xref: /linux/net/ipv4/tcp_output.c (revision 2cef30d7bd8b8fbddeb74e3753c29d4248c094e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 }
86 
87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
88  * window scaling factor due to loss of precision.
89  * If window has been shrunk, what should we make? It is not clear at all.
90  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92  * invalid. OK, let's make this for now:
93  */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 	const struct tcp_sock *tp = tcp_sk(sk);
97 
98 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
99 	    (tp->rx_opt.wscale_ok &&
100 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
101 		return tp->snd_nxt;
102 	else
103 		return tcp_wnd_end(tp);
104 }
105 
106 /* Calculate mss to advertise in SYN segment.
107  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108  *
109  * 1. It is independent of path mtu.
110  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
111  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
112  *    attached devices, because some buggy hosts are confused by
113  *    large MSS.
114  * 4. We do not make 3, we advertise MSS, calculated from first
115  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
116  *    This may be overridden via information stored in routing table.
117  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
118  *    probably even Jumbo".
119  */
120 static __u16 tcp_advertise_mss(struct sock *sk)
121 {
122 	struct tcp_sock *tp = tcp_sk(sk);
123 	const struct dst_entry *dst = __sk_dst_get(sk);
124 	int mss = tp->advmss;
125 
126 	if (dst) {
127 		unsigned int metric = dst_metric_advmss(dst);
128 
129 		if (metric < mss) {
130 			mss = metric;
131 			tp->advmss = mss;
132 		}
133 	}
134 
135 	return (__u16)mss;
136 }
137 
138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
139  * This is the first part of cwnd validation mechanism.
140  */
141 void tcp_cwnd_restart(struct sock *sk, s32 delta)
142 {
143 	struct tcp_sock *tp = tcp_sk(sk);
144 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
145 	u32 cwnd = tp->snd_cwnd;
146 
147 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
148 
149 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
150 	restart_cwnd = min(restart_cwnd, cwnd);
151 
152 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
153 		cwnd >>= 1;
154 	tp->snd_cwnd = max(cwnd, restart_cwnd);
155 	tp->snd_cwnd_stamp = tcp_jiffies32;
156 	tp->snd_cwnd_used = 0;
157 }
158 
159 /* Congestion state accounting after a packet has been sent. */
160 static void tcp_event_data_sent(struct tcp_sock *tp,
161 				struct sock *sk)
162 {
163 	struct inet_connection_sock *icsk = inet_csk(sk);
164 	const u32 now = tcp_jiffies32;
165 
166 	if (tcp_packets_in_flight(tp) == 0)
167 		tcp_ca_event(sk, CA_EVENT_TX_START);
168 
169 	/* If this is the first data packet sent in response to the
170 	 * previous received data,
171 	 * and it is a reply for ato after last received packet,
172 	 * increase pingpong count.
173 	 */
174 	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
175 	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_inc_pingpong_cnt(sk);
177 
178 	tp->lsndtime = now;
179 }
180 
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
183 				      u32 rcv_nxt)
184 {
185 	struct tcp_sock *tp = tcp_sk(sk);
186 
187 	if (unlikely(tp->compressed_ack)) {
188 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
189 			      tp->compressed_ack);
190 		tp->compressed_ack = 0;
191 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
192 			__sock_put(sk);
193 	}
194 
195 	if (unlikely(rcv_nxt != tp->rcv_nxt))
196 		return;  /* Special ACK sent by DCTCP to reflect ECN */
197 	tcp_dec_quickack_mode(sk, pkts);
198 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
199 }
200 
201 /* Determine a window scaling and initial window to offer.
202  * Based on the assumption that the given amount of space
203  * will be offered. Store the results in the tp structure.
204  * NOTE: for smooth operation initial space offering should
205  * be a multiple of mss if possible. We assume here that mss >= 1.
206  * This MUST be enforced by all callers.
207  */
208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209 			       __u32 *rcv_wnd, __u32 *window_clamp,
210 			       int wscale_ok, __u8 *rcv_wscale,
211 			       __u32 init_rcv_wnd)
212 {
213 	unsigned int space = (__space < 0 ? 0 : __space);
214 
215 	/* If no clamp set the clamp to the max possible scaled window */
216 	if (*window_clamp == 0)
217 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
218 	space = min(*window_clamp, space);
219 
220 	/* Quantize space offering to a multiple of mss if possible. */
221 	if (space > mss)
222 		space = rounddown(space, mss);
223 
224 	/* NOTE: offering an initial window larger than 32767
225 	 * will break some buggy TCP stacks. If the admin tells us
226 	 * it is likely we could be speaking with such a buggy stack
227 	 * we will truncate our initial window offering to 32K-1
228 	 * unless the remote has sent us a window scaling option,
229 	 * which we interpret as a sign the remote TCP is not
230 	 * misinterpreting the window field as a signed quantity.
231 	 */
232 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
233 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 	else
235 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
236 
237 	if (init_rcv_wnd)
238 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239 
240 	*rcv_wscale = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window */
243 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
244 		space = max_t(u32, space, sysctl_rmem_max);
245 		space = min_t(u32, space, *window_clamp);
246 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 				      0, TCP_MAX_WSCALE);
248 	}
249 	/* Set the clamp no higher than max representable value */
250 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
251 }
252 EXPORT_SYMBOL(tcp_select_initial_window);
253 
254 /* Chose a new window to advertise, update state in tcp_sock for the
255  * socket, and return result with RFC1323 scaling applied.  The return
256  * value can be stuffed directly into th->window for an outgoing
257  * frame.
258  */
259 static u16 tcp_select_window(struct sock *sk)
260 {
261 	struct tcp_sock *tp = tcp_sk(sk);
262 	u32 old_win = tp->rcv_wnd;
263 	u32 cur_win = tcp_receive_window(tp);
264 	u32 new_win = __tcp_select_window(sk);
265 
266 	/* Never shrink the offered window */
267 	if (new_win < cur_win) {
268 		/* Danger Will Robinson!
269 		 * Don't update rcv_wup/rcv_wnd here or else
270 		 * we will not be able to advertise a zero
271 		 * window in time.  --DaveM
272 		 *
273 		 * Relax Will Robinson.
274 		 */
275 		if (new_win == 0)
276 			NET_INC_STATS(sock_net(sk),
277 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
278 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
279 	}
280 	tp->rcv_wnd = new_win;
281 	tp->rcv_wup = tp->rcv_nxt;
282 
283 	/* Make sure we do not exceed the maximum possible
284 	 * scaled window.
285 	 */
286 	if (!tp->rx_opt.rcv_wscale &&
287 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
288 		new_win = min(new_win, MAX_TCP_WINDOW);
289 	else
290 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
291 
292 	/* RFC1323 scaling applied */
293 	new_win >>= tp->rx_opt.rcv_wscale;
294 
295 	/* If we advertise zero window, disable fast path. */
296 	if (new_win == 0) {
297 		tp->pred_flags = 0;
298 		if (old_win)
299 			NET_INC_STATS(sock_net(sk),
300 				      LINUX_MIB_TCPTOZEROWINDOWADV);
301 	} else if (old_win == 0) {
302 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
303 	}
304 
305 	return new_win;
306 }
307 
308 /* Packet ECN state for a SYN-ACK */
309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
310 {
311 	const struct tcp_sock *tp = tcp_sk(sk);
312 
313 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
314 	if (!(tp->ecn_flags & TCP_ECN_OK))
315 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
316 	else if (tcp_ca_needs_ecn(sk) ||
317 		 tcp_bpf_ca_needs_ecn(sk))
318 		INET_ECN_xmit(sk);
319 }
320 
321 /* Packet ECN state for a SYN.  */
322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
323 {
324 	struct tcp_sock *tp = tcp_sk(sk);
325 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
326 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
327 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
328 
329 	if (!use_ecn) {
330 		const struct dst_entry *dst = __sk_dst_get(sk);
331 
332 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
333 			use_ecn = true;
334 	}
335 
336 	tp->ecn_flags = 0;
337 
338 	if (use_ecn) {
339 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340 		tp->ecn_flags = TCP_ECN_OK;
341 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
342 			INET_ECN_xmit(sk);
343 	}
344 }
345 
346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
347 {
348 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
349 		/* tp->ecn_flags are cleared at a later point in time when
350 		 * SYN ACK is ultimatively being received.
351 		 */
352 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
353 }
354 
355 static void
356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
357 {
358 	if (inet_rsk(req)->ecn_ok)
359 		th->ece = 1;
360 }
361 
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
363  * be sent.
364  */
365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366 			 struct tcphdr *th, int tcp_header_len)
367 {
368 	struct tcp_sock *tp = tcp_sk(sk);
369 
370 	if (tp->ecn_flags & TCP_ECN_OK) {
371 		/* Not-retransmitted data segment: set ECT and inject CWR. */
372 		if (skb->len != tcp_header_len &&
373 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
374 			INET_ECN_xmit(sk);
375 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
377 				th->cwr = 1;
378 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
379 			}
380 		} else if (!tcp_ca_needs_ecn(sk)) {
381 			/* ACK or retransmitted segment: clear ECT|CE */
382 			INET_ECN_dontxmit(sk);
383 		}
384 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
385 			th->ece = 1;
386 	}
387 }
388 
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390  * auto increment end seqno.
391  */
392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
393 {
394 	skb->ip_summed = CHECKSUM_PARTIAL;
395 
396 	TCP_SKB_CB(skb)->tcp_flags = flags;
397 	TCP_SKB_CB(skb)->sacked = 0;
398 
399 	tcp_skb_pcount_set(skb, 1);
400 
401 	TCP_SKB_CB(skb)->seq = seq;
402 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
403 		seq++;
404 	TCP_SKB_CB(skb)->end_seq = seq;
405 }
406 
407 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
408 {
409 	return tp->snd_una != tp->snd_up;
410 }
411 
412 #define OPTION_SACK_ADVERTISE	(1 << 0)
413 #define OPTION_TS		(1 << 1)
414 #define OPTION_MD5		(1 << 2)
415 #define OPTION_WSCALE		(1 << 3)
416 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
417 #define OPTION_SMC		(1 << 9)
418 #define OPTION_MPTCP		(1 << 10)
419 
420 static void smc_options_write(__be32 *ptr, u16 *options)
421 {
422 #if IS_ENABLED(CONFIG_SMC)
423 	if (static_branch_unlikely(&tcp_have_smc)) {
424 		if (unlikely(OPTION_SMC & *options)) {
425 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
426 				       (TCPOPT_NOP  << 16) |
427 				       (TCPOPT_EXP <<  8) |
428 				       (TCPOLEN_EXP_SMC_BASE));
429 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
430 		}
431 	}
432 #endif
433 }
434 
435 struct tcp_out_options {
436 	u16 options;		/* bit field of OPTION_* */
437 	u16 mss;		/* 0 to disable */
438 	u8 ws;			/* window scale, 0 to disable */
439 	u8 num_sack_blocks;	/* number of SACK blocks to include */
440 	u8 hash_size;		/* bytes in hash_location */
441 	__u8 *hash_location;	/* temporary pointer, overloaded */
442 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
443 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
444 	struct mptcp_out_options mptcp;
445 };
446 
447 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
448 {
449 #if IS_ENABLED(CONFIG_MPTCP)
450 	if (unlikely(OPTION_MPTCP & opts->options))
451 		mptcp_write_options(ptr, &opts->mptcp);
452 #endif
453 }
454 
455 /* Write previously computed TCP options to the packet.
456  *
457  * Beware: Something in the Internet is very sensitive to the ordering of
458  * TCP options, we learned this through the hard way, so be careful here.
459  * Luckily we can at least blame others for their non-compliance but from
460  * inter-operability perspective it seems that we're somewhat stuck with
461  * the ordering which we have been using if we want to keep working with
462  * those broken things (not that it currently hurts anybody as there isn't
463  * particular reason why the ordering would need to be changed).
464  *
465  * At least SACK_PERM as the first option is known to lead to a disaster
466  * (but it may well be that other scenarios fail similarly).
467  */
468 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
469 			      struct tcp_out_options *opts)
470 {
471 	u16 options = opts->options;	/* mungable copy */
472 
473 	if (unlikely(OPTION_MD5 & options)) {
474 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
475 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
476 		/* overload cookie hash location */
477 		opts->hash_location = (__u8 *)ptr;
478 		ptr += 4;
479 	}
480 
481 	if (unlikely(opts->mss)) {
482 		*ptr++ = htonl((TCPOPT_MSS << 24) |
483 			       (TCPOLEN_MSS << 16) |
484 			       opts->mss);
485 	}
486 
487 	if (likely(OPTION_TS & options)) {
488 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
489 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
490 				       (TCPOLEN_SACK_PERM << 16) |
491 				       (TCPOPT_TIMESTAMP << 8) |
492 				       TCPOLEN_TIMESTAMP);
493 			options &= ~OPTION_SACK_ADVERTISE;
494 		} else {
495 			*ptr++ = htonl((TCPOPT_NOP << 24) |
496 				       (TCPOPT_NOP << 16) |
497 				       (TCPOPT_TIMESTAMP << 8) |
498 				       TCPOLEN_TIMESTAMP);
499 		}
500 		*ptr++ = htonl(opts->tsval);
501 		*ptr++ = htonl(opts->tsecr);
502 	}
503 
504 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
505 		*ptr++ = htonl((TCPOPT_NOP << 24) |
506 			       (TCPOPT_NOP << 16) |
507 			       (TCPOPT_SACK_PERM << 8) |
508 			       TCPOLEN_SACK_PERM);
509 	}
510 
511 	if (unlikely(OPTION_WSCALE & options)) {
512 		*ptr++ = htonl((TCPOPT_NOP << 24) |
513 			       (TCPOPT_WINDOW << 16) |
514 			       (TCPOLEN_WINDOW << 8) |
515 			       opts->ws);
516 	}
517 
518 	if (unlikely(opts->num_sack_blocks)) {
519 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
520 			tp->duplicate_sack : tp->selective_acks;
521 		int this_sack;
522 
523 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
524 			       (TCPOPT_NOP  << 16) |
525 			       (TCPOPT_SACK <<  8) |
526 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
527 						     TCPOLEN_SACK_PERBLOCK)));
528 
529 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
530 		     ++this_sack) {
531 			*ptr++ = htonl(sp[this_sack].start_seq);
532 			*ptr++ = htonl(sp[this_sack].end_seq);
533 		}
534 
535 		tp->rx_opt.dsack = 0;
536 	}
537 
538 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
539 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
540 		u8 *p = (u8 *)ptr;
541 		u32 len; /* Fast Open option length */
542 
543 		if (foc->exp) {
544 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
545 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
546 				     TCPOPT_FASTOPEN_MAGIC);
547 			p += TCPOLEN_EXP_FASTOPEN_BASE;
548 		} else {
549 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
550 			*p++ = TCPOPT_FASTOPEN;
551 			*p++ = len;
552 		}
553 
554 		memcpy(p, foc->val, foc->len);
555 		if ((len & 3) == 2) {
556 			p[foc->len] = TCPOPT_NOP;
557 			p[foc->len + 1] = TCPOPT_NOP;
558 		}
559 		ptr += (len + 3) >> 2;
560 	}
561 
562 	smc_options_write(ptr, &options);
563 
564 	mptcp_options_write(ptr, opts);
565 }
566 
567 static void smc_set_option(const struct tcp_sock *tp,
568 			   struct tcp_out_options *opts,
569 			   unsigned int *remaining)
570 {
571 #if IS_ENABLED(CONFIG_SMC)
572 	if (static_branch_unlikely(&tcp_have_smc)) {
573 		if (tp->syn_smc) {
574 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
575 				opts->options |= OPTION_SMC;
576 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
577 			}
578 		}
579 	}
580 #endif
581 }
582 
583 static void smc_set_option_cond(const struct tcp_sock *tp,
584 				const struct inet_request_sock *ireq,
585 				struct tcp_out_options *opts,
586 				unsigned int *remaining)
587 {
588 #if IS_ENABLED(CONFIG_SMC)
589 	if (static_branch_unlikely(&tcp_have_smc)) {
590 		if (tp->syn_smc && ireq->smc_ok) {
591 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
592 				opts->options |= OPTION_SMC;
593 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
594 			}
595 		}
596 	}
597 #endif
598 }
599 
600 static void mptcp_set_option_cond(const struct request_sock *req,
601 				  struct tcp_out_options *opts,
602 				  unsigned int *remaining)
603 {
604 	if (rsk_is_mptcp(req)) {
605 		unsigned int size;
606 
607 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
608 			if (*remaining >= size) {
609 				opts->options |= OPTION_MPTCP;
610 				*remaining -= size;
611 			}
612 		}
613 	}
614 }
615 
616 /* Compute TCP options for SYN packets. This is not the final
617  * network wire format yet.
618  */
619 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
620 				struct tcp_out_options *opts,
621 				struct tcp_md5sig_key **md5)
622 {
623 	struct tcp_sock *tp = tcp_sk(sk);
624 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
625 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
626 
627 	*md5 = NULL;
628 #ifdef CONFIG_TCP_MD5SIG
629 	if (static_branch_unlikely(&tcp_md5_needed) &&
630 	    rcu_access_pointer(tp->md5sig_info)) {
631 		*md5 = tp->af_specific->md5_lookup(sk, sk);
632 		if (*md5) {
633 			opts->options |= OPTION_MD5;
634 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
635 		}
636 	}
637 #endif
638 
639 	/* We always get an MSS option.  The option bytes which will be seen in
640 	 * normal data packets should timestamps be used, must be in the MSS
641 	 * advertised.  But we subtract them from tp->mss_cache so that
642 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
643 	 * fact here if necessary.  If we don't do this correctly, as a
644 	 * receiver we won't recognize data packets as being full sized when we
645 	 * should, and thus we won't abide by the delayed ACK rules correctly.
646 	 * SACKs don't matter, we never delay an ACK when we have any of those
647 	 * going out.  */
648 	opts->mss = tcp_advertise_mss(sk);
649 	remaining -= TCPOLEN_MSS_ALIGNED;
650 
651 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
652 		opts->options |= OPTION_TS;
653 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
654 		opts->tsecr = tp->rx_opt.ts_recent;
655 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
656 	}
657 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
658 		opts->ws = tp->rx_opt.rcv_wscale;
659 		opts->options |= OPTION_WSCALE;
660 		remaining -= TCPOLEN_WSCALE_ALIGNED;
661 	}
662 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
663 		opts->options |= OPTION_SACK_ADVERTISE;
664 		if (unlikely(!(OPTION_TS & opts->options)))
665 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
666 	}
667 
668 	if (fastopen && fastopen->cookie.len >= 0) {
669 		u32 need = fastopen->cookie.len;
670 
671 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
672 					       TCPOLEN_FASTOPEN_BASE;
673 		need = (need + 3) & ~3U;  /* Align to 32 bits */
674 		if (remaining >= need) {
675 			opts->options |= OPTION_FAST_OPEN_COOKIE;
676 			opts->fastopen_cookie = &fastopen->cookie;
677 			remaining -= need;
678 			tp->syn_fastopen = 1;
679 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
680 		}
681 	}
682 
683 	smc_set_option(tp, opts, &remaining);
684 
685 	if (sk_is_mptcp(sk)) {
686 		unsigned int size;
687 
688 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
689 			opts->options |= OPTION_MPTCP;
690 			remaining -= size;
691 		}
692 	}
693 
694 	return MAX_TCP_OPTION_SPACE - remaining;
695 }
696 
697 /* Set up TCP options for SYN-ACKs. */
698 static unsigned int tcp_synack_options(const struct sock *sk,
699 				       struct request_sock *req,
700 				       unsigned int mss, struct sk_buff *skb,
701 				       struct tcp_out_options *opts,
702 				       const struct tcp_md5sig_key *md5,
703 				       struct tcp_fastopen_cookie *foc)
704 {
705 	struct inet_request_sock *ireq = inet_rsk(req);
706 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
707 
708 #ifdef CONFIG_TCP_MD5SIG
709 	if (md5) {
710 		opts->options |= OPTION_MD5;
711 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
712 
713 		/* We can't fit any SACK blocks in a packet with MD5 + TS
714 		 * options. There was discussion about disabling SACK
715 		 * rather than TS in order to fit in better with old,
716 		 * buggy kernels, but that was deemed to be unnecessary.
717 		 */
718 		ireq->tstamp_ok &= !ireq->sack_ok;
719 	}
720 #endif
721 
722 	/* We always send an MSS option. */
723 	opts->mss = mss;
724 	remaining -= TCPOLEN_MSS_ALIGNED;
725 
726 	if (likely(ireq->wscale_ok)) {
727 		opts->ws = ireq->rcv_wscale;
728 		opts->options |= OPTION_WSCALE;
729 		remaining -= TCPOLEN_WSCALE_ALIGNED;
730 	}
731 	if (likely(ireq->tstamp_ok)) {
732 		opts->options |= OPTION_TS;
733 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
734 		opts->tsecr = req->ts_recent;
735 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
736 	}
737 	if (likely(ireq->sack_ok)) {
738 		opts->options |= OPTION_SACK_ADVERTISE;
739 		if (unlikely(!ireq->tstamp_ok))
740 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
741 	}
742 	if (foc != NULL && foc->len >= 0) {
743 		u32 need = foc->len;
744 
745 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
746 				   TCPOLEN_FASTOPEN_BASE;
747 		need = (need + 3) & ~3U;  /* Align to 32 bits */
748 		if (remaining >= need) {
749 			opts->options |= OPTION_FAST_OPEN_COOKIE;
750 			opts->fastopen_cookie = foc;
751 			remaining -= need;
752 		}
753 	}
754 
755 	mptcp_set_option_cond(req, opts, &remaining);
756 
757 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
758 
759 	return MAX_TCP_OPTION_SPACE - remaining;
760 }
761 
762 /* Compute TCP options for ESTABLISHED sockets. This is not the
763  * final wire format yet.
764  */
765 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
766 					struct tcp_out_options *opts,
767 					struct tcp_md5sig_key **md5)
768 {
769 	struct tcp_sock *tp = tcp_sk(sk);
770 	unsigned int size = 0;
771 	unsigned int eff_sacks;
772 
773 	opts->options = 0;
774 
775 	*md5 = NULL;
776 #ifdef CONFIG_TCP_MD5SIG
777 	if (static_branch_unlikely(&tcp_md5_needed) &&
778 	    rcu_access_pointer(tp->md5sig_info)) {
779 		*md5 = tp->af_specific->md5_lookup(sk, sk);
780 		if (*md5) {
781 			opts->options |= OPTION_MD5;
782 			size += TCPOLEN_MD5SIG_ALIGNED;
783 		}
784 	}
785 #endif
786 
787 	if (likely(tp->rx_opt.tstamp_ok)) {
788 		opts->options |= OPTION_TS;
789 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
790 		opts->tsecr = tp->rx_opt.ts_recent;
791 		size += TCPOLEN_TSTAMP_ALIGNED;
792 	}
793 
794 	/* MPTCP options have precedence over SACK for the limited TCP
795 	 * option space because a MPTCP connection would be forced to
796 	 * fall back to regular TCP if a required multipath option is
797 	 * missing. SACK still gets a chance to use whatever space is
798 	 * left.
799 	 */
800 	if (sk_is_mptcp(sk)) {
801 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
802 		unsigned int opt_size = 0;
803 
804 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
805 					      &opts->mptcp)) {
806 			opts->options |= OPTION_MPTCP;
807 			size += opt_size;
808 		}
809 	}
810 
811 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
812 	if (unlikely(eff_sacks)) {
813 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
814 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
815 					 TCPOLEN_SACK_PERBLOCK))
816 			return size;
817 
818 		opts->num_sack_blocks =
819 			min_t(unsigned int, eff_sacks,
820 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
821 			      TCPOLEN_SACK_PERBLOCK);
822 
823 		size += TCPOLEN_SACK_BASE_ALIGNED +
824 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
825 	}
826 
827 	return size;
828 }
829 
830 
831 /* TCP SMALL QUEUES (TSQ)
832  *
833  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
834  * to reduce RTT and bufferbloat.
835  * We do this using a special skb destructor (tcp_wfree).
836  *
837  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
838  * needs to be reallocated in a driver.
839  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
840  *
841  * Since transmit from skb destructor is forbidden, we use a tasklet
842  * to process all sockets that eventually need to send more skbs.
843  * We use one tasklet per cpu, with its own queue of sockets.
844  */
845 struct tsq_tasklet {
846 	struct tasklet_struct	tasklet;
847 	struct list_head	head; /* queue of tcp sockets */
848 };
849 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
850 
851 static void tcp_tsq_write(struct sock *sk)
852 {
853 	if ((1 << sk->sk_state) &
854 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
855 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
856 		struct tcp_sock *tp = tcp_sk(sk);
857 
858 		if (tp->lost_out > tp->retrans_out &&
859 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
860 			tcp_mstamp_refresh(tp);
861 			tcp_xmit_retransmit_queue(sk);
862 		}
863 
864 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
865 			       0, GFP_ATOMIC);
866 	}
867 }
868 
869 static void tcp_tsq_handler(struct sock *sk)
870 {
871 	bh_lock_sock(sk);
872 	if (!sock_owned_by_user(sk))
873 		tcp_tsq_write(sk);
874 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
875 		sock_hold(sk);
876 	bh_unlock_sock(sk);
877 }
878 /*
879  * One tasklet per cpu tries to send more skbs.
880  * We run in tasklet context but need to disable irqs when
881  * transferring tsq->head because tcp_wfree() might
882  * interrupt us (non NAPI drivers)
883  */
884 static void tcp_tasklet_func(unsigned long data)
885 {
886 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
887 	LIST_HEAD(list);
888 	unsigned long flags;
889 	struct list_head *q, *n;
890 	struct tcp_sock *tp;
891 	struct sock *sk;
892 
893 	local_irq_save(flags);
894 	list_splice_init(&tsq->head, &list);
895 	local_irq_restore(flags);
896 
897 	list_for_each_safe(q, n, &list) {
898 		tp = list_entry(q, struct tcp_sock, tsq_node);
899 		list_del(&tp->tsq_node);
900 
901 		sk = (struct sock *)tp;
902 		smp_mb__before_atomic();
903 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
904 
905 		tcp_tsq_handler(sk);
906 		sk_free(sk);
907 	}
908 }
909 
910 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
911 			  TCPF_WRITE_TIMER_DEFERRED |	\
912 			  TCPF_DELACK_TIMER_DEFERRED |	\
913 			  TCPF_MTU_REDUCED_DEFERRED)
914 /**
915  * tcp_release_cb - tcp release_sock() callback
916  * @sk: socket
917  *
918  * called from release_sock() to perform protocol dependent
919  * actions before socket release.
920  */
921 void tcp_release_cb(struct sock *sk)
922 {
923 	unsigned long flags, nflags;
924 
925 	/* perform an atomic operation only if at least one flag is set */
926 	do {
927 		flags = sk->sk_tsq_flags;
928 		if (!(flags & TCP_DEFERRED_ALL))
929 			return;
930 		nflags = flags & ~TCP_DEFERRED_ALL;
931 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
932 
933 	if (flags & TCPF_TSQ_DEFERRED) {
934 		tcp_tsq_write(sk);
935 		__sock_put(sk);
936 	}
937 	/* Here begins the tricky part :
938 	 * We are called from release_sock() with :
939 	 * 1) BH disabled
940 	 * 2) sk_lock.slock spinlock held
941 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
942 	 *
943 	 * But following code is meant to be called from BH handlers,
944 	 * so we should keep BH disabled, but early release socket ownership
945 	 */
946 	sock_release_ownership(sk);
947 
948 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
949 		tcp_write_timer_handler(sk);
950 		__sock_put(sk);
951 	}
952 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
953 		tcp_delack_timer_handler(sk);
954 		__sock_put(sk);
955 	}
956 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
957 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
958 		__sock_put(sk);
959 	}
960 }
961 EXPORT_SYMBOL(tcp_release_cb);
962 
963 void __init tcp_tasklet_init(void)
964 {
965 	int i;
966 
967 	for_each_possible_cpu(i) {
968 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
969 
970 		INIT_LIST_HEAD(&tsq->head);
971 		tasklet_init(&tsq->tasklet,
972 			     tcp_tasklet_func,
973 			     (unsigned long)tsq);
974 	}
975 }
976 
977 /*
978  * Write buffer destructor automatically called from kfree_skb.
979  * We can't xmit new skbs from this context, as we might already
980  * hold qdisc lock.
981  */
982 void tcp_wfree(struct sk_buff *skb)
983 {
984 	struct sock *sk = skb->sk;
985 	struct tcp_sock *tp = tcp_sk(sk);
986 	unsigned long flags, nval, oval;
987 
988 	/* Keep one reference on sk_wmem_alloc.
989 	 * Will be released by sk_free() from here or tcp_tasklet_func()
990 	 */
991 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
992 
993 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
994 	 * Wait until our queues (qdisc + devices) are drained.
995 	 * This gives :
996 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
997 	 * - chance for incoming ACK (processed by another cpu maybe)
998 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
999 	 */
1000 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1001 		goto out;
1002 
1003 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1004 		struct tsq_tasklet *tsq;
1005 		bool empty;
1006 
1007 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1008 			goto out;
1009 
1010 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1011 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1012 		if (nval != oval)
1013 			continue;
1014 
1015 		/* queue this socket to tasklet queue */
1016 		local_irq_save(flags);
1017 		tsq = this_cpu_ptr(&tsq_tasklet);
1018 		empty = list_empty(&tsq->head);
1019 		list_add(&tp->tsq_node, &tsq->head);
1020 		if (empty)
1021 			tasklet_schedule(&tsq->tasklet);
1022 		local_irq_restore(flags);
1023 		return;
1024 	}
1025 out:
1026 	sk_free(sk);
1027 }
1028 
1029 /* Note: Called under soft irq.
1030  * We can call TCP stack right away, unless socket is owned by user.
1031  */
1032 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1033 {
1034 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1035 	struct sock *sk = (struct sock *)tp;
1036 
1037 	tcp_tsq_handler(sk);
1038 	sock_put(sk);
1039 
1040 	return HRTIMER_NORESTART;
1041 }
1042 
1043 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1044 				      u64 prior_wstamp)
1045 {
1046 	struct tcp_sock *tp = tcp_sk(sk);
1047 
1048 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1049 		unsigned long rate = sk->sk_pacing_rate;
1050 
1051 		/* Original sch_fq does not pace first 10 MSS
1052 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1053 		 * this is a minor annoyance.
1054 		 */
1055 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1056 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1057 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1058 
1059 			/* take into account OS jitter */
1060 			len_ns -= min_t(u64, len_ns / 2, credit);
1061 			tp->tcp_wstamp_ns += len_ns;
1062 		}
1063 	}
1064 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1065 }
1066 
1067 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1068 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1069 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1070 
1071 /* This routine actually transmits TCP packets queued in by
1072  * tcp_do_sendmsg().  This is used by both the initial
1073  * transmission and possible later retransmissions.
1074  * All SKB's seen here are completely headerless.  It is our
1075  * job to build the TCP header, and pass the packet down to
1076  * IP so it can do the same plus pass the packet off to the
1077  * device.
1078  *
1079  * We are working here with either a clone of the original
1080  * SKB, or a fresh unique copy made by the retransmit engine.
1081  */
1082 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1083 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1084 {
1085 	const struct inet_connection_sock *icsk = inet_csk(sk);
1086 	struct inet_sock *inet;
1087 	struct tcp_sock *tp;
1088 	struct tcp_skb_cb *tcb;
1089 	struct tcp_out_options opts;
1090 	unsigned int tcp_options_size, tcp_header_size;
1091 	struct sk_buff *oskb = NULL;
1092 	struct tcp_md5sig_key *md5;
1093 	struct tcphdr *th;
1094 	u64 prior_wstamp;
1095 	int err;
1096 
1097 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1098 	tp = tcp_sk(sk);
1099 	prior_wstamp = tp->tcp_wstamp_ns;
1100 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1101 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1102 	if (clone_it) {
1103 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1104 			- tp->snd_una;
1105 		oskb = skb;
1106 
1107 		tcp_skb_tsorted_save(oskb) {
1108 			if (unlikely(skb_cloned(oskb)))
1109 				skb = pskb_copy(oskb, gfp_mask);
1110 			else
1111 				skb = skb_clone(oskb, gfp_mask);
1112 		} tcp_skb_tsorted_restore(oskb);
1113 
1114 		if (unlikely(!skb))
1115 			return -ENOBUFS;
1116 		/* retransmit skbs might have a non zero value in skb->dev
1117 		 * because skb->dev is aliased with skb->rbnode.rb_left
1118 		 */
1119 		skb->dev = NULL;
1120 	}
1121 
1122 	inet = inet_sk(sk);
1123 	tcb = TCP_SKB_CB(skb);
1124 	memset(&opts, 0, sizeof(opts));
1125 
1126 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1127 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1128 	} else {
1129 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1130 							   &md5);
1131 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1132 		 * at receiver : This slightly improve GRO performance.
1133 		 * Note that we do not force the PSH flag for non GSO packets,
1134 		 * because they might be sent under high congestion events,
1135 		 * and in this case it is better to delay the delivery of 1-MSS
1136 		 * packets and thus the corresponding ACK packet that would
1137 		 * release the following packet.
1138 		 */
1139 		if (tcp_skb_pcount(skb) > 1)
1140 			tcb->tcp_flags |= TCPHDR_PSH;
1141 	}
1142 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1143 
1144 	/* if no packet is in qdisc/device queue, then allow XPS to select
1145 	 * another queue. We can be called from tcp_tsq_handler()
1146 	 * which holds one reference to sk.
1147 	 *
1148 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1149 	 * One way to get this would be to set skb->truesize = 2 on them.
1150 	 */
1151 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1152 
1153 	/* If we had to use memory reserve to allocate this skb,
1154 	 * this might cause drops if packet is looped back :
1155 	 * Other socket might not have SOCK_MEMALLOC.
1156 	 * Packets not looped back do not care about pfmemalloc.
1157 	 */
1158 	skb->pfmemalloc = 0;
1159 
1160 	skb_push(skb, tcp_header_size);
1161 	skb_reset_transport_header(skb);
1162 
1163 	skb_orphan(skb);
1164 	skb->sk = sk;
1165 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1166 	skb_set_hash_from_sk(skb, sk);
1167 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1168 
1169 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1170 
1171 	/* Build TCP header and checksum it. */
1172 	th = (struct tcphdr *)skb->data;
1173 	th->source		= inet->inet_sport;
1174 	th->dest		= inet->inet_dport;
1175 	th->seq			= htonl(tcb->seq);
1176 	th->ack_seq		= htonl(rcv_nxt);
1177 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1178 					tcb->tcp_flags);
1179 
1180 	th->check		= 0;
1181 	th->urg_ptr		= 0;
1182 
1183 	/* The urg_mode check is necessary during a below snd_una win probe */
1184 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1185 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1186 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1187 			th->urg = 1;
1188 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1189 			th->urg_ptr = htons(0xFFFF);
1190 			th->urg = 1;
1191 		}
1192 	}
1193 
1194 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1195 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1196 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1197 		th->window      = htons(tcp_select_window(sk));
1198 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1199 	} else {
1200 		/* RFC1323: The window in SYN & SYN/ACK segments
1201 		 * is never scaled.
1202 		 */
1203 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1204 	}
1205 #ifdef CONFIG_TCP_MD5SIG
1206 	/* Calculate the MD5 hash, as we have all we need now */
1207 	if (md5) {
1208 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1209 		tp->af_specific->calc_md5_hash(opts.hash_location,
1210 					       md5, sk, skb);
1211 	}
1212 #endif
1213 
1214 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1215 			   tcp_v6_send_check, tcp_v4_send_check,
1216 			   sk, skb);
1217 
1218 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1219 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1220 
1221 	if (skb->len != tcp_header_size) {
1222 		tcp_event_data_sent(tp, sk);
1223 		tp->data_segs_out += tcp_skb_pcount(skb);
1224 		tp->bytes_sent += skb->len - tcp_header_size;
1225 	}
1226 
1227 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1228 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1229 			      tcp_skb_pcount(skb));
1230 
1231 	tp->segs_out += tcp_skb_pcount(skb);
1232 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1233 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1234 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1235 
1236 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1237 
1238 	/* Cleanup our debris for IP stacks */
1239 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1240 			       sizeof(struct inet6_skb_parm)));
1241 
1242 	tcp_add_tx_delay(skb, tp);
1243 
1244 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1245 				 inet6_csk_xmit, ip_queue_xmit,
1246 				 sk, skb, &inet->cork.fl);
1247 
1248 	if (unlikely(err > 0)) {
1249 		tcp_enter_cwr(sk);
1250 		err = net_xmit_eval(err);
1251 	}
1252 	if (!err && oskb) {
1253 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1254 		tcp_rate_skb_sent(sk, oskb);
1255 	}
1256 	return err;
1257 }
1258 
1259 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1260 			    gfp_t gfp_mask)
1261 {
1262 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1263 				  tcp_sk(sk)->rcv_nxt);
1264 }
1265 
1266 /* This routine just queues the buffer for sending.
1267  *
1268  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1269  * otherwise socket can stall.
1270  */
1271 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1272 {
1273 	struct tcp_sock *tp = tcp_sk(sk);
1274 
1275 	/* Advance write_seq and place onto the write_queue. */
1276 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1277 	__skb_header_release(skb);
1278 	tcp_add_write_queue_tail(sk, skb);
1279 	sk_wmem_queued_add(sk, skb->truesize);
1280 	sk_mem_charge(sk, skb->truesize);
1281 }
1282 
1283 /* Initialize TSO segments for a packet. */
1284 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1285 {
1286 	if (skb->len <= mss_now) {
1287 		/* Avoid the costly divide in the normal
1288 		 * non-TSO case.
1289 		 */
1290 		tcp_skb_pcount_set(skb, 1);
1291 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1292 	} else {
1293 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1294 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1295 	}
1296 }
1297 
1298 /* Pcount in the middle of the write queue got changed, we need to do various
1299  * tweaks to fix counters
1300  */
1301 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1302 {
1303 	struct tcp_sock *tp = tcp_sk(sk);
1304 
1305 	tp->packets_out -= decr;
1306 
1307 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1308 		tp->sacked_out -= decr;
1309 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1310 		tp->retrans_out -= decr;
1311 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1312 		tp->lost_out -= decr;
1313 
1314 	/* Reno case is special. Sigh... */
1315 	if (tcp_is_reno(tp) && decr > 0)
1316 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1317 
1318 	if (tp->lost_skb_hint &&
1319 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1320 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1321 		tp->lost_cnt_hint -= decr;
1322 
1323 	tcp_verify_left_out(tp);
1324 }
1325 
1326 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1327 {
1328 	return TCP_SKB_CB(skb)->txstamp_ack ||
1329 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1330 }
1331 
1332 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1333 {
1334 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1335 
1336 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1337 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1338 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1339 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1340 
1341 		shinfo->tx_flags &= ~tsflags;
1342 		shinfo2->tx_flags |= tsflags;
1343 		swap(shinfo->tskey, shinfo2->tskey);
1344 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1345 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1346 	}
1347 }
1348 
1349 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1350 {
1351 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1352 	TCP_SKB_CB(skb)->eor = 0;
1353 }
1354 
1355 /* Insert buff after skb on the write or rtx queue of sk.  */
1356 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1357 					 struct sk_buff *buff,
1358 					 struct sock *sk,
1359 					 enum tcp_queue tcp_queue)
1360 {
1361 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1362 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1363 	else
1364 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1365 }
1366 
1367 /* Function to create two new TCP segments.  Shrinks the given segment
1368  * to the specified size and appends a new segment with the rest of the
1369  * packet to the list.  This won't be called frequently, I hope.
1370  * Remember, these are still headerless SKBs at this point.
1371  */
1372 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1373 		 struct sk_buff *skb, u32 len,
1374 		 unsigned int mss_now, gfp_t gfp)
1375 {
1376 	struct tcp_sock *tp = tcp_sk(sk);
1377 	struct sk_buff *buff;
1378 	int nsize, old_factor;
1379 	long limit;
1380 	int nlen;
1381 	u8 flags;
1382 
1383 	if (WARN_ON(len > skb->len))
1384 		return -EINVAL;
1385 
1386 	nsize = skb_headlen(skb) - len;
1387 	if (nsize < 0)
1388 		nsize = 0;
1389 
1390 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1391 	 * We need some allowance to not penalize applications setting small
1392 	 * SO_SNDBUF values.
1393 	 * Also allow first and last skb in retransmit queue to be split.
1394 	 */
1395 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1396 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1397 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1398 		     skb != tcp_rtx_queue_head(sk) &&
1399 		     skb != tcp_rtx_queue_tail(sk))) {
1400 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1401 		return -ENOMEM;
1402 	}
1403 
1404 	if (skb_unclone(skb, gfp))
1405 		return -ENOMEM;
1406 
1407 	/* Get a new skb... force flag on. */
1408 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1409 	if (!buff)
1410 		return -ENOMEM; /* We'll just try again later. */
1411 	skb_copy_decrypted(buff, skb);
1412 
1413 	sk_wmem_queued_add(sk, buff->truesize);
1414 	sk_mem_charge(sk, buff->truesize);
1415 	nlen = skb->len - len - nsize;
1416 	buff->truesize += nlen;
1417 	skb->truesize -= nlen;
1418 
1419 	/* Correct the sequence numbers. */
1420 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1421 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1422 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1423 
1424 	/* PSH and FIN should only be set in the second packet. */
1425 	flags = TCP_SKB_CB(skb)->tcp_flags;
1426 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1427 	TCP_SKB_CB(buff)->tcp_flags = flags;
1428 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1429 	tcp_skb_fragment_eor(skb, buff);
1430 
1431 	skb_split(skb, buff, len);
1432 
1433 	buff->ip_summed = CHECKSUM_PARTIAL;
1434 
1435 	buff->tstamp = skb->tstamp;
1436 	tcp_fragment_tstamp(skb, buff);
1437 
1438 	old_factor = tcp_skb_pcount(skb);
1439 
1440 	/* Fix up tso_factor for both original and new SKB.  */
1441 	tcp_set_skb_tso_segs(skb, mss_now);
1442 	tcp_set_skb_tso_segs(buff, mss_now);
1443 
1444 	/* Update delivered info for the new segment */
1445 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1446 
1447 	/* If this packet has been sent out already, we must
1448 	 * adjust the various packet counters.
1449 	 */
1450 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1451 		int diff = old_factor - tcp_skb_pcount(skb) -
1452 			tcp_skb_pcount(buff);
1453 
1454 		if (diff)
1455 			tcp_adjust_pcount(sk, skb, diff);
1456 	}
1457 
1458 	/* Link BUFF into the send queue. */
1459 	__skb_header_release(buff);
1460 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1461 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1462 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1463 
1464 	return 0;
1465 }
1466 
1467 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1468  * data is not copied, but immediately discarded.
1469  */
1470 static int __pskb_trim_head(struct sk_buff *skb, int len)
1471 {
1472 	struct skb_shared_info *shinfo;
1473 	int i, k, eat;
1474 
1475 	eat = min_t(int, len, skb_headlen(skb));
1476 	if (eat) {
1477 		__skb_pull(skb, eat);
1478 		len -= eat;
1479 		if (!len)
1480 			return 0;
1481 	}
1482 	eat = len;
1483 	k = 0;
1484 	shinfo = skb_shinfo(skb);
1485 	for (i = 0; i < shinfo->nr_frags; i++) {
1486 		int size = skb_frag_size(&shinfo->frags[i]);
1487 
1488 		if (size <= eat) {
1489 			skb_frag_unref(skb, i);
1490 			eat -= size;
1491 		} else {
1492 			shinfo->frags[k] = shinfo->frags[i];
1493 			if (eat) {
1494 				skb_frag_off_add(&shinfo->frags[k], eat);
1495 				skb_frag_size_sub(&shinfo->frags[k], eat);
1496 				eat = 0;
1497 			}
1498 			k++;
1499 		}
1500 	}
1501 	shinfo->nr_frags = k;
1502 
1503 	skb->data_len -= len;
1504 	skb->len = skb->data_len;
1505 	return len;
1506 }
1507 
1508 /* Remove acked data from a packet in the transmit queue. */
1509 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1510 {
1511 	u32 delta_truesize;
1512 
1513 	if (skb_unclone(skb, GFP_ATOMIC))
1514 		return -ENOMEM;
1515 
1516 	delta_truesize = __pskb_trim_head(skb, len);
1517 
1518 	TCP_SKB_CB(skb)->seq += len;
1519 	skb->ip_summed = CHECKSUM_PARTIAL;
1520 
1521 	if (delta_truesize) {
1522 		skb->truesize	   -= delta_truesize;
1523 		sk_wmem_queued_add(sk, -delta_truesize);
1524 		sk_mem_uncharge(sk, delta_truesize);
1525 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1526 	}
1527 
1528 	/* Any change of skb->len requires recalculation of tso factor. */
1529 	if (tcp_skb_pcount(skb) > 1)
1530 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1531 
1532 	return 0;
1533 }
1534 
1535 /* Calculate MSS not accounting any TCP options.  */
1536 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1537 {
1538 	const struct tcp_sock *tp = tcp_sk(sk);
1539 	const struct inet_connection_sock *icsk = inet_csk(sk);
1540 	int mss_now;
1541 
1542 	/* Calculate base mss without TCP options:
1543 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1544 	 */
1545 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1546 
1547 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1548 	if (icsk->icsk_af_ops->net_frag_header_len) {
1549 		const struct dst_entry *dst = __sk_dst_get(sk);
1550 
1551 		if (dst && dst_allfrag(dst))
1552 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1553 	}
1554 
1555 	/* Clamp it (mss_clamp does not include tcp options) */
1556 	if (mss_now > tp->rx_opt.mss_clamp)
1557 		mss_now = tp->rx_opt.mss_clamp;
1558 
1559 	/* Now subtract optional transport overhead */
1560 	mss_now -= icsk->icsk_ext_hdr_len;
1561 
1562 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1563 	mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1564 	return mss_now;
1565 }
1566 
1567 /* Calculate MSS. Not accounting for SACKs here.  */
1568 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1569 {
1570 	/* Subtract TCP options size, not including SACKs */
1571 	return __tcp_mtu_to_mss(sk, pmtu) -
1572 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1573 }
1574 
1575 /* Inverse of above */
1576 int tcp_mss_to_mtu(struct sock *sk, int mss)
1577 {
1578 	const struct tcp_sock *tp = tcp_sk(sk);
1579 	const struct inet_connection_sock *icsk = inet_csk(sk);
1580 	int mtu;
1581 
1582 	mtu = mss +
1583 	      tp->tcp_header_len +
1584 	      icsk->icsk_ext_hdr_len +
1585 	      icsk->icsk_af_ops->net_header_len;
1586 
1587 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1588 	if (icsk->icsk_af_ops->net_frag_header_len) {
1589 		const struct dst_entry *dst = __sk_dst_get(sk);
1590 
1591 		if (dst && dst_allfrag(dst))
1592 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1593 	}
1594 	return mtu;
1595 }
1596 EXPORT_SYMBOL(tcp_mss_to_mtu);
1597 
1598 /* MTU probing init per socket */
1599 void tcp_mtup_init(struct sock *sk)
1600 {
1601 	struct tcp_sock *tp = tcp_sk(sk);
1602 	struct inet_connection_sock *icsk = inet_csk(sk);
1603 	struct net *net = sock_net(sk);
1604 
1605 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1606 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1607 			       icsk->icsk_af_ops->net_header_len;
1608 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1609 	icsk->icsk_mtup.probe_size = 0;
1610 	if (icsk->icsk_mtup.enabled)
1611 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1612 }
1613 EXPORT_SYMBOL(tcp_mtup_init);
1614 
1615 /* This function synchronize snd mss to current pmtu/exthdr set.
1616 
1617    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1618    for TCP options, but includes only bare TCP header.
1619 
1620    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1621    It is minimum of user_mss and mss received with SYN.
1622    It also does not include TCP options.
1623 
1624    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1625 
1626    tp->mss_cache is current effective sending mss, including
1627    all tcp options except for SACKs. It is evaluated,
1628    taking into account current pmtu, but never exceeds
1629    tp->rx_opt.mss_clamp.
1630 
1631    NOTE1. rfc1122 clearly states that advertised MSS
1632    DOES NOT include either tcp or ip options.
1633 
1634    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1635    are READ ONLY outside this function.		--ANK (980731)
1636  */
1637 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1638 {
1639 	struct tcp_sock *tp = tcp_sk(sk);
1640 	struct inet_connection_sock *icsk = inet_csk(sk);
1641 	int mss_now;
1642 
1643 	if (icsk->icsk_mtup.search_high > pmtu)
1644 		icsk->icsk_mtup.search_high = pmtu;
1645 
1646 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1647 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1648 
1649 	/* And store cached results */
1650 	icsk->icsk_pmtu_cookie = pmtu;
1651 	if (icsk->icsk_mtup.enabled)
1652 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1653 	tp->mss_cache = mss_now;
1654 
1655 	return mss_now;
1656 }
1657 EXPORT_SYMBOL(tcp_sync_mss);
1658 
1659 /* Compute the current effective MSS, taking SACKs and IP options,
1660  * and even PMTU discovery events into account.
1661  */
1662 unsigned int tcp_current_mss(struct sock *sk)
1663 {
1664 	const struct tcp_sock *tp = tcp_sk(sk);
1665 	const struct dst_entry *dst = __sk_dst_get(sk);
1666 	u32 mss_now;
1667 	unsigned int header_len;
1668 	struct tcp_out_options opts;
1669 	struct tcp_md5sig_key *md5;
1670 
1671 	mss_now = tp->mss_cache;
1672 
1673 	if (dst) {
1674 		u32 mtu = dst_mtu(dst);
1675 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1676 			mss_now = tcp_sync_mss(sk, mtu);
1677 	}
1678 
1679 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1680 		     sizeof(struct tcphdr);
1681 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1682 	 * some common options. If this is an odd packet (because we have SACK
1683 	 * blocks etc) then our calculated header_len will be different, and
1684 	 * we have to adjust mss_now correspondingly */
1685 	if (header_len != tp->tcp_header_len) {
1686 		int delta = (int) header_len - tp->tcp_header_len;
1687 		mss_now -= delta;
1688 	}
1689 
1690 	return mss_now;
1691 }
1692 
1693 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1694  * As additional protections, we do not touch cwnd in retransmission phases,
1695  * and if application hit its sndbuf limit recently.
1696  */
1697 static void tcp_cwnd_application_limited(struct sock *sk)
1698 {
1699 	struct tcp_sock *tp = tcp_sk(sk);
1700 
1701 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1702 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1703 		/* Limited by application or receiver window. */
1704 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1705 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1706 		if (win_used < tp->snd_cwnd) {
1707 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1708 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1709 		}
1710 		tp->snd_cwnd_used = 0;
1711 	}
1712 	tp->snd_cwnd_stamp = tcp_jiffies32;
1713 }
1714 
1715 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1716 {
1717 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1718 	struct tcp_sock *tp = tcp_sk(sk);
1719 
1720 	/* Track the maximum number of outstanding packets in each
1721 	 * window, and remember whether we were cwnd-limited then.
1722 	 */
1723 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1724 	    tp->packets_out > tp->max_packets_out) {
1725 		tp->max_packets_out = tp->packets_out;
1726 		tp->max_packets_seq = tp->snd_nxt;
1727 		tp->is_cwnd_limited = is_cwnd_limited;
1728 	}
1729 
1730 	if (tcp_is_cwnd_limited(sk)) {
1731 		/* Network is feed fully. */
1732 		tp->snd_cwnd_used = 0;
1733 		tp->snd_cwnd_stamp = tcp_jiffies32;
1734 	} else {
1735 		/* Network starves. */
1736 		if (tp->packets_out > tp->snd_cwnd_used)
1737 			tp->snd_cwnd_used = tp->packets_out;
1738 
1739 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1740 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1741 		    !ca_ops->cong_control)
1742 			tcp_cwnd_application_limited(sk);
1743 
1744 		/* The following conditions together indicate the starvation
1745 		 * is caused by insufficient sender buffer:
1746 		 * 1) just sent some data (see tcp_write_xmit)
1747 		 * 2) not cwnd limited (this else condition)
1748 		 * 3) no more data to send (tcp_write_queue_empty())
1749 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1750 		 */
1751 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1752 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1753 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1754 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1755 	}
1756 }
1757 
1758 /* Minshall's variant of the Nagle send check. */
1759 static bool tcp_minshall_check(const struct tcp_sock *tp)
1760 {
1761 	return after(tp->snd_sml, tp->snd_una) &&
1762 		!after(tp->snd_sml, tp->snd_nxt);
1763 }
1764 
1765 /* Update snd_sml if this skb is under mss
1766  * Note that a TSO packet might end with a sub-mss segment
1767  * The test is really :
1768  * if ((skb->len % mss) != 0)
1769  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1770  * But we can avoid doing the divide again given we already have
1771  *  skb_pcount = skb->len / mss_now
1772  */
1773 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1774 				const struct sk_buff *skb)
1775 {
1776 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1777 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1778 }
1779 
1780 /* Return false, if packet can be sent now without violation Nagle's rules:
1781  * 1. It is full sized. (provided by caller in %partial bool)
1782  * 2. Or it contains FIN. (already checked by caller)
1783  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1784  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1785  *    With Minshall's modification: all sent small packets are ACKed.
1786  */
1787 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1788 			    int nonagle)
1789 {
1790 	return partial &&
1791 		((nonagle & TCP_NAGLE_CORK) ||
1792 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1793 }
1794 
1795 /* Return how many segs we'd like on a TSO packet,
1796  * to send one TSO packet per ms
1797  */
1798 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1799 			    int min_tso_segs)
1800 {
1801 	u32 bytes, segs;
1802 
1803 	bytes = min_t(unsigned long,
1804 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1805 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1806 
1807 	/* Goal is to send at least one packet per ms,
1808 	 * not one big TSO packet every 100 ms.
1809 	 * This preserves ACK clocking and is consistent
1810 	 * with tcp_tso_should_defer() heuristic.
1811 	 */
1812 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1813 
1814 	return segs;
1815 }
1816 
1817 /* Return the number of segments we want in the skb we are transmitting.
1818  * See if congestion control module wants to decide; otherwise, autosize.
1819  */
1820 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1821 {
1822 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1823 	u32 min_tso, tso_segs;
1824 
1825 	min_tso = ca_ops->min_tso_segs ?
1826 			ca_ops->min_tso_segs(sk) :
1827 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1828 
1829 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1830 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1831 }
1832 
1833 /* Returns the portion of skb which can be sent right away */
1834 static unsigned int tcp_mss_split_point(const struct sock *sk,
1835 					const struct sk_buff *skb,
1836 					unsigned int mss_now,
1837 					unsigned int max_segs,
1838 					int nonagle)
1839 {
1840 	const struct tcp_sock *tp = tcp_sk(sk);
1841 	u32 partial, needed, window, max_len;
1842 
1843 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1844 	max_len = mss_now * max_segs;
1845 
1846 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1847 		return max_len;
1848 
1849 	needed = min(skb->len, window);
1850 
1851 	if (max_len <= needed)
1852 		return max_len;
1853 
1854 	partial = needed % mss_now;
1855 	/* If last segment is not a full MSS, check if Nagle rules allow us
1856 	 * to include this last segment in this skb.
1857 	 * Otherwise, we'll split the skb at last MSS boundary
1858 	 */
1859 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1860 		return needed - partial;
1861 
1862 	return needed;
1863 }
1864 
1865 /* Can at least one segment of SKB be sent right now, according to the
1866  * congestion window rules?  If so, return how many segments are allowed.
1867  */
1868 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1869 					 const struct sk_buff *skb)
1870 {
1871 	u32 in_flight, cwnd, halfcwnd;
1872 
1873 	/* Don't be strict about the congestion window for the final FIN.  */
1874 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1875 	    tcp_skb_pcount(skb) == 1)
1876 		return 1;
1877 
1878 	in_flight = tcp_packets_in_flight(tp);
1879 	cwnd = tp->snd_cwnd;
1880 	if (in_flight >= cwnd)
1881 		return 0;
1882 
1883 	/* For better scheduling, ensure we have at least
1884 	 * 2 GSO packets in flight.
1885 	 */
1886 	halfcwnd = max(cwnd >> 1, 1U);
1887 	return min(halfcwnd, cwnd - in_flight);
1888 }
1889 
1890 /* Initialize TSO state of a skb.
1891  * This must be invoked the first time we consider transmitting
1892  * SKB onto the wire.
1893  */
1894 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1895 {
1896 	int tso_segs = tcp_skb_pcount(skb);
1897 
1898 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1899 		tcp_set_skb_tso_segs(skb, mss_now);
1900 		tso_segs = tcp_skb_pcount(skb);
1901 	}
1902 	return tso_segs;
1903 }
1904 
1905 
1906 /* Return true if the Nagle test allows this packet to be
1907  * sent now.
1908  */
1909 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1910 				  unsigned int cur_mss, int nonagle)
1911 {
1912 	/* Nagle rule does not apply to frames, which sit in the middle of the
1913 	 * write_queue (they have no chances to get new data).
1914 	 *
1915 	 * This is implemented in the callers, where they modify the 'nonagle'
1916 	 * argument based upon the location of SKB in the send queue.
1917 	 */
1918 	if (nonagle & TCP_NAGLE_PUSH)
1919 		return true;
1920 
1921 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1922 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1923 		return true;
1924 
1925 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1926 		return true;
1927 
1928 	return false;
1929 }
1930 
1931 /* Does at least the first segment of SKB fit into the send window? */
1932 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1933 			     const struct sk_buff *skb,
1934 			     unsigned int cur_mss)
1935 {
1936 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1937 
1938 	if (skb->len > cur_mss)
1939 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1940 
1941 	return !after(end_seq, tcp_wnd_end(tp));
1942 }
1943 
1944 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1945  * which is put after SKB on the list.  It is very much like
1946  * tcp_fragment() except that it may make several kinds of assumptions
1947  * in order to speed up the splitting operation.  In particular, we
1948  * know that all the data is in scatter-gather pages, and that the
1949  * packet has never been sent out before (and thus is not cloned).
1950  */
1951 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1952 			unsigned int mss_now, gfp_t gfp)
1953 {
1954 	int nlen = skb->len - len;
1955 	struct sk_buff *buff;
1956 	u8 flags;
1957 
1958 	/* All of a TSO frame must be composed of paged data.  */
1959 	if (skb->len != skb->data_len)
1960 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1961 				    skb, len, mss_now, gfp);
1962 
1963 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1964 	if (unlikely(!buff))
1965 		return -ENOMEM;
1966 	skb_copy_decrypted(buff, skb);
1967 
1968 	sk_wmem_queued_add(sk, buff->truesize);
1969 	sk_mem_charge(sk, buff->truesize);
1970 	buff->truesize += nlen;
1971 	skb->truesize -= nlen;
1972 
1973 	/* Correct the sequence numbers. */
1974 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1975 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1976 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1977 
1978 	/* PSH and FIN should only be set in the second packet. */
1979 	flags = TCP_SKB_CB(skb)->tcp_flags;
1980 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1981 	TCP_SKB_CB(buff)->tcp_flags = flags;
1982 
1983 	/* This packet was never sent out yet, so no SACK bits. */
1984 	TCP_SKB_CB(buff)->sacked = 0;
1985 
1986 	tcp_skb_fragment_eor(skb, buff);
1987 
1988 	buff->ip_summed = CHECKSUM_PARTIAL;
1989 	skb_split(skb, buff, len);
1990 	tcp_fragment_tstamp(skb, buff);
1991 
1992 	/* Fix up tso_factor for both original and new SKB.  */
1993 	tcp_set_skb_tso_segs(skb, mss_now);
1994 	tcp_set_skb_tso_segs(buff, mss_now);
1995 
1996 	/* Link BUFF into the send queue. */
1997 	__skb_header_release(buff);
1998 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
1999 
2000 	return 0;
2001 }
2002 
2003 /* Try to defer sending, if possible, in order to minimize the amount
2004  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2005  *
2006  * This algorithm is from John Heffner.
2007  */
2008 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2009 				 bool *is_cwnd_limited,
2010 				 bool *is_rwnd_limited,
2011 				 u32 max_segs)
2012 {
2013 	const struct inet_connection_sock *icsk = inet_csk(sk);
2014 	u32 send_win, cong_win, limit, in_flight;
2015 	struct tcp_sock *tp = tcp_sk(sk);
2016 	struct sk_buff *head;
2017 	int win_divisor;
2018 	s64 delta;
2019 
2020 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2021 		goto send_now;
2022 
2023 	/* Avoid bursty behavior by allowing defer
2024 	 * only if the last write was recent (1 ms).
2025 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2026 	 * packets waiting in a qdisc or device for EDT delivery.
2027 	 */
2028 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2029 	if (delta > 0)
2030 		goto send_now;
2031 
2032 	in_flight = tcp_packets_in_flight(tp);
2033 
2034 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2035 	BUG_ON(tp->snd_cwnd <= in_flight);
2036 
2037 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2038 
2039 	/* From in_flight test above, we know that cwnd > in_flight.  */
2040 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2041 
2042 	limit = min(send_win, cong_win);
2043 
2044 	/* If a full-sized TSO skb can be sent, do it. */
2045 	if (limit >= max_segs * tp->mss_cache)
2046 		goto send_now;
2047 
2048 	/* Middle in queue won't get any more data, full sendable already? */
2049 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2050 		goto send_now;
2051 
2052 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2053 	if (win_divisor) {
2054 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2055 
2056 		/* If at least some fraction of a window is available,
2057 		 * just use it.
2058 		 */
2059 		chunk /= win_divisor;
2060 		if (limit >= chunk)
2061 			goto send_now;
2062 	} else {
2063 		/* Different approach, try not to defer past a single
2064 		 * ACK.  Receiver should ACK every other full sized
2065 		 * frame, so if we have space for more than 3 frames
2066 		 * then send now.
2067 		 */
2068 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2069 			goto send_now;
2070 	}
2071 
2072 	/* TODO : use tsorted_sent_queue ? */
2073 	head = tcp_rtx_queue_head(sk);
2074 	if (!head)
2075 		goto send_now;
2076 	delta = tp->tcp_clock_cache - head->tstamp;
2077 	/* If next ACK is likely to come too late (half srtt), do not defer */
2078 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2079 		goto send_now;
2080 
2081 	/* Ok, it looks like it is advisable to defer.
2082 	 * Three cases are tracked :
2083 	 * 1) We are cwnd-limited
2084 	 * 2) We are rwnd-limited
2085 	 * 3) We are application limited.
2086 	 */
2087 	if (cong_win < send_win) {
2088 		if (cong_win <= skb->len) {
2089 			*is_cwnd_limited = true;
2090 			return true;
2091 		}
2092 	} else {
2093 		if (send_win <= skb->len) {
2094 			*is_rwnd_limited = true;
2095 			return true;
2096 		}
2097 	}
2098 
2099 	/* If this packet won't get more data, do not wait. */
2100 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2101 	    TCP_SKB_CB(skb)->eor)
2102 		goto send_now;
2103 
2104 	return true;
2105 
2106 send_now:
2107 	return false;
2108 }
2109 
2110 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2111 {
2112 	struct inet_connection_sock *icsk = inet_csk(sk);
2113 	struct tcp_sock *tp = tcp_sk(sk);
2114 	struct net *net = sock_net(sk);
2115 	u32 interval;
2116 	s32 delta;
2117 
2118 	interval = net->ipv4.sysctl_tcp_probe_interval;
2119 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2120 	if (unlikely(delta >= interval * HZ)) {
2121 		int mss = tcp_current_mss(sk);
2122 
2123 		/* Update current search range */
2124 		icsk->icsk_mtup.probe_size = 0;
2125 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2126 			sizeof(struct tcphdr) +
2127 			icsk->icsk_af_ops->net_header_len;
2128 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2129 
2130 		/* Update probe time stamp */
2131 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2132 	}
2133 }
2134 
2135 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2136 {
2137 	struct sk_buff *skb, *next;
2138 
2139 	skb = tcp_send_head(sk);
2140 	tcp_for_write_queue_from_safe(skb, next, sk) {
2141 		if (len <= skb->len)
2142 			break;
2143 
2144 		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2145 			return false;
2146 
2147 		len -= skb->len;
2148 	}
2149 
2150 	return true;
2151 }
2152 
2153 /* Create a new MTU probe if we are ready.
2154  * MTU probe is regularly attempting to increase the path MTU by
2155  * deliberately sending larger packets.  This discovers routing
2156  * changes resulting in larger path MTUs.
2157  *
2158  * Returns 0 if we should wait to probe (no cwnd available),
2159  *         1 if a probe was sent,
2160  *         -1 otherwise
2161  */
2162 static int tcp_mtu_probe(struct sock *sk)
2163 {
2164 	struct inet_connection_sock *icsk = inet_csk(sk);
2165 	struct tcp_sock *tp = tcp_sk(sk);
2166 	struct sk_buff *skb, *nskb, *next;
2167 	struct net *net = sock_net(sk);
2168 	int probe_size;
2169 	int size_needed;
2170 	int copy, len;
2171 	int mss_now;
2172 	int interval;
2173 
2174 	/* Not currently probing/verifying,
2175 	 * not in recovery,
2176 	 * have enough cwnd, and
2177 	 * not SACKing (the variable headers throw things off)
2178 	 */
2179 	if (likely(!icsk->icsk_mtup.enabled ||
2180 		   icsk->icsk_mtup.probe_size ||
2181 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2182 		   tp->snd_cwnd < 11 ||
2183 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2184 		return -1;
2185 
2186 	/* Use binary search for probe_size between tcp_mss_base,
2187 	 * and current mss_clamp. if (search_high - search_low)
2188 	 * smaller than a threshold, backoff from probing.
2189 	 */
2190 	mss_now = tcp_current_mss(sk);
2191 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2192 				    icsk->icsk_mtup.search_low) >> 1);
2193 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2194 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2195 	/* When misfortune happens, we are reprobing actively,
2196 	 * and then reprobe timer has expired. We stick with current
2197 	 * probing process by not resetting search range to its orignal.
2198 	 */
2199 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2200 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2201 		/* Check whether enough time has elaplased for
2202 		 * another round of probing.
2203 		 */
2204 		tcp_mtu_check_reprobe(sk);
2205 		return -1;
2206 	}
2207 
2208 	/* Have enough data in the send queue to probe? */
2209 	if (tp->write_seq - tp->snd_nxt < size_needed)
2210 		return -1;
2211 
2212 	if (tp->snd_wnd < size_needed)
2213 		return -1;
2214 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2215 		return 0;
2216 
2217 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2218 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2219 		if (!tcp_packets_in_flight(tp))
2220 			return -1;
2221 		else
2222 			return 0;
2223 	}
2224 
2225 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2226 		return -1;
2227 
2228 	/* We're allowed to probe.  Build it now. */
2229 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2230 	if (!nskb)
2231 		return -1;
2232 	sk_wmem_queued_add(sk, nskb->truesize);
2233 	sk_mem_charge(sk, nskb->truesize);
2234 
2235 	skb = tcp_send_head(sk);
2236 	skb_copy_decrypted(nskb, skb);
2237 
2238 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2239 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2240 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2241 	TCP_SKB_CB(nskb)->sacked = 0;
2242 	nskb->csum = 0;
2243 	nskb->ip_summed = CHECKSUM_PARTIAL;
2244 
2245 	tcp_insert_write_queue_before(nskb, skb, sk);
2246 	tcp_highest_sack_replace(sk, skb, nskb);
2247 
2248 	len = 0;
2249 	tcp_for_write_queue_from_safe(skb, next, sk) {
2250 		copy = min_t(int, skb->len, probe_size - len);
2251 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2252 
2253 		if (skb->len <= copy) {
2254 			/* We've eaten all the data from this skb.
2255 			 * Throw it away. */
2256 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2257 			/* If this is the last SKB we copy and eor is set
2258 			 * we need to propagate it to the new skb.
2259 			 */
2260 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2261 			tcp_skb_collapse_tstamp(nskb, skb);
2262 			tcp_unlink_write_queue(skb, sk);
2263 			sk_wmem_free_skb(sk, skb);
2264 		} else {
2265 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2266 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2267 			if (!skb_shinfo(skb)->nr_frags) {
2268 				skb_pull(skb, copy);
2269 			} else {
2270 				__pskb_trim_head(skb, copy);
2271 				tcp_set_skb_tso_segs(skb, mss_now);
2272 			}
2273 			TCP_SKB_CB(skb)->seq += copy;
2274 		}
2275 
2276 		len += copy;
2277 
2278 		if (len >= probe_size)
2279 			break;
2280 	}
2281 	tcp_init_tso_segs(nskb, nskb->len);
2282 
2283 	/* We're ready to send.  If this fails, the probe will
2284 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2285 	 */
2286 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2287 		/* Decrement cwnd here because we are sending
2288 		 * effectively two packets. */
2289 		tp->snd_cwnd--;
2290 		tcp_event_new_data_sent(sk, nskb);
2291 
2292 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2293 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2294 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2295 
2296 		return 1;
2297 	}
2298 
2299 	return -1;
2300 }
2301 
2302 static bool tcp_pacing_check(struct sock *sk)
2303 {
2304 	struct tcp_sock *tp = tcp_sk(sk);
2305 
2306 	if (!tcp_needs_internal_pacing(sk))
2307 		return false;
2308 
2309 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2310 		return false;
2311 
2312 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2313 		hrtimer_start(&tp->pacing_timer,
2314 			      ns_to_ktime(tp->tcp_wstamp_ns),
2315 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2316 		sock_hold(sk);
2317 	}
2318 	return true;
2319 }
2320 
2321 /* TCP Small Queues :
2322  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2323  * (These limits are doubled for retransmits)
2324  * This allows for :
2325  *  - better RTT estimation and ACK scheduling
2326  *  - faster recovery
2327  *  - high rates
2328  * Alas, some drivers / subsystems require a fair amount
2329  * of queued bytes to ensure line rate.
2330  * One example is wifi aggregation (802.11 AMPDU)
2331  */
2332 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2333 				  unsigned int factor)
2334 {
2335 	unsigned long limit;
2336 
2337 	limit = max_t(unsigned long,
2338 		      2 * skb->truesize,
2339 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2340 	if (sk->sk_pacing_status == SK_PACING_NONE)
2341 		limit = min_t(unsigned long, limit,
2342 			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2343 	limit <<= factor;
2344 
2345 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2346 	    tcp_sk(sk)->tcp_tx_delay) {
2347 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2348 
2349 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2350 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2351 		 * USEC_PER_SEC is approximated by 2^20.
2352 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2353 		 */
2354 		extra_bytes >>= (20 - 1);
2355 		limit += extra_bytes;
2356 	}
2357 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2358 		/* Always send skb if rtx queue is empty.
2359 		 * No need to wait for TX completion to call us back,
2360 		 * after softirq/tasklet schedule.
2361 		 * This helps when TX completions are delayed too much.
2362 		 */
2363 		if (tcp_rtx_queue_empty(sk))
2364 			return false;
2365 
2366 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2367 		/* It is possible TX completion already happened
2368 		 * before we set TSQ_THROTTLED, so we must
2369 		 * test again the condition.
2370 		 */
2371 		smp_mb__after_atomic();
2372 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2373 			return true;
2374 	}
2375 	return false;
2376 }
2377 
2378 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2379 {
2380 	const u32 now = tcp_jiffies32;
2381 	enum tcp_chrono old = tp->chrono_type;
2382 
2383 	if (old > TCP_CHRONO_UNSPEC)
2384 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2385 	tp->chrono_start = now;
2386 	tp->chrono_type = new;
2387 }
2388 
2389 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2390 {
2391 	struct tcp_sock *tp = tcp_sk(sk);
2392 
2393 	/* If there are multiple conditions worthy of tracking in a
2394 	 * chronograph then the highest priority enum takes precedence
2395 	 * over the other conditions. So that if something "more interesting"
2396 	 * starts happening, stop the previous chrono and start a new one.
2397 	 */
2398 	if (type > tp->chrono_type)
2399 		tcp_chrono_set(tp, type);
2400 }
2401 
2402 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2403 {
2404 	struct tcp_sock *tp = tcp_sk(sk);
2405 
2406 
2407 	/* There are multiple conditions worthy of tracking in a
2408 	 * chronograph, so that the highest priority enum takes
2409 	 * precedence over the other conditions (see tcp_chrono_start).
2410 	 * If a condition stops, we only stop chrono tracking if
2411 	 * it's the "most interesting" or current chrono we are
2412 	 * tracking and starts busy chrono if we have pending data.
2413 	 */
2414 	if (tcp_rtx_and_write_queues_empty(sk))
2415 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2416 	else if (type == tp->chrono_type)
2417 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2418 }
2419 
2420 /* This routine writes packets to the network.  It advances the
2421  * send_head.  This happens as incoming acks open up the remote
2422  * window for us.
2423  *
2424  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2425  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2426  * account rare use of URG, this is not a big flaw.
2427  *
2428  * Send at most one packet when push_one > 0. Temporarily ignore
2429  * cwnd limit to force at most one packet out when push_one == 2.
2430 
2431  * Returns true, if no segments are in flight and we have queued segments,
2432  * but cannot send anything now because of SWS or another problem.
2433  */
2434 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2435 			   int push_one, gfp_t gfp)
2436 {
2437 	struct tcp_sock *tp = tcp_sk(sk);
2438 	struct sk_buff *skb;
2439 	unsigned int tso_segs, sent_pkts;
2440 	int cwnd_quota;
2441 	int result;
2442 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2443 	u32 max_segs;
2444 
2445 	sent_pkts = 0;
2446 
2447 	tcp_mstamp_refresh(tp);
2448 	if (!push_one) {
2449 		/* Do MTU probing. */
2450 		result = tcp_mtu_probe(sk);
2451 		if (!result) {
2452 			return false;
2453 		} else if (result > 0) {
2454 			sent_pkts = 1;
2455 		}
2456 	}
2457 
2458 	max_segs = tcp_tso_segs(sk, mss_now);
2459 	while ((skb = tcp_send_head(sk))) {
2460 		unsigned int limit;
2461 
2462 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2463 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2464 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2465 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2466 			tcp_init_tso_segs(skb, mss_now);
2467 			goto repair; /* Skip network transmission */
2468 		}
2469 
2470 		if (tcp_pacing_check(sk))
2471 			break;
2472 
2473 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2474 		BUG_ON(!tso_segs);
2475 
2476 		cwnd_quota = tcp_cwnd_test(tp, skb);
2477 		if (!cwnd_quota) {
2478 			if (push_one == 2)
2479 				/* Force out a loss probe pkt. */
2480 				cwnd_quota = 1;
2481 			else
2482 				break;
2483 		}
2484 
2485 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2486 			is_rwnd_limited = true;
2487 			break;
2488 		}
2489 
2490 		if (tso_segs == 1) {
2491 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2492 						     (tcp_skb_is_last(sk, skb) ?
2493 						      nonagle : TCP_NAGLE_PUSH))))
2494 				break;
2495 		} else {
2496 			if (!push_one &&
2497 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2498 						 &is_rwnd_limited, max_segs))
2499 				break;
2500 		}
2501 
2502 		limit = mss_now;
2503 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2504 			limit = tcp_mss_split_point(sk, skb, mss_now,
2505 						    min_t(unsigned int,
2506 							  cwnd_quota,
2507 							  max_segs),
2508 						    nonagle);
2509 
2510 		if (skb->len > limit &&
2511 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2512 			break;
2513 
2514 		if (tcp_small_queue_check(sk, skb, 0))
2515 			break;
2516 
2517 		/* Argh, we hit an empty skb(), presumably a thread
2518 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2519 		 * We do not want to send a pure-ack packet and have
2520 		 * a strange looking rtx queue with empty packet(s).
2521 		 */
2522 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2523 			break;
2524 
2525 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2526 			break;
2527 
2528 repair:
2529 		/* Advance the send_head.  This one is sent out.
2530 		 * This call will increment packets_out.
2531 		 */
2532 		tcp_event_new_data_sent(sk, skb);
2533 
2534 		tcp_minshall_update(tp, mss_now, skb);
2535 		sent_pkts += tcp_skb_pcount(skb);
2536 
2537 		if (push_one)
2538 			break;
2539 	}
2540 
2541 	if (is_rwnd_limited)
2542 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2543 	else
2544 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2545 
2546 	if (likely(sent_pkts)) {
2547 		if (tcp_in_cwnd_reduction(sk))
2548 			tp->prr_out += sent_pkts;
2549 
2550 		/* Send one loss probe per tail loss episode. */
2551 		if (push_one != 2)
2552 			tcp_schedule_loss_probe(sk, false);
2553 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2554 		tcp_cwnd_validate(sk, is_cwnd_limited);
2555 		return false;
2556 	}
2557 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2558 }
2559 
2560 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2561 {
2562 	struct inet_connection_sock *icsk = inet_csk(sk);
2563 	struct tcp_sock *tp = tcp_sk(sk);
2564 	u32 timeout, rto_delta_us;
2565 	int early_retrans;
2566 
2567 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2568 	 * finishes.
2569 	 */
2570 	if (rcu_access_pointer(tp->fastopen_rsk))
2571 		return false;
2572 
2573 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2574 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2575 	 * not in loss recovery, that are either limited by cwnd or application.
2576 	 */
2577 	if ((early_retrans != 3 && early_retrans != 4) ||
2578 	    !tp->packets_out || !tcp_is_sack(tp) ||
2579 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2580 	     icsk->icsk_ca_state != TCP_CA_CWR))
2581 		return false;
2582 
2583 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2584 	 * for delayed ack when there's one outstanding packet. If no RTT
2585 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2586 	 */
2587 	if (tp->srtt_us) {
2588 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2589 		if (tp->packets_out == 1)
2590 			timeout += TCP_RTO_MIN;
2591 		else
2592 			timeout += TCP_TIMEOUT_MIN;
2593 	} else {
2594 		timeout = TCP_TIMEOUT_INIT;
2595 	}
2596 
2597 	/* If the RTO formula yields an earlier time, then use that time. */
2598 	rto_delta_us = advancing_rto ?
2599 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2600 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2601 	if (rto_delta_us > 0)
2602 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2603 
2604 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2605 	return true;
2606 }
2607 
2608 /* Thanks to skb fast clones, we can detect if a prior transmit of
2609  * a packet is still in a qdisc or driver queue.
2610  * In this case, there is very little point doing a retransmit !
2611  */
2612 static bool skb_still_in_host_queue(const struct sock *sk,
2613 				    const struct sk_buff *skb)
2614 {
2615 	if (unlikely(skb_fclone_busy(sk, skb))) {
2616 		NET_INC_STATS(sock_net(sk),
2617 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2618 		return true;
2619 	}
2620 	return false;
2621 }
2622 
2623 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2624  * retransmit the last segment.
2625  */
2626 void tcp_send_loss_probe(struct sock *sk)
2627 {
2628 	struct tcp_sock *tp = tcp_sk(sk);
2629 	struct sk_buff *skb;
2630 	int pcount;
2631 	int mss = tcp_current_mss(sk);
2632 
2633 	skb = tcp_send_head(sk);
2634 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2635 		pcount = tp->packets_out;
2636 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2637 		if (tp->packets_out > pcount)
2638 			goto probe_sent;
2639 		goto rearm_timer;
2640 	}
2641 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2642 	if (unlikely(!skb)) {
2643 		WARN_ONCE(tp->packets_out,
2644 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2645 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2646 		inet_csk(sk)->icsk_pending = 0;
2647 		return;
2648 	}
2649 
2650 	/* At most one outstanding TLP retransmission. */
2651 	if (tp->tlp_high_seq)
2652 		goto rearm_timer;
2653 
2654 	if (skb_still_in_host_queue(sk, skb))
2655 		goto rearm_timer;
2656 
2657 	pcount = tcp_skb_pcount(skb);
2658 	if (WARN_ON(!pcount))
2659 		goto rearm_timer;
2660 
2661 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2662 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2663 					  (pcount - 1) * mss, mss,
2664 					  GFP_ATOMIC)))
2665 			goto rearm_timer;
2666 		skb = skb_rb_next(skb);
2667 	}
2668 
2669 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2670 		goto rearm_timer;
2671 
2672 	if (__tcp_retransmit_skb(sk, skb, 1))
2673 		goto rearm_timer;
2674 
2675 	/* Record snd_nxt for loss detection. */
2676 	tp->tlp_high_seq = tp->snd_nxt;
2677 
2678 probe_sent:
2679 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2680 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2681 	inet_csk(sk)->icsk_pending = 0;
2682 rearm_timer:
2683 	tcp_rearm_rto(sk);
2684 }
2685 
2686 /* Push out any pending frames which were held back due to
2687  * TCP_CORK or attempt at coalescing tiny packets.
2688  * The socket must be locked by the caller.
2689  */
2690 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2691 			       int nonagle)
2692 {
2693 	/* If we are closed, the bytes will have to remain here.
2694 	 * In time closedown will finish, we empty the write queue and
2695 	 * all will be happy.
2696 	 */
2697 	if (unlikely(sk->sk_state == TCP_CLOSE))
2698 		return;
2699 
2700 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2701 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2702 		tcp_check_probe_timer(sk);
2703 }
2704 
2705 /* Send _single_ skb sitting at the send head. This function requires
2706  * true push pending frames to setup probe timer etc.
2707  */
2708 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2709 {
2710 	struct sk_buff *skb = tcp_send_head(sk);
2711 
2712 	BUG_ON(!skb || skb->len < mss_now);
2713 
2714 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2715 }
2716 
2717 /* This function returns the amount that we can raise the
2718  * usable window based on the following constraints
2719  *
2720  * 1. The window can never be shrunk once it is offered (RFC 793)
2721  * 2. We limit memory per socket
2722  *
2723  * RFC 1122:
2724  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2725  *  RECV.NEXT + RCV.WIN fixed until:
2726  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2727  *
2728  * i.e. don't raise the right edge of the window until you can raise
2729  * it at least MSS bytes.
2730  *
2731  * Unfortunately, the recommended algorithm breaks header prediction,
2732  * since header prediction assumes th->window stays fixed.
2733  *
2734  * Strictly speaking, keeping th->window fixed violates the receiver
2735  * side SWS prevention criteria. The problem is that under this rule
2736  * a stream of single byte packets will cause the right side of the
2737  * window to always advance by a single byte.
2738  *
2739  * Of course, if the sender implements sender side SWS prevention
2740  * then this will not be a problem.
2741  *
2742  * BSD seems to make the following compromise:
2743  *
2744  *	If the free space is less than the 1/4 of the maximum
2745  *	space available and the free space is less than 1/2 mss,
2746  *	then set the window to 0.
2747  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2748  *	Otherwise, just prevent the window from shrinking
2749  *	and from being larger than the largest representable value.
2750  *
2751  * This prevents incremental opening of the window in the regime
2752  * where TCP is limited by the speed of the reader side taking
2753  * data out of the TCP receive queue. It does nothing about
2754  * those cases where the window is constrained on the sender side
2755  * because the pipeline is full.
2756  *
2757  * BSD also seems to "accidentally" limit itself to windows that are a
2758  * multiple of MSS, at least until the free space gets quite small.
2759  * This would appear to be a side effect of the mbuf implementation.
2760  * Combining these two algorithms results in the observed behavior
2761  * of having a fixed window size at almost all times.
2762  *
2763  * Below we obtain similar behavior by forcing the offered window to
2764  * a multiple of the mss when it is feasible to do so.
2765  *
2766  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2767  * Regular options like TIMESTAMP are taken into account.
2768  */
2769 u32 __tcp_select_window(struct sock *sk)
2770 {
2771 	struct inet_connection_sock *icsk = inet_csk(sk);
2772 	struct tcp_sock *tp = tcp_sk(sk);
2773 	/* MSS for the peer's data.  Previous versions used mss_clamp
2774 	 * here.  I don't know if the value based on our guesses
2775 	 * of peer's MSS is better for the performance.  It's more correct
2776 	 * but may be worse for the performance because of rcv_mss
2777 	 * fluctuations.  --SAW  1998/11/1
2778 	 */
2779 	int mss = icsk->icsk_ack.rcv_mss;
2780 	int free_space = tcp_space(sk);
2781 	int allowed_space = tcp_full_space(sk);
2782 	int full_space, window;
2783 
2784 	if (sk_is_mptcp(sk))
2785 		mptcp_space(sk, &free_space, &allowed_space);
2786 
2787 	full_space = min_t(int, tp->window_clamp, allowed_space);
2788 
2789 	if (unlikely(mss > full_space)) {
2790 		mss = full_space;
2791 		if (mss <= 0)
2792 			return 0;
2793 	}
2794 	if (free_space < (full_space >> 1)) {
2795 		icsk->icsk_ack.quick = 0;
2796 
2797 		if (tcp_under_memory_pressure(sk))
2798 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2799 					       4U * tp->advmss);
2800 
2801 		/* free_space might become our new window, make sure we don't
2802 		 * increase it due to wscale.
2803 		 */
2804 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2805 
2806 		/* if free space is less than mss estimate, or is below 1/16th
2807 		 * of the maximum allowed, try to move to zero-window, else
2808 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2809 		 * new incoming data is dropped due to memory limits.
2810 		 * With large window, mss test triggers way too late in order
2811 		 * to announce zero window in time before rmem limit kicks in.
2812 		 */
2813 		if (free_space < (allowed_space >> 4) || free_space < mss)
2814 			return 0;
2815 	}
2816 
2817 	if (free_space > tp->rcv_ssthresh)
2818 		free_space = tp->rcv_ssthresh;
2819 
2820 	/* Don't do rounding if we are using window scaling, since the
2821 	 * scaled window will not line up with the MSS boundary anyway.
2822 	 */
2823 	if (tp->rx_opt.rcv_wscale) {
2824 		window = free_space;
2825 
2826 		/* Advertise enough space so that it won't get scaled away.
2827 		 * Import case: prevent zero window announcement if
2828 		 * 1<<rcv_wscale > mss.
2829 		 */
2830 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2831 	} else {
2832 		window = tp->rcv_wnd;
2833 		/* Get the largest window that is a nice multiple of mss.
2834 		 * Window clamp already applied above.
2835 		 * If our current window offering is within 1 mss of the
2836 		 * free space we just keep it. This prevents the divide
2837 		 * and multiply from happening most of the time.
2838 		 * We also don't do any window rounding when the free space
2839 		 * is too small.
2840 		 */
2841 		if (window <= free_space - mss || window > free_space)
2842 			window = rounddown(free_space, mss);
2843 		else if (mss == full_space &&
2844 			 free_space > window + (full_space >> 1))
2845 			window = free_space;
2846 	}
2847 
2848 	return window;
2849 }
2850 
2851 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2852 			     const struct sk_buff *next_skb)
2853 {
2854 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2855 		const struct skb_shared_info *next_shinfo =
2856 			skb_shinfo(next_skb);
2857 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2858 
2859 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2860 		shinfo->tskey = next_shinfo->tskey;
2861 		TCP_SKB_CB(skb)->txstamp_ack |=
2862 			TCP_SKB_CB(next_skb)->txstamp_ack;
2863 	}
2864 }
2865 
2866 /* Collapses two adjacent SKB's during retransmission. */
2867 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2868 {
2869 	struct tcp_sock *tp = tcp_sk(sk);
2870 	struct sk_buff *next_skb = skb_rb_next(skb);
2871 	int next_skb_size;
2872 
2873 	next_skb_size = next_skb->len;
2874 
2875 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2876 
2877 	if (next_skb_size) {
2878 		if (next_skb_size <= skb_availroom(skb))
2879 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2880 				      next_skb_size);
2881 		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2882 			return false;
2883 	}
2884 	tcp_highest_sack_replace(sk, next_skb, skb);
2885 
2886 	/* Update sequence range on original skb. */
2887 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2888 
2889 	/* Merge over control information. This moves PSH/FIN etc. over */
2890 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2891 
2892 	/* All done, get rid of second SKB and account for it so
2893 	 * packet counting does not break.
2894 	 */
2895 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2896 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2897 
2898 	/* changed transmit queue under us so clear hints */
2899 	tcp_clear_retrans_hints_partial(tp);
2900 	if (next_skb == tp->retransmit_skb_hint)
2901 		tp->retransmit_skb_hint = skb;
2902 
2903 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2904 
2905 	tcp_skb_collapse_tstamp(skb, next_skb);
2906 
2907 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2908 	return true;
2909 }
2910 
2911 /* Check if coalescing SKBs is legal. */
2912 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2913 {
2914 	if (tcp_skb_pcount(skb) > 1)
2915 		return false;
2916 	if (skb_cloned(skb))
2917 		return false;
2918 	/* Some heuristics for collapsing over SACK'd could be invented */
2919 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2920 		return false;
2921 
2922 	return true;
2923 }
2924 
2925 /* Collapse packets in the retransmit queue to make to create
2926  * less packets on the wire. This is only done on retransmission.
2927  */
2928 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2929 				     int space)
2930 {
2931 	struct tcp_sock *tp = tcp_sk(sk);
2932 	struct sk_buff *skb = to, *tmp;
2933 	bool first = true;
2934 
2935 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2936 		return;
2937 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2938 		return;
2939 
2940 	skb_rbtree_walk_from_safe(skb, tmp) {
2941 		if (!tcp_can_collapse(sk, skb))
2942 			break;
2943 
2944 		if (!tcp_skb_can_collapse(to, skb))
2945 			break;
2946 
2947 		space -= skb->len;
2948 
2949 		if (first) {
2950 			first = false;
2951 			continue;
2952 		}
2953 
2954 		if (space < 0)
2955 			break;
2956 
2957 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2958 			break;
2959 
2960 		if (!tcp_collapse_retrans(sk, to))
2961 			break;
2962 	}
2963 }
2964 
2965 /* This retransmits one SKB.  Policy decisions and retransmit queue
2966  * state updates are done by the caller.  Returns non-zero if an
2967  * error occurred which prevented the send.
2968  */
2969 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2970 {
2971 	struct inet_connection_sock *icsk = inet_csk(sk);
2972 	struct tcp_sock *tp = tcp_sk(sk);
2973 	unsigned int cur_mss;
2974 	int diff, len, err;
2975 
2976 
2977 	/* Inconclusive MTU probe */
2978 	if (icsk->icsk_mtup.probe_size)
2979 		icsk->icsk_mtup.probe_size = 0;
2980 
2981 	/* Do not sent more than we queued. 1/4 is reserved for possible
2982 	 * copying overhead: fragmentation, tunneling, mangling etc.
2983 	 */
2984 	if (refcount_read(&sk->sk_wmem_alloc) >
2985 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2986 		  sk->sk_sndbuf))
2987 		return -EAGAIN;
2988 
2989 	if (skb_still_in_host_queue(sk, skb))
2990 		return -EBUSY;
2991 
2992 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2993 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2994 			WARN_ON_ONCE(1);
2995 			return -EINVAL;
2996 		}
2997 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2998 			return -ENOMEM;
2999 	}
3000 
3001 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3002 		return -EHOSTUNREACH; /* Routing failure or similar. */
3003 
3004 	cur_mss = tcp_current_mss(sk);
3005 
3006 	/* If receiver has shrunk his window, and skb is out of
3007 	 * new window, do not retransmit it. The exception is the
3008 	 * case, when window is shrunk to zero. In this case
3009 	 * our retransmit serves as a zero window probe.
3010 	 */
3011 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3012 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
3013 		return -EAGAIN;
3014 
3015 	len = cur_mss * segs;
3016 	if (skb->len > len) {
3017 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3018 				 cur_mss, GFP_ATOMIC))
3019 			return -ENOMEM; /* We'll try again later. */
3020 	} else {
3021 		if (skb_unclone(skb, GFP_ATOMIC))
3022 			return -ENOMEM;
3023 
3024 		diff = tcp_skb_pcount(skb);
3025 		tcp_set_skb_tso_segs(skb, cur_mss);
3026 		diff -= tcp_skb_pcount(skb);
3027 		if (diff)
3028 			tcp_adjust_pcount(sk, skb, diff);
3029 		if (skb->len < cur_mss)
3030 			tcp_retrans_try_collapse(sk, skb, cur_mss);
3031 	}
3032 
3033 	/* RFC3168, section 6.1.1.1. ECN fallback */
3034 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3035 		tcp_ecn_clear_syn(sk, skb);
3036 
3037 	/* Update global and local TCP statistics. */
3038 	segs = tcp_skb_pcount(skb);
3039 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3040 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3041 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3042 	tp->total_retrans += segs;
3043 	tp->bytes_retrans += skb->len;
3044 
3045 	/* make sure skb->data is aligned on arches that require it
3046 	 * and check if ack-trimming & collapsing extended the headroom
3047 	 * beyond what csum_start can cover.
3048 	 */
3049 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3050 		     skb_headroom(skb) >= 0xFFFF)) {
3051 		struct sk_buff *nskb;
3052 
3053 		tcp_skb_tsorted_save(skb) {
3054 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3055 			if (nskb) {
3056 				nskb->dev = NULL;
3057 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3058 			} else {
3059 				err = -ENOBUFS;
3060 			}
3061 		} tcp_skb_tsorted_restore(skb);
3062 
3063 		if (!err) {
3064 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3065 			tcp_rate_skb_sent(sk, skb);
3066 		}
3067 	} else {
3068 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3069 	}
3070 
3071 	/* To avoid taking spuriously low RTT samples based on a timestamp
3072 	 * for a transmit that never happened, always mark EVER_RETRANS
3073 	 */
3074 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3075 
3076 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3077 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3078 				  TCP_SKB_CB(skb)->seq, segs, err);
3079 
3080 	if (likely(!err)) {
3081 		trace_tcp_retransmit_skb(sk, skb);
3082 	} else if (err != -EBUSY) {
3083 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3084 	}
3085 	return err;
3086 }
3087 
3088 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3089 {
3090 	struct tcp_sock *tp = tcp_sk(sk);
3091 	int err = __tcp_retransmit_skb(sk, skb, segs);
3092 
3093 	if (err == 0) {
3094 #if FASTRETRANS_DEBUG > 0
3095 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3096 			net_dbg_ratelimited("retrans_out leaked\n");
3097 		}
3098 #endif
3099 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3100 		tp->retrans_out += tcp_skb_pcount(skb);
3101 	}
3102 
3103 	/* Save stamp of the first (attempted) retransmit. */
3104 	if (!tp->retrans_stamp)
3105 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3106 
3107 	if (tp->undo_retrans < 0)
3108 		tp->undo_retrans = 0;
3109 	tp->undo_retrans += tcp_skb_pcount(skb);
3110 	return err;
3111 }
3112 
3113 /* This gets called after a retransmit timeout, and the initially
3114  * retransmitted data is acknowledged.  It tries to continue
3115  * resending the rest of the retransmit queue, until either
3116  * we've sent it all or the congestion window limit is reached.
3117  */
3118 void tcp_xmit_retransmit_queue(struct sock *sk)
3119 {
3120 	const struct inet_connection_sock *icsk = inet_csk(sk);
3121 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3122 	struct tcp_sock *tp = tcp_sk(sk);
3123 	bool rearm_timer = false;
3124 	u32 max_segs;
3125 	int mib_idx;
3126 
3127 	if (!tp->packets_out)
3128 		return;
3129 
3130 	rtx_head = tcp_rtx_queue_head(sk);
3131 	skb = tp->retransmit_skb_hint ?: rtx_head;
3132 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3133 	skb_rbtree_walk_from(skb) {
3134 		__u8 sacked;
3135 		int segs;
3136 
3137 		if (tcp_pacing_check(sk))
3138 			break;
3139 
3140 		/* we could do better than to assign each time */
3141 		if (!hole)
3142 			tp->retransmit_skb_hint = skb;
3143 
3144 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3145 		if (segs <= 0)
3146 			break;
3147 		sacked = TCP_SKB_CB(skb)->sacked;
3148 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3149 		 * we need to make sure not sending too bigs TSO packets
3150 		 */
3151 		segs = min_t(int, segs, max_segs);
3152 
3153 		if (tp->retrans_out >= tp->lost_out) {
3154 			break;
3155 		} else if (!(sacked & TCPCB_LOST)) {
3156 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3157 				hole = skb;
3158 			continue;
3159 
3160 		} else {
3161 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3162 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3163 			else
3164 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3165 		}
3166 
3167 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3168 			continue;
3169 
3170 		if (tcp_small_queue_check(sk, skb, 1))
3171 			break;
3172 
3173 		if (tcp_retransmit_skb(sk, skb, segs))
3174 			break;
3175 
3176 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3177 
3178 		if (tcp_in_cwnd_reduction(sk))
3179 			tp->prr_out += tcp_skb_pcount(skb);
3180 
3181 		if (skb == rtx_head &&
3182 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3183 			rearm_timer = true;
3184 
3185 	}
3186 	if (rearm_timer)
3187 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3188 				     inet_csk(sk)->icsk_rto,
3189 				     TCP_RTO_MAX);
3190 }
3191 
3192 /* We allow to exceed memory limits for FIN packets to expedite
3193  * connection tear down and (memory) recovery.
3194  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3195  * or even be forced to close flow without any FIN.
3196  * In general, we want to allow one skb per socket to avoid hangs
3197  * with edge trigger epoll()
3198  */
3199 void sk_forced_mem_schedule(struct sock *sk, int size)
3200 {
3201 	int amt;
3202 
3203 	if (size <= sk->sk_forward_alloc)
3204 		return;
3205 	amt = sk_mem_pages(size);
3206 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3207 	sk_memory_allocated_add(sk, amt);
3208 
3209 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3210 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3211 }
3212 
3213 /* Send a FIN. The caller locks the socket for us.
3214  * We should try to send a FIN packet really hard, but eventually give up.
3215  */
3216 void tcp_send_fin(struct sock *sk)
3217 {
3218 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3219 	struct tcp_sock *tp = tcp_sk(sk);
3220 
3221 	/* Optimization, tack on the FIN if we have one skb in write queue and
3222 	 * this skb was not yet sent, or we are under memory pressure.
3223 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3224 	 * as TCP stack thinks it has already been transmitted.
3225 	 */
3226 	tskb = tail;
3227 	if (!tskb && tcp_under_memory_pressure(sk))
3228 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3229 
3230 	if (tskb) {
3231 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3232 		TCP_SKB_CB(tskb)->end_seq++;
3233 		tp->write_seq++;
3234 		if (!tail) {
3235 			/* This means tskb was already sent.
3236 			 * Pretend we included the FIN on previous transmit.
3237 			 * We need to set tp->snd_nxt to the value it would have
3238 			 * if FIN had been sent. This is because retransmit path
3239 			 * does not change tp->snd_nxt.
3240 			 */
3241 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3242 			return;
3243 		}
3244 	} else {
3245 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3246 		if (unlikely(!skb))
3247 			return;
3248 
3249 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3250 		skb_reserve(skb, MAX_TCP_HEADER);
3251 		sk_forced_mem_schedule(sk, skb->truesize);
3252 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3253 		tcp_init_nondata_skb(skb, tp->write_seq,
3254 				     TCPHDR_ACK | TCPHDR_FIN);
3255 		tcp_queue_skb(sk, skb);
3256 	}
3257 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3258 }
3259 
3260 /* We get here when a process closes a file descriptor (either due to
3261  * an explicit close() or as a byproduct of exit()'ing) and there
3262  * was unread data in the receive queue.  This behavior is recommended
3263  * by RFC 2525, section 2.17.  -DaveM
3264  */
3265 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3266 {
3267 	struct sk_buff *skb;
3268 
3269 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3270 
3271 	/* NOTE: No TCP options attached and we never retransmit this. */
3272 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3273 	if (!skb) {
3274 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3275 		return;
3276 	}
3277 
3278 	/* Reserve space for headers and prepare control bits. */
3279 	skb_reserve(skb, MAX_TCP_HEADER);
3280 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3281 			     TCPHDR_ACK | TCPHDR_RST);
3282 	tcp_mstamp_refresh(tcp_sk(sk));
3283 	/* Send it off. */
3284 	if (tcp_transmit_skb(sk, skb, 0, priority))
3285 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3286 
3287 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3288 	 * skb here is different to the troublesome skb, so use NULL
3289 	 */
3290 	trace_tcp_send_reset(sk, NULL);
3291 }
3292 
3293 /* Send a crossed SYN-ACK during socket establishment.
3294  * WARNING: This routine must only be called when we have already sent
3295  * a SYN packet that crossed the incoming SYN that caused this routine
3296  * to get called. If this assumption fails then the initial rcv_wnd
3297  * and rcv_wscale values will not be correct.
3298  */
3299 int tcp_send_synack(struct sock *sk)
3300 {
3301 	struct sk_buff *skb;
3302 
3303 	skb = tcp_rtx_queue_head(sk);
3304 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3305 		pr_err("%s: wrong queue state\n", __func__);
3306 		return -EFAULT;
3307 	}
3308 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3309 		if (skb_cloned(skb)) {
3310 			struct sk_buff *nskb;
3311 
3312 			tcp_skb_tsorted_save(skb) {
3313 				nskb = skb_copy(skb, GFP_ATOMIC);
3314 			} tcp_skb_tsorted_restore(skb);
3315 			if (!nskb)
3316 				return -ENOMEM;
3317 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3318 			tcp_highest_sack_replace(sk, skb, nskb);
3319 			tcp_rtx_queue_unlink_and_free(skb, sk);
3320 			__skb_header_release(nskb);
3321 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3322 			sk_wmem_queued_add(sk, nskb->truesize);
3323 			sk_mem_charge(sk, nskb->truesize);
3324 			skb = nskb;
3325 		}
3326 
3327 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3328 		tcp_ecn_send_synack(sk, skb);
3329 	}
3330 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3331 }
3332 
3333 /**
3334  * tcp_make_synack - Prepare a SYN-ACK.
3335  * sk: listener socket
3336  * dst: dst entry attached to the SYNACK
3337  * req: request_sock pointer
3338  *
3339  * Allocate one skb and build a SYNACK packet.
3340  * @dst is consumed : Caller should not use it again.
3341  */
3342 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3343 				struct request_sock *req,
3344 				struct tcp_fastopen_cookie *foc,
3345 				enum tcp_synack_type synack_type)
3346 {
3347 	struct inet_request_sock *ireq = inet_rsk(req);
3348 	const struct tcp_sock *tp = tcp_sk(sk);
3349 	struct tcp_md5sig_key *md5 = NULL;
3350 	struct tcp_out_options opts;
3351 	struct sk_buff *skb;
3352 	int tcp_header_size;
3353 	struct tcphdr *th;
3354 	int mss;
3355 	u64 now;
3356 
3357 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3358 	if (unlikely(!skb)) {
3359 		dst_release(dst);
3360 		return NULL;
3361 	}
3362 	/* Reserve space for headers. */
3363 	skb_reserve(skb, MAX_TCP_HEADER);
3364 
3365 	switch (synack_type) {
3366 	case TCP_SYNACK_NORMAL:
3367 		skb_set_owner_w(skb, req_to_sk(req));
3368 		break;
3369 	case TCP_SYNACK_COOKIE:
3370 		/* Under synflood, we do not attach skb to a socket,
3371 		 * to avoid false sharing.
3372 		 */
3373 		break;
3374 	case TCP_SYNACK_FASTOPEN:
3375 		/* sk is a const pointer, because we want to express multiple
3376 		 * cpu might call us concurrently.
3377 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3378 		 */
3379 		skb_set_owner_w(skb, (struct sock *)sk);
3380 		break;
3381 	}
3382 	skb_dst_set(skb, dst);
3383 
3384 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3385 
3386 	memset(&opts, 0, sizeof(opts));
3387 	now = tcp_clock_ns();
3388 #ifdef CONFIG_SYN_COOKIES
3389 	if (unlikely(req->cookie_ts))
3390 		skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3391 	else
3392 #endif
3393 	{
3394 		skb->skb_mstamp_ns = now;
3395 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3396 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3397 	}
3398 
3399 #ifdef CONFIG_TCP_MD5SIG
3400 	rcu_read_lock();
3401 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3402 #endif
3403 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3404 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3405 					     foc) + sizeof(*th);
3406 
3407 	skb_push(skb, tcp_header_size);
3408 	skb_reset_transport_header(skb);
3409 
3410 	th = (struct tcphdr *)skb->data;
3411 	memset(th, 0, sizeof(struct tcphdr));
3412 	th->syn = 1;
3413 	th->ack = 1;
3414 	tcp_ecn_make_synack(req, th);
3415 	th->source = htons(ireq->ir_num);
3416 	th->dest = ireq->ir_rmt_port;
3417 	skb->mark = ireq->ir_mark;
3418 	skb->ip_summed = CHECKSUM_PARTIAL;
3419 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3420 	/* XXX data is queued and acked as is. No buffer/window check */
3421 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3422 
3423 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3424 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3425 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3426 	th->doff = (tcp_header_size >> 2);
3427 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3428 
3429 #ifdef CONFIG_TCP_MD5SIG
3430 	/* Okay, we have all we need - do the md5 hash if needed */
3431 	if (md5)
3432 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3433 					       md5, req_to_sk(req), skb);
3434 	rcu_read_unlock();
3435 #endif
3436 
3437 	skb->skb_mstamp_ns = now;
3438 	tcp_add_tx_delay(skb, tp);
3439 
3440 	return skb;
3441 }
3442 EXPORT_SYMBOL(tcp_make_synack);
3443 
3444 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3445 {
3446 	struct inet_connection_sock *icsk = inet_csk(sk);
3447 	const struct tcp_congestion_ops *ca;
3448 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3449 
3450 	if (ca_key == TCP_CA_UNSPEC)
3451 		return;
3452 
3453 	rcu_read_lock();
3454 	ca = tcp_ca_find_key(ca_key);
3455 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3456 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3457 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3458 		icsk->icsk_ca_ops = ca;
3459 	}
3460 	rcu_read_unlock();
3461 }
3462 
3463 /* Do all connect socket setups that can be done AF independent. */
3464 static void tcp_connect_init(struct sock *sk)
3465 {
3466 	const struct dst_entry *dst = __sk_dst_get(sk);
3467 	struct tcp_sock *tp = tcp_sk(sk);
3468 	__u8 rcv_wscale;
3469 	u32 rcv_wnd;
3470 
3471 	/* We'll fix this up when we get a response from the other end.
3472 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3473 	 */
3474 	tp->tcp_header_len = sizeof(struct tcphdr);
3475 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3476 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3477 
3478 #ifdef CONFIG_TCP_MD5SIG
3479 	if (tp->af_specific->md5_lookup(sk, sk))
3480 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3481 #endif
3482 
3483 	/* If user gave his TCP_MAXSEG, record it to clamp */
3484 	if (tp->rx_opt.user_mss)
3485 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3486 	tp->max_window = 0;
3487 	tcp_mtup_init(sk);
3488 	tcp_sync_mss(sk, dst_mtu(dst));
3489 
3490 	tcp_ca_dst_init(sk, dst);
3491 
3492 	if (!tp->window_clamp)
3493 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3494 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3495 
3496 	tcp_initialize_rcv_mss(sk);
3497 
3498 	/* limit the window selection if the user enforce a smaller rx buffer */
3499 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3500 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3501 		tp->window_clamp = tcp_full_space(sk);
3502 
3503 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3504 	if (rcv_wnd == 0)
3505 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3506 
3507 	tcp_select_initial_window(sk, tcp_full_space(sk),
3508 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3509 				  &tp->rcv_wnd,
3510 				  &tp->window_clamp,
3511 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3512 				  &rcv_wscale,
3513 				  rcv_wnd);
3514 
3515 	tp->rx_opt.rcv_wscale = rcv_wscale;
3516 	tp->rcv_ssthresh = tp->rcv_wnd;
3517 
3518 	sk->sk_err = 0;
3519 	sock_reset_flag(sk, SOCK_DONE);
3520 	tp->snd_wnd = 0;
3521 	tcp_init_wl(tp, 0);
3522 	tcp_write_queue_purge(sk);
3523 	tp->snd_una = tp->write_seq;
3524 	tp->snd_sml = tp->write_seq;
3525 	tp->snd_up = tp->write_seq;
3526 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3527 
3528 	if (likely(!tp->repair))
3529 		tp->rcv_nxt = 0;
3530 	else
3531 		tp->rcv_tstamp = tcp_jiffies32;
3532 	tp->rcv_wup = tp->rcv_nxt;
3533 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3534 
3535 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3536 	inet_csk(sk)->icsk_retransmits = 0;
3537 	tcp_clear_retrans(tp);
3538 }
3539 
3540 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3541 {
3542 	struct tcp_sock *tp = tcp_sk(sk);
3543 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3544 
3545 	tcb->end_seq += skb->len;
3546 	__skb_header_release(skb);
3547 	sk_wmem_queued_add(sk, skb->truesize);
3548 	sk_mem_charge(sk, skb->truesize);
3549 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3550 	tp->packets_out += tcp_skb_pcount(skb);
3551 }
3552 
3553 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3554  * queue a data-only packet after the regular SYN, such that regular SYNs
3555  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3556  * only the SYN sequence, the data are retransmitted in the first ACK.
3557  * If cookie is not cached or other error occurs, falls back to send a
3558  * regular SYN with Fast Open cookie request option.
3559  */
3560 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3561 {
3562 	struct tcp_sock *tp = tcp_sk(sk);
3563 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3564 	int space, err = 0;
3565 	struct sk_buff *syn_data;
3566 
3567 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3568 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3569 		goto fallback;
3570 
3571 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3572 	 * user-MSS. Reserve maximum option space for middleboxes that add
3573 	 * private TCP options. The cost is reduced data space in SYN :(
3574 	 */
3575 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3576 
3577 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3578 		MAX_TCP_OPTION_SPACE;
3579 
3580 	space = min_t(size_t, space, fo->size);
3581 
3582 	/* limit to order-0 allocations */
3583 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3584 
3585 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3586 	if (!syn_data)
3587 		goto fallback;
3588 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3589 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3590 	if (space) {
3591 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3592 					    &fo->data->msg_iter);
3593 		if (unlikely(!copied)) {
3594 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3595 			kfree_skb(syn_data);
3596 			goto fallback;
3597 		}
3598 		if (copied != space) {
3599 			skb_trim(syn_data, copied);
3600 			space = copied;
3601 		}
3602 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3603 	}
3604 	/* No more data pending in inet_wait_for_connect() */
3605 	if (space == fo->size)
3606 		fo->data = NULL;
3607 	fo->copied = space;
3608 
3609 	tcp_connect_queue_skb(sk, syn_data);
3610 	if (syn_data->len)
3611 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3612 
3613 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3614 
3615 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3616 
3617 	/* Now full SYN+DATA was cloned and sent (or not),
3618 	 * remove the SYN from the original skb (syn_data)
3619 	 * we keep in write queue in case of a retransmit, as we
3620 	 * also have the SYN packet (with no data) in the same queue.
3621 	 */
3622 	TCP_SKB_CB(syn_data)->seq++;
3623 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3624 	if (!err) {
3625 		tp->syn_data = (fo->copied > 0);
3626 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3627 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3628 		goto done;
3629 	}
3630 
3631 	/* data was not sent, put it in write_queue */
3632 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3633 	tp->packets_out -= tcp_skb_pcount(syn_data);
3634 
3635 fallback:
3636 	/* Send a regular SYN with Fast Open cookie request option */
3637 	if (fo->cookie.len > 0)
3638 		fo->cookie.len = 0;
3639 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3640 	if (err)
3641 		tp->syn_fastopen = 0;
3642 done:
3643 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3644 	return err;
3645 }
3646 
3647 /* Build a SYN and send it off. */
3648 int tcp_connect(struct sock *sk)
3649 {
3650 	struct tcp_sock *tp = tcp_sk(sk);
3651 	struct sk_buff *buff;
3652 	int err;
3653 
3654 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3655 
3656 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3657 		return -EHOSTUNREACH; /* Routing failure or similar. */
3658 
3659 	tcp_connect_init(sk);
3660 
3661 	if (unlikely(tp->repair)) {
3662 		tcp_finish_connect(sk, NULL);
3663 		return 0;
3664 	}
3665 
3666 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3667 	if (unlikely(!buff))
3668 		return -ENOBUFS;
3669 
3670 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3671 	tcp_mstamp_refresh(tp);
3672 	tp->retrans_stamp = tcp_time_stamp(tp);
3673 	tcp_connect_queue_skb(sk, buff);
3674 	tcp_ecn_send_syn(sk, buff);
3675 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3676 
3677 	/* Send off SYN; include data in Fast Open. */
3678 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3679 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3680 	if (err == -ECONNREFUSED)
3681 		return err;
3682 
3683 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3684 	 * in order to make this packet get counted in tcpOutSegs.
3685 	 */
3686 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3687 	tp->pushed_seq = tp->write_seq;
3688 	buff = tcp_send_head(sk);
3689 	if (unlikely(buff)) {
3690 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3691 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3692 	}
3693 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3694 
3695 	/* Timer for repeating the SYN until an answer. */
3696 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3697 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3698 	return 0;
3699 }
3700 EXPORT_SYMBOL(tcp_connect);
3701 
3702 /* Send out a delayed ack, the caller does the policy checking
3703  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3704  * for details.
3705  */
3706 void tcp_send_delayed_ack(struct sock *sk)
3707 {
3708 	struct inet_connection_sock *icsk = inet_csk(sk);
3709 	int ato = icsk->icsk_ack.ato;
3710 	unsigned long timeout;
3711 
3712 	if (ato > TCP_DELACK_MIN) {
3713 		const struct tcp_sock *tp = tcp_sk(sk);
3714 		int max_ato = HZ / 2;
3715 
3716 		if (inet_csk_in_pingpong_mode(sk) ||
3717 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3718 			max_ato = TCP_DELACK_MAX;
3719 
3720 		/* Slow path, intersegment interval is "high". */
3721 
3722 		/* If some rtt estimate is known, use it to bound delayed ack.
3723 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3724 		 * directly.
3725 		 */
3726 		if (tp->srtt_us) {
3727 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3728 					TCP_DELACK_MIN);
3729 
3730 			if (rtt < max_ato)
3731 				max_ato = rtt;
3732 		}
3733 
3734 		ato = min(ato, max_ato);
3735 	}
3736 
3737 	/* Stay within the limit we were given */
3738 	timeout = jiffies + ato;
3739 
3740 	/* Use new timeout only if there wasn't a older one earlier. */
3741 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3742 		/* If delack timer was blocked or is about to expire,
3743 		 * send ACK now.
3744 		 */
3745 		if (icsk->icsk_ack.blocked ||
3746 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3747 			tcp_send_ack(sk);
3748 			return;
3749 		}
3750 
3751 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3752 			timeout = icsk->icsk_ack.timeout;
3753 	}
3754 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3755 	icsk->icsk_ack.timeout = timeout;
3756 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3757 }
3758 
3759 /* This routine sends an ack and also updates the window. */
3760 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3761 {
3762 	struct sk_buff *buff;
3763 
3764 	/* If we have been reset, we may not send again. */
3765 	if (sk->sk_state == TCP_CLOSE)
3766 		return;
3767 
3768 	/* We are not putting this on the write queue, so
3769 	 * tcp_transmit_skb() will set the ownership to this
3770 	 * sock.
3771 	 */
3772 	buff = alloc_skb(MAX_TCP_HEADER,
3773 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3774 	if (unlikely(!buff)) {
3775 		inet_csk_schedule_ack(sk);
3776 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3777 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3778 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3779 		return;
3780 	}
3781 
3782 	/* Reserve space for headers and prepare control bits. */
3783 	skb_reserve(buff, MAX_TCP_HEADER);
3784 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3785 
3786 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3787 	 * too much.
3788 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3789 	 */
3790 	skb_set_tcp_pure_ack(buff);
3791 
3792 	/* Send it off, this clears delayed acks for us. */
3793 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3794 }
3795 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3796 
3797 void tcp_send_ack(struct sock *sk)
3798 {
3799 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3800 }
3801 
3802 /* This routine sends a packet with an out of date sequence
3803  * number. It assumes the other end will try to ack it.
3804  *
3805  * Question: what should we make while urgent mode?
3806  * 4.4BSD forces sending single byte of data. We cannot send
3807  * out of window data, because we have SND.NXT==SND.MAX...
3808  *
3809  * Current solution: to send TWO zero-length segments in urgent mode:
3810  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3811  * out-of-date with SND.UNA-1 to probe window.
3812  */
3813 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3814 {
3815 	struct tcp_sock *tp = tcp_sk(sk);
3816 	struct sk_buff *skb;
3817 
3818 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3819 	skb = alloc_skb(MAX_TCP_HEADER,
3820 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3821 	if (!skb)
3822 		return -1;
3823 
3824 	/* Reserve space for headers and set control bits. */
3825 	skb_reserve(skb, MAX_TCP_HEADER);
3826 	/* Use a previous sequence.  This should cause the other
3827 	 * end to send an ack.  Don't queue or clone SKB, just
3828 	 * send it.
3829 	 */
3830 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3831 	NET_INC_STATS(sock_net(sk), mib);
3832 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3833 }
3834 
3835 /* Called from setsockopt( ... TCP_REPAIR ) */
3836 void tcp_send_window_probe(struct sock *sk)
3837 {
3838 	if (sk->sk_state == TCP_ESTABLISHED) {
3839 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3840 		tcp_mstamp_refresh(tcp_sk(sk));
3841 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3842 	}
3843 }
3844 
3845 /* Initiate keepalive or window probe from timer. */
3846 int tcp_write_wakeup(struct sock *sk, int mib)
3847 {
3848 	struct tcp_sock *tp = tcp_sk(sk);
3849 	struct sk_buff *skb;
3850 
3851 	if (sk->sk_state == TCP_CLOSE)
3852 		return -1;
3853 
3854 	skb = tcp_send_head(sk);
3855 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3856 		int err;
3857 		unsigned int mss = tcp_current_mss(sk);
3858 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3859 
3860 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3861 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3862 
3863 		/* We are probing the opening of a window
3864 		 * but the window size is != 0
3865 		 * must have been a result SWS avoidance ( sender )
3866 		 */
3867 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3868 		    skb->len > mss) {
3869 			seg_size = min(seg_size, mss);
3870 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3871 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3872 					 skb, seg_size, mss, GFP_ATOMIC))
3873 				return -1;
3874 		} else if (!tcp_skb_pcount(skb))
3875 			tcp_set_skb_tso_segs(skb, mss);
3876 
3877 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3878 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3879 		if (!err)
3880 			tcp_event_new_data_sent(sk, skb);
3881 		return err;
3882 	} else {
3883 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3884 			tcp_xmit_probe_skb(sk, 1, mib);
3885 		return tcp_xmit_probe_skb(sk, 0, mib);
3886 	}
3887 }
3888 
3889 /* A window probe timeout has occurred.  If window is not closed send
3890  * a partial packet else a zero probe.
3891  */
3892 void tcp_send_probe0(struct sock *sk)
3893 {
3894 	struct inet_connection_sock *icsk = inet_csk(sk);
3895 	struct tcp_sock *tp = tcp_sk(sk);
3896 	struct net *net = sock_net(sk);
3897 	unsigned long timeout;
3898 	int err;
3899 
3900 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3901 
3902 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3903 		/* Cancel probe timer, if it is not required. */
3904 		icsk->icsk_probes_out = 0;
3905 		icsk->icsk_backoff = 0;
3906 		return;
3907 	}
3908 
3909 	icsk->icsk_probes_out++;
3910 	if (err <= 0) {
3911 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3912 			icsk->icsk_backoff++;
3913 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3914 	} else {
3915 		/* If packet was not sent due to local congestion,
3916 		 * Let senders fight for local resources conservatively.
3917 		 */
3918 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
3919 	}
3920 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
3921 }
3922 
3923 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3924 {
3925 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3926 	struct flowi fl;
3927 	int res;
3928 
3929 	tcp_rsk(req)->txhash = net_tx_rndhash();
3930 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3931 	if (!res) {
3932 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3933 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3934 		if (unlikely(tcp_passive_fastopen(sk)))
3935 			tcp_sk(sk)->total_retrans++;
3936 		trace_tcp_retransmit_synack(sk, req);
3937 	}
3938 	return res;
3939 }
3940 EXPORT_SYMBOL(tcp_rtx_synack);
3941