1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 #include <linux/skbuff_ref.h> 48 49 #include <trace/events/tcp.h> 50 51 /* Refresh clocks of a TCP socket, 52 * ensuring monotically increasing values. 53 */ 54 void tcp_mstamp_refresh(struct tcp_sock *tp) 55 { 56 u64 val = tcp_clock_ns(); 57 58 tp->tcp_clock_cache = val; 59 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 60 } 61 62 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 63 int push_one, gfp_t gfp); 64 65 /* Account for new data that has been sent to the network. */ 66 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 67 { 68 struct inet_connection_sock *icsk = inet_csk(sk); 69 struct tcp_sock *tp = tcp_sk(sk); 70 unsigned int prior_packets = tp->packets_out; 71 72 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 73 74 __skb_unlink(skb, &sk->sk_write_queue); 75 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 76 77 if (tp->highest_sack == NULL) 78 tp->highest_sack = skb; 79 80 tp->packets_out += tcp_skb_pcount(skb); 81 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 82 tcp_rearm_rto(sk); 83 84 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 85 tcp_skb_pcount(skb)); 86 tcp_check_space(sk); 87 } 88 89 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 90 * window scaling factor due to loss of precision. 91 * If window has been shrunk, what should we make? It is not clear at all. 92 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 93 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 94 * invalid. OK, let's make this for now: 95 */ 96 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 97 { 98 const struct tcp_sock *tp = tcp_sk(sk); 99 100 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 101 (tp->rx_opt.wscale_ok && 102 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 103 return tp->snd_nxt; 104 else 105 return tcp_wnd_end(tp); 106 } 107 108 /* Calculate mss to advertise in SYN segment. 109 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 110 * 111 * 1. It is independent of path mtu. 112 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 113 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 114 * attached devices, because some buggy hosts are confused by 115 * large MSS. 116 * 4. We do not make 3, we advertise MSS, calculated from first 117 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 118 * This may be overridden via information stored in routing table. 119 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 120 * probably even Jumbo". 121 */ 122 static __u16 tcp_advertise_mss(struct sock *sk) 123 { 124 struct tcp_sock *tp = tcp_sk(sk); 125 const struct dst_entry *dst = __sk_dst_get(sk); 126 int mss = tp->advmss; 127 128 if (dst) { 129 unsigned int metric = dst_metric_advmss(dst); 130 131 if (metric < mss) { 132 mss = metric; 133 tp->advmss = mss; 134 } 135 } 136 137 return (__u16)mss; 138 } 139 140 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 141 * This is the first part of cwnd validation mechanism. 142 */ 143 void tcp_cwnd_restart(struct sock *sk, s32 delta) 144 { 145 struct tcp_sock *tp = tcp_sk(sk); 146 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 147 u32 cwnd = tcp_snd_cwnd(tp); 148 149 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 150 151 tp->snd_ssthresh = tcp_current_ssthresh(sk); 152 restart_cwnd = min(restart_cwnd, cwnd); 153 154 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 155 cwnd >>= 1; 156 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 157 tp->snd_cwnd_stamp = tcp_jiffies32; 158 tp->snd_cwnd_used = 0; 159 } 160 161 /* Congestion state accounting after a packet has been sent. */ 162 static void tcp_event_data_sent(struct tcp_sock *tp, 163 struct sock *sk) 164 { 165 struct inet_connection_sock *icsk = inet_csk(sk); 166 const u32 now = tcp_jiffies32; 167 168 if (tcp_packets_in_flight(tp) == 0) 169 tcp_ca_event(sk, CA_EVENT_TX_START); 170 171 tp->lsndtime = now; 172 173 /* If it is a reply for ato after last received 174 * packet, increase pingpong count. 175 */ 176 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 177 inet_csk_inc_pingpong_cnt(sk); 178 } 179 180 /* Account for an ACK we sent. */ 181 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 182 { 183 struct tcp_sock *tp = tcp_sk(sk); 184 185 if (unlikely(tp->compressed_ack)) { 186 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 187 tp->compressed_ack); 188 tp->compressed_ack = 0; 189 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 190 __sock_put(sk); 191 } 192 193 if (unlikely(rcv_nxt != tp->rcv_nxt)) 194 return; /* Special ACK sent by DCTCP to reflect ECN */ 195 tcp_dec_quickack_mode(sk); 196 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 197 } 198 199 /* Determine a window scaling and initial window to offer. 200 * Based on the assumption that the given amount of space 201 * will be offered. Store the results in the tp structure. 202 * NOTE: for smooth operation initial space offering should 203 * be a multiple of mss if possible. We assume here that mss >= 1. 204 * This MUST be enforced by all callers. 205 */ 206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 207 __u32 *rcv_wnd, __u32 *__window_clamp, 208 int wscale_ok, __u8 *rcv_wscale, 209 __u32 init_rcv_wnd) 210 { 211 unsigned int space = (__space < 0 ? 0 : __space); 212 u32 window_clamp = READ_ONCE(*__window_clamp); 213 214 /* If no clamp set the clamp to the max possible scaled window */ 215 if (window_clamp == 0) 216 window_clamp = (U16_MAX << TCP_MAX_WSCALE); 217 space = min(window_clamp, space); 218 219 /* Quantize space offering to a multiple of mss if possible. */ 220 if (space > mss) 221 space = rounddown(space, mss); 222 223 /* NOTE: offering an initial window larger than 32767 224 * will break some buggy TCP stacks. If the admin tells us 225 * it is likely we could be speaking with such a buggy stack 226 * we will truncate our initial window offering to 32K-1 227 * unless the remote has sent us a window scaling option, 228 * which we interpret as a sign the remote TCP is not 229 * misinterpreting the window field as a signed quantity. 230 */ 231 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 232 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 233 else 234 (*rcv_wnd) = min_t(u32, space, U16_MAX); 235 236 if (init_rcv_wnd) 237 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 238 239 *rcv_wscale = 0; 240 if (wscale_ok) { 241 /* Set window scaling on max possible window */ 242 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 243 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 244 space = min_t(u32, space, window_clamp); 245 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 246 0, TCP_MAX_WSCALE); 247 } 248 /* Set the clamp no higher than max representable value */ 249 WRITE_ONCE(*__window_clamp, 250 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp)); 251 } 252 EXPORT_SYMBOL(tcp_select_initial_window); 253 254 /* Chose a new window to advertise, update state in tcp_sock for the 255 * socket, and return result with RFC1323 scaling applied. The return 256 * value can be stuffed directly into th->window for an outgoing 257 * frame. 258 */ 259 static u16 tcp_select_window(struct sock *sk) 260 { 261 struct tcp_sock *tp = tcp_sk(sk); 262 struct net *net = sock_net(sk); 263 u32 old_win = tp->rcv_wnd; 264 u32 cur_win, new_win; 265 266 /* Make the window 0 if we failed to queue the data because we 267 * are out of memory. The window is temporary, so we don't store 268 * it on the socket. 269 */ 270 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) 271 return 0; 272 273 cur_win = tcp_receive_window(tp); 274 new_win = __tcp_select_window(sk); 275 if (new_win < cur_win) { 276 /* Danger Will Robinson! 277 * Don't update rcv_wup/rcv_wnd here or else 278 * we will not be able to advertise a zero 279 * window in time. --DaveM 280 * 281 * Relax Will Robinson. 282 */ 283 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 284 /* Never shrink the offered window */ 285 if (new_win == 0) 286 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 287 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 288 } 289 } 290 291 tp->rcv_wnd = new_win; 292 tp->rcv_wup = tp->rcv_nxt; 293 294 /* Make sure we do not exceed the maximum possible 295 * scaled window. 296 */ 297 if (!tp->rx_opt.rcv_wscale && 298 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 299 new_win = min(new_win, MAX_TCP_WINDOW); 300 else 301 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 302 303 /* RFC1323 scaling applied */ 304 new_win >>= tp->rx_opt.rcv_wscale; 305 306 /* If we advertise zero window, disable fast path. */ 307 if (new_win == 0) { 308 tp->pred_flags = 0; 309 if (old_win) 310 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 311 } else if (old_win == 0) { 312 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 313 } 314 315 return new_win; 316 } 317 318 /* Packet ECN state for a SYN-ACK */ 319 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 320 { 321 const struct tcp_sock *tp = tcp_sk(sk); 322 323 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 324 if (!(tp->ecn_flags & TCP_ECN_OK)) 325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 326 else if (tcp_ca_needs_ecn(sk) || 327 tcp_bpf_ca_needs_ecn(sk)) 328 INET_ECN_xmit(sk); 329 } 330 331 /* Packet ECN state for a SYN. */ 332 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 333 { 334 struct tcp_sock *tp = tcp_sk(sk); 335 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 336 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 337 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 338 339 if (!use_ecn) { 340 const struct dst_entry *dst = __sk_dst_get(sk); 341 342 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 343 use_ecn = true; 344 } 345 346 tp->ecn_flags = 0; 347 348 if (use_ecn) { 349 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 350 tp->ecn_flags = TCP_ECN_OK; 351 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 352 INET_ECN_xmit(sk); 353 } 354 } 355 356 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 357 { 358 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 359 /* tp->ecn_flags are cleared at a later point in time when 360 * SYN ACK is ultimatively being received. 361 */ 362 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 363 } 364 365 static void 366 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 367 { 368 if (inet_rsk(req)->ecn_ok) 369 th->ece = 1; 370 } 371 372 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 373 * be sent. 374 */ 375 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 376 struct tcphdr *th, int tcp_header_len) 377 { 378 struct tcp_sock *tp = tcp_sk(sk); 379 380 if (tp->ecn_flags & TCP_ECN_OK) { 381 /* Not-retransmitted data segment: set ECT and inject CWR. */ 382 if (skb->len != tcp_header_len && 383 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 384 INET_ECN_xmit(sk); 385 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 386 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 387 th->cwr = 1; 388 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 389 } 390 } else if (!tcp_ca_needs_ecn(sk)) { 391 /* ACK or retransmitted segment: clear ECT|CE */ 392 INET_ECN_dontxmit(sk); 393 } 394 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 395 th->ece = 1; 396 } 397 } 398 399 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 400 * auto increment end seqno. 401 */ 402 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 403 { 404 skb->ip_summed = CHECKSUM_PARTIAL; 405 406 TCP_SKB_CB(skb)->tcp_flags = flags; 407 408 tcp_skb_pcount_set(skb, 1); 409 410 TCP_SKB_CB(skb)->seq = seq; 411 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 412 seq++; 413 TCP_SKB_CB(skb)->end_seq = seq; 414 } 415 416 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 417 { 418 return tp->snd_una != tp->snd_up; 419 } 420 421 #define OPTION_SACK_ADVERTISE BIT(0) 422 #define OPTION_TS BIT(1) 423 #define OPTION_MD5 BIT(2) 424 #define OPTION_WSCALE BIT(3) 425 #define OPTION_FAST_OPEN_COOKIE BIT(8) 426 #define OPTION_SMC BIT(9) 427 #define OPTION_MPTCP BIT(10) 428 #define OPTION_AO BIT(11) 429 430 static void smc_options_write(__be32 *ptr, u16 *options) 431 { 432 #if IS_ENABLED(CONFIG_SMC) 433 if (static_branch_unlikely(&tcp_have_smc)) { 434 if (unlikely(OPTION_SMC & *options)) { 435 *ptr++ = htonl((TCPOPT_NOP << 24) | 436 (TCPOPT_NOP << 16) | 437 (TCPOPT_EXP << 8) | 438 (TCPOLEN_EXP_SMC_BASE)); 439 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 440 } 441 } 442 #endif 443 } 444 445 struct tcp_out_options { 446 u16 options; /* bit field of OPTION_* */ 447 u16 mss; /* 0 to disable */ 448 u8 ws; /* window scale, 0 to disable */ 449 u8 num_sack_blocks; /* number of SACK blocks to include */ 450 u8 hash_size; /* bytes in hash_location */ 451 u8 bpf_opt_len; /* length of BPF hdr option */ 452 __u8 *hash_location; /* temporary pointer, overloaded */ 453 __u32 tsval, tsecr; /* need to include OPTION_TS */ 454 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 455 struct mptcp_out_options mptcp; 456 }; 457 458 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 459 struct tcp_sock *tp, 460 struct tcp_out_options *opts) 461 { 462 #if IS_ENABLED(CONFIG_MPTCP) 463 if (unlikely(OPTION_MPTCP & opts->options)) 464 mptcp_write_options(th, ptr, tp, &opts->mptcp); 465 #endif 466 } 467 468 #ifdef CONFIG_CGROUP_BPF 469 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 470 enum tcp_synack_type synack_type) 471 { 472 if (unlikely(!skb)) 473 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 474 475 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 476 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 477 478 return 0; 479 } 480 481 /* req, syn_skb and synack_type are used when writing synack */ 482 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 483 struct request_sock *req, 484 struct sk_buff *syn_skb, 485 enum tcp_synack_type synack_type, 486 struct tcp_out_options *opts, 487 unsigned int *remaining) 488 { 489 struct bpf_sock_ops_kern sock_ops; 490 int err; 491 492 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 493 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 494 !*remaining) 495 return; 496 497 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 498 499 /* init sock_ops */ 500 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 501 502 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 503 504 if (req) { 505 /* The listen "sk" cannot be passed here because 506 * it is not locked. It would not make too much 507 * sense to do bpf_setsockopt(listen_sk) based 508 * on individual connection request also. 509 * 510 * Thus, "req" is passed here and the cgroup-bpf-progs 511 * of the listen "sk" will be run. 512 * 513 * "req" is also used here for fastopen even the "sk" here is 514 * a fullsock "child" sk. It is to keep the behavior 515 * consistent between fastopen and non-fastopen on 516 * the bpf programming side. 517 */ 518 sock_ops.sk = (struct sock *)req; 519 sock_ops.syn_skb = syn_skb; 520 } else { 521 sock_owned_by_me(sk); 522 523 sock_ops.is_fullsock = 1; 524 sock_ops.sk = sk; 525 } 526 527 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 528 sock_ops.remaining_opt_len = *remaining; 529 /* tcp_current_mss() does not pass a skb */ 530 if (skb) 531 bpf_skops_init_skb(&sock_ops, skb, 0); 532 533 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 534 535 if (err || sock_ops.remaining_opt_len == *remaining) 536 return; 537 538 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 539 /* round up to 4 bytes */ 540 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 541 542 *remaining -= opts->bpf_opt_len; 543 } 544 545 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 546 struct request_sock *req, 547 struct sk_buff *syn_skb, 548 enum tcp_synack_type synack_type, 549 struct tcp_out_options *opts) 550 { 551 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 552 struct bpf_sock_ops_kern sock_ops; 553 int err; 554 555 if (likely(!max_opt_len)) 556 return; 557 558 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 559 560 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 561 562 if (req) { 563 sock_ops.sk = (struct sock *)req; 564 sock_ops.syn_skb = syn_skb; 565 } else { 566 sock_owned_by_me(sk); 567 568 sock_ops.is_fullsock = 1; 569 sock_ops.sk = sk; 570 } 571 572 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 573 sock_ops.remaining_opt_len = max_opt_len; 574 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 575 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 576 577 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 578 579 if (err) 580 nr_written = 0; 581 else 582 nr_written = max_opt_len - sock_ops.remaining_opt_len; 583 584 if (nr_written < max_opt_len) 585 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 586 max_opt_len - nr_written); 587 } 588 #else 589 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 590 struct request_sock *req, 591 struct sk_buff *syn_skb, 592 enum tcp_synack_type synack_type, 593 struct tcp_out_options *opts, 594 unsigned int *remaining) 595 { 596 } 597 598 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 599 struct request_sock *req, 600 struct sk_buff *syn_skb, 601 enum tcp_synack_type synack_type, 602 struct tcp_out_options *opts) 603 { 604 } 605 #endif 606 607 static __be32 *process_tcp_ao_options(struct tcp_sock *tp, 608 const struct tcp_request_sock *tcprsk, 609 struct tcp_out_options *opts, 610 struct tcp_key *key, __be32 *ptr) 611 { 612 #ifdef CONFIG_TCP_AO 613 u8 maclen = tcp_ao_maclen(key->ao_key); 614 615 if (tcprsk) { 616 u8 aolen = maclen + sizeof(struct tcp_ao_hdr); 617 618 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) | 619 (tcprsk->ao_keyid << 8) | 620 (tcprsk->ao_rcv_next)); 621 } else { 622 struct tcp_ao_key *rnext_key; 623 struct tcp_ao_info *ao_info; 624 625 ao_info = rcu_dereference_check(tp->ao_info, 626 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk)); 627 rnext_key = READ_ONCE(ao_info->rnext_key); 628 if (WARN_ON_ONCE(!rnext_key)) 629 return ptr; 630 *ptr++ = htonl((TCPOPT_AO << 24) | 631 (tcp_ao_len(key->ao_key) << 16) | 632 (key->ao_key->sndid << 8) | 633 (rnext_key->rcvid)); 634 } 635 opts->hash_location = (__u8 *)ptr; 636 ptr += maclen / sizeof(*ptr); 637 if (unlikely(maclen % sizeof(*ptr))) { 638 memset(ptr, TCPOPT_NOP, sizeof(*ptr)); 639 ptr++; 640 } 641 #endif 642 return ptr; 643 } 644 645 /* Write previously computed TCP options to the packet. 646 * 647 * Beware: Something in the Internet is very sensitive to the ordering of 648 * TCP options, we learned this through the hard way, so be careful here. 649 * Luckily we can at least blame others for their non-compliance but from 650 * inter-operability perspective it seems that we're somewhat stuck with 651 * the ordering which we have been using if we want to keep working with 652 * those broken things (not that it currently hurts anybody as there isn't 653 * particular reason why the ordering would need to be changed). 654 * 655 * At least SACK_PERM as the first option is known to lead to a disaster 656 * (but it may well be that other scenarios fail similarly). 657 */ 658 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 659 const struct tcp_request_sock *tcprsk, 660 struct tcp_out_options *opts, 661 struct tcp_key *key) 662 { 663 __be32 *ptr = (__be32 *)(th + 1); 664 u16 options = opts->options; /* mungable copy */ 665 666 if (tcp_key_is_md5(key)) { 667 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 668 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 669 /* overload cookie hash location */ 670 opts->hash_location = (__u8 *)ptr; 671 ptr += 4; 672 } else if (tcp_key_is_ao(key)) { 673 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr); 674 } 675 if (unlikely(opts->mss)) { 676 *ptr++ = htonl((TCPOPT_MSS << 24) | 677 (TCPOLEN_MSS << 16) | 678 opts->mss); 679 } 680 681 if (likely(OPTION_TS & options)) { 682 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 683 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 684 (TCPOLEN_SACK_PERM << 16) | 685 (TCPOPT_TIMESTAMP << 8) | 686 TCPOLEN_TIMESTAMP); 687 options &= ~OPTION_SACK_ADVERTISE; 688 } else { 689 *ptr++ = htonl((TCPOPT_NOP << 24) | 690 (TCPOPT_NOP << 16) | 691 (TCPOPT_TIMESTAMP << 8) | 692 TCPOLEN_TIMESTAMP); 693 } 694 *ptr++ = htonl(opts->tsval); 695 *ptr++ = htonl(opts->tsecr); 696 } 697 698 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 699 *ptr++ = htonl((TCPOPT_NOP << 24) | 700 (TCPOPT_NOP << 16) | 701 (TCPOPT_SACK_PERM << 8) | 702 TCPOLEN_SACK_PERM); 703 } 704 705 if (unlikely(OPTION_WSCALE & options)) { 706 *ptr++ = htonl((TCPOPT_NOP << 24) | 707 (TCPOPT_WINDOW << 16) | 708 (TCPOLEN_WINDOW << 8) | 709 opts->ws); 710 } 711 712 if (unlikely(opts->num_sack_blocks)) { 713 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 714 tp->duplicate_sack : tp->selective_acks; 715 int this_sack; 716 717 *ptr++ = htonl((TCPOPT_NOP << 24) | 718 (TCPOPT_NOP << 16) | 719 (TCPOPT_SACK << 8) | 720 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 721 TCPOLEN_SACK_PERBLOCK))); 722 723 for (this_sack = 0; this_sack < opts->num_sack_blocks; 724 ++this_sack) { 725 *ptr++ = htonl(sp[this_sack].start_seq); 726 *ptr++ = htonl(sp[this_sack].end_seq); 727 } 728 729 tp->rx_opt.dsack = 0; 730 } 731 732 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 733 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 734 u8 *p = (u8 *)ptr; 735 u32 len; /* Fast Open option length */ 736 737 if (foc->exp) { 738 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 739 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 740 TCPOPT_FASTOPEN_MAGIC); 741 p += TCPOLEN_EXP_FASTOPEN_BASE; 742 } else { 743 len = TCPOLEN_FASTOPEN_BASE + foc->len; 744 *p++ = TCPOPT_FASTOPEN; 745 *p++ = len; 746 } 747 748 memcpy(p, foc->val, foc->len); 749 if ((len & 3) == 2) { 750 p[foc->len] = TCPOPT_NOP; 751 p[foc->len + 1] = TCPOPT_NOP; 752 } 753 ptr += (len + 3) >> 2; 754 } 755 756 smc_options_write(ptr, &options); 757 758 mptcp_options_write(th, ptr, tp, opts); 759 } 760 761 static void smc_set_option(const struct tcp_sock *tp, 762 struct tcp_out_options *opts, 763 unsigned int *remaining) 764 { 765 #if IS_ENABLED(CONFIG_SMC) 766 if (static_branch_unlikely(&tcp_have_smc)) { 767 if (tp->syn_smc) { 768 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 769 opts->options |= OPTION_SMC; 770 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 771 } 772 } 773 } 774 #endif 775 } 776 777 static void smc_set_option_cond(const struct tcp_sock *tp, 778 const struct inet_request_sock *ireq, 779 struct tcp_out_options *opts, 780 unsigned int *remaining) 781 { 782 #if IS_ENABLED(CONFIG_SMC) 783 if (static_branch_unlikely(&tcp_have_smc)) { 784 if (tp->syn_smc && ireq->smc_ok) { 785 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 786 opts->options |= OPTION_SMC; 787 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 788 } 789 } 790 } 791 #endif 792 } 793 794 static void mptcp_set_option_cond(const struct request_sock *req, 795 struct tcp_out_options *opts, 796 unsigned int *remaining) 797 { 798 if (rsk_is_mptcp(req)) { 799 unsigned int size; 800 801 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 802 if (*remaining >= size) { 803 opts->options |= OPTION_MPTCP; 804 *remaining -= size; 805 } 806 } 807 } 808 } 809 810 /* Compute TCP options for SYN packets. This is not the final 811 * network wire format yet. 812 */ 813 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 814 struct tcp_out_options *opts, 815 struct tcp_key *key) 816 { 817 struct tcp_sock *tp = tcp_sk(sk); 818 unsigned int remaining = MAX_TCP_OPTION_SPACE; 819 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 820 bool timestamps; 821 822 /* Better than switch (key.type) as it has static branches */ 823 if (tcp_key_is_md5(key)) { 824 timestamps = false; 825 opts->options |= OPTION_MD5; 826 remaining -= TCPOLEN_MD5SIG_ALIGNED; 827 } else { 828 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps); 829 if (tcp_key_is_ao(key)) { 830 opts->options |= OPTION_AO; 831 remaining -= tcp_ao_len_aligned(key->ao_key); 832 } 833 } 834 835 /* We always get an MSS option. The option bytes which will be seen in 836 * normal data packets should timestamps be used, must be in the MSS 837 * advertised. But we subtract them from tp->mss_cache so that 838 * calculations in tcp_sendmsg are simpler etc. So account for this 839 * fact here if necessary. If we don't do this correctly, as a 840 * receiver we won't recognize data packets as being full sized when we 841 * should, and thus we won't abide by the delayed ACK rules correctly. 842 * SACKs don't matter, we never delay an ACK when we have any of those 843 * going out. */ 844 opts->mss = tcp_advertise_mss(sk); 845 remaining -= TCPOLEN_MSS_ALIGNED; 846 847 if (likely(timestamps)) { 848 opts->options |= OPTION_TS; 849 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset; 850 opts->tsecr = tp->rx_opt.ts_recent; 851 remaining -= TCPOLEN_TSTAMP_ALIGNED; 852 } 853 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 854 opts->ws = tp->rx_opt.rcv_wscale; 855 opts->options |= OPTION_WSCALE; 856 remaining -= TCPOLEN_WSCALE_ALIGNED; 857 } 858 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 859 opts->options |= OPTION_SACK_ADVERTISE; 860 if (unlikely(!(OPTION_TS & opts->options))) 861 remaining -= TCPOLEN_SACKPERM_ALIGNED; 862 } 863 864 if (fastopen && fastopen->cookie.len >= 0) { 865 u32 need = fastopen->cookie.len; 866 867 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 868 TCPOLEN_FASTOPEN_BASE; 869 need = (need + 3) & ~3U; /* Align to 32 bits */ 870 if (remaining >= need) { 871 opts->options |= OPTION_FAST_OPEN_COOKIE; 872 opts->fastopen_cookie = &fastopen->cookie; 873 remaining -= need; 874 tp->syn_fastopen = 1; 875 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 876 } 877 } 878 879 smc_set_option(tp, opts, &remaining); 880 881 if (sk_is_mptcp(sk)) { 882 unsigned int size; 883 884 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 885 opts->options |= OPTION_MPTCP; 886 remaining -= size; 887 } 888 } 889 890 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 891 892 return MAX_TCP_OPTION_SPACE - remaining; 893 } 894 895 /* Set up TCP options for SYN-ACKs. */ 896 static unsigned int tcp_synack_options(const struct sock *sk, 897 struct request_sock *req, 898 unsigned int mss, struct sk_buff *skb, 899 struct tcp_out_options *opts, 900 const struct tcp_key *key, 901 struct tcp_fastopen_cookie *foc, 902 enum tcp_synack_type synack_type, 903 struct sk_buff *syn_skb) 904 { 905 struct inet_request_sock *ireq = inet_rsk(req); 906 unsigned int remaining = MAX_TCP_OPTION_SPACE; 907 908 if (tcp_key_is_md5(key)) { 909 opts->options |= OPTION_MD5; 910 remaining -= TCPOLEN_MD5SIG_ALIGNED; 911 912 /* We can't fit any SACK blocks in a packet with MD5 + TS 913 * options. There was discussion about disabling SACK 914 * rather than TS in order to fit in better with old, 915 * buggy kernels, but that was deemed to be unnecessary. 916 */ 917 if (synack_type != TCP_SYNACK_COOKIE) 918 ireq->tstamp_ok &= !ireq->sack_ok; 919 } else if (tcp_key_is_ao(key)) { 920 opts->options |= OPTION_AO; 921 remaining -= tcp_ao_len_aligned(key->ao_key); 922 ireq->tstamp_ok &= !ireq->sack_ok; 923 } 924 925 /* We always send an MSS option. */ 926 opts->mss = mss; 927 remaining -= TCPOLEN_MSS_ALIGNED; 928 929 if (likely(ireq->wscale_ok)) { 930 opts->ws = ireq->rcv_wscale; 931 opts->options |= OPTION_WSCALE; 932 remaining -= TCPOLEN_WSCALE_ALIGNED; 933 } 934 if (likely(ireq->tstamp_ok)) { 935 opts->options |= OPTION_TS; 936 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) + 937 tcp_rsk(req)->ts_off; 938 opts->tsecr = READ_ONCE(req->ts_recent); 939 remaining -= TCPOLEN_TSTAMP_ALIGNED; 940 } 941 if (likely(ireq->sack_ok)) { 942 opts->options |= OPTION_SACK_ADVERTISE; 943 if (unlikely(!ireq->tstamp_ok)) 944 remaining -= TCPOLEN_SACKPERM_ALIGNED; 945 } 946 if (foc != NULL && foc->len >= 0) { 947 u32 need = foc->len; 948 949 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 950 TCPOLEN_FASTOPEN_BASE; 951 need = (need + 3) & ~3U; /* Align to 32 bits */ 952 if (remaining >= need) { 953 opts->options |= OPTION_FAST_OPEN_COOKIE; 954 opts->fastopen_cookie = foc; 955 remaining -= need; 956 } 957 } 958 959 mptcp_set_option_cond(req, opts, &remaining); 960 961 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 962 963 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 964 synack_type, opts, &remaining); 965 966 return MAX_TCP_OPTION_SPACE - remaining; 967 } 968 969 /* Compute TCP options for ESTABLISHED sockets. This is not the 970 * final wire format yet. 971 */ 972 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 973 struct tcp_out_options *opts, 974 struct tcp_key *key) 975 { 976 struct tcp_sock *tp = tcp_sk(sk); 977 unsigned int size = 0; 978 unsigned int eff_sacks; 979 980 opts->options = 0; 981 982 /* Better than switch (key.type) as it has static branches */ 983 if (tcp_key_is_md5(key)) { 984 opts->options |= OPTION_MD5; 985 size += TCPOLEN_MD5SIG_ALIGNED; 986 } else if (tcp_key_is_ao(key)) { 987 opts->options |= OPTION_AO; 988 size += tcp_ao_len_aligned(key->ao_key); 989 } 990 991 if (likely(tp->rx_opt.tstamp_ok)) { 992 opts->options |= OPTION_TS; 993 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + 994 tp->tsoffset : 0; 995 opts->tsecr = tp->rx_opt.ts_recent; 996 size += TCPOLEN_TSTAMP_ALIGNED; 997 } 998 999 /* MPTCP options have precedence over SACK for the limited TCP 1000 * option space because a MPTCP connection would be forced to 1001 * fall back to regular TCP if a required multipath option is 1002 * missing. SACK still gets a chance to use whatever space is 1003 * left. 1004 */ 1005 if (sk_is_mptcp(sk)) { 1006 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1007 unsigned int opt_size = 0; 1008 1009 if (mptcp_established_options(sk, skb, &opt_size, remaining, 1010 &opts->mptcp)) { 1011 opts->options |= OPTION_MPTCP; 1012 size += opt_size; 1013 } 1014 } 1015 1016 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 1017 if (unlikely(eff_sacks)) { 1018 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1019 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 1020 TCPOLEN_SACK_PERBLOCK)) 1021 return size; 1022 1023 opts->num_sack_blocks = 1024 min_t(unsigned int, eff_sacks, 1025 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 1026 TCPOLEN_SACK_PERBLOCK); 1027 1028 size += TCPOLEN_SACK_BASE_ALIGNED + 1029 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 1030 } 1031 1032 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 1033 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 1034 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1035 1036 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1037 1038 size = MAX_TCP_OPTION_SPACE - remaining; 1039 } 1040 1041 return size; 1042 } 1043 1044 1045 /* TCP SMALL QUEUES (TSQ) 1046 * 1047 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1048 * to reduce RTT and bufferbloat. 1049 * We do this using a special skb destructor (tcp_wfree). 1050 * 1051 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1052 * needs to be reallocated in a driver. 1053 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1054 * 1055 * Since transmit from skb destructor is forbidden, we use a tasklet 1056 * to process all sockets that eventually need to send more skbs. 1057 * We use one tasklet per cpu, with its own queue of sockets. 1058 */ 1059 struct tsq_tasklet { 1060 struct tasklet_struct tasklet; 1061 struct list_head head; /* queue of tcp sockets */ 1062 }; 1063 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1064 1065 static void tcp_tsq_write(struct sock *sk) 1066 { 1067 if ((1 << sk->sk_state) & 1068 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1069 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1070 struct tcp_sock *tp = tcp_sk(sk); 1071 1072 if (tp->lost_out > tp->retrans_out && 1073 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1074 tcp_mstamp_refresh(tp); 1075 tcp_xmit_retransmit_queue(sk); 1076 } 1077 1078 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1079 0, GFP_ATOMIC); 1080 } 1081 } 1082 1083 static void tcp_tsq_handler(struct sock *sk) 1084 { 1085 bh_lock_sock(sk); 1086 if (!sock_owned_by_user(sk)) 1087 tcp_tsq_write(sk); 1088 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1089 sock_hold(sk); 1090 bh_unlock_sock(sk); 1091 } 1092 /* 1093 * One tasklet per cpu tries to send more skbs. 1094 * We run in tasklet context but need to disable irqs when 1095 * transferring tsq->head because tcp_wfree() might 1096 * interrupt us (non NAPI drivers) 1097 */ 1098 static void tcp_tasklet_func(struct tasklet_struct *t) 1099 { 1100 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1101 LIST_HEAD(list); 1102 unsigned long flags; 1103 struct list_head *q, *n; 1104 struct tcp_sock *tp; 1105 struct sock *sk; 1106 1107 local_irq_save(flags); 1108 list_splice_init(&tsq->head, &list); 1109 local_irq_restore(flags); 1110 1111 list_for_each_safe(q, n, &list) { 1112 tp = list_entry(q, struct tcp_sock, tsq_node); 1113 list_del(&tp->tsq_node); 1114 1115 sk = (struct sock *)tp; 1116 smp_mb__before_atomic(); 1117 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1118 1119 tcp_tsq_handler(sk); 1120 sk_free(sk); 1121 } 1122 } 1123 1124 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1125 TCPF_WRITE_TIMER_DEFERRED | \ 1126 TCPF_DELACK_TIMER_DEFERRED | \ 1127 TCPF_MTU_REDUCED_DEFERRED | \ 1128 TCPF_ACK_DEFERRED) 1129 /** 1130 * tcp_release_cb - tcp release_sock() callback 1131 * @sk: socket 1132 * 1133 * called from release_sock() to perform protocol dependent 1134 * actions before socket release. 1135 */ 1136 void tcp_release_cb(struct sock *sk) 1137 { 1138 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1139 unsigned long nflags; 1140 1141 /* perform an atomic operation only if at least one flag is set */ 1142 do { 1143 if (!(flags & TCP_DEFERRED_ALL)) 1144 return; 1145 nflags = flags & ~TCP_DEFERRED_ALL; 1146 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1147 1148 if (flags & TCPF_TSQ_DEFERRED) { 1149 tcp_tsq_write(sk); 1150 __sock_put(sk); 1151 } 1152 1153 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1154 tcp_write_timer_handler(sk); 1155 __sock_put(sk); 1156 } 1157 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1158 tcp_delack_timer_handler(sk); 1159 __sock_put(sk); 1160 } 1161 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1162 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1163 __sock_put(sk); 1164 } 1165 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1166 tcp_send_ack(sk); 1167 } 1168 EXPORT_SYMBOL(tcp_release_cb); 1169 1170 void __init tcp_tasklet_init(void) 1171 { 1172 int i; 1173 1174 for_each_possible_cpu(i) { 1175 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1176 1177 INIT_LIST_HEAD(&tsq->head); 1178 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1179 } 1180 } 1181 1182 /* 1183 * Write buffer destructor automatically called from kfree_skb. 1184 * We can't xmit new skbs from this context, as we might already 1185 * hold qdisc lock. 1186 */ 1187 void tcp_wfree(struct sk_buff *skb) 1188 { 1189 struct sock *sk = skb->sk; 1190 struct tcp_sock *tp = tcp_sk(sk); 1191 unsigned long flags, nval, oval; 1192 struct tsq_tasklet *tsq; 1193 bool empty; 1194 1195 /* Keep one reference on sk_wmem_alloc. 1196 * Will be released by sk_free() from here or tcp_tasklet_func() 1197 */ 1198 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1199 1200 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1201 * Wait until our queues (qdisc + devices) are drained. 1202 * This gives : 1203 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1204 * - chance for incoming ACK (processed by another cpu maybe) 1205 * to migrate this flow (skb->ooo_okay will be eventually set) 1206 */ 1207 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1208 goto out; 1209 1210 oval = smp_load_acquire(&sk->sk_tsq_flags); 1211 do { 1212 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1213 goto out; 1214 1215 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1216 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1217 1218 /* queue this socket to tasklet queue */ 1219 local_irq_save(flags); 1220 tsq = this_cpu_ptr(&tsq_tasklet); 1221 empty = list_empty(&tsq->head); 1222 list_add(&tp->tsq_node, &tsq->head); 1223 if (empty) 1224 tasklet_schedule(&tsq->tasklet); 1225 local_irq_restore(flags); 1226 return; 1227 out: 1228 sk_free(sk); 1229 } 1230 1231 /* Note: Called under soft irq. 1232 * We can call TCP stack right away, unless socket is owned by user. 1233 */ 1234 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1235 { 1236 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1237 struct sock *sk = (struct sock *)tp; 1238 1239 tcp_tsq_handler(sk); 1240 sock_put(sk); 1241 1242 return HRTIMER_NORESTART; 1243 } 1244 1245 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1246 u64 prior_wstamp) 1247 { 1248 struct tcp_sock *tp = tcp_sk(sk); 1249 1250 if (sk->sk_pacing_status != SK_PACING_NONE) { 1251 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1252 1253 /* Original sch_fq does not pace first 10 MSS 1254 * Note that tp->data_segs_out overflows after 2^32 packets, 1255 * this is a minor annoyance. 1256 */ 1257 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1258 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1259 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1260 1261 /* take into account OS jitter */ 1262 len_ns -= min_t(u64, len_ns / 2, credit); 1263 tp->tcp_wstamp_ns += len_ns; 1264 } 1265 } 1266 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1267 } 1268 1269 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1270 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1271 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1272 1273 /* This routine actually transmits TCP packets queued in by 1274 * tcp_do_sendmsg(). This is used by both the initial 1275 * transmission and possible later retransmissions. 1276 * All SKB's seen here are completely headerless. It is our 1277 * job to build the TCP header, and pass the packet down to 1278 * IP so it can do the same plus pass the packet off to the 1279 * device. 1280 * 1281 * We are working here with either a clone of the original 1282 * SKB, or a fresh unique copy made by the retransmit engine. 1283 */ 1284 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1285 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1286 { 1287 const struct inet_connection_sock *icsk = inet_csk(sk); 1288 struct inet_sock *inet; 1289 struct tcp_sock *tp; 1290 struct tcp_skb_cb *tcb; 1291 struct tcp_out_options opts; 1292 unsigned int tcp_options_size, tcp_header_size; 1293 struct sk_buff *oskb = NULL; 1294 struct tcp_key key; 1295 struct tcphdr *th; 1296 u64 prior_wstamp; 1297 int err; 1298 1299 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1300 tp = tcp_sk(sk); 1301 prior_wstamp = tp->tcp_wstamp_ns; 1302 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1303 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 1304 if (clone_it) { 1305 oskb = skb; 1306 1307 tcp_skb_tsorted_save(oskb) { 1308 if (unlikely(skb_cloned(oskb))) 1309 skb = pskb_copy(oskb, gfp_mask); 1310 else 1311 skb = skb_clone(oskb, gfp_mask); 1312 } tcp_skb_tsorted_restore(oskb); 1313 1314 if (unlikely(!skb)) 1315 return -ENOBUFS; 1316 /* retransmit skbs might have a non zero value in skb->dev 1317 * because skb->dev is aliased with skb->rbnode.rb_left 1318 */ 1319 skb->dev = NULL; 1320 } 1321 1322 inet = inet_sk(sk); 1323 tcb = TCP_SKB_CB(skb); 1324 memset(&opts, 0, sizeof(opts)); 1325 1326 tcp_get_current_key(sk, &key); 1327 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1328 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key); 1329 } else { 1330 tcp_options_size = tcp_established_options(sk, skb, &opts, &key); 1331 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1332 * at receiver : This slightly improve GRO performance. 1333 * Note that we do not force the PSH flag for non GSO packets, 1334 * because they might be sent under high congestion events, 1335 * and in this case it is better to delay the delivery of 1-MSS 1336 * packets and thus the corresponding ACK packet that would 1337 * release the following packet. 1338 */ 1339 if (tcp_skb_pcount(skb) > 1) 1340 tcb->tcp_flags |= TCPHDR_PSH; 1341 } 1342 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1343 1344 /* We set skb->ooo_okay to one if this packet can select 1345 * a different TX queue than prior packets of this flow, 1346 * to avoid self inflicted reorders. 1347 * The 'other' queue decision is based on current cpu number 1348 * if XPS is enabled, or sk->sk_txhash otherwise. 1349 * We can switch to another (and better) queue if: 1350 * 1) No packet with payload is in qdisc/device queues. 1351 * Delays in TX completion can defeat the test 1352 * even if packets were already sent. 1353 * 2) Or rtx queue is empty. 1354 * This mitigates above case if ACK packets for 1355 * all prior packets were already processed. 1356 */ 1357 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1358 tcp_rtx_queue_empty(sk); 1359 1360 /* If we had to use memory reserve to allocate this skb, 1361 * this might cause drops if packet is looped back : 1362 * Other socket might not have SOCK_MEMALLOC. 1363 * Packets not looped back do not care about pfmemalloc. 1364 */ 1365 skb->pfmemalloc = 0; 1366 1367 skb_push(skb, tcp_header_size); 1368 skb_reset_transport_header(skb); 1369 1370 skb_orphan(skb); 1371 skb->sk = sk; 1372 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1373 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1374 1375 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1376 1377 /* Build TCP header and checksum it. */ 1378 th = (struct tcphdr *)skb->data; 1379 th->source = inet->inet_sport; 1380 th->dest = inet->inet_dport; 1381 th->seq = htonl(tcb->seq); 1382 th->ack_seq = htonl(rcv_nxt); 1383 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1384 tcb->tcp_flags); 1385 1386 th->check = 0; 1387 th->urg_ptr = 0; 1388 1389 /* The urg_mode check is necessary during a below snd_una win probe */ 1390 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1391 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1392 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1393 th->urg = 1; 1394 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1395 th->urg_ptr = htons(0xFFFF); 1396 th->urg = 1; 1397 } 1398 } 1399 1400 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1401 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1402 th->window = htons(tcp_select_window(sk)); 1403 tcp_ecn_send(sk, skb, th, tcp_header_size); 1404 } else { 1405 /* RFC1323: The window in SYN & SYN/ACK segments 1406 * is never scaled. 1407 */ 1408 th->window = htons(min(tp->rcv_wnd, 65535U)); 1409 } 1410 1411 tcp_options_write(th, tp, NULL, &opts, &key); 1412 1413 if (tcp_key_is_md5(&key)) { 1414 #ifdef CONFIG_TCP_MD5SIG 1415 /* Calculate the MD5 hash, as we have all we need now */ 1416 sk_gso_disable(sk); 1417 tp->af_specific->calc_md5_hash(opts.hash_location, 1418 key.md5_key, sk, skb); 1419 #endif 1420 } else if (tcp_key_is_ao(&key)) { 1421 int err; 1422 1423 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th, 1424 opts.hash_location); 1425 if (err) { 1426 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1427 return -ENOMEM; 1428 } 1429 } 1430 1431 /* BPF prog is the last one writing header option */ 1432 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1433 1434 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1435 tcp_v6_send_check, tcp_v4_send_check, 1436 sk, skb); 1437 1438 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1439 tcp_event_ack_sent(sk, rcv_nxt); 1440 1441 if (skb->len != tcp_header_size) { 1442 tcp_event_data_sent(tp, sk); 1443 tp->data_segs_out += tcp_skb_pcount(skb); 1444 tp->bytes_sent += skb->len - tcp_header_size; 1445 } 1446 1447 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1448 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1449 tcp_skb_pcount(skb)); 1450 1451 tp->segs_out += tcp_skb_pcount(skb); 1452 skb_set_hash_from_sk(skb, sk); 1453 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1454 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1455 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1456 1457 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1458 1459 /* Cleanup our debris for IP stacks */ 1460 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1461 sizeof(struct inet6_skb_parm))); 1462 1463 tcp_add_tx_delay(skb, tp); 1464 1465 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1466 inet6_csk_xmit, ip_queue_xmit, 1467 sk, skb, &inet->cork.fl); 1468 1469 if (unlikely(err > 0)) { 1470 tcp_enter_cwr(sk); 1471 err = net_xmit_eval(err); 1472 } 1473 if (!err && oskb) { 1474 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1475 tcp_rate_skb_sent(sk, oskb); 1476 } 1477 return err; 1478 } 1479 1480 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1481 gfp_t gfp_mask) 1482 { 1483 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1484 tcp_sk(sk)->rcv_nxt); 1485 } 1486 1487 /* This routine just queues the buffer for sending. 1488 * 1489 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1490 * otherwise socket can stall. 1491 */ 1492 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1493 { 1494 struct tcp_sock *tp = tcp_sk(sk); 1495 1496 /* Advance write_seq and place onto the write_queue. */ 1497 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1498 __skb_header_release(skb); 1499 tcp_add_write_queue_tail(sk, skb); 1500 sk_wmem_queued_add(sk, skb->truesize); 1501 sk_mem_charge(sk, skb->truesize); 1502 } 1503 1504 /* Initialize TSO segments for a packet. */ 1505 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1506 { 1507 int tso_segs; 1508 1509 if (skb->len <= mss_now) { 1510 /* Avoid the costly divide in the normal 1511 * non-TSO case. 1512 */ 1513 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1514 tcp_skb_pcount_set(skb, 1); 1515 return 1; 1516 } 1517 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1518 tso_segs = DIV_ROUND_UP(skb->len, mss_now); 1519 tcp_skb_pcount_set(skb, tso_segs); 1520 return tso_segs; 1521 } 1522 1523 /* Pcount in the middle of the write queue got changed, we need to do various 1524 * tweaks to fix counters 1525 */ 1526 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1527 { 1528 struct tcp_sock *tp = tcp_sk(sk); 1529 1530 tp->packets_out -= decr; 1531 1532 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1533 tp->sacked_out -= decr; 1534 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1535 tp->retrans_out -= decr; 1536 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1537 tp->lost_out -= decr; 1538 1539 /* Reno case is special. Sigh... */ 1540 if (tcp_is_reno(tp) && decr > 0) 1541 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1542 1543 if (tp->lost_skb_hint && 1544 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1545 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1546 tp->lost_cnt_hint -= decr; 1547 1548 tcp_verify_left_out(tp); 1549 } 1550 1551 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1552 { 1553 return TCP_SKB_CB(skb)->txstamp_ack || 1554 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1555 } 1556 1557 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1558 { 1559 struct skb_shared_info *shinfo = skb_shinfo(skb); 1560 1561 if (unlikely(tcp_has_tx_tstamp(skb)) && 1562 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1563 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1564 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1565 1566 shinfo->tx_flags &= ~tsflags; 1567 shinfo2->tx_flags |= tsflags; 1568 swap(shinfo->tskey, shinfo2->tskey); 1569 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1570 TCP_SKB_CB(skb)->txstamp_ack = 0; 1571 } 1572 } 1573 1574 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1575 { 1576 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1577 TCP_SKB_CB(skb)->eor = 0; 1578 } 1579 1580 /* Insert buff after skb on the write or rtx queue of sk. */ 1581 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1582 struct sk_buff *buff, 1583 struct sock *sk, 1584 enum tcp_queue tcp_queue) 1585 { 1586 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1587 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1588 else 1589 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1590 } 1591 1592 /* Function to create two new TCP segments. Shrinks the given segment 1593 * to the specified size and appends a new segment with the rest of the 1594 * packet to the list. This won't be called frequently, I hope. 1595 * Remember, these are still headerless SKBs at this point. 1596 */ 1597 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1598 struct sk_buff *skb, u32 len, 1599 unsigned int mss_now, gfp_t gfp) 1600 { 1601 struct tcp_sock *tp = tcp_sk(sk); 1602 struct sk_buff *buff; 1603 int old_factor; 1604 long limit; 1605 int nlen; 1606 u8 flags; 1607 1608 if (WARN_ON(len > skb->len)) 1609 return -EINVAL; 1610 1611 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1612 1613 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1614 * We need some allowance to not penalize applications setting small 1615 * SO_SNDBUF values. 1616 * Also allow first and last skb in retransmit queue to be split. 1617 */ 1618 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1619 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1620 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1621 skb != tcp_rtx_queue_head(sk) && 1622 skb != tcp_rtx_queue_tail(sk))) { 1623 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1624 return -ENOMEM; 1625 } 1626 1627 if (skb_unclone_keeptruesize(skb, gfp)) 1628 return -ENOMEM; 1629 1630 /* Get a new skb... force flag on. */ 1631 buff = tcp_stream_alloc_skb(sk, gfp, true); 1632 if (!buff) 1633 return -ENOMEM; /* We'll just try again later. */ 1634 skb_copy_decrypted(buff, skb); 1635 mptcp_skb_ext_copy(buff, skb); 1636 1637 sk_wmem_queued_add(sk, buff->truesize); 1638 sk_mem_charge(sk, buff->truesize); 1639 nlen = skb->len - len; 1640 buff->truesize += nlen; 1641 skb->truesize -= nlen; 1642 1643 /* Correct the sequence numbers. */ 1644 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1645 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1646 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1647 1648 /* PSH and FIN should only be set in the second packet. */ 1649 flags = TCP_SKB_CB(skb)->tcp_flags; 1650 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1651 TCP_SKB_CB(buff)->tcp_flags = flags; 1652 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1653 tcp_skb_fragment_eor(skb, buff); 1654 1655 skb_split(skb, buff, len); 1656 1657 skb_set_delivery_time(buff, skb->tstamp, true); 1658 tcp_fragment_tstamp(skb, buff); 1659 1660 old_factor = tcp_skb_pcount(skb); 1661 1662 /* Fix up tso_factor for both original and new SKB. */ 1663 tcp_set_skb_tso_segs(skb, mss_now); 1664 tcp_set_skb_tso_segs(buff, mss_now); 1665 1666 /* Update delivered info for the new segment */ 1667 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1668 1669 /* If this packet has been sent out already, we must 1670 * adjust the various packet counters. 1671 */ 1672 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1673 int diff = old_factor - tcp_skb_pcount(skb) - 1674 tcp_skb_pcount(buff); 1675 1676 if (diff) 1677 tcp_adjust_pcount(sk, skb, diff); 1678 } 1679 1680 /* Link BUFF into the send queue. */ 1681 __skb_header_release(buff); 1682 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1683 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1684 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1685 1686 return 0; 1687 } 1688 1689 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1690 * data is not copied, but immediately discarded. 1691 */ 1692 static int __pskb_trim_head(struct sk_buff *skb, int len) 1693 { 1694 struct skb_shared_info *shinfo; 1695 int i, k, eat; 1696 1697 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1698 eat = len; 1699 k = 0; 1700 shinfo = skb_shinfo(skb); 1701 for (i = 0; i < shinfo->nr_frags; i++) { 1702 int size = skb_frag_size(&shinfo->frags[i]); 1703 1704 if (size <= eat) { 1705 skb_frag_unref(skb, i); 1706 eat -= size; 1707 } else { 1708 shinfo->frags[k] = shinfo->frags[i]; 1709 if (eat) { 1710 skb_frag_off_add(&shinfo->frags[k], eat); 1711 skb_frag_size_sub(&shinfo->frags[k], eat); 1712 eat = 0; 1713 } 1714 k++; 1715 } 1716 } 1717 shinfo->nr_frags = k; 1718 1719 skb->data_len -= len; 1720 skb->len = skb->data_len; 1721 return len; 1722 } 1723 1724 /* Remove acked data from a packet in the transmit queue. */ 1725 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1726 { 1727 u32 delta_truesize; 1728 1729 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1730 return -ENOMEM; 1731 1732 delta_truesize = __pskb_trim_head(skb, len); 1733 1734 TCP_SKB_CB(skb)->seq += len; 1735 1736 skb->truesize -= delta_truesize; 1737 sk_wmem_queued_add(sk, -delta_truesize); 1738 if (!skb_zcopy_pure(skb)) 1739 sk_mem_uncharge(sk, delta_truesize); 1740 1741 /* Any change of skb->len requires recalculation of tso factor. */ 1742 if (tcp_skb_pcount(skb) > 1) 1743 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1744 1745 return 0; 1746 } 1747 1748 /* Calculate MSS not accounting any TCP options. */ 1749 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1750 { 1751 const struct tcp_sock *tp = tcp_sk(sk); 1752 const struct inet_connection_sock *icsk = inet_csk(sk); 1753 int mss_now; 1754 1755 /* Calculate base mss without TCP options: 1756 It is MMS_S - sizeof(tcphdr) of rfc1122 1757 */ 1758 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1759 1760 /* Clamp it (mss_clamp does not include tcp options) */ 1761 if (mss_now > tp->rx_opt.mss_clamp) 1762 mss_now = tp->rx_opt.mss_clamp; 1763 1764 /* Now subtract optional transport overhead */ 1765 mss_now -= icsk->icsk_ext_hdr_len; 1766 1767 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1768 mss_now = max(mss_now, 1769 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1770 return mss_now; 1771 } 1772 1773 /* Calculate MSS. Not accounting for SACKs here. */ 1774 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1775 { 1776 /* Subtract TCP options size, not including SACKs */ 1777 return __tcp_mtu_to_mss(sk, pmtu) - 1778 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1779 } 1780 EXPORT_SYMBOL(tcp_mtu_to_mss); 1781 1782 /* Inverse of above */ 1783 int tcp_mss_to_mtu(struct sock *sk, int mss) 1784 { 1785 const struct tcp_sock *tp = tcp_sk(sk); 1786 const struct inet_connection_sock *icsk = inet_csk(sk); 1787 1788 return mss + 1789 tp->tcp_header_len + 1790 icsk->icsk_ext_hdr_len + 1791 icsk->icsk_af_ops->net_header_len; 1792 } 1793 EXPORT_SYMBOL(tcp_mss_to_mtu); 1794 1795 /* MTU probing init per socket */ 1796 void tcp_mtup_init(struct sock *sk) 1797 { 1798 struct tcp_sock *tp = tcp_sk(sk); 1799 struct inet_connection_sock *icsk = inet_csk(sk); 1800 struct net *net = sock_net(sk); 1801 1802 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1803 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1804 icsk->icsk_af_ops->net_header_len; 1805 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1806 icsk->icsk_mtup.probe_size = 0; 1807 if (icsk->icsk_mtup.enabled) 1808 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1809 } 1810 EXPORT_SYMBOL(tcp_mtup_init); 1811 1812 /* This function synchronize snd mss to current pmtu/exthdr set. 1813 1814 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1815 for TCP options, but includes only bare TCP header. 1816 1817 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1818 It is minimum of user_mss and mss received with SYN. 1819 It also does not include TCP options. 1820 1821 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1822 1823 tp->mss_cache is current effective sending mss, including 1824 all tcp options except for SACKs. It is evaluated, 1825 taking into account current pmtu, but never exceeds 1826 tp->rx_opt.mss_clamp. 1827 1828 NOTE1. rfc1122 clearly states that advertised MSS 1829 DOES NOT include either tcp or ip options. 1830 1831 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1832 are READ ONLY outside this function. --ANK (980731) 1833 */ 1834 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1835 { 1836 struct tcp_sock *tp = tcp_sk(sk); 1837 struct inet_connection_sock *icsk = inet_csk(sk); 1838 int mss_now; 1839 1840 if (icsk->icsk_mtup.search_high > pmtu) 1841 icsk->icsk_mtup.search_high = pmtu; 1842 1843 mss_now = tcp_mtu_to_mss(sk, pmtu); 1844 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1845 1846 /* And store cached results */ 1847 icsk->icsk_pmtu_cookie = pmtu; 1848 if (icsk->icsk_mtup.enabled) 1849 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1850 tp->mss_cache = mss_now; 1851 1852 return mss_now; 1853 } 1854 EXPORT_SYMBOL(tcp_sync_mss); 1855 1856 /* Compute the current effective MSS, taking SACKs and IP options, 1857 * and even PMTU discovery events into account. 1858 */ 1859 unsigned int tcp_current_mss(struct sock *sk) 1860 { 1861 const struct tcp_sock *tp = tcp_sk(sk); 1862 const struct dst_entry *dst = __sk_dst_get(sk); 1863 u32 mss_now; 1864 unsigned int header_len; 1865 struct tcp_out_options opts; 1866 struct tcp_key key; 1867 1868 mss_now = tp->mss_cache; 1869 1870 if (dst) { 1871 u32 mtu = dst_mtu(dst); 1872 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1873 mss_now = tcp_sync_mss(sk, mtu); 1874 } 1875 tcp_get_current_key(sk, &key); 1876 header_len = tcp_established_options(sk, NULL, &opts, &key) + 1877 sizeof(struct tcphdr); 1878 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1879 * some common options. If this is an odd packet (because we have SACK 1880 * blocks etc) then our calculated header_len will be different, and 1881 * we have to adjust mss_now correspondingly */ 1882 if (header_len != tp->tcp_header_len) { 1883 int delta = (int) header_len - tp->tcp_header_len; 1884 mss_now -= delta; 1885 } 1886 1887 return mss_now; 1888 } 1889 1890 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1891 * As additional protections, we do not touch cwnd in retransmission phases, 1892 * and if application hit its sndbuf limit recently. 1893 */ 1894 static void tcp_cwnd_application_limited(struct sock *sk) 1895 { 1896 struct tcp_sock *tp = tcp_sk(sk); 1897 1898 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1899 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1900 /* Limited by application or receiver window. */ 1901 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1902 u32 win_used = max(tp->snd_cwnd_used, init_win); 1903 if (win_used < tcp_snd_cwnd(tp)) { 1904 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1905 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1906 } 1907 tp->snd_cwnd_used = 0; 1908 } 1909 tp->snd_cwnd_stamp = tcp_jiffies32; 1910 } 1911 1912 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1913 { 1914 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1915 struct tcp_sock *tp = tcp_sk(sk); 1916 1917 /* Track the strongest available signal of the degree to which the cwnd 1918 * is fully utilized. If cwnd-limited then remember that fact for the 1919 * current window. If not cwnd-limited then track the maximum number of 1920 * outstanding packets in the current window. (If cwnd-limited then we 1921 * chose to not update tp->max_packets_out to avoid an extra else 1922 * clause with no functional impact.) 1923 */ 1924 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1925 is_cwnd_limited || 1926 (!tp->is_cwnd_limited && 1927 tp->packets_out > tp->max_packets_out)) { 1928 tp->is_cwnd_limited = is_cwnd_limited; 1929 tp->max_packets_out = tp->packets_out; 1930 tp->cwnd_usage_seq = tp->snd_nxt; 1931 } 1932 1933 if (tcp_is_cwnd_limited(sk)) { 1934 /* Network is feed fully. */ 1935 tp->snd_cwnd_used = 0; 1936 tp->snd_cwnd_stamp = tcp_jiffies32; 1937 } else { 1938 /* Network starves. */ 1939 if (tp->packets_out > tp->snd_cwnd_used) 1940 tp->snd_cwnd_used = tp->packets_out; 1941 1942 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1943 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1944 !ca_ops->cong_control) 1945 tcp_cwnd_application_limited(sk); 1946 1947 /* The following conditions together indicate the starvation 1948 * is caused by insufficient sender buffer: 1949 * 1) just sent some data (see tcp_write_xmit) 1950 * 2) not cwnd limited (this else condition) 1951 * 3) no more data to send (tcp_write_queue_empty()) 1952 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1953 */ 1954 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1955 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1956 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1957 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1958 } 1959 } 1960 1961 /* Minshall's variant of the Nagle send check. */ 1962 static bool tcp_minshall_check(const struct tcp_sock *tp) 1963 { 1964 return after(tp->snd_sml, tp->snd_una) && 1965 !after(tp->snd_sml, tp->snd_nxt); 1966 } 1967 1968 /* Update snd_sml if this skb is under mss 1969 * Note that a TSO packet might end with a sub-mss segment 1970 * The test is really : 1971 * if ((skb->len % mss) != 0) 1972 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1973 * But we can avoid doing the divide again given we already have 1974 * skb_pcount = skb->len / mss_now 1975 */ 1976 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1977 const struct sk_buff *skb) 1978 { 1979 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1980 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1981 } 1982 1983 /* Return false, if packet can be sent now without violation Nagle's rules: 1984 * 1. It is full sized. (provided by caller in %partial bool) 1985 * 2. Or it contains FIN. (already checked by caller) 1986 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1987 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1988 * With Minshall's modification: all sent small packets are ACKed. 1989 */ 1990 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1991 int nonagle) 1992 { 1993 return partial && 1994 ((nonagle & TCP_NAGLE_CORK) || 1995 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1996 } 1997 1998 /* Return how many segs we'd like on a TSO packet, 1999 * depending on current pacing rate, and how close the peer is. 2000 * 2001 * Rationale is: 2002 * - For close peers, we rather send bigger packets to reduce 2003 * cpu costs, because occasional losses will be repaired fast. 2004 * - For long distance/rtt flows, we would like to get ACK clocking 2005 * with 1 ACK per ms. 2006 * 2007 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 2008 * in bigger TSO bursts. We we cut the RTT-based allowance in half 2009 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 2010 * is below 1500 bytes after 6 * ~500 usec = 3ms. 2011 */ 2012 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 2013 int min_tso_segs) 2014 { 2015 unsigned long bytes; 2016 u32 r; 2017 2018 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 2019 2020 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 2021 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 2022 bytes += sk->sk_gso_max_size >> r; 2023 2024 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 2025 2026 return max_t(u32, bytes / mss_now, min_tso_segs); 2027 } 2028 2029 /* Return the number of segments we want in the skb we are transmitting. 2030 * See if congestion control module wants to decide; otherwise, autosize. 2031 */ 2032 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 2033 { 2034 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2035 u32 min_tso, tso_segs; 2036 2037 min_tso = ca_ops->min_tso_segs ? 2038 ca_ops->min_tso_segs(sk) : 2039 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2040 2041 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2042 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2043 } 2044 2045 /* Returns the portion of skb which can be sent right away */ 2046 static unsigned int tcp_mss_split_point(const struct sock *sk, 2047 const struct sk_buff *skb, 2048 unsigned int mss_now, 2049 unsigned int max_segs, 2050 int nonagle) 2051 { 2052 const struct tcp_sock *tp = tcp_sk(sk); 2053 u32 partial, needed, window, max_len; 2054 2055 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2056 max_len = mss_now * max_segs; 2057 2058 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2059 return max_len; 2060 2061 needed = min(skb->len, window); 2062 2063 if (max_len <= needed) 2064 return max_len; 2065 2066 partial = needed % mss_now; 2067 /* If last segment is not a full MSS, check if Nagle rules allow us 2068 * to include this last segment in this skb. 2069 * Otherwise, we'll split the skb at last MSS boundary 2070 */ 2071 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2072 return needed - partial; 2073 2074 return needed; 2075 } 2076 2077 /* Can at least one segment of SKB be sent right now, according to the 2078 * congestion window rules? If so, return how many segments are allowed. 2079 */ 2080 static u32 tcp_cwnd_test(const struct tcp_sock *tp) 2081 { 2082 u32 in_flight, cwnd, halfcwnd; 2083 2084 in_flight = tcp_packets_in_flight(tp); 2085 cwnd = tcp_snd_cwnd(tp); 2086 if (in_flight >= cwnd) 2087 return 0; 2088 2089 /* For better scheduling, ensure we have at least 2090 * 2 GSO packets in flight. 2091 */ 2092 halfcwnd = max(cwnd >> 1, 1U); 2093 return min(halfcwnd, cwnd - in_flight); 2094 } 2095 2096 /* Initialize TSO state of a skb. 2097 * This must be invoked the first time we consider transmitting 2098 * SKB onto the wire. 2099 */ 2100 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2101 { 2102 int tso_segs = tcp_skb_pcount(skb); 2103 2104 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) 2105 return tcp_set_skb_tso_segs(skb, mss_now); 2106 2107 return tso_segs; 2108 } 2109 2110 2111 /* Return true if the Nagle test allows this packet to be 2112 * sent now. 2113 */ 2114 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2115 unsigned int cur_mss, int nonagle) 2116 { 2117 /* Nagle rule does not apply to frames, which sit in the middle of the 2118 * write_queue (they have no chances to get new data). 2119 * 2120 * This is implemented in the callers, where they modify the 'nonagle' 2121 * argument based upon the location of SKB in the send queue. 2122 */ 2123 if (nonagle & TCP_NAGLE_PUSH) 2124 return true; 2125 2126 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2127 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2128 return true; 2129 2130 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2131 return true; 2132 2133 return false; 2134 } 2135 2136 /* Does at least the first segment of SKB fit into the send window? */ 2137 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2138 const struct sk_buff *skb, 2139 unsigned int cur_mss) 2140 { 2141 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2142 2143 if (skb->len > cur_mss) 2144 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2145 2146 return !after(end_seq, tcp_wnd_end(tp)); 2147 } 2148 2149 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2150 * which is put after SKB on the list. It is very much like 2151 * tcp_fragment() except that it may make several kinds of assumptions 2152 * in order to speed up the splitting operation. In particular, we 2153 * know that all the data is in scatter-gather pages, and that the 2154 * packet has never been sent out before (and thus is not cloned). 2155 */ 2156 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2157 unsigned int mss_now, gfp_t gfp) 2158 { 2159 int nlen = skb->len - len; 2160 struct sk_buff *buff; 2161 u8 flags; 2162 2163 /* All of a TSO frame must be composed of paged data. */ 2164 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2165 2166 buff = tcp_stream_alloc_skb(sk, gfp, true); 2167 if (unlikely(!buff)) 2168 return -ENOMEM; 2169 skb_copy_decrypted(buff, skb); 2170 mptcp_skb_ext_copy(buff, skb); 2171 2172 sk_wmem_queued_add(sk, buff->truesize); 2173 sk_mem_charge(sk, buff->truesize); 2174 buff->truesize += nlen; 2175 skb->truesize -= nlen; 2176 2177 /* Correct the sequence numbers. */ 2178 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2179 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2180 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2181 2182 /* PSH and FIN should only be set in the second packet. */ 2183 flags = TCP_SKB_CB(skb)->tcp_flags; 2184 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2185 TCP_SKB_CB(buff)->tcp_flags = flags; 2186 2187 tcp_skb_fragment_eor(skb, buff); 2188 2189 skb_split(skb, buff, len); 2190 tcp_fragment_tstamp(skb, buff); 2191 2192 /* Fix up tso_factor for both original and new SKB. */ 2193 tcp_set_skb_tso_segs(skb, mss_now); 2194 tcp_set_skb_tso_segs(buff, mss_now); 2195 2196 /* Link BUFF into the send queue. */ 2197 __skb_header_release(buff); 2198 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2199 2200 return 0; 2201 } 2202 2203 /* Try to defer sending, if possible, in order to minimize the amount 2204 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2205 * 2206 * This algorithm is from John Heffner. 2207 */ 2208 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2209 bool *is_cwnd_limited, 2210 bool *is_rwnd_limited, 2211 u32 max_segs) 2212 { 2213 const struct inet_connection_sock *icsk = inet_csk(sk); 2214 u32 send_win, cong_win, limit, in_flight; 2215 struct tcp_sock *tp = tcp_sk(sk); 2216 struct sk_buff *head; 2217 int win_divisor; 2218 s64 delta; 2219 2220 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2221 goto send_now; 2222 2223 /* Avoid bursty behavior by allowing defer 2224 * only if the last write was recent (1 ms). 2225 * Note that tp->tcp_wstamp_ns can be in the future if we have 2226 * packets waiting in a qdisc or device for EDT delivery. 2227 */ 2228 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2229 if (delta > 0) 2230 goto send_now; 2231 2232 in_flight = tcp_packets_in_flight(tp); 2233 2234 BUG_ON(tcp_skb_pcount(skb) <= 1); 2235 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2236 2237 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2238 2239 /* From in_flight test above, we know that cwnd > in_flight. */ 2240 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2241 2242 limit = min(send_win, cong_win); 2243 2244 /* If a full-sized TSO skb can be sent, do it. */ 2245 if (limit >= max_segs * tp->mss_cache) 2246 goto send_now; 2247 2248 /* Middle in queue won't get any more data, full sendable already? */ 2249 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2250 goto send_now; 2251 2252 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2253 if (win_divisor) { 2254 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2255 2256 /* If at least some fraction of a window is available, 2257 * just use it. 2258 */ 2259 chunk /= win_divisor; 2260 if (limit >= chunk) 2261 goto send_now; 2262 } else { 2263 /* Different approach, try not to defer past a single 2264 * ACK. Receiver should ACK every other full sized 2265 * frame, so if we have space for more than 3 frames 2266 * then send now. 2267 */ 2268 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2269 goto send_now; 2270 } 2271 2272 /* TODO : use tsorted_sent_queue ? */ 2273 head = tcp_rtx_queue_head(sk); 2274 if (!head) 2275 goto send_now; 2276 delta = tp->tcp_clock_cache - head->tstamp; 2277 /* If next ACK is likely to come too late (half srtt), do not defer */ 2278 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2279 goto send_now; 2280 2281 /* Ok, it looks like it is advisable to defer. 2282 * Three cases are tracked : 2283 * 1) We are cwnd-limited 2284 * 2) We are rwnd-limited 2285 * 3) We are application limited. 2286 */ 2287 if (cong_win < send_win) { 2288 if (cong_win <= skb->len) { 2289 *is_cwnd_limited = true; 2290 return true; 2291 } 2292 } else { 2293 if (send_win <= skb->len) { 2294 *is_rwnd_limited = true; 2295 return true; 2296 } 2297 } 2298 2299 /* If this packet won't get more data, do not wait. */ 2300 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2301 TCP_SKB_CB(skb)->eor) 2302 goto send_now; 2303 2304 return true; 2305 2306 send_now: 2307 return false; 2308 } 2309 2310 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2311 { 2312 struct inet_connection_sock *icsk = inet_csk(sk); 2313 struct tcp_sock *tp = tcp_sk(sk); 2314 struct net *net = sock_net(sk); 2315 u32 interval; 2316 s32 delta; 2317 2318 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2319 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2320 if (unlikely(delta >= interval * HZ)) { 2321 int mss = tcp_current_mss(sk); 2322 2323 /* Update current search range */ 2324 icsk->icsk_mtup.probe_size = 0; 2325 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2326 sizeof(struct tcphdr) + 2327 icsk->icsk_af_ops->net_header_len; 2328 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2329 2330 /* Update probe time stamp */ 2331 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2332 } 2333 } 2334 2335 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2336 { 2337 struct sk_buff *skb, *next; 2338 2339 skb = tcp_send_head(sk); 2340 tcp_for_write_queue_from_safe(skb, next, sk) { 2341 if (len <= skb->len) 2342 break; 2343 2344 if (unlikely(TCP_SKB_CB(skb)->eor) || 2345 tcp_has_tx_tstamp(skb) || 2346 !skb_pure_zcopy_same(skb, next)) 2347 return false; 2348 2349 len -= skb->len; 2350 } 2351 2352 return true; 2353 } 2354 2355 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2356 int probe_size) 2357 { 2358 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2359 int i, todo, len = 0, nr_frags = 0; 2360 const struct sk_buff *skb; 2361 2362 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2363 return -ENOMEM; 2364 2365 skb_queue_walk(&sk->sk_write_queue, skb) { 2366 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2367 2368 if (skb_headlen(skb)) 2369 return -EINVAL; 2370 2371 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2372 if (len >= probe_size) 2373 goto commit; 2374 todo = min_t(int, skb_frag_size(fragfrom), 2375 probe_size - len); 2376 len += todo; 2377 if (lastfrag && 2378 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2379 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2380 skb_frag_size(lastfrag)) { 2381 skb_frag_size_add(lastfrag, todo); 2382 continue; 2383 } 2384 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2385 return -E2BIG; 2386 skb_frag_page_copy(fragto, fragfrom); 2387 skb_frag_off_copy(fragto, fragfrom); 2388 skb_frag_size_set(fragto, todo); 2389 nr_frags++; 2390 lastfrag = fragto++; 2391 } 2392 } 2393 commit: 2394 WARN_ON_ONCE(len != probe_size); 2395 for (i = 0; i < nr_frags; i++) 2396 skb_frag_ref(to, i); 2397 2398 skb_shinfo(to)->nr_frags = nr_frags; 2399 to->truesize += probe_size; 2400 to->len += probe_size; 2401 to->data_len += probe_size; 2402 __skb_header_release(to); 2403 return 0; 2404 } 2405 2406 /* Create a new MTU probe if we are ready. 2407 * MTU probe is regularly attempting to increase the path MTU by 2408 * deliberately sending larger packets. This discovers routing 2409 * changes resulting in larger path MTUs. 2410 * 2411 * Returns 0 if we should wait to probe (no cwnd available), 2412 * 1 if a probe was sent, 2413 * -1 otherwise 2414 */ 2415 static int tcp_mtu_probe(struct sock *sk) 2416 { 2417 struct inet_connection_sock *icsk = inet_csk(sk); 2418 struct tcp_sock *tp = tcp_sk(sk); 2419 struct sk_buff *skb, *nskb, *next; 2420 struct net *net = sock_net(sk); 2421 int probe_size; 2422 int size_needed; 2423 int copy, len; 2424 int mss_now; 2425 int interval; 2426 2427 /* Not currently probing/verifying, 2428 * not in recovery, 2429 * have enough cwnd, and 2430 * not SACKing (the variable headers throw things off) 2431 */ 2432 if (likely(!icsk->icsk_mtup.enabled || 2433 icsk->icsk_mtup.probe_size || 2434 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2435 tcp_snd_cwnd(tp) < 11 || 2436 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2437 return -1; 2438 2439 /* Use binary search for probe_size between tcp_mss_base, 2440 * and current mss_clamp. if (search_high - search_low) 2441 * smaller than a threshold, backoff from probing. 2442 */ 2443 mss_now = tcp_current_mss(sk); 2444 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2445 icsk->icsk_mtup.search_low) >> 1); 2446 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2447 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2448 /* When misfortune happens, we are reprobing actively, 2449 * and then reprobe timer has expired. We stick with current 2450 * probing process by not resetting search range to its orignal. 2451 */ 2452 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2453 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2454 /* Check whether enough time has elaplased for 2455 * another round of probing. 2456 */ 2457 tcp_mtu_check_reprobe(sk); 2458 return -1; 2459 } 2460 2461 /* Have enough data in the send queue to probe? */ 2462 if (tp->write_seq - tp->snd_nxt < size_needed) 2463 return -1; 2464 2465 if (tp->snd_wnd < size_needed) 2466 return -1; 2467 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2468 return 0; 2469 2470 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2471 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2472 if (!tcp_packets_in_flight(tp)) 2473 return -1; 2474 else 2475 return 0; 2476 } 2477 2478 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2479 return -1; 2480 2481 /* We're allowed to probe. Build it now. */ 2482 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2483 if (!nskb) 2484 return -1; 2485 2486 /* build the payload, and be prepared to abort if this fails. */ 2487 if (tcp_clone_payload(sk, nskb, probe_size)) { 2488 tcp_skb_tsorted_anchor_cleanup(nskb); 2489 consume_skb(nskb); 2490 return -1; 2491 } 2492 sk_wmem_queued_add(sk, nskb->truesize); 2493 sk_mem_charge(sk, nskb->truesize); 2494 2495 skb = tcp_send_head(sk); 2496 skb_copy_decrypted(nskb, skb); 2497 mptcp_skb_ext_copy(nskb, skb); 2498 2499 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2500 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2501 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2502 2503 tcp_insert_write_queue_before(nskb, skb, sk); 2504 tcp_highest_sack_replace(sk, skb, nskb); 2505 2506 len = 0; 2507 tcp_for_write_queue_from_safe(skb, next, sk) { 2508 copy = min_t(int, skb->len, probe_size - len); 2509 2510 if (skb->len <= copy) { 2511 /* We've eaten all the data from this skb. 2512 * Throw it away. */ 2513 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2514 /* If this is the last SKB we copy and eor is set 2515 * we need to propagate it to the new skb. 2516 */ 2517 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2518 tcp_skb_collapse_tstamp(nskb, skb); 2519 tcp_unlink_write_queue(skb, sk); 2520 tcp_wmem_free_skb(sk, skb); 2521 } else { 2522 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2523 ~(TCPHDR_FIN|TCPHDR_PSH); 2524 __pskb_trim_head(skb, copy); 2525 tcp_set_skb_tso_segs(skb, mss_now); 2526 TCP_SKB_CB(skb)->seq += copy; 2527 } 2528 2529 len += copy; 2530 2531 if (len >= probe_size) 2532 break; 2533 } 2534 tcp_init_tso_segs(nskb, nskb->len); 2535 2536 /* We're ready to send. If this fails, the probe will 2537 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2538 */ 2539 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2540 /* Decrement cwnd here because we are sending 2541 * effectively two packets. */ 2542 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2543 tcp_event_new_data_sent(sk, nskb); 2544 2545 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2546 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2547 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2548 2549 return 1; 2550 } 2551 2552 return -1; 2553 } 2554 2555 static bool tcp_pacing_check(struct sock *sk) 2556 { 2557 struct tcp_sock *tp = tcp_sk(sk); 2558 2559 if (!tcp_needs_internal_pacing(sk)) 2560 return false; 2561 2562 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2563 return false; 2564 2565 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2566 hrtimer_start(&tp->pacing_timer, 2567 ns_to_ktime(tp->tcp_wstamp_ns), 2568 HRTIMER_MODE_ABS_PINNED_SOFT); 2569 sock_hold(sk); 2570 } 2571 return true; 2572 } 2573 2574 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2575 { 2576 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2577 2578 /* No skb in the rtx queue. */ 2579 if (!node) 2580 return true; 2581 2582 /* Only one skb in rtx queue. */ 2583 return !node->rb_left && !node->rb_right; 2584 } 2585 2586 /* TCP Small Queues : 2587 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2588 * (These limits are doubled for retransmits) 2589 * This allows for : 2590 * - better RTT estimation and ACK scheduling 2591 * - faster recovery 2592 * - high rates 2593 * Alas, some drivers / subsystems require a fair amount 2594 * of queued bytes to ensure line rate. 2595 * One example is wifi aggregation (802.11 AMPDU) 2596 */ 2597 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2598 unsigned int factor) 2599 { 2600 unsigned long limit; 2601 2602 limit = max_t(unsigned long, 2603 2 * skb->truesize, 2604 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2605 if (sk->sk_pacing_status == SK_PACING_NONE) 2606 limit = min_t(unsigned long, limit, 2607 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2608 limit <<= factor; 2609 2610 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2611 tcp_sk(sk)->tcp_tx_delay) { 2612 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2613 tcp_sk(sk)->tcp_tx_delay; 2614 2615 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2616 * approximate our needs assuming an ~100% skb->truesize overhead. 2617 * USEC_PER_SEC is approximated by 2^20. 2618 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2619 */ 2620 extra_bytes >>= (20 - 1); 2621 limit += extra_bytes; 2622 } 2623 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2624 /* Always send skb if rtx queue is empty or has one skb. 2625 * No need to wait for TX completion to call us back, 2626 * after softirq/tasklet schedule. 2627 * This helps when TX completions are delayed too much. 2628 */ 2629 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2630 return false; 2631 2632 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2633 /* It is possible TX completion already happened 2634 * before we set TSQ_THROTTLED, so we must 2635 * test again the condition. 2636 */ 2637 smp_mb__after_atomic(); 2638 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2639 return true; 2640 } 2641 return false; 2642 } 2643 2644 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2645 { 2646 const u32 now = tcp_jiffies32; 2647 enum tcp_chrono old = tp->chrono_type; 2648 2649 if (old > TCP_CHRONO_UNSPEC) 2650 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2651 tp->chrono_start = now; 2652 tp->chrono_type = new; 2653 } 2654 2655 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2656 { 2657 struct tcp_sock *tp = tcp_sk(sk); 2658 2659 /* If there are multiple conditions worthy of tracking in a 2660 * chronograph then the highest priority enum takes precedence 2661 * over the other conditions. So that if something "more interesting" 2662 * starts happening, stop the previous chrono and start a new one. 2663 */ 2664 if (type > tp->chrono_type) 2665 tcp_chrono_set(tp, type); 2666 } 2667 2668 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2669 { 2670 struct tcp_sock *tp = tcp_sk(sk); 2671 2672 2673 /* There are multiple conditions worthy of tracking in a 2674 * chronograph, so that the highest priority enum takes 2675 * precedence over the other conditions (see tcp_chrono_start). 2676 * If a condition stops, we only stop chrono tracking if 2677 * it's the "most interesting" or current chrono we are 2678 * tracking and starts busy chrono if we have pending data. 2679 */ 2680 if (tcp_rtx_and_write_queues_empty(sk)) 2681 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2682 else if (type == tp->chrono_type) 2683 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2684 } 2685 2686 /* First skb in the write queue is smaller than ideal packet size. 2687 * Check if we can move payload from the second skb in the queue. 2688 */ 2689 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount) 2690 { 2691 struct sk_buff *next_skb = skb->next; 2692 unsigned int nlen; 2693 2694 if (tcp_skb_is_last(sk, skb)) 2695 return; 2696 2697 if (!tcp_skb_can_collapse(skb, next_skb)) 2698 return; 2699 2700 nlen = min_t(u32, amount, next_skb->len); 2701 if (!nlen || !skb_shift(skb, next_skb, nlen)) 2702 return; 2703 2704 TCP_SKB_CB(skb)->end_seq += nlen; 2705 TCP_SKB_CB(next_skb)->seq += nlen; 2706 2707 if (!next_skb->len) { 2708 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2709 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2710 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2711 tcp_unlink_write_queue(next_skb, sk); 2712 tcp_wmem_free_skb(sk, next_skb); 2713 } 2714 } 2715 2716 /* This routine writes packets to the network. It advances the 2717 * send_head. This happens as incoming acks open up the remote 2718 * window for us. 2719 * 2720 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2721 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2722 * account rare use of URG, this is not a big flaw. 2723 * 2724 * Send at most one packet when push_one > 0. Temporarily ignore 2725 * cwnd limit to force at most one packet out when push_one == 2. 2726 2727 * Returns true, if no segments are in flight and we have queued segments, 2728 * but cannot send anything now because of SWS or another problem. 2729 */ 2730 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2731 int push_one, gfp_t gfp) 2732 { 2733 struct tcp_sock *tp = tcp_sk(sk); 2734 struct sk_buff *skb; 2735 unsigned int tso_segs, sent_pkts; 2736 u32 cwnd_quota, max_segs; 2737 int result; 2738 bool is_cwnd_limited = false, is_rwnd_limited = false; 2739 2740 sent_pkts = 0; 2741 2742 tcp_mstamp_refresh(tp); 2743 if (!push_one) { 2744 /* Do MTU probing. */ 2745 result = tcp_mtu_probe(sk); 2746 if (!result) { 2747 return false; 2748 } else if (result > 0) { 2749 sent_pkts = 1; 2750 } 2751 } 2752 2753 max_segs = tcp_tso_segs(sk, mss_now); 2754 while ((skb = tcp_send_head(sk))) { 2755 unsigned int limit; 2756 int missing_bytes; 2757 2758 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2759 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2760 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2761 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 2762 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2763 tcp_init_tso_segs(skb, mss_now); 2764 goto repair; /* Skip network transmission */ 2765 } 2766 2767 if (tcp_pacing_check(sk)) 2768 break; 2769 2770 cwnd_quota = tcp_cwnd_test(tp); 2771 if (!cwnd_quota) { 2772 if (push_one == 2) 2773 /* Force out a loss probe pkt. */ 2774 cwnd_quota = 1; 2775 else 2776 break; 2777 } 2778 cwnd_quota = min(cwnd_quota, max_segs); 2779 missing_bytes = cwnd_quota * mss_now - skb->len; 2780 if (missing_bytes > 0) 2781 tcp_grow_skb(sk, skb, missing_bytes); 2782 2783 tso_segs = tcp_set_skb_tso_segs(skb, mss_now); 2784 2785 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2786 is_rwnd_limited = true; 2787 break; 2788 } 2789 2790 if (tso_segs == 1) { 2791 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2792 (tcp_skb_is_last(sk, skb) ? 2793 nonagle : TCP_NAGLE_PUSH)))) 2794 break; 2795 } else { 2796 if (!push_one && 2797 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2798 &is_rwnd_limited, max_segs)) 2799 break; 2800 } 2801 2802 limit = mss_now; 2803 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2804 limit = tcp_mss_split_point(sk, skb, mss_now, 2805 cwnd_quota, 2806 nonagle); 2807 2808 if (skb->len > limit && 2809 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2810 break; 2811 2812 if (tcp_small_queue_check(sk, skb, 0)) 2813 break; 2814 2815 /* Argh, we hit an empty skb(), presumably a thread 2816 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2817 * We do not want to send a pure-ack packet and have 2818 * a strange looking rtx queue with empty packet(s). 2819 */ 2820 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2821 break; 2822 2823 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2824 break; 2825 2826 repair: 2827 /* Advance the send_head. This one is sent out. 2828 * This call will increment packets_out. 2829 */ 2830 tcp_event_new_data_sent(sk, skb); 2831 2832 tcp_minshall_update(tp, mss_now, skb); 2833 sent_pkts += tcp_skb_pcount(skb); 2834 2835 if (push_one) 2836 break; 2837 } 2838 2839 if (is_rwnd_limited) 2840 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2841 else 2842 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2843 2844 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2845 if (likely(sent_pkts || is_cwnd_limited)) 2846 tcp_cwnd_validate(sk, is_cwnd_limited); 2847 2848 if (likely(sent_pkts)) { 2849 if (tcp_in_cwnd_reduction(sk)) 2850 tp->prr_out += sent_pkts; 2851 2852 /* Send one loss probe per tail loss episode. */ 2853 if (push_one != 2) 2854 tcp_schedule_loss_probe(sk, false); 2855 return false; 2856 } 2857 return !tp->packets_out && !tcp_write_queue_empty(sk); 2858 } 2859 2860 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2861 { 2862 struct inet_connection_sock *icsk = inet_csk(sk); 2863 struct tcp_sock *tp = tcp_sk(sk); 2864 u32 timeout, timeout_us, rto_delta_us; 2865 int early_retrans; 2866 2867 /* Don't do any loss probe on a Fast Open connection before 3WHS 2868 * finishes. 2869 */ 2870 if (rcu_access_pointer(tp->fastopen_rsk)) 2871 return false; 2872 2873 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2874 /* Schedule a loss probe in 2*RTT for SACK capable connections 2875 * not in loss recovery, that are either limited by cwnd or application. 2876 */ 2877 if ((early_retrans != 3 && early_retrans != 4) || 2878 !tp->packets_out || !tcp_is_sack(tp) || 2879 (icsk->icsk_ca_state != TCP_CA_Open && 2880 icsk->icsk_ca_state != TCP_CA_CWR)) 2881 return false; 2882 2883 /* Probe timeout is 2*rtt. Add minimum RTO to account 2884 * for delayed ack when there's one outstanding packet. If no RTT 2885 * sample is available then probe after TCP_TIMEOUT_INIT. 2886 */ 2887 if (tp->srtt_us) { 2888 timeout_us = tp->srtt_us >> 2; 2889 if (tp->packets_out == 1) 2890 timeout_us += tcp_rto_min_us(sk); 2891 else 2892 timeout_us += TCP_TIMEOUT_MIN_US; 2893 timeout = usecs_to_jiffies(timeout_us); 2894 } else { 2895 timeout = TCP_TIMEOUT_INIT; 2896 } 2897 2898 /* If the RTO formula yields an earlier time, then use that time. */ 2899 rto_delta_us = advancing_rto ? 2900 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2901 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2902 if (rto_delta_us > 0) 2903 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2904 2905 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2906 return true; 2907 } 2908 2909 /* Thanks to skb fast clones, we can detect if a prior transmit of 2910 * a packet is still in a qdisc or driver queue. 2911 * In this case, there is very little point doing a retransmit ! 2912 */ 2913 static bool skb_still_in_host_queue(struct sock *sk, 2914 const struct sk_buff *skb) 2915 { 2916 if (unlikely(skb_fclone_busy(sk, skb))) { 2917 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2918 smp_mb__after_atomic(); 2919 if (skb_fclone_busy(sk, skb)) { 2920 NET_INC_STATS(sock_net(sk), 2921 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2922 return true; 2923 } 2924 } 2925 return false; 2926 } 2927 2928 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2929 * retransmit the last segment. 2930 */ 2931 void tcp_send_loss_probe(struct sock *sk) 2932 { 2933 struct tcp_sock *tp = tcp_sk(sk); 2934 struct sk_buff *skb; 2935 int pcount; 2936 int mss = tcp_current_mss(sk); 2937 2938 /* At most one outstanding TLP */ 2939 if (tp->tlp_high_seq) 2940 goto rearm_timer; 2941 2942 tp->tlp_retrans = 0; 2943 skb = tcp_send_head(sk); 2944 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2945 pcount = tp->packets_out; 2946 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2947 if (tp->packets_out > pcount) 2948 goto probe_sent; 2949 goto rearm_timer; 2950 } 2951 skb = skb_rb_last(&sk->tcp_rtx_queue); 2952 if (unlikely(!skb)) { 2953 WARN_ONCE(tp->packets_out, 2954 "invalid inflight: %u state %u cwnd %u mss %d\n", 2955 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss); 2956 inet_csk(sk)->icsk_pending = 0; 2957 return; 2958 } 2959 2960 if (skb_still_in_host_queue(sk, skb)) 2961 goto rearm_timer; 2962 2963 pcount = tcp_skb_pcount(skb); 2964 if (WARN_ON(!pcount)) 2965 goto rearm_timer; 2966 2967 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2968 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2969 (pcount - 1) * mss, mss, 2970 GFP_ATOMIC))) 2971 goto rearm_timer; 2972 skb = skb_rb_next(skb); 2973 } 2974 2975 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2976 goto rearm_timer; 2977 2978 if (__tcp_retransmit_skb(sk, skb, 1)) 2979 goto rearm_timer; 2980 2981 tp->tlp_retrans = 1; 2982 2983 probe_sent: 2984 /* Record snd_nxt for loss detection. */ 2985 tp->tlp_high_seq = tp->snd_nxt; 2986 2987 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2988 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2989 inet_csk(sk)->icsk_pending = 0; 2990 rearm_timer: 2991 tcp_rearm_rto(sk); 2992 } 2993 2994 /* Push out any pending frames which were held back due to 2995 * TCP_CORK or attempt at coalescing tiny packets. 2996 * The socket must be locked by the caller. 2997 */ 2998 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2999 int nonagle) 3000 { 3001 /* If we are closed, the bytes will have to remain here. 3002 * In time closedown will finish, we empty the write queue and 3003 * all will be happy. 3004 */ 3005 if (unlikely(sk->sk_state == TCP_CLOSE)) 3006 return; 3007 3008 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 3009 sk_gfp_mask(sk, GFP_ATOMIC))) 3010 tcp_check_probe_timer(sk); 3011 } 3012 3013 /* Send _single_ skb sitting at the send head. This function requires 3014 * true push pending frames to setup probe timer etc. 3015 */ 3016 void tcp_push_one(struct sock *sk, unsigned int mss_now) 3017 { 3018 struct sk_buff *skb = tcp_send_head(sk); 3019 3020 BUG_ON(!skb || skb->len < mss_now); 3021 3022 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 3023 } 3024 3025 /* This function returns the amount that we can raise the 3026 * usable window based on the following constraints 3027 * 3028 * 1. The window can never be shrunk once it is offered (RFC 793) 3029 * 2. We limit memory per socket 3030 * 3031 * RFC 1122: 3032 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 3033 * RECV.NEXT + RCV.WIN fixed until: 3034 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 3035 * 3036 * i.e. don't raise the right edge of the window until you can raise 3037 * it at least MSS bytes. 3038 * 3039 * Unfortunately, the recommended algorithm breaks header prediction, 3040 * since header prediction assumes th->window stays fixed. 3041 * 3042 * Strictly speaking, keeping th->window fixed violates the receiver 3043 * side SWS prevention criteria. The problem is that under this rule 3044 * a stream of single byte packets will cause the right side of the 3045 * window to always advance by a single byte. 3046 * 3047 * Of course, if the sender implements sender side SWS prevention 3048 * then this will not be a problem. 3049 * 3050 * BSD seems to make the following compromise: 3051 * 3052 * If the free space is less than the 1/4 of the maximum 3053 * space available and the free space is less than 1/2 mss, 3054 * then set the window to 0. 3055 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 3056 * Otherwise, just prevent the window from shrinking 3057 * and from being larger than the largest representable value. 3058 * 3059 * This prevents incremental opening of the window in the regime 3060 * where TCP is limited by the speed of the reader side taking 3061 * data out of the TCP receive queue. It does nothing about 3062 * those cases where the window is constrained on the sender side 3063 * because the pipeline is full. 3064 * 3065 * BSD also seems to "accidentally" limit itself to windows that are a 3066 * multiple of MSS, at least until the free space gets quite small. 3067 * This would appear to be a side effect of the mbuf implementation. 3068 * Combining these two algorithms results in the observed behavior 3069 * of having a fixed window size at almost all times. 3070 * 3071 * Below we obtain similar behavior by forcing the offered window to 3072 * a multiple of the mss when it is feasible to do so. 3073 * 3074 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3075 * Regular options like TIMESTAMP are taken into account. 3076 */ 3077 u32 __tcp_select_window(struct sock *sk) 3078 { 3079 struct inet_connection_sock *icsk = inet_csk(sk); 3080 struct tcp_sock *tp = tcp_sk(sk); 3081 struct net *net = sock_net(sk); 3082 /* MSS for the peer's data. Previous versions used mss_clamp 3083 * here. I don't know if the value based on our guesses 3084 * of peer's MSS is better for the performance. It's more correct 3085 * but may be worse for the performance because of rcv_mss 3086 * fluctuations. --SAW 1998/11/1 3087 */ 3088 int mss = icsk->icsk_ack.rcv_mss; 3089 int free_space = tcp_space(sk); 3090 int allowed_space = tcp_full_space(sk); 3091 int full_space, window; 3092 3093 if (sk_is_mptcp(sk)) 3094 mptcp_space(sk, &free_space, &allowed_space); 3095 3096 full_space = min_t(int, tp->window_clamp, allowed_space); 3097 3098 if (unlikely(mss > full_space)) { 3099 mss = full_space; 3100 if (mss <= 0) 3101 return 0; 3102 } 3103 3104 /* Only allow window shrink if the sysctl is enabled and we have 3105 * a non-zero scaling factor in effect. 3106 */ 3107 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3108 goto shrink_window_allowed; 3109 3110 /* do not allow window to shrink */ 3111 3112 if (free_space < (full_space >> 1)) { 3113 icsk->icsk_ack.quick = 0; 3114 3115 if (tcp_under_memory_pressure(sk)) 3116 tcp_adjust_rcv_ssthresh(sk); 3117 3118 /* free_space might become our new window, make sure we don't 3119 * increase it due to wscale. 3120 */ 3121 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3122 3123 /* if free space is less than mss estimate, or is below 1/16th 3124 * of the maximum allowed, try to move to zero-window, else 3125 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3126 * new incoming data is dropped due to memory limits. 3127 * With large window, mss test triggers way too late in order 3128 * to announce zero window in time before rmem limit kicks in. 3129 */ 3130 if (free_space < (allowed_space >> 4) || free_space < mss) 3131 return 0; 3132 } 3133 3134 if (free_space > tp->rcv_ssthresh) 3135 free_space = tp->rcv_ssthresh; 3136 3137 /* Don't do rounding if we are using window scaling, since the 3138 * scaled window will not line up with the MSS boundary anyway. 3139 */ 3140 if (tp->rx_opt.rcv_wscale) { 3141 window = free_space; 3142 3143 /* Advertise enough space so that it won't get scaled away. 3144 * Import case: prevent zero window announcement if 3145 * 1<<rcv_wscale > mss. 3146 */ 3147 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3148 } else { 3149 window = tp->rcv_wnd; 3150 /* Get the largest window that is a nice multiple of mss. 3151 * Window clamp already applied above. 3152 * If our current window offering is within 1 mss of the 3153 * free space we just keep it. This prevents the divide 3154 * and multiply from happening most of the time. 3155 * We also don't do any window rounding when the free space 3156 * is too small. 3157 */ 3158 if (window <= free_space - mss || window > free_space) 3159 window = rounddown(free_space, mss); 3160 else if (mss == full_space && 3161 free_space > window + (full_space >> 1)) 3162 window = free_space; 3163 } 3164 3165 return window; 3166 3167 shrink_window_allowed: 3168 /* new window should always be an exact multiple of scaling factor */ 3169 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3170 3171 if (free_space < (full_space >> 1)) { 3172 icsk->icsk_ack.quick = 0; 3173 3174 if (tcp_under_memory_pressure(sk)) 3175 tcp_adjust_rcv_ssthresh(sk); 3176 3177 /* if free space is too low, return a zero window */ 3178 if (free_space < (allowed_space >> 4) || free_space < mss || 3179 free_space < (1 << tp->rx_opt.rcv_wscale)) 3180 return 0; 3181 } 3182 3183 if (free_space > tp->rcv_ssthresh) { 3184 free_space = tp->rcv_ssthresh; 3185 /* new window should always be an exact multiple of scaling factor 3186 * 3187 * For this case, we ALIGN "up" (increase free_space) because 3188 * we know free_space is not zero here, it has been reduced from 3189 * the memory-based limit, and rcv_ssthresh is not a hard limit 3190 * (unlike sk_rcvbuf). 3191 */ 3192 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3193 } 3194 3195 return free_space; 3196 } 3197 3198 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3199 const struct sk_buff *next_skb) 3200 { 3201 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3202 const struct skb_shared_info *next_shinfo = 3203 skb_shinfo(next_skb); 3204 struct skb_shared_info *shinfo = skb_shinfo(skb); 3205 3206 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3207 shinfo->tskey = next_shinfo->tskey; 3208 TCP_SKB_CB(skb)->txstamp_ack |= 3209 TCP_SKB_CB(next_skb)->txstamp_ack; 3210 } 3211 } 3212 3213 /* Collapses two adjacent SKB's during retransmission. */ 3214 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3215 { 3216 struct tcp_sock *tp = tcp_sk(sk); 3217 struct sk_buff *next_skb = skb_rb_next(skb); 3218 int next_skb_size; 3219 3220 next_skb_size = next_skb->len; 3221 3222 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3223 3224 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3225 return false; 3226 3227 tcp_highest_sack_replace(sk, next_skb, skb); 3228 3229 /* Update sequence range on original skb. */ 3230 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3231 3232 /* Merge over control information. This moves PSH/FIN etc. over */ 3233 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3234 3235 /* All done, get rid of second SKB and account for it so 3236 * packet counting does not break. 3237 */ 3238 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3239 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3240 3241 /* changed transmit queue under us so clear hints */ 3242 tcp_clear_retrans_hints_partial(tp); 3243 if (next_skb == tp->retransmit_skb_hint) 3244 tp->retransmit_skb_hint = skb; 3245 3246 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3247 3248 tcp_skb_collapse_tstamp(skb, next_skb); 3249 3250 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3251 return true; 3252 } 3253 3254 /* Check if coalescing SKBs is legal. */ 3255 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3256 { 3257 if (tcp_skb_pcount(skb) > 1) 3258 return false; 3259 if (skb_cloned(skb)) 3260 return false; 3261 /* Some heuristics for collapsing over SACK'd could be invented */ 3262 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3263 return false; 3264 3265 return true; 3266 } 3267 3268 /* Collapse packets in the retransmit queue to make to create 3269 * less packets on the wire. This is only done on retransmission. 3270 */ 3271 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3272 int space) 3273 { 3274 struct tcp_sock *tp = tcp_sk(sk); 3275 struct sk_buff *skb = to, *tmp; 3276 bool first = true; 3277 3278 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3279 return; 3280 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3281 return; 3282 3283 skb_rbtree_walk_from_safe(skb, tmp) { 3284 if (!tcp_can_collapse(sk, skb)) 3285 break; 3286 3287 if (!tcp_skb_can_collapse(to, skb)) 3288 break; 3289 3290 space -= skb->len; 3291 3292 if (first) { 3293 first = false; 3294 continue; 3295 } 3296 3297 if (space < 0) 3298 break; 3299 3300 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3301 break; 3302 3303 if (!tcp_collapse_retrans(sk, to)) 3304 break; 3305 } 3306 } 3307 3308 /* This retransmits one SKB. Policy decisions and retransmit queue 3309 * state updates are done by the caller. Returns non-zero if an 3310 * error occurred which prevented the send. 3311 */ 3312 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3313 { 3314 struct inet_connection_sock *icsk = inet_csk(sk); 3315 struct tcp_sock *tp = tcp_sk(sk); 3316 unsigned int cur_mss; 3317 int diff, len, err; 3318 int avail_wnd; 3319 3320 /* Inconclusive MTU probe */ 3321 if (icsk->icsk_mtup.probe_size) 3322 icsk->icsk_mtup.probe_size = 0; 3323 3324 if (skb_still_in_host_queue(sk, skb)) 3325 return -EBUSY; 3326 3327 start: 3328 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3329 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3330 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 3331 TCP_SKB_CB(skb)->seq++; 3332 goto start; 3333 } 3334 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3335 WARN_ON_ONCE(1); 3336 return -EINVAL; 3337 } 3338 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3339 return -ENOMEM; 3340 } 3341 3342 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3343 return -EHOSTUNREACH; /* Routing failure or similar. */ 3344 3345 cur_mss = tcp_current_mss(sk); 3346 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3347 3348 /* If receiver has shrunk his window, and skb is out of 3349 * new window, do not retransmit it. The exception is the 3350 * case, when window is shrunk to zero. In this case 3351 * our retransmit of one segment serves as a zero window probe. 3352 */ 3353 if (avail_wnd <= 0) { 3354 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3355 return -EAGAIN; 3356 avail_wnd = cur_mss; 3357 } 3358 3359 len = cur_mss * segs; 3360 if (len > avail_wnd) { 3361 len = rounddown(avail_wnd, cur_mss); 3362 if (!len) 3363 len = avail_wnd; 3364 } 3365 if (skb->len > len) { 3366 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3367 cur_mss, GFP_ATOMIC)) 3368 return -ENOMEM; /* We'll try again later. */ 3369 } else { 3370 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3371 return -ENOMEM; 3372 3373 diff = tcp_skb_pcount(skb); 3374 tcp_set_skb_tso_segs(skb, cur_mss); 3375 diff -= tcp_skb_pcount(skb); 3376 if (diff) 3377 tcp_adjust_pcount(sk, skb, diff); 3378 avail_wnd = min_t(int, avail_wnd, cur_mss); 3379 if (skb->len < avail_wnd) 3380 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3381 } 3382 3383 /* RFC3168, section 6.1.1.1. ECN fallback */ 3384 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3385 tcp_ecn_clear_syn(sk, skb); 3386 3387 /* Update global and local TCP statistics. */ 3388 segs = tcp_skb_pcount(skb); 3389 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3390 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3391 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3392 tp->total_retrans += segs; 3393 tp->bytes_retrans += skb->len; 3394 3395 /* make sure skb->data is aligned on arches that require it 3396 * and check if ack-trimming & collapsing extended the headroom 3397 * beyond what csum_start can cover. 3398 */ 3399 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3400 skb_headroom(skb) >= 0xFFFF)) { 3401 struct sk_buff *nskb; 3402 3403 tcp_skb_tsorted_save(skb) { 3404 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3405 if (nskb) { 3406 nskb->dev = NULL; 3407 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3408 } else { 3409 err = -ENOBUFS; 3410 } 3411 } tcp_skb_tsorted_restore(skb); 3412 3413 if (!err) { 3414 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3415 tcp_rate_skb_sent(sk, skb); 3416 } 3417 } else { 3418 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3419 } 3420 3421 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3422 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3423 TCP_SKB_CB(skb)->seq, segs, err); 3424 3425 if (likely(!err)) { 3426 trace_tcp_retransmit_skb(sk, skb); 3427 } else if (err != -EBUSY) { 3428 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3429 } 3430 3431 /* To avoid taking spuriously low RTT samples based on a timestamp 3432 * for a transmit that never happened, always mark EVER_RETRANS 3433 */ 3434 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3435 3436 return err; 3437 } 3438 3439 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3440 { 3441 struct tcp_sock *tp = tcp_sk(sk); 3442 int err = __tcp_retransmit_skb(sk, skb, segs); 3443 3444 if (err == 0) { 3445 #if FASTRETRANS_DEBUG > 0 3446 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3447 net_dbg_ratelimited("retrans_out leaked\n"); 3448 } 3449 #endif 3450 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3451 tp->retrans_out += tcp_skb_pcount(skb); 3452 } 3453 3454 /* Save stamp of the first (attempted) retransmit. */ 3455 if (!tp->retrans_stamp) 3456 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb); 3457 3458 if (tp->undo_retrans < 0) 3459 tp->undo_retrans = 0; 3460 tp->undo_retrans += tcp_skb_pcount(skb); 3461 return err; 3462 } 3463 3464 /* This gets called after a retransmit timeout, and the initially 3465 * retransmitted data is acknowledged. It tries to continue 3466 * resending the rest of the retransmit queue, until either 3467 * we've sent it all or the congestion window limit is reached. 3468 */ 3469 void tcp_xmit_retransmit_queue(struct sock *sk) 3470 { 3471 const struct inet_connection_sock *icsk = inet_csk(sk); 3472 struct sk_buff *skb, *rtx_head, *hole = NULL; 3473 struct tcp_sock *tp = tcp_sk(sk); 3474 bool rearm_timer = false; 3475 u32 max_segs; 3476 int mib_idx; 3477 3478 if (!tp->packets_out) 3479 return; 3480 3481 rtx_head = tcp_rtx_queue_head(sk); 3482 skb = tp->retransmit_skb_hint ?: rtx_head; 3483 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3484 skb_rbtree_walk_from(skb) { 3485 __u8 sacked; 3486 int segs; 3487 3488 if (tcp_pacing_check(sk)) 3489 break; 3490 3491 /* we could do better than to assign each time */ 3492 if (!hole) 3493 tp->retransmit_skb_hint = skb; 3494 3495 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3496 if (segs <= 0) 3497 break; 3498 sacked = TCP_SKB_CB(skb)->sacked; 3499 /* In case tcp_shift_skb_data() have aggregated large skbs, 3500 * we need to make sure not sending too bigs TSO packets 3501 */ 3502 segs = min_t(int, segs, max_segs); 3503 3504 if (tp->retrans_out >= tp->lost_out) { 3505 break; 3506 } else if (!(sacked & TCPCB_LOST)) { 3507 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3508 hole = skb; 3509 continue; 3510 3511 } else { 3512 if (icsk->icsk_ca_state != TCP_CA_Loss) 3513 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3514 else 3515 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3516 } 3517 3518 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3519 continue; 3520 3521 if (tcp_small_queue_check(sk, skb, 1)) 3522 break; 3523 3524 if (tcp_retransmit_skb(sk, skb, segs)) 3525 break; 3526 3527 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3528 3529 if (tcp_in_cwnd_reduction(sk)) 3530 tp->prr_out += tcp_skb_pcount(skb); 3531 3532 if (skb == rtx_head && 3533 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3534 rearm_timer = true; 3535 3536 } 3537 if (rearm_timer) 3538 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3539 inet_csk(sk)->icsk_rto, 3540 TCP_RTO_MAX); 3541 } 3542 3543 /* We allow to exceed memory limits for FIN packets to expedite 3544 * connection tear down and (memory) recovery. 3545 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3546 * or even be forced to close flow without any FIN. 3547 * In general, we want to allow one skb per socket to avoid hangs 3548 * with edge trigger epoll() 3549 */ 3550 void sk_forced_mem_schedule(struct sock *sk, int size) 3551 { 3552 int delta, amt; 3553 3554 delta = size - sk->sk_forward_alloc; 3555 if (delta <= 0) 3556 return; 3557 amt = sk_mem_pages(delta); 3558 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3559 sk_memory_allocated_add(sk, amt); 3560 3561 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3562 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3563 gfp_memcg_charge() | __GFP_NOFAIL); 3564 } 3565 3566 /* Send a FIN. The caller locks the socket for us. 3567 * We should try to send a FIN packet really hard, but eventually give up. 3568 */ 3569 void tcp_send_fin(struct sock *sk) 3570 { 3571 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3572 struct tcp_sock *tp = tcp_sk(sk); 3573 3574 /* Optimization, tack on the FIN if we have one skb in write queue and 3575 * this skb was not yet sent, or we are under memory pressure. 3576 * Note: in the latter case, FIN packet will be sent after a timeout, 3577 * as TCP stack thinks it has already been transmitted. 3578 */ 3579 tskb = tail; 3580 if (!tskb && tcp_under_memory_pressure(sk)) 3581 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3582 3583 if (tskb) { 3584 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3585 TCP_SKB_CB(tskb)->end_seq++; 3586 tp->write_seq++; 3587 if (!tail) { 3588 /* This means tskb was already sent. 3589 * Pretend we included the FIN on previous transmit. 3590 * We need to set tp->snd_nxt to the value it would have 3591 * if FIN had been sent. This is because retransmit path 3592 * does not change tp->snd_nxt. 3593 */ 3594 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3595 return; 3596 } 3597 } else { 3598 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3599 if (unlikely(!skb)) 3600 return; 3601 3602 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3603 skb_reserve(skb, MAX_TCP_HEADER); 3604 sk_forced_mem_schedule(sk, skb->truesize); 3605 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3606 tcp_init_nondata_skb(skb, tp->write_seq, 3607 TCPHDR_ACK | TCPHDR_FIN); 3608 tcp_queue_skb(sk, skb); 3609 } 3610 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3611 } 3612 3613 /* We get here when a process closes a file descriptor (either due to 3614 * an explicit close() or as a byproduct of exit()'ing) and there 3615 * was unread data in the receive queue. This behavior is recommended 3616 * by RFC 2525, section 2.17. -DaveM 3617 */ 3618 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3619 { 3620 struct sk_buff *skb; 3621 3622 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3623 3624 /* NOTE: No TCP options attached and we never retransmit this. */ 3625 skb = alloc_skb(MAX_TCP_HEADER, priority); 3626 if (!skb) { 3627 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3628 return; 3629 } 3630 3631 /* Reserve space for headers and prepare control bits. */ 3632 skb_reserve(skb, MAX_TCP_HEADER); 3633 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3634 TCPHDR_ACK | TCPHDR_RST); 3635 tcp_mstamp_refresh(tcp_sk(sk)); 3636 /* Send it off. */ 3637 if (tcp_transmit_skb(sk, skb, 0, priority)) 3638 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3639 3640 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3641 * skb here is different to the troublesome skb, so use NULL 3642 */ 3643 trace_tcp_send_reset(sk, NULL); 3644 } 3645 3646 /* Send a crossed SYN-ACK during socket establishment. 3647 * WARNING: This routine must only be called when we have already sent 3648 * a SYN packet that crossed the incoming SYN that caused this routine 3649 * to get called. If this assumption fails then the initial rcv_wnd 3650 * and rcv_wscale values will not be correct. 3651 */ 3652 int tcp_send_synack(struct sock *sk) 3653 { 3654 struct sk_buff *skb; 3655 3656 skb = tcp_rtx_queue_head(sk); 3657 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3658 pr_err("%s: wrong queue state\n", __func__); 3659 return -EFAULT; 3660 } 3661 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3662 if (skb_cloned(skb)) { 3663 struct sk_buff *nskb; 3664 3665 tcp_skb_tsorted_save(skb) { 3666 nskb = skb_copy(skb, GFP_ATOMIC); 3667 } tcp_skb_tsorted_restore(skb); 3668 if (!nskb) 3669 return -ENOMEM; 3670 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3671 tcp_highest_sack_replace(sk, skb, nskb); 3672 tcp_rtx_queue_unlink_and_free(skb, sk); 3673 __skb_header_release(nskb); 3674 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3675 sk_wmem_queued_add(sk, nskb->truesize); 3676 sk_mem_charge(sk, nskb->truesize); 3677 skb = nskb; 3678 } 3679 3680 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3681 tcp_ecn_send_synack(sk, skb); 3682 } 3683 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3684 } 3685 3686 /** 3687 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3688 * @sk: listener socket 3689 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3690 * should not use it again. 3691 * @req: request_sock pointer 3692 * @foc: cookie for tcp fast open 3693 * @synack_type: Type of synack to prepare 3694 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3695 */ 3696 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3697 struct request_sock *req, 3698 struct tcp_fastopen_cookie *foc, 3699 enum tcp_synack_type synack_type, 3700 struct sk_buff *syn_skb) 3701 { 3702 struct inet_request_sock *ireq = inet_rsk(req); 3703 const struct tcp_sock *tp = tcp_sk(sk); 3704 struct tcp_out_options opts; 3705 struct tcp_key key = {}; 3706 struct sk_buff *skb; 3707 int tcp_header_size; 3708 struct tcphdr *th; 3709 int mss; 3710 u64 now; 3711 3712 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3713 if (unlikely(!skb)) { 3714 dst_release(dst); 3715 return NULL; 3716 } 3717 /* Reserve space for headers. */ 3718 skb_reserve(skb, MAX_TCP_HEADER); 3719 3720 switch (synack_type) { 3721 case TCP_SYNACK_NORMAL: 3722 skb_set_owner_w(skb, req_to_sk(req)); 3723 break; 3724 case TCP_SYNACK_COOKIE: 3725 /* Under synflood, we do not attach skb to a socket, 3726 * to avoid false sharing. 3727 */ 3728 break; 3729 case TCP_SYNACK_FASTOPEN: 3730 /* sk is a const pointer, because we want to express multiple 3731 * cpu might call us concurrently. 3732 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3733 */ 3734 skb_set_owner_w(skb, (struct sock *)sk); 3735 break; 3736 } 3737 skb_dst_set(skb, dst); 3738 3739 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3740 3741 memset(&opts, 0, sizeof(opts)); 3742 now = tcp_clock_ns(); 3743 #ifdef CONFIG_SYN_COOKIES 3744 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3745 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3746 true); 3747 else 3748 #endif 3749 { 3750 skb_set_delivery_time(skb, now, true); 3751 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3752 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3753 } 3754 3755 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3756 rcu_read_lock(); 3757 #endif 3758 if (tcp_rsk_used_ao(req)) { 3759 #ifdef CONFIG_TCP_AO 3760 struct tcp_ao_key *ao_key = NULL; 3761 u8 keyid = tcp_rsk(req)->ao_keyid; 3762 3763 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req), 3764 keyid, -1); 3765 /* If there is no matching key - avoid sending anything, 3766 * especially usigned segments. It could try harder and lookup 3767 * for another peer-matching key, but the peer has requested 3768 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here. 3769 */ 3770 if (unlikely(!ao_key)) { 3771 rcu_read_unlock(); 3772 kfree_skb(skb); 3773 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n", 3774 keyid); 3775 return NULL; 3776 } 3777 key.ao_key = ao_key; 3778 key.type = TCP_KEY_AO; 3779 #endif 3780 } else { 3781 #ifdef CONFIG_TCP_MD5SIG 3782 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk, 3783 req_to_sk(req)); 3784 if (key.md5_key) 3785 key.type = TCP_KEY_MD5; 3786 #endif 3787 } 3788 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3789 /* bpf program will be interested in the tcp_flags */ 3790 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3791 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, 3792 &key, foc, synack_type, syn_skb) 3793 + sizeof(*th); 3794 3795 skb_push(skb, tcp_header_size); 3796 skb_reset_transport_header(skb); 3797 3798 th = (struct tcphdr *)skb->data; 3799 memset(th, 0, sizeof(struct tcphdr)); 3800 th->syn = 1; 3801 th->ack = 1; 3802 tcp_ecn_make_synack(req, th); 3803 th->source = htons(ireq->ir_num); 3804 th->dest = ireq->ir_rmt_port; 3805 skb->mark = ireq->ir_mark; 3806 skb->ip_summed = CHECKSUM_PARTIAL; 3807 th->seq = htonl(tcp_rsk(req)->snt_isn); 3808 /* XXX data is queued and acked as is. No buffer/window check */ 3809 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3810 3811 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3812 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3813 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key); 3814 th->doff = (tcp_header_size >> 2); 3815 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3816 3817 /* Okay, we have all we need - do the md5 hash if needed */ 3818 if (tcp_key_is_md5(&key)) { 3819 #ifdef CONFIG_TCP_MD5SIG 3820 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3821 key.md5_key, req_to_sk(req), skb); 3822 #endif 3823 } else if (tcp_key_is_ao(&key)) { 3824 #ifdef CONFIG_TCP_AO 3825 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location, 3826 key.ao_key, req, skb, 3827 opts.hash_location - (u8 *)th, 0); 3828 #endif 3829 } 3830 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3831 rcu_read_unlock(); 3832 #endif 3833 3834 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3835 synack_type, &opts); 3836 3837 skb_set_delivery_time(skb, now, true); 3838 tcp_add_tx_delay(skb, tp); 3839 3840 return skb; 3841 } 3842 EXPORT_SYMBOL(tcp_make_synack); 3843 3844 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3845 { 3846 struct inet_connection_sock *icsk = inet_csk(sk); 3847 const struct tcp_congestion_ops *ca; 3848 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3849 3850 if (ca_key == TCP_CA_UNSPEC) 3851 return; 3852 3853 rcu_read_lock(); 3854 ca = tcp_ca_find_key(ca_key); 3855 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3856 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3857 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3858 icsk->icsk_ca_ops = ca; 3859 } 3860 rcu_read_unlock(); 3861 } 3862 3863 /* Do all connect socket setups that can be done AF independent. */ 3864 static void tcp_connect_init(struct sock *sk) 3865 { 3866 const struct dst_entry *dst = __sk_dst_get(sk); 3867 struct tcp_sock *tp = tcp_sk(sk); 3868 __u8 rcv_wscale; 3869 u32 rcv_wnd; 3870 3871 /* We'll fix this up when we get a response from the other end. 3872 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3873 */ 3874 tp->tcp_header_len = sizeof(struct tcphdr); 3875 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3876 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3877 3878 tcp_ao_connect_init(sk); 3879 3880 /* If user gave his TCP_MAXSEG, record it to clamp */ 3881 if (tp->rx_opt.user_mss) 3882 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3883 tp->max_window = 0; 3884 tcp_mtup_init(sk); 3885 tcp_sync_mss(sk, dst_mtu(dst)); 3886 3887 tcp_ca_dst_init(sk, dst); 3888 3889 if (!tp->window_clamp) 3890 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW)); 3891 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3892 3893 tcp_initialize_rcv_mss(sk); 3894 3895 /* limit the window selection if the user enforce a smaller rx buffer */ 3896 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3897 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3898 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk)); 3899 3900 rcv_wnd = tcp_rwnd_init_bpf(sk); 3901 if (rcv_wnd == 0) 3902 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3903 3904 tcp_select_initial_window(sk, tcp_full_space(sk), 3905 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3906 &tp->rcv_wnd, 3907 &tp->window_clamp, 3908 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3909 &rcv_wscale, 3910 rcv_wnd); 3911 3912 tp->rx_opt.rcv_wscale = rcv_wscale; 3913 tp->rcv_ssthresh = tp->rcv_wnd; 3914 3915 WRITE_ONCE(sk->sk_err, 0); 3916 sock_reset_flag(sk, SOCK_DONE); 3917 tp->snd_wnd = 0; 3918 tcp_init_wl(tp, 0); 3919 tcp_write_queue_purge(sk); 3920 tp->snd_una = tp->write_seq; 3921 tp->snd_sml = tp->write_seq; 3922 tp->snd_up = tp->write_seq; 3923 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3924 3925 if (likely(!tp->repair)) 3926 tp->rcv_nxt = 0; 3927 else 3928 tp->rcv_tstamp = tcp_jiffies32; 3929 tp->rcv_wup = tp->rcv_nxt; 3930 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3931 3932 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3933 inet_csk(sk)->icsk_retransmits = 0; 3934 tcp_clear_retrans(tp); 3935 } 3936 3937 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3938 { 3939 struct tcp_sock *tp = tcp_sk(sk); 3940 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3941 3942 tcb->end_seq += skb->len; 3943 __skb_header_release(skb); 3944 sk_wmem_queued_add(sk, skb->truesize); 3945 sk_mem_charge(sk, skb->truesize); 3946 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3947 tp->packets_out += tcp_skb_pcount(skb); 3948 } 3949 3950 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3951 * queue a data-only packet after the regular SYN, such that regular SYNs 3952 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3953 * only the SYN sequence, the data are retransmitted in the first ACK. 3954 * If cookie is not cached or other error occurs, falls back to send a 3955 * regular SYN with Fast Open cookie request option. 3956 */ 3957 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3958 { 3959 struct inet_connection_sock *icsk = inet_csk(sk); 3960 struct tcp_sock *tp = tcp_sk(sk); 3961 struct tcp_fastopen_request *fo = tp->fastopen_req; 3962 struct page_frag *pfrag = sk_page_frag(sk); 3963 struct sk_buff *syn_data; 3964 int space, err = 0; 3965 3966 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3967 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3968 goto fallback; 3969 3970 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3971 * user-MSS. Reserve maximum option space for middleboxes that add 3972 * private TCP options. The cost is reduced data space in SYN :( 3973 */ 3974 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3975 /* Sync mss_cache after updating the mss_clamp */ 3976 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3977 3978 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3979 MAX_TCP_OPTION_SPACE; 3980 3981 space = min_t(size_t, space, fo->size); 3982 3983 if (space && 3984 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3985 pfrag, sk->sk_allocation)) 3986 goto fallback; 3987 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 3988 if (!syn_data) 3989 goto fallback; 3990 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3991 if (space) { 3992 space = min_t(size_t, space, pfrag->size - pfrag->offset); 3993 space = tcp_wmem_schedule(sk, space); 3994 } 3995 if (space) { 3996 space = copy_page_from_iter(pfrag->page, pfrag->offset, 3997 space, &fo->data->msg_iter); 3998 if (unlikely(!space)) { 3999 tcp_skb_tsorted_anchor_cleanup(syn_data); 4000 kfree_skb(syn_data); 4001 goto fallback; 4002 } 4003 skb_fill_page_desc(syn_data, 0, pfrag->page, 4004 pfrag->offset, space); 4005 page_ref_inc(pfrag->page); 4006 pfrag->offset += space; 4007 skb_len_add(syn_data, space); 4008 skb_zcopy_set(syn_data, fo->uarg, NULL); 4009 } 4010 /* No more data pending in inet_wait_for_connect() */ 4011 if (space == fo->size) 4012 fo->data = NULL; 4013 fo->copied = space; 4014 4015 tcp_connect_queue_skb(sk, syn_data); 4016 if (syn_data->len) 4017 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 4018 4019 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 4020 4021 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true); 4022 4023 /* Now full SYN+DATA was cloned and sent (or not), 4024 * remove the SYN from the original skb (syn_data) 4025 * we keep in write queue in case of a retransmit, as we 4026 * also have the SYN packet (with no data) in the same queue. 4027 */ 4028 TCP_SKB_CB(syn_data)->seq++; 4029 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 4030 if (!err) { 4031 tp->syn_data = (fo->copied > 0); 4032 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 4033 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 4034 goto done; 4035 } 4036 4037 /* data was not sent, put it in write_queue */ 4038 __skb_queue_tail(&sk->sk_write_queue, syn_data); 4039 tp->packets_out -= tcp_skb_pcount(syn_data); 4040 4041 fallback: 4042 /* Send a regular SYN with Fast Open cookie request option */ 4043 if (fo->cookie.len > 0) 4044 fo->cookie.len = 0; 4045 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 4046 if (err) 4047 tp->syn_fastopen = 0; 4048 done: 4049 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 4050 return err; 4051 } 4052 4053 /* Build a SYN and send it off. */ 4054 int tcp_connect(struct sock *sk) 4055 { 4056 struct tcp_sock *tp = tcp_sk(sk); 4057 struct sk_buff *buff; 4058 int err; 4059 4060 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 4061 4062 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO) 4063 /* Has to be checked late, after setting daddr/saddr/ops. 4064 * Return error if the peer has both a md5 and a tcp-ao key 4065 * configured as this is ambiguous. 4066 */ 4067 if (unlikely(rcu_dereference_protected(tp->md5sig_info, 4068 lockdep_sock_is_held(sk)))) { 4069 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1); 4070 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk); 4071 struct tcp_ao_info *ao_info; 4072 4073 ao_info = rcu_dereference_check(tp->ao_info, 4074 lockdep_sock_is_held(sk)); 4075 if (ao_info) { 4076 /* This is an extra check: tcp_ao_required() in 4077 * tcp_v{4,6}_parse_md5_keys() should prevent adding 4078 * md5 keys on ao_required socket. 4079 */ 4080 needs_ao |= ao_info->ao_required; 4081 WARN_ON_ONCE(ao_info->ao_required && needs_md5); 4082 } 4083 if (needs_md5 && needs_ao) 4084 return -EKEYREJECTED; 4085 4086 /* If we have a matching md5 key and no matching tcp-ao key 4087 * then free up ao_info if allocated. 4088 */ 4089 if (needs_md5) { 4090 tcp_ao_destroy_sock(sk, false); 4091 } else if (needs_ao) { 4092 tcp_clear_md5_list(sk); 4093 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 4094 lockdep_sock_is_held(sk))); 4095 } 4096 } 4097 #endif 4098 #ifdef CONFIG_TCP_AO 4099 if (unlikely(rcu_dereference_protected(tp->ao_info, 4100 lockdep_sock_is_held(sk)))) { 4101 /* Don't allow connecting if ao is configured but no 4102 * matching key is found. 4103 */ 4104 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1)) 4105 return -EKEYREJECTED; 4106 } 4107 #endif 4108 4109 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 4110 return -EHOSTUNREACH; /* Routing failure or similar. */ 4111 4112 tcp_connect_init(sk); 4113 4114 if (unlikely(tp->repair)) { 4115 tcp_finish_connect(sk, NULL); 4116 return 0; 4117 } 4118 4119 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 4120 if (unlikely(!buff)) 4121 return -ENOBUFS; 4122 4123 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 4124 tcp_mstamp_refresh(tp); 4125 tp->retrans_stamp = tcp_time_stamp_ts(tp); 4126 tcp_connect_queue_skb(sk, buff); 4127 tcp_ecn_send_syn(sk, buff); 4128 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 4129 4130 /* Send off SYN; include data in Fast Open. */ 4131 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 4132 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 4133 if (err == -ECONNREFUSED) 4134 return err; 4135 4136 /* We change tp->snd_nxt after the tcp_transmit_skb() call 4137 * in order to make this packet get counted in tcpOutSegs. 4138 */ 4139 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4140 tp->pushed_seq = tp->write_seq; 4141 buff = tcp_send_head(sk); 4142 if (unlikely(buff)) { 4143 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 4144 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 4145 } 4146 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 4147 4148 /* Timer for repeating the SYN until an answer. */ 4149 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 4150 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 4151 return 0; 4152 } 4153 EXPORT_SYMBOL(tcp_connect); 4154 4155 u32 tcp_delack_max(const struct sock *sk) 4156 { 4157 const struct dst_entry *dst = __sk_dst_get(sk); 4158 u32 delack_max = inet_csk(sk)->icsk_delack_max; 4159 4160 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) { 4161 u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 4162 u32 delack_from_rto_min = max_t(int, 1, rto_min - 1); 4163 4164 delack_max = min_t(u32, delack_max, delack_from_rto_min); 4165 } 4166 return delack_max; 4167 } 4168 4169 /* Send out a delayed ack, the caller does the policy checking 4170 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 4171 * for details. 4172 */ 4173 void tcp_send_delayed_ack(struct sock *sk) 4174 { 4175 struct inet_connection_sock *icsk = inet_csk(sk); 4176 int ato = icsk->icsk_ack.ato; 4177 unsigned long timeout; 4178 4179 if (ato > TCP_DELACK_MIN) { 4180 const struct tcp_sock *tp = tcp_sk(sk); 4181 int max_ato = HZ / 2; 4182 4183 if (inet_csk_in_pingpong_mode(sk) || 4184 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4185 max_ato = TCP_DELACK_MAX; 4186 4187 /* Slow path, intersegment interval is "high". */ 4188 4189 /* If some rtt estimate is known, use it to bound delayed ack. 4190 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4191 * directly. 4192 */ 4193 if (tp->srtt_us) { 4194 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4195 TCP_DELACK_MIN); 4196 4197 if (rtt < max_ato) 4198 max_ato = rtt; 4199 } 4200 4201 ato = min(ato, max_ato); 4202 } 4203 4204 ato = min_t(u32, ato, tcp_delack_max(sk)); 4205 4206 /* Stay within the limit we were given */ 4207 timeout = jiffies + ato; 4208 4209 /* Use new timeout only if there wasn't a older one earlier. */ 4210 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4211 /* If delack timer is about to expire, send ACK now. */ 4212 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 4213 tcp_send_ack(sk); 4214 return; 4215 } 4216 4217 if (!time_before(timeout, icsk->icsk_ack.timeout)) 4218 timeout = icsk->icsk_ack.timeout; 4219 } 4220 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 4221 icsk->icsk_ack.timeout = timeout; 4222 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4223 } 4224 4225 /* This routine sends an ack and also updates the window. */ 4226 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4227 { 4228 struct sk_buff *buff; 4229 4230 /* If we have been reset, we may not send again. */ 4231 if (sk->sk_state == TCP_CLOSE) 4232 return; 4233 4234 /* We are not putting this on the write queue, so 4235 * tcp_transmit_skb() will set the ownership to this 4236 * sock. 4237 */ 4238 buff = alloc_skb(MAX_TCP_HEADER, 4239 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4240 if (unlikely(!buff)) { 4241 struct inet_connection_sock *icsk = inet_csk(sk); 4242 unsigned long delay; 4243 4244 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4245 if (delay < TCP_RTO_MAX) 4246 icsk->icsk_ack.retry++; 4247 inet_csk_schedule_ack(sk); 4248 icsk->icsk_ack.ato = TCP_ATO_MIN; 4249 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 4250 return; 4251 } 4252 4253 /* Reserve space for headers and prepare control bits. */ 4254 skb_reserve(buff, MAX_TCP_HEADER); 4255 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4256 4257 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4258 * too much. 4259 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4260 */ 4261 skb_set_tcp_pure_ack(buff); 4262 4263 /* Send it off, this clears delayed acks for us. */ 4264 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4265 } 4266 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4267 4268 void tcp_send_ack(struct sock *sk) 4269 { 4270 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4271 } 4272 4273 /* This routine sends a packet with an out of date sequence 4274 * number. It assumes the other end will try to ack it. 4275 * 4276 * Question: what should we make while urgent mode? 4277 * 4.4BSD forces sending single byte of data. We cannot send 4278 * out of window data, because we have SND.NXT==SND.MAX... 4279 * 4280 * Current solution: to send TWO zero-length segments in urgent mode: 4281 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4282 * out-of-date with SND.UNA-1 to probe window. 4283 */ 4284 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4285 { 4286 struct tcp_sock *tp = tcp_sk(sk); 4287 struct sk_buff *skb; 4288 4289 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4290 skb = alloc_skb(MAX_TCP_HEADER, 4291 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4292 if (!skb) 4293 return -1; 4294 4295 /* Reserve space for headers and set control bits. */ 4296 skb_reserve(skb, MAX_TCP_HEADER); 4297 /* Use a previous sequence. This should cause the other 4298 * end to send an ack. Don't queue or clone SKB, just 4299 * send it. 4300 */ 4301 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4302 NET_INC_STATS(sock_net(sk), mib); 4303 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4304 } 4305 4306 /* Called from setsockopt( ... TCP_REPAIR ) */ 4307 void tcp_send_window_probe(struct sock *sk) 4308 { 4309 if (sk->sk_state == TCP_ESTABLISHED) { 4310 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4311 tcp_mstamp_refresh(tcp_sk(sk)); 4312 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4313 } 4314 } 4315 4316 /* Initiate keepalive or window probe from timer. */ 4317 int tcp_write_wakeup(struct sock *sk, int mib) 4318 { 4319 struct tcp_sock *tp = tcp_sk(sk); 4320 struct sk_buff *skb; 4321 4322 if (sk->sk_state == TCP_CLOSE) 4323 return -1; 4324 4325 skb = tcp_send_head(sk); 4326 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4327 int err; 4328 unsigned int mss = tcp_current_mss(sk); 4329 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4330 4331 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4332 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4333 4334 /* We are probing the opening of a window 4335 * but the window size is != 0 4336 * must have been a result SWS avoidance ( sender ) 4337 */ 4338 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4339 skb->len > mss) { 4340 seg_size = min(seg_size, mss); 4341 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4342 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4343 skb, seg_size, mss, GFP_ATOMIC)) 4344 return -1; 4345 } else if (!tcp_skb_pcount(skb)) 4346 tcp_set_skb_tso_segs(skb, mss); 4347 4348 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4349 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4350 if (!err) 4351 tcp_event_new_data_sent(sk, skb); 4352 return err; 4353 } else { 4354 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4355 tcp_xmit_probe_skb(sk, 1, mib); 4356 return tcp_xmit_probe_skb(sk, 0, mib); 4357 } 4358 } 4359 4360 /* A window probe timeout has occurred. If window is not closed send 4361 * a partial packet else a zero probe. 4362 */ 4363 void tcp_send_probe0(struct sock *sk) 4364 { 4365 struct inet_connection_sock *icsk = inet_csk(sk); 4366 struct tcp_sock *tp = tcp_sk(sk); 4367 struct net *net = sock_net(sk); 4368 unsigned long timeout; 4369 int err; 4370 4371 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4372 4373 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4374 /* Cancel probe timer, if it is not required. */ 4375 icsk->icsk_probes_out = 0; 4376 icsk->icsk_backoff = 0; 4377 icsk->icsk_probes_tstamp = 0; 4378 return; 4379 } 4380 4381 icsk->icsk_probes_out++; 4382 if (err <= 0) { 4383 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4384 icsk->icsk_backoff++; 4385 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4386 } else { 4387 /* If packet was not sent due to local congestion, 4388 * Let senders fight for local resources conservatively. 4389 */ 4390 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4391 } 4392 4393 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4394 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4395 } 4396 4397 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4398 { 4399 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4400 struct flowi fl; 4401 int res; 4402 4403 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4404 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4405 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4406 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4407 NULL); 4408 if (!res) { 4409 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4410 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4411 if (unlikely(tcp_passive_fastopen(sk))) { 4412 /* sk has const attribute because listeners are lockless. 4413 * However in this case, we are dealing with a passive fastopen 4414 * socket thus we can change total_retrans value. 4415 */ 4416 tcp_sk_rw(sk)->total_retrans++; 4417 } 4418 trace_tcp_retransmit_synack(sk, req); 4419 } 4420 return res; 4421 } 4422 EXPORT_SYMBOL(tcp_rtx_synack); 4423