1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* Default TSQ limit of two TSO segments */ 54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072; 55 56 /* This limits the percentage of the congestion window which we 57 * will allow a single TSO frame to consume. Building TSO frames 58 * which are too large can cause TCP streams to be bursty. 59 */ 60 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX; 66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat); 67 68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 69 int push_one, gfp_t gfp); 70 71 /* Account for new data that has been sent to the network. */ 72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 73 { 74 struct inet_connection_sock *icsk = inet_csk(sk); 75 struct tcp_sock *tp = tcp_sk(sk); 76 unsigned int prior_packets = tp->packets_out; 77 78 tcp_advance_send_head(sk, skb); 79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 80 81 tp->packets_out += tcp_skb_pcount(skb); 82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 84 tcp_rearm_rto(sk); 85 } 86 87 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 88 tcp_skb_pcount(skb)); 89 } 90 91 /* SND.NXT, if window was not shrunk. 92 * If window has been shrunk, what should we make? It is not clear at all. 93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 95 * invalid. OK, let's make this for now: 96 */ 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 98 { 99 const struct tcp_sock *tp = tcp_sk(sk); 100 101 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. */ 141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 s32 delta = tcp_time_stamp - tp->lsndtime; 145 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 146 u32 cwnd = tp->snd_cwnd; 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tp->snd_cwnd = max(cwnd, restart_cwnd); 156 tp->snd_cwnd_stamp = tcp_time_stamp; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_time_stamp; 166 const struct dst_entry *dst = __sk_dst_get(sk); 167 168 if (sysctl_tcp_slow_start_after_idle && 169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 170 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, enter pingpong mode. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato && 178 (!dst || !dst_metric(dst, RTAX_QUICKACK))) 179 icsk->icsk_ack.pingpong = 1; 180 } 181 182 /* Account for an ACK we sent. */ 183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 184 { 185 tcp_dec_quickack_mode(sk, pkts); 186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 187 } 188 189 190 u32 tcp_default_init_rwnd(u32 mss) 191 { 192 /* Initial receive window should be twice of TCP_INIT_CWND to 193 * enable proper sending of new unsent data during fast recovery 194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a 195 * limit when mss is larger than 1460. 196 */ 197 u32 init_rwnd = TCP_INIT_CWND * 2; 198 199 if (mss > 1460) 200 init_rwnd = max((1460 * init_rwnd) / mss, 2U); 201 return init_rwnd; 202 } 203 204 /* Determine a window scaling and initial window to offer. 205 * Based on the assumption that the given amount of space 206 * will be offered. Store the results in the tp structure. 207 * NOTE: for smooth operation initial space offering should 208 * be a multiple of mss if possible. We assume here that mss >= 1. 209 * This MUST be enforced by all callers. 210 */ 211 void tcp_select_initial_window(int __space, __u32 mss, 212 __u32 *rcv_wnd, __u32 *window_clamp, 213 int wscale_ok, __u8 *rcv_wscale, 214 __u32 init_rcv_wnd) 215 { 216 unsigned int space = (__space < 0 ? 0 : __space); 217 218 /* If no clamp set the clamp to the max possible scaled window */ 219 if (*window_clamp == 0) 220 (*window_clamp) = (65535 << 14); 221 space = min(*window_clamp, space); 222 223 /* Quantize space offering to a multiple of mss if possible. */ 224 if (space > mss) 225 space = (space / mss) * mss; 226 227 /* NOTE: offering an initial window larger than 32767 228 * will break some buggy TCP stacks. If the admin tells us 229 * it is likely we could be speaking with such a buggy stack 230 * we will truncate our initial window offering to 32K-1 231 * unless the remote has sent us a window scaling option, 232 * which we interpret as a sign the remote TCP is not 233 * misinterpreting the window field as a signed quantity. 234 */ 235 if (sysctl_tcp_workaround_signed_windows) 236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 237 else 238 (*rcv_wnd) = space; 239 240 (*rcv_wscale) = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window 243 * See RFC1323 for an explanation of the limit to 14 244 */ 245 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 246 space = min_t(u32, space, *window_clamp); 247 while (space > 65535 && (*rcv_wscale) < 14) { 248 space >>= 1; 249 (*rcv_wscale)++; 250 } 251 } 252 253 if (mss > (1 << *rcv_wscale)) { 254 if (!init_rcv_wnd) /* Use default unless specified otherwise */ 255 init_rcv_wnd = tcp_default_init_rwnd(mss); 256 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 257 } 258 259 /* Set the clamp no higher than max representable value */ 260 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 261 } 262 EXPORT_SYMBOL(tcp_select_initial_window); 263 264 /* Chose a new window to advertise, update state in tcp_sock for the 265 * socket, and return result with RFC1323 scaling applied. The return 266 * value can be stuffed directly into th->window for an outgoing 267 * frame. 268 */ 269 static u16 tcp_select_window(struct sock *sk) 270 { 271 struct tcp_sock *tp = tcp_sk(sk); 272 u32 old_win = tp->rcv_wnd; 273 u32 cur_win = tcp_receive_window(tp); 274 u32 new_win = __tcp_select_window(sk); 275 276 /* Never shrink the offered window */ 277 if (new_win < cur_win) { 278 /* Danger Will Robinson! 279 * Don't update rcv_wup/rcv_wnd here or else 280 * we will not be able to advertise a zero 281 * window in time. --DaveM 282 * 283 * Relax Will Robinson. 284 */ 285 if (new_win == 0) 286 NET_INC_STATS(sock_net(sk), 287 LINUX_MIB_TCPWANTZEROWINDOWADV); 288 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 289 } 290 tp->rcv_wnd = new_win; 291 tp->rcv_wup = tp->rcv_nxt; 292 293 /* Make sure we do not exceed the maximum possible 294 * scaled window. 295 */ 296 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 297 new_win = min(new_win, MAX_TCP_WINDOW); 298 else 299 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 300 301 /* RFC1323 scaling applied */ 302 new_win >>= tp->rx_opt.rcv_wscale; 303 304 /* If we advertise zero window, disable fast path. */ 305 if (new_win == 0) { 306 tp->pred_flags = 0; 307 if (old_win) 308 NET_INC_STATS(sock_net(sk), 309 LINUX_MIB_TCPTOZEROWINDOWADV); 310 } else if (old_win == 0) { 311 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 312 } 313 314 return new_win; 315 } 316 317 /* Packet ECN state for a SYN-ACK */ 318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 319 { 320 const struct tcp_sock *tp = tcp_sk(sk); 321 322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 323 if (!(tp->ecn_flags & TCP_ECN_OK)) 324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 325 else if (tcp_ca_needs_ecn(sk)) 326 INET_ECN_xmit(sk); 327 } 328 329 /* Packet ECN state for a SYN. */ 330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 331 { 332 struct tcp_sock *tp = tcp_sk(sk); 333 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 334 tcp_ca_needs_ecn(sk); 335 336 if (!use_ecn) { 337 const struct dst_entry *dst = __sk_dst_get(sk); 338 339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 340 use_ecn = true; 341 } 342 343 tp->ecn_flags = 0; 344 345 if (use_ecn) { 346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 347 tp->ecn_flags = TCP_ECN_OK; 348 if (tcp_ca_needs_ecn(sk)) 349 INET_ECN_xmit(sk); 350 } 351 } 352 353 static void 354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th, 355 struct sock *sk) 356 { 357 if (inet_rsk(req)->ecn_ok) { 358 th->ece = 1; 359 if (tcp_ca_needs_ecn(sk)) 360 INET_ECN_xmit(sk); 361 } 362 } 363 364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 365 * be sent. 366 */ 367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 368 int tcp_header_len) 369 { 370 struct tcp_sock *tp = tcp_sk(sk); 371 372 if (tp->ecn_flags & TCP_ECN_OK) { 373 /* Not-retransmitted data segment: set ECT and inject CWR. */ 374 if (skb->len != tcp_header_len && 375 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 376 INET_ECN_xmit(sk); 377 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 378 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 379 tcp_hdr(skb)->cwr = 1; 380 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 381 } 382 } else if (!tcp_ca_needs_ecn(sk)) { 383 /* ACK or retransmitted segment: clear ECT|CE */ 384 INET_ECN_dontxmit(sk); 385 } 386 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 387 tcp_hdr(skb)->ece = 1; 388 } 389 } 390 391 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 392 * auto increment end seqno. 393 */ 394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 395 { 396 struct skb_shared_info *shinfo = skb_shinfo(skb); 397 398 skb->ip_summed = CHECKSUM_PARTIAL; 399 skb->csum = 0; 400 401 TCP_SKB_CB(skb)->tcp_flags = flags; 402 TCP_SKB_CB(skb)->sacked = 0; 403 404 tcp_skb_pcount_set(skb, 1); 405 shinfo->gso_size = 0; 406 shinfo->gso_type = 0; 407 408 TCP_SKB_CB(skb)->seq = seq; 409 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 410 seq++; 411 TCP_SKB_CB(skb)->end_seq = seq; 412 } 413 414 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 415 { 416 return tp->snd_una != tp->snd_up; 417 } 418 419 #define OPTION_SACK_ADVERTISE (1 << 0) 420 #define OPTION_TS (1 << 1) 421 #define OPTION_MD5 (1 << 2) 422 #define OPTION_WSCALE (1 << 3) 423 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 424 425 struct tcp_out_options { 426 u16 options; /* bit field of OPTION_* */ 427 u16 mss; /* 0 to disable */ 428 u8 ws; /* window scale, 0 to disable */ 429 u8 num_sack_blocks; /* number of SACK blocks to include */ 430 u8 hash_size; /* bytes in hash_location */ 431 __u8 *hash_location; /* temporary pointer, overloaded */ 432 __u32 tsval, tsecr; /* need to include OPTION_TS */ 433 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 434 }; 435 436 /* Write previously computed TCP options to the packet. 437 * 438 * Beware: Something in the Internet is very sensitive to the ordering of 439 * TCP options, we learned this through the hard way, so be careful here. 440 * Luckily we can at least blame others for their non-compliance but from 441 * inter-operability perspective it seems that we're somewhat stuck with 442 * the ordering which we have been using if we want to keep working with 443 * those broken things (not that it currently hurts anybody as there isn't 444 * particular reason why the ordering would need to be changed). 445 * 446 * At least SACK_PERM as the first option is known to lead to a disaster 447 * (but it may well be that other scenarios fail similarly). 448 */ 449 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 450 struct tcp_out_options *opts) 451 { 452 u16 options = opts->options; /* mungable copy */ 453 454 if (unlikely(OPTION_MD5 & options)) { 455 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 456 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 457 /* overload cookie hash location */ 458 opts->hash_location = (__u8 *)ptr; 459 ptr += 4; 460 } 461 462 if (unlikely(opts->mss)) { 463 *ptr++ = htonl((TCPOPT_MSS << 24) | 464 (TCPOLEN_MSS << 16) | 465 opts->mss); 466 } 467 468 if (likely(OPTION_TS & options)) { 469 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 470 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 471 (TCPOLEN_SACK_PERM << 16) | 472 (TCPOPT_TIMESTAMP << 8) | 473 TCPOLEN_TIMESTAMP); 474 options &= ~OPTION_SACK_ADVERTISE; 475 } else { 476 *ptr++ = htonl((TCPOPT_NOP << 24) | 477 (TCPOPT_NOP << 16) | 478 (TCPOPT_TIMESTAMP << 8) | 479 TCPOLEN_TIMESTAMP); 480 } 481 *ptr++ = htonl(opts->tsval); 482 *ptr++ = htonl(opts->tsecr); 483 } 484 485 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 486 *ptr++ = htonl((TCPOPT_NOP << 24) | 487 (TCPOPT_NOP << 16) | 488 (TCPOPT_SACK_PERM << 8) | 489 TCPOLEN_SACK_PERM); 490 } 491 492 if (unlikely(OPTION_WSCALE & options)) { 493 *ptr++ = htonl((TCPOPT_NOP << 24) | 494 (TCPOPT_WINDOW << 16) | 495 (TCPOLEN_WINDOW << 8) | 496 opts->ws); 497 } 498 499 if (unlikely(opts->num_sack_blocks)) { 500 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 501 tp->duplicate_sack : tp->selective_acks; 502 int this_sack; 503 504 *ptr++ = htonl((TCPOPT_NOP << 24) | 505 (TCPOPT_NOP << 16) | 506 (TCPOPT_SACK << 8) | 507 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 508 TCPOLEN_SACK_PERBLOCK))); 509 510 for (this_sack = 0; this_sack < opts->num_sack_blocks; 511 ++this_sack) { 512 *ptr++ = htonl(sp[this_sack].start_seq); 513 *ptr++ = htonl(sp[this_sack].end_seq); 514 } 515 516 tp->rx_opt.dsack = 0; 517 } 518 519 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 520 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 521 522 *ptr++ = htonl((TCPOPT_EXP << 24) | 523 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) | 524 TCPOPT_FASTOPEN_MAGIC); 525 526 memcpy(ptr, foc->val, foc->len); 527 if ((foc->len & 3) == 2) { 528 u8 *align = ((u8 *)ptr) + foc->len; 529 align[0] = align[1] = TCPOPT_NOP; 530 } 531 ptr += (foc->len + 3) >> 2; 532 } 533 } 534 535 /* Compute TCP options for SYN packets. This is not the final 536 * network wire format yet. 537 */ 538 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 539 struct tcp_out_options *opts, 540 struct tcp_md5sig_key **md5) 541 { 542 struct tcp_sock *tp = tcp_sk(sk); 543 unsigned int remaining = MAX_TCP_OPTION_SPACE; 544 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 545 546 #ifdef CONFIG_TCP_MD5SIG 547 *md5 = tp->af_specific->md5_lookup(sk, sk); 548 if (*md5) { 549 opts->options |= OPTION_MD5; 550 remaining -= TCPOLEN_MD5SIG_ALIGNED; 551 } 552 #else 553 *md5 = NULL; 554 #endif 555 556 /* We always get an MSS option. The option bytes which will be seen in 557 * normal data packets should timestamps be used, must be in the MSS 558 * advertised. But we subtract them from tp->mss_cache so that 559 * calculations in tcp_sendmsg are simpler etc. So account for this 560 * fact here if necessary. If we don't do this correctly, as a 561 * receiver we won't recognize data packets as being full sized when we 562 * should, and thus we won't abide by the delayed ACK rules correctly. 563 * SACKs don't matter, we never delay an ACK when we have any of those 564 * going out. */ 565 opts->mss = tcp_advertise_mss(sk); 566 remaining -= TCPOLEN_MSS_ALIGNED; 567 568 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 569 opts->options |= OPTION_TS; 570 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 571 opts->tsecr = tp->rx_opt.ts_recent; 572 remaining -= TCPOLEN_TSTAMP_ALIGNED; 573 } 574 if (likely(sysctl_tcp_window_scaling)) { 575 opts->ws = tp->rx_opt.rcv_wscale; 576 opts->options |= OPTION_WSCALE; 577 remaining -= TCPOLEN_WSCALE_ALIGNED; 578 } 579 if (likely(sysctl_tcp_sack)) { 580 opts->options |= OPTION_SACK_ADVERTISE; 581 if (unlikely(!(OPTION_TS & opts->options))) 582 remaining -= TCPOLEN_SACKPERM_ALIGNED; 583 } 584 585 if (fastopen && fastopen->cookie.len >= 0) { 586 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len; 587 need = (need + 3) & ~3U; /* Align to 32 bits */ 588 if (remaining >= need) { 589 opts->options |= OPTION_FAST_OPEN_COOKIE; 590 opts->fastopen_cookie = &fastopen->cookie; 591 remaining -= need; 592 tp->syn_fastopen = 1; 593 } 594 } 595 596 return MAX_TCP_OPTION_SPACE - remaining; 597 } 598 599 /* Set up TCP options for SYN-ACKs. */ 600 static unsigned int tcp_synack_options(struct sock *sk, 601 struct request_sock *req, 602 unsigned int mss, struct sk_buff *skb, 603 struct tcp_out_options *opts, 604 struct tcp_md5sig_key **md5, 605 struct tcp_fastopen_cookie *foc) 606 { 607 struct inet_request_sock *ireq = inet_rsk(req); 608 unsigned int remaining = MAX_TCP_OPTION_SPACE; 609 610 #ifdef CONFIG_TCP_MD5SIG 611 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 612 if (*md5) { 613 opts->options |= OPTION_MD5; 614 remaining -= TCPOLEN_MD5SIG_ALIGNED; 615 616 /* We can't fit any SACK blocks in a packet with MD5 + TS 617 * options. There was discussion about disabling SACK 618 * rather than TS in order to fit in better with old, 619 * buggy kernels, but that was deemed to be unnecessary. 620 */ 621 ireq->tstamp_ok &= !ireq->sack_ok; 622 } 623 #else 624 *md5 = NULL; 625 #endif 626 627 /* We always send an MSS option. */ 628 opts->mss = mss; 629 remaining -= TCPOLEN_MSS_ALIGNED; 630 631 if (likely(ireq->wscale_ok)) { 632 opts->ws = ireq->rcv_wscale; 633 opts->options |= OPTION_WSCALE; 634 remaining -= TCPOLEN_WSCALE_ALIGNED; 635 } 636 if (likely(ireq->tstamp_ok)) { 637 opts->options |= OPTION_TS; 638 opts->tsval = tcp_skb_timestamp(skb); 639 opts->tsecr = req->ts_recent; 640 remaining -= TCPOLEN_TSTAMP_ALIGNED; 641 } 642 if (likely(ireq->sack_ok)) { 643 opts->options |= OPTION_SACK_ADVERTISE; 644 if (unlikely(!ireq->tstamp_ok)) 645 remaining -= TCPOLEN_SACKPERM_ALIGNED; 646 } 647 if (foc != NULL && foc->len >= 0) { 648 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 649 need = (need + 3) & ~3U; /* Align to 32 bits */ 650 if (remaining >= need) { 651 opts->options |= OPTION_FAST_OPEN_COOKIE; 652 opts->fastopen_cookie = foc; 653 remaining -= need; 654 } 655 } 656 657 return MAX_TCP_OPTION_SPACE - remaining; 658 } 659 660 /* Compute TCP options for ESTABLISHED sockets. This is not the 661 * final wire format yet. 662 */ 663 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 664 struct tcp_out_options *opts, 665 struct tcp_md5sig_key **md5) 666 { 667 struct tcp_sock *tp = tcp_sk(sk); 668 unsigned int size = 0; 669 unsigned int eff_sacks; 670 671 opts->options = 0; 672 673 #ifdef CONFIG_TCP_MD5SIG 674 *md5 = tp->af_specific->md5_lookup(sk, sk); 675 if (unlikely(*md5)) { 676 opts->options |= OPTION_MD5; 677 size += TCPOLEN_MD5SIG_ALIGNED; 678 } 679 #else 680 *md5 = NULL; 681 #endif 682 683 if (likely(tp->rx_opt.tstamp_ok)) { 684 opts->options |= OPTION_TS; 685 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 686 opts->tsecr = tp->rx_opt.ts_recent; 687 size += TCPOLEN_TSTAMP_ALIGNED; 688 } 689 690 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 691 if (unlikely(eff_sacks)) { 692 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 693 opts->num_sack_blocks = 694 min_t(unsigned int, eff_sacks, 695 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 696 TCPOLEN_SACK_PERBLOCK); 697 size += TCPOLEN_SACK_BASE_ALIGNED + 698 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 699 } 700 701 return size; 702 } 703 704 705 /* TCP SMALL QUEUES (TSQ) 706 * 707 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 708 * to reduce RTT and bufferbloat. 709 * We do this using a special skb destructor (tcp_wfree). 710 * 711 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 712 * needs to be reallocated in a driver. 713 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 714 * 715 * Since transmit from skb destructor is forbidden, we use a tasklet 716 * to process all sockets that eventually need to send more skbs. 717 * We use one tasklet per cpu, with its own queue of sockets. 718 */ 719 struct tsq_tasklet { 720 struct tasklet_struct tasklet; 721 struct list_head head; /* queue of tcp sockets */ 722 }; 723 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 724 725 static void tcp_tsq_handler(struct sock *sk) 726 { 727 if ((1 << sk->sk_state) & 728 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 729 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) 730 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle, 731 0, GFP_ATOMIC); 732 } 733 /* 734 * One tasklet per cpu tries to send more skbs. 735 * We run in tasklet context but need to disable irqs when 736 * transferring tsq->head because tcp_wfree() might 737 * interrupt us (non NAPI drivers) 738 */ 739 static void tcp_tasklet_func(unsigned long data) 740 { 741 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 742 LIST_HEAD(list); 743 unsigned long flags; 744 struct list_head *q, *n; 745 struct tcp_sock *tp; 746 struct sock *sk; 747 748 local_irq_save(flags); 749 list_splice_init(&tsq->head, &list); 750 local_irq_restore(flags); 751 752 list_for_each_safe(q, n, &list) { 753 tp = list_entry(q, struct tcp_sock, tsq_node); 754 list_del(&tp->tsq_node); 755 756 sk = (struct sock *)tp; 757 bh_lock_sock(sk); 758 759 if (!sock_owned_by_user(sk)) { 760 tcp_tsq_handler(sk); 761 } else { 762 /* defer the work to tcp_release_cb() */ 763 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags); 764 } 765 bh_unlock_sock(sk); 766 767 clear_bit(TSQ_QUEUED, &tp->tsq_flags); 768 sk_free(sk); 769 } 770 } 771 772 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \ 773 (1UL << TCP_WRITE_TIMER_DEFERRED) | \ 774 (1UL << TCP_DELACK_TIMER_DEFERRED) | \ 775 (1UL << TCP_MTU_REDUCED_DEFERRED)) 776 /** 777 * tcp_release_cb - tcp release_sock() callback 778 * @sk: socket 779 * 780 * called from release_sock() to perform protocol dependent 781 * actions before socket release. 782 */ 783 void tcp_release_cb(struct sock *sk) 784 { 785 struct tcp_sock *tp = tcp_sk(sk); 786 unsigned long flags, nflags; 787 788 /* perform an atomic operation only if at least one flag is set */ 789 do { 790 flags = tp->tsq_flags; 791 if (!(flags & TCP_DEFERRED_ALL)) 792 return; 793 nflags = flags & ~TCP_DEFERRED_ALL; 794 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags); 795 796 if (flags & (1UL << TCP_TSQ_DEFERRED)) 797 tcp_tsq_handler(sk); 798 799 /* Here begins the tricky part : 800 * We are called from release_sock() with : 801 * 1) BH disabled 802 * 2) sk_lock.slock spinlock held 803 * 3) socket owned by us (sk->sk_lock.owned == 1) 804 * 805 * But following code is meant to be called from BH handlers, 806 * so we should keep BH disabled, but early release socket ownership 807 */ 808 sock_release_ownership(sk); 809 810 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) { 811 tcp_write_timer_handler(sk); 812 __sock_put(sk); 813 } 814 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) { 815 tcp_delack_timer_handler(sk); 816 __sock_put(sk); 817 } 818 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) { 819 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 820 __sock_put(sk); 821 } 822 } 823 EXPORT_SYMBOL(tcp_release_cb); 824 825 void __init tcp_tasklet_init(void) 826 { 827 int i; 828 829 for_each_possible_cpu(i) { 830 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 831 832 INIT_LIST_HEAD(&tsq->head); 833 tasklet_init(&tsq->tasklet, 834 tcp_tasklet_func, 835 (unsigned long)tsq); 836 } 837 } 838 839 /* 840 * Write buffer destructor automatically called from kfree_skb. 841 * We can't xmit new skbs from this context, as we might already 842 * hold qdisc lock. 843 */ 844 void tcp_wfree(struct sk_buff *skb) 845 { 846 struct sock *sk = skb->sk; 847 struct tcp_sock *tp = tcp_sk(sk); 848 int wmem; 849 850 /* Keep one reference on sk_wmem_alloc. 851 * Will be released by sk_free() from here or tcp_tasklet_func() 852 */ 853 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc); 854 855 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 856 * Wait until our queues (qdisc + devices) are drained. 857 * This gives : 858 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 859 * - chance for incoming ACK (processed by another cpu maybe) 860 * to migrate this flow (skb->ooo_okay will be eventually set) 861 */ 862 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 863 goto out; 864 865 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) && 866 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) { 867 unsigned long flags; 868 struct tsq_tasklet *tsq; 869 870 /* queue this socket to tasklet queue */ 871 local_irq_save(flags); 872 tsq = this_cpu_ptr(&tsq_tasklet); 873 list_add(&tp->tsq_node, &tsq->head); 874 tasklet_schedule(&tsq->tasklet); 875 local_irq_restore(flags); 876 return; 877 } 878 out: 879 sk_free(sk); 880 } 881 882 /* This routine actually transmits TCP packets queued in by 883 * tcp_do_sendmsg(). This is used by both the initial 884 * transmission and possible later retransmissions. 885 * All SKB's seen here are completely headerless. It is our 886 * job to build the TCP header, and pass the packet down to 887 * IP so it can do the same plus pass the packet off to the 888 * device. 889 * 890 * We are working here with either a clone of the original 891 * SKB, or a fresh unique copy made by the retransmit engine. 892 */ 893 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 894 gfp_t gfp_mask) 895 { 896 const struct inet_connection_sock *icsk = inet_csk(sk); 897 struct inet_sock *inet; 898 struct tcp_sock *tp; 899 struct tcp_skb_cb *tcb; 900 struct tcp_out_options opts; 901 unsigned int tcp_options_size, tcp_header_size; 902 struct tcp_md5sig_key *md5; 903 struct tcphdr *th; 904 int err; 905 906 BUG_ON(!skb || !tcp_skb_pcount(skb)); 907 908 if (clone_it) { 909 skb_mstamp_get(&skb->skb_mstamp); 910 911 if (unlikely(skb_cloned(skb))) 912 skb = pskb_copy(skb, gfp_mask); 913 else 914 skb = skb_clone(skb, gfp_mask); 915 if (unlikely(!skb)) 916 return -ENOBUFS; 917 } 918 919 inet = inet_sk(sk); 920 tp = tcp_sk(sk); 921 tcb = TCP_SKB_CB(skb); 922 memset(&opts, 0, sizeof(opts)); 923 924 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 925 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 926 else 927 tcp_options_size = tcp_established_options(sk, skb, &opts, 928 &md5); 929 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 930 931 if (tcp_packets_in_flight(tp) == 0) 932 tcp_ca_event(sk, CA_EVENT_TX_START); 933 934 /* if no packet is in qdisc/device queue, then allow XPS to select 935 * another queue. We can be called from tcp_tsq_handler() 936 * which holds one reference to sk_wmem_alloc. 937 * 938 * TODO: Ideally, in-flight pure ACK packets should not matter here. 939 * One way to get this would be to set skb->truesize = 2 on them. 940 */ 941 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 942 943 skb_push(skb, tcp_header_size); 944 skb_reset_transport_header(skb); 945 946 skb_orphan(skb); 947 skb->sk = sk; 948 skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree; 949 skb_set_hash_from_sk(skb, sk); 950 atomic_add(skb->truesize, &sk->sk_wmem_alloc); 951 952 /* Build TCP header and checksum it. */ 953 th = tcp_hdr(skb); 954 th->source = inet->inet_sport; 955 th->dest = inet->inet_dport; 956 th->seq = htonl(tcb->seq); 957 th->ack_seq = htonl(tp->rcv_nxt); 958 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 959 tcb->tcp_flags); 960 961 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 962 /* RFC1323: The window in SYN & SYN/ACK segments 963 * is never scaled. 964 */ 965 th->window = htons(min(tp->rcv_wnd, 65535U)); 966 } else { 967 th->window = htons(tcp_select_window(sk)); 968 } 969 th->check = 0; 970 th->urg_ptr = 0; 971 972 /* The urg_mode check is necessary during a below snd_una win probe */ 973 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 974 if (before(tp->snd_up, tcb->seq + 0x10000)) { 975 th->urg_ptr = htons(tp->snd_up - tcb->seq); 976 th->urg = 1; 977 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 978 th->urg_ptr = htons(0xFFFF); 979 th->urg = 1; 980 } 981 } 982 983 tcp_options_write((__be32 *)(th + 1), tp, &opts); 984 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 985 tcp_ecn_send(sk, skb, tcp_header_size); 986 987 #ifdef CONFIG_TCP_MD5SIG 988 /* Calculate the MD5 hash, as we have all we need now */ 989 if (md5) { 990 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 991 tp->af_specific->calc_md5_hash(opts.hash_location, 992 md5, sk, NULL, skb); 993 } 994 #endif 995 996 icsk->icsk_af_ops->send_check(sk, skb); 997 998 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 999 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 1000 1001 if (skb->len != tcp_header_size) 1002 tcp_event_data_sent(tp, sk); 1003 1004 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1005 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1006 tcp_skb_pcount(skb)); 1007 1008 /* OK, its time to fill skb_shinfo(skb)->gso_segs */ 1009 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1010 1011 /* Our usage of tstamp should remain private */ 1012 skb->tstamp.tv64 = 0; 1013 1014 /* Cleanup our debris for IP stacks */ 1015 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1016 sizeof(struct inet6_skb_parm))); 1017 1018 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1019 1020 if (likely(err <= 0)) 1021 return err; 1022 1023 tcp_enter_cwr(sk); 1024 1025 return net_xmit_eval(err); 1026 } 1027 1028 /* This routine just queues the buffer for sending. 1029 * 1030 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1031 * otherwise socket can stall. 1032 */ 1033 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1034 { 1035 struct tcp_sock *tp = tcp_sk(sk); 1036 1037 /* Advance write_seq and place onto the write_queue. */ 1038 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1039 __skb_header_release(skb); 1040 tcp_add_write_queue_tail(sk, skb); 1041 sk->sk_wmem_queued += skb->truesize; 1042 sk_mem_charge(sk, skb->truesize); 1043 } 1044 1045 /* Initialize TSO segments for a packet. */ 1046 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 1047 unsigned int mss_now) 1048 { 1049 struct skb_shared_info *shinfo = skb_shinfo(skb); 1050 1051 /* Make sure we own this skb before messing gso_size/gso_segs */ 1052 WARN_ON_ONCE(skb_cloned(skb)); 1053 1054 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) { 1055 /* Avoid the costly divide in the normal 1056 * non-TSO case. 1057 */ 1058 tcp_skb_pcount_set(skb, 1); 1059 shinfo->gso_size = 0; 1060 shinfo->gso_type = 0; 1061 } else { 1062 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1063 shinfo->gso_size = mss_now; 1064 shinfo->gso_type = sk->sk_gso_type; 1065 } 1066 } 1067 1068 /* When a modification to fackets out becomes necessary, we need to check 1069 * skb is counted to fackets_out or not. 1070 */ 1071 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 1072 int decr) 1073 { 1074 struct tcp_sock *tp = tcp_sk(sk); 1075 1076 if (!tp->sacked_out || tcp_is_reno(tp)) 1077 return; 1078 1079 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 1080 tp->fackets_out -= decr; 1081 } 1082 1083 /* Pcount in the middle of the write queue got changed, we need to do various 1084 * tweaks to fix counters 1085 */ 1086 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1087 { 1088 struct tcp_sock *tp = tcp_sk(sk); 1089 1090 tp->packets_out -= decr; 1091 1092 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1093 tp->sacked_out -= decr; 1094 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1095 tp->retrans_out -= decr; 1096 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1097 tp->lost_out -= decr; 1098 1099 /* Reno case is special. Sigh... */ 1100 if (tcp_is_reno(tp) && decr > 0) 1101 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1102 1103 tcp_adjust_fackets_out(sk, skb, decr); 1104 1105 if (tp->lost_skb_hint && 1106 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1107 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 1108 tp->lost_cnt_hint -= decr; 1109 1110 tcp_verify_left_out(tp); 1111 } 1112 1113 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1114 { 1115 struct skb_shared_info *shinfo = skb_shinfo(skb); 1116 1117 if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) && 1118 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1119 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1120 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1121 1122 shinfo->tx_flags &= ~tsflags; 1123 shinfo2->tx_flags |= tsflags; 1124 swap(shinfo->tskey, shinfo2->tskey); 1125 } 1126 } 1127 1128 /* Function to create two new TCP segments. Shrinks the given segment 1129 * to the specified size and appends a new segment with the rest of the 1130 * packet to the list. This won't be called frequently, I hope. 1131 * Remember, these are still headerless SKBs at this point. 1132 */ 1133 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1134 unsigned int mss_now, gfp_t gfp) 1135 { 1136 struct tcp_sock *tp = tcp_sk(sk); 1137 struct sk_buff *buff; 1138 int nsize, old_factor; 1139 int nlen; 1140 u8 flags; 1141 1142 if (WARN_ON(len > skb->len)) 1143 return -EINVAL; 1144 1145 nsize = skb_headlen(skb) - len; 1146 if (nsize < 0) 1147 nsize = 0; 1148 1149 if (skb_unclone(skb, gfp)) 1150 return -ENOMEM; 1151 1152 /* Get a new skb... force flag on. */ 1153 buff = sk_stream_alloc_skb(sk, nsize, gfp); 1154 if (buff == NULL) 1155 return -ENOMEM; /* We'll just try again later. */ 1156 1157 sk->sk_wmem_queued += buff->truesize; 1158 sk_mem_charge(sk, buff->truesize); 1159 nlen = skb->len - len - nsize; 1160 buff->truesize += nlen; 1161 skb->truesize -= nlen; 1162 1163 /* Correct the sequence numbers. */ 1164 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1165 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1166 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1167 1168 /* PSH and FIN should only be set in the second packet. */ 1169 flags = TCP_SKB_CB(skb)->tcp_flags; 1170 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1171 TCP_SKB_CB(buff)->tcp_flags = flags; 1172 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1173 1174 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1175 /* Copy and checksum data tail into the new buffer. */ 1176 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1177 skb_put(buff, nsize), 1178 nsize, 0); 1179 1180 skb_trim(skb, len); 1181 1182 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1183 } else { 1184 skb->ip_summed = CHECKSUM_PARTIAL; 1185 skb_split(skb, buff, len); 1186 } 1187 1188 buff->ip_summed = skb->ip_summed; 1189 1190 buff->tstamp = skb->tstamp; 1191 tcp_fragment_tstamp(skb, buff); 1192 1193 old_factor = tcp_skb_pcount(skb); 1194 1195 /* Fix up tso_factor for both original and new SKB. */ 1196 tcp_set_skb_tso_segs(sk, skb, mss_now); 1197 tcp_set_skb_tso_segs(sk, buff, mss_now); 1198 1199 /* If this packet has been sent out already, we must 1200 * adjust the various packet counters. 1201 */ 1202 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1203 int diff = old_factor - tcp_skb_pcount(skb) - 1204 tcp_skb_pcount(buff); 1205 1206 if (diff) 1207 tcp_adjust_pcount(sk, skb, diff); 1208 } 1209 1210 /* Link BUFF into the send queue. */ 1211 __skb_header_release(buff); 1212 tcp_insert_write_queue_after(skb, buff, sk); 1213 1214 return 0; 1215 } 1216 1217 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1218 * eventually). The difference is that pulled data not copied, but 1219 * immediately discarded. 1220 */ 1221 static void __pskb_trim_head(struct sk_buff *skb, int len) 1222 { 1223 struct skb_shared_info *shinfo; 1224 int i, k, eat; 1225 1226 eat = min_t(int, len, skb_headlen(skb)); 1227 if (eat) { 1228 __skb_pull(skb, eat); 1229 len -= eat; 1230 if (!len) 1231 return; 1232 } 1233 eat = len; 1234 k = 0; 1235 shinfo = skb_shinfo(skb); 1236 for (i = 0; i < shinfo->nr_frags; i++) { 1237 int size = skb_frag_size(&shinfo->frags[i]); 1238 1239 if (size <= eat) { 1240 skb_frag_unref(skb, i); 1241 eat -= size; 1242 } else { 1243 shinfo->frags[k] = shinfo->frags[i]; 1244 if (eat) { 1245 shinfo->frags[k].page_offset += eat; 1246 skb_frag_size_sub(&shinfo->frags[k], eat); 1247 eat = 0; 1248 } 1249 k++; 1250 } 1251 } 1252 shinfo->nr_frags = k; 1253 1254 skb_reset_tail_pointer(skb); 1255 skb->data_len -= len; 1256 skb->len = skb->data_len; 1257 } 1258 1259 /* Remove acked data from a packet in the transmit queue. */ 1260 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1261 { 1262 if (skb_unclone(skb, GFP_ATOMIC)) 1263 return -ENOMEM; 1264 1265 __pskb_trim_head(skb, len); 1266 1267 TCP_SKB_CB(skb)->seq += len; 1268 skb->ip_summed = CHECKSUM_PARTIAL; 1269 1270 skb->truesize -= len; 1271 sk->sk_wmem_queued -= len; 1272 sk_mem_uncharge(sk, len); 1273 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1274 1275 /* Any change of skb->len requires recalculation of tso factor. */ 1276 if (tcp_skb_pcount(skb) > 1) 1277 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1278 1279 return 0; 1280 } 1281 1282 /* Calculate MSS not accounting any TCP options. */ 1283 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1284 { 1285 const struct tcp_sock *tp = tcp_sk(sk); 1286 const struct inet_connection_sock *icsk = inet_csk(sk); 1287 int mss_now; 1288 1289 /* Calculate base mss without TCP options: 1290 It is MMS_S - sizeof(tcphdr) of rfc1122 1291 */ 1292 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1293 1294 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1295 if (icsk->icsk_af_ops->net_frag_header_len) { 1296 const struct dst_entry *dst = __sk_dst_get(sk); 1297 1298 if (dst && dst_allfrag(dst)) 1299 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1300 } 1301 1302 /* Clamp it (mss_clamp does not include tcp options) */ 1303 if (mss_now > tp->rx_opt.mss_clamp) 1304 mss_now = tp->rx_opt.mss_clamp; 1305 1306 /* Now subtract optional transport overhead */ 1307 mss_now -= icsk->icsk_ext_hdr_len; 1308 1309 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1310 if (mss_now < 48) 1311 mss_now = 48; 1312 return mss_now; 1313 } 1314 1315 /* Calculate MSS. Not accounting for SACKs here. */ 1316 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1317 { 1318 /* Subtract TCP options size, not including SACKs */ 1319 return __tcp_mtu_to_mss(sk, pmtu) - 1320 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1321 } 1322 1323 /* Inverse of above */ 1324 int tcp_mss_to_mtu(struct sock *sk, int mss) 1325 { 1326 const struct tcp_sock *tp = tcp_sk(sk); 1327 const struct inet_connection_sock *icsk = inet_csk(sk); 1328 int mtu; 1329 1330 mtu = mss + 1331 tp->tcp_header_len + 1332 icsk->icsk_ext_hdr_len + 1333 icsk->icsk_af_ops->net_header_len; 1334 1335 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1336 if (icsk->icsk_af_ops->net_frag_header_len) { 1337 const struct dst_entry *dst = __sk_dst_get(sk); 1338 1339 if (dst && dst_allfrag(dst)) 1340 mtu += icsk->icsk_af_ops->net_frag_header_len; 1341 } 1342 return mtu; 1343 } 1344 1345 /* MTU probing init per socket */ 1346 void tcp_mtup_init(struct sock *sk) 1347 { 1348 struct tcp_sock *tp = tcp_sk(sk); 1349 struct inet_connection_sock *icsk = inet_csk(sk); 1350 struct net *net = sock_net(sk); 1351 1352 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1353 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1354 icsk->icsk_af_ops->net_header_len; 1355 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1356 icsk->icsk_mtup.probe_size = 0; 1357 } 1358 EXPORT_SYMBOL(tcp_mtup_init); 1359 1360 /* This function synchronize snd mss to current pmtu/exthdr set. 1361 1362 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1363 for TCP options, but includes only bare TCP header. 1364 1365 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1366 It is minimum of user_mss and mss received with SYN. 1367 It also does not include TCP options. 1368 1369 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1370 1371 tp->mss_cache is current effective sending mss, including 1372 all tcp options except for SACKs. It is evaluated, 1373 taking into account current pmtu, but never exceeds 1374 tp->rx_opt.mss_clamp. 1375 1376 NOTE1. rfc1122 clearly states that advertised MSS 1377 DOES NOT include either tcp or ip options. 1378 1379 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1380 are READ ONLY outside this function. --ANK (980731) 1381 */ 1382 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1383 { 1384 struct tcp_sock *tp = tcp_sk(sk); 1385 struct inet_connection_sock *icsk = inet_csk(sk); 1386 int mss_now; 1387 1388 if (icsk->icsk_mtup.search_high > pmtu) 1389 icsk->icsk_mtup.search_high = pmtu; 1390 1391 mss_now = tcp_mtu_to_mss(sk, pmtu); 1392 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1393 1394 /* And store cached results */ 1395 icsk->icsk_pmtu_cookie = pmtu; 1396 if (icsk->icsk_mtup.enabled) 1397 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1398 tp->mss_cache = mss_now; 1399 1400 return mss_now; 1401 } 1402 EXPORT_SYMBOL(tcp_sync_mss); 1403 1404 /* Compute the current effective MSS, taking SACKs and IP options, 1405 * and even PMTU discovery events into account. 1406 */ 1407 unsigned int tcp_current_mss(struct sock *sk) 1408 { 1409 const struct tcp_sock *tp = tcp_sk(sk); 1410 const struct dst_entry *dst = __sk_dst_get(sk); 1411 u32 mss_now; 1412 unsigned int header_len; 1413 struct tcp_out_options opts; 1414 struct tcp_md5sig_key *md5; 1415 1416 mss_now = tp->mss_cache; 1417 1418 if (dst) { 1419 u32 mtu = dst_mtu(dst); 1420 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1421 mss_now = tcp_sync_mss(sk, mtu); 1422 } 1423 1424 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1425 sizeof(struct tcphdr); 1426 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1427 * some common options. If this is an odd packet (because we have SACK 1428 * blocks etc) then our calculated header_len will be different, and 1429 * we have to adjust mss_now correspondingly */ 1430 if (header_len != tp->tcp_header_len) { 1431 int delta = (int) header_len - tp->tcp_header_len; 1432 mss_now -= delta; 1433 } 1434 1435 return mss_now; 1436 } 1437 1438 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1439 * As additional protections, we do not touch cwnd in retransmission phases, 1440 * and if application hit its sndbuf limit recently. 1441 */ 1442 static void tcp_cwnd_application_limited(struct sock *sk) 1443 { 1444 struct tcp_sock *tp = tcp_sk(sk); 1445 1446 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1447 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1448 /* Limited by application or receiver window. */ 1449 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1450 u32 win_used = max(tp->snd_cwnd_used, init_win); 1451 if (win_used < tp->snd_cwnd) { 1452 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1453 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1454 } 1455 tp->snd_cwnd_used = 0; 1456 } 1457 tp->snd_cwnd_stamp = tcp_time_stamp; 1458 } 1459 1460 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1461 { 1462 struct tcp_sock *tp = tcp_sk(sk); 1463 1464 /* Track the maximum number of outstanding packets in each 1465 * window, and remember whether we were cwnd-limited then. 1466 */ 1467 if (!before(tp->snd_una, tp->max_packets_seq) || 1468 tp->packets_out > tp->max_packets_out) { 1469 tp->max_packets_out = tp->packets_out; 1470 tp->max_packets_seq = tp->snd_nxt; 1471 tp->is_cwnd_limited = is_cwnd_limited; 1472 } 1473 1474 if (tcp_is_cwnd_limited(sk)) { 1475 /* Network is feed fully. */ 1476 tp->snd_cwnd_used = 0; 1477 tp->snd_cwnd_stamp = tcp_time_stamp; 1478 } else { 1479 /* Network starves. */ 1480 if (tp->packets_out > tp->snd_cwnd_used) 1481 tp->snd_cwnd_used = tp->packets_out; 1482 1483 if (sysctl_tcp_slow_start_after_idle && 1484 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1485 tcp_cwnd_application_limited(sk); 1486 } 1487 } 1488 1489 /* Minshall's variant of the Nagle send check. */ 1490 static bool tcp_minshall_check(const struct tcp_sock *tp) 1491 { 1492 return after(tp->snd_sml, tp->snd_una) && 1493 !after(tp->snd_sml, tp->snd_nxt); 1494 } 1495 1496 /* Update snd_sml if this skb is under mss 1497 * Note that a TSO packet might end with a sub-mss segment 1498 * The test is really : 1499 * if ((skb->len % mss) != 0) 1500 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1501 * But we can avoid doing the divide again given we already have 1502 * skb_pcount = skb->len / mss_now 1503 */ 1504 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1505 const struct sk_buff *skb) 1506 { 1507 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1508 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1509 } 1510 1511 /* Return false, if packet can be sent now without violation Nagle's rules: 1512 * 1. It is full sized. (provided by caller in %partial bool) 1513 * 2. Or it contains FIN. (already checked by caller) 1514 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1515 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1516 * With Minshall's modification: all sent small packets are ACKed. 1517 */ 1518 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1519 int nonagle) 1520 { 1521 return partial && 1522 ((nonagle & TCP_NAGLE_CORK) || 1523 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1524 } 1525 1526 /* Return how many segs we'd like on a TSO packet, 1527 * to send one TSO packet per ms 1528 */ 1529 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now) 1530 { 1531 u32 bytes, segs; 1532 1533 bytes = min(sk->sk_pacing_rate >> 10, 1534 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1535 1536 /* Goal is to send at least one packet per ms, 1537 * not one big TSO packet every 100 ms. 1538 * This preserves ACK clocking and is consistent 1539 * with tcp_tso_should_defer() heuristic. 1540 */ 1541 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs); 1542 1543 return min_t(u32, segs, sk->sk_gso_max_segs); 1544 } 1545 1546 /* Returns the portion of skb which can be sent right away */ 1547 static unsigned int tcp_mss_split_point(const struct sock *sk, 1548 const struct sk_buff *skb, 1549 unsigned int mss_now, 1550 unsigned int max_segs, 1551 int nonagle) 1552 { 1553 const struct tcp_sock *tp = tcp_sk(sk); 1554 u32 partial, needed, window, max_len; 1555 1556 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1557 max_len = mss_now * max_segs; 1558 1559 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1560 return max_len; 1561 1562 needed = min(skb->len, window); 1563 1564 if (max_len <= needed) 1565 return max_len; 1566 1567 partial = needed % mss_now; 1568 /* If last segment is not a full MSS, check if Nagle rules allow us 1569 * to include this last segment in this skb. 1570 * Otherwise, we'll split the skb at last MSS boundary 1571 */ 1572 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1573 return needed - partial; 1574 1575 return needed; 1576 } 1577 1578 /* Can at least one segment of SKB be sent right now, according to the 1579 * congestion window rules? If so, return how many segments are allowed. 1580 */ 1581 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1582 const struct sk_buff *skb) 1583 { 1584 u32 in_flight, cwnd, halfcwnd; 1585 1586 /* Don't be strict about the congestion window for the final FIN. */ 1587 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1588 tcp_skb_pcount(skb) == 1) 1589 return 1; 1590 1591 in_flight = tcp_packets_in_flight(tp); 1592 cwnd = tp->snd_cwnd; 1593 if (in_flight >= cwnd) 1594 return 0; 1595 1596 /* For better scheduling, ensure we have at least 1597 * 2 GSO packets in flight. 1598 */ 1599 halfcwnd = max(cwnd >> 1, 1U); 1600 return min(halfcwnd, cwnd - in_flight); 1601 } 1602 1603 /* Initialize TSO state of a skb. 1604 * This must be invoked the first time we consider transmitting 1605 * SKB onto the wire. 1606 */ 1607 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1608 unsigned int mss_now) 1609 { 1610 int tso_segs = tcp_skb_pcount(skb); 1611 1612 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1613 tcp_set_skb_tso_segs(sk, skb, mss_now); 1614 tso_segs = tcp_skb_pcount(skb); 1615 } 1616 return tso_segs; 1617 } 1618 1619 1620 /* Return true if the Nagle test allows this packet to be 1621 * sent now. 1622 */ 1623 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1624 unsigned int cur_mss, int nonagle) 1625 { 1626 /* Nagle rule does not apply to frames, which sit in the middle of the 1627 * write_queue (they have no chances to get new data). 1628 * 1629 * This is implemented in the callers, where they modify the 'nonagle' 1630 * argument based upon the location of SKB in the send queue. 1631 */ 1632 if (nonagle & TCP_NAGLE_PUSH) 1633 return true; 1634 1635 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1636 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1637 return true; 1638 1639 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1640 return true; 1641 1642 return false; 1643 } 1644 1645 /* Does at least the first segment of SKB fit into the send window? */ 1646 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1647 const struct sk_buff *skb, 1648 unsigned int cur_mss) 1649 { 1650 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1651 1652 if (skb->len > cur_mss) 1653 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1654 1655 return !after(end_seq, tcp_wnd_end(tp)); 1656 } 1657 1658 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1659 * should be put on the wire right now. If so, it returns the number of 1660 * packets allowed by the congestion window. 1661 */ 1662 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1663 unsigned int cur_mss, int nonagle) 1664 { 1665 const struct tcp_sock *tp = tcp_sk(sk); 1666 unsigned int cwnd_quota; 1667 1668 tcp_init_tso_segs(sk, skb, cur_mss); 1669 1670 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1671 return 0; 1672 1673 cwnd_quota = tcp_cwnd_test(tp, skb); 1674 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1675 cwnd_quota = 0; 1676 1677 return cwnd_quota; 1678 } 1679 1680 /* Test if sending is allowed right now. */ 1681 bool tcp_may_send_now(struct sock *sk) 1682 { 1683 const struct tcp_sock *tp = tcp_sk(sk); 1684 struct sk_buff *skb = tcp_send_head(sk); 1685 1686 return skb && 1687 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1688 (tcp_skb_is_last(sk, skb) ? 1689 tp->nonagle : TCP_NAGLE_PUSH)); 1690 } 1691 1692 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1693 * which is put after SKB on the list. It is very much like 1694 * tcp_fragment() except that it may make several kinds of assumptions 1695 * in order to speed up the splitting operation. In particular, we 1696 * know that all the data is in scatter-gather pages, and that the 1697 * packet has never been sent out before (and thus is not cloned). 1698 */ 1699 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1700 unsigned int mss_now, gfp_t gfp) 1701 { 1702 struct sk_buff *buff; 1703 int nlen = skb->len - len; 1704 u8 flags; 1705 1706 /* All of a TSO frame must be composed of paged data. */ 1707 if (skb->len != skb->data_len) 1708 return tcp_fragment(sk, skb, len, mss_now, gfp); 1709 1710 buff = sk_stream_alloc_skb(sk, 0, gfp); 1711 if (unlikely(buff == NULL)) 1712 return -ENOMEM; 1713 1714 sk->sk_wmem_queued += buff->truesize; 1715 sk_mem_charge(sk, buff->truesize); 1716 buff->truesize += nlen; 1717 skb->truesize -= nlen; 1718 1719 /* Correct the sequence numbers. */ 1720 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1721 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1722 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1723 1724 /* PSH and FIN should only be set in the second packet. */ 1725 flags = TCP_SKB_CB(skb)->tcp_flags; 1726 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1727 TCP_SKB_CB(buff)->tcp_flags = flags; 1728 1729 /* This packet was never sent out yet, so no SACK bits. */ 1730 TCP_SKB_CB(buff)->sacked = 0; 1731 1732 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1733 skb_split(skb, buff, len); 1734 tcp_fragment_tstamp(skb, buff); 1735 1736 /* Fix up tso_factor for both original and new SKB. */ 1737 tcp_set_skb_tso_segs(sk, skb, mss_now); 1738 tcp_set_skb_tso_segs(sk, buff, mss_now); 1739 1740 /* Link BUFF into the send queue. */ 1741 __skb_header_release(buff); 1742 tcp_insert_write_queue_after(skb, buff, sk); 1743 1744 return 0; 1745 } 1746 1747 /* Try to defer sending, if possible, in order to minimize the amount 1748 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1749 * 1750 * This algorithm is from John Heffner. 1751 */ 1752 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1753 bool *is_cwnd_limited, u32 max_segs) 1754 { 1755 struct tcp_sock *tp = tcp_sk(sk); 1756 const struct inet_connection_sock *icsk = inet_csk(sk); 1757 u32 send_win, cong_win, limit, in_flight; 1758 int win_divisor; 1759 1760 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1761 goto send_now; 1762 1763 if (icsk->icsk_ca_state != TCP_CA_Open) 1764 goto send_now; 1765 1766 /* Defer for less than two clock ticks. */ 1767 if (tp->tso_deferred && 1768 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1769 goto send_now; 1770 1771 in_flight = tcp_packets_in_flight(tp); 1772 1773 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1774 1775 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1776 1777 /* From in_flight test above, we know that cwnd > in_flight. */ 1778 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1779 1780 limit = min(send_win, cong_win); 1781 1782 /* If a full-sized TSO skb can be sent, do it. */ 1783 if (limit >= max_segs * tp->mss_cache) 1784 goto send_now; 1785 1786 /* Middle in queue won't get any more data, full sendable already? */ 1787 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1788 goto send_now; 1789 1790 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1791 if (win_divisor) { 1792 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1793 1794 /* If at least some fraction of a window is available, 1795 * just use it. 1796 */ 1797 chunk /= win_divisor; 1798 if (limit >= chunk) 1799 goto send_now; 1800 } else { 1801 /* Different approach, try not to defer past a single 1802 * ACK. Receiver should ACK every other full sized 1803 * frame, so if we have space for more than 3 frames 1804 * then send now. 1805 */ 1806 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1807 goto send_now; 1808 } 1809 1810 /* Ok, it looks like it is advisable to defer. 1811 * Do not rearm the timer if already set to not break TCP ACK clocking. 1812 */ 1813 if (!tp->tso_deferred) 1814 tp->tso_deferred = 1 | (jiffies << 1); 1815 1816 if (cong_win < send_win && cong_win < skb->len) 1817 *is_cwnd_limited = true; 1818 1819 return true; 1820 1821 send_now: 1822 tp->tso_deferred = 0; 1823 return false; 1824 } 1825 1826 /* Create a new MTU probe if we are ready. 1827 * MTU probe is regularly attempting to increase the path MTU by 1828 * deliberately sending larger packets. This discovers routing 1829 * changes resulting in larger path MTUs. 1830 * 1831 * Returns 0 if we should wait to probe (no cwnd available), 1832 * 1 if a probe was sent, 1833 * -1 otherwise 1834 */ 1835 static int tcp_mtu_probe(struct sock *sk) 1836 { 1837 struct tcp_sock *tp = tcp_sk(sk); 1838 struct inet_connection_sock *icsk = inet_csk(sk); 1839 struct sk_buff *skb, *nskb, *next; 1840 int len; 1841 int probe_size; 1842 int size_needed; 1843 int copy; 1844 int mss_now; 1845 1846 /* Not currently probing/verifying, 1847 * not in recovery, 1848 * have enough cwnd, and 1849 * not SACKing (the variable headers throw things off) */ 1850 if (!icsk->icsk_mtup.enabled || 1851 icsk->icsk_mtup.probe_size || 1852 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1853 tp->snd_cwnd < 11 || 1854 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1855 return -1; 1856 1857 /* Very simple search strategy: just double the MSS. */ 1858 mss_now = tcp_current_mss(sk); 1859 probe_size = 2 * tp->mss_cache; 1860 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1861 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1862 /* TODO: set timer for probe_converge_event */ 1863 return -1; 1864 } 1865 1866 /* Have enough data in the send queue to probe? */ 1867 if (tp->write_seq - tp->snd_nxt < size_needed) 1868 return -1; 1869 1870 if (tp->snd_wnd < size_needed) 1871 return -1; 1872 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1873 return 0; 1874 1875 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1876 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1877 if (!tcp_packets_in_flight(tp)) 1878 return -1; 1879 else 1880 return 0; 1881 } 1882 1883 /* We're allowed to probe. Build it now. */ 1884 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1885 return -1; 1886 sk->sk_wmem_queued += nskb->truesize; 1887 sk_mem_charge(sk, nskb->truesize); 1888 1889 skb = tcp_send_head(sk); 1890 1891 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1892 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1893 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1894 TCP_SKB_CB(nskb)->sacked = 0; 1895 nskb->csum = 0; 1896 nskb->ip_summed = skb->ip_summed; 1897 1898 tcp_insert_write_queue_before(nskb, skb, sk); 1899 1900 len = 0; 1901 tcp_for_write_queue_from_safe(skb, next, sk) { 1902 copy = min_t(int, skb->len, probe_size - len); 1903 if (nskb->ip_summed) 1904 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1905 else 1906 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1907 skb_put(nskb, copy), 1908 copy, nskb->csum); 1909 1910 if (skb->len <= copy) { 1911 /* We've eaten all the data from this skb. 1912 * Throw it away. */ 1913 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1914 tcp_unlink_write_queue(skb, sk); 1915 sk_wmem_free_skb(sk, skb); 1916 } else { 1917 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1918 ~(TCPHDR_FIN|TCPHDR_PSH); 1919 if (!skb_shinfo(skb)->nr_frags) { 1920 skb_pull(skb, copy); 1921 if (skb->ip_summed != CHECKSUM_PARTIAL) 1922 skb->csum = csum_partial(skb->data, 1923 skb->len, 0); 1924 } else { 1925 __pskb_trim_head(skb, copy); 1926 tcp_set_skb_tso_segs(sk, skb, mss_now); 1927 } 1928 TCP_SKB_CB(skb)->seq += copy; 1929 } 1930 1931 len += copy; 1932 1933 if (len >= probe_size) 1934 break; 1935 } 1936 tcp_init_tso_segs(sk, nskb, nskb->len); 1937 1938 /* We're ready to send. If this fails, the probe will 1939 * be resegmented into mss-sized pieces by tcp_write_xmit(). 1940 */ 1941 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1942 /* Decrement cwnd here because we are sending 1943 * effectively two packets. */ 1944 tp->snd_cwnd--; 1945 tcp_event_new_data_sent(sk, nskb); 1946 1947 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1948 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1949 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1950 1951 return 1; 1952 } 1953 1954 return -1; 1955 } 1956 1957 /* This routine writes packets to the network. It advances the 1958 * send_head. This happens as incoming acks open up the remote 1959 * window for us. 1960 * 1961 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1962 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1963 * account rare use of URG, this is not a big flaw. 1964 * 1965 * Send at most one packet when push_one > 0. Temporarily ignore 1966 * cwnd limit to force at most one packet out when push_one == 2. 1967 1968 * Returns true, if no segments are in flight and we have queued segments, 1969 * but cannot send anything now because of SWS or another problem. 1970 */ 1971 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1972 int push_one, gfp_t gfp) 1973 { 1974 struct tcp_sock *tp = tcp_sk(sk); 1975 struct sk_buff *skb; 1976 unsigned int tso_segs, sent_pkts; 1977 int cwnd_quota; 1978 int result; 1979 bool is_cwnd_limited = false; 1980 u32 max_segs; 1981 1982 sent_pkts = 0; 1983 1984 if (!push_one) { 1985 /* Do MTU probing. */ 1986 result = tcp_mtu_probe(sk); 1987 if (!result) { 1988 return false; 1989 } else if (result > 0) { 1990 sent_pkts = 1; 1991 } 1992 } 1993 1994 max_segs = tcp_tso_autosize(sk, mss_now); 1995 while ((skb = tcp_send_head(sk))) { 1996 unsigned int limit; 1997 1998 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1999 BUG_ON(!tso_segs); 2000 2001 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2002 /* "skb_mstamp" is used as a start point for the retransmit timer */ 2003 skb_mstamp_get(&skb->skb_mstamp); 2004 goto repair; /* Skip network transmission */ 2005 } 2006 2007 cwnd_quota = tcp_cwnd_test(tp, skb); 2008 if (!cwnd_quota) { 2009 is_cwnd_limited = true; 2010 if (push_one == 2) 2011 /* Force out a loss probe pkt. */ 2012 cwnd_quota = 1; 2013 else 2014 break; 2015 } 2016 2017 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 2018 break; 2019 2020 if (tso_segs == 1 || !max_segs) { 2021 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2022 (tcp_skb_is_last(sk, skb) ? 2023 nonagle : TCP_NAGLE_PUSH)))) 2024 break; 2025 } else { 2026 if (!push_one && 2027 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2028 max_segs)) 2029 break; 2030 } 2031 2032 limit = mss_now; 2033 if (tso_segs > 1 && max_segs && !tcp_urg_mode(tp)) 2034 limit = tcp_mss_split_point(sk, skb, mss_now, 2035 min_t(unsigned int, 2036 cwnd_quota, 2037 max_segs), 2038 nonagle); 2039 2040 if (skb->len > limit && 2041 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2042 break; 2043 2044 /* TCP Small Queues : 2045 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2046 * This allows for : 2047 * - better RTT estimation and ACK scheduling 2048 * - faster recovery 2049 * - high rates 2050 * Alas, some drivers / subsystems require a fair amount 2051 * of queued bytes to ensure line rate. 2052 * One example is wifi aggregation (802.11 AMPDU) 2053 */ 2054 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10); 2055 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes); 2056 2057 if (atomic_read(&sk->sk_wmem_alloc) > limit) { 2058 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 2059 /* It is possible TX completion already happened 2060 * before we set TSQ_THROTTLED, so we must 2061 * test again the condition. 2062 */ 2063 smp_mb__after_atomic(); 2064 if (atomic_read(&sk->sk_wmem_alloc) > limit) 2065 break; 2066 } 2067 2068 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2069 break; 2070 2071 repair: 2072 /* Advance the send_head. This one is sent out. 2073 * This call will increment packets_out. 2074 */ 2075 tcp_event_new_data_sent(sk, skb); 2076 2077 tcp_minshall_update(tp, mss_now, skb); 2078 sent_pkts += tcp_skb_pcount(skb); 2079 2080 if (push_one) 2081 break; 2082 } 2083 2084 if (likely(sent_pkts)) { 2085 if (tcp_in_cwnd_reduction(sk)) 2086 tp->prr_out += sent_pkts; 2087 2088 /* Send one loss probe per tail loss episode. */ 2089 if (push_one != 2) 2090 tcp_schedule_loss_probe(sk); 2091 tcp_cwnd_validate(sk, is_cwnd_limited); 2092 return false; 2093 } 2094 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk)); 2095 } 2096 2097 bool tcp_schedule_loss_probe(struct sock *sk) 2098 { 2099 struct inet_connection_sock *icsk = inet_csk(sk); 2100 struct tcp_sock *tp = tcp_sk(sk); 2101 u32 timeout, tlp_time_stamp, rto_time_stamp; 2102 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3); 2103 2104 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS)) 2105 return false; 2106 /* No consecutive loss probes. */ 2107 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) { 2108 tcp_rearm_rto(sk); 2109 return false; 2110 } 2111 /* Don't do any loss probe on a Fast Open connection before 3WHS 2112 * finishes. 2113 */ 2114 if (sk->sk_state == TCP_SYN_RECV) 2115 return false; 2116 2117 /* TLP is only scheduled when next timer event is RTO. */ 2118 if (icsk->icsk_pending != ICSK_TIME_RETRANS) 2119 return false; 2120 2121 /* Schedule a loss probe in 2*RTT for SACK capable connections 2122 * in Open state, that are either limited by cwnd or application. 2123 */ 2124 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out || 2125 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2126 return false; 2127 2128 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) && 2129 tcp_send_head(sk)) 2130 return false; 2131 2132 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account 2133 * for delayed ack when there's one outstanding packet. 2134 */ 2135 timeout = rtt << 1; 2136 if (tp->packets_out == 1) 2137 timeout = max_t(u32, timeout, 2138 (rtt + (rtt >> 1) + TCP_DELACK_MAX)); 2139 timeout = max_t(u32, timeout, msecs_to_jiffies(10)); 2140 2141 /* If RTO is shorter, just schedule TLP in its place. */ 2142 tlp_time_stamp = tcp_time_stamp + timeout; 2143 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout; 2144 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) { 2145 s32 delta = rto_time_stamp - tcp_time_stamp; 2146 if (delta > 0) 2147 timeout = delta; 2148 } 2149 2150 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2151 TCP_RTO_MAX); 2152 return true; 2153 } 2154 2155 /* Thanks to skb fast clones, we can detect if a prior transmit of 2156 * a packet is still in a qdisc or driver queue. 2157 * In this case, there is very little point doing a retransmit ! 2158 * Note: This is called from BH context only. 2159 */ 2160 static bool skb_still_in_host_queue(const struct sock *sk, 2161 const struct sk_buff *skb) 2162 { 2163 if (unlikely(skb_fclone_busy(sk, skb))) { 2164 NET_INC_STATS_BH(sock_net(sk), 2165 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2166 return true; 2167 } 2168 return false; 2169 } 2170 2171 /* When probe timeout (PTO) fires, send a new segment if one exists, else 2172 * retransmit the last segment. 2173 */ 2174 void tcp_send_loss_probe(struct sock *sk) 2175 { 2176 struct tcp_sock *tp = tcp_sk(sk); 2177 struct sk_buff *skb; 2178 int pcount; 2179 int mss = tcp_current_mss(sk); 2180 int err = -1; 2181 2182 if (tcp_send_head(sk) != NULL) { 2183 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2184 goto rearm_timer; 2185 } 2186 2187 /* At most one outstanding TLP retransmission. */ 2188 if (tp->tlp_high_seq) 2189 goto rearm_timer; 2190 2191 /* Retransmit last segment. */ 2192 skb = tcp_write_queue_tail(sk); 2193 if (WARN_ON(!skb)) 2194 goto rearm_timer; 2195 2196 if (skb_still_in_host_queue(sk, skb)) 2197 goto rearm_timer; 2198 2199 pcount = tcp_skb_pcount(skb); 2200 if (WARN_ON(!pcount)) 2201 goto rearm_timer; 2202 2203 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2204 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss, 2205 GFP_ATOMIC))) 2206 goto rearm_timer; 2207 skb = tcp_write_queue_tail(sk); 2208 } 2209 2210 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2211 goto rearm_timer; 2212 2213 err = __tcp_retransmit_skb(sk, skb); 2214 2215 /* Record snd_nxt for loss detection. */ 2216 if (likely(!err)) 2217 tp->tlp_high_seq = tp->snd_nxt; 2218 2219 rearm_timer: 2220 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2221 inet_csk(sk)->icsk_rto, 2222 TCP_RTO_MAX); 2223 2224 if (likely(!err)) 2225 NET_INC_STATS_BH(sock_net(sk), 2226 LINUX_MIB_TCPLOSSPROBES); 2227 } 2228 2229 /* Push out any pending frames which were held back due to 2230 * TCP_CORK or attempt at coalescing tiny packets. 2231 * The socket must be locked by the caller. 2232 */ 2233 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2234 int nonagle) 2235 { 2236 /* If we are closed, the bytes will have to remain here. 2237 * In time closedown will finish, we empty the write queue and 2238 * all will be happy. 2239 */ 2240 if (unlikely(sk->sk_state == TCP_CLOSE)) 2241 return; 2242 2243 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2244 sk_gfp_atomic(sk, GFP_ATOMIC))) 2245 tcp_check_probe_timer(sk); 2246 } 2247 2248 /* Send _single_ skb sitting at the send head. This function requires 2249 * true push pending frames to setup probe timer etc. 2250 */ 2251 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2252 { 2253 struct sk_buff *skb = tcp_send_head(sk); 2254 2255 BUG_ON(!skb || skb->len < mss_now); 2256 2257 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2258 } 2259 2260 /* This function returns the amount that we can raise the 2261 * usable window based on the following constraints 2262 * 2263 * 1. The window can never be shrunk once it is offered (RFC 793) 2264 * 2. We limit memory per socket 2265 * 2266 * RFC 1122: 2267 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2268 * RECV.NEXT + RCV.WIN fixed until: 2269 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2270 * 2271 * i.e. don't raise the right edge of the window until you can raise 2272 * it at least MSS bytes. 2273 * 2274 * Unfortunately, the recommended algorithm breaks header prediction, 2275 * since header prediction assumes th->window stays fixed. 2276 * 2277 * Strictly speaking, keeping th->window fixed violates the receiver 2278 * side SWS prevention criteria. The problem is that under this rule 2279 * a stream of single byte packets will cause the right side of the 2280 * window to always advance by a single byte. 2281 * 2282 * Of course, if the sender implements sender side SWS prevention 2283 * then this will not be a problem. 2284 * 2285 * BSD seems to make the following compromise: 2286 * 2287 * If the free space is less than the 1/4 of the maximum 2288 * space available and the free space is less than 1/2 mss, 2289 * then set the window to 0. 2290 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2291 * Otherwise, just prevent the window from shrinking 2292 * and from being larger than the largest representable value. 2293 * 2294 * This prevents incremental opening of the window in the regime 2295 * where TCP is limited by the speed of the reader side taking 2296 * data out of the TCP receive queue. It does nothing about 2297 * those cases where the window is constrained on the sender side 2298 * because the pipeline is full. 2299 * 2300 * BSD also seems to "accidentally" limit itself to windows that are a 2301 * multiple of MSS, at least until the free space gets quite small. 2302 * This would appear to be a side effect of the mbuf implementation. 2303 * Combining these two algorithms results in the observed behavior 2304 * of having a fixed window size at almost all times. 2305 * 2306 * Below we obtain similar behavior by forcing the offered window to 2307 * a multiple of the mss when it is feasible to do so. 2308 * 2309 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2310 * Regular options like TIMESTAMP are taken into account. 2311 */ 2312 u32 __tcp_select_window(struct sock *sk) 2313 { 2314 struct inet_connection_sock *icsk = inet_csk(sk); 2315 struct tcp_sock *tp = tcp_sk(sk); 2316 /* MSS for the peer's data. Previous versions used mss_clamp 2317 * here. I don't know if the value based on our guesses 2318 * of peer's MSS is better for the performance. It's more correct 2319 * but may be worse for the performance because of rcv_mss 2320 * fluctuations. --SAW 1998/11/1 2321 */ 2322 int mss = icsk->icsk_ack.rcv_mss; 2323 int free_space = tcp_space(sk); 2324 int allowed_space = tcp_full_space(sk); 2325 int full_space = min_t(int, tp->window_clamp, allowed_space); 2326 int window; 2327 2328 if (mss > full_space) 2329 mss = full_space; 2330 2331 if (free_space < (full_space >> 1)) { 2332 icsk->icsk_ack.quick = 0; 2333 2334 if (sk_under_memory_pressure(sk)) 2335 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2336 4U * tp->advmss); 2337 2338 /* free_space might become our new window, make sure we don't 2339 * increase it due to wscale. 2340 */ 2341 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2342 2343 /* if free space is less than mss estimate, or is below 1/16th 2344 * of the maximum allowed, try to move to zero-window, else 2345 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2346 * new incoming data is dropped due to memory limits. 2347 * With large window, mss test triggers way too late in order 2348 * to announce zero window in time before rmem limit kicks in. 2349 */ 2350 if (free_space < (allowed_space >> 4) || free_space < mss) 2351 return 0; 2352 } 2353 2354 if (free_space > tp->rcv_ssthresh) 2355 free_space = tp->rcv_ssthresh; 2356 2357 /* Don't do rounding if we are using window scaling, since the 2358 * scaled window will not line up with the MSS boundary anyway. 2359 */ 2360 window = tp->rcv_wnd; 2361 if (tp->rx_opt.rcv_wscale) { 2362 window = free_space; 2363 2364 /* Advertise enough space so that it won't get scaled away. 2365 * Import case: prevent zero window announcement if 2366 * 1<<rcv_wscale > mss. 2367 */ 2368 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 2369 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 2370 << tp->rx_opt.rcv_wscale); 2371 } else { 2372 /* Get the largest window that is a nice multiple of mss. 2373 * Window clamp already applied above. 2374 * If our current window offering is within 1 mss of the 2375 * free space we just keep it. This prevents the divide 2376 * and multiply from happening most of the time. 2377 * We also don't do any window rounding when the free space 2378 * is too small. 2379 */ 2380 if (window <= free_space - mss || window > free_space) 2381 window = (free_space / mss) * mss; 2382 else if (mss == full_space && 2383 free_space > window + (full_space >> 1)) 2384 window = free_space; 2385 } 2386 2387 return window; 2388 } 2389 2390 /* Collapses two adjacent SKB's during retransmission. */ 2391 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2392 { 2393 struct tcp_sock *tp = tcp_sk(sk); 2394 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 2395 int skb_size, next_skb_size; 2396 2397 skb_size = skb->len; 2398 next_skb_size = next_skb->len; 2399 2400 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2401 2402 tcp_highest_sack_combine(sk, next_skb, skb); 2403 2404 tcp_unlink_write_queue(next_skb, sk); 2405 2406 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2407 next_skb_size); 2408 2409 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2410 skb->ip_summed = CHECKSUM_PARTIAL; 2411 2412 if (skb->ip_summed != CHECKSUM_PARTIAL) 2413 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2414 2415 /* Update sequence range on original skb. */ 2416 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2417 2418 /* Merge over control information. This moves PSH/FIN etc. over */ 2419 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2420 2421 /* All done, get rid of second SKB and account for it so 2422 * packet counting does not break. 2423 */ 2424 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2425 2426 /* changed transmit queue under us so clear hints */ 2427 tcp_clear_retrans_hints_partial(tp); 2428 if (next_skb == tp->retransmit_skb_hint) 2429 tp->retransmit_skb_hint = skb; 2430 2431 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2432 2433 sk_wmem_free_skb(sk, next_skb); 2434 } 2435 2436 /* Check if coalescing SKBs is legal. */ 2437 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2438 { 2439 if (tcp_skb_pcount(skb) > 1) 2440 return false; 2441 /* TODO: SACK collapsing could be used to remove this condition */ 2442 if (skb_shinfo(skb)->nr_frags != 0) 2443 return false; 2444 if (skb_cloned(skb)) 2445 return false; 2446 if (skb == tcp_send_head(sk)) 2447 return false; 2448 /* Some heurestics for collapsing over SACK'd could be invented */ 2449 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2450 return false; 2451 2452 return true; 2453 } 2454 2455 /* Collapse packets in the retransmit queue to make to create 2456 * less packets on the wire. This is only done on retransmission. 2457 */ 2458 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2459 int space) 2460 { 2461 struct tcp_sock *tp = tcp_sk(sk); 2462 struct sk_buff *skb = to, *tmp; 2463 bool first = true; 2464 2465 if (!sysctl_tcp_retrans_collapse) 2466 return; 2467 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2468 return; 2469 2470 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2471 if (!tcp_can_collapse(sk, skb)) 2472 break; 2473 2474 space -= skb->len; 2475 2476 if (first) { 2477 first = false; 2478 continue; 2479 } 2480 2481 if (space < 0) 2482 break; 2483 /* Punt if not enough space exists in the first SKB for 2484 * the data in the second 2485 */ 2486 if (skb->len > skb_availroom(to)) 2487 break; 2488 2489 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2490 break; 2491 2492 tcp_collapse_retrans(sk, to); 2493 } 2494 } 2495 2496 /* This retransmits one SKB. Policy decisions and retransmit queue 2497 * state updates are done by the caller. Returns non-zero if an 2498 * error occurred which prevented the send. 2499 */ 2500 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2501 { 2502 struct tcp_sock *tp = tcp_sk(sk); 2503 struct inet_connection_sock *icsk = inet_csk(sk); 2504 unsigned int cur_mss; 2505 int err; 2506 2507 /* Inconslusive MTU probe */ 2508 if (icsk->icsk_mtup.probe_size) { 2509 icsk->icsk_mtup.probe_size = 0; 2510 } 2511 2512 /* Do not sent more than we queued. 1/4 is reserved for possible 2513 * copying overhead: fragmentation, tunneling, mangling etc. 2514 */ 2515 if (atomic_read(&sk->sk_wmem_alloc) > 2516 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2517 return -EAGAIN; 2518 2519 if (skb_still_in_host_queue(sk, skb)) 2520 return -EBUSY; 2521 2522 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2523 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2524 BUG(); 2525 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2526 return -ENOMEM; 2527 } 2528 2529 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2530 return -EHOSTUNREACH; /* Routing failure or similar. */ 2531 2532 cur_mss = tcp_current_mss(sk); 2533 2534 /* If receiver has shrunk his window, and skb is out of 2535 * new window, do not retransmit it. The exception is the 2536 * case, when window is shrunk to zero. In this case 2537 * our retransmit serves as a zero window probe. 2538 */ 2539 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2540 TCP_SKB_CB(skb)->seq != tp->snd_una) 2541 return -EAGAIN; 2542 2543 if (skb->len > cur_mss) { 2544 if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC)) 2545 return -ENOMEM; /* We'll try again later. */ 2546 } else { 2547 int oldpcount = tcp_skb_pcount(skb); 2548 2549 if (unlikely(oldpcount > 1)) { 2550 if (skb_unclone(skb, GFP_ATOMIC)) 2551 return -ENOMEM; 2552 tcp_init_tso_segs(sk, skb, cur_mss); 2553 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2554 } 2555 } 2556 2557 tcp_retrans_try_collapse(sk, skb, cur_mss); 2558 2559 /* Make a copy, if the first transmission SKB clone we made 2560 * is still in somebody's hands, else make a clone. 2561 */ 2562 2563 /* make sure skb->data is aligned on arches that require it 2564 * and check if ack-trimming & collapsing extended the headroom 2565 * beyond what csum_start can cover. 2566 */ 2567 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2568 skb_headroom(skb) >= 0xFFFF)) { 2569 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2570 GFP_ATOMIC); 2571 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2572 -ENOBUFS; 2573 } else { 2574 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2575 } 2576 2577 if (likely(!err)) { 2578 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2579 /* Update global TCP statistics. */ 2580 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2581 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2582 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2583 tp->total_retrans++; 2584 } 2585 return err; 2586 } 2587 2588 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2589 { 2590 struct tcp_sock *tp = tcp_sk(sk); 2591 int err = __tcp_retransmit_skb(sk, skb); 2592 2593 if (err == 0) { 2594 #if FASTRETRANS_DEBUG > 0 2595 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2596 net_dbg_ratelimited("retrans_out leaked\n"); 2597 } 2598 #endif 2599 if (!tp->retrans_out) 2600 tp->lost_retrans_low = tp->snd_nxt; 2601 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2602 tp->retrans_out += tcp_skb_pcount(skb); 2603 2604 /* Save stamp of the first retransmit. */ 2605 if (!tp->retrans_stamp) 2606 tp->retrans_stamp = tcp_skb_timestamp(skb); 2607 2608 /* snd_nxt is stored to detect loss of retransmitted segment, 2609 * see tcp_input.c tcp_sacktag_write_queue(). 2610 */ 2611 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2612 } else if (err != -EBUSY) { 2613 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2614 } 2615 2616 if (tp->undo_retrans < 0) 2617 tp->undo_retrans = 0; 2618 tp->undo_retrans += tcp_skb_pcount(skb); 2619 return err; 2620 } 2621 2622 /* Check if we forward retransmits are possible in the current 2623 * window/congestion state. 2624 */ 2625 static bool tcp_can_forward_retransmit(struct sock *sk) 2626 { 2627 const struct inet_connection_sock *icsk = inet_csk(sk); 2628 const struct tcp_sock *tp = tcp_sk(sk); 2629 2630 /* Forward retransmissions are possible only during Recovery. */ 2631 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2632 return false; 2633 2634 /* No forward retransmissions in Reno are possible. */ 2635 if (tcp_is_reno(tp)) 2636 return false; 2637 2638 /* Yeah, we have to make difficult choice between forward transmission 2639 * and retransmission... Both ways have their merits... 2640 * 2641 * For now we do not retransmit anything, while we have some new 2642 * segments to send. In the other cases, follow rule 3 for 2643 * NextSeg() specified in RFC3517. 2644 */ 2645 2646 if (tcp_may_send_now(sk)) 2647 return false; 2648 2649 return true; 2650 } 2651 2652 /* This gets called after a retransmit timeout, and the initially 2653 * retransmitted data is acknowledged. It tries to continue 2654 * resending the rest of the retransmit queue, until either 2655 * we've sent it all or the congestion window limit is reached. 2656 * If doing SACK, the first ACK which comes back for a timeout 2657 * based retransmit packet might feed us FACK information again. 2658 * If so, we use it to avoid unnecessarily retransmissions. 2659 */ 2660 void tcp_xmit_retransmit_queue(struct sock *sk) 2661 { 2662 const struct inet_connection_sock *icsk = inet_csk(sk); 2663 struct tcp_sock *tp = tcp_sk(sk); 2664 struct sk_buff *skb; 2665 struct sk_buff *hole = NULL; 2666 u32 last_lost; 2667 int mib_idx; 2668 int fwd_rexmitting = 0; 2669 2670 if (!tp->packets_out) 2671 return; 2672 2673 if (!tp->lost_out) 2674 tp->retransmit_high = tp->snd_una; 2675 2676 if (tp->retransmit_skb_hint) { 2677 skb = tp->retransmit_skb_hint; 2678 last_lost = TCP_SKB_CB(skb)->end_seq; 2679 if (after(last_lost, tp->retransmit_high)) 2680 last_lost = tp->retransmit_high; 2681 } else { 2682 skb = tcp_write_queue_head(sk); 2683 last_lost = tp->snd_una; 2684 } 2685 2686 tcp_for_write_queue_from(skb, sk) { 2687 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2688 2689 if (skb == tcp_send_head(sk)) 2690 break; 2691 /* we could do better than to assign each time */ 2692 if (hole == NULL) 2693 tp->retransmit_skb_hint = skb; 2694 2695 /* Assume this retransmit will generate 2696 * only one packet for congestion window 2697 * calculation purposes. This works because 2698 * tcp_retransmit_skb() will chop up the 2699 * packet to be MSS sized and all the 2700 * packet counting works out. 2701 */ 2702 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2703 return; 2704 2705 if (fwd_rexmitting) { 2706 begin_fwd: 2707 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2708 break; 2709 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2710 2711 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2712 tp->retransmit_high = last_lost; 2713 if (!tcp_can_forward_retransmit(sk)) 2714 break; 2715 /* Backtrack if necessary to non-L'ed skb */ 2716 if (hole != NULL) { 2717 skb = hole; 2718 hole = NULL; 2719 } 2720 fwd_rexmitting = 1; 2721 goto begin_fwd; 2722 2723 } else if (!(sacked & TCPCB_LOST)) { 2724 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2725 hole = skb; 2726 continue; 2727 2728 } else { 2729 last_lost = TCP_SKB_CB(skb)->end_seq; 2730 if (icsk->icsk_ca_state != TCP_CA_Loss) 2731 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2732 else 2733 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2734 } 2735 2736 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2737 continue; 2738 2739 if (tcp_retransmit_skb(sk, skb)) 2740 return; 2741 2742 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2743 2744 if (tcp_in_cwnd_reduction(sk)) 2745 tp->prr_out += tcp_skb_pcount(skb); 2746 2747 if (skb == tcp_write_queue_head(sk)) 2748 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2749 inet_csk(sk)->icsk_rto, 2750 TCP_RTO_MAX); 2751 } 2752 } 2753 2754 /* Send a fin. The caller locks the socket for us. This cannot be 2755 * allowed to fail queueing a FIN frame under any circumstances. 2756 */ 2757 void tcp_send_fin(struct sock *sk) 2758 { 2759 struct tcp_sock *tp = tcp_sk(sk); 2760 struct sk_buff *skb = tcp_write_queue_tail(sk); 2761 int mss_now; 2762 2763 /* Optimization, tack on the FIN if we have a queue of 2764 * unsent frames. But be careful about outgoing SACKS 2765 * and IP options. 2766 */ 2767 mss_now = tcp_current_mss(sk); 2768 2769 if (tcp_send_head(sk) != NULL) { 2770 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN; 2771 TCP_SKB_CB(skb)->end_seq++; 2772 tp->write_seq++; 2773 } else { 2774 /* Socket is locked, keep trying until memory is available. */ 2775 for (;;) { 2776 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 2777 if (skb) 2778 break; 2779 yield(); 2780 } 2781 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2782 tcp_init_nondata_skb(skb, tp->write_seq, 2783 TCPHDR_ACK | TCPHDR_FIN); 2784 tcp_queue_skb(sk, skb); 2785 } 2786 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2787 } 2788 2789 /* We get here when a process closes a file descriptor (either due to 2790 * an explicit close() or as a byproduct of exit()'ing) and there 2791 * was unread data in the receive queue. This behavior is recommended 2792 * by RFC 2525, section 2.17. -DaveM 2793 */ 2794 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2795 { 2796 struct sk_buff *skb; 2797 2798 /* NOTE: No TCP options attached and we never retransmit this. */ 2799 skb = alloc_skb(MAX_TCP_HEADER, priority); 2800 if (!skb) { 2801 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2802 return; 2803 } 2804 2805 /* Reserve space for headers and prepare control bits. */ 2806 skb_reserve(skb, MAX_TCP_HEADER); 2807 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2808 TCPHDR_ACK | TCPHDR_RST); 2809 /* Send it off. */ 2810 if (tcp_transmit_skb(sk, skb, 0, priority)) 2811 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2812 2813 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2814 } 2815 2816 /* Send a crossed SYN-ACK during socket establishment. 2817 * WARNING: This routine must only be called when we have already sent 2818 * a SYN packet that crossed the incoming SYN that caused this routine 2819 * to get called. If this assumption fails then the initial rcv_wnd 2820 * and rcv_wscale values will not be correct. 2821 */ 2822 int tcp_send_synack(struct sock *sk) 2823 { 2824 struct sk_buff *skb; 2825 2826 skb = tcp_write_queue_head(sk); 2827 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2828 pr_debug("%s: wrong queue state\n", __func__); 2829 return -EFAULT; 2830 } 2831 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2832 if (skb_cloned(skb)) { 2833 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2834 if (nskb == NULL) 2835 return -ENOMEM; 2836 tcp_unlink_write_queue(skb, sk); 2837 __skb_header_release(nskb); 2838 __tcp_add_write_queue_head(sk, nskb); 2839 sk_wmem_free_skb(sk, skb); 2840 sk->sk_wmem_queued += nskb->truesize; 2841 sk_mem_charge(sk, nskb->truesize); 2842 skb = nskb; 2843 } 2844 2845 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2846 tcp_ecn_send_synack(sk, skb); 2847 } 2848 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2849 } 2850 2851 /** 2852 * tcp_make_synack - Prepare a SYN-ACK. 2853 * sk: listener socket 2854 * dst: dst entry attached to the SYNACK 2855 * req: request_sock pointer 2856 * 2857 * Allocate one skb and build a SYNACK packet. 2858 * @dst is consumed : Caller should not use it again. 2859 */ 2860 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2861 struct request_sock *req, 2862 struct tcp_fastopen_cookie *foc) 2863 { 2864 struct tcp_out_options opts; 2865 struct inet_request_sock *ireq = inet_rsk(req); 2866 struct tcp_sock *tp = tcp_sk(sk); 2867 struct tcphdr *th; 2868 struct sk_buff *skb; 2869 struct tcp_md5sig_key *md5; 2870 int tcp_header_size; 2871 int mss; 2872 2873 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC); 2874 if (unlikely(!skb)) { 2875 dst_release(dst); 2876 return NULL; 2877 } 2878 /* Reserve space for headers. */ 2879 skb_reserve(skb, MAX_TCP_HEADER); 2880 2881 skb_dst_set(skb, dst); 2882 security_skb_owned_by(skb, sk); 2883 2884 mss = dst_metric_advmss(dst); 2885 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2886 mss = tp->rx_opt.user_mss; 2887 2888 memset(&opts, 0, sizeof(opts)); 2889 #ifdef CONFIG_SYN_COOKIES 2890 if (unlikely(req->cookie_ts)) 2891 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req); 2892 else 2893 #endif 2894 skb_mstamp_get(&skb->skb_mstamp); 2895 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5, 2896 foc) + sizeof(*th); 2897 2898 skb_push(skb, tcp_header_size); 2899 skb_reset_transport_header(skb); 2900 2901 th = tcp_hdr(skb); 2902 memset(th, 0, sizeof(struct tcphdr)); 2903 th->syn = 1; 2904 th->ack = 1; 2905 tcp_ecn_make_synack(req, th, sk); 2906 th->source = htons(ireq->ir_num); 2907 th->dest = ireq->ir_rmt_port; 2908 /* Setting of flags are superfluous here for callers (and ECE is 2909 * not even correctly set) 2910 */ 2911 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2912 TCPHDR_SYN | TCPHDR_ACK); 2913 2914 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2915 /* XXX data is queued and acked as is. No buffer/window check */ 2916 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 2917 2918 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2919 th->window = htons(min(req->rcv_wnd, 65535U)); 2920 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2921 th->doff = (tcp_header_size >> 2); 2922 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS); 2923 2924 #ifdef CONFIG_TCP_MD5SIG 2925 /* Okay, we have all we need - do the md5 hash if needed */ 2926 if (md5) { 2927 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2928 md5, NULL, req, skb); 2929 } 2930 #endif 2931 2932 return skb; 2933 } 2934 EXPORT_SYMBOL(tcp_make_synack); 2935 2936 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 2937 { 2938 struct inet_connection_sock *icsk = inet_csk(sk); 2939 const struct tcp_congestion_ops *ca; 2940 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 2941 2942 if (ca_key == TCP_CA_UNSPEC) 2943 return; 2944 2945 rcu_read_lock(); 2946 ca = tcp_ca_find_key(ca_key); 2947 if (likely(ca && try_module_get(ca->owner))) { 2948 module_put(icsk->icsk_ca_ops->owner); 2949 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 2950 icsk->icsk_ca_ops = ca; 2951 } 2952 rcu_read_unlock(); 2953 } 2954 2955 /* Do all connect socket setups that can be done AF independent. */ 2956 static void tcp_connect_init(struct sock *sk) 2957 { 2958 const struct dst_entry *dst = __sk_dst_get(sk); 2959 struct tcp_sock *tp = tcp_sk(sk); 2960 __u8 rcv_wscale; 2961 2962 /* We'll fix this up when we get a response from the other end. 2963 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2964 */ 2965 tp->tcp_header_len = sizeof(struct tcphdr) + 2966 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2967 2968 #ifdef CONFIG_TCP_MD5SIG 2969 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2970 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2971 #endif 2972 2973 /* If user gave his TCP_MAXSEG, record it to clamp */ 2974 if (tp->rx_opt.user_mss) 2975 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2976 tp->max_window = 0; 2977 tcp_mtup_init(sk); 2978 tcp_sync_mss(sk, dst_mtu(dst)); 2979 2980 tcp_ca_dst_init(sk, dst); 2981 2982 if (!tp->window_clamp) 2983 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2984 tp->advmss = dst_metric_advmss(dst); 2985 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2986 tp->advmss = tp->rx_opt.user_mss; 2987 2988 tcp_initialize_rcv_mss(sk); 2989 2990 /* limit the window selection if the user enforce a smaller rx buffer */ 2991 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2992 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2993 tp->window_clamp = tcp_full_space(sk); 2994 2995 tcp_select_initial_window(tcp_full_space(sk), 2996 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2997 &tp->rcv_wnd, 2998 &tp->window_clamp, 2999 sysctl_tcp_window_scaling, 3000 &rcv_wscale, 3001 dst_metric(dst, RTAX_INITRWND)); 3002 3003 tp->rx_opt.rcv_wscale = rcv_wscale; 3004 tp->rcv_ssthresh = tp->rcv_wnd; 3005 3006 sk->sk_err = 0; 3007 sock_reset_flag(sk, SOCK_DONE); 3008 tp->snd_wnd = 0; 3009 tcp_init_wl(tp, 0); 3010 tp->snd_una = tp->write_seq; 3011 tp->snd_sml = tp->write_seq; 3012 tp->snd_up = tp->write_seq; 3013 tp->snd_nxt = tp->write_seq; 3014 3015 if (likely(!tp->repair)) 3016 tp->rcv_nxt = 0; 3017 else 3018 tp->rcv_tstamp = tcp_time_stamp; 3019 tp->rcv_wup = tp->rcv_nxt; 3020 tp->copied_seq = tp->rcv_nxt; 3021 3022 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 3023 inet_csk(sk)->icsk_retransmits = 0; 3024 tcp_clear_retrans(tp); 3025 } 3026 3027 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3028 { 3029 struct tcp_sock *tp = tcp_sk(sk); 3030 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3031 3032 tcb->end_seq += skb->len; 3033 __skb_header_release(skb); 3034 __tcp_add_write_queue_tail(sk, skb); 3035 sk->sk_wmem_queued += skb->truesize; 3036 sk_mem_charge(sk, skb->truesize); 3037 tp->write_seq = tcb->end_seq; 3038 tp->packets_out += tcp_skb_pcount(skb); 3039 } 3040 3041 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3042 * queue a data-only packet after the regular SYN, such that regular SYNs 3043 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3044 * only the SYN sequence, the data are retransmitted in the first ACK. 3045 * If cookie is not cached or other error occurs, falls back to send a 3046 * regular SYN with Fast Open cookie request option. 3047 */ 3048 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3049 { 3050 struct tcp_sock *tp = tcp_sk(sk); 3051 struct tcp_fastopen_request *fo = tp->fastopen_req; 3052 int syn_loss = 0, space, err = 0, copied; 3053 unsigned long last_syn_loss = 0; 3054 struct sk_buff *syn_data; 3055 3056 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3057 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie, 3058 &syn_loss, &last_syn_loss); 3059 /* Recurring FO SYN losses: revert to regular handshake temporarily */ 3060 if (syn_loss > 1 && 3061 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) { 3062 fo->cookie.len = -1; 3063 goto fallback; 3064 } 3065 3066 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE) 3067 fo->cookie.len = -1; 3068 else if (fo->cookie.len <= 0) 3069 goto fallback; 3070 3071 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3072 * user-MSS. Reserve maximum option space for middleboxes that add 3073 * private TCP options. The cost is reduced data space in SYN :( 3074 */ 3075 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp) 3076 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3077 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3078 MAX_TCP_OPTION_SPACE; 3079 3080 space = min_t(size_t, space, fo->size); 3081 3082 /* limit to order-0 allocations */ 3083 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3084 3085 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation); 3086 if (!syn_data) 3087 goto fallback; 3088 syn_data->ip_summed = CHECKSUM_PARTIAL; 3089 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3090 copied = copy_from_iter(skb_put(syn_data, space), space, 3091 &fo->data->msg_iter); 3092 if (unlikely(!copied)) { 3093 kfree_skb(syn_data); 3094 goto fallback; 3095 } 3096 if (copied != space) { 3097 skb_trim(syn_data, copied); 3098 space = copied; 3099 } 3100 3101 /* No more data pending in inet_wait_for_connect() */ 3102 if (space == fo->size) 3103 fo->data = NULL; 3104 fo->copied = space; 3105 3106 tcp_connect_queue_skb(sk, syn_data); 3107 3108 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3109 3110 syn->skb_mstamp = syn_data->skb_mstamp; 3111 3112 /* Now full SYN+DATA was cloned and sent (or not), 3113 * remove the SYN from the original skb (syn_data) 3114 * we keep in write queue in case of a retransmit, as we 3115 * also have the SYN packet (with no data) in the same queue. 3116 */ 3117 TCP_SKB_CB(syn_data)->seq++; 3118 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3119 if (!err) { 3120 tp->syn_data = (fo->copied > 0); 3121 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3122 goto done; 3123 } 3124 3125 fallback: 3126 /* Send a regular SYN with Fast Open cookie request option */ 3127 if (fo->cookie.len > 0) 3128 fo->cookie.len = 0; 3129 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3130 if (err) 3131 tp->syn_fastopen = 0; 3132 done: 3133 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3134 return err; 3135 } 3136 3137 /* Build a SYN and send it off. */ 3138 int tcp_connect(struct sock *sk) 3139 { 3140 struct tcp_sock *tp = tcp_sk(sk); 3141 struct sk_buff *buff; 3142 int err; 3143 3144 tcp_connect_init(sk); 3145 3146 if (unlikely(tp->repair)) { 3147 tcp_finish_connect(sk, NULL); 3148 return 0; 3149 } 3150 3151 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 3152 if (unlikely(!buff)) 3153 return -ENOBUFS; 3154 3155 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3156 tp->retrans_stamp = tcp_time_stamp; 3157 tcp_connect_queue_skb(sk, buff); 3158 tcp_ecn_send_syn(sk, buff); 3159 3160 /* Send off SYN; include data in Fast Open. */ 3161 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3162 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3163 if (err == -ECONNREFUSED) 3164 return err; 3165 3166 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3167 * in order to make this packet get counted in tcpOutSegs. 3168 */ 3169 tp->snd_nxt = tp->write_seq; 3170 tp->pushed_seq = tp->write_seq; 3171 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3172 3173 /* Timer for repeating the SYN until an answer. */ 3174 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3175 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3176 return 0; 3177 } 3178 EXPORT_SYMBOL(tcp_connect); 3179 3180 /* Send out a delayed ack, the caller does the policy checking 3181 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3182 * for details. 3183 */ 3184 void tcp_send_delayed_ack(struct sock *sk) 3185 { 3186 struct inet_connection_sock *icsk = inet_csk(sk); 3187 int ato = icsk->icsk_ack.ato; 3188 unsigned long timeout; 3189 3190 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK); 3191 3192 if (ato > TCP_DELACK_MIN) { 3193 const struct tcp_sock *tp = tcp_sk(sk); 3194 int max_ato = HZ / 2; 3195 3196 if (icsk->icsk_ack.pingpong || 3197 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3198 max_ato = TCP_DELACK_MAX; 3199 3200 /* Slow path, intersegment interval is "high". */ 3201 3202 /* If some rtt estimate is known, use it to bound delayed ack. 3203 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3204 * directly. 3205 */ 3206 if (tp->srtt_us) { 3207 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3208 TCP_DELACK_MIN); 3209 3210 if (rtt < max_ato) 3211 max_ato = rtt; 3212 } 3213 3214 ato = min(ato, max_ato); 3215 } 3216 3217 /* Stay within the limit we were given */ 3218 timeout = jiffies + ato; 3219 3220 /* Use new timeout only if there wasn't a older one earlier. */ 3221 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3222 /* If delack timer was blocked or is about to expire, 3223 * send ACK now. 3224 */ 3225 if (icsk->icsk_ack.blocked || 3226 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3227 tcp_send_ack(sk); 3228 return; 3229 } 3230 3231 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3232 timeout = icsk->icsk_ack.timeout; 3233 } 3234 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3235 icsk->icsk_ack.timeout = timeout; 3236 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3237 } 3238 3239 /* This routine sends an ack and also updates the window. */ 3240 void tcp_send_ack(struct sock *sk) 3241 { 3242 struct sk_buff *buff; 3243 3244 /* If we have been reset, we may not send again. */ 3245 if (sk->sk_state == TCP_CLOSE) 3246 return; 3247 3248 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK); 3249 3250 /* We are not putting this on the write queue, so 3251 * tcp_transmit_skb() will set the ownership to this 3252 * sock. 3253 */ 3254 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3255 if (buff == NULL) { 3256 inet_csk_schedule_ack(sk); 3257 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3258 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3259 TCP_DELACK_MAX, TCP_RTO_MAX); 3260 return; 3261 } 3262 3263 /* Reserve space for headers and prepare control bits. */ 3264 skb_reserve(buff, MAX_TCP_HEADER); 3265 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3266 3267 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3268 * too much. 3269 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3270 * We also avoid tcp_wfree() overhead (cache line miss accessing 3271 * tp->tsq_flags) by using regular sock_wfree() 3272 */ 3273 skb_set_tcp_pure_ack(buff); 3274 3275 /* Send it off, this clears delayed acks for us. */ 3276 skb_mstamp_get(&buff->skb_mstamp); 3277 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC)); 3278 } 3279 EXPORT_SYMBOL_GPL(tcp_send_ack); 3280 3281 /* This routine sends a packet with an out of date sequence 3282 * number. It assumes the other end will try to ack it. 3283 * 3284 * Question: what should we make while urgent mode? 3285 * 4.4BSD forces sending single byte of data. We cannot send 3286 * out of window data, because we have SND.NXT==SND.MAX... 3287 * 3288 * Current solution: to send TWO zero-length segments in urgent mode: 3289 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3290 * out-of-date with SND.UNA-1 to probe window. 3291 */ 3292 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 3293 { 3294 struct tcp_sock *tp = tcp_sk(sk); 3295 struct sk_buff *skb; 3296 3297 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3298 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC)); 3299 if (skb == NULL) 3300 return -1; 3301 3302 /* Reserve space for headers and set control bits. */ 3303 skb_reserve(skb, MAX_TCP_HEADER); 3304 /* Use a previous sequence. This should cause the other 3305 * end to send an ack. Don't queue or clone SKB, just 3306 * send it. 3307 */ 3308 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3309 skb_mstamp_get(&skb->skb_mstamp); 3310 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 3311 } 3312 3313 void tcp_send_window_probe(struct sock *sk) 3314 { 3315 if (sk->sk_state == TCP_ESTABLISHED) { 3316 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3317 tcp_xmit_probe_skb(sk, 0); 3318 } 3319 } 3320 3321 /* Initiate keepalive or window probe from timer. */ 3322 int tcp_write_wakeup(struct sock *sk) 3323 { 3324 struct tcp_sock *tp = tcp_sk(sk); 3325 struct sk_buff *skb; 3326 3327 if (sk->sk_state == TCP_CLOSE) 3328 return -1; 3329 3330 if ((skb = tcp_send_head(sk)) != NULL && 3331 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3332 int err; 3333 unsigned int mss = tcp_current_mss(sk); 3334 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3335 3336 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3337 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3338 3339 /* We are probing the opening of a window 3340 * but the window size is != 0 3341 * must have been a result SWS avoidance ( sender ) 3342 */ 3343 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3344 skb->len > mss) { 3345 seg_size = min(seg_size, mss); 3346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3347 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC)) 3348 return -1; 3349 } else if (!tcp_skb_pcount(skb)) 3350 tcp_set_skb_tso_segs(sk, skb, mss); 3351 3352 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3353 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3354 if (!err) 3355 tcp_event_new_data_sent(sk, skb); 3356 return err; 3357 } else { 3358 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3359 tcp_xmit_probe_skb(sk, 1); 3360 return tcp_xmit_probe_skb(sk, 0); 3361 } 3362 } 3363 3364 /* A window probe timeout has occurred. If window is not closed send 3365 * a partial packet else a zero probe. 3366 */ 3367 void tcp_send_probe0(struct sock *sk) 3368 { 3369 struct inet_connection_sock *icsk = inet_csk(sk); 3370 struct tcp_sock *tp = tcp_sk(sk); 3371 unsigned long probe_max; 3372 int err; 3373 3374 err = tcp_write_wakeup(sk); 3375 3376 if (tp->packets_out || !tcp_send_head(sk)) { 3377 /* Cancel probe timer, if it is not required. */ 3378 icsk->icsk_probes_out = 0; 3379 icsk->icsk_backoff = 0; 3380 return; 3381 } 3382 3383 if (err <= 0) { 3384 if (icsk->icsk_backoff < sysctl_tcp_retries2) 3385 icsk->icsk_backoff++; 3386 icsk->icsk_probes_out++; 3387 probe_max = TCP_RTO_MAX; 3388 } else { 3389 /* If packet was not sent due to local congestion, 3390 * do not backoff and do not remember icsk_probes_out. 3391 * Let local senders to fight for local resources. 3392 * 3393 * Use accumulated backoff yet. 3394 */ 3395 if (!icsk->icsk_probes_out) 3396 icsk->icsk_probes_out = 1; 3397 probe_max = TCP_RESOURCE_PROBE_INTERVAL; 3398 } 3399 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3400 inet_csk_rto_backoff(icsk, probe_max), 3401 TCP_RTO_MAX); 3402 } 3403 3404 int tcp_rtx_synack(struct sock *sk, struct request_sock *req) 3405 { 3406 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3407 struct flowi fl; 3408 int res; 3409 3410 res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL); 3411 if (!res) { 3412 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 3413 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3414 } 3415 return res; 3416 } 3417 EXPORT_SYMBOL(tcp_rtx_synack); 3418