() except that it may make several kinds of assumptions 1947 * in order to speed up the splitting operation. In particular, we 1948 * know that all the data is in scatter-gather pages, and that the 1949 * packet has never been sent out before (and thus is not cloned). 1950 */ 1951 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1952 unsigned int mss_now, gfp_t gfp) 1953 { 1954 int nlen = skb->len - len; 1955 struct sk_buff *buff; 1956 u8 flags; 1957 1958 /* All of a TSO frame must be composed of paged data. */ 1959 if (skb->len != skb->data_len) 1960 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 1961 skb, len, mss_now, gfp); 1962 1963 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1964 if (unlikely(!buff)) 1965 return -ENOMEM; 1966 skb_copy_decrypted(buff, skb); 1967 1968 sk_wmem_queued_add(sk, buff->truesize); 1969 sk_mem_charge(sk, buff->truesize); 1970 buff->truesize += nlen; 1971 skb->truesize -= nlen; 1972 1973 /* Correct the sequence numbers. */ 1974 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1975 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1976 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1977 1978 /* PSH and FIN should only be set in the second packet. */ 1979 flags = TCP_SKB_CB(skb)->tcp_flags; 1980 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1981 TCP_SKB_CB(buff)->tcp_flags = flags; 1982 1983 /* This packet was never sent out yet, so no SACK bits. */ 1984 TCP_SKB_CB(buff)->sacked = 0; 1985 1986 tcp_skb_fragment_eor(skb, buff); 1987 1988 buff->ip_summed = CHECKSUM_PARTIAL; 1989 skb_split(skb, buff, len); 1990 tcp_fragment_tstamp(skb, buff); 1991 1992 /* Fix up tso_factor for both original and new SKB. */ 1993 tcp_set_skb_tso_segs(skb, mss_now); 1994 tcp_set_skb_tso_segs(buff, mss_now); 1995 1996 /* Link BUFF into the send queue. */ 1997 __skb_header_release(buff); 1998 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 1999 2000 return 0; 2001 } 2002 2003 /* Try to defer sending, if possible, in order to minimize the amount 2004 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2005 * 2006 * This algorithm is from John Heffner. 2007 */ 2008 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2009 bool *is_cwnd_limited, 2010 bool *is_rwnd_limited, 2011 u32 max_segs) 2012 { 2013 const struct inet_connection_sock *icsk = inet_csk(sk); 2014 u32 send_win, cong_win, limit, in_flight; 2015 struct tcp_sock *tp = tcp_sk(sk); 2016 struct sk_buff *head; 2017 int win_divisor; 2018 s64 delta; 2019 2020 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2021 goto send_now; 2022 2023 /* Avoid bursty behavior by allowing defer 2024 * only if the last write was recent (1 ms). 2025 * Note that tp->tcp_wstamp_ns can be in the future if we have 2026 * packets waiting in a qdisc or device for EDT delivery. 2027 */ 2028 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2029 if (delta > 0) 2030 goto send_now; 2031 2032 in_flight = tcp_packets_in_flight(tp); 2033 2034 BUG_ON(tcp_skb_pcount(skb) <= 1); 2035 BUG_ON(tp->snd_cwnd <= in_flight); 2036 2037 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2038 2039 /* From in_flight test above, we know that cwnd > in_flight. */ 2040 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 2041 2042 limit = min(send_win, cong_win); 2043 2044 /* If a full-sized TSO skb can be sent, do it. */ 2045 if (limit >= max_segs * tp->mss_cache) 2046 goto send_now; 2047 2048 /* Middle in queue won't get any more data, full sendable already? */ 2049 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2050 goto send_now; 2051 2052 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2053 if (win_divisor) { 2054 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 2055 2056 /* If at least some fraction of a window is available, 2057 * just use it. 2058 */ 2059 chunk /= win_divisor; 2060 if (limit >= chunk) 2061 goto send_now; 2062 } else { 2063 /* Different approach, try not to defer past a single 2064 * ACK. Receiver should ACK every other full sized 2065 * frame, so if we have space for more than 3 frames 2066 * then send now. 2067 */ 2068 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2069 goto send_now; 2070 } 2071 2072 /* TODO : use tsorted_sent_queue ? */ 2073 head = tcp_rtx_queue_head(sk); 2074 if (!head) 2075 goto send_now; 2076 delta = tp->tcp_clock_cache - head->tstamp; 2077 /* If next ACK is likely to come too late (half srtt), do not defer */ 2078 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2079 goto send_now; 2080 2081 /* Ok, it looks like it is advisable to defer. 2082 * Three cases are tracked : 2083 * 1) We are cwnd-limited 2084 * 2) We are rwnd-limited 2085 * 3) We are application limited. 2086 */ 2087 if (cong_win < send_win) { 2088 if (cong_win <= skb->len) { 2089 *is_cwnd_limited = true; 2090 return true; 2091 } 2092 } else { 2093 if (send_win <= skb->len) { 2094 *is_rwnd_limited = true; 2095 return true; 2096 } 2097 } 2098 2099 /* If this packet won't get more data, do not wait. */ 2100 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2101 TCP_SKB_CB(skb)->eor) 2102 goto send_now; 2103 2104 return true; 2105 2106 send_now: 2107 return false; 2108 } 2109 2110 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2111 { 2112 struct inet_connection_sock *icsk = inet_csk(sk); 2113 struct tcp_sock *tp = tcp_sk(sk); 2114 struct net *net = sock_net(sk); 2115 u32 interval; 2116 s32 delta; 2117 2118 interval = net->ipv4.sysctl_tcp_probe_interval; 2119 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2120 if (unlikely(delta >= interval * HZ)) { 2121 int mss = tcp_current_mss(sk); 2122 2123 /* Update current search range */ 2124 icsk->icsk_mtup.probe_size = 0; 2125 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2126 sizeof(struct tcphdr) + 2127 icsk->icsk_af_ops->net_header_len; 2128 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2129 2130 /* Update probe time stamp */ 2131 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2132 } 2133 } 2134 2135 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2136 { 2137 struct sk_buff *skb, *next; 2138 2139 skb = tcp_send_head(sk); 2140 tcp_for_write_queue_from_safe(skb, next, sk) { 2141 if (len <= skb->len) 2142 break; 2143 2144 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb)) 2145 return false; 2146 2147 len -= skb->len; 2148 } 2149 2150 return true; 2151 } 2152 2153 /* Create a new MTU probe if we are ready. 2154 * MTU probe is regularly attempting to increase the path MTU by 2155 * deliberately sending larger packets. This discovers routing 2156 * changes resulting in larger path MTUs. 2157 * 2158 * Returns 0 if we should wait to probe (no cwnd available), 2159 * 1 if a probe was sent, 2160 * -1 otherwise 2161 */ 2162 static int tcp_mtu_probe(struct sock *sk) 2163 { 2164 struct inet_connection_sock *icsk = inet_csk(sk); 2165 struct tcp_sock *tp = tcp_sk(sk); 2166 struct sk_buff *skb, *nskb, *next; 2167 struct net *net = sock_net(sk); 2168 int probe_size; 2169 int size_needed; 2170 int copy, len; 2171 int mss_now; 2172 int interval; 2173 2174 /* Not currently probing/verifying, 2175 * not in recovery, 2176 * have enough cwnd, and 2177 * not SACKing (the variable headers throw things off) 2178 */ 2179 if (likely(!icsk->icsk_mtup.enabled || 2180 icsk->icsk_mtup.probe_size || 2181 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2182 tp->snd_cwnd < 11 || 2183 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2184 return -1; 2185 2186 /* Use binary search for probe_size between tcp_mss_base, 2187 * and current mss_clamp. if (search_high - search_low) 2188 * smaller than a threshold, backoff from probing. 2189 */ 2190 mss_now = tcp_current_mss(sk); 2191 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2192 icsk->icsk_mtup.search_low) >> 1); 2193 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2194 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2195 /* When misfortune happens, we are reprobing actively, 2196 * and then reprobe timer has expired. We stick with current 2197 * probing process by not resetting search range to its orignal. 2198 */ 2199 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2200 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2201 /* Check whether enough time has elaplased for 2202 * another round of probing. 2203 */ 2204 tcp_mtu_check_reprobe(sk); 2205 return -1; 2206 } 2207 2208 /* Have enough data in the send queue to probe? */ 2209 if (tp->write_seq - tp->snd_nxt < size_needed) 2210 return -1; 2211 2212 if (tp->snd_wnd < size_needed) 2213 return -1; 2214 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2215 return 0; 2216 2217 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2218 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2219 if (!tcp_packets_in_flight(tp)) 2220 return -1; 2221 else 2222 return 0; 2223 } 2224 2225 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2226 return -1; 2227 2228 /* We're allowed to probe. Build it now. */ 2229 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2230 if (!nskb) 2231 return -1; 2232 sk_wmem_queued_add(sk, nskb->truesize); 2233 sk_mem_charge(sk, nskb->truesize); 2234 2235 skb = tcp_send_head(sk); 2236 skb_copy_decrypted(nskb, skb); 2237 2238 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2239 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2240 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2241 TCP_SKB_CB(nskb)->sacked = 0; 2242 nskb->csum = 0; 2243 nskb->ip_summed = CHECKSUM_PARTIAL; 2244 2245 tcp_insert_write_queue_before(nskb, skb, sk); 2246 tcp_highest_sack_replace(sk, skb, nskb); 2247 2248 len = 0; 2249 tcp_for_write_queue_from_safe(skb, next, sk) { 2250 copy = min_t(int, skb->len, probe_size - len); 2251 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2252 2253 if (skb->len <= copy) { 2254 /* We've eaten all the data from this skb. 2255 * Throw it away. */ 2256 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2257 /* If this is the last SKB we copy and eor is set 2258 * we need to propagate it to the new skb. 2259 */ 2260 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2261 tcp_skb_collapse_tstamp(nskb, skb); 2262 tcp_unlink_write_queue(skb, sk); 2263 sk_wmem_free_skb(sk, skb); 2264 } else { 2265 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2266 ~(TCPHDR_FIN|TCPHDR_PSH); 2267 if (!skb_shinfo(skb)->nr_frags) { 2268 skb_pull(skb, copy); 2269 } else { 2270 __pskb_trim_head(skb, copy); 2271 tcp_set_skb_tso_segs(skb, mss_now); 2272 } 2273 TCP_SKB_CB(skb)->seq += copy; 2274 } 2275 2276 len += copy; 2277 2278 if (len >= probe_size) 2279 break; 2280 } 2281 tcp_init_tso_segs(nskb, nskb->len); 2282 2283 /* We're ready to send. If this fails, the probe will 2284 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2285 */ 2286 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2287 /* Decrement cwnd here because we are sending 2288 * effectively two packets. */ 2289 tp->snd_cwnd--; 2290 tcp_event_new_data_sent(sk, nskb); 2291 2292 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2293 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2294 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2295 2296 return 1; 2297 } 2298 2299 return -1; 2300 } 2301 2302 static bool tcp_pacing_check(struct sock *sk) 2303 { 2304 struct tcp_sock *tp = tcp_sk(sk); 2305 2306 if (!tcp_needs_internal_pacing(sk)) 2307 return false; 2308 2309 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2310 return false; 2311 2312 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2313 hrtimer_start(&tp->pacing_timer, 2314 ns_to_ktime(tp->tcp_wstamp_ns), 2315 HRTIMER_MODE_ABS_PINNED_SOFT); 2316 sock_hold(sk); 2317 } 2318 return true; 2319 } 2320 2321 /* TCP Small Queues : 2322 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2323 * (These limits are doubled for retransmits) 2324 * This allows for : 2325 * - better RTT estimation and ACK scheduling 2326 * - faster recovery 2327 * - high rates 2328 * Alas, some drivers / subsystems require a fair amount 2329 * of queued bytes to ensure line rate. 2330 * One example is wifi aggregation (802.11 AMPDU) 2331 */ 2332 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2333 unsigned int factor) 2334 { 2335 unsigned long limit; 2336 2337 limit = max_t(unsigned long, 2338 2 * skb->truesize, 2339 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); 2340 if (sk->sk_pacing_status == SK_PACING_NONE) 2341 limit = min_t(unsigned long, limit, 2342 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2343 limit <<= factor; 2344 2345 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2346 tcp_sk(sk)->tcp_tx_delay) { 2347 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2348 2349 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2350 * approximate our needs assuming an ~100% skb->truesize overhead. 2351 * USEC_PER_SEC is approximated by 2^20. 2352 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2353 */ 2354 extra_bytes >>= (20 - 1); 2355 limit += extra_bytes; 2356 } 2357 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2358 /* Always send skb if rtx queue is empty. 2359 * No need to wait for TX completion to call us back, 2360 * after softirq/tasklet schedule. 2361 * This helps when TX completions are delayed too much. 2362 */ 2363 if (tcp_rtx_queue_empty(sk)) 2364 return false; 2365 2366 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2367 /* It is possible TX completion already happened 2368 * before we set TSQ_THROTTLED, so we must 2369 * test again the condition. 2370 */ 2371 smp_mb__after_atomic(); 2372 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2373 return true; 2374 } 2375 return false; 2376 } 2377 2378 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2379 { 2380 const u32 now = tcp_jiffies32; 2381 enum tcp_chrono old = tp->chrono_type; 2382 2383 if (old > TCP_CHRONO_UNSPEC) 2384 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2385 tp->chrono_start = now; 2386 tp->chrono_type = new; 2387 } 2388 2389 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2390 { 2391 struct tcp_sock *tp = tcp_sk(sk); 2392 2393 /* If there are multiple conditions worthy of tracking in a 2394 * chronograph then the highest priority enum takes precedence 2395 * over the other conditions. So that if something "more interesting" 2396 * starts happening, stop the previous chrono and start a new one. 2397 */ 2398 if (type > tp->chrono_type) 2399 tcp_chrono_set(tp, type); 2400 } 2401 2402 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2403 { 2404 struct tcp_sock *tp = tcp_sk(sk); 2405 2406 2407 /* There are multiple conditions worthy of tracking in a 2408 * chronograph, so that the highest priority enum takes 2409 * precedence over the other conditions (see tcp_chrono_start). 2410 * If a condition stops, we only stop chrono tracking if 2411 * it's the "most interesting" or current chrono we are 2412 * tracking and starts busy chrono if we have pending data. 2413 */ 2414 if (tcp_rtx_and_write_queues_empty(sk)) 2415 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2416 else if (type == tp->chrono_type) 2417 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2418 } 2419 2420 /* This routine writes packets to the network. It advances the 2421 * send_head. This happens as incoming acks open up the remote 2422 * window for us. 2423 * 2424 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2425 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2426 * account rare use of URG, this is not a big flaw. 2427 * 2428 * Send at most one packet when push_one > 0. Temporarily ignore 2429 * cwnd limit to force at most one packet out when push_one == 2. 2430 2431 * Returns true, if no segments are in flight and we have queued segments, 2432 * but cannot send anything now because of SWS or another problem. 2433 */ 2434 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2435 int push_one, gfp_t gfp) 2436 { 2437 struct tcp_sock *tp = tcp_sk(sk); 2438 struct sk_buff *skb; 2439 unsigned int tso_segs, sent_pkts; 2440 int cwnd_quota; 2441 int result; 2442 bool is_cwnd_limited = false, is_rwnd_limited = false; 2443 u32 max_segs; 2444 2445 sent_pkts = 0; 2446 2447 tcp_mstamp_refresh(tp); 2448 if (!push_one) { 2449 /* Do MTU probing. */ 2450 result = tcp_mtu_probe(sk); 2451 if (!result) { 2452 return false; 2453 } else if (result > 0) { 2454 sent_pkts = 1; 2455 } 2456 } 2457 2458 max_segs = tcp_tso_segs(sk, mss_now); 2459 while ((skb = tcp_send_head(sk))) { 2460 unsigned int limit; 2461 2462 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2463 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2464 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2465 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2466 tcp_init_tso_segs(skb, mss_now); 2467 goto repair; /* Skip network transmission */ 2468 } 2469 2470 if (tcp_pacing_check(sk)) 2471 break; 2472 2473 tso_segs = tcp_init_tso_segs(skb, mss_now); 2474 BUG_ON(!tso_segs); 2475 2476 cwnd_quota = tcp_cwnd_test(tp, skb); 2477 if (!cwnd_quota) { 2478 if (push_one == 2) 2479 /* Force out a loss probe pkt. */ 2480 cwnd_quota = 1; 2481 else 2482 break; 2483 } 2484 2485 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2486 is_rwnd_limited = true; 2487 break; 2488 } 2489 2490 if (tso_segs == 1) { 2491 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2492 (tcp_skb_is_last(sk, skb) ? 2493 nonagle : TCP_NAGLE_PUSH)))) 2494 break; 2495 } else { 2496 if (!push_one && 2497 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2498 &is_rwnd_limited, max_segs)) 2499 break; 2500 } 2501 2502 limit = mss_now; 2503 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2504 limit = tcp_mss_split_point(sk, skb, mss_now, 2505 min_t(unsigned int, 2506 cwnd_quota, 2507 max_segs), 2508 nonagle); 2509 2510 if (skb->len > limit && 2511 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2512 break; 2513 2514 if (tcp_small_queue_check(sk, skb, 0)) 2515 break; 2516 2517 /* Argh, we hit an empty skb(), presumably a thread 2518 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2519 * We do not want to send a pure-ack packet and have 2520 * a strange looking rtx queue with empty packet(s). 2521 */ 2522 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2523 break; 2524 2525 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2526 break; 2527 2528 repair: 2529 /* Advance the send_head. This one is sent out. 2530 * This call will increment packets_out. 2531 */ 2532 tcp_event_new_data_sent(sk, skb); 2533 2534 tcp_minshall_update(tp, mss_now, skb); 2535 sent_pkts += tcp_skb_pcount(skb); 2536 2537 if (push_one) 2538 break; 2539 } 2540 2541 if (is_rwnd_limited) 2542 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2543 else 2544 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2545 2546 if (likely(sent_pkts)) { 2547 if (tcp_in_cwnd_reduction(sk)) 2548 tp->prr_out += sent_pkts; 2549 2550 /* Send one loss probe per tail loss episode. */ 2551 if (push_one != 2) 2552 tcp_schedule_loss_probe(sk, false); 2553 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2554 tcp_cwnd_validate(sk, is_cwnd_limited); 2555 return false; 2556 } 2557 return !tp->packets_out && !tcp_write_queue_empty(sk); 2558 } 2559 2560 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2561 { 2562 struct inet_connection_sock *icsk = inet_csk(sk); 2563 struct tcp_sock *tp = tcp_sk(sk); 2564 u32 timeout, rto_delta_us; 2565 int early_retrans; 2566 2567 /* Don't do any loss probe on a Fast Open connection before 3WHS 2568 * finishes. 2569 */ 2570 if (rcu_access_pointer(tp->fastopen_rsk)) 2571 return false; 2572 2573 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2574 /* Schedule a loss probe in 2*RTT for SACK capable connections 2575 * not in loss recovery, that are either limited by cwnd or application. 2576 */ 2577 if ((early_retrans != 3 && early_retrans != 4) || 2578 !tp->packets_out || !tcp_is_sack(tp) || 2579 (icsk->icsk_ca_state != TCP_CA_Open && 2580 icsk->icsk_ca_state != TCP_CA_CWR)) 2581 return false; 2582 2583 /* Probe timeout is 2*rtt. Add minimum RTO to account 2584 * for delayed ack when there's one outstanding packet. If no RTT 2585 * sample is available then probe after TCP_TIMEOUT_INIT. 2586 */ 2587 if (tp->srtt_us) { 2588 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2589 if (tp->packets_out == 1) 2590 timeout += TCP_RTO_MIN; 2591 else 2592 timeout += TCP_TIMEOUT_MIN; 2593 } else { 2594 timeout = TCP_TIMEOUT_INIT; 2595 } 2596 2597 /* If the RTO formula yields an earlier time, then use that time. */ 2598 rto_delta_us = advancing_rto ? 2599 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2600 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2601 if (rto_delta_us > 0) 2602 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2603 2604 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2605 return true; 2606 } 2607 2608 /* Thanks to skb fast clones, we can detect if a prior transmit of 2609 * a packet is still in a qdisc or driver queue. 2610 * In this case, there is very little point doing a retransmit ! 2611 */ 2612 static bool skb_still_in_host_queue(const struct sock *sk, 2613 const struct sk_buff *skb) 2614 { 2615 if (unlikely(skb_fclone_busy(sk, skb))) { 2616 NET_INC_STATS(sock_net(sk), 2617 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2618 return true; 2619 } 2620 return false; 2621 } 2622 2623 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2624 * retransmit the last segment. 2625 */ 2626 void tcp_send_loss_probe(struct sock *sk) 2627 { 2628 struct tcp_sock *tp = tcp_sk(sk); 2629 struct sk_buff *skb; 2630 int pcount; 2631 int mss = tcp_current_mss(sk); 2632 2633 skb = tcp_send_head(sk); 2634 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2635 pcount = tp->packets_out; 2636 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2637 if (tp->packets_out > pcount) 2638 goto probe_sent; 2639 goto rearm_timer; 2640 } 2641 skb = skb_rb_last(&sk->tcp_rtx_queue); 2642 if (unlikely(!skb)) { 2643 WARN_ONCE(tp->packets_out, 2644 "invalid inflight: %u state %u cwnd %u mss %d\n", 2645 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2646 inet_csk(sk)->icsk_pending = 0; 2647 return; 2648 } 2649 2650 /* At most one outstanding TLP retransmission. */ 2651 if (tp->tlp_high_seq) 2652 goto rearm_timer; 2653 2654 if (skb_still_in_host_queue(sk, skb)) 2655 goto rearm_timer; 2656 2657 pcount = tcp_skb_pcount(skb); 2658 if (WARN_ON(!pcount)) 2659 goto rearm_timer; 2660 2661 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2662 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2663 (pcount - 1) * mss, mss, 2664 GFP_ATOMIC))) 2665 goto rearm_timer; 2666 skb = skb_rb_next(skb); 2667 } 2668 2669 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2670 goto rearm_timer; 2671 2672 if (__tcp_retransmit_skb(sk, skb, 1)) 2673 goto rearm_timer; 2674 2675 /* Record snd_nxt for loss detection. */ 2676 tp->tlp_high_seq = tp->snd_nxt; 2677 2678 probe_sent: 2679 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2680 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2681 inet_csk(sk)->icsk_pending = 0; 2682 rearm_timer: 2683 tcp_rearm_rto(sk); 2684 } 2685 2686 /* Push out any pending frames which were held back due to 2687 * TCP_CORK or attempt at coalescing tiny packets. 2688 * The socket must be locked by the caller. 2689 */ 2690 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2691 int nonagle) 2692 { 2693 /* If we are closed, the bytes will have to remain here. 2694 * In time closedown will finish, we empty the write queue and 2695 * all will be happy. 2696 */ 2697 if (unlikely(sk->sk_state == TCP_CLOSE)) 2698 return; 2699 2700 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2701 sk_gfp_mask(sk, GFP_ATOMIC))) 2702 tcp_check_probe_timer(sk); 2703 } 2704 2705 /* Send _single_ skb sitting at the send head. This function requires 2706 * true push pending frames to setup probe timer etc. 2707 */ 2708 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2709 { 2710 struct sk_buff *skb = tcp_send_head(sk); 2711 2712 BUG_ON(!skb || skb->len < mss_now); 2713 2714 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2715 } 2716 2717 /* This function returns the amount that we can raise the 2718 * usable window based on the following constraints 2719 * 2720 * 1. The window can never be shrunk once it is offered (RFC 793) 2721 * 2. We limit memory per socket 2722 * 2723 * RFC 1122: 2724 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2725 * RECV.NEXT + RCV.WIN fixed until: 2726 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2727 * 2728 * i.e. don't raise the right edge of the window until you can raise 2729 * it at least MSS bytes. 2730 * 2731 * Unfortunately, the recommended algorithm breaks header prediction, 2732 * since header prediction assumes th->window stays fixed. 2733 * 2734 * Strictly speaking, keeping th->window fixed violates the receiver 2735 * side SWS prevention criteria. The problem is that under this rule 2736 * a stream of single byte packets will cause the right side of the 2737 * window to always advance by a single byte. 2738 * 2739 * Of course, if the sender implements sender side SWS prevention 2740 * then this will not be a problem. 2741 * 2742 * BSD seems to make the following compromise: 2743 * 2744 * If the free space is less than the 1/4 of the maximum 2745 * space available and the free space is less than 1/2 mss, 2746 * then set the window to 0. 2747 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2748 * Otherwise, just prevent the window from shrinking 2749 * and from being larger than the largest representable value. 2750 * 2751 * This prevents incremental opening of the window in the regime 2752 * where TCP is limited by the speed of the reader side taking 2753 * data out of the TCP receive queue. It does nothing about 2754 * those cases where the window is constrained on the sender side 2755 * because the pipeline is full. 2756 * 2757 * BSD also seems to "accidentally" limit itself to windows that are a 2758 * multiple of MSS, at least until the free space gets quite small. 2759 * This would appear to be a side effect of the mbuf implementation. 2760 * Combining these two algorithms results in the observed behavior 2761 * of having a fixed window size at almost all times. 2762 * 2763 * Below we obtain similar behavior by forcing the offered window to 2764 * a multiple of the mss when it is feasible to do so. 2765 * 2766 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2767 * Regular options like TIMESTAMP are taken into account. 2768 */ 2769 u32 __tcp_select_window(struct sock *sk) 2770 { 2771 struct inet_connection_sock *icsk = inet_csk(sk); 2772 struct tcp_sock *tp = tcp_sk(sk); 2773 /* MSS for the peer's data. Previous versions used mss_clamp 2774 * here. I don't know if the value based on our guesses 2775 * of peer's MSS is better for the performance. It's more correct 2776 * but may be worse for the performance because of rcv_mss 2777 * fluctuations. --SAW 1998/11/1 2778 */ 2779 int mss = icsk->icsk_ack.rcv_mss; 2780 int free_space = tcp_space(sk); 2781 int allowed_space = tcp_full_space(sk); 2782 int full_space, window; 2783 2784 if (sk_is_mptcp(sk)) 2785 mptcp_space(sk, &free_space, &allowed_space); 2786 2787 full_space = min_t(int, tp->window_clamp, allowed_space); 2788 2789 if (unlikely(mss > full_space)) { 2790 mss = full_space; 2791 if (mss <= 0) 2792 return 0; 2793 } 2794 if (free_space < (full_space >> 1)) { 2795 icsk->icsk_ack.quick = 0; 2796 2797 if (tcp_under_memory_pressure(sk)) 2798 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2799 4U * tp->advmss); 2800 2801 /* free_space might become our new window, make sure we don't 2802 * increase it due to wscale. 2803 */ 2804 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2805 2806 /* if free space is less than mss estimate, or is below 1/16th 2807 * of the maximum allowed, try to move to zero-window, else 2808 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2809 * new incoming data is dropped due to memory limits. 2810 * With large window, mss test triggers way too late in order 2811 * to announce zero window in time before rmem limit kicks in. 2812 */ 2813 if (free_space < (allowed_space >> 4) || free_space < mss) 2814 return 0; 2815 } 2816 2817 if (free_space > tp->rcv_ssthresh) 2818 free_space = tp->rcv_ssthresh; 2819 2820 /* Don't do rounding if we are using window scaling, since the 2821 * scaled window will not line up with the MSS boundary anyway. 2822 */ 2823 if (tp->rx_opt.rcv_wscale) { 2824 window = free_space; 2825 2826 /* Advertise enough space so that it won't get scaled away. 2827 * Import case: prevent zero window announcement if 2828 * 1<<rcv_wscale > mss. 2829 */ 2830 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2831 } else { 2832 window = tp->rcv_wnd; 2833 /* Get the largest window that is a nice multiple of mss. 2834 * Window clamp already applied above. 2835 * If our current window offering is within 1 mss of the 2836 * free space we just keep it. This prevents the divide 2837 * and multiply from happening most of the time. 2838 * We also don't do any window rounding when the free space 2839 * is too small. 2840 */ 2841 if (window <= free_space - mss || window > free_space) 2842 window = rounddown(free_space, mss); 2843 else if (mss == full_space && 2844 free_space > window + (full_space >> 1)) 2845 window = free_space; 2846 } 2847 2848 return window; 2849 } 2850 2851 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2852 const struct sk_buff *next_skb) 2853 { 2854 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2855 const struct skb_shared_info *next_shinfo = 2856 skb_shinfo(next_skb); 2857 struct skb_shared_info *shinfo = skb_shinfo(skb); 2858 2859 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2860 shinfo->tskey = next_shinfo->tskey; 2861 TCP_SKB_CB(skb)->txstamp_ack |= 2862 TCP_SKB_CB(next_skb)->txstamp_ack; 2863 } 2864 } 2865 2866 /* Collapses two adjacent SKB's during retransmission. */ 2867 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2868 { 2869 struct tcp_sock *tp = tcp_sk(sk); 2870 struct sk_buff *next_skb = skb_rb_next(skb); 2871 int next_skb_size; 2872 2873 next_skb_size = next_skb->len; 2874 2875 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2876 2877 if (next_skb_size) { 2878 if (next_skb_size <= skb_availroom(skb)) 2879 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2880 next_skb_size); 2881 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 2882 return false; 2883 } 2884 tcp_highest_sack_replace(sk, next_skb, skb); 2885 2886 /* Update sequence range on original skb. */ 2887 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2888 2889 /* Merge over control information. This moves PSH/FIN etc. over */ 2890 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2891 2892 /* All done, get rid of second SKB and account for it so 2893 * packet counting does not break. 2894 */ 2895 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2896 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2897 2898 /* changed transmit queue under us so clear hints */ 2899 tcp_clear_retrans_hints_partial(tp); 2900 if (next_skb == tp->retransmit_skb_hint) 2901 tp->retransmit_skb_hint = skb; 2902 2903 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2904 2905 tcp_skb_collapse_tstamp(skb, next_skb); 2906 2907 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2908 return true; 2909 } 2910 2911 /* Check if coalescing SKBs is legal. */ 2912 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2913 { 2914 if (tcp_skb_pcount(skb) > 1) 2915 return false; 2916 if (skb_cloned(skb)) 2917 return false; 2918 /* Some heuristics for collapsing over SACK'd could be invented */ 2919 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2920 return false; 2921 2922 return true; 2923 } 2924 2925 /* Collapse packets in the retransmit queue to make to create 2926 * less packets on the wire. This is only done on retransmission. 2927 */ 2928 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2929 int space) 2930 { 2931 struct tcp_sock *tp = tcp_sk(sk); 2932 struct sk_buff *skb = to, *tmp; 2933 bool first = true; 2934 2935 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2936 return; 2937 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2938 return; 2939 2940 skb_rbtree_walk_from_safe(skb, tmp) { 2941 if (!tcp_can_collapse(sk, skb)) 2942 break; 2943 2944 if (!tcp_skb_can_collapse(to, skb)) 2945 break; 2946 2947 space -= skb->len; 2948 2949 if (first) { 2950 first = false; 2951 continue; 2952 } 2953 2954 if (space < 0) 2955 break; 2956 2957 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2958 break; 2959 2960 if (!tcp_collapse_retrans(sk, to)) 2961 break; 2962 } 2963 } 2964 2965 /* This retransmits one SKB. Policy decisions and retransmit queue 2966 * state updates are done by the caller. Returns non-zero if an 2967 * error occurred which prevented the send. 2968 */ 2969 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2970 { 2971 struct inet_connection_sock *icsk = inet_csk(sk); 2972 struct tcp_sock *tp = tcp_sk(sk); 2973 unsigned int cur_mss; 2974 int diff, len, err; 2975 2976 2977 /* Inconclusive MTU probe */ 2978 if (icsk->icsk_mtup.probe_size) 2979 icsk->icsk_mtup.probe_size = 0; 2980 2981 /* Do not sent more than we queued. 1/4 is reserved for possible 2982 * copying overhead: fragmentation, tunneling, mangling etc. 2983 */ 2984 if (refcount_read(&sk->sk_wmem_alloc) > 2985 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2986 sk->sk_sndbuf)) 2987 return -EAGAIN; 2988 2989 if (skb_still_in_host_queue(sk, skb)) 2990 return -EBUSY; 2991 2992 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2993 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2994 WARN_ON_ONCE(1); 2995 return -EINVAL; 2996 } 2997 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2998 return -ENOMEM; 2999 } 3000 3001 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3002 return -EHOSTUNREACH; /* Routing failure or similar. */ 3003 3004 cur_mss = tcp_current_mss(sk); 3005 3006 /* If receiver has shrunk his window, and skb is out of 3007 * new window, do not retransmit it. The exception is the 3008 * case, when window is shrunk to zero. In this case 3009 * our retransmit serves as a zero window probe. 3010 */ 3011 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 3012 TCP_SKB_CB(skb)->seq != tp->snd_una) 3013 return -EAGAIN; 3014 3015 len = cur_mss * segs; 3016 if (skb->len > len) { 3017 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3018 cur_mss, GFP_ATOMIC)) 3019 return -ENOMEM; /* We'll try again later. */ 3020 } else { 3021 if (skb_unclone(skb, GFP_ATOMIC)) 3022 return -ENOMEM; 3023 3024 diff = tcp_skb_pcount(skb); 3025 tcp_set_skb_tso_segs(skb, cur_mss); 3026 diff -= tcp_skb_pcount(skb); 3027 if (diff) 3028 tcp_adjust_pcount(sk, skb, diff); 3029 if (skb->len < cur_mss) 3030 tcp_retrans_try_collapse(sk, skb, cur_mss); 3031 } 3032 3033 /* RFC3168, section 6.1.1.1. ECN fallback */ 3034 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3035 tcp_ecn_clear_syn(sk, skb); 3036 3037 /* Update global and local TCP statistics. */ 3038 segs = tcp_skb_pcount(skb); 3039 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3040 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3041 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3042 tp->total_retrans += segs; 3043 tp->bytes_retrans += skb->len; 3044 3045 /* make sure skb->data is aligned on arches that require it 3046 * and check if ack-trimming & collapsing extended the headroom 3047 * beyond what csum_start can cover. 3048 */ 3049 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3050 skb_headroom(skb) >= 0xFFFF)) { 3051 struct sk_buff *nskb; 3052 3053 tcp_skb_tsorted_save(skb) { 3054 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3055 if (nskb) { 3056 nskb->dev = NULL; 3057 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3058 } else { 3059 err = -ENOBUFS; 3060 } 3061 } tcp_skb_tsorted_restore(skb); 3062 3063 if (!err) { 3064 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3065 tcp_rate_skb_sent(sk, skb); 3066 } 3067 } else { 3068 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3069 } 3070 3071 /* To avoid taking spuriously low RTT samples based on a timestamp 3072 * for a transmit that never happened, always mark EVER_RETRANS 3073 */ 3074 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3075 3076 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3077 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3078 TCP_SKB_CB(skb)->seq, segs, err); 3079 3080 if (likely(!err)) { 3081 trace_tcp_retransmit_skb(sk, skb); 3082 } else if (err != -EBUSY) { 3083 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3084 } 3085 return err; 3086 } 3087 3088 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3089 { 3090 struct tcp_sock *tp = tcp_sk(sk); 3091 int err = __tcp_retransmit_skb(sk, skb, segs); 3092 3093 if (err == 0) { 3094 #if FASTRETRANS_DEBUG > 0 3095 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3096 net_dbg_ratelimited("retrans_out leaked\n"); 3097 } 3098 #endif 3099 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3100 tp->retrans_out += tcp_skb_pcount(skb); 3101 } 3102 3103 /* Save stamp of the first (attempted) retransmit. */ 3104 if (!tp->retrans_stamp) 3105 tp->retrans_stamp = tcp_skb_timestamp(skb); 3106 3107 if (tp->undo_retrans < 0) 3108 tp->undo_retrans = 0; 3109 tp->undo_retrans += tcp_skb_pcount(skb); 3110 return err; 3111 } 3112 3113 /* This gets called after a retransmit timeout, and the initially 3114 * retransmitted data is acknowledged. It tries to continue 3115 * resending the rest of the retransmit queue, until either 3116 * we've sent it all or the congestion window limit is reached. 3117 */ 3118 void tcp_xmit_retransmit_queue(struct sock *sk) 3119 { 3120 const struct inet_connection_sock *icsk = inet_csk(sk); 3121 struct sk_buff *skb, *rtx_head, *hole = NULL; 3122 struct tcp_sock *tp = tcp_sk(sk); 3123 bool rearm_timer = false; 3124 u32 max_segs; 3125 int mib_idx; 3126 3127 if (!tp->packets_out) 3128 return; 3129 3130 rtx_head = tcp_rtx_queue_head(sk); 3131 skb = tp->retransmit_skb_hint ?: rtx_head; 3132 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3133 skb_rbtree_walk_from(skb) { 3134 __u8 sacked; 3135 int segs; 3136 3137 if (tcp_pacing_check(sk)) 3138 break; 3139 3140 /* we could do better than to assign each time */ 3141 if (!hole) 3142 tp->retransmit_skb_hint = skb; 3143 3144 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3145 if (segs <= 0) 3146 break; 3147 sacked = TCP_SKB_CB(skb)->sacked; 3148 /* In case tcp_shift_skb_data() have aggregated large skbs, 3149 * we need to make sure not sending too bigs TSO packets 3150 */ 3151 segs = min_t(int, segs, max_segs); 3152 3153 if (tp->retrans_out >= tp->lost_out) { 3154 break; 3155 } else if (!(sacked & TCPCB_LOST)) { 3156 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3157 hole = skb; 3158 continue; 3159 3160 } else { 3161 if (icsk->icsk_ca_state != TCP_CA_Loss) 3162 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3163 else 3164 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3165 } 3166 3167 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3168 continue; 3169 3170 if (tcp_small_queue_check(sk, skb, 1)) 3171 break; 3172 3173 if (tcp_retransmit_skb(sk, skb, segs)) 3174 break; 3175 3176 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3177 3178 if (tcp_in_cwnd_reduction(sk)) 3179 tp->prr_out += tcp_skb_pcount(skb); 3180 3181 if (skb == rtx_head && 3182 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3183 rearm_timer = true; 3184 3185 } 3186 if (rearm_timer) 3187 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3188 inet_csk(sk)->icsk_rto, 3189 TCP_RTO_MAX); 3190 } 3191 3192 /* We allow to exceed memory limits for FIN packets to expedite 3193 * connection tear down and (memory) recovery. 3194 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3195 * or even be forced to close flow without any FIN. 3196 * In general, we want to allow one skb per socket to avoid hangs 3197 * with edge trigger epoll() 3198 */ 3199 void sk_forced_mem_schedule(struct sock *sk, int size) 3200 { 3201 int amt; 3202 3203 if (size <= sk->sk_forward_alloc) 3204 return; 3205 amt = sk_mem_pages(size); 3206 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3207 sk_memory_allocated_add(sk, amt); 3208 3209 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3210 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3211 } 3212 3213 /* Send a FIN. The caller locks the socket for us. 3214 * We should try to send a FIN packet really hard, but eventually give up. 3215 */ 3216 void tcp_send_fin(struct sock *sk) 3217 { 3218 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3219 struct tcp_sock *tp = tcp_sk(sk); 3220 3221 /* Optimization, tack on the FIN if we have one skb in write queue and 3222 * this skb was not yet sent, or we are under memory pressure. 3223 * Note: in the latter case, FIN packet will be sent after a timeout, 3224 * as TCP stack thinks it has already been transmitted. 3225 */ 3226 tskb = tail; 3227 if (!tskb && tcp_under_memory_pressure(sk)) 3228 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3229 3230 if (tskb) { 3231 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3232 TCP_SKB_CB(tskb)->end_seq++; 3233 tp->write_seq++; 3234 if (!tail) { 3235 /* This means tskb was already sent. 3236 * Pretend we included the FIN on previous transmit. 3237 * We need to set tp->snd_nxt to the value it would have 3238 * if FIN had been sent. This is because retransmit path 3239 * does not change tp->snd_nxt. 3240 */ 3241 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3242 return; 3243 } 3244 } else { 3245 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3246 if (unlikely(!skb)) 3247 return; 3248 3249 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3250 skb_reserve(skb, MAX_TCP_HEADER); 3251 sk_forced_mem_schedule(sk, skb->truesize); 3252 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3253 tcp_init_nondata_skb(skb, tp->write_seq, 3254 TCPHDR_ACK | TCPHDR_FIN); 3255 tcp_queue_skb(sk, skb); 3256 } 3257 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3258 } 3259 3260 /* We get here when a process closes a file descriptor (either due to 3261 * an explicit close() or as a byproduct of exit()'ing) and there 3262 * was unread data in the receive queue. This behavior is recommended 3263 * by RFC 2525, section 2.17. -DaveM 3264 */ 3265 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3266 { 3267 struct sk_buff *skb; 3268 3269 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3270 3271 /* NOTE: No TCP options attached and we never retransmit this. */ 3272 skb = alloc_skb(MAX_TCP_HEADER, priority); 3273 if (!skb) { 3274 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3275 return; 3276 } 3277 3278 /* Reserve space for headers and prepare control bits. */ 3279 skb_reserve(skb, MAX_TCP_HEADER); 3280 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3281 TCPHDR_ACK | TCPHDR_RST); 3282 tcp_mstamp_refresh(tcp_sk(sk)); 3283 /* Send it off. */ 3284 if (tcp_transmit_skb(sk, skb, 0, priority)) 3285 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3286 3287 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3288 * skb here is different to the troublesome skb, so use NULL 3289 */ 3290 trace_tcp_send_reset(sk, NULL); 3291 } 3292 3293 /* Send a crossed SYN-ACK during socket establishment. 3294 * WARNING: This routine must only be called when we have already sent 3295 * a SYN packet that crossed the incoming SYN that caused this routine 3296 * to get called. If this assumption fails then the initial rcv_wnd 3297 * and rcv_wscale values will not be correct. 3298 */ 3299 int tcp_send_synack(struct sock *sk) 3300 { 3301 struct sk_buff *skb; 3302 3303 skb = tcp_rtx_queue_head(sk); 3304 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3305 pr_err("%s: wrong queue state\n", __func__); 3306 return -EFAULT; 3307 } 3308 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3309 if (skb_cloned(skb)) { 3310 struct sk_buff *nskb; 3311 3312 tcp_skb_tsorted_save(skb) { 3313 nskb = skb_copy(skb, GFP_ATOMIC); 3314 } tcp_skb_tsorted_restore(skb); 3315 if (!nskb) 3316 return -ENOMEM; 3317 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3318 tcp_highest_sack_replace(sk, skb, nskb); 3319 tcp_rtx_queue_unlink_and_free(skb, sk); 3320 __skb_header_release(nskb); 3321 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3322 sk_wmem_queued_add(sk, nskb->truesize); 3323 sk_mem_charge(sk, nskb->truesize); 3324 skb = nskb; 3325 } 3326 3327 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3328 tcp_ecn_send_synack(sk, skb); 3329 } 3330 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3331 } 3332 3333 /** 3334 * tcp_make_synack - Prepare a SYN-ACK. 3335 * sk: listener socket 3336 * dst: dst entry attached to the SYNACK 3337 * req: request_sock pointer 3338 * 3339 * Allocate one skb and build a SYNACK packet. 3340 * @dst is consumed : Caller should not use it again. 3341 */ 3342 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3343 struct request_sock *req, 3344 struct tcp_fastopen_cookie *foc, 3345 enum tcp_synack_type synack_type) 3346 { 3347 struct inet_request_sock *ireq = inet_rsk(req); 3348 const struct tcp_sock *tp = tcp_sk(sk); 3349 struct tcp_md5sig_key *md5 = NULL; 3350 struct tcp_out_options opts; 3351 struct sk_buff *skb; 3352 int tcp_header_size; 3353 struct tcphdr *th; 3354 int mss; 3355 u64 now; 3356 3357 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3358 if (unlikely(!skb)) { 3359 dst_release(dst); 3360 return NULL; 3361 } 3362 /* Reserve space for headers. */ 3363 skb_reserve(skb, MAX_TCP_HEADER); 3364 3365 switch (synack_type) { 3366 case TCP_SYNACK_NORMAL: 3367 skb_set_owner_w(skb, req_to_sk(req)); 3368 break; 3369 case TCP_SYNACK_COOKIE: 3370 /* Under synflood, we do not attach skb to a socket, 3371 * to avoid false sharing. 3372 */ 3373 break; 3374 case TCP_SYNACK_FASTOPEN: 3375 /* sk is a const pointer, because we want to express multiple 3376 * cpu might call us concurrently. 3377 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3378 */ 3379 skb_set_owner_w(skb, (struct sock *)sk); 3380 break; 3381 } 3382 skb_dst_set(skb, dst); 3383 3384 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3385 3386 memset(&opts, 0, sizeof(opts)); 3387 now = tcp_clock_ns(); 3388 #ifdef CONFIG_SYN_COOKIES 3389 if (unlikely(req->cookie_ts)) 3390 skb->skb_mstamp_ns = cookie_init_timestamp(req, now); 3391 else 3392 #endif 3393 { 3394 skb->skb_mstamp_ns = now; 3395 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3396 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3397 } 3398 3399 #ifdef CONFIG_TCP_MD5SIG 3400 rcu_read_lock(); 3401 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3402 #endif 3403 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3404 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3405 foc) + sizeof(*th); 3406 3407 skb_push(skb, tcp_header_size); 3408 skb_reset_transport_header(skb); 3409 3410 th = (struct tcphdr *)skb->data; 3411 memset(th, 0, sizeof(struct tcphdr)); 3412 th->syn = 1; 3413 th->ack = 1; 3414 tcp_ecn_make_synack(req, th); 3415 th->source = htons(ireq->ir_num); 3416 th->dest = ireq->ir_rmt_port; 3417 skb->mark = ireq->ir_mark; 3418 skb->ip_summed = CHECKSUM_PARTIAL; 3419 th->seq = htonl(tcp_rsk(req)->snt_isn); 3420 /* XXX data is queued and acked as is. No buffer/window check */ 3421 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3422 3423 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3424 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3425 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3426 th->doff = (tcp_header_size >> 2); 3427 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3428 3429 #ifdef CONFIG_TCP_MD5SIG 3430 /* Okay, we have all we need - do the md5 hash if needed */ 3431 if (md5) 3432 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3433 md5, req_to_sk(req), skb); 3434 rcu_read_unlock(); 3435 #endif 3436 3437 skb->skb_mstamp_ns = now; 3438 tcp_add_tx_delay(skb, tp); 3439 3440 return skb; 3441 } 3442 EXPORT_SYMBOL(tcp_make_synack); 3443 3444 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3445 { 3446 struct inet_connection_sock *icsk = inet_csk(sk); 3447 const struct tcp_congestion_ops *ca; 3448 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3449 3450 if (ca_key == TCP_CA_UNSPEC) 3451 return; 3452 3453 rcu_read_lock(); 3454 ca = tcp_ca_find_key(ca_key); 3455 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3456 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3457 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3458 icsk->icsk_ca_ops = ca; 3459 } 3460 rcu_read_unlock(); 3461 } 3462 3463 /* Do all connect socket setups that can be done AF independent. */ 3464 static void tcp_connect_init(struct sock *sk) 3465 { 3466 const struct dst_entry *dst = __sk_dst_get(sk); 3467 struct tcp_sock *tp = tcp_sk(sk); 3468 __u8 rcv_wscale; 3469 u32 rcv_wnd; 3470 3471 /* We'll fix this up when we get a response from the other end. 3472 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3473 */ 3474 tp->tcp_header_len = sizeof(struct tcphdr); 3475 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3476 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3477 3478 #ifdef CONFIG_TCP_MD5SIG 3479 if (tp->af_specific->md5_lookup(sk, sk)) 3480 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3481 #endif 3482 3483 /* If user gave his TCP_MAXSEG, record it to clamp */ 3484 if (tp->rx_opt.user_mss) 3485 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3486 tp->max_window = 0; 3487 tcp_mtup_init(sk); 3488 tcp_sync_mss(sk, dst_mtu(dst)); 3489 3490 tcp_ca_dst_init(sk, dst); 3491 3492 if (!tp->window_clamp) 3493 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3494 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3495 3496 tcp_initialize_rcv_mss(sk); 3497 3498 /* limit the window selection if the user enforce a smaller rx buffer */ 3499 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3500 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3501 tp->window_clamp = tcp_full_space(sk); 3502 3503 rcv_wnd = tcp_rwnd_init_bpf(sk); 3504 if (rcv_wnd == 0) 3505 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3506 3507 tcp_select_initial_window(sk, tcp_full_space(sk), 3508 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3509 &tp->rcv_wnd, 3510 &tp->window_clamp, 3511 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3512 &rcv_wscale, 3513 rcv_wnd); 3514 3515 tp->rx_opt.rcv_wscale = rcv_wscale; 3516 tp->rcv_ssthresh = tp->rcv_wnd; 3517 3518 sk->sk_err = 0; 3519 sock_reset_flag(sk, SOCK_DONE); 3520 tp->snd_wnd = 0; 3521 tcp_init_wl(tp, 0); 3522 tcp_write_queue_purge(sk); 3523 tp->snd_una = tp->write_seq; 3524 tp->snd_sml = tp->write_seq; 3525 tp->snd_up = tp->write_seq; 3526 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3527 3528 if (likely(!tp->repair)) 3529 tp->rcv_nxt = 0; 3530 else 3531 tp->rcv_tstamp = tcp_jiffies32; 3532 tp->rcv_wup = tp->rcv_nxt; 3533 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3534 3535 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3536 inet_csk(sk)->icsk_retransmits = 0; 3537 tcp_clear_retrans(tp); 3538 } 3539 3540 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3541 { 3542 struct tcp_sock *tp = tcp_sk(sk); 3543 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3544 3545 tcb->end_seq += skb->len; 3546 __skb_header_release(skb); 3547 sk_wmem_queued_add(sk, skb->truesize); 3548 sk_mem_charge(sk, skb->truesize); 3549 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3550 tp->packets_out += tcp_skb_pcount(skb); 3551 } 3552 3553 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3554 * queue a data-only packet after the regular SYN, such that regular SYNs 3555 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3556 * only the SYN sequence, the data are retransmitted in the first ACK. 3557 * If cookie is not cached or other error occurs, falls back to send a 3558 * regular SYN with Fast Open cookie request option. 3559 */ 3560 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3561 { 3562 struct tcp_sock *tp = tcp_sk(sk); 3563 struct tcp_fastopen_request *fo = tp->fastopen_req; 3564 int space, err = 0; 3565 struct sk_buff *syn_data; 3566 3567 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3568 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3569 goto fallback; 3570 3571 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3572 * user-MSS. Reserve maximum option space for middleboxes that add 3573 * private TCP options. The cost is reduced data space in SYN :( 3574 */ 3575 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3576 3577 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3578 MAX_TCP_OPTION_SPACE; 3579 3580 space = min_t(size_t, space, fo->size); 3581 3582 /* limit to order-0 allocations */ 3583 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3584 3585 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3586 if (!syn_data) 3587 goto fallback; 3588 syn_data->ip_summed = CHECKSUM_PARTIAL; 3589 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3590 if (space) { 3591 int copied = copy_from_iter(skb_put(syn_data, space), space, 3592 &fo->data->msg_iter); 3593 if (unlikely(!copied)) { 3594 tcp_skb_tsorted_anchor_cleanup(syn_data); 3595 kfree_skb(syn_data); 3596 goto fallback; 3597 } 3598 if (copied != space) { 3599 skb_trim(syn_data, copied); 3600 space = copied; 3601 } 3602 skb_zcopy_set(syn_data, fo->uarg, NULL); 3603 } 3604 /* No more data pending in inet_wait_for_connect() */ 3605 if (space == fo->size) 3606 fo->data = NULL; 3607 fo->copied = space; 3608 3609 tcp_connect_queue_skb(sk, syn_data); 3610 if (syn_data->len) 3611 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3612 3613 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3614 3615 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3616 3617 /* Now full SYN+DATA was cloned and sent (or not), 3618 * remove the SYN from the original skb (syn_data) 3619 * we keep in write queue in case of a retransmit, as we 3620 * also have the SYN packet (with no data) in the same queue. 3621 */ 3622 TCP_SKB_CB(syn_data)->seq++; 3623 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3624 if (!err) { 3625 tp->syn_data = (fo->copied > 0); 3626 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3627 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3628 goto done; 3629 } 3630 3631 /* data was not sent, put it in write_queue */ 3632 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3633 tp->packets_out -= tcp_skb_pcount(syn_data); 3634 3635 fallback: 3636 /* Send a regular SYN with Fast Open cookie request option */ 3637 if (fo->cookie.len > 0) 3638 fo->cookie.len = 0; 3639 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3640 if (err) 3641 tp->syn_fastopen = 0; 3642 done: 3643 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3644 return err; 3645 } 3646 3647 /* Build a SYN and send it off. */ 3648 int tcp_connect(struct sock *sk) 3649 { 3650 struct tcp_sock *tp = tcp_sk(sk); 3651 struct sk_buff *buff; 3652 int err; 3653 3654 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3655 3656 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3657 return -EHOSTUNREACH; /* Routing failure or similar. */ 3658 3659 tcp_connect_init(sk); 3660 3661 if (unlikely(tp->repair)) { 3662 tcp_finish_connect(sk, NULL); 3663 return 0; 3664 } 3665 3666 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3667 if (unlikely(!buff)) 3668 return -ENOBUFS; 3669 3670 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3671 tcp_mstamp_refresh(tp); 3672 tp->retrans_stamp = tcp_time_stamp(tp); 3673 tcp_connect_queue_skb(sk, buff); 3674 tcp_ecn_send_syn(sk, buff); 3675 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3676 3677 /* Send off SYN; include data in Fast Open. */ 3678 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3679 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3680 if (err == -ECONNREFUSED) 3681 return err; 3682 3683 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3684 * in order to make this packet get counted in tcpOutSegs. 3685 */ 3686 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3687 tp->pushed_seq = tp->write_seq; 3688 buff = tcp_send_head(sk); 3689 if (unlikely(buff)) { 3690 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3691 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3692 } 3693 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3694 3695 /* Timer for repeating the SYN until an answer. */ 3696 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3697 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3698 return 0; 3699 } 3700 EXPORT_SYMBOL(tcp_connect); 3701 3702 /* Send out a delayed ack, the caller does the policy checking 3703 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3704 * for details. 3705 */ 3706 void tcp_send_delayed_ack(struct sock *sk) 3707 { 3708 struct inet_connection_sock *icsk = inet_csk(sk); 3709 int ato = icsk->icsk_ack.ato; 3710 unsigned long timeout; 3711 3712 if (ato > TCP_DELACK_MIN) { 3713 const struct tcp_sock *tp = tcp_sk(sk); 3714 int max_ato = HZ / 2; 3715 3716 if (inet_csk_in_pingpong_mode(sk) || 3717 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3718 max_ato = TCP_DELACK_MAX; 3719 3720 /* Slow path, intersegment interval is "high". */ 3721 3722 /* If some rtt estimate is known, use it to bound delayed ack. 3723 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3724 * directly. 3725 */ 3726 if (tp->srtt_us) { 3727 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3728 TCP_DELACK_MIN); 3729 3730 if (rtt < max_ato) 3731 max_ato = rtt; 3732 } 3733 3734 ato = min(ato, max_ato); 3735 } 3736 3737 /* Stay within the limit we were given */ 3738 timeout = jiffies + ato; 3739 3740 /* Use new timeout only if there wasn't a older one earlier. */ 3741 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3742 /* If delack timer was blocked or is about to expire, 3743 * send ACK now. 3744 */ 3745 if (icsk->icsk_ack.blocked || 3746 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3747 tcp_send_ack(sk); 3748 return; 3749 } 3750 3751 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3752 timeout = icsk->icsk_ack.timeout; 3753 } 3754 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3755 icsk->icsk_ack.timeout = timeout; 3756 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3757 } 3758 3759 /* This routine sends an ack and also updates the window. */ 3760 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3761 { 3762 struct sk_buff *buff; 3763 3764 /* If we have been reset, we may not send again. */ 3765 if (sk->sk_state == TCP_CLOSE) 3766 return; 3767 3768 /* We are not putting this on the write queue, so 3769 * tcp_transmit_skb() will set the ownership to this 3770 * sock. 3771 */ 3772 buff = alloc_skb(MAX_TCP_HEADER, 3773 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3774 if (unlikely(!buff)) { 3775 inet_csk_schedule_ack(sk); 3776 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3777 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3778 TCP_DELACK_MAX, TCP_RTO_MAX); 3779 return; 3780 } 3781 3782 /* Reserve space for headers and prepare control bits. */ 3783 skb_reserve(buff, MAX_TCP_HEADER); 3784 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3785 3786 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3787 * too much. 3788 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3789 */ 3790 skb_set_tcp_pure_ack(buff); 3791 3792 /* Send it off, this clears delayed acks for us. */ 3793 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3794 } 3795 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3796 3797 void tcp_send_ack(struct sock *sk) 3798 { 3799 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3800 } 3801 3802 /* This routine sends a packet with an out of date sequence 3803 * number. It assumes the other end will try to ack it. 3804 * 3805 * Question: what should we make while urgent mode? 3806 * 4.4BSD forces sending single byte of data. We cannot send 3807 * out of window data, because we have SND.NXT==SND.MAX... 3808 * 3809 * Current solution: to send TWO zero-length segments in urgent mode: 3810 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3811 * out-of-date with SND.UNA-1 to probe window. 3812 */ 3813 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3814 { 3815 struct tcp_sock *tp = tcp_sk(sk); 3816 struct sk_buff *skb; 3817 3818 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3819 skb = alloc_skb(MAX_TCP_HEADER, 3820 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3821 if (!skb) 3822 return -1; 3823 3824 /* Reserve space for headers and set control bits. */ 3825 skb_reserve(skb, MAX_TCP_HEADER); 3826 /* Use a previous sequence. This should cause the other 3827 * end to send an ack. Don't queue or clone SKB, just 3828 * send it. 3829 */ 3830 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3831 NET_INC_STATS(sock_net(sk), mib); 3832 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3833 } 3834 3835 /* Called from setsockopt( ... TCP_REPAIR ) */ 3836 void tcp_send_window_probe(struct sock *sk) 3837 { 3838 if (sk->sk_state == TCP_ESTABLISHED) { 3839 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3840 tcp_mstamp_refresh(tcp_sk(sk)); 3841 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3842 } 3843 } 3844 3845 /* Initiate keepalive or window probe from timer. */ 3846 int tcp_write_wakeup(struct sock *sk, int mib) 3847 { 3848 struct tcp_sock *tp = tcp_sk(sk); 3849 struct sk_buff *skb; 3850 3851 if (sk->sk_state == TCP_CLOSE) 3852 return -1; 3853 3854 skb = tcp_send_head(sk); 3855 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3856 int err; 3857 unsigned int mss = tcp_current_mss(sk); 3858 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3859 3860 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3861 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3862 3863 /* We are probing the opening of a window 3864 * but the window size is != 0 3865 * must have been a result SWS avoidance ( sender ) 3866 */ 3867 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3868 skb->len > mss) { 3869 seg_size = min(seg_size, mss); 3870 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3871 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3872 skb, seg_size, mss, GFP_ATOMIC)) 3873 return -1; 3874 } else if (!tcp_skb_pcount(skb)) 3875 tcp_set_skb_tso_segs(skb, mss); 3876 3877 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3878 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3879 if (!err) 3880 tcp_event_new_data_sent(sk, skb); 3881 return err; 3882 } else { 3883 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3884 tcp_xmit_probe_skb(sk, 1, mib); 3885 return tcp_xmit_probe_skb(sk, 0, mib); 3886 } 3887 } 3888 3889 /* A window probe timeout has occurred. If window is not closed send 3890 * a partial packet else a zero probe. 3891 */ 3892 void tcp_send_probe0(struct sock *sk) 3893 { 3894 struct inet_connection_sock *icsk = inet_csk(sk); 3895 struct tcp_sock *tp = tcp_sk(sk); 3896 struct net *net = sock_net(sk); 3897 unsigned long timeout; 3898 int err; 3899 3900 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3901 3902 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3903 /* Cancel probe timer, if it is not required. */ 3904 icsk->icsk_probes_out = 0; 3905 icsk->icsk_backoff = 0; 3906 return; 3907 } 3908 3909 icsk->icsk_probes_out++; 3910 if (err <= 0) { 3911 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3912 icsk->icsk_backoff++; 3913 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 3914 } else { 3915 /* If packet was not sent due to local congestion, 3916 * Let senders fight for local resources conservatively. 3917 */ 3918 timeout = TCP_RESOURCE_PROBE_INTERVAL; 3919 } 3920 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 3921 } 3922 3923 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3924 { 3925 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3926 struct flowi fl; 3927 int res; 3928 3929 tcp_rsk(req)->txhash = net_tx_rndhash(); 3930 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3931 if (!res) { 3932 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3933 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3934 if (unlikely(tcp_passive_fastopen(sk))) 3935 tcp_sk(sk)->total_retrans++; 3936 trace_tcp_retransmit_synack(sk, req); 3937 } 3938 return res; 3939 } 3940 EXPORT_SYMBOL(tcp_rtx_synack); 3941