1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #include <net/tcp.h> 38 39 #include <linux/compiler.h> 40 #include <linux/module.h> 41 42 /* People can turn this off for buggy TCP's found in printers etc. */ 43 int sysctl_tcp_retrans_collapse __read_mostly = 1; 44 45 /* People can turn this on to work with those rare, broken TCPs that 46 * interpret the window field as a signed quantity. 47 */ 48 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 49 50 /* This limits the percentage of the congestion window which we 51 * will allow a single TSO frame to consume. Building TSO frames 52 * which are too large can cause TCP streams to be bursty. 53 */ 54 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 55 56 int sysctl_tcp_mtu_probing __read_mostly = 0; 57 int sysctl_tcp_base_mss __read_mostly = 512; 58 59 /* By default, RFC2861 behavior. */ 60 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 61 62 int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */ 63 EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size); 64 65 66 /* Account for new data that has been sent to the network. */ 67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 68 { 69 struct tcp_sock *tp = tcp_sk(sk); 70 unsigned int prior_packets = tp->packets_out; 71 72 tcp_advance_send_head(sk, skb); 73 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 74 75 /* Don't override Nagle indefinately with F-RTO */ 76 if (tp->frto_counter == 2) 77 tp->frto_counter = 3; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets) 81 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 82 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 83 } 84 85 /* SND.NXT, if window was not shrunk. 86 * If window has been shrunk, what should we make? It is not clear at all. 87 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 88 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 89 * invalid. OK, let's make this for now: 90 */ 91 static inline __u32 tcp_acceptable_seq(struct sock *sk) 92 { 93 struct tcp_sock *tp = tcp_sk(sk); 94 95 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 96 return tp->snd_nxt; 97 else 98 return tcp_wnd_end(tp); 99 } 100 101 /* Calculate mss to advertise in SYN segment. 102 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 103 * 104 * 1. It is independent of path mtu. 105 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 106 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 107 * attached devices, because some buggy hosts are confused by 108 * large MSS. 109 * 4. We do not make 3, we advertise MSS, calculated from first 110 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 111 * This may be overridden via information stored in routing table. 112 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 113 * probably even Jumbo". 114 */ 115 static __u16 tcp_advertise_mss(struct sock *sk) 116 { 117 struct tcp_sock *tp = tcp_sk(sk); 118 struct dst_entry *dst = __sk_dst_get(sk); 119 int mss = tp->advmss; 120 121 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { 122 mss = dst_metric(dst, RTAX_ADVMSS); 123 tp->advmss = mss; 124 } 125 126 return (__u16)mss; 127 } 128 129 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 130 * This is the first part of cwnd validation mechanism. */ 131 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst) 132 { 133 struct tcp_sock *tp = tcp_sk(sk); 134 s32 delta = tcp_time_stamp - tp->lsndtime; 135 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 136 u32 cwnd = tp->snd_cwnd; 137 138 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 139 140 tp->snd_ssthresh = tcp_current_ssthresh(sk); 141 restart_cwnd = min(restart_cwnd, cwnd); 142 143 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 144 cwnd >>= 1; 145 tp->snd_cwnd = max(cwnd, restart_cwnd); 146 tp->snd_cwnd_stamp = tcp_time_stamp; 147 tp->snd_cwnd_used = 0; 148 } 149 150 /* Congestion state accounting after a packet has been sent. */ 151 static void tcp_event_data_sent(struct tcp_sock *tp, 152 struct sk_buff *skb, struct sock *sk) 153 { 154 struct inet_connection_sock *icsk = inet_csk(sk); 155 const u32 now = tcp_time_stamp; 156 157 if (sysctl_tcp_slow_start_after_idle && 158 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 159 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 160 161 tp->lsndtime = now; 162 163 /* If it is a reply for ato after last received 164 * packet, enter pingpong mode. 165 */ 166 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 167 icsk->icsk_ack.pingpong = 1; 168 } 169 170 /* Account for an ACK we sent. */ 171 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 172 { 173 tcp_dec_quickack_mode(sk, pkts); 174 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 175 } 176 177 /* Determine a window scaling and initial window to offer. 178 * Based on the assumption that the given amount of space 179 * will be offered. Store the results in the tp structure. 180 * NOTE: for smooth operation initial space offering should 181 * be a multiple of mss if possible. We assume here that mss >= 1. 182 * This MUST be enforced by all callers. 183 */ 184 void tcp_select_initial_window(int __space, __u32 mss, 185 __u32 *rcv_wnd, __u32 *window_clamp, 186 int wscale_ok, __u8 *rcv_wscale) 187 { 188 unsigned int space = (__space < 0 ? 0 : __space); 189 190 /* If no clamp set the clamp to the max possible scaled window */ 191 if (*window_clamp == 0) 192 (*window_clamp) = (65535 << 14); 193 space = min(*window_clamp, space); 194 195 /* Quantize space offering to a multiple of mss if possible. */ 196 if (space > mss) 197 space = (space / mss) * mss; 198 199 /* NOTE: offering an initial window larger than 32767 200 * will break some buggy TCP stacks. If the admin tells us 201 * it is likely we could be speaking with such a buggy stack 202 * we will truncate our initial window offering to 32K-1 203 * unless the remote has sent us a window scaling option, 204 * which we interpret as a sign the remote TCP is not 205 * misinterpreting the window field as a signed quantity. 206 */ 207 if (sysctl_tcp_workaround_signed_windows) 208 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 209 else 210 (*rcv_wnd) = space; 211 212 (*rcv_wscale) = 0; 213 if (wscale_ok) { 214 /* Set window scaling on max possible window 215 * See RFC1323 for an explanation of the limit to 14 216 */ 217 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 218 space = min_t(u32, space, *window_clamp); 219 while (space > 65535 && (*rcv_wscale) < 14) { 220 space >>= 1; 221 (*rcv_wscale)++; 222 } 223 } 224 225 /* Set initial window to value enough for senders, 226 * following RFC2414. Senders, not following this RFC, 227 * will be satisfied with 2. 228 */ 229 if (mss > (1 << *rcv_wscale)) { 230 int init_cwnd = 4; 231 if (mss > 1460 * 3) 232 init_cwnd = 2; 233 else if (mss > 1460) 234 init_cwnd = 3; 235 if (*rcv_wnd > init_cwnd * mss) 236 *rcv_wnd = init_cwnd * mss; 237 } 238 239 /* Set the clamp no higher than max representable value */ 240 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 241 } 242 243 /* Chose a new window to advertise, update state in tcp_sock for the 244 * socket, and return result with RFC1323 scaling applied. The return 245 * value can be stuffed directly into th->window for an outgoing 246 * frame. 247 */ 248 static u16 tcp_select_window(struct sock *sk) 249 { 250 struct tcp_sock *tp = tcp_sk(sk); 251 u32 cur_win = tcp_receive_window(tp); 252 u32 new_win = __tcp_select_window(sk); 253 254 /* Never shrink the offered window */ 255 if (new_win < cur_win) { 256 /* Danger Will Robinson! 257 * Don't update rcv_wup/rcv_wnd here or else 258 * we will not be able to advertise a zero 259 * window in time. --DaveM 260 * 261 * Relax Will Robinson. 262 */ 263 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 264 } 265 tp->rcv_wnd = new_win; 266 tp->rcv_wup = tp->rcv_nxt; 267 268 /* Make sure we do not exceed the maximum possible 269 * scaled window. 270 */ 271 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 272 new_win = min(new_win, MAX_TCP_WINDOW); 273 else 274 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 275 276 /* RFC1323 scaling applied */ 277 new_win >>= tp->rx_opt.rcv_wscale; 278 279 /* If we advertise zero window, disable fast path. */ 280 if (new_win == 0) 281 tp->pred_flags = 0; 282 283 return new_win; 284 } 285 286 /* Packet ECN state for a SYN-ACK */ 287 static inline void TCP_ECN_send_synack(struct tcp_sock *tp, struct sk_buff *skb) 288 { 289 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_CWR; 290 if (!(tp->ecn_flags & TCP_ECN_OK)) 291 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_ECE; 292 } 293 294 /* Packet ECN state for a SYN. */ 295 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) 296 { 297 struct tcp_sock *tp = tcp_sk(sk); 298 299 tp->ecn_flags = 0; 300 if (sysctl_tcp_ecn == 1) { 301 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ECE | TCPCB_FLAG_CWR; 302 tp->ecn_flags = TCP_ECN_OK; 303 } 304 } 305 306 static __inline__ void 307 TCP_ECN_make_synack(struct request_sock *req, struct tcphdr *th) 308 { 309 if (inet_rsk(req)->ecn_ok) 310 th->ece = 1; 311 } 312 313 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 314 * be sent. 315 */ 316 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, 317 int tcp_header_len) 318 { 319 struct tcp_sock *tp = tcp_sk(sk); 320 321 if (tp->ecn_flags & TCP_ECN_OK) { 322 /* Not-retransmitted data segment: set ECT and inject CWR. */ 323 if (skb->len != tcp_header_len && 324 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 325 INET_ECN_xmit(sk); 326 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 327 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 328 tcp_hdr(skb)->cwr = 1; 329 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 330 } 331 } else { 332 /* ACK or retransmitted segment: clear ECT|CE */ 333 INET_ECN_dontxmit(sk); 334 } 335 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 336 tcp_hdr(skb)->ece = 1; 337 } 338 } 339 340 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 341 * auto increment end seqno. 342 */ 343 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 344 { 345 skb->csum = 0; 346 347 TCP_SKB_CB(skb)->flags = flags; 348 TCP_SKB_CB(skb)->sacked = 0; 349 350 skb_shinfo(skb)->gso_segs = 1; 351 skb_shinfo(skb)->gso_size = 0; 352 skb_shinfo(skb)->gso_type = 0; 353 354 TCP_SKB_CB(skb)->seq = seq; 355 if (flags & (TCPCB_FLAG_SYN | TCPCB_FLAG_FIN)) 356 seq++; 357 TCP_SKB_CB(skb)->end_seq = seq; 358 } 359 360 static inline int tcp_urg_mode(const struct tcp_sock *tp) 361 { 362 return tp->snd_una != tp->snd_up; 363 } 364 365 #define OPTION_SACK_ADVERTISE (1 << 0) 366 #define OPTION_TS (1 << 1) 367 #define OPTION_MD5 (1 << 2) 368 #define OPTION_WSCALE (1 << 3) 369 #define OPTION_COOKIE_EXTENSION (1 << 4) 370 371 struct tcp_out_options { 372 u8 options; /* bit field of OPTION_* */ 373 u8 ws; /* window scale, 0 to disable */ 374 u8 num_sack_blocks; /* number of SACK blocks to include */ 375 u8 hash_size; /* bytes in hash_location */ 376 u16 mss; /* 0 to disable */ 377 __u32 tsval, tsecr; /* need to include OPTION_TS */ 378 __u8 *hash_location; /* temporary pointer, overloaded */ 379 }; 380 381 /* The sysctl int routines are generic, so check consistency here. 382 */ 383 static u8 tcp_cookie_size_check(u8 desired) 384 { 385 if (desired > 0) { 386 /* previously specified */ 387 return desired; 388 } 389 if (sysctl_tcp_cookie_size <= 0) { 390 /* no default specified */ 391 return 0; 392 } 393 if (sysctl_tcp_cookie_size <= TCP_COOKIE_MIN) { 394 /* value too small, specify minimum */ 395 return TCP_COOKIE_MIN; 396 } 397 if (sysctl_tcp_cookie_size >= TCP_COOKIE_MAX) { 398 /* value too large, specify maximum */ 399 return TCP_COOKIE_MAX; 400 } 401 if (0x1 & sysctl_tcp_cookie_size) { 402 /* 8-bit multiple, illegal, fix it */ 403 return (u8)(sysctl_tcp_cookie_size + 0x1); 404 } 405 return (u8)sysctl_tcp_cookie_size; 406 } 407 408 /* Write previously computed TCP options to the packet. 409 * 410 * Beware: Something in the Internet is very sensitive to the ordering of 411 * TCP options, we learned this through the hard way, so be careful here. 412 * Luckily we can at least blame others for their non-compliance but from 413 * inter-operatibility perspective it seems that we're somewhat stuck with 414 * the ordering which we have been using if we want to keep working with 415 * those broken things (not that it currently hurts anybody as there isn't 416 * particular reason why the ordering would need to be changed). 417 * 418 * At least SACK_PERM as the first option is known to lead to a disaster 419 * (but it may well be that other scenarios fail similarly). 420 */ 421 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 422 struct tcp_out_options *opts) 423 { 424 u8 options = opts->options; /* mungable copy */ 425 426 /* Having both authentication and cookies for security is redundant, 427 * and there's certainly not enough room. Instead, the cookie-less 428 * extension variant is proposed. 429 * 430 * Consider the pessimal case with authentication. The options 431 * could look like: 432 * COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40 433 */ 434 if (unlikely(OPTION_MD5 & options)) { 435 if (unlikely(OPTION_COOKIE_EXTENSION & options)) { 436 *ptr++ = htonl((TCPOPT_COOKIE << 24) | 437 (TCPOLEN_COOKIE_BASE << 16) | 438 (TCPOPT_MD5SIG << 8) | 439 TCPOLEN_MD5SIG); 440 } else { 441 *ptr++ = htonl((TCPOPT_NOP << 24) | 442 (TCPOPT_NOP << 16) | 443 (TCPOPT_MD5SIG << 8) | 444 TCPOLEN_MD5SIG); 445 } 446 options &= ~OPTION_COOKIE_EXTENSION; 447 /* overload cookie hash location */ 448 opts->hash_location = (__u8 *)ptr; 449 ptr += 4; 450 } 451 452 if (unlikely(opts->mss)) { 453 *ptr++ = htonl((TCPOPT_MSS << 24) | 454 (TCPOLEN_MSS << 16) | 455 opts->mss); 456 } 457 458 if (likely(OPTION_TS & options)) { 459 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 460 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 461 (TCPOLEN_SACK_PERM << 16) | 462 (TCPOPT_TIMESTAMP << 8) | 463 TCPOLEN_TIMESTAMP); 464 options &= ~OPTION_SACK_ADVERTISE; 465 } else { 466 *ptr++ = htonl((TCPOPT_NOP << 24) | 467 (TCPOPT_NOP << 16) | 468 (TCPOPT_TIMESTAMP << 8) | 469 TCPOLEN_TIMESTAMP); 470 } 471 *ptr++ = htonl(opts->tsval); 472 *ptr++ = htonl(opts->tsecr); 473 } 474 475 /* Specification requires after timestamp, so do it now. 476 * 477 * Consider the pessimal case without authentication. The options 478 * could look like: 479 * MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40 480 */ 481 if (unlikely(OPTION_COOKIE_EXTENSION & options)) { 482 __u8 *cookie_copy = opts->hash_location; 483 u8 cookie_size = opts->hash_size; 484 485 /* 8-bit multiple handled in tcp_cookie_size_check() above, 486 * and elsewhere. 487 */ 488 if (0x2 & cookie_size) { 489 __u8 *p = (__u8 *)ptr; 490 491 /* 16-bit multiple */ 492 *p++ = TCPOPT_COOKIE; 493 *p++ = TCPOLEN_COOKIE_BASE + cookie_size; 494 *p++ = *cookie_copy++; 495 *p++ = *cookie_copy++; 496 ptr++; 497 cookie_size -= 2; 498 } else { 499 /* 32-bit multiple */ 500 *ptr++ = htonl(((TCPOPT_NOP << 24) | 501 (TCPOPT_NOP << 16) | 502 (TCPOPT_COOKIE << 8) | 503 TCPOLEN_COOKIE_BASE) + 504 cookie_size); 505 } 506 507 if (cookie_size > 0) { 508 memcpy(ptr, cookie_copy, cookie_size); 509 ptr += (cookie_size / 4); 510 } 511 } 512 513 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 514 *ptr++ = htonl((TCPOPT_NOP << 24) | 515 (TCPOPT_NOP << 16) | 516 (TCPOPT_SACK_PERM << 8) | 517 TCPOLEN_SACK_PERM); 518 } 519 520 if (unlikely(OPTION_WSCALE & options)) { 521 *ptr++ = htonl((TCPOPT_NOP << 24) | 522 (TCPOPT_WINDOW << 16) | 523 (TCPOLEN_WINDOW << 8) | 524 opts->ws); 525 } 526 527 if (unlikely(opts->num_sack_blocks)) { 528 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 529 tp->duplicate_sack : tp->selective_acks; 530 int this_sack; 531 532 *ptr++ = htonl((TCPOPT_NOP << 24) | 533 (TCPOPT_NOP << 16) | 534 (TCPOPT_SACK << 8) | 535 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 536 TCPOLEN_SACK_PERBLOCK))); 537 538 for (this_sack = 0; this_sack < opts->num_sack_blocks; 539 ++this_sack) { 540 *ptr++ = htonl(sp[this_sack].start_seq); 541 *ptr++ = htonl(sp[this_sack].end_seq); 542 } 543 544 tp->rx_opt.dsack = 0; 545 } 546 } 547 548 /* Compute TCP options for SYN packets. This is not the final 549 * network wire format yet. 550 */ 551 static unsigned tcp_syn_options(struct sock *sk, struct sk_buff *skb, 552 struct tcp_out_options *opts, 553 struct tcp_md5sig_key **md5) { 554 struct tcp_sock *tp = tcp_sk(sk); 555 struct tcp_cookie_values *cvp = tp->cookie_values; 556 struct dst_entry *dst = __sk_dst_get(sk); 557 unsigned remaining = MAX_TCP_OPTION_SPACE; 558 u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ? 559 tcp_cookie_size_check(cvp->cookie_desired) : 560 0; 561 562 #ifdef CONFIG_TCP_MD5SIG 563 *md5 = tp->af_specific->md5_lookup(sk, sk); 564 if (*md5) { 565 opts->options |= OPTION_MD5; 566 remaining -= TCPOLEN_MD5SIG_ALIGNED; 567 } 568 #else 569 *md5 = NULL; 570 #endif 571 572 /* We always get an MSS option. The option bytes which will be seen in 573 * normal data packets should timestamps be used, must be in the MSS 574 * advertised. But we subtract them from tp->mss_cache so that 575 * calculations in tcp_sendmsg are simpler etc. So account for this 576 * fact here if necessary. If we don't do this correctly, as a 577 * receiver we won't recognize data packets as being full sized when we 578 * should, and thus we won't abide by the delayed ACK rules correctly. 579 * SACKs don't matter, we never delay an ACK when we have any of those 580 * going out. */ 581 opts->mss = tcp_advertise_mss(sk); 582 remaining -= TCPOLEN_MSS_ALIGNED; 583 584 if (likely(sysctl_tcp_timestamps && 585 !dst_feature(dst, RTAX_FEATURE_NO_TSTAMP) && 586 *md5 == NULL)) { 587 opts->options |= OPTION_TS; 588 opts->tsval = TCP_SKB_CB(skb)->when; 589 opts->tsecr = tp->rx_opt.ts_recent; 590 remaining -= TCPOLEN_TSTAMP_ALIGNED; 591 } 592 if (likely(sysctl_tcp_window_scaling && 593 !dst_feature(dst, RTAX_FEATURE_NO_WSCALE))) { 594 opts->ws = tp->rx_opt.rcv_wscale; 595 opts->options |= OPTION_WSCALE; 596 remaining -= TCPOLEN_WSCALE_ALIGNED; 597 } 598 if (likely(sysctl_tcp_sack && 599 !dst_feature(dst, RTAX_FEATURE_NO_SACK))) { 600 opts->options |= OPTION_SACK_ADVERTISE; 601 if (unlikely(!(OPTION_TS & opts->options))) 602 remaining -= TCPOLEN_SACKPERM_ALIGNED; 603 } 604 605 /* Note that timestamps are required by the specification. 606 * 607 * Odd numbers of bytes are prohibited by the specification, ensuring 608 * that the cookie is 16-bit aligned, and the resulting cookie pair is 609 * 32-bit aligned. 610 */ 611 if (*md5 == NULL && 612 (OPTION_TS & opts->options) && 613 cookie_size > 0) { 614 int need = TCPOLEN_COOKIE_BASE + cookie_size; 615 616 if (0x2 & need) { 617 /* 32-bit multiple */ 618 need += 2; /* NOPs */ 619 620 if (need > remaining) { 621 /* try shrinking cookie to fit */ 622 cookie_size -= 2; 623 need -= 4; 624 } 625 } 626 while (need > remaining && TCP_COOKIE_MIN <= cookie_size) { 627 cookie_size -= 4; 628 need -= 4; 629 } 630 if (TCP_COOKIE_MIN <= cookie_size) { 631 opts->options |= OPTION_COOKIE_EXTENSION; 632 opts->hash_location = (__u8 *)&cvp->cookie_pair[0]; 633 opts->hash_size = cookie_size; 634 635 /* Remember for future incarnations. */ 636 cvp->cookie_desired = cookie_size; 637 638 if (cvp->cookie_desired != cvp->cookie_pair_size) { 639 /* Currently use random bytes as a nonce, 640 * assuming these are completely unpredictable 641 * by hostile users of the same system. 642 */ 643 get_random_bytes(&cvp->cookie_pair[0], 644 cookie_size); 645 cvp->cookie_pair_size = cookie_size; 646 } 647 648 remaining -= need; 649 } 650 } 651 return MAX_TCP_OPTION_SPACE - remaining; 652 } 653 654 /* Set up TCP options for SYN-ACKs. */ 655 static unsigned tcp_synack_options(struct sock *sk, 656 struct request_sock *req, 657 unsigned mss, struct sk_buff *skb, 658 struct tcp_out_options *opts, 659 struct tcp_md5sig_key **md5, 660 struct tcp_extend_values *xvp) 661 { 662 struct inet_request_sock *ireq = inet_rsk(req); 663 unsigned remaining = MAX_TCP_OPTION_SPACE; 664 u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ? 665 xvp->cookie_plus : 666 0; 667 bool doing_ts = ireq->tstamp_ok; 668 669 #ifdef CONFIG_TCP_MD5SIG 670 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 671 if (*md5) { 672 opts->options |= OPTION_MD5; 673 remaining -= TCPOLEN_MD5SIG_ALIGNED; 674 675 /* We can't fit any SACK blocks in a packet with MD5 + TS 676 * options. There was discussion about disabling SACK 677 * rather than TS in order to fit in better with old, 678 * buggy kernels, but that was deemed to be unnecessary. 679 */ 680 doing_ts &= !ireq->sack_ok; 681 } 682 #else 683 *md5 = NULL; 684 #endif 685 686 /* We always send an MSS option. */ 687 opts->mss = mss; 688 remaining -= TCPOLEN_MSS_ALIGNED; 689 690 if (likely(ireq->wscale_ok)) { 691 opts->ws = ireq->rcv_wscale; 692 opts->options |= OPTION_WSCALE; 693 remaining -= TCPOLEN_WSCALE_ALIGNED; 694 } 695 if (likely(doing_ts)) { 696 opts->options |= OPTION_TS; 697 opts->tsval = TCP_SKB_CB(skb)->when; 698 opts->tsecr = req->ts_recent; 699 remaining -= TCPOLEN_TSTAMP_ALIGNED; 700 } 701 if (likely(ireq->sack_ok)) { 702 opts->options |= OPTION_SACK_ADVERTISE; 703 if (unlikely(!doing_ts)) 704 remaining -= TCPOLEN_SACKPERM_ALIGNED; 705 } 706 707 /* Similar rationale to tcp_syn_options() applies here, too. 708 * If the <SYN> options fit, the same options should fit now! 709 */ 710 if (*md5 == NULL && 711 doing_ts && 712 cookie_plus > TCPOLEN_COOKIE_BASE) { 713 int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */ 714 715 if (0x2 & need) { 716 /* 32-bit multiple */ 717 need += 2; /* NOPs */ 718 } 719 if (need <= remaining) { 720 opts->options |= OPTION_COOKIE_EXTENSION; 721 opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE; 722 remaining -= need; 723 } else { 724 /* There's no error return, so flag it. */ 725 xvp->cookie_out_never = 1; /* true */ 726 opts->hash_size = 0; 727 } 728 } 729 return MAX_TCP_OPTION_SPACE - remaining; 730 } 731 732 /* Compute TCP options for ESTABLISHED sockets. This is not the 733 * final wire format yet. 734 */ 735 static unsigned tcp_established_options(struct sock *sk, struct sk_buff *skb, 736 struct tcp_out_options *opts, 737 struct tcp_md5sig_key **md5) { 738 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; 739 struct tcp_sock *tp = tcp_sk(sk); 740 unsigned size = 0; 741 unsigned int eff_sacks; 742 743 #ifdef CONFIG_TCP_MD5SIG 744 *md5 = tp->af_specific->md5_lookup(sk, sk); 745 if (unlikely(*md5)) { 746 opts->options |= OPTION_MD5; 747 size += TCPOLEN_MD5SIG_ALIGNED; 748 } 749 #else 750 *md5 = NULL; 751 #endif 752 753 if (likely(tp->rx_opt.tstamp_ok)) { 754 opts->options |= OPTION_TS; 755 opts->tsval = tcb ? tcb->when : 0; 756 opts->tsecr = tp->rx_opt.ts_recent; 757 size += TCPOLEN_TSTAMP_ALIGNED; 758 } 759 760 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 761 if (unlikely(eff_sacks)) { 762 const unsigned remaining = MAX_TCP_OPTION_SPACE - size; 763 opts->num_sack_blocks = 764 min_t(unsigned, eff_sacks, 765 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 766 TCPOLEN_SACK_PERBLOCK); 767 size += TCPOLEN_SACK_BASE_ALIGNED + 768 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 769 } 770 771 return size; 772 } 773 774 /* This routine actually transmits TCP packets queued in by 775 * tcp_do_sendmsg(). This is used by both the initial 776 * transmission and possible later retransmissions. 777 * All SKB's seen here are completely headerless. It is our 778 * job to build the TCP header, and pass the packet down to 779 * IP so it can do the same plus pass the packet off to the 780 * device. 781 * 782 * We are working here with either a clone of the original 783 * SKB, or a fresh unique copy made by the retransmit engine. 784 */ 785 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 786 gfp_t gfp_mask) 787 { 788 const struct inet_connection_sock *icsk = inet_csk(sk); 789 struct inet_sock *inet; 790 struct tcp_sock *tp; 791 struct tcp_skb_cb *tcb; 792 struct tcp_out_options opts; 793 unsigned tcp_options_size, tcp_header_size; 794 struct tcp_md5sig_key *md5; 795 struct tcphdr *th; 796 int err; 797 798 BUG_ON(!skb || !tcp_skb_pcount(skb)); 799 800 /* If congestion control is doing timestamping, we must 801 * take such a timestamp before we potentially clone/copy. 802 */ 803 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP) 804 __net_timestamp(skb); 805 806 if (likely(clone_it)) { 807 if (unlikely(skb_cloned(skb))) 808 skb = pskb_copy(skb, gfp_mask); 809 else 810 skb = skb_clone(skb, gfp_mask); 811 if (unlikely(!skb)) 812 return -ENOBUFS; 813 } 814 815 inet = inet_sk(sk); 816 tp = tcp_sk(sk); 817 tcb = TCP_SKB_CB(skb); 818 memset(&opts, 0, sizeof(opts)); 819 820 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) 821 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 822 else 823 tcp_options_size = tcp_established_options(sk, skb, &opts, 824 &md5); 825 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 826 827 if (tcp_packets_in_flight(tp) == 0) 828 tcp_ca_event(sk, CA_EVENT_TX_START); 829 830 skb_push(skb, tcp_header_size); 831 skb_reset_transport_header(skb); 832 skb_set_owner_w(skb, sk); 833 834 /* Build TCP header and checksum it. */ 835 th = tcp_hdr(skb); 836 th->source = inet->inet_sport; 837 th->dest = inet->inet_dport; 838 th->seq = htonl(tcb->seq); 839 th->ack_seq = htonl(tp->rcv_nxt); 840 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 841 tcb->flags); 842 843 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { 844 /* RFC1323: The window in SYN & SYN/ACK segments 845 * is never scaled. 846 */ 847 th->window = htons(min(tp->rcv_wnd, 65535U)); 848 } else { 849 th->window = htons(tcp_select_window(sk)); 850 } 851 th->check = 0; 852 th->urg_ptr = 0; 853 854 /* The urg_mode check is necessary during a below snd_una win probe */ 855 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 856 if (before(tp->snd_up, tcb->seq + 0x10000)) { 857 th->urg_ptr = htons(tp->snd_up - tcb->seq); 858 th->urg = 1; 859 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 860 th->urg_ptr = 0xFFFF; 861 th->urg = 1; 862 } 863 } 864 865 tcp_options_write((__be32 *)(th + 1), tp, &opts); 866 if (likely((tcb->flags & TCPCB_FLAG_SYN) == 0)) 867 TCP_ECN_send(sk, skb, tcp_header_size); 868 869 #ifdef CONFIG_TCP_MD5SIG 870 /* Calculate the MD5 hash, as we have all we need now */ 871 if (md5) { 872 sk->sk_route_caps &= ~NETIF_F_GSO_MASK; 873 tp->af_specific->calc_md5_hash(opts.hash_location, 874 md5, sk, NULL, skb); 875 } 876 #endif 877 878 icsk->icsk_af_ops->send_check(sk, skb->len, skb); 879 880 if (likely(tcb->flags & TCPCB_FLAG_ACK)) 881 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 882 883 if (skb->len != tcp_header_size) 884 tcp_event_data_sent(tp, skb, sk); 885 886 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 887 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 888 889 err = icsk->icsk_af_ops->queue_xmit(skb, 0); 890 if (likely(err <= 0)) 891 return err; 892 893 tcp_enter_cwr(sk, 1); 894 895 return net_xmit_eval(err); 896 } 897 898 /* This routine just queues the buffer for sending. 899 * 900 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 901 * otherwise socket can stall. 902 */ 903 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 904 { 905 struct tcp_sock *tp = tcp_sk(sk); 906 907 /* Advance write_seq and place onto the write_queue. */ 908 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 909 skb_header_release(skb); 910 tcp_add_write_queue_tail(sk, skb); 911 sk->sk_wmem_queued += skb->truesize; 912 sk_mem_charge(sk, skb->truesize); 913 } 914 915 /* Initialize TSO segments for a packet. */ 916 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, 917 unsigned int mss_now) 918 { 919 if (skb->len <= mss_now || !sk_can_gso(sk) || 920 skb->ip_summed == CHECKSUM_NONE) { 921 /* Avoid the costly divide in the normal 922 * non-TSO case. 923 */ 924 skb_shinfo(skb)->gso_segs = 1; 925 skb_shinfo(skb)->gso_size = 0; 926 skb_shinfo(skb)->gso_type = 0; 927 } else { 928 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now); 929 skb_shinfo(skb)->gso_size = mss_now; 930 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 931 } 932 } 933 934 /* When a modification to fackets out becomes necessary, we need to check 935 * skb is counted to fackets_out or not. 936 */ 937 static void tcp_adjust_fackets_out(struct sock *sk, struct sk_buff *skb, 938 int decr) 939 { 940 struct tcp_sock *tp = tcp_sk(sk); 941 942 if (!tp->sacked_out || tcp_is_reno(tp)) 943 return; 944 945 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 946 tp->fackets_out -= decr; 947 } 948 949 /* Pcount in the middle of the write queue got changed, we need to do various 950 * tweaks to fix counters 951 */ 952 static void tcp_adjust_pcount(struct sock *sk, struct sk_buff *skb, int decr) 953 { 954 struct tcp_sock *tp = tcp_sk(sk); 955 956 tp->packets_out -= decr; 957 958 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 959 tp->sacked_out -= decr; 960 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 961 tp->retrans_out -= decr; 962 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 963 tp->lost_out -= decr; 964 965 /* Reno case is special. Sigh... */ 966 if (tcp_is_reno(tp) && decr > 0) 967 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 968 969 tcp_adjust_fackets_out(sk, skb, decr); 970 971 if (tp->lost_skb_hint && 972 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 973 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 974 tp->lost_cnt_hint -= decr; 975 976 tcp_verify_left_out(tp); 977 } 978 979 /* Function to create two new TCP segments. Shrinks the given segment 980 * to the specified size and appends a new segment with the rest of the 981 * packet to the list. This won't be called frequently, I hope. 982 * Remember, these are still headerless SKBs at this point. 983 */ 984 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 985 unsigned int mss_now) 986 { 987 struct tcp_sock *tp = tcp_sk(sk); 988 struct sk_buff *buff; 989 int nsize, old_factor; 990 int nlen; 991 u8 flags; 992 993 BUG_ON(len > skb->len); 994 995 nsize = skb_headlen(skb) - len; 996 if (nsize < 0) 997 nsize = 0; 998 999 if (skb_cloned(skb) && 1000 skb_is_nonlinear(skb) && 1001 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1002 return -ENOMEM; 1003 1004 /* Get a new skb... force flag on. */ 1005 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 1006 if (buff == NULL) 1007 return -ENOMEM; /* We'll just try again later. */ 1008 1009 sk->sk_wmem_queued += buff->truesize; 1010 sk_mem_charge(sk, buff->truesize); 1011 nlen = skb->len - len - nsize; 1012 buff->truesize += nlen; 1013 skb->truesize -= nlen; 1014 1015 /* Correct the sequence numbers. */ 1016 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1017 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1018 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1019 1020 /* PSH and FIN should only be set in the second packet. */ 1021 flags = TCP_SKB_CB(skb)->flags; 1022 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH); 1023 TCP_SKB_CB(buff)->flags = flags; 1024 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1025 1026 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1027 /* Copy and checksum data tail into the new buffer. */ 1028 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1029 skb_put(buff, nsize), 1030 nsize, 0); 1031 1032 skb_trim(skb, len); 1033 1034 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1035 } else { 1036 skb->ip_summed = CHECKSUM_PARTIAL; 1037 skb_split(skb, buff, len); 1038 } 1039 1040 buff->ip_summed = skb->ip_summed; 1041 1042 /* Looks stupid, but our code really uses when of 1043 * skbs, which it never sent before. --ANK 1044 */ 1045 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 1046 buff->tstamp = skb->tstamp; 1047 1048 old_factor = tcp_skb_pcount(skb); 1049 1050 /* Fix up tso_factor for both original and new SKB. */ 1051 tcp_set_skb_tso_segs(sk, skb, mss_now); 1052 tcp_set_skb_tso_segs(sk, buff, mss_now); 1053 1054 /* If this packet has been sent out already, we must 1055 * adjust the various packet counters. 1056 */ 1057 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1058 int diff = old_factor - tcp_skb_pcount(skb) - 1059 tcp_skb_pcount(buff); 1060 1061 if (diff) 1062 tcp_adjust_pcount(sk, skb, diff); 1063 } 1064 1065 /* Link BUFF into the send queue. */ 1066 skb_header_release(buff); 1067 tcp_insert_write_queue_after(skb, buff, sk); 1068 1069 return 0; 1070 } 1071 1072 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1073 * eventually). The difference is that pulled data not copied, but 1074 * immediately discarded. 1075 */ 1076 static void __pskb_trim_head(struct sk_buff *skb, int len) 1077 { 1078 int i, k, eat; 1079 1080 eat = len; 1081 k = 0; 1082 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1083 if (skb_shinfo(skb)->frags[i].size <= eat) { 1084 put_page(skb_shinfo(skb)->frags[i].page); 1085 eat -= skb_shinfo(skb)->frags[i].size; 1086 } else { 1087 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1088 if (eat) { 1089 skb_shinfo(skb)->frags[k].page_offset += eat; 1090 skb_shinfo(skb)->frags[k].size -= eat; 1091 eat = 0; 1092 } 1093 k++; 1094 } 1095 } 1096 skb_shinfo(skb)->nr_frags = k; 1097 1098 skb_reset_tail_pointer(skb); 1099 skb->data_len -= len; 1100 skb->len = skb->data_len; 1101 } 1102 1103 /* Remove acked data from a packet in the transmit queue. */ 1104 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1105 { 1106 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1107 return -ENOMEM; 1108 1109 /* If len == headlen, we avoid __skb_pull to preserve alignment. */ 1110 if (unlikely(len < skb_headlen(skb))) 1111 __skb_pull(skb, len); 1112 else 1113 __pskb_trim_head(skb, len - skb_headlen(skb)); 1114 1115 TCP_SKB_CB(skb)->seq += len; 1116 skb->ip_summed = CHECKSUM_PARTIAL; 1117 1118 skb->truesize -= len; 1119 sk->sk_wmem_queued -= len; 1120 sk_mem_uncharge(sk, len); 1121 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1122 1123 /* Any change of skb->len requires recalculation of tso 1124 * factor and mss. 1125 */ 1126 if (tcp_skb_pcount(skb) > 1) 1127 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk)); 1128 1129 return 0; 1130 } 1131 1132 /* Calculate MSS. Not accounting for SACKs here. */ 1133 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1134 { 1135 struct tcp_sock *tp = tcp_sk(sk); 1136 struct inet_connection_sock *icsk = inet_csk(sk); 1137 int mss_now; 1138 1139 /* Calculate base mss without TCP options: 1140 It is MMS_S - sizeof(tcphdr) of rfc1122 1141 */ 1142 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1143 1144 /* Clamp it (mss_clamp does not include tcp options) */ 1145 if (mss_now > tp->rx_opt.mss_clamp) 1146 mss_now = tp->rx_opt.mss_clamp; 1147 1148 /* Now subtract optional transport overhead */ 1149 mss_now -= icsk->icsk_ext_hdr_len; 1150 1151 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1152 if (mss_now < 48) 1153 mss_now = 48; 1154 1155 /* Now subtract TCP options size, not including SACKs */ 1156 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); 1157 1158 return mss_now; 1159 } 1160 1161 /* Inverse of above */ 1162 int tcp_mss_to_mtu(struct sock *sk, int mss) 1163 { 1164 struct tcp_sock *tp = tcp_sk(sk); 1165 struct inet_connection_sock *icsk = inet_csk(sk); 1166 int mtu; 1167 1168 mtu = mss + 1169 tp->tcp_header_len + 1170 icsk->icsk_ext_hdr_len + 1171 icsk->icsk_af_ops->net_header_len; 1172 1173 return mtu; 1174 } 1175 1176 /* MTU probing init per socket */ 1177 void tcp_mtup_init(struct sock *sk) 1178 { 1179 struct tcp_sock *tp = tcp_sk(sk); 1180 struct inet_connection_sock *icsk = inet_csk(sk); 1181 1182 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1183 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1184 icsk->icsk_af_ops->net_header_len; 1185 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1186 icsk->icsk_mtup.probe_size = 0; 1187 } 1188 1189 /* This function synchronize snd mss to current pmtu/exthdr set. 1190 1191 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1192 for TCP options, but includes only bare TCP header. 1193 1194 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1195 It is minimum of user_mss and mss received with SYN. 1196 It also does not include TCP options. 1197 1198 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1199 1200 tp->mss_cache is current effective sending mss, including 1201 all tcp options except for SACKs. It is evaluated, 1202 taking into account current pmtu, but never exceeds 1203 tp->rx_opt.mss_clamp. 1204 1205 NOTE1. rfc1122 clearly states that advertised MSS 1206 DOES NOT include either tcp or ip options. 1207 1208 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1209 are READ ONLY outside this function. --ANK (980731) 1210 */ 1211 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1212 { 1213 struct tcp_sock *tp = tcp_sk(sk); 1214 struct inet_connection_sock *icsk = inet_csk(sk); 1215 int mss_now; 1216 1217 if (icsk->icsk_mtup.search_high > pmtu) 1218 icsk->icsk_mtup.search_high = pmtu; 1219 1220 mss_now = tcp_mtu_to_mss(sk, pmtu); 1221 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1222 1223 /* And store cached results */ 1224 icsk->icsk_pmtu_cookie = pmtu; 1225 if (icsk->icsk_mtup.enabled) 1226 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1227 tp->mss_cache = mss_now; 1228 1229 return mss_now; 1230 } 1231 1232 /* Compute the current effective MSS, taking SACKs and IP options, 1233 * and even PMTU discovery events into account. 1234 */ 1235 unsigned int tcp_current_mss(struct sock *sk) 1236 { 1237 struct tcp_sock *tp = tcp_sk(sk); 1238 struct dst_entry *dst = __sk_dst_get(sk); 1239 u32 mss_now; 1240 unsigned header_len; 1241 struct tcp_out_options opts; 1242 struct tcp_md5sig_key *md5; 1243 1244 mss_now = tp->mss_cache; 1245 1246 if (dst) { 1247 u32 mtu = dst_mtu(dst); 1248 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1249 mss_now = tcp_sync_mss(sk, mtu); 1250 } 1251 1252 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1253 sizeof(struct tcphdr); 1254 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1255 * some common options. If this is an odd packet (because we have SACK 1256 * blocks etc) then our calculated header_len will be different, and 1257 * we have to adjust mss_now correspondingly */ 1258 if (header_len != tp->tcp_header_len) { 1259 int delta = (int) header_len - tp->tcp_header_len; 1260 mss_now -= delta; 1261 } 1262 1263 return mss_now; 1264 } 1265 1266 /* Congestion window validation. (RFC2861) */ 1267 static void tcp_cwnd_validate(struct sock *sk) 1268 { 1269 struct tcp_sock *tp = tcp_sk(sk); 1270 1271 if (tp->packets_out >= tp->snd_cwnd) { 1272 /* Network is feed fully. */ 1273 tp->snd_cwnd_used = 0; 1274 tp->snd_cwnd_stamp = tcp_time_stamp; 1275 } else { 1276 /* Network starves. */ 1277 if (tp->packets_out > tp->snd_cwnd_used) 1278 tp->snd_cwnd_used = tp->packets_out; 1279 1280 if (sysctl_tcp_slow_start_after_idle && 1281 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1282 tcp_cwnd_application_limited(sk); 1283 } 1284 } 1285 1286 /* Returns the portion of skb which can be sent right away without 1287 * introducing MSS oddities to segment boundaries. In rare cases where 1288 * mss_now != mss_cache, we will request caller to create a small skb 1289 * per input skb which could be mostly avoided here (if desired). 1290 * 1291 * We explicitly want to create a request for splitting write queue tail 1292 * to a small skb for Nagle purposes while avoiding unnecessary modulos, 1293 * thus all the complexity (cwnd_len is always MSS multiple which we 1294 * return whenever allowed by the other factors). Basically we need the 1295 * modulo only when the receiver window alone is the limiting factor or 1296 * when we would be allowed to send the split-due-to-Nagle skb fully. 1297 */ 1298 static unsigned int tcp_mss_split_point(struct sock *sk, struct sk_buff *skb, 1299 unsigned int mss_now, unsigned int cwnd) 1300 { 1301 struct tcp_sock *tp = tcp_sk(sk); 1302 u32 needed, window, cwnd_len; 1303 1304 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1305 cwnd_len = mss_now * cwnd; 1306 1307 if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk))) 1308 return cwnd_len; 1309 1310 needed = min(skb->len, window); 1311 1312 if (cwnd_len <= needed) 1313 return cwnd_len; 1314 1315 return needed - needed % mss_now; 1316 } 1317 1318 /* Can at least one segment of SKB be sent right now, according to the 1319 * congestion window rules? If so, return how many segments are allowed. 1320 */ 1321 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, 1322 struct sk_buff *skb) 1323 { 1324 u32 in_flight, cwnd; 1325 1326 /* Don't be strict about the congestion window for the final FIN. */ 1327 if ((TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && 1328 tcp_skb_pcount(skb) == 1) 1329 return 1; 1330 1331 in_flight = tcp_packets_in_flight(tp); 1332 cwnd = tp->snd_cwnd; 1333 if (in_flight < cwnd) 1334 return (cwnd - in_flight); 1335 1336 return 0; 1337 } 1338 1339 /* Intialize TSO state of a skb. 1340 * This must be invoked the first time we consider transmitting 1341 * SKB onto the wire. 1342 */ 1343 static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, 1344 unsigned int mss_now) 1345 { 1346 int tso_segs = tcp_skb_pcount(skb); 1347 1348 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1349 tcp_set_skb_tso_segs(sk, skb, mss_now); 1350 tso_segs = tcp_skb_pcount(skb); 1351 } 1352 return tso_segs; 1353 } 1354 1355 /* Minshall's variant of the Nagle send check. */ 1356 static inline int tcp_minshall_check(const struct tcp_sock *tp) 1357 { 1358 return after(tp->snd_sml, tp->snd_una) && 1359 !after(tp->snd_sml, tp->snd_nxt); 1360 } 1361 1362 /* Return 0, if packet can be sent now without violation Nagle's rules: 1363 * 1. It is full sized. 1364 * 2. Or it contains FIN. (already checked by caller) 1365 * 3. Or TCP_NODELAY was set. 1366 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1367 * With Minshall's modification: all sent small packets are ACKed. 1368 */ 1369 static inline int tcp_nagle_check(const struct tcp_sock *tp, 1370 const struct sk_buff *skb, 1371 unsigned mss_now, int nonagle) 1372 { 1373 return (skb->len < mss_now && 1374 ((nonagle & TCP_NAGLE_CORK) || 1375 (!nonagle && tp->packets_out && tcp_minshall_check(tp)))); 1376 } 1377 1378 /* Return non-zero if the Nagle test allows this packet to be 1379 * sent now. 1380 */ 1381 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb, 1382 unsigned int cur_mss, int nonagle) 1383 { 1384 /* Nagle rule does not apply to frames, which sit in the middle of the 1385 * write_queue (they have no chances to get new data). 1386 * 1387 * This is implemented in the callers, where they modify the 'nonagle' 1388 * argument based upon the location of SKB in the send queue. 1389 */ 1390 if (nonagle & TCP_NAGLE_PUSH) 1391 return 1; 1392 1393 /* Don't use the nagle rule for urgent data (or for the final FIN). 1394 * Nagle can be ignored during F-RTO too (see RFC4138). 1395 */ 1396 if (tcp_urg_mode(tp) || (tp->frto_counter == 2) || 1397 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) 1398 return 1; 1399 1400 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 1401 return 1; 1402 1403 return 0; 1404 } 1405 1406 /* Does at least the first segment of SKB fit into the send window? */ 1407 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, 1408 unsigned int cur_mss) 1409 { 1410 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1411 1412 if (skb->len > cur_mss) 1413 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1414 1415 return !after(end_seq, tcp_wnd_end(tp)); 1416 } 1417 1418 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1419 * should be put on the wire right now. If so, it returns the number of 1420 * packets allowed by the congestion window. 1421 */ 1422 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb, 1423 unsigned int cur_mss, int nonagle) 1424 { 1425 struct tcp_sock *tp = tcp_sk(sk); 1426 unsigned int cwnd_quota; 1427 1428 tcp_init_tso_segs(sk, skb, cur_mss); 1429 1430 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1431 return 0; 1432 1433 cwnd_quota = tcp_cwnd_test(tp, skb); 1434 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1435 cwnd_quota = 0; 1436 1437 return cwnd_quota; 1438 } 1439 1440 /* Test if sending is allowed right now. */ 1441 int tcp_may_send_now(struct sock *sk) 1442 { 1443 struct tcp_sock *tp = tcp_sk(sk); 1444 struct sk_buff *skb = tcp_send_head(sk); 1445 1446 return (skb && 1447 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1448 (tcp_skb_is_last(sk, skb) ? 1449 tp->nonagle : TCP_NAGLE_PUSH))); 1450 } 1451 1452 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1453 * which is put after SKB on the list. It is very much like 1454 * tcp_fragment() except that it may make several kinds of assumptions 1455 * in order to speed up the splitting operation. In particular, we 1456 * know that all the data is in scatter-gather pages, and that the 1457 * packet has never been sent out before (and thus is not cloned). 1458 */ 1459 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1460 unsigned int mss_now) 1461 { 1462 struct sk_buff *buff; 1463 int nlen = skb->len - len; 1464 u8 flags; 1465 1466 /* All of a TSO frame must be composed of paged data. */ 1467 if (skb->len != skb->data_len) 1468 return tcp_fragment(sk, skb, len, mss_now); 1469 1470 buff = sk_stream_alloc_skb(sk, 0, GFP_ATOMIC); 1471 if (unlikely(buff == NULL)) 1472 return -ENOMEM; 1473 1474 sk->sk_wmem_queued += buff->truesize; 1475 sk_mem_charge(sk, buff->truesize); 1476 buff->truesize += nlen; 1477 skb->truesize -= nlen; 1478 1479 /* Correct the sequence numbers. */ 1480 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1481 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1482 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1483 1484 /* PSH and FIN should only be set in the second packet. */ 1485 flags = TCP_SKB_CB(skb)->flags; 1486 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH); 1487 TCP_SKB_CB(buff)->flags = flags; 1488 1489 /* This packet was never sent out yet, so no SACK bits. */ 1490 TCP_SKB_CB(buff)->sacked = 0; 1491 1492 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1493 skb_split(skb, buff, len); 1494 1495 /* Fix up tso_factor for both original and new SKB. */ 1496 tcp_set_skb_tso_segs(sk, skb, mss_now); 1497 tcp_set_skb_tso_segs(sk, buff, mss_now); 1498 1499 /* Link BUFF into the send queue. */ 1500 skb_header_release(buff); 1501 tcp_insert_write_queue_after(skb, buff, sk); 1502 1503 return 0; 1504 } 1505 1506 /* Try to defer sending, if possible, in order to minimize the amount 1507 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1508 * 1509 * This algorithm is from John Heffner. 1510 */ 1511 static int tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb) 1512 { 1513 struct tcp_sock *tp = tcp_sk(sk); 1514 const struct inet_connection_sock *icsk = inet_csk(sk); 1515 u32 send_win, cong_win, limit, in_flight; 1516 1517 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 1518 goto send_now; 1519 1520 if (icsk->icsk_ca_state != TCP_CA_Open) 1521 goto send_now; 1522 1523 /* Defer for less than two clock ticks. */ 1524 if (tp->tso_deferred && 1525 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1526 goto send_now; 1527 1528 in_flight = tcp_packets_in_flight(tp); 1529 1530 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1531 1532 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1533 1534 /* From in_flight test above, we know that cwnd > in_flight. */ 1535 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1536 1537 limit = min(send_win, cong_win); 1538 1539 /* If a full-sized TSO skb can be sent, do it. */ 1540 if (limit >= sk->sk_gso_max_size) 1541 goto send_now; 1542 1543 /* Middle in queue won't get any more data, full sendable already? */ 1544 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1545 goto send_now; 1546 1547 if (sysctl_tcp_tso_win_divisor) { 1548 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1549 1550 /* If at least some fraction of a window is available, 1551 * just use it. 1552 */ 1553 chunk /= sysctl_tcp_tso_win_divisor; 1554 if (limit >= chunk) 1555 goto send_now; 1556 } else { 1557 /* Different approach, try not to defer past a single 1558 * ACK. Receiver should ACK every other full sized 1559 * frame, so if we have space for more than 3 frames 1560 * then send now. 1561 */ 1562 if (limit > tcp_max_burst(tp) * tp->mss_cache) 1563 goto send_now; 1564 } 1565 1566 /* Ok, it looks like it is advisable to defer. */ 1567 tp->tso_deferred = 1 | (jiffies << 1); 1568 1569 return 1; 1570 1571 send_now: 1572 tp->tso_deferred = 0; 1573 return 0; 1574 } 1575 1576 /* Create a new MTU probe if we are ready. 1577 * MTU probe is regularly attempting to increase the path MTU by 1578 * deliberately sending larger packets. This discovers routing 1579 * changes resulting in larger path MTUs. 1580 * 1581 * Returns 0 if we should wait to probe (no cwnd available), 1582 * 1 if a probe was sent, 1583 * -1 otherwise 1584 */ 1585 static int tcp_mtu_probe(struct sock *sk) 1586 { 1587 struct tcp_sock *tp = tcp_sk(sk); 1588 struct inet_connection_sock *icsk = inet_csk(sk); 1589 struct sk_buff *skb, *nskb, *next; 1590 int len; 1591 int probe_size; 1592 int size_needed; 1593 int copy; 1594 int mss_now; 1595 1596 /* Not currently probing/verifying, 1597 * not in recovery, 1598 * have enough cwnd, and 1599 * not SACKing (the variable headers throw things off) */ 1600 if (!icsk->icsk_mtup.enabled || 1601 icsk->icsk_mtup.probe_size || 1602 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1603 tp->snd_cwnd < 11 || 1604 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1605 return -1; 1606 1607 /* Very simple search strategy: just double the MSS. */ 1608 mss_now = tcp_current_mss(sk); 1609 probe_size = 2 * tp->mss_cache; 1610 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1611 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1612 /* TODO: set timer for probe_converge_event */ 1613 return -1; 1614 } 1615 1616 /* Have enough data in the send queue to probe? */ 1617 if (tp->write_seq - tp->snd_nxt < size_needed) 1618 return -1; 1619 1620 if (tp->snd_wnd < size_needed) 1621 return -1; 1622 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1623 return 0; 1624 1625 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1626 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1627 if (!tcp_packets_in_flight(tp)) 1628 return -1; 1629 else 1630 return 0; 1631 } 1632 1633 /* We're allowed to probe. Build it now. */ 1634 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1635 return -1; 1636 sk->sk_wmem_queued += nskb->truesize; 1637 sk_mem_charge(sk, nskb->truesize); 1638 1639 skb = tcp_send_head(sk); 1640 1641 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1642 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1643 TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK; 1644 TCP_SKB_CB(nskb)->sacked = 0; 1645 nskb->csum = 0; 1646 nskb->ip_summed = skb->ip_summed; 1647 1648 tcp_insert_write_queue_before(nskb, skb, sk); 1649 1650 len = 0; 1651 tcp_for_write_queue_from_safe(skb, next, sk) { 1652 copy = min_t(int, skb->len, probe_size - len); 1653 if (nskb->ip_summed) 1654 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1655 else 1656 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1657 skb_put(nskb, copy), 1658 copy, nskb->csum); 1659 1660 if (skb->len <= copy) { 1661 /* We've eaten all the data from this skb. 1662 * Throw it away. */ 1663 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags; 1664 tcp_unlink_write_queue(skb, sk); 1665 sk_wmem_free_skb(sk, skb); 1666 } else { 1667 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags & 1668 ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 1669 if (!skb_shinfo(skb)->nr_frags) { 1670 skb_pull(skb, copy); 1671 if (skb->ip_summed != CHECKSUM_PARTIAL) 1672 skb->csum = csum_partial(skb->data, 1673 skb->len, 0); 1674 } else { 1675 __pskb_trim_head(skb, copy); 1676 tcp_set_skb_tso_segs(sk, skb, mss_now); 1677 } 1678 TCP_SKB_CB(skb)->seq += copy; 1679 } 1680 1681 len += copy; 1682 1683 if (len >= probe_size) 1684 break; 1685 } 1686 tcp_init_tso_segs(sk, nskb, nskb->len); 1687 1688 /* We're ready to send. If this fails, the probe will 1689 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1690 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1691 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1692 /* Decrement cwnd here because we are sending 1693 * effectively two packets. */ 1694 tp->snd_cwnd--; 1695 tcp_event_new_data_sent(sk, nskb); 1696 1697 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1698 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1699 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1700 1701 return 1; 1702 } 1703 1704 return -1; 1705 } 1706 1707 /* This routine writes packets to the network. It advances the 1708 * send_head. This happens as incoming acks open up the remote 1709 * window for us. 1710 * 1711 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1712 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1713 * account rare use of URG, this is not a big flaw. 1714 * 1715 * Returns 1, if no segments are in flight and we have queued segments, but 1716 * cannot send anything now because of SWS or another problem. 1717 */ 1718 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1719 int push_one, gfp_t gfp) 1720 { 1721 struct tcp_sock *tp = tcp_sk(sk); 1722 struct sk_buff *skb; 1723 unsigned int tso_segs, sent_pkts; 1724 int cwnd_quota; 1725 int result; 1726 1727 sent_pkts = 0; 1728 1729 if (!push_one) { 1730 /* Do MTU probing. */ 1731 result = tcp_mtu_probe(sk); 1732 if (!result) { 1733 return 0; 1734 } else if (result > 0) { 1735 sent_pkts = 1; 1736 } 1737 } 1738 1739 while ((skb = tcp_send_head(sk))) { 1740 unsigned int limit; 1741 1742 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1743 BUG_ON(!tso_segs); 1744 1745 cwnd_quota = tcp_cwnd_test(tp, skb); 1746 if (!cwnd_quota) 1747 break; 1748 1749 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1750 break; 1751 1752 if (tso_segs == 1) { 1753 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1754 (tcp_skb_is_last(sk, skb) ? 1755 nonagle : TCP_NAGLE_PUSH)))) 1756 break; 1757 } else { 1758 if (!push_one && tcp_tso_should_defer(sk, skb)) 1759 break; 1760 } 1761 1762 limit = mss_now; 1763 if (tso_segs > 1 && !tcp_urg_mode(tp)) 1764 limit = tcp_mss_split_point(sk, skb, mss_now, 1765 cwnd_quota); 1766 1767 if (skb->len > limit && 1768 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1769 break; 1770 1771 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1772 1773 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 1774 break; 1775 1776 /* Advance the send_head. This one is sent out. 1777 * This call will increment packets_out. 1778 */ 1779 tcp_event_new_data_sent(sk, skb); 1780 1781 tcp_minshall_update(tp, mss_now, skb); 1782 sent_pkts++; 1783 1784 if (push_one) 1785 break; 1786 } 1787 1788 if (likely(sent_pkts)) { 1789 tcp_cwnd_validate(sk); 1790 return 0; 1791 } 1792 return !tp->packets_out && tcp_send_head(sk); 1793 } 1794 1795 /* Push out any pending frames which were held back due to 1796 * TCP_CORK or attempt at coalescing tiny packets. 1797 * The socket must be locked by the caller. 1798 */ 1799 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 1800 int nonagle) 1801 { 1802 struct sk_buff *skb = tcp_send_head(sk); 1803 1804 if (!skb) 1805 return; 1806 1807 /* If we are closed, the bytes will have to remain here. 1808 * In time closedown will finish, we empty the write queue and 1809 * all will be happy. 1810 */ 1811 if (unlikely(sk->sk_state == TCP_CLOSE)) 1812 return; 1813 1814 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, GFP_ATOMIC)) 1815 tcp_check_probe_timer(sk); 1816 } 1817 1818 /* Send _single_ skb sitting at the send head. This function requires 1819 * true push pending frames to setup probe timer etc. 1820 */ 1821 void tcp_push_one(struct sock *sk, unsigned int mss_now) 1822 { 1823 struct sk_buff *skb = tcp_send_head(sk); 1824 1825 BUG_ON(!skb || skb->len < mss_now); 1826 1827 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 1828 } 1829 1830 /* This function returns the amount that we can raise the 1831 * usable window based on the following constraints 1832 * 1833 * 1. The window can never be shrunk once it is offered (RFC 793) 1834 * 2. We limit memory per socket 1835 * 1836 * RFC 1122: 1837 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 1838 * RECV.NEXT + RCV.WIN fixed until: 1839 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 1840 * 1841 * i.e. don't raise the right edge of the window until you can raise 1842 * it at least MSS bytes. 1843 * 1844 * Unfortunately, the recommended algorithm breaks header prediction, 1845 * since header prediction assumes th->window stays fixed. 1846 * 1847 * Strictly speaking, keeping th->window fixed violates the receiver 1848 * side SWS prevention criteria. The problem is that under this rule 1849 * a stream of single byte packets will cause the right side of the 1850 * window to always advance by a single byte. 1851 * 1852 * Of course, if the sender implements sender side SWS prevention 1853 * then this will not be a problem. 1854 * 1855 * BSD seems to make the following compromise: 1856 * 1857 * If the free space is less than the 1/4 of the maximum 1858 * space available and the free space is less than 1/2 mss, 1859 * then set the window to 0. 1860 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 1861 * Otherwise, just prevent the window from shrinking 1862 * and from being larger than the largest representable value. 1863 * 1864 * This prevents incremental opening of the window in the regime 1865 * where TCP is limited by the speed of the reader side taking 1866 * data out of the TCP receive queue. It does nothing about 1867 * those cases where the window is constrained on the sender side 1868 * because the pipeline is full. 1869 * 1870 * BSD also seems to "accidentally" limit itself to windows that are a 1871 * multiple of MSS, at least until the free space gets quite small. 1872 * This would appear to be a side effect of the mbuf implementation. 1873 * Combining these two algorithms results in the observed behavior 1874 * of having a fixed window size at almost all times. 1875 * 1876 * Below we obtain similar behavior by forcing the offered window to 1877 * a multiple of the mss when it is feasible to do so. 1878 * 1879 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 1880 * Regular options like TIMESTAMP are taken into account. 1881 */ 1882 u32 __tcp_select_window(struct sock *sk) 1883 { 1884 struct inet_connection_sock *icsk = inet_csk(sk); 1885 struct tcp_sock *tp = tcp_sk(sk); 1886 /* MSS for the peer's data. Previous versions used mss_clamp 1887 * here. I don't know if the value based on our guesses 1888 * of peer's MSS is better for the performance. It's more correct 1889 * but may be worse for the performance because of rcv_mss 1890 * fluctuations. --SAW 1998/11/1 1891 */ 1892 int mss = icsk->icsk_ack.rcv_mss; 1893 int free_space = tcp_space(sk); 1894 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 1895 int window; 1896 1897 if (mss > full_space) 1898 mss = full_space; 1899 1900 if (free_space < (full_space >> 1)) { 1901 icsk->icsk_ack.quick = 0; 1902 1903 if (tcp_memory_pressure) 1904 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 1905 4U * tp->advmss); 1906 1907 if (free_space < mss) 1908 return 0; 1909 } 1910 1911 if (free_space > tp->rcv_ssthresh) 1912 free_space = tp->rcv_ssthresh; 1913 1914 /* Don't do rounding if we are using window scaling, since the 1915 * scaled window will not line up with the MSS boundary anyway. 1916 */ 1917 window = tp->rcv_wnd; 1918 if (tp->rx_opt.rcv_wscale) { 1919 window = free_space; 1920 1921 /* Advertise enough space so that it won't get scaled away. 1922 * Import case: prevent zero window announcement if 1923 * 1<<rcv_wscale > mss. 1924 */ 1925 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 1926 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 1927 << tp->rx_opt.rcv_wscale); 1928 } else { 1929 /* Get the largest window that is a nice multiple of mss. 1930 * Window clamp already applied above. 1931 * If our current window offering is within 1 mss of the 1932 * free space we just keep it. This prevents the divide 1933 * and multiply from happening most of the time. 1934 * We also don't do any window rounding when the free space 1935 * is too small. 1936 */ 1937 if (window <= free_space - mss || window > free_space) 1938 window = (free_space / mss) * mss; 1939 else if (mss == full_space && 1940 free_space > window + (full_space >> 1)) 1941 window = free_space; 1942 } 1943 1944 return window; 1945 } 1946 1947 /* Collapses two adjacent SKB's during retransmission. */ 1948 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 1949 { 1950 struct tcp_sock *tp = tcp_sk(sk); 1951 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 1952 int skb_size, next_skb_size; 1953 1954 skb_size = skb->len; 1955 next_skb_size = next_skb->len; 1956 1957 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 1958 1959 tcp_highest_sack_combine(sk, next_skb, skb); 1960 1961 tcp_unlink_write_queue(next_skb, sk); 1962 1963 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 1964 next_skb_size); 1965 1966 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 1967 skb->ip_summed = CHECKSUM_PARTIAL; 1968 1969 if (skb->ip_summed != CHECKSUM_PARTIAL) 1970 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 1971 1972 /* Update sequence range on original skb. */ 1973 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 1974 1975 /* Merge over control information. This moves PSH/FIN etc. over */ 1976 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(next_skb)->flags; 1977 1978 /* All done, get rid of second SKB and account for it so 1979 * packet counting does not break. 1980 */ 1981 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 1982 1983 /* changed transmit queue under us so clear hints */ 1984 tcp_clear_retrans_hints_partial(tp); 1985 if (next_skb == tp->retransmit_skb_hint) 1986 tp->retransmit_skb_hint = skb; 1987 1988 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 1989 1990 sk_wmem_free_skb(sk, next_skb); 1991 } 1992 1993 /* Check if coalescing SKBs is legal. */ 1994 static int tcp_can_collapse(struct sock *sk, struct sk_buff *skb) 1995 { 1996 if (tcp_skb_pcount(skb) > 1) 1997 return 0; 1998 /* TODO: SACK collapsing could be used to remove this condition */ 1999 if (skb_shinfo(skb)->nr_frags != 0) 2000 return 0; 2001 if (skb_cloned(skb)) 2002 return 0; 2003 if (skb == tcp_send_head(sk)) 2004 return 0; 2005 /* Some heurestics for collapsing over SACK'd could be invented */ 2006 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2007 return 0; 2008 2009 return 1; 2010 } 2011 2012 /* Collapse packets in the retransmit queue to make to create 2013 * less packets on the wire. This is only done on retransmission. 2014 */ 2015 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2016 int space) 2017 { 2018 struct tcp_sock *tp = tcp_sk(sk); 2019 struct sk_buff *skb = to, *tmp; 2020 int first = 1; 2021 2022 if (!sysctl_tcp_retrans_collapse) 2023 return; 2024 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) 2025 return; 2026 2027 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2028 if (!tcp_can_collapse(sk, skb)) 2029 break; 2030 2031 space -= skb->len; 2032 2033 if (first) { 2034 first = 0; 2035 continue; 2036 } 2037 2038 if (space < 0) 2039 break; 2040 /* Punt if not enough space exists in the first SKB for 2041 * the data in the second 2042 */ 2043 if (skb->len > skb_tailroom(to)) 2044 break; 2045 2046 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2047 break; 2048 2049 tcp_collapse_retrans(sk, to); 2050 } 2051 } 2052 2053 /* This retransmits one SKB. Policy decisions and retransmit queue 2054 * state updates are done by the caller. Returns non-zero if an 2055 * error occurred which prevented the send. 2056 */ 2057 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2058 { 2059 struct tcp_sock *tp = tcp_sk(sk); 2060 struct inet_connection_sock *icsk = inet_csk(sk); 2061 unsigned int cur_mss; 2062 int err; 2063 2064 /* Inconslusive MTU probe */ 2065 if (icsk->icsk_mtup.probe_size) { 2066 icsk->icsk_mtup.probe_size = 0; 2067 } 2068 2069 /* Do not sent more than we queued. 1/4 is reserved for possible 2070 * copying overhead: fragmentation, tunneling, mangling etc. 2071 */ 2072 if (atomic_read(&sk->sk_wmem_alloc) > 2073 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2074 return -EAGAIN; 2075 2076 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2077 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2078 BUG(); 2079 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2080 return -ENOMEM; 2081 } 2082 2083 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2084 return -EHOSTUNREACH; /* Routing failure or similar. */ 2085 2086 cur_mss = tcp_current_mss(sk); 2087 2088 /* If receiver has shrunk his window, and skb is out of 2089 * new window, do not retransmit it. The exception is the 2090 * case, when window is shrunk to zero. In this case 2091 * our retransmit serves as a zero window probe. 2092 */ 2093 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2094 TCP_SKB_CB(skb)->seq != tp->snd_una) 2095 return -EAGAIN; 2096 2097 if (skb->len > cur_mss) { 2098 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 2099 return -ENOMEM; /* We'll try again later. */ 2100 } else { 2101 int oldpcount = tcp_skb_pcount(skb); 2102 2103 if (unlikely(oldpcount > 1)) { 2104 tcp_init_tso_segs(sk, skb, cur_mss); 2105 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2106 } 2107 } 2108 2109 tcp_retrans_try_collapse(sk, skb, cur_mss); 2110 2111 /* Some Solaris stacks overoptimize and ignore the FIN on a 2112 * retransmit when old data is attached. So strip it off 2113 * since it is cheap to do so and saves bytes on the network. 2114 */ 2115 if (skb->len > 0 && 2116 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && 2117 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 2118 if (!pskb_trim(skb, 0)) { 2119 /* Reuse, even though it does some unnecessary work */ 2120 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1, 2121 TCP_SKB_CB(skb)->flags); 2122 skb->ip_summed = CHECKSUM_NONE; 2123 } 2124 } 2125 2126 /* Make a copy, if the first transmission SKB clone we made 2127 * is still in somebody's hands, else make a clone. 2128 */ 2129 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2130 2131 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2132 2133 if (err == 0) { 2134 /* Update global TCP statistics. */ 2135 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2136 2137 tp->total_retrans++; 2138 2139 #if FASTRETRANS_DEBUG > 0 2140 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2141 if (net_ratelimit()) 2142 printk(KERN_DEBUG "retrans_out leaked.\n"); 2143 } 2144 #endif 2145 if (!tp->retrans_out) 2146 tp->lost_retrans_low = tp->snd_nxt; 2147 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2148 tp->retrans_out += tcp_skb_pcount(skb); 2149 2150 /* Save stamp of the first retransmit. */ 2151 if (!tp->retrans_stamp) 2152 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 2153 2154 tp->undo_retrans++; 2155 2156 /* snd_nxt is stored to detect loss of retransmitted segment, 2157 * see tcp_input.c tcp_sacktag_write_queue(). 2158 */ 2159 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2160 } 2161 return err; 2162 } 2163 2164 /* Check if we forward retransmits are possible in the current 2165 * window/congestion state. 2166 */ 2167 static int tcp_can_forward_retransmit(struct sock *sk) 2168 { 2169 const struct inet_connection_sock *icsk = inet_csk(sk); 2170 struct tcp_sock *tp = tcp_sk(sk); 2171 2172 /* Forward retransmissions are possible only during Recovery. */ 2173 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2174 return 0; 2175 2176 /* No forward retransmissions in Reno are possible. */ 2177 if (tcp_is_reno(tp)) 2178 return 0; 2179 2180 /* Yeah, we have to make difficult choice between forward transmission 2181 * and retransmission... Both ways have their merits... 2182 * 2183 * For now we do not retransmit anything, while we have some new 2184 * segments to send. In the other cases, follow rule 3 for 2185 * NextSeg() specified in RFC3517. 2186 */ 2187 2188 if (tcp_may_send_now(sk)) 2189 return 0; 2190 2191 return 1; 2192 } 2193 2194 /* This gets called after a retransmit timeout, and the initially 2195 * retransmitted data is acknowledged. It tries to continue 2196 * resending the rest of the retransmit queue, until either 2197 * we've sent it all or the congestion window limit is reached. 2198 * If doing SACK, the first ACK which comes back for a timeout 2199 * based retransmit packet might feed us FACK information again. 2200 * If so, we use it to avoid unnecessarily retransmissions. 2201 */ 2202 void tcp_xmit_retransmit_queue(struct sock *sk) 2203 { 2204 const struct inet_connection_sock *icsk = inet_csk(sk); 2205 struct tcp_sock *tp = tcp_sk(sk); 2206 struct sk_buff *skb; 2207 struct sk_buff *hole = NULL; 2208 u32 last_lost; 2209 int mib_idx; 2210 int fwd_rexmitting = 0; 2211 2212 if (!tp->lost_out) 2213 tp->retransmit_high = tp->snd_una; 2214 2215 if (tp->retransmit_skb_hint) { 2216 skb = tp->retransmit_skb_hint; 2217 last_lost = TCP_SKB_CB(skb)->end_seq; 2218 if (after(last_lost, tp->retransmit_high)) 2219 last_lost = tp->retransmit_high; 2220 } else { 2221 skb = tcp_write_queue_head(sk); 2222 last_lost = tp->snd_una; 2223 } 2224 2225 tcp_for_write_queue_from(skb, sk) { 2226 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2227 2228 if (skb == tcp_send_head(sk)) 2229 break; 2230 /* we could do better than to assign each time */ 2231 if (hole == NULL) 2232 tp->retransmit_skb_hint = skb; 2233 2234 /* Assume this retransmit will generate 2235 * only one packet for congestion window 2236 * calculation purposes. This works because 2237 * tcp_retransmit_skb() will chop up the 2238 * packet to be MSS sized and all the 2239 * packet counting works out. 2240 */ 2241 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2242 return; 2243 2244 if (fwd_rexmitting) { 2245 begin_fwd: 2246 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2247 break; 2248 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2249 2250 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2251 tp->retransmit_high = last_lost; 2252 if (!tcp_can_forward_retransmit(sk)) 2253 break; 2254 /* Backtrack if necessary to non-L'ed skb */ 2255 if (hole != NULL) { 2256 skb = hole; 2257 hole = NULL; 2258 } 2259 fwd_rexmitting = 1; 2260 goto begin_fwd; 2261 2262 } else if (!(sacked & TCPCB_LOST)) { 2263 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2264 hole = skb; 2265 continue; 2266 2267 } else { 2268 last_lost = TCP_SKB_CB(skb)->end_seq; 2269 if (icsk->icsk_ca_state != TCP_CA_Loss) 2270 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2271 else 2272 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2273 } 2274 2275 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2276 continue; 2277 2278 if (tcp_retransmit_skb(sk, skb)) 2279 return; 2280 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2281 2282 if (skb == tcp_write_queue_head(sk)) 2283 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2284 inet_csk(sk)->icsk_rto, 2285 TCP_RTO_MAX); 2286 } 2287 } 2288 2289 /* Send a fin. The caller locks the socket for us. This cannot be 2290 * allowed to fail queueing a FIN frame under any circumstances. 2291 */ 2292 void tcp_send_fin(struct sock *sk) 2293 { 2294 struct tcp_sock *tp = tcp_sk(sk); 2295 struct sk_buff *skb = tcp_write_queue_tail(sk); 2296 int mss_now; 2297 2298 /* Optimization, tack on the FIN if we have a queue of 2299 * unsent frames. But be careful about outgoing SACKS 2300 * and IP options. 2301 */ 2302 mss_now = tcp_current_mss(sk); 2303 2304 if (tcp_send_head(sk) != NULL) { 2305 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; 2306 TCP_SKB_CB(skb)->end_seq++; 2307 tp->write_seq++; 2308 } else { 2309 /* Socket is locked, keep trying until memory is available. */ 2310 for (;;) { 2311 skb = alloc_skb_fclone(MAX_TCP_HEADER, 2312 sk->sk_allocation); 2313 if (skb) 2314 break; 2315 yield(); 2316 } 2317 2318 /* Reserve space for headers and prepare control bits. */ 2319 skb_reserve(skb, MAX_TCP_HEADER); 2320 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2321 tcp_init_nondata_skb(skb, tp->write_seq, 2322 TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); 2323 tcp_queue_skb(sk, skb); 2324 } 2325 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2326 } 2327 2328 /* We get here when a process closes a file descriptor (either due to 2329 * an explicit close() or as a byproduct of exit()'ing) and there 2330 * was unread data in the receive queue. This behavior is recommended 2331 * by RFC 2525, section 2.17. -DaveM 2332 */ 2333 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2334 { 2335 struct sk_buff *skb; 2336 2337 /* NOTE: No TCP options attached and we never retransmit this. */ 2338 skb = alloc_skb(MAX_TCP_HEADER, priority); 2339 if (!skb) { 2340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2341 return; 2342 } 2343 2344 /* Reserve space for headers and prepare control bits. */ 2345 skb_reserve(skb, MAX_TCP_HEADER); 2346 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2347 TCPCB_FLAG_ACK | TCPCB_FLAG_RST); 2348 /* Send it off. */ 2349 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2350 if (tcp_transmit_skb(sk, skb, 0, priority)) 2351 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2352 2353 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2354 } 2355 2356 /* Send a crossed SYN-ACK during socket establishment. 2357 * WARNING: This routine must only be called when we have already sent 2358 * a SYN packet that crossed the incoming SYN that caused this routine 2359 * to get called. If this assumption fails then the initial rcv_wnd 2360 * and rcv_wscale values will not be correct. 2361 */ 2362 int tcp_send_synack(struct sock *sk) 2363 { 2364 struct sk_buff *skb; 2365 2366 skb = tcp_write_queue_head(sk); 2367 if (skb == NULL || !(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN)) { 2368 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); 2369 return -EFAULT; 2370 } 2371 if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_ACK)) { 2372 if (skb_cloned(skb)) { 2373 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2374 if (nskb == NULL) 2375 return -ENOMEM; 2376 tcp_unlink_write_queue(skb, sk); 2377 skb_header_release(nskb); 2378 __tcp_add_write_queue_head(sk, nskb); 2379 sk_wmem_free_skb(sk, skb); 2380 sk->sk_wmem_queued += nskb->truesize; 2381 sk_mem_charge(sk, nskb->truesize); 2382 skb = nskb; 2383 } 2384 2385 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; 2386 TCP_ECN_send_synack(tcp_sk(sk), skb); 2387 } 2388 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2389 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2390 } 2391 2392 /* Prepare a SYN-ACK. */ 2393 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2394 struct request_sock *req, 2395 struct request_values *rvp) 2396 { 2397 struct tcp_out_options opts; 2398 struct tcp_extend_values *xvp = tcp_xv(rvp); 2399 struct inet_request_sock *ireq = inet_rsk(req); 2400 struct tcp_sock *tp = tcp_sk(sk); 2401 struct tcphdr *th; 2402 struct sk_buff *skb; 2403 struct tcp_md5sig_key *md5; 2404 int tcp_header_size; 2405 int mss; 2406 2407 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); 2408 if (skb == NULL) 2409 return NULL; 2410 2411 /* Reserve space for headers. */ 2412 skb_reserve(skb, MAX_TCP_HEADER); 2413 2414 skb_dst_set(skb, dst_clone(dst)); 2415 2416 mss = dst_metric(dst, RTAX_ADVMSS); 2417 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2418 mss = tp->rx_opt.user_mss; 2419 2420 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 2421 __u8 rcv_wscale; 2422 /* Set this up on the first call only */ 2423 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 2424 /* tcp_full_space because it is guaranteed to be the first packet */ 2425 tcp_select_initial_window(tcp_full_space(sk), 2426 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 2427 &req->rcv_wnd, 2428 &req->window_clamp, 2429 ireq->wscale_ok, 2430 &rcv_wscale); 2431 ireq->rcv_wscale = rcv_wscale; 2432 } 2433 2434 memset(&opts, 0, sizeof(opts)); 2435 #ifdef CONFIG_SYN_COOKIES 2436 if (unlikely(req->cookie_ts)) 2437 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); 2438 else 2439 #endif 2440 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2441 tcp_header_size = tcp_synack_options(sk, req, mss, 2442 skb, &opts, &md5, xvp) 2443 + sizeof(*th); 2444 2445 skb_push(skb, tcp_header_size); 2446 skb_reset_transport_header(skb); 2447 2448 th = tcp_hdr(skb); 2449 memset(th, 0, sizeof(struct tcphdr)); 2450 th->syn = 1; 2451 th->ack = 1; 2452 TCP_ECN_make_synack(req, th); 2453 th->source = ireq->loc_port; 2454 th->dest = ireq->rmt_port; 2455 /* Setting of flags are superfluous here for callers (and ECE is 2456 * not even correctly set) 2457 */ 2458 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2459 TCPCB_FLAG_SYN | TCPCB_FLAG_ACK); 2460 2461 if (OPTION_COOKIE_EXTENSION & opts.options) { 2462 const struct tcp_cookie_values *cvp = tp->cookie_values; 2463 2464 if (cvp != NULL && 2465 cvp->s_data_constant && 2466 cvp->s_data_desired > 0) { 2467 u8 *buf = skb_put(skb, cvp->s_data_desired); 2468 2469 /* copy data directly from the listening socket. */ 2470 memcpy(buf, cvp->s_data_payload, cvp->s_data_desired); 2471 TCP_SKB_CB(skb)->end_seq += cvp->s_data_desired; 2472 } 2473 2474 if (opts.hash_size > 0) { 2475 __u32 workspace[SHA_WORKSPACE_WORDS]; 2476 u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS]; 2477 u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1]; 2478 2479 /* Secret recipe depends on the Timestamp, (future) 2480 * Sequence and Acknowledgment Numbers, Initiator 2481 * Cookie, and others handled by IP variant caller. 2482 */ 2483 *tail-- ^= opts.tsval; 2484 *tail-- ^= tcp_rsk(req)->rcv_isn + 1; 2485 *tail-- ^= TCP_SKB_CB(skb)->seq + 1; 2486 2487 /* recommended */ 2488 *tail-- ^= ((th->dest << 16) | th->source); 2489 *tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */ 2490 2491 sha_transform((__u32 *)&xvp->cookie_bakery[0], 2492 (char *)mess, 2493 &workspace[0]); 2494 opts.hash_location = 2495 (__u8 *)&xvp->cookie_bakery[0]; 2496 } 2497 } 2498 2499 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2500 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); 2501 2502 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2503 th->window = htons(min(req->rcv_wnd, 65535U)); 2504 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2505 th->doff = (tcp_header_size >> 2); 2506 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 2507 2508 #ifdef CONFIG_TCP_MD5SIG 2509 /* Okay, we have all we need - do the md5 hash if needed */ 2510 if (md5) { 2511 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2512 md5, NULL, req, skb); 2513 } 2514 #endif 2515 2516 return skb; 2517 } 2518 2519 /* Do all connect socket setups that can be done AF independent. */ 2520 static void tcp_connect_init(struct sock *sk) 2521 { 2522 struct dst_entry *dst = __sk_dst_get(sk); 2523 struct tcp_sock *tp = tcp_sk(sk); 2524 __u8 rcv_wscale; 2525 2526 /* We'll fix this up when we get a response from the other end. 2527 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2528 */ 2529 tp->tcp_header_len = sizeof(struct tcphdr) + 2530 (sysctl_tcp_timestamps && 2531 (!dst_feature(dst, RTAX_FEATURE_NO_TSTAMP) ? 2532 TCPOLEN_TSTAMP_ALIGNED : 0)); 2533 2534 #ifdef CONFIG_TCP_MD5SIG 2535 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2536 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2537 #endif 2538 2539 /* If user gave his TCP_MAXSEG, record it to clamp */ 2540 if (tp->rx_opt.user_mss) 2541 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2542 tp->max_window = 0; 2543 tcp_mtup_init(sk); 2544 tcp_sync_mss(sk, dst_mtu(dst)); 2545 2546 if (!tp->window_clamp) 2547 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2548 tp->advmss = dst_metric(dst, RTAX_ADVMSS); 2549 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2550 tp->advmss = tp->rx_opt.user_mss; 2551 2552 tcp_initialize_rcv_mss(sk); 2553 2554 tcp_select_initial_window(tcp_full_space(sk), 2555 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2556 &tp->rcv_wnd, 2557 &tp->window_clamp, 2558 (sysctl_tcp_window_scaling && 2559 !dst_feature(dst, RTAX_FEATURE_NO_WSCALE)), 2560 &rcv_wscale); 2561 2562 tp->rx_opt.rcv_wscale = rcv_wscale; 2563 tp->rcv_ssthresh = tp->rcv_wnd; 2564 2565 sk->sk_err = 0; 2566 sock_reset_flag(sk, SOCK_DONE); 2567 tp->snd_wnd = 0; 2568 tcp_init_wl(tp, 0); 2569 tp->snd_una = tp->write_seq; 2570 tp->snd_sml = tp->write_seq; 2571 tp->snd_up = tp->write_seq; 2572 tp->rcv_nxt = 0; 2573 tp->rcv_wup = 0; 2574 tp->copied_seq = 0; 2575 2576 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2577 inet_csk(sk)->icsk_retransmits = 0; 2578 tcp_clear_retrans(tp); 2579 } 2580 2581 /* Build a SYN and send it off. */ 2582 int tcp_connect(struct sock *sk) 2583 { 2584 struct tcp_sock *tp = tcp_sk(sk); 2585 struct sk_buff *buff; 2586 2587 tcp_connect_init(sk); 2588 2589 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 2590 if (unlikely(buff == NULL)) 2591 return -ENOBUFS; 2592 2593 /* Reserve space for headers. */ 2594 skb_reserve(buff, MAX_TCP_HEADER); 2595 2596 tp->snd_nxt = tp->write_seq; 2597 tcp_init_nondata_skb(buff, tp->write_seq++, TCPCB_FLAG_SYN); 2598 TCP_ECN_send_syn(sk, buff); 2599 2600 /* Send it off. */ 2601 TCP_SKB_CB(buff)->when = tcp_time_stamp; 2602 tp->retrans_stamp = TCP_SKB_CB(buff)->when; 2603 skb_header_release(buff); 2604 __tcp_add_write_queue_tail(sk, buff); 2605 sk->sk_wmem_queued += buff->truesize; 2606 sk_mem_charge(sk, buff->truesize); 2607 tp->packets_out += tcp_skb_pcount(buff); 2608 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 2609 2610 /* We change tp->snd_nxt after the tcp_transmit_skb() call 2611 * in order to make this packet get counted in tcpOutSegs. 2612 */ 2613 tp->snd_nxt = tp->write_seq; 2614 tp->pushed_seq = tp->write_seq; 2615 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 2616 2617 /* Timer for repeating the SYN until an answer. */ 2618 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2619 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2620 return 0; 2621 } 2622 2623 /* Send out a delayed ack, the caller does the policy checking 2624 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 2625 * for details. 2626 */ 2627 void tcp_send_delayed_ack(struct sock *sk) 2628 { 2629 struct inet_connection_sock *icsk = inet_csk(sk); 2630 int ato = icsk->icsk_ack.ato; 2631 unsigned long timeout; 2632 2633 if (ato > TCP_DELACK_MIN) { 2634 const struct tcp_sock *tp = tcp_sk(sk); 2635 int max_ato = HZ / 2; 2636 2637 if (icsk->icsk_ack.pingpong || 2638 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 2639 max_ato = TCP_DELACK_MAX; 2640 2641 /* Slow path, intersegment interval is "high". */ 2642 2643 /* If some rtt estimate is known, use it to bound delayed ack. 2644 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 2645 * directly. 2646 */ 2647 if (tp->srtt) { 2648 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN); 2649 2650 if (rtt < max_ato) 2651 max_ato = rtt; 2652 } 2653 2654 ato = min(ato, max_ato); 2655 } 2656 2657 /* Stay within the limit we were given */ 2658 timeout = jiffies + ato; 2659 2660 /* Use new timeout only if there wasn't a older one earlier. */ 2661 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 2662 /* If delack timer was blocked or is about to expire, 2663 * send ACK now. 2664 */ 2665 if (icsk->icsk_ack.blocked || 2666 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 2667 tcp_send_ack(sk); 2668 return; 2669 } 2670 2671 if (!time_before(timeout, icsk->icsk_ack.timeout)) 2672 timeout = icsk->icsk_ack.timeout; 2673 } 2674 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 2675 icsk->icsk_ack.timeout = timeout; 2676 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 2677 } 2678 2679 /* This routine sends an ack and also updates the window. */ 2680 void tcp_send_ack(struct sock *sk) 2681 { 2682 struct sk_buff *buff; 2683 2684 /* If we have been reset, we may not send again. */ 2685 if (sk->sk_state == TCP_CLOSE) 2686 return; 2687 2688 /* We are not putting this on the write queue, so 2689 * tcp_transmit_skb() will set the ownership to this 2690 * sock. 2691 */ 2692 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2693 if (buff == NULL) { 2694 inet_csk_schedule_ack(sk); 2695 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 2696 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 2697 TCP_DELACK_MAX, TCP_RTO_MAX); 2698 return; 2699 } 2700 2701 /* Reserve space for headers and prepare control bits. */ 2702 skb_reserve(buff, MAX_TCP_HEADER); 2703 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPCB_FLAG_ACK); 2704 2705 /* Send it off, this clears delayed acks for us. */ 2706 TCP_SKB_CB(buff)->when = tcp_time_stamp; 2707 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC); 2708 } 2709 2710 /* This routine sends a packet with an out of date sequence 2711 * number. It assumes the other end will try to ack it. 2712 * 2713 * Question: what should we make while urgent mode? 2714 * 4.4BSD forces sending single byte of data. We cannot send 2715 * out of window data, because we have SND.NXT==SND.MAX... 2716 * 2717 * Current solution: to send TWO zero-length segments in urgent mode: 2718 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 2719 * out-of-date with SND.UNA-1 to probe window. 2720 */ 2721 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 2722 { 2723 struct tcp_sock *tp = tcp_sk(sk); 2724 struct sk_buff *skb; 2725 2726 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 2727 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2728 if (skb == NULL) 2729 return -1; 2730 2731 /* Reserve space for headers and set control bits. */ 2732 skb_reserve(skb, MAX_TCP_HEADER); 2733 /* Use a previous sequence. This should cause the other 2734 * end to send an ack. Don't queue or clone SKB, just 2735 * send it. 2736 */ 2737 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPCB_FLAG_ACK); 2738 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2739 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 2740 } 2741 2742 /* Initiate keepalive or window probe from timer. */ 2743 int tcp_write_wakeup(struct sock *sk) 2744 { 2745 struct tcp_sock *tp = tcp_sk(sk); 2746 struct sk_buff *skb; 2747 2748 if (sk->sk_state == TCP_CLOSE) 2749 return -1; 2750 2751 if ((skb = tcp_send_head(sk)) != NULL && 2752 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 2753 int err; 2754 unsigned int mss = tcp_current_mss(sk); 2755 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2756 2757 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 2758 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 2759 2760 /* We are probing the opening of a window 2761 * but the window size is != 0 2762 * must have been a result SWS avoidance ( sender ) 2763 */ 2764 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 2765 skb->len > mss) { 2766 seg_size = min(seg_size, mss); 2767 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 2768 if (tcp_fragment(sk, skb, seg_size, mss)) 2769 return -1; 2770 } else if (!tcp_skb_pcount(skb)) 2771 tcp_set_skb_tso_segs(sk, skb, mss); 2772 2773 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 2774 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2775 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2776 if (!err) 2777 tcp_event_new_data_sent(sk, skb); 2778 return err; 2779 } else { 2780 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 2781 tcp_xmit_probe_skb(sk, 1); 2782 return tcp_xmit_probe_skb(sk, 0); 2783 } 2784 } 2785 2786 /* A window probe timeout has occurred. If window is not closed send 2787 * a partial packet else a zero probe. 2788 */ 2789 void tcp_send_probe0(struct sock *sk) 2790 { 2791 struct inet_connection_sock *icsk = inet_csk(sk); 2792 struct tcp_sock *tp = tcp_sk(sk); 2793 int err; 2794 2795 err = tcp_write_wakeup(sk); 2796 2797 if (tp->packets_out || !tcp_send_head(sk)) { 2798 /* Cancel probe timer, if it is not required. */ 2799 icsk->icsk_probes_out = 0; 2800 icsk->icsk_backoff = 0; 2801 return; 2802 } 2803 2804 if (err <= 0) { 2805 if (icsk->icsk_backoff < sysctl_tcp_retries2) 2806 icsk->icsk_backoff++; 2807 icsk->icsk_probes_out++; 2808 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2809 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2810 TCP_RTO_MAX); 2811 } else { 2812 /* If packet was not sent due to local congestion, 2813 * do not backoff and do not remember icsk_probes_out. 2814 * Let local senders to fight for local resources. 2815 * 2816 * Use accumulated backoff yet. 2817 */ 2818 if (!icsk->icsk_probes_out) 2819 icsk->icsk_probes_out = 1; 2820 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2821 min(icsk->icsk_rto << icsk->icsk_backoff, 2822 TCP_RESOURCE_PROBE_INTERVAL), 2823 TCP_RTO_MAX); 2824 } 2825 } 2826 2827 EXPORT_SYMBOL(tcp_select_initial_window); 2828 EXPORT_SYMBOL(tcp_connect); 2829 EXPORT_SYMBOL(tcp_make_synack); 2830 EXPORT_SYMBOL(tcp_simple_retransmit); 2831 EXPORT_SYMBOL(tcp_sync_mss); 2832 EXPORT_SYMBOL(tcp_mtup_init); 2833