1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #define pr_fmt(fmt) "TCP: " fmt 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/gfp.h> 43 #include <linux/module.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse __read_mostly = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 52 53 /* This limits the percentage of the congestion window which we 54 * will allow a single TSO frame to consume. Building TSO frames 55 * which are too large can cause TCP streams to be bursty. 56 */ 57 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 58 59 int sysctl_tcp_mtu_probing __read_mostly = 0; 60 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 64 65 int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */ 66 EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size); 67 68 69 /* Account for new data that has been sent to the network. */ 70 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb) 71 { 72 struct tcp_sock *tp = tcp_sk(sk); 73 unsigned int prior_packets = tp->packets_out; 74 75 tcp_advance_send_head(sk, skb); 76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 77 78 /* Don't override Nagle indefinitely with F-RTO */ 79 if (tp->frto_counter == 2) 80 tp->frto_counter = 3; 81 82 tp->packets_out += tcp_skb_pcount(skb); 83 if (!prior_packets || tp->early_retrans_delayed) 84 tcp_rearm_rto(sk); 85 } 86 87 /* SND.NXT, if window was not shrunk. 88 * If window has been shrunk, what should we make? It is not clear at all. 89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 91 * invalid. OK, let's make this for now: 92 */ 93 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 94 { 95 const struct tcp_sock *tp = tcp_sk(sk); 96 97 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 98 return tp->snd_nxt; 99 else 100 return tcp_wnd_end(tp); 101 } 102 103 /* Calculate mss to advertise in SYN segment. 104 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 105 * 106 * 1. It is independent of path mtu. 107 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 108 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 109 * attached devices, because some buggy hosts are confused by 110 * large MSS. 111 * 4. We do not make 3, we advertise MSS, calculated from first 112 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 113 * This may be overridden via information stored in routing table. 114 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 115 * probably even Jumbo". 116 */ 117 static __u16 tcp_advertise_mss(struct sock *sk) 118 { 119 struct tcp_sock *tp = tcp_sk(sk); 120 const struct dst_entry *dst = __sk_dst_get(sk); 121 int mss = tp->advmss; 122 123 if (dst) { 124 unsigned int metric = dst_metric_advmss(dst); 125 126 if (metric < mss) { 127 mss = metric; 128 tp->advmss = mss; 129 } 130 } 131 132 return (__u16)mss; 133 } 134 135 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 136 * This is the first part of cwnd validation mechanism. */ 137 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst) 138 { 139 struct tcp_sock *tp = tcp_sk(sk); 140 s32 delta = tcp_time_stamp - tp->lsndtime; 141 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 142 u32 cwnd = tp->snd_cwnd; 143 144 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 145 146 tp->snd_ssthresh = tcp_current_ssthresh(sk); 147 restart_cwnd = min(restart_cwnd, cwnd); 148 149 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 150 cwnd >>= 1; 151 tp->snd_cwnd = max(cwnd, restart_cwnd); 152 tp->snd_cwnd_stamp = tcp_time_stamp; 153 tp->snd_cwnd_used = 0; 154 } 155 156 /* Congestion state accounting after a packet has been sent. */ 157 static void tcp_event_data_sent(struct tcp_sock *tp, 158 struct sock *sk) 159 { 160 struct inet_connection_sock *icsk = inet_csk(sk); 161 const u32 now = tcp_time_stamp; 162 163 if (sysctl_tcp_slow_start_after_idle && 164 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 165 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 166 167 tp->lsndtime = now; 168 169 /* If it is a reply for ato after last received 170 * packet, enter pingpong mode. 171 */ 172 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 173 icsk->icsk_ack.pingpong = 1; 174 } 175 176 /* Account for an ACK we sent. */ 177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 178 { 179 tcp_dec_quickack_mode(sk, pkts); 180 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 181 } 182 183 /* Determine a window scaling and initial window to offer. 184 * Based on the assumption that the given amount of space 185 * will be offered. Store the results in the tp structure. 186 * NOTE: for smooth operation initial space offering should 187 * be a multiple of mss if possible. We assume here that mss >= 1. 188 * This MUST be enforced by all callers. 189 */ 190 void tcp_select_initial_window(int __space, __u32 mss, 191 __u32 *rcv_wnd, __u32 *window_clamp, 192 int wscale_ok, __u8 *rcv_wscale, 193 __u32 init_rcv_wnd) 194 { 195 unsigned int space = (__space < 0 ? 0 : __space); 196 197 /* If no clamp set the clamp to the max possible scaled window */ 198 if (*window_clamp == 0) 199 (*window_clamp) = (65535 << 14); 200 space = min(*window_clamp, space); 201 202 /* Quantize space offering to a multiple of mss if possible. */ 203 if (space > mss) 204 space = (space / mss) * mss; 205 206 /* NOTE: offering an initial window larger than 32767 207 * will break some buggy TCP stacks. If the admin tells us 208 * it is likely we could be speaking with such a buggy stack 209 * we will truncate our initial window offering to 32K-1 210 * unless the remote has sent us a window scaling option, 211 * which we interpret as a sign the remote TCP is not 212 * misinterpreting the window field as a signed quantity. 213 */ 214 if (sysctl_tcp_workaround_signed_windows) 215 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 216 else 217 (*rcv_wnd) = space; 218 219 (*rcv_wscale) = 0; 220 if (wscale_ok) { 221 /* Set window scaling on max possible window 222 * See RFC1323 for an explanation of the limit to 14 223 */ 224 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 225 space = min_t(u32, space, *window_clamp); 226 while (space > 65535 && (*rcv_wscale) < 14) { 227 space >>= 1; 228 (*rcv_wscale)++; 229 } 230 } 231 232 /* Set initial window to a value enough for senders starting with 233 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place 234 * a limit on the initial window when mss is larger than 1460. 235 */ 236 if (mss > (1 << *rcv_wscale)) { 237 int init_cwnd = TCP_DEFAULT_INIT_RCVWND; 238 if (mss > 1460) 239 init_cwnd = 240 max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2); 241 /* when initializing use the value from init_rcv_wnd 242 * rather than the default from above 243 */ 244 if (init_rcv_wnd) 245 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 246 else 247 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss); 248 } 249 250 /* Set the clamp no higher than max representable value */ 251 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 252 } 253 EXPORT_SYMBOL(tcp_select_initial_window); 254 255 /* Chose a new window to advertise, update state in tcp_sock for the 256 * socket, and return result with RFC1323 scaling applied. The return 257 * value can be stuffed directly into th->window for an outgoing 258 * frame. 259 */ 260 static u16 tcp_select_window(struct sock *sk) 261 { 262 struct tcp_sock *tp = tcp_sk(sk); 263 u32 cur_win = tcp_receive_window(tp); 264 u32 new_win = __tcp_select_window(sk); 265 266 /* Never shrink the offered window */ 267 if (new_win < cur_win) { 268 /* Danger Will Robinson! 269 * Don't update rcv_wup/rcv_wnd here or else 270 * we will not be able to advertise a zero 271 * window in time. --DaveM 272 * 273 * Relax Will Robinson. 274 */ 275 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 276 } 277 tp->rcv_wnd = new_win; 278 tp->rcv_wup = tp->rcv_nxt; 279 280 /* Make sure we do not exceed the maximum possible 281 * scaled window. 282 */ 283 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 284 new_win = min(new_win, MAX_TCP_WINDOW); 285 else 286 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 287 288 /* RFC1323 scaling applied */ 289 new_win >>= tp->rx_opt.rcv_wscale; 290 291 /* If we advertise zero window, disable fast path. */ 292 if (new_win == 0) 293 tp->pred_flags = 0; 294 295 return new_win; 296 } 297 298 /* Packet ECN state for a SYN-ACK */ 299 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb) 300 { 301 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 302 if (!(tp->ecn_flags & TCP_ECN_OK)) 303 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 304 } 305 306 /* Packet ECN state for a SYN. */ 307 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) 308 { 309 struct tcp_sock *tp = tcp_sk(sk); 310 311 tp->ecn_flags = 0; 312 if (sysctl_tcp_ecn == 1) { 313 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 314 tp->ecn_flags = TCP_ECN_OK; 315 } 316 } 317 318 static __inline__ void 319 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th) 320 { 321 if (inet_rsk(req)->ecn_ok) 322 th->ece = 1; 323 } 324 325 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 326 * be sent. 327 */ 328 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, 329 int tcp_header_len) 330 { 331 struct tcp_sock *tp = tcp_sk(sk); 332 333 if (tp->ecn_flags & TCP_ECN_OK) { 334 /* Not-retransmitted data segment: set ECT and inject CWR. */ 335 if (skb->len != tcp_header_len && 336 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 337 INET_ECN_xmit(sk); 338 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 339 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 340 tcp_hdr(skb)->cwr = 1; 341 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 342 } 343 } else { 344 /* ACK or retransmitted segment: clear ECT|CE */ 345 INET_ECN_dontxmit(sk); 346 } 347 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 348 tcp_hdr(skb)->ece = 1; 349 } 350 } 351 352 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 353 * auto increment end seqno. 354 */ 355 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 356 { 357 skb->ip_summed = CHECKSUM_PARTIAL; 358 skb->csum = 0; 359 360 TCP_SKB_CB(skb)->tcp_flags = flags; 361 TCP_SKB_CB(skb)->sacked = 0; 362 363 skb_shinfo(skb)->gso_segs = 1; 364 skb_shinfo(skb)->gso_size = 0; 365 skb_shinfo(skb)->gso_type = 0; 366 367 TCP_SKB_CB(skb)->seq = seq; 368 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 369 seq++; 370 TCP_SKB_CB(skb)->end_seq = seq; 371 } 372 373 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 374 { 375 return tp->snd_una != tp->snd_up; 376 } 377 378 #define OPTION_SACK_ADVERTISE (1 << 0) 379 #define OPTION_TS (1 << 1) 380 #define OPTION_MD5 (1 << 2) 381 #define OPTION_WSCALE (1 << 3) 382 #define OPTION_COOKIE_EXTENSION (1 << 4) 383 384 struct tcp_out_options { 385 u8 options; /* bit field of OPTION_* */ 386 u8 ws; /* window scale, 0 to disable */ 387 u8 num_sack_blocks; /* number of SACK blocks to include */ 388 u8 hash_size; /* bytes in hash_location */ 389 u16 mss; /* 0 to disable */ 390 __u32 tsval, tsecr; /* need to include OPTION_TS */ 391 __u8 *hash_location; /* temporary pointer, overloaded */ 392 }; 393 394 /* The sysctl int routines are generic, so check consistency here. 395 */ 396 static u8 tcp_cookie_size_check(u8 desired) 397 { 398 int cookie_size; 399 400 if (desired > 0) 401 /* previously specified */ 402 return desired; 403 404 cookie_size = ACCESS_ONCE(sysctl_tcp_cookie_size); 405 if (cookie_size <= 0) 406 /* no default specified */ 407 return 0; 408 409 if (cookie_size <= TCP_COOKIE_MIN) 410 /* value too small, specify minimum */ 411 return TCP_COOKIE_MIN; 412 413 if (cookie_size >= TCP_COOKIE_MAX) 414 /* value too large, specify maximum */ 415 return TCP_COOKIE_MAX; 416 417 if (cookie_size & 1) 418 /* 8-bit multiple, illegal, fix it */ 419 cookie_size++; 420 421 return (u8)cookie_size; 422 } 423 424 /* Write previously computed TCP options to the packet. 425 * 426 * Beware: Something in the Internet is very sensitive to the ordering of 427 * TCP options, we learned this through the hard way, so be careful here. 428 * Luckily we can at least blame others for their non-compliance but from 429 * inter-operatibility perspective it seems that we're somewhat stuck with 430 * the ordering which we have been using if we want to keep working with 431 * those broken things (not that it currently hurts anybody as there isn't 432 * particular reason why the ordering would need to be changed). 433 * 434 * At least SACK_PERM as the first option is known to lead to a disaster 435 * (but it may well be that other scenarios fail similarly). 436 */ 437 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 438 struct tcp_out_options *opts) 439 { 440 u8 options = opts->options; /* mungable copy */ 441 442 /* Having both authentication and cookies for security is redundant, 443 * and there's certainly not enough room. Instead, the cookie-less 444 * extension variant is proposed. 445 * 446 * Consider the pessimal case with authentication. The options 447 * could look like: 448 * COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40 449 */ 450 if (unlikely(OPTION_MD5 & options)) { 451 if (unlikely(OPTION_COOKIE_EXTENSION & options)) { 452 *ptr++ = htonl((TCPOPT_COOKIE << 24) | 453 (TCPOLEN_COOKIE_BASE << 16) | 454 (TCPOPT_MD5SIG << 8) | 455 TCPOLEN_MD5SIG); 456 } else { 457 *ptr++ = htonl((TCPOPT_NOP << 24) | 458 (TCPOPT_NOP << 16) | 459 (TCPOPT_MD5SIG << 8) | 460 TCPOLEN_MD5SIG); 461 } 462 options &= ~OPTION_COOKIE_EXTENSION; 463 /* overload cookie hash location */ 464 opts->hash_location = (__u8 *)ptr; 465 ptr += 4; 466 } 467 468 if (unlikely(opts->mss)) { 469 *ptr++ = htonl((TCPOPT_MSS << 24) | 470 (TCPOLEN_MSS << 16) | 471 opts->mss); 472 } 473 474 if (likely(OPTION_TS & options)) { 475 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 476 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 477 (TCPOLEN_SACK_PERM << 16) | 478 (TCPOPT_TIMESTAMP << 8) | 479 TCPOLEN_TIMESTAMP); 480 options &= ~OPTION_SACK_ADVERTISE; 481 } else { 482 *ptr++ = htonl((TCPOPT_NOP << 24) | 483 (TCPOPT_NOP << 16) | 484 (TCPOPT_TIMESTAMP << 8) | 485 TCPOLEN_TIMESTAMP); 486 } 487 *ptr++ = htonl(opts->tsval); 488 *ptr++ = htonl(opts->tsecr); 489 } 490 491 /* Specification requires after timestamp, so do it now. 492 * 493 * Consider the pessimal case without authentication. The options 494 * could look like: 495 * MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40 496 */ 497 if (unlikely(OPTION_COOKIE_EXTENSION & options)) { 498 __u8 *cookie_copy = opts->hash_location; 499 u8 cookie_size = opts->hash_size; 500 501 /* 8-bit multiple handled in tcp_cookie_size_check() above, 502 * and elsewhere. 503 */ 504 if (0x2 & cookie_size) { 505 __u8 *p = (__u8 *)ptr; 506 507 /* 16-bit multiple */ 508 *p++ = TCPOPT_COOKIE; 509 *p++ = TCPOLEN_COOKIE_BASE + cookie_size; 510 *p++ = *cookie_copy++; 511 *p++ = *cookie_copy++; 512 ptr++; 513 cookie_size -= 2; 514 } else { 515 /* 32-bit multiple */ 516 *ptr++ = htonl(((TCPOPT_NOP << 24) | 517 (TCPOPT_NOP << 16) | 518 (TCPOPT_COOKIE << 8) | 519 TCPOLEN_COOKIE_BASE) + 520 cookie_size); 521 } 522 523 if (cookie_size > 0) { 524 memcpy(ptr, cookie_copy, cookie_size); 525 ptr += (cookie_size / 4); 526 } 527 } 528 529 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 530 *ptr++ = htonl((TCPOPT_NOP << 24) | 531 (TCPOPT_NOP << 16) | 532 (TCPOPT_SACK_PERM << 8) | 533 TCPOLEN_SACK_PERM); 534 } 535 536 if (unlikely(OPTION_WSCALE & options)) { 537 *ptr++ = htonl((TCPOPT_NOP << 24) | 538 (TCPOPT_WINDOW << 16) | 539 (TCPOLEN_WINDOW << 8) | 540 opts->ws); 541 } 542 543 if (unlikely(opts->num_sack_blocks)) { 544 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 545 tp->duplicate_sack : tp->selective_acks; 546 int this_sack; 547 548 *ptr++ = htonl((TCPOPT_NOP << 24) | 549 (TCPOPT_NOP << 16) | 550 (TCPOPT_SACK << 8) | 551 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 552 TCPOLEN_SACK_PERBLOCK))); 553 554 for (this_sack = 0; this_sack < opts->num_sack_blocks; 555 ++this_sack) { 556 *ptr++ = htonl(sp[this_sack].start_seq); 557 *ptr++ = htonl(sp[this_sack].end_seq); 558 } 559 560 tp->rx_opt.dsack = 0; 561 } 562 } 563 564 /* Compute TCP options for SYN packets. This is not the final 565 * network wire format yet. 566 */ 567 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 568 struct tcp_out_options *opts, 569 struct tcp_md5sig_key **md5) 570 { 571 struct tcp_sock *tp = tcp_sk(sk); 572 struct tcp_cookie_values *cvp = tp->cookie_values; 573 unsigned int remaining = MAX_TCP_OPTION_SPACE; 574 u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ? 575 tcp_cookie_size_check(cvp->cookie_desired) : 576 0; 577 578 #ifdef CONFIG_TCP_MD5SIG 579 *md5 = tp->af_specific->md5_lookup(sk, sk); 580 if (*md5) { 581 opts->options |= OPTION_MD5; 582 remaining -= TCPOLEN_MD5SIG_ALIGNED; 583 } 584 #else 585 *md5 = NULL; 586 #endif 587 588 /* We always get an MSS option. The option bytes which will be seen in 589 * normal data packets should timestamps be used, must be in the MSS 590 * advertised. But we subtract them from tp->mss_cache so that 591 * calculations in tcp_sendmsg are simpler etc. So account for this 592 * fact here if necessary. If we don't do this correctly, as a 593 * receiver we won't recognize data packets as being full sized when we 594 * should, and thus we won't abide by the delayed ACK rules correctly. 595 * SACKs don't matter, we never delay an ACK when we have any of those 596 * going out. */ 597 opts->mss = tcp_advertise_mss(sk); 598 remaining -= TCPOLEN_MSS_ALIGNED; 599 600 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 601 opts->options |= OPTION_TS; 602 opts->tsval = TCP_SKB_CB(skb)->when; 603 opts->tsecr = tp->rx_opt.ts_recent; 604 remaining -= TCPOLEN_TSTAMP_ALIGNED; 605 } 606 if (likely(sysctl_tcp_window_scaling)) { 607 opts->ws = tp->rx_opt.rcv_wscale; 608 opts->options |= OPTION_WSCALE; 609 remaining -= TCPOLEN_WSCALE_ALIGNED; 610 } 611 if (likely(sysctl_tcp_sack)) { 612 opts->options |= OPTION_SACK_ADVERTISE; 613 if (unlikely(!(OPTION_TS & opts->options))) 614 remaining -= TCPOLEN_SACKPERM_ALIGNED; 615 } 616 617 /* Note that timestamps are required by the specification. 618 * 619 * Odd numbers of bytes are prohibited by the specification, ensuring 620 * that the cookie is 16-bit aligned, and the resulting cookie pair is 621 * 32-bit aligned. 622 */ 623 if (*md5 == NULL && 624 (OPTION_TS & opts->options) && 625 cookie_size > 0) { 626 int need = TCPOLEN_COOKIE_BASE + cookie_size; 627 628 if (0x2 & need) { 629 /* 32-bit multiple */ 630 need += 2; /* NOPs */ 631 632 if (need > remaining) { 633 /* try shrinking cookie to fit */ 634 cookie_size -= 2; 635 need -= 4; 636 } 637 } 638 while (need > remaining && TCP_COOKIE_MIN <= cookie_size) { 639 cookie_size -= 4; 640 need -= 4; 641 } 642 if (TCP_COOKIE_MIN <= cookie_size) { 643 opts->options |= OPTION_COOKIE_EXTENSION; 644 opts->hash_location = (__u8 *)&cvp->cookie_pair[0]; 645 opts->hash_size = cookie_size; 646 647 /* Remember for future incarnations. */ 648 cvp->cookie_desired = cookie_size; 649 650 if (cvp->cookie_desired != cvp->cookie_pair_size) { 651 /* Currently use random bytes as a nonce, 652 * assuming these are completely unpredictable 653 * by hostile users of the same system. 654 */ 655 get_random_bytes(&cvp->cookie_pair[0], 656 cookie_size); 657 cvp->cookie_pair_size = cookie_size; 658 } 659 660 remaining -= need; 661 } 662 } 663 return MAX_TCP_OPTION_SPACE - remaining; 664 } 665 666 /* Set up TCP options for SYN-ACKs. */ 667 static unsigned int tcp_synack_options(struct sock *sk, 668 struct request_sock *req, 669 unsigned int mss, struct sk_buff *skb, 670 struct tcp_out_options *opts, 671 struct tcp_md5sig_key **md5, 672 struct tcp_extend_values *xvp) 673 { 674 struct inet_request_sock *ireq = inet_rsk(req); 675 unsigned int remaining = MAX_TCP_OPTION_SPACE; 676 u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ? 677 xvp->cookie_plus : 678 0; 679 680 #ifdef CONFIG_TCP_MD5SIG 681 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 682 if (*md5) { 683 opts->options |= OPTION_MD5; 684 remaining -= TCPOLEN_MD5SIG_ALIGNED; 685 686 /* We can't fit any SACK blocks in a packet with MD5 + TS 687 * options. There was discussion about disabling SACK 688 * rather than TS in order to fit in better with old, 689 * buggy kernels, but that was deemed to be unnecessary. 690 */ 691 ireq->tstamp_ok &= !ireq->sack_ok; 692 } 693 #else 694 *md5 = NULL; 695 #endif 696 697 /* We always send an MSS option. */ 698 opts->mss = mss; 699 remaining -= TCPOLEN_MSS_ALIGNED; 700 701 if (likely(ireq->wscale_ok)) { 702 opts->ws = ireq->rcv_wscale; 703 opts->options |= OPTION_WSCALE; 704 remaining -= TCPOLEN_WSCALE_ALIGNED; 705 } 706 if (likely(ireq->tstamp_ok)) { 707 opts->options |= OPTION_TS; 708 opts->tsval = TCP_SKB_CB(skb)->when; 709 opts->tsecr = req->ts_recent; 710 remaining -= TCPOLEN_TSTAMP_ALIGNED; 711 } 712 if (likely(ireq->sack_ok)) { 713 opts->options |= OPTION_SACK_ADVERTISE; 714 if (unlikely(!ireq->tstamp_ok)) 715 remaining -= TCPOLEN_SACKPERM_ALIGNED; 716 } 717 718 /* Similar rationale to tcp_syn_options() applies here, too. 719 * If the <SYN> options fit, the same options should fit now! 720 */ 721 if (*md5 == NULL && 722 ireq->tstamp_ok && 723 cookie_plus > TCPOLEN_COOKIE_BASE) { 724 int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */ 725 726 if (0x2 & need) { 727 /* 32-bit multiple */ 728 need += 2; /* NOPs */ 729 } 730 if (need <= remaining) { 731 opts->options |= OPTION_COOKIE_EXTENSION; 732 opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE; 733 remaining -= need; 734 } else { 735 /* There's no error return, so flag it. */ 736 xvp->cookie_out_never = 1; /* true */ 737 opts->hash_size = 0; 738 } 739 } 740 return MAX_TCP_OPTION_SPACE - remaining; 741 } 742 743 /* Compute TCP options for ESTABLISHED sockets. This is not the 744 * final wire format yet. 745 */ 746 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 747 struct tcp_out_options *opts, 748 struct tcp_md5sig_key **md5) 749 { 750 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; 751 struct tcp_sock *tp = tcp_sk(sk); 752 unsigned int size = 0; 753 unsigned int eff_sacks; 754 755 #ifdef CONFIG_TCP_MD5SIG 756 *md5 = tp->af_specific->md5_lookup(sk, sk); 757 if (unlikely(*md5)) { 758 opts->options |= OPTION_MD5; 759 size += TCPOLEN_MD5SIG_ALIGNED; 760 } 761 #else 762 *md5 = NULL; 763 #endif 764 765 if (likely(tp->rx_opt.tstamp_ok)) { 766 opts->options |= OPTION_TS; 767 opts->tsval = tcb ? tcb->when : 0; 768 opts->tsecr = tp->rx_opt.ts_recent; 769 size += TCPOLEN_TSTAMP_ALIGNED; 770 } 771 772 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 773 if (unlikely(eff_sacks)) { 774 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 775 opts->num_sack_blocks = 776 min_t(unsigned int, eff_sacks, 777 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 778 TCPOLEN_SACK_PERBLOCK); 779 size += TCPOLEN_SACK_BASE_ALIGNED + 780 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 781 } 782 783 return size; 784 } 785 786 /* This routine actually transmits TCP packets queued in by 787 * tcp_do_sendmsg(). This is used by both the initial 788 * transmission and possible later retransmissions. 789 * All SKB's seen here are completely headerless. It is our 790 * job to build the TCP header, and pass the packet down to 791 * IP so it can do the same plus pass the packet off to the 792 * device. 793 * 794 * We are working here with either a clone of the original 795 * SKB, or a fresh unique copy made by the retransmit engine. 796 */ 797 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 798 gfp_t gfp_mask) 799 { 800 const struct inet_connection_sock *icsk = inet_csk(sk); 801 struct inet_sock *inet; 802 struct tcp_sock *tp; 803 struct tcp_skb_cb *tcb; 804 struct tcp_out_options opts; 805 unsigned int tcp_options_size, tcp_header_size; 806 struct tcp_md5sig_key *md5; 807 struct tcphdr *th; 808 int err; 809 810 BUG_ON(!skb || !tcp_skb_pcount(skb)); 811 812 /* If congestion control is doing timestamping, we must 813 * take such a timestamp before we potentially clone/copy. 814 */ 815 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP) 816 __net_timestamp(skb); 817 818 if (likely(clone_it)) { 819 if (unlikely(skb_cloned(skb))) 820 skb = pskb_copy(skb, gfp_mask); 821 else 822 skb = skb_clone(skb, gfp_mask); 823 if (unlikely(!skb)) 824 return -ENOBUFS; 825 } 826 827 inet = inet_sk(sk); 828 tp = tcp_sk(sk); 829 tcb = TCP_SKB_CB(skb); 830 memset(&opts, 0, sizeof(opts)); 831 832 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 833 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 834 else 835 tcp_options_size = tcp_established_options(sk, skb, &opts, 836 &md5); 837 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 838 839 if (tcp_packets_in_flight(tp) == 0) { 840 tcp_ca_event(sk, CA_EVENT_TX_START); 841 skb->ooo_okay = 1; 842 } else 843 skb->ooo_okay = 0; 844 845 skb_push(skb, tcp_header_size); 846 skb_reset_transport_header(skb); 847 skb_set_owner_w(skb, sk); 848 849 /* Build TCP header and checksum it. */ 850 th = tcp_hdr(skb); 851 th->source = inet->inet_sport; 852 th->dest = inet->inet_dport; 853 th->seq = htonl(tcb->seq); 854 th->ack_seq = htonl(tp->rcv_nxt); 855 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 856 tcb->tcp_flags); 857 858 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 859 /* RFC1323: The window in SYN & SYN/ACK segments 860 * is never scaled. 861 */ 862 th->window = htons(min(tp->rcv_wnd, 65535U)); 863 } else { 864 th->window = htons(tcp_select_window(sk)); 865 } 866 th->check = 0; 867 th->urg_ptr = 0; 868 869 /* The urg_mode check is necessary during a below snd_una win probe */ 870 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 871 if (before(tp->snd_up, tcb->seq + 0x10000)) { 872 th->urg_ptr = htons(tp->snd_up - tcb->seq); 873 th->urg = 1; 874 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 875 th->urg_ptr = htons(0xFFFF); 876 th->urg = 1; 877 } 878 } 879 880 tcp_options_write((__be32 *)(th + 1), tp, &opts); 881 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0)) 882 TCP_ECN_send(sk, skb, tcp_header_size); 883 884 #ifdef CONFIG_TCP_MD5SIG 885 /* Calculate the MD5 hash, as we have all we need now */ 886 if (md5) { 887 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 888 tp->af_specific->calc_md5_hash(opts.hash_location, 889 md5, sk, NULL, skb); 890 } 891 #endif 892 893 icsk->icsk_af_ops->send_check(sk, skb); 894 895 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 896 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 897 898 if (skb->len != tcp_header_size) 899 tcp_event_data_sent(tp, sk); 900 901 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 902 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 903 tcp_skb_pcount(skb)); 904 905 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl); 906 if (likely(err <= 0)) 907 return err; 908 909 tcp_enter_cwr(sk, 1); 910 911 return net_xmit_eval(err); 912 } 913 914 /* This routine just queues the buffer for sending. 915 * 916 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 917 * otherwise socket can stall. 918 */ 919 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 920 { 921 struct tcp_sock *tp = tcp_sk(sk); 922 923 /* Advance write_seq and place onto the write_queue. */ 924 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 925 skb_header_release(skb); 926 tcp_add_write_queue_tail(sk, skb); 927 sk->sk_wmem_queued += skb->truesize; 928 sk_mem_charge(sk, skb->truesize); 929 } 930 931 /* Initialize TSO segments for a packet. */ 932 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb, 933 unsigned int mss_now) 934 { 935 if (skb->len <= mss_now || !sk_can_gso(sk) || 936 skb->ip_summed == CHECKSUM_NONE) { 937 /* Avoid the costly divide in the normal 938 * non-TSO case. 939 */ 940 skb_shinfo(skb)->gso_segs = 1; 941 skb_shinfo(skb)->gso_size = 0; 942 skb_shinfo(skb)->gso_type = 0; 943 } else { 944 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now); 945 skb_shinfo(skb)->gso_size = mss_now; 946 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 947 } 948 } 949 950 /* When a modification to fackets out becomes necessary, we need to check 951 * skb is counted to fackets_out or not. 952 */ 953 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb, 954 int decr) 955 { 956 struct tcp_sock *tp = tcp_sk(sk); 957 958 if (!tp->sacked_out || tcp_is_reno(tp)) 959 return; 960 961 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 962 tp->fackets_out -= decr; 963 } 964 965 /* Pcount in the middle of the write queue got changed, we need to do various 966 * tweaks to fix counters 967 */ 968 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 969 { 970 struct tcp_sock *tp = tcp_sk(sk); 971 972 tp->packets_out -= decr; 973 974 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 975 tp->sacked_out -= decr; 976 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 977 tp->retrans_out -= decr; 978 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 979 tp->lost_out -= decr; 980 981 /* Reno case is special. Sigh... */ 982 if (tcp_is_reno(tp) && decr > 0) 983 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 984 985 tcp_adjust_fackets_out(sk, skb, decr); 986 987 if (tp->lost_skb_hint && 988 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 989 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 990 tp->lost_cnt_hint -= decr; 991 992 tcp_verify_left_out(tp); 993 } 994 995 /* Function to create two new TCP segments. Shrinks the given segment 996 * to the specified size and appends a new segment with the rest of the 997 * packet to the list. This won't be called frequently, I hope. 998 * Remember, these are still headerless SKBs at this point. 999 */ 1000 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 1001 unsigned int mss_now) 1002 { 1003 struct tcp_sock *tp = tcp_sk(sk); 1004 struct sk_buff *buff; 1005 int nsize, old_factor; 1006 int nlen; 1007 u8 flags; 1008 1009 if (WARN_ON(len > skb->len)) 1010 return -EINVAL; 1011 1012 nsize = skb_headlen(skb) - len; 1013 if (nsize < 0) 1014 nsize = 0; 1015 1016 if (skb_cloned(skb) && 1017 skb_is_nonlinear(skb) && 1018 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1019 return -ENOMEM; 1020 1021 /* Get a new skb... force flag on. */ 1022 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 1023 if (buff == NULL) 1024 return -ENOMEM; /* We'll just try again later. */ 1025 1026 sk->sk_wmem_queued += buff->truesize; 1027 sk_mem_charge(sk, buff->truesize); 1028 nlen = skb->len - len - nsize; 1029 buff->truesize += nlen; 1030 skb->truesize -= nlen; 1031 1032 /* Correct the sequence numbers. */ 1033 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1034 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1035 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1036 1037 /* PSH and FIN should only be set in the second packet. */ 1038 flags = TCP_SKB_CB(skb)->tcp_flags; 1039 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1040 TCP_SKB_CB(buff)->tcp_flags = flags; 1041 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1042 1043 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1044 /* Copy and checksum data tail into the new buffer. */ 1045 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1046 skb_put(buff, nsize), 1047 nsize, 0); 1048 1049 skb_trim(skb, len); 1050 1051 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1052 } else { 1053 skb->ip_summed = CHECKSUM_PARTIAL; 1054 skb_split(skb, buff, len); 1055 } 1056 1057 buff->ip_summed = skb->ip_summed; 1058 1059 /* Looks stupid, but our code really uses when of 1060 * skbs, which it never sent before. --ANK 1061 */ 1062 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 1063 buff->tstamp = skb->tstamp; 1064 1065 old_factor = tcp_skb_pcount(skb); 1066 1067 /* Fix up tso_factor for both original and new SKB. */ 1068 tcp_set_skb_tso_segs(sk, skb, mss_now); 1069 tcp_set_skb_tso_segs(sk, buff, mss_now); 1070 1071 /* If this packet has been sent out already, we must 1072 * adjust the various packet counters. 1073 */ 1074 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1075 int diff = old_factor - tcp_skb_pcount(skb) - 1076 tcp_skb_pcount(buff); 1077 1078 if (diff) 1079 tcp_adjust_pcount(sk, skb, diff); 1080 } 1081 1082 /* Link BUFF into the send queue. */ 1083 skb_header_release(buff); 1084 tcp_insert_write_queue_after(skb, buff, sk); 1085 1086 return 0; 1087 } 1088 1089 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1090 * eventually). The difference is that pulled data not copied, but 1091 * immediately discarded. 1092 */ 1093 static void __pskb_trim_head(struct sk_buff *skb, int len) 1094 { 1095 int i, k, eat; 1096 1097 eat = min_t(int, len, skb_headlen(skb)); 1098 if (eat) { 1099 __skb_pull(skb, eat); 1100 skb->avail_size -= eat; 1101 len -= eat; 1102 if (!len) 1103 return; 1104 } 1105 eat = len; 1106 k = 0; 1107 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1108 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1109 1110 if (size <= eat) { 1111 skb_frag_unref(skb, i); 1112 eat -= size; 1113 } else { 1114 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1115 if (eat) { 1116 skb_shinfo(skb)->frags[k].page_offset += eat; 1117 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1118 eat = 0; 1119 } 1120 k++; 1121 } 1122 } 1123 skb_shinfo(skb)->nr_frags = k; 1124 1125 skb_reset_tail_pointer(skb); 1126 skb->data_len -= len; 1127 skb->len = skb->data_len; 1128 } 1129 1130 /* Remove acked data from a packet in the transmit queue. */ 1131 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1132 { 1133 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1134 return -ENOMEM; 1135 1136 __pskb_trim_head(skb, len); 1137 1138 TCP_SKB_CB(skb)->seq += len; 1139 skb->ip_summed = CHECKSUM_PARTIAL; 1140 1141 skb->truesize -= len; 1142 sk->sk_wmem_queued -= len; 1143 sk_mem_uncharge(sk, len); 1144 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1145 1146 /* Any change of skb->len requires recalculation of tso factor. */ 1147 if (tcp_skb_pcount(skb) > 1) 1148 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb)); 1149 1150 return 0; 1151 } 1152 1153 /* Calculate MSS. Not accounting for SACKs here. */ 1154 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1155 { 1156 const struct tcp_sock *tp = tcp_sk(sk); 1157 const struct inet_connection_sock *icsk = inet_csk(sk); 1158 int mss_now; 1159 1160 /* Calculate base mss without TCP options: 1161 It is MMS_S - sizeof(tcphdr) of rfc1122 1162 */ 1163 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1164 1165 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1166 if (icsk->icsk_af_ops->net_frag_header_len) { 1167 const struct dst_entry *dst = __sk_dst_get(sk); 1168 1169 if (dst && dst_allfrag(dst)) 1170 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1171 } 1172 1173 /* Clamp it (mss_clamp does not include tcp options) */ 1174 if (mss_now > tp->rx_opt.mss_clamp) 1175 mss_now = tp->rx_opt.mss_clamp; 1176 1177 /* Now subtract optional transport overhead */ 1178 mss_now -= icsk->icsk_ext_hdr_len; 1179 1180 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1181 if (mss_now < 48) 1182 mss_now = 48; 1183 1184 /* Now subtract TCP options size, not including SACKs */ 1185 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); 1186 1187 return mss_now; 1188 } 1189 1190 /* Inverse of above */ 1191 int tcp_mss_to_mtu(struct sock *sk, int mss) 1192 { 1193 const struct tcp_sock *tp = tcp_sk(sk); 1194 const struct inet_connection_sock *icsk = inet_csk(sk); 1195 int mtu; 1196 1197 mtu = mss + 1198 tp->tcp_header_len + 1199 icsk->icsk_ext_hdr_len + 1200 icsk->icsk_af_ops->net_header_len; 1201 1202 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1203 if (icsk->icsk_af_ops->net_frag_header_len) { 1204 const struct dst_entry *dst = __sk_dst_get(sk); 1205 1206 if (dst && dst_allfrag(dst)) 1207 mtu += icsk->icsk_af_ops->net_frag_header_len; 1208 } 1209 return mtu; 1210 } 1211 1212 /* MTU probing init per socket */ 1213 void tcp_mtup_init(struct sock *sk) 1214 { 1215 struct tcp_sock *tp = tcp_sk(sk); 1216 struct inet_connection_sock *icsk = inet_csk(sk); 1217 1218 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1219 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1220 icsk->icsk_af_ops->net_header_len; 1221 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1222 icsk->icsk_mtup.probe_size = 0; 1223 } 1224 EXPORT_SYMBOL(tcp_mtup_init); 1225 1226 /* This function synchronize snd mss to current pmtu/exthdr set. 1227 1228 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1229 for TCP options, but includes only bare TCP header. 1230 1231 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1232 It is minimum of user_mss and mss received with SYN. 1233 It also does not include TCP options. 1234 1235 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1236 1237 tp->mss_cache is current effective sending mss, including 1238 all tcp options except for SACKs. It is evaluated, 1239 taking into account current pmtu, but never exceeds 1240 tp->rx_opt.mss_clamp. 1241 1242 NOTE1. rfc1122 clearly states that advertised MSS 1243 DOES NOT include either tcp or ip options. 1244 1245 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1246 are READ ONLY outside this function. --ANK (980731) 1247 */ 1248 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1249 { 1250 struct tcp_sock *tp = tcp_sk(sk); 1251 struct inet_connection_sock *icsk = inet_csk(sk); 1252 int mss_now; 1253 1254 if (icsk->icsk_mtup.search_high > pmtu) 1255 icsk->icsk_mtup.search_high = pmtu; 1256 1257 mss_now = tcp_mtu_to_mss(sk, pmtu); 1258 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1259 1260 /* And store cached results */ 1261 icsk->icsk_pmtu_cookie = pmtu; 1262 if (icsk->icsk_mtup.enabled) 1263 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1264 tp->mss_cache = mss_now; 1265 1266 return mss_now; 1267 } 1268 EXPORT_SYMBOL(tcp_sync_mss); 1269 1270 /* Compute the current effective MSS, taking SACKs and IP options, 1271 * and even PMTU discovery events into account. 1272 */ 1273 unsigned int tcp_current_mss(struct sock *sk) 1274 { 1275 const struct tcp_sock *tp = tcp_sk(sk); 1276 const struct dst_entry *dst = __sk_dst_get(sk); 1277 u32 mss_now; 1278 unsigned int header_len; 1279 struct tcp_out_options opts; 1280 struct tcp_md5sig_key *md5; 1281 1282 mss_now = tp->mss_cache; 1283 1284 if (dst) { 1285 u32 mtu = dst_mtu(dst); 1286 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1287 mss_now = tcp_sync_mss(sk, mtu); 1288 } 1289 1290 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1291 sizeof(struct tcphdr); 1292 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1293 * some common options. If this is an odd packet (because we have SACK 1294 * blocks etc) then our calculated header_len will be different, and 1295 * we have to adjust mss_now correspondingly */ 1296 if (header_len != tp->tcp_header_len) { 1297 int delta = (int) header_len - tp->tcp_header_len; 1298 mss_now -= delta; 1299 } 1300 1301 return mss_now; 1302 } 1303 1304 /* Congestion window validation. (RFC2861) */ 1305 static void tcp_cwnd_validate(struct sock *sk) 1306 { 1307 struct tcp_sock *tp = tcp_sk(sk); 1308 1309 if (tp->packets_out >= tp->snd_cwnd) { 1310 /* Network is feed fully. */ 1311 tp->snd_cwnd_used = 0; 1312 tp->snd_cwnd_stamp = tcp_time_stamp; 1313 } else { 1314 /* Network starves. */ 1315 if (tp->packets_out > tp->snd_cwnd_used) 1316 tp->snd_cwnd_used = tp->packets_out; 1317 1318 if (sysctl_tcp_slow_start_after_idle && 1319 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1320 tcp_cwnd_application_limited(sk); 1321 } 1322 } 1323 1324 /* Returns the portion of skb which can be sent right away without 1325 * introducing MSS oddities to segment boundaries. In rare cases where 1326 * mss_now != mss_cache, we will request caller to create a small skb 1327 * per input skb which could be mostly avoided here (if desired). 1328 * 1329 * We explicitly want to create a request for splitting write queue tail 1330 * to a small skb for Nagle purposes while avoiding unnecessary modulos, 1331 * thus all the complexity (cwnd_len is always MSS multiple which we 1332 * return whenever allowed by the other factors). Basically we need the 1333 * modulo only when the receiver window alone is the limiting factor or 1334 * when we would be allowed to send the split-due-to-Nagle skb fully. 1335 */ 1336 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb, 1337 unsigned int mss_now, unsigned int cwnd) 1338 { 1339 const struct tcp_sock *tp = tcp_sk(sk); 1340 u32 needed, window, cwnd_len; 1341 1342 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1343 cwnd_len = mss_now * cwnd; 1344 1345 if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk))) 1346 return cwnd_len; 1347 1348 needed = min(skb->len, window); 1349 1350 if (cwnd_len <= needed) 1351 return cwnd_len; 1352 1353 return needed - needed % mss_now; 1354 } 1355 1356 /* Can at least one segment of SKB be sent right now, according to the 1357 * congestion window rules? If so, return how many segments are allowed. 1358 */ 1359 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1360 const struct sk_buff *skb) 1361 { 1362 u32 in_flight, cwnd; 1363 1364 /* Don't be strict about the congestion window for the final FIN. */ 1365 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1366 tcp_skb_pcount(skb) == 1) 1367 return 1; 1368 1369 in_flight = tcp_packets_in_flight(tp); 1370 cwnd = tp->snd_cwnd; 1371 if (in_flight < cwnd) 1372 return (cwnd - in_flight); 1373 1374 return 0; 1375 } 1376 1377 /* Initialize TSO state of a skb. 1378 * This must be invoked the first time we consider transmitting 1379 * SKB onto the wire. 1380 */ 1381 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb, 1382 unsigned int mss_now) 1383 { 1384 int tso_segs = tcp_skb_pcount(skb); 1385 1386 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1387 tcp_set_skb_tso_segs(sk, skb, mss_now); 1388 tso_segs = tcp_skb_pcount(skb); 1389 } 1390 return tso_segs; 1391 } 1392 1393 /* Minshall's variant of the Nagle send check. */ 1394 static inline bool tcp_minshall_check(const struct tcp_sock *tp) 1395 { 1396 return after(tp->snd_sml, tp->snd_una) && 1397 !after(tp->snd_sml, tp->snd_nxt); 1398 } 1399 1400 /* Return false, if packet can be sent now without violation Nagle's rules: 1401 * 1. It is full sized. 1402 * 2. Or it contains FIN. (already checked by caller) 1403 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1404 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1405 * With Minshall's modification: all sent small packets are ACKed. 1406 */ 1407 static inline bool tcp_nagle_check(const struct tcp_sock *tp, 1408 const struct sk_buff *skb, 1409 unsigned int mss_now, int nonagle) 1410 { 1411 return skb->len < mss_now && 1412 ((nonagle & TCP_NAGLE_CORK) || 1413 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1414 } 1415 1416 /* Return true if the Nagle test allows this packet to be 1417 * sent now. 1418 */ 1419 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1420 unsigned int cur_mss, int nonagle) 1421 { 1422 /* Nagle rule does not apply to frames, which sit in the middle of the 1423 * write_queue (they have no chances to get new data). 1424 * 1425 * This is implemented in the callers, where they modify the 'nonagle' 1426 * argument based upon the location of SKB in the send queue. 1427 */ 1428 if (nonagle & TCP_NAGLE_PUSH) 1429 return true; 1430 1431 /* Don't use the nagle rule for urgent data (or for the final FIN). 1432 * Nagle can be ignored during F-RTO too (see RFC4138). 1433 */ 1434 if (tcp_urg_mode(tp) || (tp->frto_counter == 2) || 1435 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1436 return true; 1437 1438 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 1439 return true; 1440 1441 return false; 1442 } 1443 1444 /* Does at least the first segment of SKB fit into the send window? */ 1445 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1446 const struct sk_buff *skb, 1447 unsigned int cur_mss) 1448 { 1449 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1450 1451 if (skb->len > cur_mss) 1452 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1453 1454 return !after(end_seq, tcp_wnd_end(tp)); 1455 } 1456 1457 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1458 * should be put on the wire right now. If so, it returns the number of 1459 * packets allowed by the congestion window. 1460 */ 1461 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb, 1462 unsigned int cur_mss, int nonagle) 1463 { 1464 const struct tcp_sock *tp = tcp_sk(sk); 1465 unsigned int cwnd_quota; 1466 1467 tcp_init_tso_segs(sk, skb, cur_mss); 1468 1469 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1470 return 0; 1471 1472 cwnd_quota = tcp_cwnd_test(tp, skb); 1473 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1474 cwnd_quota = 0; 1475 1476 return cwnd_quota; 1477 } 1478 1479 /* Test if sending is allowed right now. */ 1480 bool tcp_may_send_now(struct sock *sk) 1481 { 1482 const struct tcp_sock *tp = tcp_sk(sk); 1483 struct sk_buff *skb = tcp_send_head(sk); 1484 1485 return skb && 1486 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1487 (tcp_skb_is_last(sk, skb) ? 1488 tp->nonagle : TCP_NAGLE_PUSH)); 1489 } 1490 1491 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1492 * which is put after SKB on the list. It is very much like 1493 * tcp_fragment() except that it may make several kinds of assumptions 1494 * in order to speed up the splitting operation. In particular, we 1495 * know that all the data is in scatter-gather pages, and that the 1496 * packet has never been sent out before (and thus is not cloned). 1497 */ 1498 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1499 unsigned int mss_now, gfp_t gfp) 1500 { 1501 struct sk_buff *buff; 1502 int nlen = skb->len - len; 1503 u8 flags; 1504 1505 /* All of a TSO frame must be composed of paged data. */ 1506 if (skb->len != skb->data_len) 1507 return tcp_fragment(sk, skb, len, mss_now); 1508 1509 buff = sk_stream_alloc_skb(sk, 0, gfp); 1510 if (unlikely(buff == NULL)) 1511 return -ENOMEM; 1512 1513 sk->sk_wmem_queued += buff->truesize; 1514 sk_mem_charge(sk, buff->truesize); 1515 buff->truesize += nlen; 1516 skb->truesize -= nlen; 1517 1518 /* Correct the sequence numbers. */ 1519 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1520 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1521 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1522 1523 /* PSH and FIN should only be set in the second packet. */ 1524 flags = TCP_SKB_CB(skb)->tcp_flags; 1525 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1526 TCP_SKB_CB(buff)->tcp_flags = flags; 1527 1528 /* This packet was never sent out yet, so no SACK bits. */ 1529 TCP_SKB_CB(buff)->sacked = 0; 1530 1531 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1532 skb_split(skb, buff, len); 1533 1534 /* Fix up tso_factor for both original and new SKB. */ 1535 tcp_set_skb_tso_segs(sk, skb, mss_now); 1536 tcp_set_skb_tso_segs(sk, buff, mss_now); 1537 1538 /* Link BUFF into the send queue. */ 1539 skb_header_release(buff); 1540 tcp_insert_write_queue_after(skb, buff, sk); 1541 1542 return 0; 1543 } 1544 1545 /* Try to defer sending, if possible, in order to minimize the amount 1546 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1547 * 1548 * This algorithm is from John Heffner. 1549 */ 1550 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb) 1551 { 1552 struct tcp_sock *tp = tcp_sk(sk); 1553 const struct inet_connection_sock *icsk = inet_csk(sk); 1554 u32 send_win, cong_win, limit, in_flight; 1555 int win_divisor; 1556 1557 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1558 goto send_now; 1559 1560 if (icsk->icsk_ca_state != TCP_CA_Open) 1561 goto send_now; 1562 1563 /* Defer for less than two clock ticks. */ 1564 if (tp->tso_deferred && 1565 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1566 goto send_now; 1567 1568 in_flight = tcp_packets_in_flight(tp); 1569 1570 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1571 1572 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1573 1574 /* From in_flight test above, we know that cwnd > in_flight. */ 1575 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1576 1577 limit = min(send_win, cong_win); 1578 1579 /* If a full-sized TSO skb can be sent, do it. */ 1580 if (limit >= sk->sk_gso_max_size) 1581 goto send_now; 1582 1583 /* Middle in queue won't get any more data, full sendable already? */ 1584 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1585 goto send_now; 1586 1587 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1588 if (win_divisor) { 1589 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1590 1591 /* If at least some fraction of a window is available, 1592 * just use it. 1593 */ 1594 chunk /= win_divisor; 1595 if (limit >= chunk) 1596 goto send_now; 1597 } else { 1598 /* Different approach, try not to defer past a single 1599 * ACK. Receiver should ACK every other full sized 1600 * frame, so if we have space for more than 3 frames 1601 * then send now. 1602 */ 1603 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1604 goto send_now; 1605 } 1606 1607 /* Ok, it looks like it is advisable to defer. */ 1608 tp->tso_deferred = 1 | (jiffies << 1); 1609 1610 return true; 1611 1612 send_now: 1613 tp->tso_deferred = 0; 1614 return false; 1615 } 1616 1617 /* Create a new MTU probe if we are ready. 1618 * MTU probe is regularly attempting to increase the path MTU by 1619 * deliberately sending larger packets. This discovers routing 1620 * changes resulting in larger path MTUs. 1621 * 1622 * Returns 0 if we should wait to probe (no cwnd available), 1623 * 1 if a probe was sent, 1624 * -1 otherwise 1625 */ 1626 static int tcp_mtu_probe(struct sock *sk) 1627 { 1628 struct tcp_sock *tp = tcp_sk(sk); 1629 struct inet_connection_sock *icsk = inet_csk(sk); 1630 struct sk_buff *skb, *nskb, *next; 1631 int len; 1632 int probe_size; 1633 int size_needed; 1634 int copy; 1635 int mss_now; 1636 1637 /* Not currently probing/verifying, 1638 * not in recovery, 1639 * have enough cwnd, and 1640 * not SACKing (the variable headers throw things off) */ 1641 if (!icsk->icsk_mtup.enabled || 1642 icsk->icsk_mtup.probe_size || 1643 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1644 tp->snd_cwnd < 11 || 1645 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1646 return -1; 1647 1648 /* Very simple search strategy: just double the MSS. */ 1649 mss_now = tcp_current_mss(sk); 1650 probe_size = 2 * tp->mss_cache; 1651 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1652 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1653 /* TODO: set timer for probe_converge_event */ 1654 return -1; 1655 } 1656 1657 /* Have enough data in the send queue to probe? */ 1658 if (tp->write_seq - tp->snd_nxt < size_needed) 1659 return -1; 1660 1661 if (tp->snd_wnd < size_needed) 1662 return -1; 1663 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1664 return 0; 1665 1666 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1667 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1668 if (!tcp_packets_in_flight(tp)) 1669 return -1; 1670 else 1671 return 0; 1672 } 1673 1674 /* We're allowed to probe. Build it now. */ 1675 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1676 return -1; 1677 sk->sk_wmem_queued += nskb->truesize; 1678 sk_mem_charge(sk, nskb->truesize); 1679 1680 skb = tcp_send_head(sk); 1681 1682 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1683 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1684 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 1685 TCP_SKB_CB(nskb)->sacked = 0; 1686 nskb->csum = 0; 1687 nskb->ip_summed = skb->ip_summed; 1688 1689 tcp_insert_write_queue_before(nskb, skb, sk); 1690 1691 len = 0; 1692 tcp_for_write_queue_from_safe(skb, next, sk) { 1693 copy = min_t(int, skb->len, probe_size - len); 1694 if (nskb->ip_summed) 1695 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1696 else 1697 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1698 skb_put(nskb, copy), 1699 copy, nskb->csum); 1700 1701 if (skb->len <= copy) { 1702 /* We've eaten all the data from this skb. 1703 * Throw it away. */ 1704 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1705 tcp_unlink_write_queue(skb, sk); 1706 sk_wmem_free_skb(sk, skb); 1707 } else { 1708 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 1709 ~(TCPHDR_FIN|TCPHDR_PSH); 1710 if (!skb_shinfo(skb)->nr_frags) { 1711 skb_pull(skb, copy); 1712 if (skb->ip_summed != CHECKSUM_PARTIAL) 1713 skb->csum = csum_partial(skb->data, 1714 skb->len, 0); 1715 } else { 1716 __pskb_trim_head(skb, copy); 1717 tcp_set_skb_tso_segs(sk, skb, mss_now); 1718 } 1719 TCP_SKB_CB(skb)->seq += copy; 1720 } 1721 1722 len += copy; 1723 1724 if (len >= probe_size) 1725 break; 1726 } 1727 tcp_init_tso_segs(sk, nskb, nskb->len); 1728 1729 /* We're ready to send. If this fails, the probe will 1730 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1731 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1732 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1733 /* Decrement cwnd here because we are sending 1734 * effectively two packets. */ 1735 tp->snd_cwnd--; 1736 tcp_event_new_data_sent(sk, nskb); 1737 1738 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1739 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1740 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1741 1742 return 1; 1743 } 1744 1745 return -1; 1746 } 1747 1748 /* This routine writes packets to the network. It advances the 1749 * send_head. This happens as incoming acks open up the remote 1750 * window for us. 1751 * 1752 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1753 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1754 * account rare use of URG, this is not a big flaw. 1755 * 1756 * Returns true, if no segments are in flight and we have queued segments, 1757 * but cannot send anything now because of SWS or another problem. 1758 */ 1759 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1760 int push_one, gfp_t gfp) 1761 { 1762 struct tcp_sock *tp = tcp_sk(sk); 1763 struct sk_buff *skb; 1764 unsigned int tso_segs, sent_pkts; 1765 int cwnd_quota; 1766 int result; 1767 1768 sent_pkts = 0; 1769 1770 if (!push_one) { 1771 /* Do MTU probing. */ 1772 result = tcp_mtu_probe(sk); 1773 if (!result) { 1774 return false; 1775 } else if (result > 0) { 1776 sent_pkts = 1; 1777 } 1778 } 1779 1780 while ((skb = tcp_send_head(sk))) { 1781 unsigned int limit; 1782 1783 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1784 BUG_ON(!tso_segs); 1785 1786 cwnd_quota = tcp_cwnd_test(tp, skb); 1787 if (!cwnd_quota) 1788 break; 1789 1790 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1791 break; 1792 1793 if (tso_segs == 1) { 1794 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1795 (tcp_skb_is_last(sk, skb) ? 1796 nonagle : TCP_NAGLE_PUSH)))) 1797 break; 1798 } else { 1799 if (!push_one && tcp_tso_should_defer(sk, skb)) 1800 break; 1801 } 1802 1803 limit = mss_now; 1804 if (tso_segs > 1 && !tcp_urg_mode(tp)) 1805 limit = tcp_mss_split_point(sk, skb, mss_now, 1806 cwnd_quota); 1807 1808 if (skb->len > limit && 1809 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 1810 break; 1811 1812 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1813 1814 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 1815 break; 1816 1817 /* Advance the send_head. This one is sent out. 1818 * This call will increment packets_out. 1819 */ 1820 tcp_event_new_data_sent(sk, skb); 1821 1822 tcp_minshall_update(tp, mss_now, skb); 1823 sent_pkts += tcp_skb_pcount(skb); 1824 1825 if (push_one) 1826 break; 1827 } 1828 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery) 1829 tp->prr_out += sent_pkts; 1830 1831 if (likely(sent_pkts)) { 1832 tcp_cwnd_validate(sk); 1833 return false; 1834 } 1835 return !tp->packets_out && tcp_send_head(sk); 1836 } 1837 1838 /* Push out any pending frames which were held back due to 1839 * TCP_CORK or attempt at coalescing tiny packets. 1840 * The socket must be locked by the caller. 1841 */ 1842 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 1843 int nonagle) 1844 { 1845 /* If we are closed, the bytes will have to remain here. 1846 * In time closedown will finish, we empty the write queue and 1847 * all will be happy. 1848 */ 1849 if (unlikely(sk->sk_state == TCP_CLOSE)) 1850 return; 1851 1852 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, GFP_ATOMIC)) 1853 tcp_check_probe_timer(sk); 1854 } 1855 1856 /* Send _single_ skb sitting at the send head. This function requires 1857 * true push pending frames to setup probe timer etc. 1858 */ 1859 void tcp_push_one(struct sock *sk, unsigned int mss_now) 1860 { 1861 struct sk_buff *skb = tcp_send_head(sk); 1862 1863 BUG_ON(!skb || skb->len < mss_now); 1864 1865 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 1866 } 1867 1868 /* This function returns the amount that we can raise the 1869 * usable window based on the following constraints 1870 * 1871 * 1. The window can never be shrunk once it is offered (RFC 793) 1872 * 2. We limit memory per socket 1873 * 1874 * RFC 1122: 1875 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 1876 * RECV.NEXT + RCV.WIN fixed until: 1877 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 1878 * 1879 * i.e. don't raise the right edge of the window until you can raise 1880 * it at least MSS bytes. 1881 * 1882 * Unfortunately, the recommended algorithm breaks header prediction, 1883 * since header prediction assumes th->window stays fixed. 1884 * 1885 * Strictly speaking, keeping th->window fixed violates the receiver 1886 * side SWS prevention criteria. The problem is that under this rule 1887 * a stream of single byte packets will cause the right side of the 1888 * window to always advance by a single byte. 1889 * 1890 * Of course, if the sender implements sender side SWS prevention 1891 * then this will not be a problem. 1892 * 1893 * BSD seems to make the following compromise: 1894 * 1895 * If the free space is less than the 1/4 of the maximum 1896 * space available and the free space is less than 1/2 mss, 1897 * then set the window to 0. 1898 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 1899 * Otherwise, just prevent the window from shrinking 1900 * and from being larger than the largest representable value. 1901 * 1902 * This prevents incremental opening of the window in the regime 1903 * where TCP is limited by the speed of the reader side taking 1904 * data out of the TCP receive queue. It does nothing about 1905 * those cases where the window is constrained on the sender side 1906 * because the pipeline is full. 1907 * 1908 * BSD also seems to "accidentally" limit itself to windows that are a 1909 * multiple of MSS, at least until the free space gets quite small. 1910 * This would appear to be a side effect of the mbuf implementation. 1911 * Combining these two algorithms results in the observed behavior 1912 * of having a fixed window size at almost all times. 1913 * 1914 * Below we obtain similar behavior by forcing the offered window to 1915 * a multiple of the mss when it is feasible to do so. 1916 * 1917 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 1918 * Regular options like TIMESTAMP are taken into account. 1919 */ 1920 u32 __tcp_select_window(struct sock *sk) 1921 { 1922 struct inet_connection_sock *icsk = inet_csk(sk); 1923 struct tcp_sock *tp = tcp_sk(sk); 1924 /* MSS for the peer's data. Previous versions used mss_clamp 1925 * here. I don't know if the value based on our guesses 1926 * of peer's MSS is better for the performance. It's more correct 1927 * but may be worse for the performance because of rcv_mss 1928 * fluctuations. --SAW 1998/11/1 1929 */ 1930 int mss = icsk->icsk_ack.rcv_mss; 1931 int free_space = tcp_space(sk); 1932 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 1933 int window; 1934 1935 if (mss > full_space) 1936 mss = full_space; 1937 1938 if (free_space < (full_space >> 1)) { 1939 icsk->icsk_ack.quick = 0; 1940 1941 if (sk_under_memory_pressure(sk)) 1942 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 1943 4U * tp->advmss); 1944 1945 if (free_space < mss) 1946 return 0; 1947 } 1948 1949 if (free_space > tp->rcv_ssthresh) 1950 free_space = tp->rcv_ssthresh; 1951 1952 /* Don't do rounding if we are using window scaling, since the 1953 * scaled window will not line up with the MSS boundary anyway. 1954 */ 1955 window = tp->rcv_wnd; 1956 if (tp->rx_opt.rcv_wscale) { 1957 window = free_space; 1958 1959 /* Advertise enough space so that it won't get scaled away. 1960 * Import case: prevent zero window announcement if 1961 * 1<<rcv_wscale > mss. 1962 */ 1963 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 1964 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 1965 << tp->rx_opt.rcv_wscale); 1966 } else { 1967 /* Get the largest window that is a nice multiple of mss. 1968 * Window clamp already applied above. 1969 * If our current window offering is within 1 mss of the 1970 * free space we just keep it. This prevents the divide 1971 * and multiply from happening most of the time. 1972 * We also don't do any window rounding when the free space 1973 * is too small. 1974 */ 1975 if (window <= free_space - mss || window > free_space) 1976 window = (free_space / mss) * mss; 1977 else if (mss == full_space && 1978 free_space > window + (full_space >> 1)) 1979 window = free_space; 1980 } 1981 1982 return window; 1983 } 1984 1985 /* Collapses two adjacent SKB's during retransmission. */ 1986 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 1987 { 1988 struct tcp_sock *tp = tcp_sk(sk); 1989 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 1990 int skb_size, next_skb_size; 1991 1992 skb_size = skb->len; 1993 next_skb_size = next_skb->len; 1994 1995 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 1996 1997 tcp_highest_sack_combine(sk, next_skb, skb); 1998 1999 tcp_unlink_write_queue(next_skb, sk); 2000 2001 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 2002 next_skb_size); 2003 2004 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 2005 skb->ip_summed = CHECKSUM_PARTIAL; 2006 2007 if (skb->ip_summed != CHECKSUM_PARTIAL) 2008 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 2009 2010 /* Update sequence range on original skb. */ 2011 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2012 2013 /* Merge over control information. This moves PSH/FIN etc. over */ 2014 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2015 2016 /* All done, get rid of second SKB and account for it so 2017 * packet counting does not break. 2018 */ 2019 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2020 2021 /* changed transmit queue under us so clear hints */ 2022 tcp_clear_retrans_hints_partial(tp); 2023 if (next_skb == tp->retransmit_skb_hint) 2024 tp->retransmit_skb_hint = skb; 2025 2026 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2027 2028 sk_wmem_free_skb(sk, next_skb); 2029 } 2030 2031 /* Check if coalescing SKBs is legal. */ 2032 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2033 { 2034 if (tcp_skb_pcount(skb) > 1) 2035 return false; 2036 /* TODO: SACK collapsing could be used to remove this condition */ 2037 if (skb_shinfo(skb)->nr_frags != 0) 2038 return false; 2039 if (skb_cloned(skb)) 2040 return false; 2041 if (skb == tcp_send_head(sk)) 2042 return false; 2043 /* Some heurestics for collapsing over SACK'd could be invented */ 2044 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2045 return false; 2046 2047 return true; 2048 } 2049 2050 /* Collapse packets in the retransmit queue to make to create 2051 * less packets on the wire. This is only done on retransmission. 2052 */ 2053 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2054 int space) 2055 { 2056 struct tcp_sock *tp = tcp_sk(sk); 2057 struct sk_buff *skb = to, *tmp; 2058 bool first = true; 2059 2060 if (!sysctl_tcp_retrans_collapse) 2061 return; 2062 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2063 return; 2064 2065 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2066 if (!tcp_can_collapse(sk, skb)) 2067 break; 2068 2069 space -= skb->len; 2070 2071 if (first) { 2072 first = false; 2073 continue; 2074 } 2075 2076 if (space < 0) 2077 break; 2078 /* Punt if not enough space exists in the first SKB for 2079 * the data in the second 2080 */ 2081 if (skb->len > skb_availroom(to)) 2082 break; 2083 2084 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2085 break; 2086 2087 tcp_collapse_retrans(sk, to); 2088 } 2089 } 2090 2091 /* This retransmits one SKB. Policy decisions and retransmit queue 2092 * state updates are done by the caller. Returns non-zero if an 2093 * error occurred which prevented the send. 2094 */ 2095 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2096 { 2097 struct tcp_sock *tp = tcp_sk(sk); 2098 struct inet_connection_sock *icsk = inet_csk(sk); 2099 unsigned int cur_mss; 2100 int err; 2101 2102 /* Inconslusive MTU probe */ 2103 if (icsk->icsk_mtup.probe_size) { 2104 icsk->icsk_mtup.probe_size = 0; 2105 } 2106 2107 /* Do not sent more than we queued. 1/4 is reserved for possible 2108 * copying overhead: fragmentation, tunneling, mangling etc. 2109 */ 2110 if (atomic_read(&sk->sk_wmem_alloc) > 2111 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2112 return -EAGAIN; 2113 2114 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2115 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2116 BUG(); 2117 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2118 return -ENOMEM; 2119 } 2120 2121 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2122 return -EHOSTUNREACH; /* Routing failure or similar. */ 2123 2124 cur_mss = tcp_current_mss(sk); 2125 2126 /* If receiver has shrunk his window, and skb is out of 2127 * new window, do not retransmit it. The exception is the 2128 * case, when window is shrunk to zero. In this case 2129 * our retransmit serves as a zero window probe. 2130 */ 2131 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2132 TCP_SKB_CB(skb)->seq != tp->snd_una) 2133 return -EAGAIN; 2134 2135 if (skb->len > cur_mss) { 2136 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 2137 return -ENOMEM; /* We'll try again later. */ 2138 } else { 2139 int oldpcount = tcp_skb_pcount(skb); 2140 2141 if (unlikely(oldpcount > 1)) { 2142 tcp_init_tso_segs(sk, skb, cur_mss); 2143 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2144 } 2145 } 2146 2147 tcp_retrans_try_collapse(sk, skb, cur_mss); 2148 2149 /* Some Solaris stacks overoptimize and ignore the FIN on a 2150 * retransmit when old data is attached. So strip it off 2151 * since it is cheap to do so and saves bytes on the network. 2152 */ 2153 if (skb->len > 0 && 2154 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2155 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 2156 if (!pskb_trim(skb, 0)) { 2157 /* Reuse, even though it does some unnecessary work */ 2158 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1, 2159 TCP_SKB_CB(skb)->tcp_flags); 2160 skb->ip_summed = CHECKSUM_NONE; 2161 } 2162 } 2163 2164 /* Make a copy, if the first transmission SKB clone we made 2165 * is still in somebody's hands, else make a clone. 2166 */ 2167 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2168 2169 /* make sure skb->data is aligned on arches that require it */ 2170 if (unlikely(NET_IP_ALIGN && ((unsigned long)skb->data & 3))) { 2171 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER, 2172 GFP_ATOMIC); 2173 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2174 -ENOBUFS; 2175 } else { 2176 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2177 } 2178 2179 if (err == 0) { 2180 /* Update global TCP statistics. */ 2181 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2182 2183 tp->total_retrans++; 2184 2185 #if FASTRETRANS_DEBUG > 0 2186 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2187 net_dbg_ratelimited("retrans_out leaked\n"); 2188 } 2189 #endif 2190 if (!tp->retrans_out) 2191 tp->lost_retrans_low = tp->snd_nxt; 2192 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2193 tp->retrans_out += tcp_skb_pcount(skb); 2194 2195 /* Save stamp of the first retransmit. */ 2196 if (!tp->retrans_stamp) 2197 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 2198 2199 tp->undo_retrans += tcp_skb_pcount(skb); 2200 2201 /* snd_nxt is stored to detect loss of retransmitted segment, 2202 * see tcp_input.c tcp_sacktag_write_queue(). 2203 */ 2204 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2205 } 2206 return err; 2207 } 2208 2209 /* Check if we forward retransmits are possible in the current 2210 * window/congestion state. 2211 */ 2212 static bool tcp_can_forward_retransmit(struct sock *sk) 2213 { 2214 const struct inet_connection_sock *icsk = inet_csk(sk); 2215 const struct tcp_sock *tp = tcp_sk(sk); 2216 2217 /* Forward retransmissions are possible only during Recovery. */ 2218 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2219 return false; 2220 2221 /* No forward retransmissions in Reno are possible. */ 2222 if (tcp_is_reno(tp)) 2223 return false; 2224 2225 /* Yeah, we have to make difficult choice between forward transmission 2226 * and retransmission... Both ways have their merits... 2227 * 2228 * For now we do not retransmit anything, while we have some new 2229 * segments to send. In the other cases, follow rule 3 for 2230 * NextSeg() specified in RFC3517. 2231 */ 2232 2233 if (tcp_may_send_now(sk)) 2234 return false; 2235 2236 return true; 2237 } 2238 2239 /* This gets called after a retransmit timeout, and the initially 2240 * retransmitted data is acknowledged. It tries to continue 2241 * resending the rest of the retransmit queue, until either 2242 * we've sent it all or the congestion window limit is reached. 2243 * If doing SACK, the first ACK which comes back for a timeout 2244 * based retransmit packet might feed us FACK information again. 2245 * If so, we use it to avoid unnecessarily retransmissions. 2246 */ 2247 void tcp_xmit_retransmit_queue(struct sock *sk) 2248 { 2249 const struct inet_connection_sock *icsk = inet_csk(sk); 2250 struct tcp_sock *tp = tcp_sk(sk); 2251 struct sk_buff *skb; 2252 struct sk_buff *hole = NULL; 2253 u32 last_lost; 2254 int mib_idx; 2255 int fwd_rexmitting = 0; 2256 2257 if (!tp->packets_out) 2258 return; 2259 2260 if (!tp->lost_out) 2261 tp->retransmit_high = tp->snd_una; 2262 2263 if (tp->retransmit_skb_hint) { 2264 skb = tp->retransmit_skb_hint; 2265 last_lost = TCP_SKB_CB(skb)->end_seq; 2266 if (after(last_lost, tp->retransmit_high)) 2267 last_lost = tp->retransmit_high; 2268 } else { 2269 skb = tcp_write_queue_head(sk); 2270 last_lost = tp->snd_una; 2271 } 2272 2273 tcp_for_write_queue_from(skb, sk) { 2274 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2275 2276 if (skb == tcp_send_head(sk)) 2277 break; 2278 /* we could do better than to assign each time */ 2279 if (hole == NULL) 2280 tp->retransmit_skb_hint = skb; 2281 2282 /* Assume this retransmit will generate 2283 * only one packet for congestion window 2284 * calculation purposes. This works because 2285 * tcp_retransmit_skb() will chop up the 2286 * packet to be MSS sized and all the 2287 * packet counting works out. 2288 */ 2289 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2290 return; 2291 2292 if (fwd_rexmitting) { 2293 begin_fwd: 2294 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2295 break; 2296 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2297 2298 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2299 tp->retransmit_high = last_lost; 2300 if (!tcp_can_forward_retransmit(sk)) 2301 break; 2302 /* Backtrack if necessary to non-L'ed skb */ 2303 if (hole != NULL) { 2304 skb = hole; 2305 hole = NULL; 2306 } 2307 fwd_rexmitting = 1; 2308 goto begin_fwd; 2309 2310 } else if (!(sacked & TCPCB_LOST)) { 2311 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2312 hole = skb; 2313 continue; 2314 2315 } else { 2316 last_lost = TCP_SKB_CB(skb)->end_seq; 2317 if (icsk->icsk_ca_state != TCP_CA_Loss) 2318 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2319 else 2320 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2321 } 2322 2323 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2324 continue; 2325 2326 if (tcp_retransmit_skb(sk, skb)) { 2327 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL); 2328 return; 2329 } 2330 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2331 2332 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Recovery) 2333 tp->prr_out += tcp_skb_pcount(skb); 2334 2335 if (skb == tcp_write_queue_head(sk)) 2336 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2337 inet_csk(sk)->icsk_rto, 2338 TCP_RTO_MAX); 2339 } 2340 } 2341 2342 /* Send a fin. The caller locks the socket for us. This cannot be 2343 * allowed to fail queueing a FIN frame under any circumstances. 2344 */ 2345 void tcp_send_fin(struct sock *sk) 2346 { 2347 struct tcp_sock *tp = tcp_sk(sk); 2348 struct sk_buff *skb = tcp_write_queue_tail(sk); 2349 int mss_now; 2350 2351 /* Optimization, tack on the FIN if we have a queue of 2352 * unsent frames. But be careful about outgoing SACKS 2353 * and IP options. 2354 */ 2355 mss_now = tcp_current_mss(sk); 2356 2357 if (tcp_send_head(sk) != NULL) { 2358 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN; 2359 TCP_SKB_CB(skb)->end_seq++; 2360 tp->write_seq++; 2361 } else { 2362 /* Socket is locked, keep trying until memory is available. */ 2363 for (;;) { 2364 skb = alloc_skb_fclone(MAX_TCP_HEADER, 2365 sk->sk_allocation); 2366 if (skb) 2367 break; 2368 yield(); 2369 } 2370 2371 /* Reserve space for headers and prepare control bits. */ 2372 skb_reserve(skb, MAX_TCP_HEADER); 2373 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2374 tcp_init_nondata_skb(skb, tp->write_seq, 2375 TCPHDR_ACK | TCPHDR_FIN); 2376 tcp_queue_skb(sk, skb); 2377 } 2378 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2379 } 2380 2381 /* We get here when a process closes a file descriptor (either due to 2382 * an explicit close() or as a byproduct of exit()'ing) and there 2383 * was unread data in the receive queue. This behavior is recommended 2384 * by RFC 2525, section 2.17. -DaveM 2385 */ 2386 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2387 { 2388 struct sk_buff *skb; 2389 2390 /* NOTE: No TCP options attached and we never retransmit this. */ 2391 skb = alloc_skb(MAX_TCP_HEADER, priority); 2392 if (!skb) { 2393 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2394 return; 2395 } 2396 2397 /* Reserve space for headers and prepare control bits. */ 2398 skb_reserve(skb, MAX_TCP_HEADER); 2399 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2400 TCPHDR_ACK | TCPHDR_RST); 2401 /* Send it off. */ 2402 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2403 if (tcp_transmit_skb(sk, skb, 0, priority)) 2404 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2405 2406 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2407 } 2408 2409 /* Send a crossed SYN-ACK during socket establishment. 2410 * WARNING: This routine must only be called when we have already sent 2411 * a SYN packet that crossed the incoming SYN that caused this routine 2412 * to get called. If this assumption fails then the initial rcv_wnd 2413 * and rcv_wscale values will not be correct. 2414 */ 2415 int tcp_send_synack(struct sock *sk) 2416 { 2417 struct sk_buff *skb; 2418 2419 skb = tcp_write_queue_head(sk); 2420 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2421 pr_debug("%s: wrong queue state\n", __func__); 2422 return -EFAULT; 2423 } 2424 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 2425 if (skb_cloned(skb)) { 2426 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2427 if (nskb == NULL) 2428 return -ENOMEM; 2429 tcp_unlink_write_queue(skb, sk); 2430 skb_header_release(nskb); 2431 __tcp_add_write_queue_head(sk, nskb); 2432 sk_wmem_free_skb(sk, skb); 2433 sk->sk_wmem_queued += nskb->truesize; 2434 sk_mem_charge(sk, nskb->truesize); 2435 skb = nskb; 2436 } 2437 2438 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 2439 TCP_ECN_send_synack(tcp_sk(sk), skb); 2440 } 2441 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2442 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2443 } 2444 2445 /* Prepare a SYN-ACK. */ 2446 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2447 struct request_sock *req, 2448 struct request_values *rvp) 2449 { 2450 struct tcp_out_options opts; 2451 struct tcp_extend_values *xvp = tcp_xv(rvp); 2452 struct inet_request_sock *ireq = inet_rsk(req); 2453 struct tcp_sock *tp = tcp_sk(sk); 2454 const struct tcp_cookie_values *cvp = tp->cookie_values; 2455 struct tcphdr *th; 2456 struct sk_buff *skb; 2457 struct tcp_md5sig_key *md5; 2458 int tcp_header_size; 2459 int mss; 2460 int s_data_desired = 0; 2461 2462 if (cvp != NULL && cvp->s_data_constant && cvp->s_data_desired) 2463 s_data_desired = cvp->s_data_desired; 2464 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15 + s_data_desired, 1, GFP_ATOMIC); 2465 if (skb == NULL) 2466 return NULL; 2467 2468 /* Reserve space for headers. */ 2469 skb_reserve(skb, MAX_TCP_HEADER); 2470 2471 skb_dst_set(skb, dst_clone(dst)); 2472 2473 mss = dst_metric_advmss(dst); 2474 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2475 mss = tp->rx_opt.user_mss; 2476 2477 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 2478 __u8 rcv_wscale; 2479 /* Set this up on the first call only */ 2480 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 2481 2482 /* limit the window selection if the user enforce a smaller rx buffer */ 2483 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2484 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0)) 2485 req->window_clamp = tcp_full_space(sk); 2486 2487 /* tcp_full_space because it is guaranteed to be the first packet */ 2488 tcp_select_initial_window(tcp_full_space(sk), 2489 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 2490 &req->rcv_wnd, 2491 &req->window_clamp, 2492 ireq->wscale_ok, 2493 &rcv_wscale, 2494 dst_metric(dst, RTAX_INITRWND)); 2495 ireq->rcv_wscale = rcv_wscale; 2496 } 2497 2498 memset(&opts, 0, sizeof(opts)); 2499 #ifdef CONFIG_SYN_COOKIES 2500 if (unlikely(req->cookie_ts)) 2501 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); 2502 else 2503 #endif 2504 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2505 tcp_header_size = tcp_synack_options(sk, req, mss, 2506 skb, &opts, &md5, xvp) 2507 + sizeof(*th); 2508 2509 skb_push(skb, tcp_header_size); 2510 skb_reset_transport_header(skb); 2511 2512 th = tcp_hdr(skb); 2513 memset(th, 0, sizeof(struct tcphdr)); 2514 th->syn = 1; 2515 th->ack = 1; 2516 TCP_ECN_make_synack(req, th); 2517 th->source = ireq->loc_port; 2518 th->dest = ireq->rmt_port; 2519 /* Setting of flags are superfluous here for callers (and ECE is 2520 * not even correctly set) 2521 */ 2522 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2523 TCPHDR_SYN | TCPHDR_ACK); 2524 2525 if (OPTION_COOKIE_EXTENSION & opts.options) { 2526 if (s_data_desired) { 2527 u8 *buf = skb_put(skb, s_data_desired); 2528 2529 /* copy data directly from the listening socket. */ 2530 memcpy(buf, cvp->s_data_payload, s_data_desired); 2531 TCP_SKB_CB(skb)->end_seq += s_data_desired; 2532 } 2533 2534 if (opts.hash_size > 0) { 2535 __u32 workspace[SHA_WORKSPACE_WORDS]; 2536 u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS]; 2537 u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1]; 2538 2539 /* Secret recipe depends on the Timestamp, (future) 2540 * Sequence and Acknowledgment Numbers, Initiator 2541 * Cookie, and others handled by IP variant caller. 2542 */ 2543 *tail-- ^= opts.tsval; 2544 *tail-- ^= tcp_rsk(req)->rcv_isn + 1; 2545 *tail-- ^= TCP_SKB_CB(skb)->seq + 1; 2546 2547 /* recommended */ 2548 *tail-- ^= (((__force u32)th->dest << 16) | (__force u32)th->source); 2549 *tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */ 2550 2551 sha_transform((__u32 *)&xvp->cookie_bakery[0], 2552 (char *)mess, 2553 &workspace[0]); 2554 opts.hash_location = 2555 (__u8 *)&xvp->cookie_bakery[0]; 2556 } 2557 } 2558 2559 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2560 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); 2561 2562 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2563 th->window = htons(min(req->rcv_wnd, 65535U)); 2564 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2565 th->doff = (tcp_header_size >> 2); 2566 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb)); 2567 2568 #ifdef CONFIG_TCP_MD5SIG 2569 /* Okay, we have all we need - do the md5 hash if needed */ 2570 if (md5) { 2571 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2572 md5, NULL, req, skb); 2573 } 2574 #endif 2575 2576 return skb; 2577 } 2578 EXPORT_SYMBOL(tcp_make_synack); 2579 2580 /* Do all connect socket setups that can be done AF independent. */ 2581 void tcp_connect_init(struct sock *sk) 2582 { 2583 const struct dst_entry *dst = __sk_dst_get(sk); 2584 struct tcp_sock *tp = tcp_sk(sk); 2585 __u8 rcv_wscale; 2586 2587 /* We'll fix this up when we get a response from the other end. 2588 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2589 */ 2590 tp->tcp_header_len = sizeof(struct tcphdr) + 2591 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2592 2593 #ifdef CONFIG_TCP_MD5SIG 2594 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2595 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2596 #endif 2597 2598 /* If user gave his TCP_MAXSEG, record it to clamp */ 2599 if (tp->rx_opt.user_mss) 2600 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2601 tp->max_window = 0; 2602 tcp_mtup_init(sk); 2603 tcp_sync_mss(sk, dst_mtu(dst)); 2604 2605 if (!tp->window_clamp) 2606 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2607 tp->advmss = dst_metric_advmss(dst); 2608 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2609 tp->advmss = tp->rx_opt.user_mss; 2610 2611 tcp_initialize_rcv_mss(sk); 2612 2613 /* limit the window selection if the user enforce a smaller rx buffer */ 2614 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2615 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2616 tp->window_clamp = tcp_full_space(sk); 2617 2618 tcp_select_initial_window(tcp_full_space(sk), 2619 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2620 &tp->rcv_wnd, 2621 &tp->window_clamp, 2622 sysctl_tcp_window_scaling, 2623 &rcv_wscale, 2624 dst_metric(dst, RTAX_INITRWND)); 2625 2626 tp->rx_opt.rcv_wscale = rcv_wscale; 2627 tp->rcv_ssthresh = tp->rcv_wnd; 2628 2629 sk->sk_err = 0; 2630 sock_reset_flag(sk, SOCK_DONE); 2631 tp->snd_wnd = 0; 2632 tcp_init_wl(tp, 0); 2633 tp->snd_una = tp->write_seq; 2634 tp->snd_sml = tp->write_seq; 2635 tp->snd_up = tp->write_seq; 2636 tp->snd_nxt = tp->write_seq; 2637 2638 if (likely(!tp->repair)) 2639 tp->rcv_nxt = 0; 2640 tp->rcv_wup = tp->rcv_nxt; 2641 tp->copied_seq = tp->rcv_nxt; 2642 2643 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2644 inet_csk(sk)->icsk_retransmits = 0; 2645 tcp_clear_retrans(tp); 2646 } 2647 2648 /* Build a SYN and send it off. */ 2649 int tcp_connect(struct sock *sk) 2650 { 2651 struct tcp_sock *tp = tcp_sk(sk); 2652 struct sk_buff *buff; 2653 int err; 2654 2655 tcp_connect_init(sk); 2656 2657 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 2658 if (unlikely(buff == NULL)) 2659 return -ENOBUFS; 2660 2661 /* Reserve space for headers. */ 2662 skb_reserve(buff, MAX_TCP_HEADER); 2663 2664 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 2665 TCP_ECN_send_syn(sk, buff); 2666 2667 /* Send it off. */ 2668 TCP_SKB_CB(buff)->when = tcp_time_stamp; 2669 tp->retrans_stamp = TCP_SKB_CB(buff)->when; 2670 skb_header_release(buff); 2671 __tcp_add_write_queue_tail(sk, buff); 2672 sk->sk_wmem_queued += buff->truesize; 2673 sk_mem_charge(sk, buff->truesize); 2674 tp->packets_out += tcp_skb_pcount(buff); 2675 err = tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 2676 if (err == -ECONNREFUSED) 2677 return err; 2678 2679 /* We change tp->snd_nxt after the tcp_transmit_skb() call 2680 * in order to make this packet get counted in tcpOutSegs. 2681 */ 2682 tp->snd_nxt = tp->write_seq; 2683 tp->pushed_seq = tp->write_seq; 2684 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 2685 2686 /* Timer for repeating the SYN until an answer. */ 2687 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2688 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2689 return 0; 2690 } 2691 EXPORT_SYMBOL(tcp_connect); 2692 2693 /* Send out a delayed ack, the caller does the policy checking 2694 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 2695 * for details. 2696 */ 2697 void tcp_send_delayed_ack(struct sock *sk) 2698 { 2699 struct inet_connection_sock *icsk = inet_csk(sk); 2700 int ato = icsk->icsk_ack.ato; 2701 unsigned long timeout; 2702 2703 if (ato > TCP_DELACK_MIN) { 2704 const struct tcp_sock *tp = tcp_sk(sk); 2705 int max_ato = HZ / 2; 2706 2707 if (icsk->icsk_ack.pingpong || 2708 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 2709 max_ato = TCP_DELACK_MAX; 2710 2711 /* Slow path, intersegment interval is "high". */ 2712 2713 /* If some rtt estimate is known, use it to bound delayed ack. 2714 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 2715 * directly. 2716 */ 2717 if (tp->srtt) { 2718 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN); 2719 2720 if (rtt < max_ato) 2721 max_ato = rtt; 2722 } 2723 2724 ato = min(ato, max_ato); 2725 } 2726 2727 /* Stay within the limit we were given */ 2728 timeout = jiffies + ato; 2729 2730 /* Use new timeout only if there wasn't a older one earlier. */ 2731 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 2732 /* If delack timer was blocked or is about to expire, 2733 * send ACK now. 2734 */ 2735 if (icsk->icsk_ack.blocked || 2736 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 2737 tcp_send_ack(sk); 2738 return; 2739 } 2740 2741 if (!time_before(timeout, icsk->icsk_ack.timeout)) 2742 timeout = icsk->icsk_ack.timeout; 2743 } 2744 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 2745 icsk->icsk_ack.timeout = timeout; 2746 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 2747 } 2748 2749 /* This routine sends an ack and also updates the window. */ 2750 void tcp_send_ack(struct sock *sk) 2751 { 2752 struct sk_buff *buff; 2753 2754 /* If we have been reset, we may not send again. */ 2755 if (sk->sk_state == TCP_CLOSE) 2756 return; 2757 2758 /* We are not putting this on the write queue, so 2759 * tcp_transmit_skb() will set the ownership to this 2760 * sock. 2761 */ 2762 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2763 if (buff == NULL) { 2764 inet_csk_schedule_ack(sk); 2765 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 2766 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 2767 TCP_DELACK_MAX, TCP_RTO_MAX); 2768 return; 2769 } 2770 2771 /* Reserve space for headers and prepare control bits. */ 2772 skb_reserve(buff, MAX_TCP_HEADER); 2773 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 2774 2775 /* Send it off, this clears delayed acks for us. */ 2776 TCP_SKB_CB(buff)->when = tcp_time_stamp; 2777 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC); 2778 } 2779 2780 /* This routine sends a packet with an out of date sequence 2781 * number. It assumes the other end will try to ack it. 2782 * 2783 * Question: what should we make while urgent mode? 2784 * 4.4BSD forces sending single byte of data. We cannot send 2785 * out of window data, because we have SND.NXT==SND.MAX... 2786 * 2787 * Current solution: to send TWO zero-length segments in urgent mode: 2788 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 2789 * out-of-date with SND.UNA-1 to probe window. 2790 */ 2791 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 2792 { 2793 struct tcp_sock *tp = tcp_sk(sk); 2794 struct sk_buff *skb; 2795 2796 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 2797 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2798 if (skb == NULL) 2799 return -1; 2800 2801 /* Reserve space for headers and set control bits. */ 2802 skb_reserve(skb, MAX_TCP_HEADER); 2803 /* Use a previous sequence. This should cause the other 2804 * end to send an ack. Don't queue or clone SKB, just 2805 * send it. 2806 */ 2807 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 2808 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2809 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 2810 } 2811 2812 void tcp_send_window_probe(struct sock *sk) 2813 { 2814 if (sk->sk_state == TCP_ESTABLISHED) { 2815 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 2816 tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq; 2817 tcp_xmit_probe_skb(sk, 0); 2818 } 2819 } 2820 2821 /* Initiate keepalive or window probe from timer. */ 2822 int tcp_write_wakeup(struct sock *sk) 2823 { 2824 struct tcp_sock *tp = tcp_sk(sk); 2825 struct sk_buff *skb; 2826 2827 if (sk->sk_state == TCP_CLOSE) 2828 return -1; 2829 2830 if ((skb = tcp_send_head(sk)) != NULL && 2831 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 2832 int err; 2833 unsigned int mss = tcp_current_mss(sk); 2834 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2835 2836 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 2837 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 2838 2839 /* We are probing the opening of a window 2840 * but the window size is != 0 2841 * must have been a result SWS avoidance ( sender ) 2842 */ 2843 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 2844 skb->len > mss) { 2845 seg_size = min(seg_size, mss); 2846 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 2847 if (tcp_fragment(sk, skb, seg_size, mss)) 2848 return -1; 2849 } else if (!tcp_skb_pcount(skb)) 2850 tcp_set_skb_tso_segs(sk, skb, mss); 2851 2852 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 2853 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2854 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2855 if (!err) 2856 tcp_event_new_data_sent(sk, skb); 2857 return err; 2858 } else { 2859 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 2860 tcp_xmit_probe_skb(sk, 1); 2861 return tcp_xmit_probe_skb(sk, 0); 2862 } 2863 } 2864 2865 /* A window probe timeout has occurred. If window is not closed send 2866 * a partial packet else a zero probe. 2867 */ 2868 void tcp_send_probe0(struct sock *sk) 2869 { 2870 struct inet_connection_sock *icsk = inet_csk(sk); 2871 struct tcp_sock *tp = tcp_sk(sk); 2872 int err; 2873 2874 err = tcp_write_wakeup(sk); 2875 2876 if (tp->packets_out || !tcp_send_head(sk)) { 2877 /* Cancel probe timer, if it is not required. */ 2878 icsk->icsk_probes_out = 0; 2879 icsk->icsk_backoff = 0; 2880 return; 2881 } 2882 2883 if (err <= 0) { 2884 if (icsk->icsk_backoff < sysctl_tcp_retries2) 2885 icsk->icsk_backoff++; 2886 icsk->icsk_probes_out++; 2887 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2888 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2889 TCP_RTO_MAX); 2890 } else { 2891 /* If packet was not sent due to local congestion, 2892 * do not backoff and do not remember icsk_probes_out. 2893 * Let local senders to fight for local resources. 2894 * 2895 * Use accumulated backoff yet. 2896 */ 2897 if (!icsk->icsk_probes_out) 2898 icsk->icsk_probes_out = 1; 2899 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2900 min(icsk->icsk_rto << icsk->icsk_backoff, 2901 TCP_RESOURCE_PROBE_INTERVAL), 2902 TCP_RTO_MAX); 2903 } 2904 } 2905