xref: /linux/net/ipv4/tcp_output.c (revision 2a2c74b2efcb1a0ca3fdcb5fbb96ad8de6a29177)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64 
65 /* By default, RFC2861 behavior.  */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67 
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70 
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 			   int push_one, gfp_t gfp);
73 
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 	struct inet_connection_sock *icsk = inet_csk(sk);
78 	struct tcp_sock *tp = tcp_sk(sk);
79 	unsigned int prior_packets = tp->packets_out;
80 
81 	tcp_advance_send_head(sk, skb);
82 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83 
84 	tp->packets_out += tcp_skb_pcount(skb);
85 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 		tcp_rearm_rto(sk);
88 	}
89 
90 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
91 		      tcp_skb_pcount(skb));
92 }
93 
94 /* SND.NXT, if window was not shrunk.
95  * If window has been shrunk, what should we make? It is not clear at all.
96  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98  * invalid. OK, let's make this for now:
99  */
100 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
101 {
102 	const struct tcp_sock *tp = tcp_sk(sk);
103 
104 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
105 		return tp->snd_nxt;
106 	else
107 		return tcp_wnd_end(tp);
108 }
109 
110 /* Calculate mss to advertise in SYN segment.
111  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112  *
113  * 1. It is independent of path mtu.
114  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116  *    attached devices, because some buggy hosts are confused by
117  *    large MSS.
118  * 4. We do not make 3, we advertise MSS, calculated from first
119  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
120  *    This may be overridden via information stored in routing table.
121  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122  *    probably even Jumbo".
123  */
124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 	struct tcp_sock *tp = tcp_sk(sk);
127 	const struct dst_entry *dst = __sk_dst_get(sk);
128 	int mss = tp->advmss;
129 
130 	if (dst) {
131 		unsigned int metric = dst_metric_advmss(dst);
132 
133 		if (metric < mss) {
134 			mss = metric;
135 			tp->advmss = mss;
136 		}
137 	}
138 
139 	return (__u16)mss;
140 }
141 
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143  * This is the first part of cwnd validation mechanism. */
144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
145 {
146 	struct tcp_sock *tp = tcp_sk(sk);
147 	s32 delta = tcp_time_stamp - tp->lsndtime;
148 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
149 	u32 cwnd = tp->snd_cwnd;
150 
151 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152 
153 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 	restart_cwnd = min(restart_cwnd, cwnd);
155 
156 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 		cwnd >>= 1;
158 	tp->snd_cwnd = max(cwnd, restart_cwnd);
159 	tp->snd_cwnd_stamp = tcp_time_stamp;
160 	tp->snd_cwnd_used = 0;
161 }
162 
163 /* Congestion state accounting after a packet has been sent. */
164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 				struct sock *sk)
166 {
167 	struct inet_connection_sock *icsk = inet_csk(sk);
168 	const u32 now = tcp_time_stamp;
169 	const struct dst_entry *dst = __sk_dst_get(sk);
170 
171 	if (sysctl_tcp_slow_start_after_idle &&
172 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
173 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
174 
175 	tp->lsndtime = now;
176 
177 	/* If it is a reply for ato after last received
178 	 * packet, enter pingpong mode.
179 	 */
180 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
181 	    (!dst || !dst_metric(dst, RTAX_QUICKACK)))
182 			icsk->icsk_ack.pingpong = 1;
183 }
184 
185 /* Account for an ACK we sent. */
186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
187 {
188 	tcp_dec_quickack_mode(sk, pkts);
189 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
190 }
191 
192 
193 u32 tcp_default_init_rwnd(u32 mss)
194 {
195 	/* Initial receive window should be twice of TCP_INIT_CWND to
196 	 * enable proper sending of new unsent data during fast recovery
197 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
198 	 * limit when mss is larger than 1460.
199 	 */
200 	u32 init_rwnd = TCP_INIT_CWND * 2;
201 
202 	if (mss > 1460)
203 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
204 	return init_rwnd;
205 }
206 
207 /* Determine a window scaling and initial window to offer.
208  * Based on the assumption that the given amount of space
209  * will be offered. Store the results in the tp structure.
210  * NOTE: for smooth operation initial space offering should
211  * be a multiple of mss if possible. We assume here that mss >= 1.
212  * This MUST be enforced by all callers.
213  */
214 void tcp_select_initial_window(int __space, __u32 mss,
215 			       __u32 *rcv_wnd, __u32 *window_clamp,
216 			       int wscale_ok, __u8 *rcv_wscale,
217 			       __u32 init_rcv_wnd)
218 {
219 	unsigned int space = (__space < 0 ? 0 : __space);
220 
221 	/* If no clamp set the clamp to the max possible scaled window */
222 	if (*window_clamp == 0)
223 		(*window_clamp) = (65535 << 14);
224 	space = min(*window_clamp, space);
225 
226 	/* Quantize space offering to a multiple of mss if possible. */
227 	if (space > mss)
228 		space = (space / mss) * mss;
229 
230 	/* NOTE: offering an initial window larger than 32767
231 	 * will break some buggy TCP stacks. If the admin tells us
232 	 * it is likely we could be speaking with such a buggy stack
233 	 * we will truncate our initial window offering to 32K-1
234 	 * unless the remote has sent us a window scaling option,
235 	 * which we interpret as a sign the remote TCP is not
236 	 * misinterpreting the window field as a signed quantity.
237 	 */
238 	if (sysctl_tcp_workaround_signed_windows)
239 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
240 	else
241 		(*rcv_wnd) = space;
242 
243 	(*rcv_wscale) = 0;
244 	if (wscale_ok) {
245 		/* Set window scaling on max possible window
246 		 * See RFC1323 for an explanation of the limit to 14
247 		 */
248 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
249 		space = min_t(u32, space, *window_clamp);
250 		while (space > 65535 && (*rcv_wscale) < 14) {
251 			space >>= 1;
252 			(*rcv_wscale)++;
253 		}
254 	}
255 
256 	if (mss > (1 << *rcv_wscale)) {
257 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
258 			init_rcv_wnd = tcp_default_init_rwnd(mss);
259 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
260 	}
261 
262 	/* Set the clamp no higher than max representable value */
263 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
264 }
265 EXPORT_SYMBOL(tcp_select_initial_window);
266 
267 /* Chose a new window to advertise, update state in tcp_sock for the
268  * socket, and return result with RFC1323 scaling applied.  The return
269  * value can be stuffed directly into th->window for an outgoing
270  * frame.
271  */
272 static u16 tcp_select_window(struct sock *sk)
273 {
274 	struct tcp_sock *tp = tcp_sk(sk);
275 	u32 old_win = tp->rcv_wnd;
276 	u32 cur_win = tcp_receive_window(tp);
277 	u32 new_win = __tcp_select_window(sk);
278 
279 	/* Never shrink the offered window */
280 	if (new_win < cur_win) {
281 		/* Danger Will Robinson!
282 		 * Don't update rcv_wup/rcv_wnd here or else
283 		 * we will not be able to advertise a zero
284 		 * window in time.  --DaveM
285 		 *
286 		 * Relax Will Robinson.
287 		 */
288 		if (new_win == 0)
289 			NET_INC_STATS(sock_net(sk),
290 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
291 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 	}
293 	tp->rcv_wnd = new_win;
294 	tp->rcv_wup = tp->rcv_nxt;
295 
296 	/* Make sure we do not exceed the maximum possible
297 	 * scaled window.
298 	 */
299 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
300 		new_win = min(new_win, MAX_TCP_WINDOW);
301 	else
302 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
303 
304 	/* RFC1323 scaling applied */
305 	new_win >>= tp->rx_opt.rcv_wscale;
306 
307 	/* If we advertise zero window, disable fast path. */
308 	if (new_win == 0) {
309 		tp->pred_flags = 0;
310 		if (old_win)
311 			NET_INC_STATS(sock_net(sk),
312 				      LINUX_MIB_TCPTOZEROWINDOWADV);
313 	} else if (old_win == 0) {
314 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
315 	}
316 
317 	return new_win;
318 }
319 
320 /* Packet ECN state for a SYN-ACK */
321 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
322 {
323 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
324 	if (!(tp->ecn_flags & TCP_ECN_OK))
325 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
326 }
327 
328 /* Packet ECN state for a SYN.  */
329 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
330 {
331 	struct tcp_sock *tp = tcp_sk(sk);
332 
333 	tp->ecn_flags = 0;
334 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
335 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 		tp->ecn_flags = TCP_ECN_OK;
337 	}
338 }
339 
340 static __inline__ void
341 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
342 {
343 	if (inet_rsk(req)->ecn_ok)
344 		th->ece = 1;
345 }
346 
347 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
348  * be sent.
349  */
350 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
351 				int tcp_header_len)
352 {
353 	struct tcp_sock *tp = tcp_sk(sk);
354 
355 	if (tp->ecn_flags & TCP_ECN_OK) {
356 		/* Not-retransmitted data segment: set ECT and inject CWR. */
357 		if (skb->len != tcp_header_len &&
358 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
359 			INET_ECN_xmit(sk);
360 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
361 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
362 				tcp_hdr(skb)->cwr = 1;
363 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
364 			}
365 		} else {
366 			/* ACK or retransmitted segment: clear ECT|CE */
367 			INET_ECN_dontxmit(sk);
368 		}
369 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
370 			tcp_hdr(skb)->ece = 1;
371 	}
372 }
373 
374 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
375  * auto increment end seqno.
376  */
377 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
378 {
379 	struct skb_shared_info *shinfo = skb_shinfo(skb);
380 
381 	skb->ip_summed = CHECKSUM_PARTIAL;
382 	skb->csum = 0;
383 
384 	TCP_SKB_CB(skb)->tcp_flags = flags;
385 	TCP_SKB_CB(skb)->sacked = 0;
386 
387 	shinfo->gso_segs = 1;
388 	shinfo->gso_size = 0;
389 	shinfo->gso_type = 0;
390 
391 	TCP_SKB_CB(skb)->seq = seq;
392 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
393 		seq++;
394 	TCP_SKB_CB(skb)->end_seq = seq;
395 }
396 
397 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
398 {
399 	return tp->snd_una != tp->snd_up;
400 }
401 
402 #define OPTION_SACK_ADVERTISE	(1 << 0)
403 #define OPTION_TS		(1 << 1)
404 #define OPTION_MD5		(1 << 2)
405 #define OPTION_WSCALE		(1 << 3)
406 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
407 
408 struct tcp_out_options {
409 	u16 options;		/* bit field of OPTION_* */
410 	u16 mss;		/* 0 to disable */
411 	u8 ws;			/* window scale, 0 to disable */
412 	u8 num_sack_blocks;	/* number of SACK blocks to include */
413 	u8 hash_size;		/* bytes in hash_location */
414 	__u8 *hash_location;	/* temporary pointer, overloaded */
415 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
416 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
417 };
418 
419 /* Write previously computed TCP options to the packet.
420  *
421  * Beware: Something in the Internet is very sensitive to the ordering of
422  * TCP options, we learned this through the hard way, so be careful here.
423  * Luckily we can at least blame others for their non-compliance but from
424  * inter-operability perspective it seems that we're somewhat stuck with
425  * the ordering which we have been using if we want to keep working with
426  * those broken things (not that it currently hurts anybody as there isn't
427  * particular reason why the ordering would need to be changed).
428  *
429  * At least SACK_PERM as the first option is known to lead to a disaster
430  * (but it may well be that other scenarios fail similarly).
431  */
432 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
433 			      struct tcp_out_options *opts)
434 {
435 	u16 options = opts->options;	/* mungable copy */
436 
437 	if (unlikely(OPTION_MD5 & options)) {
438 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
439 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
440 		/* overload cookie hash location */
441 		opts->hash_location = (__u8 *)ptr;
442 		ptr += 4;
443 	}
444 
445 	if (unlikely(opts->mss)) {
446 		*ptr++ = htonl((TCPOPT_MSS << 24) |
447 			       (TCPOLEN_MSS << 16) |
448 			       opts->mss);
449 	}
450 
451 	if (likely(OPTION_TS & options)) {
452 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
453 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
454 				       (TCPOLEN_SACK_PERM << 16) |
455 				       (TCPOPT_TIMESTAMP << 8) |
456 				       TCPOLEN_TIMESTAMP);
457 			options &= ~OPTION_SACK_ADVERTISE;
458 		} else {
459 			*ptr++ = htonl((TCPOPT_NOP << 24) |
460 				       (TCPOPT_NOP << 16) |
461 				       (TCPOPT_TIMESTAMP << 8) |
462 				       TCPOLEN_TIMESTAMP);
463 		}
464 		*ptr++ = htonl(opts->tsval);
465 		*ptr++ = htonl(opts->tsecr);
466 	}
467 
468 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
469 		*ptr++ = htonl((TCPOPT_NOP << 24) |
470 			       (TCPOPT_NOP << 16) |
471 			       (TCPOPT_SACK_PERM << 8) |
472 			       TCPOLEN_SACK_PERM);
473 	}
474 
475 	if (unlikely(OPTION_WSCALE & options)) {
476 		*ptr++ = htonl((TCPOPT_NOP << 24) |
477 			       (TCPOPT_WINDOW << 16) |
478 			       (TCPOLEN_WINDOW << 8) |
479 			       opts->ws);
480 	}
481 
482 	if (unlikely(opts->num_sack_blocks)) {
483 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
484 			tp->duplicate_sack : tp->selective_acks;
485 		int this_sack;
486 
487 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
488 			       (TCPOPT_NOP  << 16) |
489 			       (TCPOPT_SACK <<  8) |
490 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
491 						     TCPOLEN_SACK_PERBLOCK)));
492 
493 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
494 		     ++this_sack) {
495 			*ptr++ = htonl(sp[this_sack].start_seq);
496 			*ptr++ = htonl(sp[this_sack].end_seq);
497 		}
498 
499 		tp->rx_opt.dsack = 0;
500 	}
501 
502 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
503 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
504 
505 		*ptr++ = htonl((TCPOPT_EXP << 24) |
506 			       ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
507 			       TCPOPT_FASTOPEN_MAGIC);
508 
509 		memcpy(ptr, foc->val, foc->len);
510 		if ((foc->len & 3) == 2) {
511 			u8 *align = ((u8 *)ptr) + foc->len;
512 			align[0] = align[1] = TCPOPT_NOP;
513 		}
514 		ptr += (foc->len + 3) >> 2;
515 	}
516 }
517 
518 /* Compute TCP options for SYN packets. This is not the final
519  * network wire format yet.
520  */
521 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
522 				struct tcp_out_options *opts,
523 				struct tcp_md5sig_key **md5)
524 {
525 	struct tcp_sock *tp = tcp_sk(sk);
526 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
527 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
528 
529 #ifdef CONFIG_TCP_MD5SIG
530 	*md5 = tp->af_specific->md5_lookup(sk, sk);
531 	if (*md5) {
532 		opts->options |= OPTION_MD5;
533 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
534 	}
535 #else
536 	*md5 = NULL;
537 #endif
538 
539 	/* We always get an MSS option.  The option bytes which will be seen in
540 	 * normal data packets should timestamps be used, must be in the MSS
541 	 * advertised.  But we subtract them from tp->mss_cache so that
542 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
543 	 * fact here if necessary.  If we don't do this correctly, as a
544 	 * receiver we won't recognize data packets as being full sized when we
545 	 * should, and thus we won't abide by the delayed ACK rules correctly.
546 	 * SACKs don't matter, we never delay an ACK when we have any of those
547 	 * going out.  */
548 	opts->mss = tcp_advertise_mss(sk);
549 	remaining -= TCPOLEN_MSS_ALIGNED;
550 
551 	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
552 		opts->options |= OPTION_TS;
553 		opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
554 		opts->tsecr = tp->rx_opt.ts_recent;
555 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
556 	}
557 	if (likely(sysctl_tcp_window_scaling)) {
558 		opts->ws = tp->rx_opt.rcv_wscale;
559 		opts->options |= OPTION_WSCALE;
560 		remaining -= TCPOLEN_WSCALE_ALIGNED;
561 	}
562 	if (likely(sysctl_tcp_sack)) {
563 		opts->options |= OPTION_SACK_ADVERTISE;
564 		if (unlikely(!(OPTION_TS & opts->options)))
565 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
566 	}
567 
568 	if (fastopen && fastopen->cookie.len >= 0) {
569 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
570 		need = (need + 3) & ~3U;  /* Align to 32 bits */
571 		if (remaining >= need) {
572 			opts->options |= OPTION_FAST_OPEN_COOKIE;
573 			opts->fastopen_cookie = &fastopen->cookie;
574 			remaining -= need;
575 			tp->syn_fastopen = 1;
576 		}
577 	}
578 
579 	return MAX_TCP_OPTION_SPACE - remaining;
580 }
581 
582 /* Set up TCP options for SYN-ACKs. */
583 static unsigned int tcp_synack_options(struct sock *sk,
584 				   struct request_sock *req,
585 				   unsigned int mss, struct sk_buff *skb,
586 				   struct tcp_out_options *opts,
587 				   struct tcp_md5sig_key **md5,
588 				   struct tcp_fastopen_cookie *foc)
589 {
590 	struct inet_request_sock *ireq = inet_rsk(req);
591 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
592 
593 #ifdef CONFIG_TCP_MD5SIG
594 	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
595 	if (*md5) {
596 		opts->options |= OPTION_MD5;
597 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
598 
599 		/* We can't fit any SACK blocks in a packet with MD5 + TS
600 		 * options. There was discussion about disabling SACK
601 		 * rather than TS in order to fit in better with old,
602 		 * buggy kernels, but that was deemed to be unnecessary.
603 		 */
604 		ireq->tstamp_ok &= !ireq->sack_ok;
605 	}
606 #else
607 	*md5 = NULL;
608 #endif
609 
610 	/* We always send an MSS option. */
611 	opts->mss = mss;
612 	remaining -= TCPOLEN_MSS_ALIGNED;
613 
614 	if (likely(ireq->wscale_ok)) {
615 		opts->ws = ireq->rcv_wscale;
616 		opts->options |= OPTION_WSCALE;
617 		remaining -= TCPOLEN_WSCALE_ALIGNED;
618 	}
619 	if (likely(ireq->tstamp_ok)) {
620 		opts->options |= OPTION_TS;
621 		opts->tsval = TCP_SKB_CB(skb)->when;
622 		opts->tsecr = req->ts_recent;
623 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
624 	}
625 	if (likely(ireq->sack_ok)) {
626 		opts->options |= OPTION_SACK_ADVERTISE;
627 		if (unlikely(!ireq->tstamp_ok))
628 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
629 	}
630 	if (foc != NULL) {
631 		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
632 		need = (need + 3) & ~3U;  /* Align to 32 bits */
633 		if (remaining >= need) {
634 			opts->options |= OPTION_FAST_OPEN_COOKIE;
635 			opts->fastopen_cookie = foc;
636 			remaining -= need;
637 		}
638 	}
639 
640 	return MAX_TCP_OPTION_SPACE - remaining;
641 }
642 
643 /* Compute TCP options for ESTABLISHED sockets. This is not the
644  * final wire format yet.
645  */
646 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
647 					struct tcp_out_options *opts,
648 					struct tcp_md5sig_key **md5)
649 {
650 	struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
651 	struct tcp_sock *tp = tcp_sk(sk);
652 	unsigned int size = 0;
653 	unsigned int eff_sacks;
654 
655 	opts->options = 0;
656 
657 #ifdef CONFIG_TCP_MD5SIG
658 	*md5 = tp->af_specific->md5_lookup(sk, sk);
659 	if (unlikely(*md5)) {
660 		opts->options |= OPTION_MD5;
661 		size += TCPOLEN_MD5SIG_ALIGNED;
662 	}
663 #else
664 	*md5 = NULL;
665 #endif
666 
667 	if (likely(tp->rx_opt.tstamp_ok)) {
668 		opts->options |= OPTION_TS;
669 		opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
670 		opts->tsecr = tp->rx_opt.ts_recent;
671 		size += TCPOLEN_TSTAMP_ALIGNED;
672 	}
673 
674 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
675 	if (unlikely(eff_sacks)) {
676 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
677 		opts->num_sack_blocks =
678 			min_t(unsigned int, eff_sacks,
679 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
680 			      TCPOLEN_SACK_PERBLOCK);
681 		size += TCPOLEN_SACK_BASE_ALIGNED +
682 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
683 	}
684 
685 	return size;
686 }
687 
688 
689 /* TCP SMALL QUEUES (TSQ)
690  *
691  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
692  * to reduce RTT and bufferbloat.
693  * We do this using a special skb destructor (tcp_wfree).
694  *
695  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
696  * needs to be reallocated in a driver.
697  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
698  *
699  * Since transmit from skb destructor is forbidden, we use a tasklet
700  * to process all sockets that eventually need to send more skbs.
701  * We use one tasklet per cpu, with its own queue of sockets.
702  */
703 struct tsq_tasklet {
704 	struct tasklet_struct	tasklet;
705 	struct list_head	head; /* queue of tcp sockets */
706 };
707 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
708 
709 static void tcp_tsq_handler(struct sock *sk)
710 {
711 	if ((1 << sk->sk_state) &
712 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
713 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
714 		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
715 			       0, GFP_ATOMIC);
716 }
717 /*
718  * One tasklet per cpu tries to send more skbs.
719  * We run in tasklet context but need to disable irqs when
720  * transferring tsq->head because tcp_wfree() might
721  * interrupt us (non NAPI drivers)
722  */
723 static void tcp_tasklet_func(unsigned long data)
724 {
725 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
726 	LIST_HEAD(list);
727 	unsigned long flags;
728 	struct list_head *q, *n;
729 	struct tcp_sock *tp;
730 	struct sock *sk;
731 
732 	local_irq_save(flags);
733 	list_splice_init(&tsq->head, &list);
734 	local_irq_restore(flags);
735 
736 	list_for_each_safe(q, n, &list) {
737 		tp = list_entry(q, struct tcp_sock, tsq_node);
738 		list_del(&tp->tsq_node);
739 
740 		sk = (struct sock *)tp;
741 		bh_lock_sock(sk);
742 
743 		if (!sock_owned_by_user(sk)) {
744 			tcp_tsq_handler(sk);
745 		} else {
746 			/* defer the work to tcp_release_cb() */
747 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
748 		}
749 		bh_unlock_sock(sk);
750 
751 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
752 		sk_free(sk);
753 	}
754 }
755 
756 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
757 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
758 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
759 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
760 /**
761  * tcp_release_cb - tcp release_sock() callback
762  * @sk: socket
763  *
764  * called from release_sock() to perform protocol dependent
765  * actions before socket release.
766  */
767 void tcp_release_cb(struct sock *sk)
768 {
769 	struct tcp_sock *tp = tcp_sk(sk);
770 	unsigned long flags, nflags;
771 
772 	/* perform an atomic operation only if at least one flag is set */
773 	do {
774 		flags = tp->tsq_flags;
775 		if (!(flags & TCP_DEFERRED_ALL))
776 			return;
777 		nflags = flags & ~TCP_DEFERRED_ALL;
778 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
779 
780 	if (flags & (1UL << TCP_TSQ_DEFERRED))
781 		tcp_tsq_handler(sk);
782 
783 	/* Here begins the tricky part :
784 	 * We are called from release_sock() with :
785 	 * 1) BH disabled
786 	 * 2) sk_lock.slock spinlock held
787 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
788 	 *
789 	 * But following code is meant to be called from BH handlers,
790 	 * so we should keep BH disabled, but early release socket ownership
791 	 */
792 	sock_release_ownership(sk);
793 
794 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
795 		tcp_write_timer_handler(sk);
796 		__sock_put(sk);
797 	}
798 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
799 		tcp_delack_timer_handler(sk);
800 		__sock_put(sk);
801 	}
802 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
803 		sk->sk_prot->mtu_reduced(sk);
804 		__sock_put(sk);
805 	}
806 }
807 EXPORT_SYMBOL(tcp_release_cb);
808 
809 void __init tcp_tasklet_init(void)
810 {
811 	int i;
812 
813 	for_each_possible_cpu(i) {
814 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
815 
816 		INIT_LIST_HEAD(&tsq->head);
817 		tasklet_init(&tsq->tasklet,
818 			     tcp_tasklet_func,
819 			     (unsigned long)tsq);
820 	}
821 }
822 
823 /*
824  * Write buffer destructor automatically called from kfree_skb.
825  * We can't xmit new skbs from this context, as we might already
826  * hold qdisc lock.
827  */
828 void tcp_wfree(struct sk_buff *skb)
829 {
830 	struct sock *sk = skb->sk;
831 	struct tcp_sock *tp = tcp_sk(sk);
832 
833 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
834 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
835 		unsigned long flags;
836 		struct tsq_tasklet *tsq;
837 
838 		/* Keep a ref on socket.
839 		 * This last ref will be released in tcp_tasklet_func()
840 		 */
841 		atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
842 
843 		/* queue this socket to tasklet queue */
844 		local_irq_save(flags);
845 		tsq = &__get_cpu_var(tsq_tasklet);
846 		list_add(&tp->tsq_node, &tsq->head);
847 		tasklet_schedule(&tsq->tasklet);
848 		local_irq_restore(flags);
849 	} else {
850 		sock_wfree(skb);
851 	}
852 }
853 
854 /* This routine actually transmits TCP packets queued in by
855  * tcp_do_sendmsg().  This is used by both the initial
856  * transmission and possible later retransmissions.
857  * All SKB's seen here are completely headerless.  It is our
858  * job to build the TCP header, and pass the packet down to
859  * IP so it can do the same plus pass the packet off to the
860  * device.
861  *
862  * We are working here with either a clone of the original
863  * SKB, or a fresh unique copy made by the retransmit engine.
864  */
865 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
866 			    gfp_t gfp_mask)
867 {
868 	const struct inet_connection_sock *icsk = inet_csk(sk);
869 	struct inet_sock *inet;
870 	struct tcp_sock *tp;
871 	struct tcp_skb_cb *tcb;
872 	struct tcp_out_options opts;
873 	unsigned int tcp_options_size, tcp_header_size;
874 	struct tcp_md5sig_key *md5;
875 	struct tcphdr *th;
876 	int err;
877 
878 	BUG_ON(!skb || !tcp_skb_pcount(skb));
879 
880 	if (clone_it) {
881 		const struct sk_buff *fclone = skb + 1;
882 
883 		skb_mstamp_get(&skb->skb_mstamp);
884 
885 		if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
886 			     fclone->fclone == SKB_FCLONE_CLONE))
887 			NET_INC_STATS(sock_net(sk),
888 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
889 
890 		if (unlikely(skb_cloned(skb)))
891 			skb = pskb_copy(skb, gfp_mask);
892 		else
893 			skb = skb_clone(skb, gfp_mask);
894 		if (unlikely(!skb))
895 			return -ENOBUFS;
896 		/* Our usage of tstamp should remain private */
897 		skb->tstamp.tv64 = 0;
898 	}
899 
900 	inet = inet_sk(sk);
901 	tp = tcp_sk(sk);
902 	tcb = TCP_SKB_CB(skb);
903 	memset(&opts, 0, sizeof(opts));
904 
905 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
906 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
907 	else
908 		tcp_options_size = tcp_established_options(sk, skb, &opts,
909 							   &md5);
910 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
911 
912 	if (tcp_packets_in_flight(tp) == 0)
913 		tcp_ca_event(sk, CA_EVENT_TX_START);
914 
915 	/* if no packet is in qdisc/device queue, then allow XPS to select
916 	 * another queue.
917 	 */
918 	skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
919 
920 	skb_push(skb, tcp_header_size);
921 	skb_reset_transport_header(skb);
922 
923 	skb_orphan(skb);
924 	skb->sk = sk;
925 	skb->destructor = tcp_wfree;
926 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
927 
928 	/* Build TCP header and checksum it. */
929 	th = tcp_hdr(skb);
930 	th->source		= inet->inet_sport;
931 	th->dest		= inet->inet_dport;
932 	th->seq			= htonl(tcb->seq);
933 	th->ack_seq		= htonl(tp->rcv_nxt);
934 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
935 					tcb->tcp_flags);
936 
937 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
938 		/* RFC1323: The window in SYN & SYN/ACK segments
939 		 * is never scaled.
940 		 */
941 		th->window	= htons(min(tp->rcv_wnd, 65535U));
942 	} else {
943 		th->window	= htons(tcp_select_window(sk));
944 	}
945 	th->check		= 0;
946 	th->urg_ptr		= 0;
947 
948 	/* The urg_mode check is necessary during a below snd_una win probe */
949 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
950 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
951 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
952 			th->urg = 1;
953 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
954 			th->urg_ptr = htons(0xFFFF);
955 			th->urg = 1;
956 		}
957 	}
958 
959 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
960 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
961 		TCP_ECN_send(sk, skb, tcp_header_size);
962 
963 #ifdef CONFIG_TCP_MD5SIG
964 	/* Calculate the MD5 hash, as we have all we need now */
965 	if (md5) {
966 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
967 		tp->af_specific->calc_md5_hash(opts.hash_location,
968 					       md5, sk, NULL, skb);
969 	}
970 #endif
971 
972 	icsk->icsk_af_ops->send_check(sk, skb);
973 
974 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
975 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
976 
977 	if (skb->len != tcp_header_size)
978 		tcp_event_data_sent(tp, sk);
979 
980 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
981 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
982 			      tcp_skb_pcount(skb));
983 
984 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
985 	if (likely(err <= 0))
986 		return err;
987 
988 	tcp_enter_cwr(sk, 1);
989 
990 	return net_xmit_eval(err);
991 }
992 
993 /* This routine just queues the buffer for sending.
994  *
995  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
996  * otherwise socket can stall.
997  */
998 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
999 {
1000 	struct tcp_sock *tp = tcp_sk(sk);
1001 
1002 	/* Advance write_seq and place onto the write_queue. */
1003 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1004 	skb_header_release(skb);
1005 	tcp_add_write_queue_tail(sk, skb);
1006 	sk->sk_wmem_queued += skb->truesize;
1007 	sk_mem_charge(sk, skb->truesize);
1008 }
1009 
1010 /* Initialize TSO segments for a packet. */
1011 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1012 				 unsigned int mss_now)
1013 {
1014 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1015 
1016 	/* Make sure we own this skb before messing gso_size/gso_segs */
1017 	WARN_ON_ONCE(skb_cloned(skb));
1018 
1019 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1020 		/* Avoid the costly divide in the normal
1021 		 * non-TSO case.
1022 		 */
1023 		shinfo->gso_segs = 1;
1024 		shinfo->gso_size = 0;
1025 		shinfo->gso_type = 0;
1026 	} else {
1027 		shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1028 		shinfo->gso_size = mss_now;
1029 		shinfo->gso_type = sk->sk_gso_type;
1030 	}
1031 }
1032 
1033 /* When a modification to fackets out becomes necessary, we need to check
1034  * skb is counted to fackets_out or not.
1035  */
1036 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1037 				   int decr)
1038 {
1039 	struct tcp_sock *tp = tcp_sk(sk);
1040 
1041 	if (!tp->sacked_out || tcp_is_reno(tp))
1042 		return;
1043 
1044 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1045 		tp->fackets_out -= decr;
1046 }
1047 
1048 /* Pcount in the middle of the write queue got changed, we need to do various
1049  * tweaks to fix counters
1050  */
1051 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1052 {
1053 	struct tcp_sock *tp = tcp_sk(sk);
1054 
1055 	tp->packets_out -= decr;
1056 
1057 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1058 		tp->sacked_out -= decr;
1059 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1060 		tp->retrans_out -= decr;
1061 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1062 		tp->lost_out -= decr;
1063 
1064 	/* Reno case is special. Sigh... */
1065 	if (tcp_is_reno(tp) && decr > 0)
1066 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1067 
1068 	tcp_adjust_fackets_out(sk, skb, decr);
1069 
1070 	if (tp->lost_skb_hint &&
1071 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1072 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1073 		tp->lost_cnt_hint -= decr;
1074 
1075 	tcp_verify_left_out(tp);
1076 }
1077 
1078 /* Function to create two new TCP segments.  Shrinks the given segment
1079  * to the specified size and appends a new segment with the rest of the
1080  * packet to the list.  This won't be called frequently, I hope.
1081  * Remember, these are still headerless SKBs at this point.
1082  */
1083 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1084 		 unsigned int mss_now)
1085 {
1086 	struct tcp_sock *tp = tcp_sk(sk);
1087 	struct sk_buff *buff;
1088 	int nsize, old_factor;
1089 	int nlen;
1090 	u8 flags;
1091 
1092 	if (WARN_ON(len > skb->len))
1093 		return -EINVAL;
1094 
1095 	nsize = skb_headlen(skb) - len;
1096 	if (nsize < 0)
1097 		nsize = 0;
1098 
1099 	if (skb_unclone(skb, GFP_ATOMIC))
1100 		return -ENOMEM;
1101 
1102 	/* Get a new skb... force flag on. */
1103 	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1104 	if (buff == NULL)
1105 		return -ENOMEM; /* We'll just try again later. */
1106 
1107 	sk->sk_wmem_queued += buff->truesize;
1108 	sk_mem_charge(sk, buff->truesize);
1109 	nlen = skb->len - len - nsize;
1110 	buff->truesize += nlen;
1111 	skb->truesize -= nlen;
1112 
1113 	/* Correct the sequence numbers. */
1114 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1115 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1116 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1117 
1118 	/* PSH and FIN should only be set in the second packet. */
1119 	flags = TCP_SKB_CB(skb)->tcp_flags;
1120 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1121 	TCP_SKB_CB(buff)->tcp_flags = flags;
1122 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1123 
1124 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1125 		/* Copy and checksum data tail into the new buffer. */
1126 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1127 						       skb_put(buff, nsize),
1128 						       nsize, 0);
1129 
1130 		skb_trim(skb, len);
1131 
1132 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1133 	} else {
1134 		skb->ip_summed = CHECKSUM_PARTIAL;
1135 		skb_split(skb, buff, len);
1136 	}
1137 
1138 	buff->ip_summed = skb->ip_summed;
1139 
1140 	/* Looks stupid, but our code really uses when of
1141 	 * skbs, which it never sent before. --ANK
1142 	 */
1143 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1144 	buff->tstamp = skb->tstamp;
1145 
1146 	old_factor = tcp_skb_pcount(skb);
1147 
1148 	/* Fix up tso_factor for both original and new SKB.  */
1149 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1150 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1151 
1152 	/* If this packet has been sent out already, we must
1153 	 * adjust the various packet counters.
1154 	 */
1155 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1156 		int diff = old_factor - tcp_skb_pcount(skb) -
1157 			tcp_skb_pcount(buff);
1158 
1159 		if (diff)
1160 			tcp_adjust_pcount(sk, skb, diff);
1161 	}
1162 
1163 	/* Link BUFF into the send queue. */
1164 	skb_header_release(buff);
1165 	tcp_insert_write_queue_after(skb, buff, sk);
1166 
1167 	return 0;
1168 }
1169 
1170 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1171  * eventually). The difference is that pulled data not copied, but
1172  * immediately discarded.
1173  */
1174 static void __pskb_trim_head(struct sk_buff *skb, int len)
1175 {
1176 	struct skb_shared_info *shinfo;
1177 	int i, k, eat;
1178 
1179 	eat = min_t(int, len, skb_headlen(skb));
1180 	if (eat) {
1181 		__skb_pull(skb, eat);
1182 		len -= eat;
1183 		if (!len)
1184 			return;
1185 	}
1186 	eat = len;
1187 	k = 0;
1188 	shinfo = skb_shinfo(skb);
1189 	for (i = 0; i < shinfo->nr_frags; i++) {
1190 		int size = skb_frag_size(&shinfo->frags[i]);
1191 
1192 		if (size <= eat) {
1193 			skb_frag_unref(skb, i);
1194 			eat -= size;
1195 		} else {
1196 			shinfo->frags[k] = shinfo->frags[i];
1197 			if (eat) {
1198 				shinfo->frags[k].page_offset += eat;
1199 				skb_frag_size_sub(&shinfo->frags[k], eat);
1200 				eat = 0;
1201 			}
1202 			k++;
1203 		}
1204 	}
1205 	shinfo->nr_frags = k;
1206 
1207 	skb_reset_tail_pointer(skb);
1208 	skb->data_len -= len;
1209 	skb->len = skb->data_len;
1210 }
1211 
1212 /* Remove acked data from a packet in the transmit queue. */
1213 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1214 {
1215 	if (skb_unclone(skb, GFP_ATOMIC))
1216 		return -ENOMEM;
1217 
1218 	__pskb_trim_head(skb, len);
1219 
1220 	TCP_SKB_CB(skb)->seq += len;
1221 	skb->ip_summed = CHECKSUM_PARTIAL;
1222 
1223 	skb->truesize	     -= len;
1224 	sk->sk_wmem_queued   -= len;
1225 	sk_mem_uncharge(sk, len);
1226 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1227 
1228 	/* Any change of skb->len requires recalculation of tso factor. */
1229 	if (tcp_skb_pcount(skb) > 1)
1230 		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1231 
1232 	return 0;
1233 }
1234 
1235 /* Calculate MSS not accounting any TCP options.  */
1236 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1237 {
1238 	const struct tcp_sock *tp = tcp_sk(sk);
1239 	const struct inet_connection_sock *icsk = inet_csk(sk);
1240 	int mss_now;
1241 
1242 	/* Calculate base mss without TCP options:
1243 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1244 	 */
1245 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1246 
1247 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1248 	if (icsk->icsk_af_ops->net_frag_header_len) {
1249 		const struct dst_entry *dst = __sk_dst_get(sk);
1250 
1251 		if (dst && dst_allfrag(dst))
1252 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1253 	}
1254 
1255 	/* Clamp it (mss_clamp does not include tcp options) */
1256 	if (mss_now > tp->rx_opt.mss_clamp)
1257 		mss_now = tp->rx_opt.mss_clamp;
1258 
1259 	/* Now subtract optional transport overhead */
1260 	mss_now -= icsk->icsk_ext_hdr_len;
1261 
1262 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1263 	if (mss_now < 48)
1264 		mss_now = 48;
1265 	return mss_now;
1266 }
1267 
1268 /* Calculate MSS. Not accounting for SACKs here.  */
1269 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1270 {
1271 	/* Subtract TCP options size, not including SACKs */
1272 	return __tcp_mtu_to_mss(sk, pmtu) -
1273 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1274 }
1275 
1276 /* Inverse of above */
1277 int tcp_mss_to_mtu(struct sock *sk, int mss)
1278 {
1279 	const struct tcp_sock *tp = tcp_sk(sk);
1280 	const struct inet_connection_sock *icsk = inet_csk(sk);
1281 	int mtu;
1282 
1283 	mtu = mss +
1284 	      tp->tcp_header_len +
1285 	      icsk->icsk_ext_hdr_len +
1286 	      icsk->icsk_af_ops->net_header_len;
1287 
1288 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1289 	if (icsk->icsk_af_ops->net_frag_header_len) {
1290 		const struct dst_entry *dst = __sk_dst_get(sk);
1291 
1292 		if (dst && dst_allfrag(dst))
1293 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1294 	}
1295 	return mtu;
1296 }
1297 
1298 /* MTU probing init per socket */
1299 void tcp_mtup_init(struct sock *sk)
1300 {
1301 	struct tcp_sock *tp = tcp_sk(sk);
1302 	struct inet_connection_sock *icsk = inet_csk(sk);
1303 
1304 	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1305 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1306 			       icsk->icsk_af_ops->net_header_len;
1307 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1308 	icsk->icsk_mtup.probe_size = 0;
1309 }
1310 EXPORT_SYMBOL(tcp_mtup_init);
1311 
1312 /* This function synchronize snd mss to current pmtu/exthdr set.
1313 
1314    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1315    for TCP options, but includes only bare TCP header.
1316 
1317    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1318    It is minimum of user_mss and mss received with SYN.
1319    It also does not include TCP options.
1320 
1321    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1322 
1323    tp->mss_cache is current effective sending mss, including
1324    all tcp options except for SACKs. It is evaluated,
1325    taking into account current pmtu, but never exceeds
1326    tp->rx_opt.mss_clamp.
1327 
1328    NOTE1. rfc1122 clearly states that advertised MSS
1329    DOES NOT include either tcp or ip options.
1330 
1331    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1332    are READ ONLY outside this function.		--ANK (980731)
1333  */
1334 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1335 {
1336 	struct tcp_sock *tp = tcp_sk(sk);
1337 	struct inet_connection_sock *icsk = inet_csk(sk);
1338 	int mss_now;
1339 
1340 	if (icsk->icsk_mtup.search_high > pmtu)
1341 		icsk->icsk_mtup.search_high = pmtu;
1342 
1343 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1344 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1345 
1346 	/* And store cached results */
1347 	icsk->icsk_pmtu_cookie = pmtu;
1348 	if (icsk->icsk_mtup.enabled)
1349 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1350 	tp->mss_cache = mss_now;
1351 
1352 	return mss_now;
1353 }
1354 EXPORT_SYMBOL(tcp_sync_mss);
1355 
1356 /* Compute the current effective MSS, taking SACKs and IP options,
1357  * and even PMTU discovery events into account.
1358  */
1359 unsigned int tcp_current_mss(struct sock *sk)
1360 {
1361 	const struct tcp_sock *tp = tcp_sk(sk);
1362 	const struct dst_entry *dst = __sk_dst_get(sk);
1363 	u32 mss_now;
1364 	unsigned int header_len;
1365 	struct tcp_out_options opts;
1366 	struct tcp_md5sig_key *md5;
1367 
1368 	mss_now = tp->mss_cache;
1369 
1370 	if (dst) {
1371 		u32 mtu = dst_mtu(dst);
1372 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1373 			mss_now = tcp_sync_mss(sk, mtu);
1374 	}
1375 
1376 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1377 		     sizeof(struct tcphdr);
1378 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1379 	 * some common options. If this is an odd packet (because we have SACK
1380 	 * blocks etc) then our calculated header_len will be different, and
1381 	 * we have to adjust mss_now correspondingly */
1382 	if (header_len != tp->tcp_header_len) {
1383 		int delta = (int) header_len - tp->tcp_header_len;
1384 		mss_now -= delta;
1385 	}
1386 
1387 	return mss_now;
1388 }
1389 
1390 /* Congestion window validation. (RFC2861) */
1391 static void tcp_cwnd_validate(struct sock *sk)
1392 {
1393 	struct tcp_sock *tp = tcp_sk(sk);
1394 
1395 	if (tp->packets_out >= tp->snd_cwnd) {
1396 		/* Network is feed fully. */
1397 		tp->snd_cwnd_used = 0;
1398 		tp->snd_cwnd_stamp = tcp_time_stamp;
1399 	} else {
1400 		/* Network starves. */
1401 		if (tp->packets_out > tp->snd_cwnd_used)
1402 			tp->snd_cwnd_used = tp->packets_out;
1403 
1404 		if (sysctl_tcp_slow_start_after_idle &&
1405 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1406 			tcp_cwnd_application_limited(sk);
1407 	}
1408 }
1409 
1410 /* Minshall's variant of the Nagle send check. */
1411 static bool tcp_minshall_check(const struct tcp_sock *tp)
1412 {
1413 	return after(tp->snd_sml, tp->snd_una) &&
1414 		!after(tp->snd_sml, tp->snd_nxt);
1415 }
1416 
1417 /* Update snd_sml if this skb is under mss
1418  * Note that a TSO packet might end with a sub-mss segment
1419  * The test is really :
1420  * if ((skb->len % mss) != 0)
1421  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1422  * But we can avoid doing the divide again given we already have
1423  *  skb_pcount = skb->len / mss_now
1424  */
1425 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1426 				const struct sk_buff *skb)
1427 {
1428 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1429 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1430 }
1431 
1432 /* Return false, if packet can be sent now without violation Nagle's rules:
1433  * 1. It is full sized. (provided by caller in %partial bool)
1434  * 2. Or it contains FIN. (already checked by caller)
1435  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1436  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1437  *    With Minshall's modification: all sent small packets are ACKed.
1438  */
1439 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1440 			    int nonagle)
1441 {
1442 	return partial &&
1443 		((nonagle & TCP_NAGLE_CORK) ||
1444 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1445 }
1446 /* Returns the portion of skb which can be sent right away */
1447 static unsigned int tcp_mss_split_point(const struct sock *sk,
1448 					const struct sk_buff *skb,
1449 					unsigned int mss_now,
1450 					unsigned int max_segs,
1451 					int nonagle)
1452 {
1453 	const struct tcp_sock *tp = tcp_sk(sk);
1454 	u32 partial, needed, window, max_len;
1455 
1456 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1457 	max_len = mss_now * max_segs;
1458 
1459 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1460 		return max_len;
1461 
1462 	needed = min(skb->len, window);
1463 
1464 	if (max_len <= needed)
1465 		return max_len;
1466 
1467 	partial = needed % mss_now;
1468 	/* If last segment is not a full MSS, check if Nagle rules allow us
1469 	 * to include this last segment in this skb.
1470 	 * Otherwise, we'll split the skb at last MSS boundary
1471 	 */
1472 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1473 		return needed - partial;
1474 
1475 	return needed;
1476 }
1477 
1478 /* Can at least one segment of SKB be sent right now, according to the
1479  * congestion window rules?  If so, return how many segments are allowed.
1480  */
1481 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1482 					 const struct sk_buff *skb)
1483 {
1484 	u32 in_flight, cwnd;
1485 
1486 	/* Don't be strict about the congestion window for the final FIN.  */
1487 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1488 	    tcp_skb_pcount(skb) == 1)
1489 		return 1;
1490 
1491 	in_flight = tcp_packets_in_flight(tp);
1492 	cwnd = tp->snd_cwnd;
1493 	if (in_flight < cwnd)
1494 		return (cwnd - in_flight);
1495 
1496 	return 0;
1497 }
1498 
1499 /* Initialize TSO state of a skb.
1500  * This must be invoked the first time we consider transmitting
1501  * SKB onto the wire.
1502  */
1503 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1504 			     unsigned int mss_now)
1505 {
1506 	int tso_segs = tcp_skb_pcount(skb);
1507 
1508 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1509 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1510 		tso_segs = tcp_skb_pcount(skb);
1511 	}
1512 	return tso_segs;
1513 }
1514 
1515 
1516 /* Return true if the Nagle test allows this packet to be
1517  * sent now.
1518  */
1519 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1520 				  unsigned int cur_mss, int nonagle)
1521 {
1522 	/* Nagle rule does not apply to frames, which sit in the middle of the
1523 	 * write_queue (they have no chances to get new data).
1524 	 *
1525 	 * This is implemented in the callers, where they modify the 'nonagle'
1526 	 * argument based upon the location of SKB in the send queue.
1527 	 */
1528 	if (nonagle & TCP_NAGLE_PUSH)
1529 		return true;
1530 
1531 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1532 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1533 		return true;
1534 
1535 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1536 		return true;
1537 
1538 	return false;
1539 }
1540 
1541 /* Does at least the first segment of SKB fit into the send window? */
1542 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1543 			     const struct sk_buff *skb,
1544 			     unsigned int cur_mss)
1545 {
1546 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1547 
1548 	if (skb->len > cur_mss)
1549 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1550 
1551 	return !after(end_seq, tcp_wnd_end(tp));
1552 }
1553 
1554 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1555  * should be put on the wire right now.  If so, it returns the number of
1556  * packets allowed by the congestion window.
1557  */
1558 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1559 				 unsigned int cur_mss, int nonagle)
1560 {
1561 	const struct tcp_sock *tp = tcp_sk(sk);
1562 	unsigned int cwnd_quota;
1563 
1564 	tcp_init_tso_segs(sk, skb, cur_mss);
1565 
1566 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1567 		return 0;
1568 
1569 	cwnd_quota = tcp_cwnd_test(tp, skb);
1570 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1571 		cwnd_quota = 0;
1572 
1573 	return cwnd_quota;
1574 }
1575 
1576 /* Test if sending is allowed right now. */
1577 bool tcp_may_send_now(struct sock *sk)
1578 {
1579 	const struct tcp_sock *tp = tcp_sk(sk);
1580 	struct sk_buff *skb = tcp_send_head(sk);
1581 
1582 	return skb &&
1583 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1584 			     (tcp_skb_is_last(sk, skb) ?
1585 			      tp->nonagle : TCP_NAGLE_PUSH));
1586 }
1587 
1588 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1589  * which is put after SKB on the list.  It is very much like
1590  * tcp_fragment() except that it may make several kinds of assumptions
1591  * in order to speed up the splitting operation.  In particular, we
1592  * know that all the data is in scatter-gather pages, and that the
1593  * packet has never been sent out before (and thus is not cloned).
1594  */
1595 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1596 			unsigned int mss_now, gfp_t gfp)
1597 {
1598 	struct sk_buff *buff;
1599 	int nlen = skb->len - len;
1600 	u8 flags;
1601 
1602 	/* All of a TSO frame must be composed of paged data.  */
1603 	if (skb->len != skb->data_len)
1604 		return tcp_fragment(sk, skb, len, mss_now);
1605 
1606 	buff = sk_stream_alloc_skb(sk, 0, gfp);
1607 	if (unlikely(buff == NULL))
1608 		return -ENOMEM;
1609 
1610 	sk->sk_wmem_queued += buff->truesize;
1611 	sk_mem_charge(sk, buff->truesize);
1612 	buff->truesize += nlen;
1613 	skb->truesize -= nlen;
1614 
1615 	/* Correct the sequence numbers. */
1616 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1617 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1618 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1619 
1620 	/* PSH and FIN should only be set in the second packet. */
1621 	flags = TCP_SKB_CB(skb)->tcp_flags;
1622 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1623 	TCP_SKB_CB(buff)->tcp_flags = flags;
1624 
1625 	/* This packet was never sent out yet, so no SACK bits. */
1626 	TCP_SKB_CB(buff)->sacked = 0;
1627 
1628 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1629 	skb_split(skb, buff, len);
1630 
1631 	/* Fix up tso_factor for both original and new SKB.  */
1632 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1633 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1634 
1635 	/* Link BUFF into the send queue. */
1636 	skb_header_release(buff);
1637 	tcp_insert_write_queue_after(skb, buff, sk);
1638 
1639 	return 0;
1640 }
1641 
1642 /* Try to defer sending, if possible, in order to minimize the amount
1643  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1644  *
1645  * This algorithm is from John Heffner.
1646  */
1647 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1648 {
1649 	struct tcp_sock *tp = tcp_sk(sk);
1650 	const struct inet_connection_sock *icsk = inet_csk(sk);
1651 	u32 send_win, cong_win, limit, in_flight;
1652 	int win_divisor;
1653 
1654 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1655 		goto send_now;
1656 
1657 	if (icsk->icsk_ca_state != TCP_CA_Open)
1658 		goto send_now;
1659 
1660 	/* Defer for less than two clock ticks. */
1661 	if (tp->tso_deferred &&
1662 	    (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1663 		goto send_now;
1664 
1665 	in_flight = tcp_packets_in_flight(tp);
1666 
1667 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1668 
1669 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1670 
1671 	/* From in_flight test above, we know that cwnd > in_flight.  */
1672 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1673 
1674 	limit = min(send_win, cong_win);
1675 
1676 	/* If a full-sized TSO skb can be sent, do it. */
1677 	if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1678 			   tp->xmit_size_goal_segs * tp->mss_cache))
1679 		goto send_now;
1680 
1681 	/* Middle in queue won't get any more data, full sendable already? */
1682 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1683 		goto send_now;
1684 
1685 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1686 	if (win_divisor) {
1687 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1688 
1689 		/* If at least some fraction of a window is available,
1690 		 * just use it.
1691 		 */
1692 		chunk /= win_divisor;
1693 		if (limit >= chunk)
1694 			goto send_now;
1695 	} else {
1696 		/* Different approach, try not to defer past a single
1697 		 * ACK.  Receiver should ACK every other full sized
1698 		 * frame, so if we have space for more than 3 frames
1699 		 * then send now.
1700 		 */
1701 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1702 			goto send_now;
1703 	}
1704 
1705 	/* Ok, it looks like it is advisable to defer.
1706 	 * Do not rearm the timer if already set to not break TCP ACK clocking.
1707 	 */
1708 	if (!tp->tso_deferred)
1709 		tp->tso_deferred = 1 | (jiffies << 1);
1710 
1711 	return true;
1712 
1713 send_now:
1714 	tp->tso_deferred = 0;
1715 	return false;
1716 }
1717 
1718 /* Create a new MTU probe if we are ready.
1719  * MTU probe is regularly attempting to increase the path MTU by
1720  * deliberately sending larger packets.  This discovers routing
1721  * changes resulting in larger path MTUs.
1722  *
1723  * Returns 0 if we should wait to probe (no cwnd available),
1724  *         1 if a probe was sent,
1725  *         -1 otherwise
1726  */
1727 static int tcp_mtu_probe(struct sock *sk)
1728 {
1729 	struct tcp_sock *tp = tcp_sk(sk);
1730 	struct inet_connection_sock *icsk = inet_csk(sk);
1731 	struct sk_buff *skb, *nskb, *next;
1732 	int len;
1733 	int probe_size;
1734 	int size_needed;
1735 	int copy;
1736 	int mss_now;
1737 
1738 	/* Not currently probing/verifying,
1739 	 * not in recovery,
1740 	 * have enough cwnd, and
1741 	 * not SACKing (the variable headers throw things off) */
1742 	if (!icsk->icsk_mtup.enabled ||
1743 	    icsk->icsk_mtup.probe_size ||
1744 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1745 	    tp->snd_cwnd < 11 ||
1746 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1747 		return -1;
1748 
1749 	/* Very simple search strategy: just double the MSS. */
1750 	mss_now = tcp_current_mss(sk);
1751 	probe_size = 2 * tp->mss_cache;
1752 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1753 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1754 		/* TODO: set timer for probe_converge_event */
1755 		return -1;
1756 	}
1757 
1758 	/* Have enough data in the send queue to probe? */
1759 	if (tp->write_seq - tp->snd_nxt < size_needed)
1760 		return -1;
1761 
1762 	if (tp->snd_wnd < size_needed)
1763 		return -1;
1764 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1765 		return 0;
1766 
1767 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1768 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1769 		if (!tcp_packets_in_flight(tp))
1770 			return -1;
1771 		else
1772 			return 0;
1773 	}
1774 
1775 	/* We're allowed to probe.  Build it now. */
1776 	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1777 		return -1;
1778 	sk->sk_wmem_queued += nskb->truesize;
1779 	sk_mem_charge(sk, nskb->truesize);
1780 
1781 	skb = tcp_send_head(sk);
1782 
1783 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1784 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1785 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1786 	TCP_SKB_CB(nskb)->sacked = 0;
1787 	nskb->csum = 0;
1788 	nskb->ip_summed = skb->ip_summed;
1789 
1790 	tcp_insert_write_queue_before(nskb, skb, sk);
1791 
1792 	len = 0;
1793 	tcp_for_write_queue_from_safe(skb, next, sk) {
1794 		copy = min_t(int, skb->len, probe_size - len);
1795 		if (nskb->ip_summed)
1796 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1797 		else
1798 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1799 							    skb_put(nskb, copy),
1800 							    copy, nskb->csum);
1801 
1802 		if (skb->len <= copy) {
1803 			/* We've eaten all the data from this skb.
1804 			 * Throw it away. */
1805 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1806 			tcp_unlink_write_queue(skb, sk);
1807 			sk_wmem_free_skb(sk, skb);
1808 		} else {
1809 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1810 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1811 			if (!skb_shinfo(skb)->nr_frags) {
1812 				skb_pull(skb, copy);
1813 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1814 					skb->csum = csum_partial(skb->data,
1815 								 skb->len, 0);
1816 			} else {
1817 				__pskb_trim_head(skb, copy);
1818 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1819 			}
1820 			TCP_SKB_CB(skb)->seq += copy;
1821 		}
1822 
1823 		len += copy;
1824 
1825 		if (len >= probe_size)
1826 			break;
1827 	}
1828 	tcp_init_tso_segs(sk, nskb, nskb->len);
1829 
1830 	/* We're ready to send.  If this fails, the probe will
1831 	 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1832 	TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1833 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1834 		/* Decrement cwnd here because we are sending
1835 		 * effectively two packets. */
1836 		tp->snd_cwnd--;
1837 		tcp_event_new_data_sent(sk, nskb);
1838 
1839 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1840 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1841 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1842 
1843 		return 1;
1844 	}
1845 
1846 	return -1;
1847 }
1848 
1849 /* This routine writes packets to the network.  It advances the
1850  * send_head.  This happens as incoming acks open up the remote
1851  * window for us.
1852  *
1853  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1854  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1855  * account rare use of URG, this is not a big flaw.
1856  *
1857  * Send at most one packet when push_one > 0. Temporarily ignore
1858  * cwnd limit to force at most one packet out when push_one == 2.
1859 
1860  * Returns true, if no segments are in flight and we have queued segments,
1861  * but cannot send anything now because of SWS or another problem.
1862  */
1863 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1864 			   int push_one, gfp_t gfp)
1865 {
1866 	struct tcp_sock *tp = tcp_sk(sk);
1867 	struct sk_buff *skb;
1868 	unsigned int tso_segs, sent_pkts;
1869 	int cwnd_quota;
1870 	int result;
1871 
1872 	sent_pkts = 0;
1873 
1874 	if (!push_one) {
1875 		/* Do MTU probing. */
1876 		result = tcp_mtu_probe(sk);
1877 		if (!result) {
1878 			return false;
1879 		} else if (result > 0) {
1880 			sent_pkts = 1;
1881 		}
1882 	}
1883 
1884 	while ((skb = tcp_send_head(sk))) {
1885 		unsigned int limit;
1886 
1887 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1888 		BUG_ON(!tso_segs);
1889 
1890 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1891 			goto repair; /* Skip network transmission */
1892 
1893 		cwnd_quota = tcp_cwnd_test(tp, skb);
1894 		if (!cwnd_quota) {
1895 			if (push_one == 2)
1896 				/* Force out a loss probe pkt. */
1897 				cwnd_quota = 1;
1898 			else
1899 				break;
1900 		}
1901 
1902 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1903 			break;
1904 
1905 		if (tso_segs == 1) {
1906 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1907 						     (tcp_skb_is_last(sk, skb) ?
1908 						      nonagle : TCP_NAGLE_PUSH))))
1909 				break;
1910 		} else {
1911 			if (!push_one && tcp_tso_should_defer(sk, skb))
1912 				break;
1913 		}
1914 
1915 		/* TCP Small Queues :
1916 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1917 		 * This allows for :
1918 		 *  - better RTT estimation and ACK scheduling
1919 		 *  - faster recovery
1920 		 *  - high rates
1921 		 * Alas, some drivers / subsystems require a fair amount
1922 		 * of queued bytes to ensure line rate.
1923 		 * One example is wifi aggregation (802.11 AMPDU)
1924 		 */
1925 		limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1926 			      sk->sk_pacing_rate >> 10);
1927 
1928 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1929 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1930 			/* It is possible TX completion already happened
1931 			 * before we set TSQ_THROTTLED, so we must
1932 			 * test again the condition.
1933 			 * We abuse smp_mb__after_clear_bit() because
1934 			 * there is no smp_mb__after_set_bit() yet
1935 			 */
1936 			smp_mb__after_clear_bit();
1937 			if (atomic_read(&sk->sk_wmem_alloc) > limit)
1938 				break;
1939 		}
1940 
1941 		limit = mss_now;
1942 		if (tso_segs > 1 && !tcp_urg_mode(tp))
1943 			limit = tcp_mss_split_point(sk, skb, mss_now,
1944 						    min_t(unsigned int,
1945 							  cwnd_quota,
1946 							  sk->sk_gso_max_segs),
1947 						    nonagle);
1948 
1949 		if (skb->len > limit &&
1950 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1951 			break;
1952 
1953 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1954 
1955 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1956 			break;
1957 
1958 repair:
1959 		/* Advance the send_head.  This one is sent out.
1960 		 * This call will increment packets_out.
1961 		 */
1962 		tcp_event_new_data_sent(sk, skb);
1963 
1964 		tcp_minshall_update(tp, mss_now, skb);
1965 		sent_pkts += tcp_skb_pcount(skb);
1966 
1967 		if (push_one)
1968 			break;
1969 	}
1970 
1971 	if (likely(sent_pkts)) {
1972 		if (tcp_in_cwnd_reduction(sk))
1973 			tp->prr_out += sent_pkts;
1974 
1975 		/* Send one loss probe per tail loss episode. */
1976 		if (push_one != 2)
1977 			tcp_schedule_loss_probe(sk);
1978 		tcp_cwnd_validate(sk);
1979 		return false;
1980 	}
1981 	return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1982 }
1983 
1984 bool tcp_schedule_loss_probe(struct sock *sk)
1985 {
1986 	struct inet_connection_sock *icsk = inet_csk(sk);
1987 	struct tcp_sock *tp = tcp_sk(sk);
1988 	u32 timeout, tlp_time_stamp, rto_time_stamp;
1989 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
1990 
1991 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1992 		return false;
1993 	/* No consecutive loss probes. */
1994 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1995 		tcp_rearm_rto(sk);
1996 		return false;
1997 	}
1998 	/* Don't do any loss probe on a Fast Open connection before 3WHS
1999 	 * finishes.
2000 	 */
2001 	if (sk->sk_state == TCP_SYN_RECV)
2002 		return false;
2003 
2004 	/* TLP is only scheduled when next timer event is RTO. */
2005 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2006 		return false;
2007 
2008 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2009 	 * in Open state, that are either limited by cwnd or application.
2010 	 */
2011 	if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2012 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2013 		return false;
2014 
2015 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2016 	     tcp_send_head(sk))
2017 		return false;
2018 
2019 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2020 	 * for delayed ack when there's one outstanding packet.
2021 	 */
2022 	timeout = rtt << 1;
2023 	if (tp->packets_out == 1)
2024 		timeout = max_t(u32, timeout,
2025 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2026 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2027 
2028 	/* If RTO is shorter, just schedule TLP in its place. */
2029 	tlp_time_stamp = tcp_time_stamp + timeout;
2030 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2031 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2032 		s32 delta = rto_time_stamp - tcp_time_stamp;
2033 		if (delta > 0)
2034 			timeout = delta;
2035 	}
2036 
2037 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2038 				  TCP_RTO_MAX);
2039 	return true;
2040 }
2041 
2042 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2043  * retransmit the last segment.
2044  */
2045 void tcp_send_loss_probe(struct sock *sk)
2046 {
2047 	struct tcp_sock *tp = tcp_sk(sk);
2048 	struct sk_buff *skb;
2049 	int pcount;
2050 	int mss = tcp_current_mss(sk);
2051 	int err = -1;
2052 
2053 	if (tcp_send_head(sk) != NULL) {
2054 		err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2055 		goto rearm_timer;
2056 	}
2057 
2058 	/* At most one outstanding TLP retransmission. */
2059 	if (tp->tlp_high_seq)
2060 		goto rearm_timer;
2061 
2062 	/* Retransmit last segment. */
2063 	skb = tcp_write_queue_tail(sk);
2064 	if (WARN_ON(!skb))
2065 		goto rearm_timer;
2066 
2067 	pcount = tcp_skb_pcount(skb);
2068 	if (WARN_ON(!pcount))
2069 		goto rearm_timer;
2070 
2071 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2072 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2073 			goto rearm_timer;
2074 		skb = tcp_write_queue_tail(sk);
2075 	}
2076 
2077 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2078 		goto rearm_timer;
2079 
2080 	/* Probe with zero data doesn't trigger fast recovery. */
2081 	if (skb->len > 0)
2082 		err = __tcp_retransmit_skb(sk, skb);
2083 
2084 	/* Record snd_nxt for loss detection. */
2085 	if (likely(!err))
2086 		tp->tlp_high_seq = tp->snd_nxt;
2087 
2088 rearm_timer:
2089 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2090 				  inet_csk(sk)->icsk_rto,
2091 				  TCP_RTO_MAX);
2092 
2093 	if (likely(!err))
2094 		NET_INC_STATS_BH(sock_net(sk),
2095 				 LINUX_MIB_TCPLOSSPROBES);
2096 }
2097 
2098 /* Push out any pending frames which were held back due to
2099  * TCP_CORK or attempt at coalescing tiny packets.
2100  * The socket must be locked by the caller.
2101  */
2102 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2103 			       int nonagle)
2104 {
2105 	/* If we are closed, the bytes will have to remain here.
2106 	 * In time closedown will finish, we empty the write queue and
2107 	 * all will be happy.
2108 	 */
2109 	if (unlikely(sk->sk_state == TCP_CLOSE))
2110 		return;
2111 
2112 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2113 			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2114 		tcp_check_probe_timer(sk);
2115 }
2116 
2117 /* Send _single_ skb sitting at the send head. This function requires
2118  * true push pending frames to setup probe timer etc.
2119  */
2120 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2121 {
2122 	struct sk_buff *skb = tcp_send_head(sk);
2123 
2124 	BUG_ON(!skb || skb->len < mss_now);
2125 
2126 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2127 }
2128 
2129 /* This function returns the amount that we can raise the
2130  * usable window based on the following constraints
2131  *
2132  * 1. The window can never be shrunk once it is offered (RFC 793)
2133  * 2. We limit memory per socket
2134  *
2135  * RFC 1122:
2136  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2137  *  RECV.NEXT + RCV.WIN fixed until:
2138  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2139  *
2140  * i.e. don't raise the right edge of the window until you can raise
2141  * it at least MSS bytes.
2142  *
2143  * Unfortunately, the recommended algorithm breaks header prediction,
2144  * since header prediction assumes th->window stays fixed.
2145  *
2146  * Strictly speaking, keeping th->window fixed violates the receiver
2147  * side SWS prevention criteria. The problem is that under this rule
2148  * a stream of single byte packets will cause the right side of the
2149  * window to always advance by a single byte.
2150  *
2151  * Of course, if the sender implements sender side SWS prevention
2152  * then this will not be a problem.
2153  *
2154  * BSD seems to make the following compromise:
2155  *
2156  *	If the free space is less than the 1/4 of the maximum
2157  *	space available and the free space is less than 1/2 mss,
2158  *	then set the window to 0.
2159  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2160  *	Otherwise, just prevent the window from shrinking
2161  *	and from being larger than the largest representable value.
2162  *
2163  * This prevents incremental opening of the window in the regime
2164  * where TCP is limited by the speed of the reader side taking
2165  * data out of the TCP receive queue. It does nothing about
2166  * those cases where the window is constrained on the sender side
2167  * because the pipeline is full.
2168  *
2169  * BSD also seems to "accidentally" limit itself to windows that are a
2170  * multiple of MSS, at least until the free space gets quite small.
2171  * This would appear to be a side effect of the mbuf implementation.
2172  * Combining these two algorithms results in the observed behavior
2173  * of having a fixed window size at almost all times.
2174  *
2175  * Below we obtain similar behavior by forcing the offered window to
2176  * a multiple of the mss when it is feasible to do so.
2177  *
2178  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2179  * Regular options like TIMESTAMP are taken into account.
2180  */
2181 u32 __tcp_select_window(struct sock *sk)
2182 {
2183 	struct inet_connection_sock *icsk = inet_csk(sk);
2184 	struct tcp_sock *tp = tcp_sk(sk);
2185 	/* MSS for the peer's data.  Previous versions used mss_clamp
2186 	 * here.  I don't know if the value based on our guesses
2187 	 * of peer's MSS is better for the performance.  It's more correct
2188 	 * but may be worse for the performance because of rcv_mss
2189 	 * fluctuations.  --SAW  1998/11/1
2190 	 */
2191 	int mss = icsk->icsk_ack.rcv_mss;
2192 	int free_space = tcp_space(sk);
2193 	int allowed_space = tcp_full_space(sk);
2194 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2195 	int window;
2196 
2197 	if (mss > full_space)
2198 		mss = full_space;
2199 
2200 	if (free_space < (full_space >> 1)) {
2201 		icsk->icsk_ack.quick = 0;
2202 
2203 		if (sk_under_memory_pressure(sk))
2204 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2205 					       4U * tp->advmss);
2206 
2207 		/* free_space might become our new window, make sure we don't
2208 		 * increase it due to wscale.
2209 		 */
2210 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2211 
2212 		/* if free space is less than mss estimate, or is below 1/16th
2213 		 * of the maximum allowed, try to move to zero-window, else
2214 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2215 		 * new incoming data is dropped due to memory limits.
2216 		 * With large window, mss test triggers way too late in order
2217 		 * to announce zero window in time before rmem limit kicks in.
2218 		 */
2219 		if (free_space < (allowed_space >> 4) || free_space < mss)
2220 			return 0;
2221 	}
2222 
2223 	if (free_space > tp->rcv_ssthresh)
2224 		free_space = tp->rcv_ssthresh;
2225 
2226 	/* Don't do rounding if we are using window scaling, since the
2227 	 * scaled window will not line up with the MSS boundary anyway.
2228 	 */
2229 	window = tp->rcv_wnd;
2230 	if (tp->rx_opt.rcv_wscale) {
2231 		window = free_space;
2232 
2233 		/* Advertise enough space so that it won't get scaled away.
2234 		 * Import case: prevent zero window announcement if
2235 		 * 1<<rcv_wscale > mss.
2236 		 */
2237 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2238 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2239 				  << tp->rx_opt.rcv_wscale);
2240 	} else {
2241 		/* Get the largest window that is a nice multiple of mss.
2242 		 * Window clamp already applied above.
2243 		 * If our current window offering is within 1 mss of the
2244 		 * free space we just keep it. This prevents the divide
2245 		 * and multiply from happening most of the time.
2246 		 * We also don't do any window rounding when the free space
2247 		 * is too small.
2248 		 */
2249 		if (window <= free_space - mss || window > free_space)
2250 			window = (free_space / mss) * mss;
2251 		else if (mss == full_space &&
2252 			 free_space > window + (full_space >> 1))
2253 			window = free_space;
2254 	}
2255 
2256 	return window;
2257 }
2258 
2259 /* Collapses two adjacent SKB's during retransmission. */
2260 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2261 {
2262 	struct tcp_sock *tp = tcp_sk(sk);
2263 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2264 	int skb_size, next_skb_size;
2265 
2266 	skb_size = skb->len;
2267 	next_skb_size = next_skb->len;
2268 
2269 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2270 
2271 	tcp_highest_sack_combine(sk, next_skb, skb);
2272 
2273 	tcp_unlink_write_queue(next_skb, sk);
2274 
2275 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2276 				  next_skb_size);
2277 
2278 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2279 		skb->ip_summed = CHECKSUM_PARTIAL;
2280 
2281 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2282 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2283 
2284 	/* Update sequence range on original skb. */
2285 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2286 
2287 	/* Merge over control information. This moves PSH/FIN etc. over */
2288 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2289 
2290 	/* All done, get rid of second SKB and account for it so
2291 	 * packet counting does not break.
2292 	 */
2293 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2294 
2295 	/* changed transmit queue under us so clear hints */
2296 	tcp_clear_retrans_hints_partial(tp);
2297 	if (next_skb == tp->retransmit_skb_hint)
2298 		tp->retransmit_skb_hint = skb;
2299 
2300 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2301 
2302 	sk_wmem_free_skb(sk, next_skb);
2303 }
2304 
2305 /* Check if coalescing SKBs is legal. */
2306 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2307 {
2308 	if (tcp_skb_pcount(skb) > 1)
2309 		return false;
2310 	/* TODO: SACK collapsing could be used to remove this condition */
2311 	if (skb_shinfo(skb)->nr_frags != 0)
2312 		return false;
2313 	if (skb_cloned(skb))
2314 		return false;
2315 	if (skb == tcp_send_head(sk))
2316 		return false;
2317 	/* Some heurestics for collapsing over SACK'd could be invented */
2318 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2319 		return false;
2320 
2321 	return true;
2322 }
2323 
2324 /* Collapse packets in the retransmit queue to make to create
2325  * less packets on the wire. This is only done on retransmission.
2326  */
2327 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2328 				     int space)
2329 {
2330 	struct tcp_sock *tp = tcp_sk(sk);
2331 	struct sk_buff *skb = to, *tmp;
2332 	bool first = true;
2333 
2334 	if (!sysctl_tcp_retrans_collapse)
2335 		return;
2336 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2337 		return;
2338 
2339 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2340 		if (!tcp_can_collapse(sk, skb))
2341 			break;
2342 
2343 		space -= skb->len;
2344 
2345 		if (first) {
2346 			first = false;
2347 			continue;
2348 		}
2349 
2350 		if (space < 0)
2351 			break;
2352 		/* Punt if not enough space exists in the first SKB for
2353 		 * the data in the second
2354 		 */
2355 		if (skb->len > skb_availroom(to))
2356 			break;
2357 
2358 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2359 			break;
2360 
2361 		tcp_collapse_retrans(sk, to);
2362 	}
2363 }
2364 
2365 /* This retransmits one SKB.  Policy decisions and retransmit queue
2366  * state updates are done by the caller.  Returns non-zero if an
2367  * error occurred which prevented the send.
2368  */
2369 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2370 {
2371 	struct tcp_sock *tp = tcp_sk(sk);
2372 	struct inet_connection_sock *icsk = inet_csk(sk);
2373 	unsigned int cur_mss;
2374 	int err;
2375 
2376 	/* Inconslusive MTU probe */
2377 	if (icsk->icsk_mtup.probe_size) {
2378 		icsk->icsk_mtup.probe_size = 0;
2379 	}
2380 
2381 	/* Do not sent more than we queued. 1/4 is reserved for possible
2382 	 * copying overhead: fragmentation, tunneling, mangling etc.
2383 	 */
2384 	if (atomic_read(&sk->sk_wmem_alloc) >
2385 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2386 		return -EAGAIN;
2387 
2388 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2389 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2390 			BUG();
2391 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2392 			return -ENOMEM;
2393 	}
2394 
2395 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2396 		return -EHOSTUNREACH; /* Routing failure or similar. */
2397 
2398 	cur_mss = tcp_current_mss(sk);
2399 
2400 	/* If receiver has shrunk his window, and skb is out of
2401 	 * new window, do not retransmit it. The exception is the
2402 	 * case, when window is shrunk to zero. In this case
2403 	 * our retransmit serves as a zero window probe.
2404 	 */
2405 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2406 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2407 		return -EAGAIN;
2408 
2409 	if (skb->len > cur_mss) {
2410 		if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2411 			return -ENOMEM; /* We'll try again later. */
2412 	} else {
2413 		int oldpcount = tcp_skb_pcount(skb);
2414 
2415 		if (unlikely(oldpcount > 1)) {
2416 			if (skb_unclone(skb, GFP_ATOMIC))
2417 				return -ENOMEM;
2418 			tcp_init_tso_segs(sk, skb, cur_mss);
2419 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2420 		}
2421 	}
2422 
2423 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2424 
2425 	/* Make a copy, if the first transmission SKB clone we made
2426 	 * is still in somebody's hands, else make a clone.
2427 	 */
2428 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2429 
2430 	/* make sure skb->data is aligned on arches that require it
2431 	 * and check if ack-trimming & collapsing extended the headroom
2432 	 * beyond what csum_start can cover.
2433 	 */
2434 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2435 		     skb_headroom(skb) >= 0xFFFF)) {
2436 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2437 						   GFP_ATOMIC);
2438 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2439 			     -ENOBUFS;
2440 	} else {
2441 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2442 	}
2443 
2444 	if (likely(!err))
2445 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2446 	return err;
2447 }
2448 
2449 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2450 {
2451 	struct tcp_sock *tp = tcp_sk(sk);
2452 	int err = __tcp_retransmit_skb(sk, skb);
2453 
2454 	if (err == 0) {
2455 		/* Update global TCP statistics. */
2456 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2457 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2458 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2459 		tp->total_retrans++;
2460 
2461 #if FASTRETRANS_DEBUG > 0
2462 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2463 			net_dbg_ratelimited("retrans_out leaked\n");
2464 		}
2465 #endif
2466 		if (!tp->retrans_out)
2467 			tp->lost_retrans_low = tp->snd_nxt;
2468 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2469 		tp->retrans_out += tcp_skb_pcount(skb);
2470 
2471 		/* Save stamp of the first retransmit. */
2472 		if (!tp->retrans_stamp)
2473 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2474 
2475 		tp->undo_retrans += tcp_skb_pcount(skb);
2476 
2477 		/* snd_nxt is stored to detect loss of retransmitted segment,
2478 		 * see tcp_input.c tcp_sacktag_write_queue().
2479 		 */
2480 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2481 	} else {
2482 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2483 	}
2484 	return err;
2485 }
2486 
2487 /* Check if we forward retransmits are possible in the current
2488  * window/congestion state.
2489  */
2490 static bool tcp_can_forward_retransmit(struct sock *sk)
2491 {
2492 	const struct inet_connection_sock *icsk = inet_csk(sk);
2493 	const struct tcp_sock *tp = tcp_sk(sk);
2494 
2495 	/* Forward retransmissions are possible only during Recovery. */
2496 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2497 		return false;
2498 
2499 	/* No forward retransmissions in Reno are possible. */
2500 	if (tcp_is_reno(tp))
2501 		return false;
2502 
2503 	/* Yeah, we have to make difficult choice between forward transmission
2504 	 * and retransmission... Both ways have their merits...
2505 	 *
2506 	 * For now we do not retransmit anything, while we have some new
2507 	 * segments to send. In the other cases, follow rule 3 for
2508 	 * NextSeg() specified in RFC3517.
2509 	 */
2510 
2511 	if (tcp_may_send_now(sk))
2512 		return false;
2513 
2514 	return true;
2515 }
2516 
2517 /* This gets called after a retransmit timeout, and the initially
2518  * retransmitted data is acknowledged.  It tries to continue
2519  * resending the rest of the retransmit queue, until either
2520  * we've sent it all or the congestion window limit is reached.
2521  * If doing SACK, the first ACK which comes back for a timeout
2522  * based retransmit packet might feed us FACK information again.
2523  * If so, we use it to avoid unnecessarily retransmissions.
2524  */
2525 void tcp_xmit_retransmit_queue(struct sock *sk)
2526 {
2527 	const struct inet_connection_sock *icsk = inet_csk(sk);
2528 	struct tcp_sock *tp = tcp_sk(sk);
2529 	struct sk_buff *skb;
2530 	struct sk_buff *hole = NULL;
2531 	u32 last_lost;
2532 	int mib_idx;
2533 	int fwd_rexmitting = 0;
2534 
2535 	if (!tp->packets_out)
2536 		return;
2537 
2538 	if (!tp->lost_out)
2539 		tp->retransmit_high = tp->snd_una;
2540 
2541 	if (tp->retransmit_skb_hint) {
2542 		skb = tp->retransmit_skb_hint;
2543 		last_lost = TCP_SKB_CB(skb)->end_seq;
2544 		if (after(last_lost, tp->retransmit_high))
2545 			last_lost = tp->retransmit_high;
2546 	} else {
2547 		skb = tcp_write_queue_head(sk);
2548 		last_lost = tp->snd_una;
2549 	}
2550 
2551 	tcp_for_write_queue_from(skb, sk) {
2552 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2553 
2554 		if (skb == tcp_send_head(sk))
2555 			break;
2556 		/* we could do better than to assign each time */
2557 		if (hole == NULL)
2558 			tp->retransmit_skb_hint = skb;
2559 
2560 		/* Assume this retransmit will generate
2561 		 * only one packet for congestion window
2562 		 * calculation purposes.  This works because
2563 		 * tcp_retransmit_skb() will chop up the
2564 		 * packet to be MSS sized and all the
2565 		 * packet counting works out.
2566 		 */
2567 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2568 			return;
2569 
2570 		if (fwd_rexmitting) {
2571 begin_fwd:
2572 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2573 				break;
2574 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2575 
2576 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2577 			tp->retransmit_high = last_lost;
2578 			if (!tcp_can_forward_retransmit(sk))
2579 				break;
2580 			/* Backtrack if necessary to non-L'ed skb */
2581 			if (hole != NULL) {
2582 				skb = hole;
2583 				hole = NULL;
2584 			}
2585 			fwd_rexmitting = 1;
2586 			goto begin_fwd;
2587 
2588 		} else if (!(sacked & TCPCB_LOST)) {
2589 			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2590 				hole = skb;
2591 			continue;
2592 
2593 		} else {
2594 			last_lost = TCP_SKB_CB(skb)->end_seq;
2595 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2596 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2597 			else
2598 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2599 		}
2600 
2601 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2602 			continue;
2603 
2604 		if (tcp_retransmit_skb(sk, skb))
2605 			return;
2606 
2607 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2608 
2609 		if (tcp_in_cwnd_reduction(sk))
2610 			tp->prr_out += tcp_skb_pcount(skb);
2611 
2612 		if (skb == tcp_write_queue_head(sk))
2613 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2614 						  inet_csk(sk)->icsk_rto,
2615 						  TCP_RTO_MAX);
2616 	}
2617 }
2618 
2619 /* Send a fin.  The caller locks the socket for us.  This cannot be
2620  * allowed to fail queueing a FIN frame under any circumstances.
2621  */
2622 void tcp_send_fin(struct sock *sk)
2623 {
2624 	struct tcp_sock *tp = tcp_sk(sk);
2625 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2626 	int mss_now;
2627 
2628 	/* Optimization, tack on the FIN if we have a queue of
2629 	 * unsent frames.  But be careful about outgoing SACKS
2630 	 * and IP options.
2631 	 */
2632 	mss_now = tcp_current_mss(sk);
2633 
2634 	if (tcp_send_head(sk) != NULL) {
2635 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2636 		TCP_SKB_CB(skb)->end_seq++;
2637 		tp->write_seq++;
2638 	} else {
2639 		/* Socket is locked, keep trying until memory is available. */
2640 		for (;;) {
2641 			skb = alloc_skb_fclone(MAX_TCP_HEADER,
2642 					       sk->sk_allocation);
2643 			if (skb)
2644 				break;
2645 			yield();
2646 		}
2647 
2648 		/* Reserve space for headers and prepare control bits. */
2649 		skb_reserve(skb, MAX_TCP_HEADER);
2650 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2651 		tcp_init_nondata_skb(skb, tp->write_seq,
2652 				     TCPHDR_ACK | TCPHDR_FIN);
2653 		tcp_queue_skb(sk, skb);
2654 	}
2655 	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2656 }
2657 
2658 /* We get here when a process closes a file descriptor (either due to
2659  * an explicit close() or as a byproduct of exit()'ing) and there
2660  * was unread data in the receive queue.  This behavior is recommended
2661  * by RFC 2525, section 2.17.  -DaveM
2662  */
2663 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2664 {
2665 	struct sk_buff *skb;
2666 
2667 	/* NOTE: No TCP options attached and we never retransmit this. */
2668 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2669 	if (!skb) {
2670 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2671 		return;
2672 	}
2673 
2674 	/* Reserve space for headers and prepare control bits. */
2675 	skb_reserve(skb, MAX_TCP_HEADER);
2676 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2677 			     TCPHDR_ACK | TCPHDR_RST);
2678 	/* Send it off. */
2679 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2680 	if (tcp_transmit_skb(sk, skb, 0, priority))
2681 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2682 
2683 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2684 }
2685 
2686 /* Send a crossed SYN-ACK during socket establishment.
2687  * WARNING: This routine must only be called when we have already sent
2688  * a SYN packet that crossed the incoming SYN that caused this routine
2689  * to get called. If this assumption fails then the initial rcv_wnd
2690  * and rcv_wscale values will not be correct.
2691  */
2692 int tcp_send_synack(struct sock *sk)
2693 {
2694 	struct sk_buff *skb;
2695 
2696 	skb = tcp_write_queue_head(sk);
2697 	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2698 		pr_debug("%s: wrong queue state\n", __func__);
2699 		return -EFAULT;
2700 	}
2701 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2702 		if (skb_cloned(skb)) {
2703 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2704 			if (nskb == NULL)
2705 				return -ENOMEM;
2706 			tcp_unlink_write_queue(skb, sk);
2707 			skb_header_release(nskb);
2708 			__tcp_add_write_queue_head(sk, nskb);
2709 			sk_wmem_free_skb(sk, skb);
2710 			sk->sk_wmem_queued += nskb->truesize;
2711 			sk_mem_charge(sk, nskb->truesize);
2712 			skb = nskb;
2713 		}
2714 
2715 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2716 		TCP_ECN_send_synack(tcp_sk(sk), skb);
2717 	}
2718 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2719 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2720 }
2721 
2722 /**
2723  * tcp_make_synack - Prepare a SYN-ACK.
2724  * sk: listener socket
2725  * dst: dst entry attached to the SYNACK
2726  * req: request_sock pointer
2727  *
2728  * Allocate one skb and build a SYNACK packet.
2729  * @dst is consumed : Caller should not use it again.
2730  */
2731 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2732 				struct request_sock *req,
2733 				struct tcp_fastopen_cookie *foc)
2734 {
2735 	struct tcp_out_options opts;
2736 	struct inet_request_sock *ireq = inet_rsk(req);
2737 	struct tcp_sock *tp = tcp_sk(sk);
2738 	struct tcphdr *th;
2739 	struct sk_buff *skb;
2740 	struct tcp_md5sig_key *md5;
2741 	int tcp_header_size;
2742 	int mss;
2743 
2744 	skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2745 	if (unlikely(!skb)) {
2746 		dst_release(dst);
2747 		return NULL;
2748 	}
2749 	/* Reserve space for headers. */
2750 	skb_reserve(skb, MAX_TCP_HEADER);
2751 
2752 	skb_dst_set(skb, dst);
2753 	security_skb_owned_by(skb, sk);
2754 
2755 	mss = dst_metric_advmss(dst);
2756 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2757 		mss = tp->rx_opt.user_mss;
2758 
2759 	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2760 		__u8 rcv_wscale;
2761 		/* Set this up on the first call only */
2762 		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2763 
2764 		/* limit the window selection if the user enforce a smaller rx buffer */
2765 		if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2766 		    (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2767 			req->window_clamp = tcp_full_space(sk);
2768 
2769 		/* tcp_full_space because it is guaranteed to be the first packet */
2770 		tcp_select_initial_window(tcp_full_space(sk),
2771 			mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2772 			&req->rcv_wnd,
2773 			&req->window_clamp,
2774 			ireq->wscale_ok,
2775 			&rcv_wscale,
2776 			dst_metric(dst, RTAX_INITRWND));
2777 		ireq->rcv_wscale = rcv_wscale;
2778 	}
2779 
2780 	memset(&opts, 0, sizeof(opts));
2781 #ifdef CONFIG_SYN_COOKIES
2782 	if (unlikely(req->cookie_ts))
2783 		TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2784 	else
2785 #endif
2786 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2787 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2788 					     foc) + sizeof(*th);
2789 
2790 	skb_push(skb, tcp_header_size);
2791 	skb_reset_transport_header(skb);
2792 
2793 	th = tcp_hdr(skb);
2794 	memset(th, 0, sizeof(struct tcphdr));
2795 	th->syn = 1;
2796 	th->ack = 1;
2797 	TCP_ECN_make_synack(req, th);
2798 	th->source = htons(ireq->ir_num);
2799 	th->dest = ireq->ir_rmt_port;
2800 	/* Setting of flags are superfluous here for callers (and ECE is
2801 	 * not even correctly set)
2802 	 */
2803 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2804 			     TCPHDR_SYN | TCPHDR_ACK);
2805 
2806 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2807 	/* XXX data is queued and acked as is. No buffer/window check */
2808 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2809 
2810 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2811 	th->window = htons(min(req->rcv_wnd, 65535U));
2812 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2813 	th->doff = (tcp_header_size >> 2);
2814 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2815 
2816 #ifdef CONFIG_TCP_MD5SIG
2817 	/* Okay, we have all we need - do the md5 hash if needed */
2818 	if (md5) {
2819 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2820 					       md5, NULL, req, skb);
2821 	}
2822 #endif
2823 
2824 	return skb;
2825 }
2826 EXPORT_SYMBOL(tcp_make_synack);
2827 
2828 /* Do all connect socket setups that can be done AF independent. */
2829 static void tcp_connect_init(struct sock *sk)
2830 {
2831 	const struct dst_entry *dst = __sk_dst_get(sk);
2832 	struct tcp_sock *tp = tcp_sk(sk);
2833 	__u8 rcv_wscale;
2834 
2835 	/* We'll fix this up when we get a response from the other end.
2836 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2837 	 */
2838 	tp->tcp_header_len = sizeof(struct tcphdr) +
2839 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2840 
2841 #ifdef CONFIG_TCP_MD5SIG
2842 	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2843 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2844 #endif
2845 
2846 	/* If user gave his TCP_MAXSEG, record it to clamp */
2847 	if (tp->rx_opt.user_mss)
2848 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2849 	tp->max_window = 0;
2850 	tcp_mtup_init(sk);
2851 	tcp_sync_mss(sk, dst_mtu(dst));
2852 
2853 	if (!tp->window_clamp)
2854 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2855 	tp->advmss = dst_metric_advmss(dst);
2856 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2857 		tp->advmss = tp->rx_opt.user_mss;
2858 
2859 	tcp_initialize_rcv_mss(sk);
2860 
2861 	/* limit the window selection if the user enforce a smaller rx buffer */
2862 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2863 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2864 		tp->window_clamp = tcp_full_space(sk);
2865 
2866 	tcp_select_initial_window(tcp_full_space(sk),
2867 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2868 				  &tp->rcv_wnd,
2869 				  &tp->window_clamp,
2870 				  sysctl_tcp_window_scaling,
2871 				  &rcv_wscale,
2872 				  dst_metric(dst, RTAX_INITRWND));
2873 
2874 	tp->rx_opt.rcv_wscale = rcv_wscale;
2875 	tp->rcv_ssthresh = tp->rcv_wnd;
2876 
2877 	sk->sk_err = 0;
2878 	sock_reset_flag(sk, SOCK_DONE);
2879 	tp->snd_wnd = 0;
2880 	tcp_init_wl(tp, 0);
2881 	tp->snd_una = tp->write_seq;
2882 	tp->snd_sml = tp->write_seq;
2883 	tp->snd_up = tp->write_seq;
2884 	tp->snd_nxt = tp->write_seq;
2885 
2886 	if (likely(!tp->repair))
2887 		tp->rcv_nxt = 0;
2888 	else
2889 		tp->rcv_tstamp = tcp_time_stamp;
2890 	tp->rcv_wup = tp->rcv_nxt;
2891 	tp->copied_seq = tp->rcv_nxt;
2892 
2893 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2894 	inet_csk(sk)->icsk_retransmits = 0;
2895 	tcp_clear_retrans(tp);
2896 }
2897 
2898 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2899 {
2900 	struct tcp_sock *tp = tcp_sk(sk);
2901 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2902 
2903 	tcb->end_seq += skb->len;
2904 	skb_header_release(skb);
2905 	__tcp_add_write_queue_tail(sk, skb);
2906 	sk->sk_wmem_queued += skb->truesize;
2907 	sk_mem_charge(sk, skb->truesize);
2908 	tp->write_seq = tcb->end_seq;
2909 	tp->packets_out += tcp_skb_pcount(skb);
2910 }
2911 
2912 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2913  * queue a data-only packet after the regular SYN, such that regular SYNs
2914  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2915  * only the SYN sequence, the data are retransmitted in the first ACK.
2916  * If cookie is not cached or other error occurs, falls back to send a
2917  * regular SYN with Fast Open cookie request option.
2918  */
2919 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2920 {
2921 	struct tcp_sock *tp = tcp_sk(sk);
2922 	struct tcp_fastopen_request *fo = tp->fastopen_req;
2923 	int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2924 	struct sk_buff *syn_data = NULL, *data;
2925 	unsigned long last_syn_loss = 0;
2926 
2927 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
2928 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2929 			       &syn_loss, &last_syn_loss);
2930 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
2931 	if (syn_loss > 1 &&
2932 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2933 		fo->cookie.len = -1;
2934 		goto fallback;
2935 	}
2936 
2937 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2938 		fo->cookie.len = -1;
2939 	else if (fo->cookie.len <= 0)
2940 		goto fallback;
2941 
2942 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2943 	 * user-MSS. Reserve maximum option space for middleboxes that add
2944 	 * private TCP options. The cost is reduced data space in SYN :(
2945 	 */
2946 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2947 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2948 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2949 		MAX_TCP_OPTION_SPACE;
2950 
2951 	space = min_t(size_t, space, fo->size);
2952 
2953 	/* limit to order-0 allocations */
2954 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
2955 
2956 	syn_data = skb_copy_expand(syn, MAX_TCP_HEADER, space,
2957 				   sk->sk_allocation);
2958 	if (syn_data == NULL)
2959 		goto fallback;
2960 
2961 	for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2962 		struct iovec *iov = &fo->data->msg_iov[i];
2963 		unsigned char __user *from = iov->iov_base;
2964 		int len = iov->iov_len;
2965 
2966 		if (syn_data->len + len > space)
2967 			len = space - syn_data->len;
2968 		else if (i + 1 == iovlen)
2969 			/* No more data pending in inet_wait_for_connect() */
2970 			fo->data = NULL;
2971 
2972 		if (skb_add_data(syn_data, from, len))
2973 			goto fallback;
2974 	}
2975 
2976 	/* Queue a data-only packet after the regular SYN for retransmission */
2977 	data = pskb_copy(syn_data, sk->sk_allocation);
2978 	if (data == NULL)
2979 		goto fallback;
2980 	TCP_SKB_CB(data)->seq++;
2981 	TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2982 	TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2983 	tcp_connect_queue_skb(sk, data);
2984 	fo->copied = data->len;
2985 
2986 	/* syn_data is about to be sent, we need to take current time stamps
2987 	 * for the packets that are in write queue : SYN packet and DATA
2988 	 */
2989 	skb_mstamp_get(&syn->skb_mstamp);
2990 	data->skb_mstamp = syn->skb_mstamp;
2991 
2992 	if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2993 		tp->syn_data = (fo->copied > 0);
2994 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
2995 		goto done;
2996 	}
2997 	syn_data = NULL;
2998 
2999 fallback:
3000 	/* Send a regular SYN with Fast Open cookie request option */
3001 	if (fo->cookie.len > 0)
3002 		fo->cookie.len = 0;
3003 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3004 	if (err)
3005 		tp->syn_fastopen = 0;
3006 	kfree_skb(syn_data);
3007 done:
3008 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3009 	return err;
3010 }
3011 
3012 /* Build a SYN and send it off. */
3013 int tcp_connect(struct sock *sk)
3014 {
3015 	struct tcp_sock *tp = tcp_sk(sk);
3016 	struct sk_buff *buff;
3017 	int err;
3018 
3019 	tcp_connect_init(sk);
3020 
3021 	if (unlikely(tp->repair)) {
3022 		tcp_finish_connect(sk, NULL);
3023 		return 0;
3024 	}
3025 
3026 	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
3027 	if (unlikely(buff == NULL))
3028 		return -ENOBUFS;
3029 
3030 	/* Reserve space for headers. */
3031 	skb_reserve(buff, MAX_TCP_HEADER);
3032 
3033 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3034 	tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
3035 	tcp_connect_queue_skb(sk, buff);
3036 	TCP_ECN_send_syn(sk, buff);
3037 
3038 	/* Send off SYN; include data in Fast Open. */
3039 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3040 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3041 	if (err == -ECONNREFUSED)
3042 		return err;
3043 
3044 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3045 	 * in order to make this packet get counted in tcpOutSegs.
3046 	 */
3047 	tp->snd_nxt = tp->write_seq;
3048 	tp->pushed_seq = tp->write_seq;
3049 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3050 
3051 	/* Timer for repeating the SYN until an answer. */
3052 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3053 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3054 	return 0;
3055 }
3056 EXPORT_SYMBOL(tcp_connect);
3057 
3058 /* Send out a delayed ack, the caller does the policy checking
3059  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3060  * for details.
3061  */
3062 void tcp_send_delayed_ack(struct sock *sk)
3063 {
3064 	struct inet_connection_sock *icsk = inet_csk(sk);
3065 	int ato = icsk->icsk_ack.ato;
3066 	unsigned long timeout;
3067 
3068 	if (ato > TCP_DELACK_MIN) {
3069 		const struct tcp_sock *tp = tcp_sk(sk);
3070 		int max_ato = HZ / 2;
3071 
3072 		if (icsk->icsk_ack.pingpong ||
3073 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3074 			max_ato = TCP_DELACK_MAX;
3075 
3076 		/* Slow path, intersegment interval is "high". */
3077 
3078 		/* If some rtt estimate is known, use it to bound delayed ack.
3079 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3080 		 * directly.
3081 		 */
3082 		if (tp->srtt_us) {
3083 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3084 					TCP_DELACK_MIN);
3085 
3086 			if (rtt < max_ato)
3087 				max_ato = rtt;
3088 		}
3089 
3090 		ato = min(ato, max_ato);
3091 	}
3092 
3093 	/* Stay within the limit we were given */
3094 	timeout = jiffies + ato;
3095 
3096 	/* Use new timeout only if there wasn't a older one earlier. */
3097 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3098 		/* If delack timer was blocked or is about to expire,
3099 		 * send ACK now.
3100 		 */
3101 		if (icsk->icsk_ack.blocked ||
3102 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3103 			tcp_send_ack(sk);
3104 			return;
3105 		}
3106 
3107 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3108 			timeout = icsk->icsk_ack.timeout;
3109 	}
3110 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3111 	icsk->icsk_ack.timeout = timeout;
3112 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3113 }
3114 
3115 /* This routine sends an ack and also updates the window. */
3116 void tcp_send_ack(struct sock *sk)
3117 {
3118 	struct sk_buff *buff;
3119 
3120 	/* If we have been reset, we may not send again. */
3121 	if (sk->sk_state == TCP_CLOSE)
3122 		return;
3123 
3124 	/* We are not putting this on the write queue, so
3125 	 * tcp_transmit_skb() will set the ownership to this
3126 	 * sock.
3127 	 */
3128 	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3129 	if (buff == NULL) {
3130 		inet_csk_schedule_ack(sk);
3131 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3132 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3133 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3134 		return;
3135 	}
3136 
3137 	/* Reserve space for headers and prepare control bits. */
3138 	skb_reserve(buff, MAX_TCP_HEADER);
3139 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3140 
3141 	/* Send it off, this clears delayed acks for us. */
3142 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
3143 	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3144 }
3145 
3146 /* This routine sends a packet with an out of date sequence
3147  * number. It assumes the other end will try to ack it.
3148  *
3149  * Question: what should we make while urgent mode?
3150  * 4.4BSD forces sending single byte of data. We cannot send
3151  * out of window data, because we have SND.NXT==SND.MAX...
3152  *
3153  * Current solution: to send TWO zero-length segments in urgent mode:
3154  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3155  * out-of-date with SND.UNA-1 to probe window.
3156  */
3157 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3158 {
3159 	struct tcp_sock *tp = tcp_sk(sk);
3160 	struct sk_buff *skb;
3161 
3162 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3163 	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3164 	if (skb == NULL)
3165 		return -1;
3166 
3167 	/* Reserve space for headers and set control bits. */
3168 	skb_reserve(skb, MAX_TCP_HEADER);
3169 	/* Use a previous sequence.  This should cause the other
3170 	 * end to send an ack.  Don't queue or clone SKB, just
3171 	 * send it.
3172 	 */
3173 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3174 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
3175 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3176 }
3177 
3178 void tcp_send_window_probe(struct sock *sk)
3179 {
3180 	if (sk->sk_state == TCP_ESTABLISHED) {
3181 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3182 		tcp_xmit_probe_skb(sk, 0);
3183 	}
3184 }
3185 
3186 /* Initiate keepalive or window probe from timer. */
3187 int tcp_write_wakeup(struct sock *sk)
3188 {
3189 	struct tcp_sock *tp = tcp_sk(sk);
3190 	struct sk_buff *skb;
3191 
3192 	if (sk->sk_state == TCP_CLOSE)
3193 		return -1;
3194 
3195 	if ((skb = tcp_send_head(sk)) != NULL &&
3196 	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3197 		int err;
3198 		unsigned int mss = tcp_current_mss(sk);
3199 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3200 
3201 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3202 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3203 
3204 		/* We are probing the opening of a window
3205 		 * but the window size is != 0
3206 		 * must have been a result SWS avoidance ( sender )
3207 		 */
3208 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3209 		    skb->len > mss) {
3210 			seg_size = min(seg_size, mss);
3211 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3212 			if (tcp_fragment(sk, skb, seg_size, mss))
3213 				return -1;
3214 		} else if (!tcp_skb_pcount(skb))
3215 			tcp_set_skb_tso_segs(sk, skb, mss);
3216 
3217 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3218 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
3219 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3220 		if (!err)
3221 			tcp_event_new_data_sent(sk, skb);
3222 		return err;
3223 	} else {
3224 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3225 			tcp_xmit_probe_skb(sk, 1);
3226 		return tcp_xmit_probe_skb(sk, 0);
3227 	}
3228 }
3229 
3230 /* A window probe timeout has occurred.  If window is not closed send
3231  * a partial packet else a zero probe.
3232  */
3233 void tcp_send_probe0(struct sock *sk)
3234 {
3235 	struct inet_connection_sock *icsk = inet_csk(sk);
3236 	struct tcp_sock *tp = tcp_sk(sk);
3237 	int err;
3238 
3239 	err = tcp_write_wakeup(sk);
3240 
3241 	if (tp->packets_out || !tcp_send_head(sk)) {
3242 		/* Cancel probe timer, if it is not required. */
3243 		icsk->icsk_probes_out = 0;
3244 		icsk->icsk_backoff = 0;
3245 		return;
3246 	}
3247 
3248 	if (err <= 0) {
3249 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3250 			icsk->icsk_backoff++;
3251 		icsk->icsk_probes_out++;
3252 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3253 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3254 					  TCP_RTO_MAX);
3255 	} else {
3256 		/* If packet was not sent due to local congestion,
3257 		 * do not backoff and do not remember icsk_probes_out.
3258 		 * Let local senders to fight for local resources.
3259 		 *
3260 		 * Use accumulated backoff yet.
3261 		 */
3262 		if (!icsk->icsk_probes_out)
3263 			icsk->icsk_probes_out = 1;
3264 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3265 					  min(icsk->icsk_rto << icsk->icsk_backoff,
3266 					      TCP_RESOURCE_PROBE_INTERVAL),
3267 					  TCP_RTO_MAX);
3268 	}
3269 }
3270