xref: /linux/net/ipv4/tcp_output.c (revision 2a10154abcb75ad0d7b6bfea6210ac743ec60897)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
23  *				:	Fragmentation on mtu decrease
24  *				:	Segment collapse on retransmit
25  *				:	AF independence
26  *
27  *		Linus Torvalds	:	send_delayed_ack
28  *		David S. Miller	:	Charge memory using the right skb
29  *					during syn/ack processing.
30  *		David S. Miller :	Output engine completely rewritten.
31  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
32  *		Cacophonix Gaul :	draft-minshall-nagle-01
33  *		J Hadi Salim	:	ECN support
34  *
35  */
36 
37 #define pr_fmt(fmt) "TCP: " fmt
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47 
48 /* People can turn this on to work with those rare, broken TCPs that
49  * interpret the window field as a signed quantity.
50  */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52 
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55 
56 /* This limits the percentage of the congestion window which we
57  * will allow a single TSO frame to consume.  Building TSO frames
58  * which are too large can cause TCP streams to be bursty.
59  */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61 
62 /* By default, RFC2861 behavior.  */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64 
65 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
66 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
67 
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 			   int push_one, gfp_t gfp);
70 
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 	struct inet_connection_sock *icsk = inet_csk(sk);
75 	struct tcp_sock *tp = tcp_sk(sk);
76 	unsigned int prior_packets = tp->packets_out;
77 
78 	tcp_advance_send_head(sk, skb);
79 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80 
81 	tp->packets_out += tcp_skb_pcount(skb);
82 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 		tcp_rearm_rto(sk);
85 	}
86 
87 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88 		      tcp_skb_pcount(skb));
89 }
90 
91 /* SND.NXT, if window was not shrunk.
92  * If window has been shrunk, what should we make? It is not clear at all.
93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95  * invalid. OK, let's make this for now:
96  */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 	const struct tcp_sock *tp = tcp_sk(sk);
100 
101 	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
142 {
143 	struct tcp_sock *tp = tcp_sk(sk);
144 	s32 delta = tcp_time_stamp - tp->lsndtime;
145 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
146 	u32 cwnd = tp->snd_cwnd;
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tp->snd_cwnd = max(cwnd, restart_cwnd);
156 	tp->snd_cwnd_stamp = tcp_time_stamp;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_time_stamp;
166 	const struct dst_entry *dst = __sk_dst_get(sk);
167 
168 	if (sysctl_tcp_slow_start_after_idle &&
169 	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
171 
172 	tp->lsndtime = now;
173 
174 	/* If it is a reply for ato after last received
175 	 * packet, enter pingpong mode.
176 	 */
177 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
178 	    (!dst || !dst_metric(dst, RTAX_QUICKACK)))
179 			icsk->icsk_ack.pingpong = 1;
180 }
181 
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
184 {
185 	tcp_dec_quickack_mode(sk, pkts);
186 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
187 }
188 
189 
190 u32 tcp_default_init_rwnd(u32 mss)
191 {
192 	/* Initial receive window should be twice of TCP_INIT_CWND to
193 	 * enable proper sending of new unsent data during fast recovery
194 	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 	 * limit when mss is larger than 1460.
196 	 */
197 	u32 init_rwnd = TCP_INIT_CWND * 2;
198 
199 	if (mss > 1460)
200 		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 	return init_rwnd;
202 }
203 
204 /* Determine a window scaling and initial window to offer.
205  * Based on the assumption that the given amount of space
206  * will be offered. Store the results in the tp structure.
207  * NOTE: for smooth operation initial space offering should
208  * be a multiple of mss if possible. We assume here that mss >= 1.
209  * This MUST be enforced by all callers.
210  */
211 void tcp_select_initial_window(int __space, __u32 mss,
212 			       __u32 *rcv_wnd, __u32 *window_clamp,
213 			       int wscale_ok, __u8 *rcv_wscale,
214 			       __u32 init_rcv_wnd)
215 {
216 	unsigned int space = (__space < 0 ? 0 : __space);
217 
218 	/* If no clamp set the clamp to the max possible scaled window */
219 	if (*window_clamp == 0)
220 		(*window_clamp) = (65535 << 14);
221 	space = min(*window_clamp, space);
222 
223 	/* Quantize space offering to a multiple of mss if possible. */
224 	if (space > mss)
225 		space = (space / mss) * mss;
226 
227 	/* NOTE: offering an initial window larger than 32767
228 	 * will break some buggy TCP stacks. If the admin tells us
229 	 * it is likely we could be speaking with such a buggy stack
230 	 * we will truncate our initial window offering to 32K-1
231 	 * unless the remote has sent us a window scaling option,
232 	 * which we interpret as a sign the remote TCP is not
233 	 * misinterpreting the window field as a signed quantity.
234 	 */
235 	if (sysctl_tcp_workaround_signed_windows)
236 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 	else
238 		(*rcv_wnd) = space;
239 
240 	(*rcv_wscale) = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window
243 		 * See RFC1323 for an explanation of the limit to 14
244 		 */
245 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
246 		space = min_t(u32, space, *window_clamp);
247 		while (space > 65535 && (*rcv_wscale) < 14) {
248 			space >>= 1;
249 			(*rcv_wscale)++;
250 		}
251 	}
252 
253 	if (mss > (1 << *rcv_wscale)) {
254 		if (!init_rcv_wnd) /* Use default unless specified otherwise */
255 			init_rcv_wnd = tcp_default_init_rwnd(mss);
256 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
257 	}
258 
259 	/* Set the clamp no higher than max representable value */
260 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
261 }
262 EXPORT_SYMBOL(tcp_select_initial_window);
263 
264 /* Chose a new window to advertise, update state in tcp_sock for the
265  * socket, and return result with RFC1323 scaling applied.  The return
266  * value can be stuffed directly into th->window for an outgoing
267  * frame.
268  */
269 static u16 tcp_select_window(struct sock *sk)
270 {
271 	struct tcp_sock *tp = tcp_sk(sk);
272 	u32 old_win = tp->rcv_wnd;
273 	u32 cur_win = tcp_receive_window(tp);
274 	u32 new_win = __tcp_select_window(sk);
275 
276 	/* Never shrink the offered window */
277 	if (new_win < cur_win) {
278 		/* Danger Will Robinson!
279 		 * Don't update rcv_wup/rcv_wnd here or else
280 		 * we will not be able to advertise a zero
281 		 * window in time.  --DaveM
282 		 *
283 		 * Relax Will Robinson.
284 		 */
285 		if (new_win == 0)
286 			NET_INC_STATS(sock_net(sk),
287 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
288 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
289 	}
290 	tp->rcv_wnd = new_win;
291 	tp->rcv_wup = tp->rcv_nxt;
292 
293 	/* Make sure we do not exceed the maximum possible
294 	 * scaled window.
295 	 */
296 	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
297 		new_win = min(new_win, MAX_TCP_WINDOW);
298 	else
299 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
300 
301 	/* RFC1323 scaling applied */
302 	new_win >>= tp->rx_opt.rcv_wscale;
303 
304 	/* If we advertise zero window, disable fast path. */
305 	if (new_win == 0) {
306 		tp->pred_flags = 0;
307 		if (old_win)
308 			NET_INC_STATS(sock_net(sk),
309 				      LINUX_MIB_TCPTOZEROWINDOWADV);
310 	} else if (old_win == 0) {
311 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
312 	}
313 
314 	return new_win;
315 }
316 
317 /* Packet ECN state for a SYN-ACK */
318 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
319 {
320 	const struct tcp_sock *tp = tcp_sk(sk);
321 
322 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
323 	if (!(tp->ecn_flags & TCP_ECN_OK))
324 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
325 	else if (tcp_ca_needs_ecn(sk))
326 		INET_ECN_xmit(sk);
327 }
328 
329 /* Packet ECN state for a SYN.  */
330 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
331 {
332 	struct tcp_sock *tp = tcp_sk(sk);
333 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
334 		       tcp_ca_needs_ecn(sk);
335 
336 	if (!use_ecn) {
337 		const struct dst_entry *dst = __sk_dst_get(sk);
338 
339 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 			use_ecn = true;
341 	}
342 
343 	tp->ecn_flags = 0;
344 
345 	if (use_ecn) {
346 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347 		tp->ecn_flags = TCP_ECN_OK;
348 		if (tcp_ca_needs_ecn(sk))
349 			INET_ECN_xmit(sk);
350 	}
351 }
352 
353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
354 {
355 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
356 		/* tp->ecn_flags are cleared at a later point in time when
357 		 * SYN ACK is ultimatively being received.
358 		 */
359 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
360 }
361 
362 static void
363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th,
364 		    struct sock *sk)
365 {
366 	if (inet_rsk(req)->ecn_ok) {
367 		th->ece = 1;
368 		if (tcp_ca_needs_ecn(sk))
369 			INET_ECN_xmit(sk);
370 	}
371 }
372 
373 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
374  * be sent.
375  */
376 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
377 				int tcp_header_len)
378 {
379 	struct tcp_sock *tp = tcp_sk(sk);
380 
381 	if (tp->ecn_flags & TCP_ECN_OK) {
382 		/* Not-retransmitted data segment: set ECT and inject CWR. */
383 		if (skb->len != tcp_header_len &&
384 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
385 			INET_ECN_xmit(sk);
386 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
387 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
388 				tcp_hdr(skb)->cwr = 1;
389 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
390 			}
391 		} else if (!tcp_ca_needs_ecn(sk)) {
392 			/* ACK or retransmitted segment: clear ECT|CE */
393 			INET_ECN_dontxmit(sk);
394 		}
395 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
396 			tcp_hdr(skb)->ece = 1;
397 	}
398 }
399 
400 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
401  * auto increment end seqno.
402  */
403 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
404 {
405 	struct skb_shared_info *shinfo = skb_shinfo(skb);
406 
407 	skb->ip_summed = CHECKSUM_PARTIAL;
408 	skb->csum = 0;
409 
410 	TCP_SKB_CB(skb)->tcp_flags = flags;
411 	TCP_SKB_CB(skb)->sacked = 0;
412 
413 	tcp_skb_pcount_set(skb, 1);
414 	shinfo->gso_size = 0;
415 	shinfo->gso_type = 0;
416 
417 	TCP_SKB_CB(skb)->seq = seq;
418 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
419 		seq++;
420 	TCP_SKB_CB(skb)->end_seq = seq;
421 }
422 
423 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
424 {
425 	return tp->snd_una != tp->snd_up;
426 }
427 
428 #define OPTION_SACK_ADVERTISE	(1 << 0)
429 #define OPTION_TS		(1 << 1)
430 #define OPTION_MD5		(1 << 2)
431 #define OPTION_WSCALE		(1 << 3)
432 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
433 
434 struct tcp_out_options {
435 	u16 options;		/* bit field of OPTION_* */
436 	u16 mss;		/* 0 to disable */
437 	u8 ws;			/* window scale, 0 to disable */
438 	u8 num_sack_blocks;	/* number of SACK blocks to include */
439 	u8 hash_size;		/* bytes in hash_location */
440 	__u8 *hash_location;	/* temporary pointer, overloaded */
441 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
442 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
443 };
444 
445 /* Write previously computed TCP options to the packet.
446  *
447  * Beware: Something in the Internet is very sensitive to the ordering of
448  * TCP options, we learned this through the hard way, so be careful here.
449  * Luckily we can at least blame others for their non-compliance but from
450  * inter-operability perspective it seems that we're somewhat stuck with
451  * the ordering which we have been using if we want to keep working with
452  * those broken things (not that it currently hurts anybody as there isn't
453  * particular reason why the ordering would need to be changed).
454  *
455  * At least SACK_PERM as the first option is known to lead to a disaster
456  * (but it may well be that other scenarios fail similarly).
457  */
458 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
459 			      struct tcp_out_options *opts)
460 {
461 	u16 options = opts->options;	/* mungable copy */
462 
463 	if (unlikely(OPTION_MD5 & options)) {
464 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
465 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
466 		/* overload cookie hash location */
467 		opts->hash_location = (__u8 *)ptr;
468 		ptr += 4;
469 	}
470 
471 	if (unlikely(opts->mss)) {
472 		*ptr++ = htonl((TCPOPT_MSS << 24) |
473 			       (TCPOLEN_MSS << 16) |
474 			       opts->mss);
475 	}
476 
477 	if (likely(OPTION_TS & options)) {
478 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
479 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
480 				       (TCPOLEN_SACK_PERM << 16) |
481 				       (TCPOPT_TIMESTAMP << 8) |
482 				       TCPOLEN_TIMESTAMP);
483 			options &= ~OPTION_SACK_ADVERTISE;
484 		} else {
485 			*ptr++ = htonl((TCPOPT_NOP << 24) |
486 				       (TCPOPT_NOP << 16) |
487 				       (TCPOPT_TIMESTAMP << 8) |
488 				       TCPOLEN_TIMESTAMP);
489 		}
490 		*ptr++ = htonl(opts->tsval);
491 		*ptr++ = htonl(opts->tsecr);
492 	}
493 
494 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
495 		*ptr++ = htonl((TCPOPT_NOP << 24) |
496 			       (TCPOPT_NOP << 16) |
497 			       (TCPOPT_SACK_PERM << 8) |
498 			       TCPOLEN_SACK_PERM);
499 	}
500 
501 	if (unlikely(OPTION_WSCALE & options)) {
502 		*ptr++ = htonl((TCPOPT_NOP << 24) |
503 			       (TCPOPT_WINDOW << 16) |
504 			       (TCPOLEN_WINDOW << 8) |
505 			       opts->ws);
506 	}
507 
508 	if (unlikely(opts->num_sack_blocks)) {
509 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
510 			tp->duplicate_sack : tp->selective_acks;
511 		int this_sack;
512 
513 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
514 			       (TCPOPT_NOP  << 16) |
515 			       (TCPOPT_SACK <<  8) |
516 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
517 						     TCPOLEN_SACK_PERBLOCK)));
518 
519 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
520 		     ++this_sack) {
521 			*ptr++ = htonl(sp[this_sack].start_seq);
522 			*ptr++ = htonl(sp[this_sack].end_seq);
523 		}
524 
525 		tp->rx_opt.dsack = 0;
526 	}
527 
528 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
529 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
530 		u8 *p = (u8 *)ptr;
531 		u32 len; /* Fast Open option length */
532 
533 		if (foc->exp) {
534 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
535 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
536 				     TCPOPT_FASTOPEN_MAGIC);
537 			p += TCPOLEN_EXP_FASTOPEN_BASE;
538 		} else {
539 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
540 			*p++ = TCPOPT_FASTOPEN;
541 			*p++ = len;
542 		}
543 
544 		memcpy(p, foc->val, foc->len);
545 		if ((len & 3) == 2) {
546 			p[foc->len] = TCPOPT_NOP;
547 			p[foc->len + 1] = TCPOPT_NOP;
548 		}
549 		ptr += (len + 3) >> 2;
550 	}
551 }
552 
553 /* Compute TCP options for SYN packets. This is not the final
554  * network wire format yet.
555  */
556 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
557 				struct tcp_out_options *opts,
558 				struct tcp_md5sig_key **md5)
559 {
560 	struct tcp_sock *tp = tcp_sk(sk);
561 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
562 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
563 
564 #ifdef CONFIG_TCP_MD5SIG
565 	*md5 = tp->af_specific->md5_lookup(sk, sk);
566 	if (*md5) {
567 		opts->options |= OPTION_MD5;
568 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
569 	}
570 #else
571 	*md5 = NULL;
572 #endif
573 
574 	/* We always get an MSS option.  The option bytes which will be seen in
575 	 * normal data packets should timestamps be used, must be in the MSS
576 	 * advertised.  But we subtract them from tp->mss_cache so that
577 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
578 	 * fact here if necessary.  If we don't do this correctly, as a
579 	 * receiver we won't recognize data packets as being full sized when we
580 	 * should, and thus we won't abide by the delayed ACK rules correctly.
581 	 * SACKs don't matter, we never delay an ACK when we have any of those
582 	 * going out.  */
583 	opts->mss = tcp_advertise_mss(sk);
584 	remaining -= TCPOLEN_MSS_ALIGNED;
585 
586 	if (likely(sysctl_tcp_timestamps && !*md5)) {
587 		opts->options |= OPTION_TS;
588 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
589 		opts->tsecr = tp->rx_opt.ts_recent;
590 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
591 	}
592 	if (likely(sysctl_tcp_window_scaling)) {
593 		opts->ws = tp->rx_opt.rcv_wscale;
594 		opts->options |= OPTION_WSCALE;
595 		remaining -= TCPOLEN_WSCALE_ALIGNED;
596 	}
597 	if (likely(sysctl_tcp_sack)) {
598 		opts->options |= OPTION_SACK_ADVERTISE;
599 		if (unlikely(!(OPTION_TS & opts->options)))
600 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
601 	}
602 
603 	if (fastopen && fastopen->cookie.len >= 0) {
604 		u32 need = fastopen->cookie.len;
605 
606 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
607 					       TCPOLEN_FASTOPEN_BASE;
608 		need = (need + 3) & ~3U;  /* Align to 32 bits */
609 		if (remaining >= need) {
610 			opts->options |= OPTION_FAST_OPEN_COOKIE;
611 			opts->fastopen_cookie = &fastopen->cookie;
612 			remaining -= need;
613 			tp->syn_fastopen = 1;
614 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
615 		}
616 	}
617 
618 	return MAX_TCP_OPTION_SPACE - remaining;
619 }
620 
621 /* Set up TCP options for SYN-ACKs. */
622 static unsigned int tcp_synack_options(struct sock *sk,
623 				   struct request_sock *req,
624 				   unsigned int mss, struct sk_buff *skb,
625 				   struct tcp_out_options *opts,
626 				   const struct tcp_md5sig_key *md5,
627 				   struct tcp_fastopen_cookie *foc)
628 {
629 	struct inet_request_sock *ireq = inet_rsk(req);
630 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
631 
632 #ifdef CONFIG_TCP_MD5SIG
633 	if (md5) {
634 		opts->options |= OPTION_MD5;
635 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
636 
637 		/* We can't fit any SACK blocks in a packet with MD5 + TS
638 		 * options. There was discussion about disabling SACK
639 		 * rather than TS in order to fit in better with old,
640 		 * buggy kernels, but that was deemed to be unnecessary.
641 		 */
642 		ireq->tstamp_ok &= !ireq->sack_ok;
643 	}
644 #endif
645 
646 	/* We always send an MSS option. */
647 	opts->mss = mss;
648 	remaining -= TCPOLEN_MSS_ALIGNED;
649 
650 	if (likely(ireq->wscale_ok)) {
651 		opts->ws = ireq->rcv_wscale;
652 		opts->options |= OPTION_WSCALE;
653 		remaining -= TCPOLEN_WSCALE_ALIGNED;
654 	}
655 	if (likely(ireq->tstamp_ok)) {
656 		opts->options |= OPTION_TS;
657 		opts->tsval = tcp_skb_timestamp(skb);
658 		opts->tsecr = req->ts_recent;
659 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
660 	}
661 	if (likely(ireq->sack_ok)) {
662 		opts->options |= OPTION_SACK_ADVERTISE;
663 		if (unlikely(!ireq->tstamp_ok))
664 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
665 	}
666 	if (foc != NULL && foc->len >= 0) {
667 		u32 need = foc->len;
668 
669 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
670 				   TCPOLEN_FASTOPEN_BASE;
671 		need = (need + 3) & ~3U;  /* Align to 32 bits */
672 		if (remaining >= need) {
673 			opts->options |= OPTION_FAST_OPEN_COOKIE;
674 			opts->fastopen_cookie = foc;
675 			remaining -= need;
676 		}
677 	}
678 
679 	return MAX_TCP_OPTION_SPACE - remaining;
680 }
681 
682 /* Compute TCP options for ESTABLISHED sockets. This is not the
683  * final wire format yet.
684  */
685 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
686 					struct tcp_out_options *opts,
687 					struct tcp_md5sig_key **md5)
688 {
689 	struct tcp_sock *tp = tcp_sk(sk);
690 	unsigned int size = 0;
691 	unsigned int eff_sacks;
692 
693 	opts->options = 0;
694 
695 #ifdef CONFIG_TCP_MD5SIG
696 	*md5 = tp->af_specific->md5_lookup(sk, sk);
697 	if (unlikely(*md5)) {
698 		opts->options |= OPTION_MD5;
699 		size += TCPOLEN_MD5SIG_ALIGNED;
700 	}
701 #else
702 	*md5 = NULL;
703 #endif
704 
705 	if (likely(tp->rx_opt.tstamp_ok)) {
706 		opts->options |= OPTION_TS;
707 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
708 		opts->tsecr = tp->rx_opt.ts_recent;
709 		size += TCPOLEN_TSTAMP_ALIGNED;
710 	}
711 
712 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
713 	if (unlikely(eff_sacks)) {
714 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
715 		opts->num_sack_blocks =
716 			min_t(unsigned int, eff_sacks,
717 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
718 			      TCPOLEN_SACK_PERBLOCK);
719 		size += TCPOLEN_SACK_BASE_ALIGNED +
720 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
721 	}
722 
723 	return size;
724 }
725 
726 
727 /* TCP SMALL QUEUES (TSQ)
728  *
729  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
730  * to reduce RTT and bufferbloat.
731  * We do this using a special skb destructor (tcp_wfree).
732  *
733  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
734  * needs to be reallocated in a driver.
735  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
736  *
737  * Since transmit from skb destructor is forbidden, we use a tasklet
738  * to process all sockets that eventually need to send more skbs.
739  * We use one tasklet per cpu, with its own queue of sockets.
740  */
741 struct tsq_tasklet {
742 	struct tasklet_struct	tasklet;
743 	struct list_head	head; /* queue of tcp sockets */
744 };
745 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
746 
747 static void tcp_tsq_handler(struct sock *sk)
748 {
749 	if ((1 << sk->sk_state) &
750 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
751 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
752 		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
753 			       0, GFP_ATOMIC);
754 }
755 /*
756  * One tasklet per cpu tries to send more skbs.
757  * We run in tasklet context but need to disable irqs when
758  * transferring tsq->head because tcp_wfree() might
759  * interrupt us (non NAPI drivers)
760  */
761 static void tcp_tasklet_func(unsigned long data)
762 {
763 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
764 	LIST_HEAD(list);
765 	unsigned long flags;
766 	struct list_head *q, *n;
767 	struct tcp_sock *tp;
768 	struct sock *sk;
769 
770 	local_irq_save(flags);
771 	list_splice_init(&tsq->head, &list);
772 	local_irq_restore(flags);
773 
774 	list_for_each_safe(q, n, &list) {
775 		tp = list_entry(q, struct tcp_sock, tsq_node);
776 		list_del(&tp->tsq_node);
777 
778 		sk = (struct sock *)tp;
779 		bh_lock_sock(sk);
780 
781 		if (!sock_owned_by_user(sk)) {
782 			tcp_tsq_handler(sk);
783 		} else {
784 			/* defer the work to tcp_release_cb() */
785 			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
786 		}
787 		bh_unlock_sock(sk);
788 
789 		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
790 		sk_free(sk);
791 	}
792 }
793 
794 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
795 			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
796 			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
797 			  (1UL << TCP_MTU_REDUCED_DEFERRED))
798 /**
799  * tcp_release_cb - tcp release_sock() callback
800  * @sk: socket
801  *
802  * called from release_sock() to perform protocol dependent
803  * actions before socket release.
804  */
805 void tcp_release_cb(struct sock *sk)
806 {
807 	struct tcp_sock *tp = tcp_sk(sk);
808 	unsigned long flags, nflags;
809 
810 	/* perform an atomic operation only if at least one flag is set */
811 	do {
812 		flags = tp->tsq_flags;
813 		if (!(flags & TCP_DEFERRED_ALL))
814 			return;
815 		nflags = flags & ~TCP_DEFERRED_ALL;
816 	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
817 
818 	if (flags & (1UL << TCP_TSQ_DEFERRED))
819 		tcp_tsq_handler(sk);
820 
821 	/* Here begins the tricky part :
822 	 * We are called from release_sock() with :
823 	 * 1) BH disabled
824 	 * 2) sk_lock.slock spinlock held
825 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
826 	 *
827 	 * But following code is meant to be called from BH handlers,
828 	 * so we should keep BH disabled, but early release socket ownership
829 	 */
830 	sock_release_ownership(sk);
831 
832 	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
833 		tcp_write_timer_handler(sk);
834 		__sock_put(sk);
835 	}
836 	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
837 		tcp_delack_timer_handler(sk);
838 		__sock_put(sk);
839 	}
840 	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
841 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
842 		__sock_put(sk);
843 	}
844 }
845 EXPORT_SYMBOL(tcp_release_cb);
846 
847 void __init tcp_tasklet_init(void)
848 {
849 	int i;
850 
851 	for_each_possible_cpu(i) {
852 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
853 
854 		INIT_LIST_HEAD(&tsq->head);
855 		tasklet_init(&tsq->tasklet,
856 			     tcp_tasklet_func,
857 			     (unsigned long)tsq);
858 	}
859 }
860 
861 /*
862  * Write buffer destructor automatically called from kfree_skb.
863  * We can't xmit new skbs from this context, as we might already
864  * hold qdisc lock.
865  */
866 void tcp_wfree(struct sk_buff *skb)
867 {
868 	struct sock *sk = skb->sk;
869 	struct tcp_sock *tp = tcp_sk(sk);
870 	int wmem;
871 
872 	/* Keep one reference on sk_wmem_alloc.
873 	 * Will be released by sk_free() from here or tcp_tasklet_func()
874 	 */
875 	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
876 
877 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
878 	 * Wait until our queues (qdisc + devices) are drained.
879 	 * This gives :
880 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
881 	 * - chance for incoming ACK (processed by another cpu maybe)
882 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
883 	 */
884 	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
885 		goto out;
886 
887 	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
888 	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
889 		unsigned long flags;
890 		struct tsq_tasklet *tsq;
891 
892 		/* queue this socket to tasklet queue */
893 		local_irq_save(flags);
894 		tsq = this_cpu_ptr(&tsq_tasklet);
895 		list_add(&tp->tsq_node, &tsq->head);
896 		tasklet_schedule(&tsq->tasklet);
897 		local_irq_restore(flags);
898 		return;
899 	}
900 out:
901 	sk_free(sk);
902 }
903 
904 /* This routine actually transmits TCP packets queued in by
905  * tcp_do_sendmsg().  This is used by both the initial
906  * transmission and possible later retransmissions.
907  * All SKB's seen here are completely headerless.  It is our
908  * job to build the TCP header, and pass the packet down to
909  * IP so it can do the same plus pass the packet off to the
910  * device.
911  *
912  * We are working here with either a clone of the original
913  * SKB, or a fresh unique copy made by the retransmit engine.
914  */
915 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
916 			    gfp_t gfp_mask)
917 {
918 	const struct inet_connection_sock *icsk = inet_csk(sk);
919 	struct inet_sock *inet;
920 	struct tcp_sock *tp;
921 	struct tcp_skb_cb *tcb;
922 	struct tcp_out_options opts;
923 	unsigned int tcp_options_size, tcp_header_size;
924 	struct tcp_md5sig_key *md5;
925 	struct tcphdr *th;
926 	int err;
927 
928 	BUG_ON(!skb || !tcp_skb_pcount(skb));
929 
930 	if (clone_it) {
931 		skb_mstamp_get(&skb->skb_mstamp);
932 
933 		if (unlikely(skb_cloned(skb)))
934 			skb = pskb_copy(skb, gfp_mask);
935 		else
936 			skb = skb_clone(skb, gfp_mask);
937 		if (unlikely(!skb))
938 			return -ENOBUFS;
939 	}
940 
941 	inet = inet_sk(sk);
942 	tp = tcp_sk(sk);
943 	tcb = TCP_SKB_CB(skb);
944 	memset(&opts, 0, sizeof(opts));
945 
946 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
947 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
948 	else
949 		tcp_options_size = tcp_established_options(sk, skb, &opts,
950 							   &md5);
951 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
952 
953 	if (tcp_packets_in_flight(tp) == 0)
954 		tcp_ca_event(sk, CA_EVENT_TX_START);
955 
956 	/* if no packet is in qdisc/device queue, then allow XPS to select
957 	 * another queue. We can be called from tcp_tsq_handler()
958 	 * which holds one reference to sk_wmem_alloc.
959 	 *
960 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
961 	 * One way to get this would be to set skb->truesize = 2 on them.
962 	 */
963 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
964 
965 	skb_push(skb, tcp_header_size);
966 	skb_reset_transport_header(skb);
967 
968 	skb_orphan(skb);
969 	skb->sk = sk;
970 	skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
971 	skb_set_hash_from_sk(skb, sk);
972 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
973 
974 	/* Build TCP header and checksum it. */
975 	th = tcp_hdr(skb);
976 	th->source		= inet->inet_sport;
977 	th->dest		= inet->inet_dport;
978 	th->seq			= htonl(tcb->seq);
979 	th->ack_seq		= htonl(tp->rcv_nxt);
980 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
981 					tcb->tcp_flags);
982 
983 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
984 		/* RFC1323: The window in SYN & SYN/ACK segments
985 		 * is never scaled.
986 		 */
987 		th->window	= htons(min(tp->rcv_wnd, 65535U));
988 	} else {
989 		th->window	= htons(tcp_select_window(sk));
990 	}
991 	th->check		= 0;
992 	th->urg_ptr		= 0;
993 
994 	/* The urg_mode check is necessary during a below snd_una win probe */
995 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
996 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
997 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
998 			th->urg = 1;
999 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1000 			th->urg_ptr = htons(0xFFFF);
1001 			th->urg = 1;
1002 		}
1003 	}
1004 
1005 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1006 	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
1007 		tcp_ecn_send(sk, skb, tcp_header_size);
1008 
1009 #ifdef CONFIG_TCP_MD5SIG
1010 	/* Calculate the MD5 hash, as we have all we need now */
1011 	if (md5) {
1012 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1013 		tp->af_specific->calc_md5_hash(opts.hash_location,
1014 					       md5, sk, skb);
1015 	}
1016 #endif
1017 
1018 	icsk->icsk_af_ops->send_check(sk, skb);
1019 
1020 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1021 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1022 
1023 	if (skb->len != tcp_header_size)
1024 		tcp_event_data_sent(tp, sk);
1025 
1026 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1027 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1028 			      tcp_skb_pcount(skb));
1029 
1030 	tp->segs_out += tcp_skb_pcount(skb);
1031 	/* OK, its time to fill skb_shinfo(skb)->gso_segs */
1032 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1033 
1034 	/* Our usage of tstamp should remain private */
1035 	skb->tstamp.tv64 = 0;
1036 
1037 	/* Cleanup our debris for IP stacks */
1038 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1039 			       sizeof(struct inet6_skb_parm)));
1040 
1041 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1042 
1043 	if (likely(err <= 0))
1044 		return err;
1045 
1046 	tcp_enter_cwr(sk);
1047 
1048 	return net_xmit_eval(err);
1049 }
1050 
1051 /* This routine just queues the buffer for sending.
1052  *
1053  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1054  * otherwise socket can stall.
1055  */
1056 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1057 {
1058 	struct tcp_sock *tp = tcp_sk(sk);
1059 
1060 	/* Advance write_seq and place onto the write_queue. */
1061 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1062 	__skb_header_release(skb);
1063 	tcp_add_write_queue_tail(sk, skb);
1064 	sk->sk_wmem_queued += skb->truesize;
1065 	sk_mem_charge(sk, skb->truesize);
1066 }
1067 
1068 /* Initialize TSO segments for a packet. */
1069 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1070 				 unsigned int mss_now)
1071 {
1072 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1073 
1074 	/* Make sure we own this skb before messing gso_size/gso_segs */
1075 	WARN_ON_ONCE(skb_cloned(skb));
1076 
1077 	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1078 		/* Avoid the costly divide in the normal
1079 		 * non-TSO case.
1080 		 */
1081 		tcp_skb_pcount_set(skb, 1);
1082 		shinfo->gso_size = 0;
1083 		shinfo->gso_type = 0;
1084 	} else {
1085 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1086 		shinfo->gso_size = mss_now;
1087 		shinfo->gso_type = sk->sk_gso_type;
1088 	}
1089 }
1090 
1091 /* When a modification to fackets out becomes necessary, we need to check
1092  * skb is counted to fackets_out or not.
1093  */
1094 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1095 				   int decr)
1096 {
1097 	struct tcp_sock *tp = tcp_sk(sk);
1098 
1099 	if (!tp->sacked_out || tcp_is_reno(tp))
1100 		return;
1101 
1102 	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1103 		tp->fackets_out -= decr;
1104 }
1105 
1106 /* Pcount in the middle of the write queue got changed, we need to do various
1107  * tweaks to fix counters
1108  */
1109 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1110 {
1111 	struct tcp_sock *tp = tcp_sk(sk);
1112 
1113 	tp->packets_out -= decr;
1114 
1115 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1116 		tp->sacked_out -= decr;
1117 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1118 		tp->retrans_out -= decr;
1119 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1120 		tp->lost_out -= decr;
1121 
1122 	/* Reno case is special. Sigh... */
1123 	if (tcp_is_reno(tp) && decr > 0)
1124 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1125 
1126 	tcp_adjust_fackets_out(sk, skb, decr);
1127 
1128 	if (tp->lost_skb_hint &&
1129 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1130 	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1131 		tp->lost_cnt_hint -= decr;
1132 
1133 	tcp_verify_left_out(tp);
1134 }
1135 
1136 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1137 {
1138 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1139 
1140 	if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1141 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1142 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1143 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1144 
1145 		shinfo->tx_flags &= ~tsflags;
1146 		shinfo2->tx_flags |= tsflags;
1147 		swap(shinfo->tskey, shinfo2->tskey);
1148 	}
1149 }
1150 
1151 /* Function to create two new TCP segments.  Shrinks the given segment
1152  * to the specified size and appends a new segment with the rest of the
1153  * packet to the list.  This won't be called frequently, I hope.
1154  * Remember, these are still headerless SKBs at this point.
1155  */
1156 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1157 		 unsigned int mss_now, gfp_t gfp)
1158 {
1159 	struct tcp_sock *tp = tcp_sk(sk);
1160 	struct sk_buff *buff;
1161 	int nsize, old_factor;
1162 	int nlen;
1163 	u8 flags;
1164 
1165 	if (WARN_ON(len > skb->len))
1166 		return -EINVAL;
1167 
1168 	nsize = skb_headlen(skb) - len;
1169 	if (nsize < 0)
1170 		nsize = 0;
1171 
1172 	if (skb_unclone(skb, gfp))
1173 		return -ENOMEM;
1174 
1175 	/* Get a new skb... force flag on. */
1176 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1177 	if (!buff)
1178 		return -ENOMEM; /* We'll just try again later. */
1179 
1180 	sk->sk_wmem_queued += buff->truesize;
1181 	sk_mem_charge(sk, buff->truesize);
1182 	nlen = skb->len - len - nsize;
1183 	buff->truesize += nlen;
1184 	skb->truesize -= nlen;
1185 
1186 	/* Correct the sequence numbers. */
1187 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1188 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1189 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1190 
1191 	/* PSH and FIN should only be set in the second packet. */
1192 	flags = TCP_SKB_CB(skb)->tcp_flags;
1193 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1194 	TCP_SKB_CB(buff)->tcp_flags = flags;
1195 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1196 
1197 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1198 		/* Copy and checksum data tail into the new buffer. */
1199 		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1200 						       skb_put(buff, nsize),
1201 						       nsize, 0);
1202 
1203 		skb_trim(skb, len);
1204 
1205 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1206 	} else {
1207 		skb->ip_summed = CHECKSUM_PARTIAL;
1208 		skb_split(skb, buff, len);
1209 	}
1210 
1211 	buff->ip_summed = skb->ip_summed;
1212 
1213 	buff->tstamp = skb->tstamp;
1214 	tcp_fragment_tstamp(skb, buff);
1215 
1216 	old_factor = tcp_skb_pcount(skb);
1217 
1218 	/* Fix up tso_factor for both original and new SKB.  */
1219 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1220 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1221 
1222 	/* If this packet has been sent out already, we must
1223 	 * adjust the various packet counters.
1224 	 */
1225 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1226 		int diff = old_factor - tcp_skb_pcount(skb) -
1227 			tcp_skb_pcount(buff);
1228 
1229 		if (diff)
1230 			tcp_adjust_pcount(sk, skb, diff);
1231 	}
1232 
1233 	/* Link BUFF into the send queue. */
1234 	__skb_header_release(buff);
1235 	tcp_insert_write_queue_after(skb, buff, sk);
1236 
1237 	return 0;
1238 }
1239 
1240 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1241  * eventually). The difference is that pulled data not copied, but
1242  * immediately discarded.
1243  */
1244 static void __pskb_trim_head(struct sk_buff *skb, int len)
1245 {
1246 	struct skb_shared_info *shinfo;
1247 	int i, k, eat;
1248 
1249 	eat = min_t(int, len, skb_headlen(skb));
1250 	if (eat) {
1251 		__skb_pull(skb, eat);
1252 		len -= eat;
1253 		if (!len)
1254 			return;
1255 	}
1256 	eat = len;
1257 	k = 0;
1258 	shinfo = skb_shinfo(skb);
1259 	for (i = 0; i < shinfo->nr_frags; i++) {
1260 		int size = skb_frag_size(&shinfo->frags[i]);
1261 
1262 		if (size <= eat) {
1263 			skb_frag_unref(skb, i);
1264 			eat -= size;
1265 		} else {
1266 			shinfo->frags[k] = shinfo->frags[i];
1267 			if (eat) {
1268 				shinfo->frags[k].page_offset += eat;
1269 				skb_frag_size_sub(&shinfo->frags[k], eat);
1270 				eat = 0;
1271 			}
1272 			k++;
1273 		}
1274 	}
1275 	shinfo->nr_frags = k;
1276 
1277 	skb_reset_tail_pointer(skb);
1278 	skb->data_len -= len;
1279 	skb->len = skb->data_len;
1280 }
1281 
1282 /* Remove acked data from a packet in the transmit queue. */
1283 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1284 {
1285 	if (skb_unclone(skb, GFP_ATOMIC))
1286 		return -ENOMEM;
1287 
1288 	__pskb_trim_head(skb, len);
1289 
1290 	TCP_SKB_CB(skb)->seq += len;
1291 	skb->ip_summed = CHECKSUM_PARTIAL;
1292 
1293 	skb->truesize	     -= len;
1294 	sk->sk_wmem_queued   -= len;
1295 	sk_mem_uncharge(sk, len);
1296 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1297 
1298 	/* Any change of skb->len requires recalculation of tso factor. */
1299 	if (tcp_skb_pcount(skb) > 1)
1300 		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1301 
1302 	return 0;
1303 }
1304 
1305 /* Calculate MSS not accounting any TCP options.  */
1306 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1307 {
1308 	const struct tcp_sock *tp = tcp_sk(sk);
1309 	const struct inet_connection_sock *icsk = inet_csk(sk);
1310 	int mss_now;
1311 
1312 	/* Calculate base mss without TCP options:
1313 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1314 	 */
1315 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1316 
1317 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1318 	if (icsk->icsk_af_ops->net_frag_header_len) {
1319 		const struct dst_entry *dst = __sk_dst_get(sk);
1320 
1321 		if (dst && dst_allfrag(dst))
1322 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1323 	}
1324 
1325 	/* Clamp it (mss_clamp does not include tcp options) */
1326 	if (mss_now > tp->rx_opt.mss_clamp)
1327 		mss_now = tp->rx_opt.mss_clamp;
1328 
1329 	/* Now subtract optional transport overhead */
1330 	mss_now -= icsk->icsk_ext_hdr_len;
1331 
1332 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1333 	if (mss_now < 48)
1334 		mss_now = 48;
1335 	return mss_now;
1336 }
1337 
1338 /* Calculate MSS. Not accounting for SACKs here.  */
1339 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1340 {
1341 	/* Subtract TCP options size, not including SACKs */
1342 	return __tcp_mtu_to_mss(sk, pmtu) -
1343 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1344 }
1345 
1346 /* Inverse of above */
1347 int tcp_mss_to_mtu(struct sock *sk, int mss)
1348 {
1349 	const struct tcp_sock *tp = tcp_sk(sk);
1350 	const struct inet_connection_sock *icsk = inet_csk(sk);
1351 	int mtu;
1352 
1353 	mtu = mss +
1354 	      tp->tcp_header_len +
1355 	      icsk->icsk_ext_hdr_len +
1356 	      icsk->icsk_af_ops->net_header_len;
1357 
1358 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1359 	if (icsk->icsk_af_ops->net_frag_header_len) {
1360 		const struct dst_entry *dst = __sk_dst_get(sk);
1361 
1362 		if (dst && dst_allfrag(dst))
1363 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1364 	}
1365 	return mtu;
1366 }
1367 
1368 /* MTU probing init per socket */
1369 void tcp_mtup_init(struct sock *sk)
1370 {
1371 	struct tcp_sock *tp = tcp_sk(sk);
1372 	struct inet_connection_sock *icsk = inet_csk(sk);
1373 	struct net *net = sock_net(sk);
1374 
1375 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1376 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1377 			       icsk->icsk_af_ops->net_header_len;
1378 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1379 	icsk->icsk_mtup.probe_size = 0;
1380 	if (icsk->icsk_mtup.enabled)
1381 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1382 }
1383 EXPORT_SYMBOL(tcp_mtup_init);
1384 
1385 /* This function synchronize snd mss to current pmtu/exthdr set.
1386 
1387    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1388    for TCP options, but includes only bare TCP header.
1389 
1390    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1391    It is minimum of user_mss and mss received with SYN.
1392    It also does not include TCP options.
1393 
1394    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1395 
1396    tp->mss_cache is current effective sending mss, including
1397    all tcp options except for SACKs. It is evaluated,
1398    taking into account current pmtu, but never exceeds
1399    tp->rx_opt.mss_clamp.
1400 
1401    NOTE1. rfc1122 clearly states that advertised MSS
1402    DOES NOT include either tcp or ip options.
1403 
1404    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1405    are READ ONLY outside this function.		--ANK (980731)
1406  */
1407 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1408 {
1409 	struct tcp_sock *tp = tcp_sk(sk);
1410 	struct inet_connection_sock *icsk = inet_csk(sk);
1411 	int mss_now;
1412 
1413 	if (icsk->icsk_mtup.search_high > pmtu)
1414 		icsk->icsk_mtup.search_high = pmtu;
1415 
1416 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1417 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1418 
1419 	/* And store cached results */
1420 	icsk->icsk_pmtu_cookie = pmtu;
1421 	if (icsk->icsk_mtup.enabled)
1422 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1423 	tp->mss_cache = mss_now;
1424 
1425 	return mss_now;
1426 }
1427 EXPORT_SYMBOL(tcp_sync_mss);
1428 
1429 /* Compute the current effective MSS, taking SACKs and IP options,
1430  * and even PMTU discovery events into account.
1431  */
1432 unsigned int tcp_current_mss(struct sock *sk)
1433 {
1434 	const struct tcp_sock *tp = tcp_sk(sk);
1435 	const struct dst_entry *dst = __sk_dst_get(sk);
1436 	u32 mss_now;
1437 	unsigned int header_len;
1438 	struct tcp_out_options opts;
1439 	struct tcp_md5sig_key *md5;
1440 
1441 	mss_now = tp->mss_cache;
1442 
1443 	if (dst) {
1444 		u32 mtu = dst_mtu(dst);
1445 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1446 			mss_now = tcp_sync_mss(sk, mtu);
1447 	}
1448 
1449 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1450 		     sizeof(struct tcphdr);
1451 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1452 	 * some common options. If this is an odd packet (because we have SACK
1453 	 * blocks etc) then our calculated header_len will be different, and
1454 	 * we have to adjust mss_now correspondingly */
1455 	if (header_len != tp->tcp_header_len) {
1456 		int delta = (int) header_len - tp->tcp_header_len;
1457 		mss_now -= delta;
1458 	}
1459 
1460 	return mss_now;
1461 }
1462 
1463 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1464  * As additional protections, we do not touch cwnd in retransmission phases,
1465  * and if application hit its sndbuf limit recently.
1466  */
1467 static void tcp_cwnd_application_limited(struct sock *sk)
1468 {
1469 	struct tcp_sock *tp = tcp_sk(sk);
1470 
1471 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1472 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1473 		/* Limited by application or receiver window. */
1474 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1475 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1476 		if (win_used < tp->snd_cwnd) {
1477 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1478 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1479 		}
1480 		tp->snd_cwnd_used = 0;
1481 	}
1482 	tp->snd_cwnd_stamp = tcp_time_stamp;
1483 }
1484 
1485 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1486 {
1487 	struct tcp_sock *tp = tcp_sk(sk);
1488 
1489 	/* Track the maximum number of outstanding packets in each
1490 	 * window, and remember whether we were cwnd-limited then.
1491 	 */
1492 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1493 	    tp->packets_out > tp->max_packets_out) {
1494 		tp->max_packets_out = tp->packets_out;
1495 		tp->max_packets_seq = tp->snd_nxt;
1496 		tp->is_cwnd_limited = is_cwnd_limited;
1497 	}
1498 
1499 	if (tcp_is_cwnd_limited(sk)) {
1500 		/* Network is feed fully. */
1501 		tp->snd_cwnd_used = 0;
1502 		tp->snd_cwnd_stamp = tcp_time_stamp;
1503 	} else {
1504 		/* Network starves. */
1505 		if (tp->packets_out > tp->snd_cwnd_used)
1506 			tp->snd_cwnd_used = tp->packets_out;
1507 
1508 		if (sysctl_tcp_slow_start_after_idle &&
1509 		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1510 			tcp_cwnd_application_limited(sk);
1511 	}
1512 }
1513 
1514 /* Minshall's variant of the Nagle send check. */
1515 static bool tcp_minshall_check(const struct tcp_sock *tp)
1516 {
1517 	return after(tp->snd_sml, tp->snd_una) &&
1518 		!after(tp->snd_sml, tp->snd_nxt);
1519 }
1520 
1521 /* Update snd_sml if this skb is under mss
1522  * Note that a TSO packet might end with a sub-mss segment
1523  * The test is really :
1524  * if ((skb->len % mss) != 0)
1525  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1526  * But we can avoid doing the divide again given we already have
1527  *  skb_pcount = skb->len / mss_now
1528  */
1529 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1530 				const struct sk_buff *skb)
1531 {
1532 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1533 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1534 }
1535 
1536 /* Return false, if packet can be sent now without violation Nagle's rules:
1537  * 1. It is full sized. (provided by caller in %partial bool)
1538  * 2. Or it contains FIN. (already checked by caller)
1539  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1540  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1541  *    With Minshall's modification: all sent small packets are ACKed.
1542  */
1543 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1544 			    int nonagle)
1545 {
1546 	return partial &&
1547 		((nonagle & TCP_NAGLE_CORK) ||
1548 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1549 }
1550 
1551 /* Return how many segs we'd like on a TSO packet,
1552  * to send one TSO packet per ms
1553  */
1554 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1555 {
1556 	u32 bytes, segs;
1557 
1558 	bytes = min(sk->sk_pacing_rate >> 10,
1559 		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1560 
1561 	/* Goal is to send at least one packet per ms,
1562 	 * not one big TSO packet every 100 ms.
1563 	 * This preserves ACK clocking and is consistent
1564 	 * with tcp_tso_should_defer() heuristic.
1565 	 */
1566 	segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1567 
1568 	return min_t(u32, segs, sk->sk_gso_max_segs);
1569 }
1570 
1571 /* Returns the portion of skb which can be sent right away */
1572 static unsigned int tcp_mss_split_point(const struct sock *sk,
1573 					const struct sk_buff *skb,
1574 					unsigned int mss_now,
1575 					unsigned int max_segs,
1576 					int nonagle)
1577 {
1578 	const struct tcp_sock *tp = tcp_sk(sk);
1579 	u32 partial, needed, window, max_len;
1580 
1581 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1582 	max_len = mss_now * max_segs;
1583 
1584 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1585 		return max_len;
1586 
1587 	needed = min(skb->len, window);
1588 
1589 	if (max_len <= needed)
1590 		return max_len;
1591 
1592 	partial = needed % mss_now;
1593 	/* If last segment is not a full MSS, check if Nagle rules allow us
1594 	 * to include this last segment in this skb.
1595 	 * Otherwise, we'll split the skb at last MSS boundary
1596 	 */
1597 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1598 		return needed - partial;
1599 
1600 	return needed;
1601 }
1602 
1603 /* Can at least one segment of SKB be sent right now, according to the
1604  * congestion window rules?  If so, return how many segments are allowed.
1605  */
1606 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1607 					 const struct sk_buff *skb)
1608 {
1609 	u32 in_flight, cwnd, halfcwnd;
1610 
1611 	/* Don't be strict about the congestion window for the final FIN.  */
1612 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1613 	    tcp_skb_pcount(skb) == 1)
1614 		return 1;
1615 
1616 	in_flight = tcp_packets_in_flight(tp);
1617 	cwnd = tp->snd_cwnd;
1618 	if (in_flight >= cwnd)
1619 		return 0;
1620 
1621 	/* For better scheduling, ensure we have at least
1622 	 * 2 GSO packets in flight.
1623 	 */
1624 	halfcwnd = max(cwnd >> 1, 1U);
1625 	return min(halfcwnd, cwnd - in_flight);
1626 }
1627 
1628 /* Initialize TSO state of a skb.
1629  * This must be invoked the first time we consider transmitting
1630  * SKB onto the wire.
1631  */
1632 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1633 			     unsigned int mss_now)
1634 {
1635 	int tso_segs = tcp_skb_pcount(skb);
1636 
1637 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1638 		tcp_set_skb_tso_segs(sk, skb, mss_now);
1639 		tso_segs = tcp_skb_pcount(skb);
1640 	}
1641 	return tso_segs;
1642 }
1643 
1644 
1645 /* Return true if the Nagle test allows this packet to be
1646  * sent now.
1647  */
1648 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1649 				  unsigned int cur_mss, int nonagle)
1650 {
1651 	/* Nagle rule does not apply to frames, which sit in the middle of the
1652 	 * write_queue (they have no chances to get new data).
1653 	 *
1654 	 * This is implemented in the callers, where they modify the 'nonagle'
1655 	 * argument based upon the location of SKB in the send queue.
1656 	 */
1657 	if (nonagle & TCP_NAGLE_PUSH)
1658 		return true;
1659 
1660 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1661 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1662 		return true;
1663 
1664 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1665 		return true;
1666 
1667 	return false;
1668 }
1669 
1670 /* Does at least the first segment of SKB fit into the send window? */
1671 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1672 			     const struct sk_buff *skb,
1673 			     unsigned int cur_mss)
1674 {
1675 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1676 
1677 	if (skb->len > cur_mss)
1678 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1679 
1680 	return !after(end_seq, tcp_wnd_end(tp));
1681 }
1682 
1683 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1684  * should be put on the wire right now.  If so, it returns the number of
1685  * packets allowed by the congestion window.
1686  */
1687 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1688 				 unsigned int cur_mss, int nonagle)
1689 {
1690 	const struct tcp_sock *tp = tcp_sk(sk);
1691 	unsigned int cwnd_quota;
1692 
1693 	tcp_init_tso_segs(sk, skb, cur_mss);
1694 
1695 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1696 		return 0;
1697 
1698 	cwnd_quota = tcp_cwnd_test(tp, skb);
1699 	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1700 		cwnd_quota = 0;
1701 
1702 	return cwnd_quota;
1703 }
1704 
1705 /* Test if sending is allowed right now. */
1706 bool tcp_may_send_now(struct sock *sk)
1707 {
1708 	const struct tcp_sock *tp = tcp_sk(sk);
1709 	struct sk_buff *skb = tcp_send_head(sk);
1710 
1711 	return skb &&
1712 		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1713 			     (tcp_skb_is_last(sk, skb) ?
1714 			      tp->nonagle : TCP_NAGLE_PUSH));
1715 }
1716 
1717 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1718  * which is put after SKB on the list.  It is very much like
1719  * tcp_fragment() except that it may make several kinds of assumptions
1720  * in order to speed up the splitting operation.  In particular, we
1721  * know that all the data is in scatter-gather pages, and that the
1722  * packet has never been sent out before (and thus is not cloned).
1723  */
1724 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1725 			unsigned int mss_now, gfp_t gfp)
1726 {
1727 	struct sk_buff *buff;
1728 	int nlen = skb->len - len;
1729 	u8 flags;
1730 
1731 	/* All of a TSO frame must be composed of paged data.  */
1732 	if (skb->len != skb->data_len)
1733 		return tcp_fragment(sk, skb, len, mss_now, gfp);
1734 
1735 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1736 	if (unlikely(!buff))
1737 		return -ENOMEM;
1738 
1739 	sk->sk_wmem_queued += buff->truesize;
1740 	sk_mem_charge(sk, buff->truesize);
1741 	buff->truesize += nlen;
1742 	skb->truesize -= nlen;
1743 
1744 	/* Correct the sequence numbers. */
1745 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1746 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1747 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1748 
1749 	/* PSH and FIN should only be set in the second packet. */
1750 	flags = TCP_SKB_CB(skb)->tcp_flags;
1751 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1752 	TCP_SKB_CB(buff)->tcp_flags = flags;
1753 
1754 	/* This packet was never sent out yet, so no SACK bits. */
1755 	TCP_SKB_CB(buff)->sacked = 0;
1756 
1757 	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1758 	skb_split(skb, buff, len);
1759 	tcp_fragment_tstamp(skb, buff);
1760 
1761 	/* Fix up tso_factor for both original and new SKB.  */
1762 	tcp_set_skb_tso_segs(sk, skb, mss_now);
1763 	tcp_set_skb_tso_segs(sk, buff, mss_now);
1764 
1765 	/* Link BUFF into the send queue. */
1766 	__skb_header_release(buff);
1767 	tcp_insert_write_queue_after(skb, buff, sk);
1768 
1769 	return 0;
1770 }
1771 
1772 /* Try to defer sending, if possible, in order to minimize the amount
1773  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1774  *
1775  * This algorithm is from John Heffner.
1776  */
1777 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1778 				 bool *is_cwnd_limited, u32 max_segs)
1779 {
1780 	const struct inet_connection_sock *icsk = inet_csk(sk);
1781 	u32 age, send_win, cong_win, limit, in_flight;
1782 	struct tcp_sock *tp = tcp_sk(sk);
1783 	struct skb_mstamp now;
1784 	struct sk_buff *head;
1785 	int win_divisor;
1786 
1787 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1788 		goto send_now;
1789 
1790 	if (!((1 << icsk->icsk_ca_state) & (TCPF_CA_Open | TCPF_CA_CWR)))
1791 		goto send_now;
1792 
1793 	/* Avoid bursty behavior by allowing defer
1794 	 * only if the last write was recent.
1795 	 */
1796 	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1797 		goto send_now;
1798 
1799 	in_flight = tcp_packets_in_flight(tp);
1800 
1801 	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1802 
1803 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1804 
1805 	/* From in_flight test above, we know that cwnd > in_flight.  */
1806 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1807 
1808 	limit = min(send_win, cong_win);
1809 
1810 	/* If a full-sized TSO skb can be sent, do it. */
1811 	if (limit >= max_segs * tp->mss_cache)
1812 		goto send_now;
1813 
1814 	/* Middle in queue won't get any more data, full sendable already? */
1815 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1816 		goto send_now;
1817 
1818 	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1819 	if (win_divisor) {
1820 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1821 
1822 		/* If at least some fraction of a window is available,
1823 		 * just use it.
1824 		 */
1825 		chunk /= win_divisor;
1826 		if (limit >= chunk)
1827 			goto send_now;
1828 	} else {
1829 		/* Different approach, try not to defer past a single
1830 		 * ACK.  Receiver should ACK every other full sized
1831 		 * frame, so if we have space for more than 3 frames
1832 		 * then send now.
1833 		 */
1834 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1835 			goto send_now;
1836 	}
1837 
1838 	head = tcp_write_queue_head(sk);
1839 	skb_mstamp_get(&now);
1840 	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1841 	/* If next ACK is likely to come too late (half srtt), do not defer */
1842 	if (age < (tp->srtt_us >> 4))
1843 		goto send_now;
1844 
1845 	/* Ok, it looks like it is advisable to defer. */
1846 
1847 	if (cong_win < send_win && cong_win < skb->len)
1848 		*is_cwnd_limited = true;
1849 
1850 	return true;
1851 
1852 send_now:
1853 	return false;
1854 }
1855 
1856 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1857 {
1858 	struct inet_connection_sock *icsk = inet_csk(sk);
1859 	struct tcp_sock *tp = tcp_sk(sk);
1860 	struct net *net = sock_net(sk);
1861 	u32 interval;
1862 	s32 delta;
1863 
1864 	interval = net->ipv4.sysctl_tcp_probe_interval;
1865 	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1866 	if (unlikely(delta >= interval * HZ)) {
1867 		int mss = tcp_current_mss(sk);
1868 
1869 		/* Update current search range */
1870 		icsk->icsk_mtup.probe_size = 0;
1871 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1872 			sizeof(struct tcphdr) +
1873 			icsk->icsk_af_ops->net_header_len;
1874 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1875 
1876 		/* Update probe time stamp */
1877 		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1878 	}
1879 }
1880 
1881 /* Create a new MTU probe if we are ready.
1882  * MTU probe is regularly attempting to increase the path MTU by
1883  * deliberately sending larger packets.  This discovers routing
1884  * changes resulting in larger path MTUs.
1885  *
1886  * Returns 0 if we should wait to probe (no cwnd available),
1887  *         1 if a probe was sent,
1888  *         -1 otherwise
1889  */
1890 static int tcp_mtu_probe(struct sock *sk)
1891 {
1892 	struct tcp_sock *tp = tcp_sk(sk);
1893 	struct inet_connection_sock *icsk = inet_csk(sk);
1894 	struct sk_buff *skb, *nskb, *next;
1895 	struct net *net = sock_net(sk);
1896 	int len;
1897 	int probe_size;
1898 	int size_needed;
1899 	int copy;
1900 	int mss_now;
1901 	int interval;
1902 
1903 	/* Not currently probing/verifying,
1904 	 * not in recovery,
1905 	 * have enough cwnd, and
1906 	 * not SACKing (the variable headers throw things off) */
1907 	if (!icsk->icsk_mtup.enabled ||
1908 	    icsk->icsk_mtup.probe_size ||
1909 	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1910 	    tp->snd_cwnd < 11 ||
1911 	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1912 		return -1;
1913 
1914 	/* Use binary search for probe_size between tcp_mss_base,
1915 	 * and current mss_clamp. if (search_high - search_low)
1916 	 * smaller than a threshold, backoff from probing.
1917 	 */
1918 	mss_now = tcp_current_mss(sk);
1919 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1920 				    icsk->icsk_mtup.search_low) >> 1);
1921 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1922 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1923 	/* When misfortune happens, we are reprobing actively,
1924 	 * and then reprobe timer has expired. We stick with current
1925 	 * probing process by not resetting search range to its orignal.
1926 	 */
1927 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1928 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1929 		/* Check whether enough time has elaplased for
1930 		 * another round of probing.
1931 		 */
1932 		tcp_mtu_check_reprobe(sk);
1933 		return -1;
1934 	}
1935 
1936 	/* Have enough data in the send queue to probe? */
1937 	if (tp->write_seq - tp->snd_nxt < size_needed)
1938 		return -1;
1939 
1940 	if (tp->snd_wnd < size_needed)
1941 		return -1;
1942 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1943 		return 0;
1944 
1945 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1946 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1947 		if (!tcp_packets_in_flight(tp))
1948 			return -1;
1949 		else
1950 			return 0;
1951 	}
1952 
1953 	/* We're allowed to probe.  Build it now. */
1954 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1955 	if (!nskb)
1956 		return -1;
1957 	sk->sk_wmem_queued += nskb->truesize;
1958 	sk_mem_charge(sk, nskb->truesize);
1959 
1960 	skb = tcp_send_head(sk);
1961 
1962 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1963 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1964 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1965 	TCP_SKB_CB(nskb)->sacked = 0;
1966 	nskb->csum = 0;
1967 	nskb->ip_summed = skb->ip_summed;
1968 
1969 	tcp_insert_write_queue_before(nskb, skb, sk);
1970 
1971 	len = 0;
1972 	tcp_for_write_queue_from_safe(skb, next, sk) {
1973 		copy = min_t(int, skb->len, probe_size - len);
1974 		if (nskb->ip_summed)
1975 			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1976 		else
1977 			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1978 							    skb_put(nskb, copy),
1979 							    copy, nskb->csum);
1980 
1981 		if (skb->len <= copy) {
1982 			/* We've eaten all the data from this skb.
1983 			 * Throw it away. */
1984 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1985 			tcp_unlink_write_queue(skb, sk);
1986 			sk_wmem_free_skb(sk, skb);
1987 		} else {
1988 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1989 						   ~(TCPHDR_FIN|TCPHDR_PSH);
1990 			if (!skb_shinfo(skb)->nr_frags) {
1991 				skb_pull(skb, copy);
1992 				if (skb->ip_summed != CHECKSUM_PARTIAL)
1993 					skb->csum = csum_partial(skb->data,
1994 								 skb->len, 0);
1995 			} else {
1996 				__pskb_trim_head(skb, copy);
1997 				tcp_set_skb_tso_segs(sk, skb, mss_now);
1998 			}
1999 			TCP_SKB_CB(skb)->seq += copy;
2000 		}
2001 
2002 		len += copy;
2003 
2004 		if (len >= probe_size)
2005 			break;
2006 	}
2007 	tcp_init_tso_segs(sk, nskb, nskb->len);
2008 
2009 	/* We're ready to send.  If this fails, the probe will
2010 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2011 	 */
2012 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2013 		/* Decrement cwnd here because we are sending
2014 		 * effectively two packets. */
2015 		tp->snd_cwnd--;
2016 		tcp_event_new_data_sent(sk, nskb);
2017 
2018 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2019 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2020 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2021 
2022 		return 1;
2023 	}
2024 
2025 	return -1;
2026 }
2027 
2028 /* This routine writes packets to the network.  It advances the
2029  * send_head.  This happens as incoming acks open up the remote
2030  * window for us.
2031  *
2032  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2033  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2034  * account rare use of URG, this is not a big flaw.
2035  *
2036  * Send at most one packet when push_one > 0. Temporarily ignore
2037  * cwnd limit to force at most one packet out when push_one == 2.
2038 
2039  * Returns true, if no segments are in flight and we have queued segments,
2040  * but cannot send anything now because of SWS or another problem.
2041  */
2042 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2043 			   int push_one, gfp_t gfp)
2044 {
2045 	struct tcp_sock *tp = tcp_sk(sk);
2046 	struct sk_buff *skb;
2047 	unsigned int tso_segs, sent_pkts;
2048 	int cwnd_quota;
2049 	int result;
2050 	bool is_cwnd_limited = false;
2051 	u32 max_segs;
2052 
2053 	sent_pkts = 0;
2054 
2055 	if (!push_one) {
2056 		/* Do MTU probing. */
2057 		result = tcp_mtu_probe(sk);
2058 		if (!result) {
2059 			return false;
2060 		} else if (result > 0) {
2061 			sent_pkts = 1;
2062 		}
2063 	}
2064 
2065 	max_segs = tcp_tso_autosize(sk, mss_now);
2066 	while ((skb = tcp_send_head(sk))) {
2067 		unsigned int limit;
2068 
2069 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
2070 		BUG_ON(!tso_segs);
2071 
2072 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2073 			/* "skb_mstamp" is used as a start point for the retransmit timer */
2074 			skb_mstamp_get(&skb->skb_mstamp);
2075 			goto repair; /* Skip network transmission */
2076 		}
2077 
2078 		cwnd_quota = tcp_cwnd_test(tp, skb);
2079 		if (!cwnd_quota) {
2080 			is_cwnd_limited = true;
2081 			if (push_one == 2)
2082 				/* Force out a loss probe pkt. */
2083 				cwnd_quota = 1;
2084 			else
2085 				break;
2086 		}
2087 
2088 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2089 			break;
2090 
2091 		if (tso_segs == 1) {
2092 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2093 						     (tcp_skb_is_last(sk, skb) ?
2094 						      nonagle : TCP_NAGLE_PUSH))))
2095 				break;
2096 		} else {
2097 			if (!push_one &&
2098 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2099 						 max_segs))
2100 				break;
2101 		}
2102 
2103 		limit = mss_now;
2104 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2105 			limit = tcp_mss_split_point(sk, skb, mss_now,
2106 						    min_t(unsigned int,
2107 							  cwnd_quota,
2108 							  max_segs),
2109 						    nonagle);
2110 
2111 		if (skb->len > limit &&
2112 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2113 			break;
2114 
2115 		/* TCP Small Queues :
2116 		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2117 		 * This allows for :
2118 		 *  - better RTT estimation and ACK scheduling
2119 		 *  - faster recovery
2120 		 *  - high rates
2121 		 * Alas, some drivers / subsystems require a fair amount
2122 		 * of queued bytes to ensure line rate.
2123 		 * One example is wifi aggregation (802.11 AMPDU)
2124 		 */
2125 		limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2126 		limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2127 
2128 		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2129 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2130 			/* It is possible TX completion already happened
2131 			 * before we set TSQ_THROTTLED, so we must
2132 			 * test again the condition.
2133 			 */
2134 			smp_mb__after_atomic();
2135 			if (atomic_read(&sk->sk_wmem_alloc) > limit)
2136 				break;
2137 		}
2138 
2139 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2140 			break;
2141 
2142 repair:
2143 		/* Advance the send_head.  This one is sent out.
2144 		 * This call will increment packets_out.
2145 		 */
2146 		tcp_event_new_data_sent(sk, skb);
2147 
2148 		tcp_minshall_update(tp, mss_now, skb);
2149 		sent_pkts += tcp_skb_pcount(skb);
2150 
2151 		if (push_one)
2152 			break;
2153 	}
2154 
2155 	if (likely(sent_pkts)) {
2156 		if (tcp_in_cwnd_reduction(sk))
2157 			tp->prr_out += sent_pkts;
2158 
2159 		/* Send one loss probe per tail loss episode. */
2160 		if (push_one != 2)
2161 			tcp_schedule_loss_probe(sk);
2162 		tcp_cwnd_validate(sk, is_cwnd_limited);
2163 		return false;
2164 	}
2165 	return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2166 }
2167 
2168 bool tcp_schedule_loss_probe(struct sock *sk)
2169 {
2170 	struct inet_connection_sock *icsk = inet_csk(sk);
2171 	struct tcp_sock *tp = tcp_sk(sk);
2172 	u32 timeout, tlp_time_stamp, rto_time_stamp;
2173 	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2174 
2175 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2176 		return false;
2177 	/* No consecutive loss probes. */
2178 	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2179 		tcp_rearm_rto(sk);
2180 		return false;
2181 	}
2182 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2183 	 * finishes.
2184 	 */
2185 	if (sk->sk_state == TCP_SYN_RECV)
2186 		return false;
2187 
2188 	/* TLP is only scheduled when next timer event is RTO. */
2189 	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2190 		return false;
2191 
2192 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2193 	 * in Open state, that are either limited by cwnd or application.
2194 	 */
2195 	if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2196 	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2197 		return false;
2198 
2199 	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2200 	     tcp_send_head(sk))
2201 		return false;
2202 
2203 	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2204 	 * for delayed ack when there's one outstanding packet.
2205 	 */
2206 	timeout = rtt << 1;
2207 	if (tp->packets_out == 1)
2208 		timeout = max_t(u32, timeout,
2209 				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2210 	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2211 
2212 	/* If RTO is shorter, just schedule TLP in its place. */
2213 	tlp_time_stamp = tcp_time_stamp + timeout;
2214 	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2215 	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2216 		s32 delta = rto_time_stamp - tcp_time_stamp;
2217 		if (delta > 0)
2218 			timeout = delta;
2219 	}
2220 
2221 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2222 				  TCP_RTO_MAX);
2223 	return true;
2224 }
2225 
2226 /* Thanks to skb fast clones, we can detect if a prior transmit of
2227  * a packet is still in a qdisc or driver queue.
2228  * In this case, there is very little point doing a retransmit !
2229  * Note: This is called from BH context only.
2230  */
2231 static bool skb_still_in_host_queue(const struct sock *sk,
2232 				    const struct sk_buff *skb)
2233 {
2234 	if (unlikely(skb_fclone_busy(sk, skb))) {
2235 		NET_INC_STATS_BH(sock_net(sk),
2236 				 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2237 		return true;
2238 	}
2239 	return false;
2240 }
2241 
2242 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2243  * retransmit the last segment.
2244  */
2245 void tcp_send_loss_probe(struct sock *sk)
2246 {
2247 	struct tcp_sock *tp = tcp_sk(sk);
2248 	struct sk_buff *skb;
2249 	int pcount;
2250 	int mss = tcp_current_mss(sk);
2251 	int err = -1;
2252 
2253 	if (tcp_send_head(sk)) {
2254 		err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2255 		goto rearm_timer;
2256 	}
2257 
2258 	/* At most one outstanding TLP retransmission. */
2259 	if (tp->tlp_high_seq)
2260 		goto rearm_timer;
2261 
2262 	/* Retransmit last segment. */
2263 	skb = tcp_write_queue_tail(sk);
2264 	if (WARN_ON(!skb))
2265 		goto rearm_timer;
2266 
2267 	if (skb_still_in_host_queue(sk, skb))
2268 		goto rearm_timer;
2269 
2270 	pcount = tcp_skb_pcount(skb);
2271 	if (WARN_ON(!pcount))
2272 		goto rearm_timer;
2273 
2274 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2275 		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2276 					  GFP_ATOMIC)))
2277 			goto rearm_timer;
2278 		skb = tcp_write_queue_tail(sk);
2279 	}
2280 
2281 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2282 		goto rearm_timer;
2283 
2284 	err = __tcp_retransmit_skb(sk, skb);
2285 
2286 	/* Record snd_nxt for loss detection. */
2287 	if (likely(!err))
2288 		tp->tlp_high_seq = tp->snd_nxt;
2289 
2290 rearm_timer:
2291 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2292 				  inet_csk(sk)->icsk_rto,
2293 				  TCP_RTO_MAX);
2294 
2295 	if (likely(!err))
2296 		NET_INC_STATS_BH(sock_net(sk),
2297 				 LINUX_MIB_TCPLOSSPROBES);
2298 }
2299 
2300 /* Push out any pending frames which were held back due to
2301  * TCP_CORK or attempt at coalescing tiny packets.
2302  * The socket must be locked by the caller.
2303  */
2304 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2305 			       int nonagle)
2306 {
2307 	/* If we are closed, the bytes will have to remain here.
2308 	 * In time closedown will finish, we empty the write queue and
2309 	 * all will be happy.
2310 	 */
2311 	if (unlikely(sk->sk_state == TCP_CLOSE))
2312 		return;
2313 
2314 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2315 			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2316 		tcp_check_probe_timer(sk);
2317 }
2318 
2319 /* Send _single_ skb sitting at the send head. This function requires
2320  * true push pending frames to setup probe timer etc.
2321  */
2322 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2323 {
2324 	struct sk_buff *skb = tcp_send_head(sk);
2325 
2326 	BUG_ON(!skb || skb->len < mss_now);
2327 
2328 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2329 }
2330 
2331 /* This function returns the amount that we can raise the
2332  * usable window based on the following constraints
2333  *
2334  * 1. The window can never be shrunk once it is offered (RFC 793)
2335  * 2. We limit memory per socket
2336  *
2337  * RFC 1122:
2338  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2339  *  RECV.NEXT + RCV.WIN fixed until:
2340  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2341  *
2342  * i.e. don't raise the right edge of the window until you can raise
2343  * it at least MSS bytes.
2344  *
2345  * Unfortunately, the recommended algorithm breaks header prediction,
2346  * since header prediction assumes th->window stays fixed.
2347  *
2348  * Strictly speaking, keeping th->window fixed violates the receiver
2349  * side SWS prevention criteria. The problem is that under this rule
2350  * a stream of single byte packets will cause the right side of the
2351  * window to always advance by a single byte.
2352  *
2353  * Of course, if the sender implements sender side SWS prevention
2354  * then this will not be a problem.
2355  *
2356  * BSD seems to make the following compromise:
2357  *
2358  *	If the free space is less than the 1/4 of the maximum
2359  *	space available and the free space is less than 1/2 mss,
2360  *	then set the window to 0.
2361  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2362  *	Otherwise, just prevent the window from shrinking
2363  *	and from being larger than the largest representable value.
2364  *
2365  * This prevents incremental opening of the window in the regime
2366  * where TCP is limited by the speed of the reader side taking
2367  * data out of the TCP receive queue. It does nothing about
2368  * those cases where the window is constrained on the sender side
2369  * because the pipeline is full.
2370  *
2371  * BSD also seems to "accidentally" limit itself to windows that are a
2372  * multiple of MSS, at least until the free space gets quite small.
2373  * This would appear to be a side effect of the mbuf implementation.
2374  * Combining these two algorithms results in the observed behavior
2375  * of having a fixed window size at almost all times.
2376  *
2377  * Below we obtain similar behavior by forcing the offered window to
2378  * a multiple of the mss when it is feasible to do so.
2379  *
2380  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2381  * Regular options like TIMESTAMP are taken into account.
2382  */
2383 u32 __tcp_select_window(struct sock *sk)
2384 {
2385 	struct inet_connection_sock *icsk = inet_csk(sk);
2386 	struct tcp_sock *tp = tcp_sk(sk);
2387 	/* MSS for the peer's data.  Previous versions used mss_clamp
2388 	 * here.  I don't know if the value based on our guesses
2389 	 * of peer's MSS is better for the performance.  It's more correct
2390 	 * but may be worse for the performance because of rcv_mss
2391 	 * fluctuations.  --SAW  1998/11/1
2392 	 */
2393 	int mss = icsk->icsk_ack.rcv_mss;
2394 	int free_space = tcp_space(sk);
2395 	int allowed_space = tcp_full_space(sk);
2396 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2397 	int window;
2398 
2399 	if (mss > full_space)
2400 		mss = full_space;
2401 
2402 	if (free_space < (full_space >> 1)) {
2403 		icsk->icsk_ack.quick = 0;
2404 
2405 		if (tcp_under_memory_pressure(sk))
2406 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2407 					       4U * tp->advmss);
2408 
2409 		/* free_space might become our new window, make sure we don't
2410 		 * increase it due to wscale.
2411 		 */
2412 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2413 
2414 		/* if free space is less than mss estimate, or is below 1/16th
2415 		 * of the maximum allowed, try to move to zero-window, else
2416 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2417 		 * new incoming data is dropped due to memory limits.
2418 		 * With large window, mss test triggers way too late in order
2419 		 * to announce zero window in time before rmem limit kicks in.
2420 		 */
2421 		if (free_space < (allowed_space >> 4) || free_space < mss)
2422 			return 0;
2423 	}
2424 
2425 	if (free_space > tp->rcv_ssthresh)
2426 		free_space = tp->rcv_ssthresh;
2427 
2428 	/* Don't do rounding if we are using window scaling, since the
2429 	 * scaled window will not line up with the MSS boundary anyway.
2430 	 */
2431 	window = tp->rcv_wnd;
2432 	if (tp->rx_opt.rcv_wscale) {
2433 		window = free_space;
2434 
2435 		/* Advertise enough space so that it won't get scaled away.
2436 		 * Import case: prevent zero window announcement if
2437 		 * 1<<rcv_wscale > mss.
2438 		 */
2439 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2440 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2441 				  << tp->rx_opt.rcv_wscale);
2442 	} else {
2443 		/* Get the largest window that is a nice multiple of mss.
2444 		 * Window clamp already applied above.
2445 		 * If our current window offering is within 1 mss of the
2446 		 * free space we just keep it. This prevents the divide
2447 		 * and multiply from happening most of the time.
2448 		 * We also don't do any window rounding when the free space
2449 		 * is too small.
2450 		 */
2451 		if (window <= free_space - mss || window > free_space)
2452 			window = (free_space / mss) * mss;
2453 		else if (mss == full_space &&
2454 			 free_space > window + (full_space >> 1))
2455 			window = free_space;
2456 	}
2457 
2458 	return window;
2459 }
2460 
2461 /* Collapses two adjacent SKB's during retransmission. */
2462 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2463 {
2464 	struct tcp_sock *tp = tcp_sk(sk);
2465 	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2466 	int skb_size, next_skb_size;
2467 
2468 	skb_size = skb->len;
2469 	next_skb_size = next_skb->len;
2470 
2471 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2472 
2473 	tcp_highest_sack_combine(sk, next_skb, skb);
2474 
2475 	tcp_unlink_write_queue(next_skb, sk);
2476 
2477 	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2478 				  next_skb_size);
2479 
2480 	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2481 		skb->ip_summed = CHECKSUM_PARTIAL;
2482 
2483 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2484 		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2485 
2486 	/* Update sequence range on original skb. */
2487 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2488 
2489 	/* Merge over control information. This moves PSH/FIN etc. over */
2490 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2491 
2492 	/* All done, get rid of second SKB and account for it so
2493 	 * packet counting does not break.
2494 	 */
2495 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2496 
2497 	/* changed transmit queue under us so clear hints */
2498 	tcp_clear_retrans_hints_partial(tp);
2499 	if (next_skb == tp->retransmit_skb_hint)
2500 		tp->retransmit_skb_hint = skb;
2501 
2502 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2503 
2504 	sk_wmem_free_skb(sk, next_skb);
2505 }
2506 
2507 /* Check if coalescing SKBs is legal. */
2508 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2509 {
2510 	if (tcp_skb_pcount(skb) > 1)
2511 		return false;
2512 	/* TODO: SACK collapsing could be used to remove this condition */
2513 	if (skb_shinfo(skb)->nr_frags != 0)
2514 		return false;
2515 	if (skb_cloned(skb))
2516 		return false;
2517 	if (skb == tcp_send_head(sk))
2518 		return false;
2519 	/* Some heurestics for collapsing over SACK'd could be invented */
2520 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2521 		return false;
2522 
2523 	return true;
2524 }
2525 
2526 /* Collapse packets in the retransmit queue to make to create
2527  * less packets on the wire. This is only done on retransmission.
2528  */
2529 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2530 				     int space)
2531 {
2532 	struct tcp_sock *tp = tcp_sk(sk);
2533 	struct sk_buff *skb = to, *tmp;
2534 	bool first = true;
2535 
2536 	if (!sysctl_tcp_retrans_collapse)
2537 		return;
2538 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2539 		return;
2540 
2541 	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2542 		if (!tcp_can_collapse(sk, skb))
2543 			break;
2544 
2545 		space -= skb->len;
2546 
2547 		if (first) {
2548 			first = false;
2549 			continue;
2550 		}
2551 
2552 		if (space < 0)
2553 			break;
2554 		/* Punt if not enough space exists in the first SKB for
2555 		 * the data in the second
2556 		 */
2557 		if (skb->len > skb_availroom(to))
2558 			break;
2559 
2560 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2561 			break;
2562 
2563 		tcp_collapse_retrans(sk, to);
2564 	}
2565 }
2566 
2567 /* This retransmits one SKB.  Policy decisions and retransmit queue
2568  * state updates are done by the caller.  Returns non-zero if an
2569  * error occurred which prevented the send.
2570  */
2571 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2572 {
2573 	struct tcp_sock *tp = tcp_sk(sk);
2574 	struct inet_connection_sock *icsk = inet_csk(sk);
2575 	unsigned int cur_mss;
2576 	int err;
2577 
2578 	/* Inconslusive MTU probe */
2579 	if (icsk->icsk_mtup.probe_size) {
2580 		icsk->icsk_mtup.probe_size = 0;
2581 	}
2582 
2583 	/* Do not sent more than we queued. 1/4 is reserved for possible
2584 	 * copying overhead: fragmentation, tunneling, mangling etc.
2585 	 */
2586 	if (atomic_read(&sk->sk_wmem_alloc) >
2587 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2588 		return -EAGAIN;
2589 
2590 	if (skb_still_in_host_queue(sk, skb))
2591 		return -EBUSY;
2592 
2593 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2594 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2595 			BUG();
2596 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2597 			return -ENOMEM;
2598 	}
2599 
2600 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2601 		return -EHOSTUNREACH; /* Routing failure or similar. */
2602 
2603 	cur_mss = tcp_current_mss(sk);
2604 
2605 	/* If receiver has shrunk his window, and skb is out of
2606 	 * new window, do not retransmit it. The exception is the
2607 	 * case, when window is shrunk to zero. In this case
2608 	 * our retransmit serves as a zero window probe.
2609 	 */
2610 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2611 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2612 		return -EAGAIN;
2613 
2614 	if (skb->len > cur_mss) {
2615 		if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2616 			return -ENOMEM; /* We'll try again later. */
2617 	} else {
2618 		int oldpcount = tcp_skb_pcount(skb);
2619 
2620 		if (unlikely(oldpcount > 1)) {
2621 			if (skb_unclone(skb, GFP_ATOMIC))
2622 				return -ENOMEM;
2623 			tcp_init_tso_segs(sk, skb, cur_mss);
2624 			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2625 		}
2626 	}
2627 
2628 	/* RFC3168, section 6.1.1.1. ECN fallback */
2629 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2630 		tcp_ecn_clear_syn(sk, skb);
2631 
2632 	tcp_retrans_try_collapse(sk, skb, cur_mss);
2633 
2634 	/* Make a copy, if the first transmission SKB clone we made
2635 	 * is still in somebody's hands, else make a clone.
2636 	 */
2637 
2638 	/* make sure skb->data is aligned on arches that require it
2639 	 * and check if ack-trimming & collapsing extended the headroom
2640 	 * beyond what csum_start can cover.
2641 	 */
2642 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2643 		     skb_headroom(skb) >= 0xFFFF)) {
2644 		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2645 						   GFP_ATOMIC);
2646 		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2647 			     -ENOBUFS;
2648 	} else {
2649 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2650 	}
2651 
2652 	if (likely(!err)) {
2653 		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2654 		/* Update global TCP statistics. */
2655 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2656 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2657 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2658 		tp->total_retrans++;
2659 	}
2660 	return err;
2661 }
2662 
2663 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2664 {
2665 	struct tcp_sock *tp = tcp_sk(sk);
2666 	int err = __tcp_retransmit_skb(sk, skb);
2667 
2668 	if (err == 0) {
2669 #if FASTRETRANS_DEBUG > 0
2670 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2671 			net_dbg_ratelimited("retrans_out leaked\n");
2672 		}
2673 #endif
2674 		if (!tp->retrans_out)
2675 			tp->lost_retrans_low = tp->snd_nxt;
2676 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2677 		tp->retrans_out += tcp_skb_pcount(skb);
2678 
2679 		/* Save stamp of the first retransmit. */
2680 		if (!tp->retrans_stamp)
2681 			tp->retrans_stamp = tcp_skb_timestamp(skb);
2682 
2683 		/* snd_nxt is stored to detect loss of retransmitted segment,
2684 		 * see tcp_input.c tcp_sacktag_write_queue().
2685 		 */
2686 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2687 	} else if (err != -EBUSY) {
2688 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2689 	}
2690 
2691 	if (tp->undo_retrans < 0)
2692 		tp->undo_retrans = 0;
2693 	tp->undo_retrans += tcp_skb_pcount(skb);
2694 	return err;
2695 }
2696 
2697 /* Check if we forward retransmits are possible in the current
2698  * window/congestion state.
2699  */
2700 static bool tcp_can_forward_retransmit(struct sock *sk)
2701 {
2702 	const struct inet_connection_sock *icsk = inet_csk(sk);
2703 	const struct tcp_sock *tp = tcp_sk(sk);
2704 
2705 	/* Forward retransmissions are possible only during Recovery. */
2706 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2707 		return false;
2708 
2709 	/* No forward retransmissions in Reno are possible. */
2710 	if (tcp_is_reno(tp))
2711 		return false;
2712 
2713 	/* Yeah, we have to make difficult choice between forward transmission
2714 	 * and retransmission... Both ways have their merits...
2715 	 *
2716 	 * For now we do not retransmit anything, while we have some new
2717 	 * segments to send. In the other cases, follow rule 3 for
2718 	 * NextSeg() specified in RFC3517.
2719 	 */
2720 
2721 	if (tcp_may_send_now(sk))
2722 		return false;
2723 
2724 	return true;
2725 }
2726 
2727 /* This gets called after a retransmit timeout, and the initially
2728  * retransmitted data is acknowledged.  It tries to continue
2729  * resending the rest of the retransmit queue, until either
2730  * we've sent it all or the congestion window limit is reached.
2731  * If doing SACK, the first ACK which comes back for a timeout
2732  * based retransmit packet might feed us FACK information again.
2733  * If so, we use it to avoid unnecessarily retransmissions.
2734  */
2735 void tcp_xmit_retransmit_queue(struct sock *sk)
2736 {
2737 	const struct inet_connection_sock *icsk = inet_csk(sk);
2738 	struct tcp_sock *tp = tcp_sk(sk);
2739 	struct sk_buff *skb;
2740 	struct sk_buff *hole = NULL;
2741 	u32 last_lost;
2742 	int mib_idx;
2743 	int fwd_rexmitting = 0;
2744 
2745 	if (!tp->packets_out)
2746 		return;
2747 
2748 	if (!tp->lost_out)
2749 		tp->retransmit_high = tp->snd_una;
2750 
2751 	if (tp->retransmit_skb_hint) {
2752 		skb = tp->retransmit_skb_hint;
2753 		last_lost = TCP_SKB_CB(skb)->end_seq;
2754 		if (after(last_lost, tp->retransmit_high))
2755 			last_lost = tp->retransmit_high;
2756 	} else {
2757 		skb = tcp_write_queue_head(sk);
2758 		last_lost = tp->snd_una;
2759 	}
2760 
2761 	tcp_for_write_queue_from(skb, sk) {
2762 		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2763 
2764 		if (skb == tcp_send_head(sk))
2765 			break;
2766 		/* we could do better than to assign each time */
2767 		if (!hole)
2768 			tp->retransmit_skb_hint = skb;
2769 
2770 		/* Assume this retransmit will generate
2771 		 * only one packet for congestion window
2772 		 * calculation purposes.  This works because
2773 		 * tcp_retransmit_skb() will chop up the
2774 		 * packet to be MSS sized and all the
2775 		 * packet counting works out.
2776 		 */
2777 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2778 			return;
2779 
2780 		if (fwd_rexmitting) {
2781 begin_fwd:
2782 			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2783 				break;
2784 			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2785 
2786 		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2787 			tp->retransmit_high = last_lost;
2788 			if (!tcp_can_forward_retransmit(sk))
2789 				break;
2790 			/* Backtrack if necessary to non-L'ed skb */
2791 			if (hole) {
2792 				skb = hole;
2793 				hole = NULL;
2794 			}
2795 			fwd_rexmitting = 1;
2796 			goto begin_fwd;
2797 
2798 		} else if (!(sacked & TCPCB_LOST)) {
2799 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2800 				hole = skb;
2801 			continue;
2802 
2803 		} else {
2804 			last_lost = TCP_SKB_CB(skb)->end_seq;
2805 			if (icsk->icsk_ca_state != TCP_CA_Loss)
2806 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2807 			else
2808 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2809 		}
2810 
2811 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2812 			continue;
2813 
2814 		if (tcp_retransmit_skb(sk, skb))
2815 			return;
2816 
2817 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2818 
2819 		if (tcp_in_cwnd_reduction(sk))
2820 			tp->prr_out += tcp_skb_pcount(skb);
2821 
2822 		if (skb == tcp_write_queue_head(sk))
2823 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2824 						  inet_csk(sk)->icsk_rto,
2825 						  TCP_RTO_MAX);
2826 	}
2827 }
2828 
2829 /* We allow to exceed memory limits for FIN packets to expedite
2830  * connection tear down and (memory) recovery.
2831  * Otherwise tcp_send_fin() could be tempted to either delay FIN
2832  * or even be forced to close flow without any FIN.
2833  * In general, we want to allow one skb per socket to avoid hangs
2834  * with edge trigger epoll()
2835  */
2836 void sk_forced_mem_schedule(struct sock *sk, int size)
2837 {
2838 	int amt, status;
2839 
2840 	if (size <= sk->sk_forward_alloc)
2841 		return;
2842 	amt = sk_mem_pages(size);
2843 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2844 	sk_memory_allocated_add(sk, amt, &status);
2845 }
2846 
2847 /* Send a FIN. The caller locks the socket for us.
2848  * We should try to send a FIN packet really hard, but eventually give up.
2849  */
2850 void tcp_send_fin(struct sock *sk)
2851 {
2852 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2853 	struct tcp_sock *tp = tcp_sk(sk);
2854 
2855 	/* Optimization, tack on the FIN if we have one skb in write queue and
2856 	 * this skb was not yet sent, or we are under memory pressure.
2857 	 * Note: in the latter case, FIN packet will be sent after a timeout,
2858 	 * as TCP stack thinks it has already been transmitted.
2859 	 */
2860 	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2861 coalesce:
2862 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2863 		TCP_SKB_CB(tskb)->end_seq++;
2864 		tp->write_seq++;
2865 		if (!tcp_send_head(sk)) {
2866 			/* This means tskb was already sent.
2867 			 * Pretend we included the FIN on previous transmit.
2868 			 * We need to set tp->snd_nxt to the value it would have
2869 			 * if FIN had been sent. This is because retransmit path
2870 			 * does not change tp->snd_nxt.
2871 			 */
2872 			tp->snd_nxt++;
2873 			return;
2874 		}
2875 	} else {
2876 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2877 		if (unlikely(!skb)) {
2878 			if (tskb)
2879 				goto coalesce;
2880 			return;
2881 		}
2882 		skb_reserve(skb, MAX_TCP_HEADER);
2883 		sk_forced_mem_schedule(sk, skb->truesize);
2884 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2885 		tcp_init_nondata_skb(skb, tp->write_seq,
2886 				     TCPHDR_ACK | TCPHDR_FIN);
2887 		tcp_queue_skb(sk, skb);
2888 	}
2889 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2890 }
2891 
2892 /* We get here when a process closes a file descriptor (either due to
2893  * an explicit close() or as a byproduct of exit()'ing) and there
2894  * was unread data in the receive queue.  This behavior is recommended
2895  * by RFC 2525, section 2.17.  -DaveM
2896  */
2897 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2898 {
2899 	struct sk_buff *skb;
2900 
2901 	/* NOTE: No TCP options attached and we never retransmit this. */
2902 	skb = alloc_skb(MAX_TCP_HEADER, priority);
2903 	if (!skb) {
2904 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2905 		return;
2906 	}
2907 
2908 	/* Reserve space for headers and prepare control bits. */
2909 	skb_reserve(skb, MAX_TCP_HEADER);
2910 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2911 			     TCPHDR_ACK | TCPHDR_RST);
2912 	/* Send it off. */
2913 	if (tcp_transmit_skb(sk, skb, 0, priority))
2914 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2915 
2916 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2917 }
2918 
2919 /* Send a crossed SYN-ACK during socket establishment.
2920  * WARNING: This routine must only be called when we have already sent
2921  * a SYN packet that crossed the incoming SYN that caused this routine
2922  * to get called. If this assumption fails then the initial rcv_wnd
2923  * and rcv_wscale values will not be correct.
2924  */
2925 int tcp_send_synack(struct sock *sk)
2926 {
2927 	struct sk_buff *skb;
2928 
2929 	skb = tcp_write_queue_head(sk);
2930 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2931 		pr_debug("%s: wrong queue state\n", __func__);
2932 		return -EFAULT;
2933 	}
2934 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2935 		if (skb_cloned(skb)) {
2936 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2937 			if (!nskb)
2938 				return -ENOMEM;
2939 			tcp_unlink_write_queue(skb, sk);
2940 			__skb_header_release(nskb);
2941 			__tcp_add_write_queue_head(sk, nskb);
2942 			sk_wmem_free_skb(sk, skb);
2943 			sk->sk_wmem_queued += nskb->truesize;
2944 			sk_mem_charge(sk, nskb->truesize);
2945 			skb = nskb;
2946 		}
2947 
2948 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2949 		tcp_ecn_send_synack(sk, skb);
2950 	}
2951 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2952 }
2953 
2954 /**
2955  * tcp_make_synack - Prepare a SYN-ACK.
2956  * sk: listener socket
2957  * dst: dst entry attached to the SYNACK
2958  * req: request_sock pointer
2959  *
2960  * Allocate one skb and build a SYNACK packet.
2961  * @dst is consumed : Caller should not use it again.
2962  */
2963 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2964 				struct request_sock *req,
2965 				struct tcp_fastopen_cookie *foc)
2966 {
2967 	struct tcp_out_options opts;
2968 	struct inet_request_sock *ireq = inet_rsk(req);
2969 	struct tcp_sock *tp = tcp_sk(sk);
2970 	struct tcphdr *th;
2971 	struct sk_buff *skb;
2972 	struct tcp_md5sig_key *md5 = NULL;
2973 	int tcp_header_size;
2974 	int mss;
2975 
2976 	skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2977 	if (unlikely(!skb)) {
2978 		dst_release(dst);
2979 		return NULL;
2980 	}
2981 	/* Reserve space for headers. */
2982 	skb_reserve(skb, MAX_TCP_HEADER);
2983 
2984 	skb_dst_set(skb, dst);
2985 
2986 	mss = dst_metric_advmss(dst);
2987 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2988 		mss = tp->rx_opt.user_mss;
2989 
2990 	memset(&opts, 0, sizeof(opts));
2991 #ifdef CONFIG_SYN_COOKIES
2992 	if (unlikely(req->cookie_ts))
2993 		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
2994 	else
2995 #endif
2996 	skb_mstamp_get(&skb->skb_mstamp);
2997 
2998 #ifdef CONFIG_TCP_MD5SIG
2999 	rcu_read_lock();
3000 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3001 #endif
3002 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3003 					     foc) + sizeof(*th);
3004 
3005 	skb_push(skb, tcp_header_size);
3006 	skb_reset_transport_header(skb);
3007 
3008 	th = tcp_hdr(skb);
3009 	memset(th, 0, sizeof(struct tcphdr));
3010 	th->syn = 1;
3011 	th->ack = 1;
3012 	tcp_ecn_make_synack(req, th, sk);
3013 	th->source = htons(ireq->ir_num);
3014 	th->dest = ireq->ir_rmt_port;
3015 	/* Setting of flags are superfluous here for callers (and ECE is
3016 	 * not even correctly set)
3017 	 */
3018 	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3019 			     TCPHDR_SYN | TCPHDR_ACK);
3020 
3021 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3022 	/* XXX data is queued and acked as is. No buffer/window check */
3023 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3024 
3025 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3026 	th->window = htons(min(req->rcv_wnd, 65535U));
3027 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
3028 	th->doff = (tcp_header_size >> 2);
3029 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3030 
3031 #ifdef CONFIG_TCP_MD5SIG
3032 	/* Okay, we have all we need - do the md5 hash if needed */
3033 	if (md5)
3034 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3035 					       md5, req_to_sk(req), skb);
3036 	rcu_read_unlock();
3037 #endif
3038 
3039 	/* Do not fool tcpdump (if any), clean our debris */
3040 	skb->tstamp.tv64 = 0;
3041 	return skb;
3042 }
3043 EXPORT_SYMBOL(tcp_make_synack);
3044 
3045 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3046 {
3047 	struct inet_connection_sock *icsk = inet_csk(sk);
3048 	const struct tcp_congestion_ops *ca;
3049 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3050 
3051 	if (ca_key == TCP_CA_UNSPEC)
3052 		return;
3053 
3054 	rcu_read_lock();
3055 	ca = tcp_ca_find_key(ca_key);
3056 	if (likely(ca && try_module_get(ca->owner))) {
3057 		module_put(icsk->icsk_ca_ops->owner);
3058 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3059 		icsk->icsk_ca_ops = ca;
3060 	}
3061 	rcu_read_unlock();
3062 }
3063 
3064 /* Do all connect socket setups that can be done AF independent. */
3065 static void tcp_connect_init(struct sock *sk)
3066 {
3067 	const struct dst_entry *dst = __sk_dst_get(sk);
3068 	struct tcp_sock *tp = tcp_sk(sk);
3069 	__u8 rcv_wscale;
3070 
3071 	/* We'll fix this up when we get a response from the other end.
3072 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3073 	 */
3074 	tp->tcp_header_len = sizeof(struct tcphdr) +
3075 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3076 
3077 #ifdef CONFIG_TCP_MD5SIG
3078 	if (tp->af_specific->md5_lookup(sk, sk))
3079 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3080 #endif
3081 
3082 	/* If user gave his TCP_MAXSEG, record it to clamp */
3083 	if (tp->rx_opt.user_mss)
3084 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3085 	tp->max_window = 0;
3086 	tcp_mtup_init(sk);
3087 	tcp_sync_mss(sk, dst_mtu(dst));
3088 
3089 	tcp_ca_dst_init(sk, dst);
3090 
3091 	if (!tp->window_clamp)
3092 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3093 	tp->advmss = dst_metric_advmss(dst);
3094 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3095 		tp->advmss = tp->rx_opt.user_mss;
3096 
3097 	tcp_initialize_rcv_mss(sk);
3098 
3099 	/* limit the window selection if the user enforce a smaller rx buffer */
3100 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3101 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3102 		tp->window_clamp = tcp_full_space(sk);
3103 
3104 	tcp_select_initial_window(tcp_full_space(sk),
3105 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3106 				  &tp->rcv_wnd,
3107 				  &tp->window_clamp,
3108 				  sysctl_tcp_window_scaling,
3109 				  &rcv_wscale,
3110 				  dst_metric(dst, RTAX_INITRWND));
3111 
3112 	tp->rx_opt.rcv_wscale = rcv_wscale;
3113 	tp->rcv_ssthresh = tp->rcv_wnd;
3114 
3115 	sk->sk_err = 0;
3116 	sock_reset_flag(sk, SOCK_DONE);
3117 	tp->snd_wnd = 0;
3118 	tcp_init_wl(tp, 0);
3119 	tp->snd_una = tp->write_seq;
3120 	tp->snd_sml = tp->write_seq;
3121 	tp->snd_up = tp->write_seq;
3122 	tp->snd_nxt = tp->write_seq;
3123 
3124 	if (likely(!tp->repair))
3125 		tp->rcv_nxt = 0;
3126 	else
3127 		tp->rcv_tstamp = tcp_time_stamp;
3128 	tp->rcv_wup = tp->rcv_nxt;
3129 	tp->copied_seq = tp->rcv_nxt;
3130 
3131 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3132 	inet_csk(sk)->icsk_retransmits = 0;
3133 	tcp_clear_retrans(tp);
3134 }
3135 
3136 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3137 {
3138 	struct tcp_sock *tp = tcp_sk(sk);
3139 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3140 
3141 	tcb->end_seq += skb->len;
3142 	__skb_header_release(skb);
3143 	__tcp_add_write_queue_tail(sk, skb);
3144 	sk->sk_wmem_queued += skb->truesize;
3145 	sk_mem_charge(sk, skb->truesize);
3146 	tp->write_seq = tcb->end_seq;
3147 	tp->packets_out += tcp_skb_pcount(skb);
3148 }
3149 
3150 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3151  * queue a data-only packet after the regular SYN, such that regular SYNs
3152  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3153  * only the SYN sequence, the data are retransmitted in the first ACK.
3154  * If cookie is not cached or other error occurs, falls back to send a
3155  * regular SYN with Fast Open cookie request option.
3156  */
3157 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3158 {
3159 	struct tcp_sock *tp = tcp_sk(sk);
3160 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3161 	int syn_loss = 0, space, err = 0, copied;
3162 	unsigned long last_syn_loss = 0;
3163 	struct sk_buff *syn_data;
3164 
3165 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3166 	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3167 			       &syn_loss, &last_syn_loss);
3168 	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3169 	if (syn_loss > 1 &&
3170 	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3171 		fo->cookie.len = -1;
3172 		goto fallback;
3173 	}
3174 
3175 	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3176 		fo->cookie.len = -1;
3177 	else if (fo->cookie.len <= 0)
3178 		goto fallback;
3179 
3180 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3181 	 * user-MSS. Reserve maximum option space for middleboxes that add
3182 	 * private TCP options. The cost is reduced data space in SYN :(
3183 	 */
3184 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3185 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3186 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3187 		MAX_TCP_OPTION_SPACE;
3188 
3189 	space = min_t(size_t, space, fo->size);
3190 
3191 	/* limit to order-0 allocations */
3192 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3193 
3194 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3195 	if (!syn_data)
3196 		goto fallback;
3197 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3198 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3199 	copied = copy_from_iter(skb_put(syn_data, space), space,
3200 				&fo->data->msg_iter);
3201 	if (unlikely(!copied)) {
3202 		kfree_skb(syn_data);
3203 		goto fallback;
3204 	}
3205 	if (copied != space) {
3206 		skb_trim(syn_data, copied);
3207 		space = copied;
3208 	}
3209 
3210 	/* No more data pending in inet_wait_for_connect() */
3211 	if (space == fo->size)
3212 		fo->data = NULL;
3213 	fo->copied = space;
3214 
3215 	tcp_connect_queue_skb(sk, syn_data);
3216 
3217 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3218 
3219 	syn->skb_mstamp = syn_data->skb_mstamp;
3220 
3221 	/* Now full SYN+DATA was cloned and sent (or not),
3222 	 * remove the SYN from the original skb (syn_data)
3223 	 * we keep in write queue in case of a retransmit, as we
3224 	 * also have the SYN packet (with no data) in the same queue.
3225 	 */
3226 	TCP_SKB_CB(syn_data)->seq++;
3227 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3228 	if (!err) {
3229 		tp->syn_data = (fo->copied > 0);
3230 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3231 		goto done;
3232 	}
3233 
3234 fallback:
3235 	/* Send a regular SYN with Fast Open cookie request option */
3236 	if (fo->cookie.len > 0)
3237 		fo->cookie.len = 0;
3238 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3239 	if (err)
3240 		tp->syn_fastopen = 0;
3241 done:
3242 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3243 	return err;
3244 }
3245 
3246 /* Build a SYN and send it off. */
3247 int tcp_connect(struct sock *sk)
3248 {
3249 	struct tcp_sock *tp = tcp_sk(sk);
3250 	struct sk_buff *buff;
3251 	int err;
3252 
3253 	tcp_connect_init(sk);
3254 
3255 	if (unlikely(tp->repair)) {
3256 		tcp_finish_connect(sk, NULL);
3257 		return 0;
3258 	}
3259 
3260 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3261 	if (unlikely(!buff))
3262 		return -ENOBUFS;
3263 
3264 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3265 	tp->retrans_stamp = tcp_time_stamp;
3266 	tcp_connect_queue_skb(sk, buff);
3267 	tcp_ecn_send_syn(sk, buff);
3268 
3269 	/* Send off SYN; include data in Fast Open. */
3270 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3271 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3272 	if (err == -ECONNREFUSED)
3273 		return err;
3274 
3275 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3276 	 * in order to make this packet get counted in tcpOutSegs.
3277 	 */
3278 	tp->snd_nxt = tp->write_seq;
3279 	tp->pushed_seq = tp->write_seq;
3280 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3281 
3282 	/* Timer for repeating the SYN until an answer. */
3283 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3284 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3285 	return 0;
3286 }
3287 EXPORT_SYMBOL(tcp_connect);
3288 
3289 /* Send out a delayed ack, the caller does the policy checking
3290  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3291  * for details.
3292  */
3293 void tcp_send_delayed_ack(struct sock *sk)
3294 {
3295 	struct inet_connection_sock *icsk = inet_csk(sk);
3296 	int ato = icsk->icsk_ack.ato;
3297 	unsigned long timeout;
3298 
3299 	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3300 
3301 	if (ato > TCP_DELACK_MIN) {
3302 		const struct tcp_sock *tp = tcp_sk(sk);
3303 		int max_ato = HZ / 2;
3304 
3305 		if (icsk->icsk_ack.pingpong ||
3306 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3307 			max_ato = TCP_DELACK_MAX;
3308 
3309 		/* Slow path, intersegment interval is "high". */
3310 
3311 		/* If some rtt estimate is known, use it to bound delayed ack.
3312 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3313 		 * directly.
3314 		 */
3315 		if (tp->srtt_us) {
3316 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3317 					TCP_DELACK_MIN);
3318 
3319 			if (rtt < max_ato)
3320 				max_ato = rtt;
3321 		}
3322 
3323 		ato = min(ato, max_ato);
3324 	}
3325 
3326 	/* Stay within the limit we were given */
3327 	timeout = jiffies + ato;
3328 
3329 	/* Use new timeout only if there wasn't a older one earlier. */
3330 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3331 		/* If delack timer was blocked or is about to expire,
3332 		 * send ACK now.
3333 		 */
3334 		if (icsk->icsk_ack.blocked ||
3335 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3336 			tcp_send_ack(sk);
3337 			return;
3338 		}
3339 
3340 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3341 			timeout = icsk->icsk_ack.timeout;
3342 	}
3343 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3344 	icsk->icsk_ack.timeout = timeout;
3345 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3346 }
3347 
3348 /* This routine sends an ack and also updates the window. */
3349 void tcp_send_ack(struct sock *sk)
3350 {
3351 	struct sk_buff *buff;
3352 
3353 	/* If we have been reset, we may not send again. */
3354 	if (sk->sk_state == TCP_CLOSE)
3355 		return;
3356 
3357 	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3358 
3359 	/* We are not putting this on the write queue, so
3360 	 * tcp_transmit_skb() will set the ownership to this
3361 	 * sock.
3362 	 */
3363 	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3364 	if (!buff) {
3365 		inet_csk_schedule_ack(sk);
3366 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3367 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3368 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3369 		return;
3370 	}
3371 
3372 	/* Reserve space for headers and prepare control bits. */
3373 	skb_reserve(buff, MAX_TCP_HEADER);
3374 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3375 
3376 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3377 	 * too much.
3378 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3379 	 * We also avoid tcp_wfree() overhead (cache line miss accessing
3380 	 * tp->tsq_flags) by using regular sock_wfree()
3381 	 */
3382 	skb_set_tcp_pure_ack(buff);
3383 
3384 	/* Send it off, this clears delayed acks for us. */
3385 	skb_mstamp_get(&buff->skb_mstamp);
3386 	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3387 }
3388 EXPORT_SYMBOL_GPL(tcp_send_ack);
3389 
3390 /* This routine sends a packet with an out of date sequence
3391  * number. It assumes the other end will try to ack it.
3392  *
3393  * Question: what should we make while urgent mode?
3394  * 4.4BSD forces sending single byte of data. We cannot send
3395  * out of window data, because we have SND.NXT==SND.MAX...
3396  *
3397  * Current solution: to send TWO zero-length segments in urgent mode:
3398  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3399  * out-of-date with SND.UNA-1 to probe window.
3400  */
3401 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3402 {
3403 	struct tcp_sock *tp = tcp_sk(sk);
3404 	struct sk_buff *skb;
3405 
3406 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3407 	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3408 	if (!skb)
3409 		return -1;
3410 
3411 	/* Reserve space for headers and set control bits. */
3412 	skb_reserve(skb, MAX_TCP_HEADER);
3413 	/* Use a previous sequence.  This should cause the other
3414 	 * end to send an ack.  Don't queue or clone SKB, just
3415 	 * send it.
3416 	 */
3417 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3418 	skb_mstamp_get(&skb->skb_mstamp);
3419 	NET_INC_STATS_BH(sock_net(sk), mib);
3420 	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3421 }
3422 
3423 void tcp_send_window_probe(struct sock *sk)
3424 {
3425 	if (sk->sk_state == TCP_ESTABLISHED) {
3426 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3427 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3428 	}
3429 }
3430 
3431 /* Initiate keepalive or window probe from timer. */
3432 int tcp_write_wakeup(struct sock *sk, int mib)
3433 {
3434 	struct tcp_sock *tp = tcp_sk(sk);
3435 	struct sk_buff *skb;
3436 
3437 	if (sk->sk_state == TCP_CLOSE)
3438 		return -1;
3439 
3440 	skb = tcp_send_head(sk);
3441 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3442 		int err;
3443 		unsigned int mss = tcp_current_mss(sk);
3444 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3445 
3446 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3447 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3448 
3449 		/* We are probing the opening of a window
3450 		 * but the window size is != 0
3451 		 * must have been a result SWS avoidance ( sender )
3452 		 */
3453 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3454 		    skb->len > mss) {
3455 			seg_size = min(seg_size, mss);
3456 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3457 			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3458 				return -1;
3459 		} else if (!tcp_skb_pcount(skb))
3460 			tcp_set_skb_tso_segs(sk, skb, mss);
3461 
3462 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3463 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3464 		if (!err)
3465 			tcp_event_new_data_sent(sk, skb);
3466 		return err;
3467 	} else {
3468 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3469 			tcp_xmit_probe_skb(sk, 1, mib);
3470 		return tcp_xmit_probe_skb(sk, 0, mib);
3471 	}
3472 }
3473 
3474 /* A window probe timeout has occurred.  If window is not closed send
3475  * a partial packet else a zero probe.
3476  */
3477 void tcp_send_probe0(struct sock *sk)
3478 {
3479 	struct inet_connection_sock *icsk = inet_csk(sk);
3480 	struct tcp_sock *tp = tcp_sk(sk);
3481 	unsigned long probe_max;
3482 	int err;
3483 
3484 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3485 
3486 	if (tp->packets_out || !tcp_send_head(sk)) {
3487 		/* Cancel probe timer, if it is not required. */
3488 		icsk->icsk_probes_out = 0;
3489 		icsk->icsk_backoff = 0;
3490 		return;
3491 	}
3492 
3493 	if (err <= 0) {
3494 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3495 			icsk->icsk_backoff++;
3496 		icsk->icsk_probes_out++;
3497 		probe_max = TCP_RTO_MAX;
3498 	} else {
3499 		/* If packet was not sent due to local congestion,
3500 		 * do not backoff and do not remember icsk_probes_out.
3501 		 * Let local senders to fight for local resources.
3502 		 *
3503 		 * Use accumulated backoff yet.
3504 		 */
3505 		if (!icsk->icsk_probes_out)
3506 			icsk->icsk_probes_out = 1;
3507 		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3508 	}
3509 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3510 				  tcp_probe0_when(sk, probe_max),
3511 				  TCP_RTO_MAX);
3512 }
3513 
3514 int tcp_rtx_synack(struct sock *sk, struct request_sock *req)
3515 {
3516 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3517 	struct flowi fl;
3518 	int res;
3519 
3520 	res = af_ops->send_synack(sk, NULL, &fl, req, 0, NULL);
3521 	if (!res) {
3522 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3523 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3524 	}
3525 	return res;
3526 }
3527 EXPORT_SYMBOL(tcp_rtx_synack);
3528