1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 #include <net/proto_memory.h> 43 44 #include <linux/compiler.h> 45 #include <linux/gfp.h> 46 #include <linux/module.h> 47 #include <linux/static_key.h> 48 #include <linux/skbuff_ref.h> 49 50 #include <trace/events/tcp.h> 51 52 /* Refresh clocks of a TCP socket, 53 * ensuring monotically increasing values. 54 */ 55 void tcp_mstamp_refresh(struct tcp_sock *tp) 56 { 57 u64 val = tcp_clock_ns(); 58 59 tp->tcp_clock_cache = val; 60 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 61 } 62 63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 64 int push_one, gfp_t gfp); 65 66 /* Account for new data that has been sent to the network. */ 67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 68 { 69 struct inet_connection_sock *icsk = inet_csk(sk); 70 struct tcp_sock *tp = tcp_sk(sk); 71 unsigned int prior_packets = tp->packets_out; 72 73 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 74 75 __skb_unlink(skb, &sk->sk_write_queue); 76 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 77 78 if (tp->highest_sack == NULL) 79 tp->highest_sack = skb; 80 81 tp->packets_out += tcp_skb_pcount(skb); 82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 83 tcp_rearm_rto(sk); 84 85 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 86 tcp_skb_pcount(skb)); 87 tcp_check_space(sk); 88 } 89 90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 91 * window scaling factor due to loss of precision. 92 * If window has been shrunk, what should we make? It is not clear at all. 93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 95 * invalid. OK, let's make this for now: 96 */ 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 98 { 99 const struct tcp_sock *tp = tcp_sk(sk); 100 101 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 102 (tp->rx_opt.wscale_ok && 103 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 104 return tp->snd_nxt; 105 else 106 return tcp_wnd_end(tp); 107 } 108 109 /* Calculate mss to advertise in SYN segment. 110 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 111 * 112 * 1. It is independent of path mtu. 113 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 114 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 115 * attached devices, because some buggy hosts are confused by 116 * large MSS. 117 * 4. We do not make 3, we advertise MSS, calculated from first 118 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 119 * This may be overridden via information stored in routing table. 120 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 121 * probably even Jumbo". 122 */ 123 static __u16 tcp_advertise_mss(struct sock *sk) 124 { 125 struct tcp_sock *tp = tcp_sk(sk); 126 const struct dst_entry *dst = __sk_dst_get(sk); 127 int mss = tp->advmss; 128 129 if (dst) { 130 unsigned int metric = dst_metric_advmss(dst); 131 132 if (metric < mss) { 133 mss = metric; 134 tp->advmss = mss; 135 } 136 } 137 138 return (__u16)mss; 139 } 140 141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 142 * This is the first part of cwnd validation mechanism. 143 */ 144 void tcp_cwnd_restart(struct sock *sk, s32 delta) 145 { 146 struct tcp_sock *tp = tcp_sk(sk); 147 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 148 u32 cwnd = tcp_snd_cwnd(tp); 149 150 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 151 152 tp->snd_ssthresh = tcp_current_ssthresh(sk); 153 restart_cwnd = min(restart_cwnd, cwnd); 154 155 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 156 cwnd >>= 1; 157 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 158 tp->snd_cwnd_stamp = tcp_jiffies32; 159 tp->snd_cwnd_used = 0; 160 } 161 162 /* Congestion state accounting after a packet has been sent. */ 163 static void tcp_event_data_sent(struct tcp_sock *tp, 164 struct sock *sk) 165 { 166 struct inet_connection_sock *icsk = inet_csk(sk); 167 const u32 now = tcp_jiffies32; 168 169 if (tcp_packets_in_flight(tp) == 0) 170 tcp_ca_event(sk, CA_EVENT_TX_START); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, increase pingpong count. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 178 inet_csk_inc_pingpong_cnt(sk); 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 183 { 184 struct tcp_sock *tp = tcp_sk(sk); 185 186 if (unlikely(tp->compressed_ack)) { 187 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 188 tp->compressed_ack); 189 tp->compressed_ack = 0; 190 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 191 __sock_put(sk); 192 } 193 194 if (unlikely(rcv_nxt != tp->rcv_nxt)) 195 return; /* Special ACK sent by DCTCP to reflect ECN */ 196 tcp_dec_quickack_mode(sk); 197 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 198 } 199 200 /* Determine a window scaling and initial window to offer. 201 * Based on the assumption that the given amount of space 202 * will be offered. Store the results in the tp structure. 203 * NOTE: for smooth operation initial space offering should 204 * be a multiple of mss if possible. We assume here that mss >= 1. 205 * This MUST be enforced by all callers. 206 */ 207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 208 __u32 *rcv_wnd, __u32 *__window_clamp, 209 int wscale_ok, __u8 *rcv_wscale, 210 __u32 init_rcv_wnd) 211 { 212 unsigned int space = (__space < 0 ? 0 : __space); 213 u32 window_clamp = READ_ONCE(*__window_clamp); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (window_clamp == 0) 217 window_clamp = (U16_MAX << TCP_MAX_WSCALE); 218 space = min(window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = rounddown(space, mss); 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = space; 236 237 if (init_rcv_wnd) 238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 239 240 *rcv_wscale = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window */ 243 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 244 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 245 space = min_t(u32, space, window_clamp); 246 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 247 0, TCP_MAX_WSCALE); 248 } 249 /* Set the clamp no higher than max representable value */ 250 WRITE_ONCE(*__window_clamp, 251 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp)); 252 } 253 EXPORT_SYMBOL(tcp_select_initial_window); 254 255 /* Chose a new window to advertise, update state in tcp_sock for the 256 * socket, and return result with RFC1323 scaling applied. The return 257 * value can be stuffed directly into th->window for an outgoing 258 * frame. 259 */ 260 static u16 tcp_select_window(struct sock *sk) 261 { 262 struct tcp_sock *tp = tcp_sk(sk); 263 struct net *net = sock_net(sk); 264 u32 old_win = tp->rcv_wnd; 265 u32 cur_win, new_win; 266 267 /* Make the window 0 if we failed to queue the data because we 268 * are out of memory. 269 */ 270 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) { 271 tp->pred_flags = 0; 272 tp->rcv_wnd = 0; 273 tp->rcv_wup = tp->rcv_nxt; 274 return 0; 275 } 276 277 cur_win = tcp_receive_window(tp); 278 new_win = __tcp_select_window(sk); 279 if (new_win < cur_win) { 280 /* Danger Will Robinson! 281 * Don't update rcv_wup/rcv_wnd here or else 282 * we will not be able to advertise a zero 283 * window in time. --DaveM 284 * 285 * Relax Will Robinson. 286 */ 287 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 288 /* Never shrink the offered window */ 289 if (new_win == 0) 290 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 292 } 293 } 294 295 tp->rcv_wnd = new_win; 296 tp->rcv_wup = tp->rcv_nxt; 297 298 /* Make sure we do not exceed the maximum possible 299 * scaled window. 300 */ 301 if (!tp->rx_opt.rcv_wscale && 302 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 303 new_win = min(new_win, MAX_TCP_WINDOW); 304 else 305 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 306 307 /* RFC1323 scaling applied */ 308 new_win >>= tp->rx_opt.rcv_wscale; 309 310 /* If we advertise zero window, disable fast path. */ 311 if (new_win == 0) { 312 tp->pred_flags = 0; 313 if (old_win) 314 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 315 } else if (old_win == 0) { 316 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 317 } 318 319 return new_win; 320 } 321 322 /* Packet ECN state for a SYN-ACK */ 323 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 324 { 325 const struct tcp_sock *tp = tcp_sk(sk); 326 327 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 328 if (!(tp->ecn_flags & TCP_ECN_OK)) 329 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 330 else if (tcp_ca_needs_ecn(sk) || 331 tcp_bpf_ca_needs_ecn(sk)) 332 INET_ECN_xmit(sk); 333 } 334 335 /* Packet ECN state for a SYN. */ 336 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 337 { 338 struct tcp_sock *tp = tcp_sk(sk); 339 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 340 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 341 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 342 343 if (!use_ecn) { 344 const struct dst_entry *dst = __sk_dst_get(sk); 345 346 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 347 use_ecn = true; 348 } 349 350 tp->ecn_flags = 0; 351 352 if (use_ecn) { 353 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 354 tp->ecn_flags = TCP_ECN_OK; 355 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 356 INET_ECN_xmit(sk); 357 } 358 } 359 360 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 361 { 362 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 363 /* tp->ecn_flags are cleared at a later point in time when 364 * SYN ACK is ultimatively being received. 365 */ 366 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 367 } 368 369 static void 370 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 371 { 372 if (inet_rsk(req)->ecn_ok) 373 th->ece = 1; 374 } 375 376 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 377 * be sent. 378 */ 379 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 380 struct tcphdr *th, int tcp_header_len) 381 { 382 struct tcp_sock *tp = tcp_sk(sk); 383 384 if (tp->ecn_flags & TCP_ECN_OK) { 385 /* Not-retransmitted data segment: set ECT and inject CWR. */ 386 if (skb->len != tcp_header_len && 387 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 388 INET_ECN_xmit(sk); 389 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 390 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 391 th->cwr = 1; 392 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 393 } 394 } else if (!tcp_ca_needs_ecn(sk)) { 395 /* ACK or retransmitted segment: clear ECT|CE */ 396 INET_ECN_dontxmit(sk); 397 } 398 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 399 th->ece = 1; 400 } 401 } 402 403 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 404 * auto increment end seqno. 405 */ 406 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 407 { 408 skb->ip_summed = CHECKSUM_PARTIAL; 409 410 TCP_SKB_CB(skb)->tcp_flags = flags; 411 412 tcp_skb_pcount_set(skb, 1); 413 414 TCP_SKB_CB(skb)->seq = seq; 415 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 416 seq++; 417 TCP_SKB_CB(skb)->end_seq = seq; 418 } 419 420 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 421 { 422 return tp->snd_una != tp->snd_up; 423 } 424 425 #define OPTION_SACK_ADVERTISE BIT(0) 426 #define OPTION_TS BIT(1) 427 #define OPTION_MD5 BIT(2) 428 #define OPTION_WSCALE BIT(3) 429 #define OPTION_FAST_OPEN_COOKIE BIT(8) 430 #define OPTION_SMC BIT(9) 431 #define OPTION_MPTCP BIT(10) 432 #define OPTION_AO BIT(11) 433 434 static void smc_options_write(__be32 *ptr, u16 *options) 435 { 436 #if IS_ENABLED(CONFIG_SMC) 437 if (static_branch_unlikely(&tcp_have_smc)) { 438 if (unlikely(OPTION_SMC & *options)) { 439 *ptr++ = htonl((TCPOPT_NOP << 24) | 440 (TCPOPT_NOP << 16) | 441 (TCPOPT_EXP << 8) | 442 (TCPOLEN_EXP_SMC_BASE)); 443 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 444 } 445 } 446 #endif 447 } 448 449 struct tcp_out_options { 450 u16 options; /* bit field of OPTION_* */ 451 u16 mss; /* 0 to disable */ 452 u8 ws; /* window scale, 0 to disable */ 453 u8 num_sack_blocks; /* number of SACK blocks to include */ 454 u8 hash_size; /* bytes in hash_location */ 455 u8 bpf_opt_len; /* length of BPF hdr option */ 456 __u8 *hash_location; /* temporary pointer, overloaded */ 457 __u32 tsval, tsecr; /* need to include OPTION_TS */ 458 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 459 struct mptcp_out_options mptcp; 460 }; 461 462 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 463 struct tcp_sock *tp, 464 struct tcp_out_options *opts) 465 { 466 #if IS_ENABLED(CONFIG_MPTCP) 467 if (unlikely(OPTION_MPTCP & opts->options)) 468 mptcp_write_options(th, ptr, tp, &opts->mptcp); 469 #endif 470 } 471 472 #ifdef CONFIG_CGROUP_BPF 473 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 474 enum tcp_synack_type synack_type) 475 { 476 if (unlikely(!skb)) 477 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 478 479 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 480 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 481 482 return 0; 483 } 484 485 /* req, syn_skb and synack_type are used when writing synack */ 486 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 487 struct request_sock *req, 488 struct sk_buff *syn_skb, 489 enum tcp_synack_type synack_type, 490 struct tcp_out_options *opts, 491 unsigned int *remaining) 492 { 493 struct bpf_sock_ops_kern sock_ops; 494 int err; 495 496 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 497 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 498 !*remaining) 499 return; 500 501 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 502 503 /* init sock_ops */ 504 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 505 506 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 507 508 if (req) { 509 /* The listen "sk" cannot be passed here because 510 * it is not locked. It would not make too much 511 * sense to do bpf_setsockopt(listen_sk) based 512 * on individual connection request also. 513 * 514 * Thus, "req" is passed here and the cgroup-bpf-progs 515 * of the listen "sk" will be run. 516 * 517 * "req" is also used here for fastopen even the "sk" here is 518 * a fullsock "child" sk. It is to keep the behavior 519 * consistent between fastopen and non-fastopen on 520 * the bpf programming side. 521 */ 522 sock_ops.sk = (struct sock *)req; 523 sock_ops.syn_skb = syn_skb; 524 } else { 525 sock_owned_by_me(sk); 526 527 sock_ops.is_fullsock = 1; 528 sock_ops.sk = sk; 529 } 530 531 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 532 sock_ops.remaining_opt_len = *remaining; 533 /* tcp_current_mss() does not pass a skb */ 534 if (skb) 535 bpf_skops_init_skb(&sock_ops, skb, 0); 536 537 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 538 539 if (err || sock_ops.remaining_opt_len == *remaining) 540 return; 541 542 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 543 /* round up to 4 bytes */ 544 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 545 546 *remaining -= opts->bpf_opt_len; 547 } 548 549 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 550 struct request_sock *req, 551 struct sk_buff *syn_skb, 552 enum tcp_synack_type synack_type, 553 struct tcp_out_options *opts) 554 { 555 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 556 struct bpf_sock_ops_kern sock_ops; 557 int err; 558 559 if (likely(!max_opt_len)) 560 return; 561 562 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 563 564 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 565 566 if (req) { 567 sock_ops.sk = (struct sock *)req; 568 sock_ops.syn_skb = syn_skb; 569 } else { 570 sock_owned_by_me(sk); 571 572 sock_ops.is_fullsock = 1; 573 sock_ops.sk = sk; 574 } 575 576 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 577 sock_ops.remaining_opt_len = max_opt_len; 578 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 579 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 580 581 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 582 583 if (err) 584 nr_written = 0; 585 else 586 nr_written = max_opt_len - sock_ops.remaining_opt_len; 587 588 if (nr_written < max_opt_len) 589 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 590 max_opt_len - nr_written); 591 } 592 #else 593 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 594 struct request_sock *req, 595 struct sk_buff *syn_skb, 596 enum tcp_synack_type synack_type, 597 struct tcp_out_options *opts, 598 unsigned int *remaining) 599 { 600 } 601 602 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 603 struct request_sock *req, 604 struct sk_buff *syn_skb, 605 enum tcp_synack_type synack_type, 606 struct tcp_out_options *opts) 607 { 608 } 609 #endif 610 611 static __be32 *process_tcp_ao_options(struct tcp_sock *tp, 612 const struct tcp_request_sock *tcprsk, 613 struct tcp_out_options *opts, 614 struct tcp_key *key, __be32 *ptr) 615 { 616 #ifdef CONFIG_TCP_AO 617 u8 maclen = tcp_ao_maclen(key->ao_key); 618 619 if (tcprsk) { 620 u8 aolen = maclen + sizeof(struct tcp_ao_hdr); 621 622 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) | 623 (tcprsk->ao_keyid << 8) | 624 (tcprsk->ao_rcv_next)); 625 } else { 626 struct tcp_ao_key *rnext_key; 627 struct tcp_ao_info *ao_info; 628 629 ao_info = rcu_dereference_check(tp->ao_info, 630 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk)); 631 rnext_key = READ_ONCE(ao_info->rnext_key); 632 if (WARN_ON_ONCE(!rnext_key)) 633 return ptr; 634 *ptr++ = htonl((TCPOPT_AO << 24) | 635 (tcp_ao_len(key->ao_key) << 16) | 636 (key->ao_key->sndid << 8) | 637 (rnext_key->rcvid)); 638 } 639 opts->hash_location = (__u8 *)ptr; 640 ptr += maclen / sizeof(*ptr); 641 if (unlikely(maclen % sizeof(*ptr))) { 642 memset(ptr, TCPOPT_NOP, sizeof(*ptr)); 643 ptr++; 644 } 645 #endif 646 return ptr; 647 } 648 649 /* Write previously computed TCP options to the packet. 650 * 651 * Beware: Something in the Internet is very sensitive to the ordering of 652 * TCP options, we learned this through the hard way, so be careful here. 653 * Luckily we can at least blame others for their non-compliance but from 654 * inter-operability perspective it seems that we're somewhat stuck with 655 * the ordering which we have been using if we want to keep working with 656 * those broken things (not that it currently hurts anybody as there isn't 657 * particular reason why the ordering would need to be changed). 658 * 659 * At least SACK_PERM as the first option is known to lead to a disaster 660 * (but it may well be that other scenarios fail similarly). 661 */ 662 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 663 const struct tcp_request_sock *tcprsk, 664 struct tcp_out_options *opts, 665 struct tcp_key *key) 666 { 667 __be32 *ptr = (__be32 *)(th + 1); 668 u16 options = opts->options; /* mungable copy */ 669 670 if (tcp_key_is_md5(key)) { 671 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 672 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 673 /* overload cookie hash location */ 674 opts->hash_location = (__u8 *)ptr; 675 ptr += 4; 676 } else if (tcp_key_is_ao(key)) { 677 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr); 678 } 679 if (unlikely(opts->mss)) { 680 *ptr++ = htonl((TCPOPT_MSS << 24) | 681 (TCPOLEN_MSS << 16) | 682 opts->mss); 683 } 684 685 if (likely(OPTION_TS & options)) { 686 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 687 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 688 (TCPOLEN_SACK_PERM << 16) | 689 (TCPOPT_TIMESTAMP << 8) | 690 TCPOLEN_TIMESTAMP); 691 options &= ~OPTION_SACK_ADVERTISE; 692 } else { 693 *ptr++ = htonl((TCPOPT_NOP << 24) | 694 (TCPOPT_NOP << 16) | 695 (TCPOPT_TIMESTAMP << 8) | 696 TCPOLEN_TIMESTAMP); 697 } 698 *ptr++ = htonl(opts->tsval); 699 *ptr++ = htonl(opts->tsecr); 700 } 701 702 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 703 *ptr++ = htonl((TCPOPT_NOP << 24) | 704 (TCPOPT_NOP << 16) | 705 (TCPOPT_SACK_PERM << 8) | 706 TCPOLEN_SACK_PERM); 707 } 708 709 if (unlikely(OPTION_WSCALE & options)) { 710 *ptr++ = htonl((TCPOPT_NOP << 24) | 711 (TCPOPT_WINDOW << 16) | 712 (TCPOLEN_WINDOW << 8) | 713 opts->ws); 714 } 715 716 if (unlikely(opts->num_sack_blocks)) { 717 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 718 tp->duplicate_sack : tp->selective_acks; 719 int this_sack; 720 721 *ptr++ = htonl((TCPOPT_NOP << 24) | 722 (TCPOPT_NOP << 16) | 723 (TCPOPT_SACK << 8) | 724 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 725 TCPOLEN_SACK_PERBLOCK))); 726 727 for (this_sack = 0; this_sack < opts->num_sack_blocks; 728 ++this_sack) { 729 *ptr++ = htonl(sp[this_sack].start_seq); 730 *ptr++ = htonl(sp[this_sack].end_seq); 731 } 732 733 tp->rx_opt.dsack = 0; 734 } 735 736 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 737 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 738 u8 *p = (u8 *)ptr; 739 u32 len; /* Fast Open option length */ 740 741 if (foc->exp) { 742 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 743 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 744 TCPOPT_FASTOPEN_MAGIC); 745 p += TCPOLEN_EXP_FASTOPEN_BASE; 746 } else { 747 len = TCPOLEN_FASTOPEN_BASE + foc->len; 748 *p++ = TCPOPT_FASTOPEN; 749 *p++ = len; 750 } 751 752 memcpy(p, foc->val, foc->len); 753 if ((len & 3) == 2) { 754 p[foc->len] = TCPOPT_NOP; 755 p[foc->len + 1] = TCPOPT_NOP; 756 } 757 ptr += (len + 3) >> 2; 758 } 759 760 smc_options_write(ptr, &options); 761 762 mptcp_options_write(th, ptr, tp, opts); 763 } 764 765 static void smc_set_option(const struct tcp_sock *tp, 766 struct tcp_out_options *opts, 767 unsigned int *remaining) 768 { 769 #if IS_ENABLED(CONFIG_SMC) 770 if (static_branch_unlikely(&tcp_have_smc)) { 771 if (tp->syn_smc) { 772 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 773 opts->options |= OPTION_SMC; 774 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 775 } 776 } 777 } 778 #endif 779 } 780 781 static void smc_set_option_cond(const struct tcp_sock *tp, 782 const struct inet_request_sock *ireq, 783 struct tcp_out_options *opts, 784 unsigned int *remaining) 785 { 786 #if IS_ENABLED(CONFIG_SMC) 787 if (static_branch_unlikely(&tcp_have_smc)) { 788 if (tp->syn_smc && ireq->smc_ok) { 789 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 790 opts->options |= OPTION_SMC; 791 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 792 } 793 } 794 } 795 #endif 796 } 797 798 static void mptcp_set_option_cond(const struct request_sock *req, 799 struct tcp_out_options *opts, 800 unsigned int *remaining) 801 { 802 if (rsk_is_mptcp(req)) { 803 unsigned int size; 804 805 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 806 if (*remaining >= size) { 807 opts->options |= OPTION_MPTCP; 808 *remaining -= size; 809 } 810 } 811 } 812 } 813 814 /* Compute TCP options for SYN packets. This is not the final 815 * network wire format yet. 816 */ 817 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 818 struct tcp_out_options *opts, 819 struct tcp_key *key) 820 { 821 struct tcp_sock *tp = tcp_sk(sk); 822 unsigned int remaining = MAX_TCP_OPTION_SPACE; 823 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 824 bool timestamps; 825 826 /* Better than switch (key.type) as it has static branches */ 827 if (tcp_key_is_md5(key)) { 828 timestamps = false; 829 opts->options |= OPTION_MD5; 830 remaining -= TCPOLEN_MD5SIG_ALIGNED; 831 } else { 832 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps); 833 if (tcp_key_is_ao(key)) { 834 opts->options |= OPTION_AO; 835 remaining -= tcp_ao_len_aligned(key->ao_key); 836 } 837 } 838 839 /* We always get an MSS option. The option bytes which will be seen in 840 * normal data packets should timestamps be used, must be in the MSS 841 * advertised. But we subtract them from tp->mss_cache so that 842 * calculations in tcp_sendmsg are simpler etc. So account for this 843 * fact here if necessary. If we don't do this correctly, as a 844 * receiver we won't recognize data packets as being full sized when we 845 * should, and thus we won't abide by the delayed ACK rules correctly. 846 * SACKs don't matter, we never delay an ACK when we have any of those 847 * going out. */ 848 opts->mss = tcp_advertise_mss(sk); 849 remaining -= TCPOLEN_MSS_ALIGNED; 850 851 if (likely(timestamps)) { 852 opts->options |= OPTION_TS; 853 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset; 854 opts->tsecr = tp->rx_opt.ts_recent; 855 remaining -= TCPOLEN_TSTAMP_ALIGNED; 856 } 857 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 858 opts->ws = tp->rx_opt.rcv_wscale; 859 opts->options |= OPTION_WSCALE; 860 remaining -= TCPOLEN_WSCALE_ALIGNED; 861 } 862 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 863 opts->options |= OPTION_SACK_ADVERTISE; 864 if (unlikely(!(OPTION_TS & opts->options))) 865 remaining -= TCPOLEN_SACKPERM_ALIGNED; 866 } 867 868 if (fastopen && fastopen->cookie.len >= 0) { 869 u32 need = fastopen->cookie.len; 870 871 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 872 TCPOLEN_FASTOPEN_BASE; 873 need = (need + 3) & ~3U; /* Align to 32 bits */ 874 if (remaining >= need) { 875 opts->options |= OPTION_FAST_OPEN_COOKIE; 876 opts->fastopen_cookie = &fastopen->cookie; 877 remaining -= need; 878 tp->syn_fastopen = 1; 879 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 880 } 881 } 882 883 smc_set_option(tp, opts, &remaining); 884 885 if (sk_is_mptcp(sk)) { 886 unsigned int size; 887 888 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 889 if (remaining >= size) { 890 opts->options |= OPTION_MPTCP; 891 remaining -= size; 892 } 893 } 894 } 895 896 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 897 898 return MAX_TCP_OPTION_SPACE - remaining; 899 } 900 901 /* Set up TCP options for SYN-ACKs. */ 902 static unsigned int tcp_synack_options(const struct sock *sk, 903 struct request_sock *req, 904 unsigned int mss, struct sk_buff *skb, 905 struct tcp_out_options *opts, 906 const struct tcp_key *key, 907 struct tcp_fastopen_cookie *foc, 908 enum tcp_synack_type synack_type, 909 struct sk_buff *syn_skb) 910 { 911 struct inet_request_sock *ireq = inet_rsk(req); 912 unsigned int remaining = MAX_TCP_OPTION_SPACE; 913 914 if (tcp_key_is_md5(key)) { 915 opts->options |= OPTION_MD5; 916 remaining -= TCPOLEN_MD5SIG_ALIGNED; 917 918 /* We can't fit any SACK blocks in a packet with MD5 + TS 919 * options. There was discussion about disabling SACK 920 * rather than TS in order to fit in better with old, 921 * buggy kernels, but that was deemed to be unnecessary. 922 */ 923 if (synack_type != TCP_SYNACK_COOKIE) 924 ireq->tstamp_ok &= !ireq->sack_ok; 925 } else if (tcp_key_is_ao(key)) { 926 opts->options |= OPTION_AO; 927 remaining -= tcp_ao_len_aligned(key->ao_key); 928 ireq->tstamp_ok &= !ireq->sack_ok; 929 } 930 931 /* We always send an MSS option. */ 932 opts->mss = mss; 933 remaining -= TCPOLEN_MSS_ALIGNED; 934 935 if (likely(ireq->wscale_ok)) { 936 opts->ws = ireq->rcv_wscale; 937 opts->options |= OPTION_WSCALE; 938 remaining -= TCPOLEN_WSCALE_ALIGNED; 939 } 940 if (likely(ireq->tstamp_ok)) { 941 opts->options |= OPTION_TS; 942 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) + 943 tcp_rsk(req)->ts_off; 944 opts->tsecr = READ_ONCE(req->ts_recent); 945 remaining -= TCPOLEN_TSTAMP_ALIGNED; 946 } 947 if (likely(ireq->sack_ok)) { 948 opts->options |= OPTION_SACK_ADVERTISE; 949 if (unlikely(!ireq->tstamp_ok)) 950 remaining -= TCPOLEN_SACKPERM_ALIGNED; 951 } 952 if (foc != NULL && foc->len >= 0) { 953 u32 need = foc->len; 954 955 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 956 TCPOLEN_FASTOPEN_BASE; 957 need = (need + 3) & ~3U; /* Align to 32 bits */ 958 if (remaining >= need) { 959 opts->options |= OPTION_FAST_OPEN_COOKIE; 960 opts->fastopen_cookie = foc; 961 remaining -= need; 962 } 963 } 964 965 mptcp_set_option_cond(req, opts, &remaining); 966 967 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 968 969 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 970 synack_type, opts, &remaining); 971 972 return MAX_TCP_OPTION_SPACE - remaining; 973 } 974 975 /* Compute TCP options for ESTABLISHED sockets. This is not the 976 * final wire format yet. 977 */ 978 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 979 struct tcp_out_options *opts, 980 struct tcp_key *key) 981 { 982 struct tcp_sock *tp = tcp_sk(sk); 983 unsigned int size = 0; 984 unsigned int eff_sacks; 985 986 opts->options = 0; 987 988 /* Better than switch (key.type) as it has static branches */ 989 if (tcp_key_is_md5(key)) { 990 opts->options |= OPTION_MD5; 991 size += TCPOLEN_MD5SIG_ALIGNED; 992 } else if (tcp_key_is_ao(key)) { 993 opts->options |= OPTION_AO; 994 size += tcp_ao_len_aligned(key->ao_key); 995 } 996 997 if (likely(tp->rx_opt.tstamp_ok)) { 998 opts->options |= OPTION_TS; 999 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + 1000 tp->tsoffset : 0; 1001 opts->tsecr = tp->rx_opt.ts_recent; 1002 size += TCPOLEN_TSTAMP_ALIGNED; 1003 } 1004 1005 /* MPTCP options have precedence over SACK for the limited TCP 1006 * option space because a MPTCP connection would be forced to 1007 * fall back to regular TCP if a required multipath option is 1008 * missing. SACK still gets a chance to use whatever space is 1009 * left. 1010 */ 1011 if (sk_is_mptcp(sk)) { 1012 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1013 unsigned int opt_size = 0; 1014 1015 if (mptcp_established_options(sk, skb, &opt_size, remaining, 1016 &opts->mptcp)) { 1017 opts->options |= OPTION_MPTCP; 1018 size += opt_size; 1019 } 1020 } 1021 1022 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 1023 if (unlikely(eff_sacks)) { 1024 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1025 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 1026 TCPOLEN_SACK_PERBLOCK)) 1027 return size; 1028 1029 opts->num_sack_blocks = 1030 min_t(unsigned int, eff_sacks, 1031 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 1032 TCPOLEN_SACK_PERBLOCK); 1033 1034 size += TCPOLEN_SACK_BASE_ALIGNED + 1035 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 1036 } 1037 1038 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 1039 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 1040 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1041 1042 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1043 1044 size = MAX_TCP_OPTION_SPACE - remaining; 1045 } 1046 1047 return size; 1048 } 1049 1050 1051 /* TCP SMALL QUEUES (TSQ) 1052 * 1053 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1054 * to reduce RTT and bufferbloat. 1055 * We do this using a special skb destructor (tcp_wfree). 1056 * 1057 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1058 * needs to be reallocated in a driver. 1059 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1060 * 1061 * Since transmit from skb destructor is forbidden, we use a tasklet 1062 * to process all sockets that eventually need to send more skbs. 1063 * We use one tasklet per cpu, with its own queue of sockets. 1064 */ 1065 struct tsq_tasklet { 1066 struct tasklet_struct tasklet; 1067 struct list_head head; /* queue of tcp sockets */ 1068 }; 1069 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1070 1071 static void tcp_tsq_write(struct sock *sk) 1072 { 1073 if ((1 << sk->sk_state) & 1074 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1075 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1076 struct tcp_sock *tp = tcp_sk(sk); 1077 1078 if (tp->lost_out > tp->retrans_out && 1079 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1080 tcp_mstamp_refresh(tp); 1081 tcp_xmit_retransmit_queue(sk); 1082 } 1083 1084 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1085 0, GFP_ATOMIC); 1086 } 1087 } 1088 1089 static void tcp_tsq_handler(struct sock *sk) 1090 { 1091 bh_lock_sock(sk); 1092 if (!sock_owned_by_user(sk)) 1093 tcp_tsq_write(sk); 1094 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1095 sock_hold(sk); 1096 bh_unlock_sock(sk); 1097 } 1098 /* 1099 * One tasklet per cpu tries to send more skbs. 1100 * We run in tasklet context but need to disable irqs when 1101 * transferring tsq->head because tcp_wfree() might 1102 * interrupt us (non NAPI drivers) 1103 */ 1104 static void tcp_tasklet_func(struct tasklet_struct *t) 1105 { 1106 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1107 LIST_HEAD(list); 1108 unsigned long flags; 1109 struct list_head *q, *n; 1110 struct tcp_sock *tp; 1111 struct sock *sk; 1112 1113 local_irq_save(flags); 1114 list_splice_init(&tsq->head, &list); 1115 local_irq_restore(flags); 1116 1117 list_for_each_safe(q, n, &list) { 1118 tp = list_entry(q, struct tcp_sock, tsq_node); 1119 list_del(&tp->tsq_node); 1120 1121 sk = (struct sock *)tp; 1122 smp_mb__before_atomic(); 1123 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1124 1125 tcp_tsq_handler(sk); 1126 sk_free(sk); 1127 } 1128 } 1129 1130 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1131 TCPF_WRITE_TIMER_DEFERRED | \ 1132 TCPF_DELACK_TIMER_DEFERRED | \ 1133 TCPF_MTU_REDUCED_DEFERRED | \ 1134 TCPF_ACK_DEFERRED) 1135 /** 1136 * tcp_release_cb - tcp release_sock() callback 1137 * @sk: socket 1138 * 1139 * called from release_sock() to perform protocol dependent 1140 * actions before socket release. 1141 */ 1142 void tcp_release_cb(struct sock *sk) 1143 { 1144 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1145 unsigned long nflags; 1146 1147 /* perform an atomic operation only if at least one flag is set */ 1148 do { 1149 if (!(flags & TCP_DEFERRED_ALL)) 1150 return; 1151 nflags = flags & ~TCP_DEFERRED_ALL; 1152 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1153 1154 if (flags & TCPF_TSQ_DEFERRED) { 1155 tcp_tsq_write(sk); 1156 __sock_put(sk); 1157 } 1158 1159 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1160 tcp_write_timer_handler(sk); 1161 __sock_put(sk); 1162 } 1163 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1164 tcp_delack_timer_handler(sk); 1165 __sock_put(sk); 1166 } 1167 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1168 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1169 __sock_put(sk); 1170 } 1171 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1172 tcp_send_ack(sk); 1173 } 1174 EXPORT_SYMBOL(tcp_release_cb); 1175 1176 void __init tcp_tasklet_init(void) 1177 { 1178 int i; 1179 1180 for_each_possible_cpu(i) { 1181 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1182 1183 INIT_LIST_HEAD(&tsq->head); 1184 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1185 } 1186 } 1187 1188 /* 1189 * Write buffer destructor automatically called from kfree_skb. 1190 * We can't xmit new skbs from this context, as we might already 1191 * hold qdisc lock. 1192 */ 1193 void tcp_wfree(struct sk_buff *skb) 1194 { 1195 struct sock *sk = skb->sk; 1196 struct tcp_sock *tp = tcp_sk(sk); 1197 unsigned long flags, nval, oval; 1198 struct tsq_tasklet *tsq; 1199 bool empty; 1200 1201 /* Keep one reference on sk_wmem_alloc. 1202 * Will be released by sk_free() from here or tcp_tasklet_func() 1203 */ 1204 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1205 1206 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1207 * Wait until our queues (qdisc + devices) are drained. 1208 * This gives : 1209 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1210 * - chance for incoming ACK (processed by another cpu maybe) 1211 * to migrate this flow (skb->ooo_okay will be eventually set) 1212 */ 1213 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1214 goto out; 1215 1216 oval = smp_load_acquire(&sk->sk_tsq_flags); 1217 do { 1218 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1219 goto out; 1220 1221 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1222 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1223 1224 /* queue this socket to tasklet queue */ 1225 local_irq_save(flags); 1226 tsq = this_cpu_ptr(&tsq_tasklet); 1227 empty = list_empty(&tsq->head); 1228 list_add(&tp->tsq_node, &tsq->head); 1229 if (empty) 1230 tasklet_schedule(&tsq->tasklet); 1231 local_irq_restore(flags); 1232 return; 1233 out: 1234 sk_free(sk); 1235 } 1236 1237 /* Note: Called under soft irq. 1238 * We can call TCP stack right away, unless socket is owned by user. 1239 */ 1240 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1241 { 1242 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1243 struct sock *sk = (struct sock *)tp; 1244 1245 tcp_tsq_handler(sk); 1246 sock_put(sk); 1247 1248 return HRTIMER_NORESTART; 1249 } 1250 1251 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1252 u64 prior_wstamp) 1253 { 1254 struct tcp_sock *tp = tcp_sk(sk); 1255 1256 if (sk->sk_pacing_status != SK_PACING_NONE) { 1257 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1258 1259 /* Original sch_fq does not pace first 10 MSS 1260 * Note that tp->data_segs_out overflows after 2^32 packets, 1261 * this is a minor annoyance. 1262 */ 1263 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1264 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1265 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1266 1267 /* take into account OS jitter */ 1268 len_ns -= min_t(u64, len_ns / 2, credit); 1269 tp->tcp_wstamp_ns += len_ns; 1270 } 1271 } 1272 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1273 } 1274 1275 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1276 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1277 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1278 1279 /* This routine actually transmits TCP packets queued in by 1280 * tcp_do_sendmsg(). This is used by both the initial 1281 * transmission and possible later retransmissions. 1282 * All SKB's seen here are completely headerless. It is our 1283 * job to build the TCP header, and pass the packet down to 1284 * IP so it can do the same plus pass the packet off to the 1285 * device. 1286 * 1287 * We are working here with either a clone of the original 1288 * SKB, or a fresh unique copy made by the retransmit engine. 1289 */ 1290 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1291 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1292 { 1293 const struct inet_connection_sock *icsk = inet_csk(sk); 1294 struct inet_sock *inet; 1295 struct tcp_sock *tp; 1296 struct tcp_skb_cb *tcb; 1297 struct tcp_out_options opts; 1298 unsigned int tcp_options_size, tcp_header_size; 1299 struct sk_buff *oskb = NULL; 1300 struct tcp_key key; 1301 struct tcphdr *th; 1302 u64 prior_wstamp; 1303 int err; 1304 1305 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1306 tp = tcp_sk(sk); 1307 prior_wstamp = tp->tcp_wstamp_ns; 1308 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1309 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 1310 if (clone_it) { 1311 oskb = skb; 1312 1313 tcp_skb_tsorted_save(oskb) { 1314 if (unlikely(skb_cloned(oskb))) 1315 skb = pskb_copy(oskb, gfp_mask); 1316 else 1317 skb = skb_clone(oskb, gfp_mask); 1318 } tcp_skb_tsorted_restore(oskb); 1319 1320 if (unlikely(!skb)) 1321 return -ENOBUFS; 1322 /* retransmit skbs might have a non zero value in skb->dev 1323 * because skb->dev is aliased with skb->rbnode.rb_left 1324 */ 1325 skb->dev = NULL; 1326 } 1327 1328 inet = inet_sk(sk); 1329 tcb = TCP_SKB_CB(skb); 1330 memset(&opts, 0, sizeof(opts)); 1331 1332 tcp_get_current_key(sk, &key); 1333 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1334 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key); 1335 } else { 1336 tcp_options_size = tcp_established_options(sk, skb, &opts, &key); 1337 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1338 * at receiver : This slightly improve GRO performance. 1339 * Note that we do not force the PSH flag for non GSO packets, 1340 * because they might be sent under high congestion events, 1341 * and in this case it is better to delay the delivery of 1-MSS 1342 * packets and thus the corresponding ACK packet that would 1343 * release the following packet. 1344 */ 1345 if (tcp_skb_pcount(skb) > 1) 1346 tcb->tcp_flags |= TCPHDR_PSH; 1347 } 1348 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1349 1350 /* We set skb->ooo_okay to one if this packet can select 1351 * a different TX queue than prior packets of this flow, 1352 * to avoid self inflicted reorders. 1353 * The 'other' queue decision is based on current cpu number 1354 * if XPS is enabled, or sk->sk_txhash otherwise. 1355 * We can switch to another (and better) queue if: 1356 * 1) No packet with payload is in qdisc/device queues. 1357 * Delays in TX completion can defeat the test 1358 * even if packets were already sent. 1359 * 2) Or rtx queue is empty. 1360 * This mitigates above case if ACK packets for 1361 * all prior packets were already processed. 1362 */ 1363 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1364 tcp_rtx_queue_empty(sk); 1365 1366 /* If we had to use memory reserve to allocate this skb, 1367 * this might cause drops if packet is looped back : 1368 * Other socket might not have SOCK_MEMALLOC. 1369 * Packets not looped back do not care about pfmemalloc. 1370 */ 1371 skb->pfmemalloc = 0; 1372 1373 skb_push(skb, tcp_header_size); 1374 skb_reset_transport_header(skb); 1375 1376 skb_orphan(skb); 1377 skb->sk = sk; 1378 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1379 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1380 1381 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1382 1383 /* Build TCP header and checksum it. */ 1384 th = (struct tcphdr *)skb->data; 1385 th->source = inet->inet_sport; 1386 th->dest = inet->inet_dport; 1387 th->seq = htonl(tcb->seq); 1388 th->ack_seq = htonl(rcv_nxt); 1389 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1390 tcb->tcp_flags); 1391 1392 th->check = 0; 1393 th->urg_ptr = 0; 1394 1395 /* The urg_mode check is necessary during a below snd_una win probe */ 1396 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1397 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1398 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1399 th->urg = 1; 1400 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1401 th->urg_ptr = htons(0xFFFF); 1402 th->urg = 1; 1403 } 1404 } 1405 1406 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1407 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1408 th->window = htons(tcp_select_window(sk)); 1409 tcp_ecn_send(sk, skb, th, tcp_header_size); 1410 } else { 1411 /* RFC1323: The window in SYN & SYN/ACK segments 1412 * is never scaled. 1413 */ 1414 th->window = htons(min(tp->rcv_wnd, 65535U)); 1415 } 1416 1417 tcp_options_write(th, tp, NULL, &opts, &key); 1418 1419 if (tcp_key_is_md5(&key)) { 1420 #ifdef CONFIG_TCP_MD5SIG 1421 /* Calculate the MD5 hash, as we have all we need now */ 1422 sk_gso_disable(sk); 1423 tp->af_specific->calc_md5_hash(opts.hash_location, 1424 key.md5_key, sk, skb); 1425 #endif 1426 } else if (tcp_key_is_ao(&key)) { 1427 int err; 1428 1429 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th, 1430 opts.hash_location); 1431 if (err) { 1432 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1433 return -ENOMEM; 1434 } 1435 } 1436 1437 /* BPF prog is the last one writing header option */ 1438 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1439 1440 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1441 tcp_v6_send_check, tcp_v4_send_check, 1442 sk, skb); 1443 1444 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1445 tcp_event_ack_sent(sk, rcv_nxt); 1446 1447 if (skb->len != tcp_header_size) { 1448 tcp_event_data_sent(tp, sk); 1449 tp->data_segs_out += tcp_skb_pcount(skb); 1450 tp->bytes_sent += skb->len - tcp_header_size; 1451 } 1452 1453 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1454 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1455 tcp_skb_pcount(skb)); 1456 1457 tp->segs_out += tcp_skb_pcount(skb); 1458 skb_set_hash_from_sk(skb, sk); 1459 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1460 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1461 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1462 1463 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1464 1465 /* Cleanup our debris for IP stacks */ 1466 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1467 sizeof(struct inet6_skb_parm))); 1468 1469 tcp_add_tx_delay(skb, tp); 1470 1471 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1472 inet6_csk_xmit, ip_queue_xmit, 1473 sk, skb, &inet->cork.fl); 1474 1475 if (unlikely(err > 0)) { 1476 tcp_enter_cwr(sk); 1477 err = net_xmit_eval(err); 1478 } 1479 if (!err && oskb) { 1480 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1481 tcp_rate_skb_sent(sk, oskb); 1482 } 1483 return err; 1484 } 1485 1486 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1487 gfp_t gfp_mask) 1488 { 1489 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1490 tcp_sk(sk)->rcv_nxt); 1491 } 1492 1493 /* This routine just queues the buffer for sending. 1494 * 1495 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1496 * otherwise socket can stall. 1497 */ 1498 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1499 { 1500 struct tcp_sock *tp = tcp_sk(sk); 1501 1502 /* Advance write_seq and place onto the write_queue. */ 1503 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1504 __skb_header_release(skb); 1505 tcp_add_write_queue_tail(sk, skb); 1506 sk_wmem_queued_add(sk, skb->truesize); 1507 sk_mem_charge(sk, skb->truesize); 1508 } 1509 1510 /* Initialize TSO segments for a packet. */ 1511 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1512 { 1513 int tso_segs; 1514 1515 if (skb->len <= mss_now) { 1516 /* Avoid the costly divide in the normal 1517 * non-TSO case. 1518 */ 1519 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1520 tcp_skb_pcount_set(skb, 1); 1521 return 1; 1522 } 1523 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1524 tso_segs = DIV_ROUND_UP(skb->len, mss_now); 1525 tcp_skb_pcount_set(skb, tso_segs); 1526 return tso_segs; 1527 } 1528 1529 /* Pcount in the middle of the write queue got changed, we need to do various 1530 * tweaks to fix counters 1531 */ 1532 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1533 { 1534 struct tcp_sock *tp = tcp_sk(sk); 1535 1536 tp->packets_out -= decr; 1537 1538 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1539 tp->sacked_out -= decr; 1540 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1541 tp->retrans_out -= decr; 1542 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1543 tp->lost_out -= decr; 1544 1545 /* Reno case is special. Sigh... */ 1546 if (tcp_is_reno(tp) && decr > 0) 1547 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1548 1549 if (tp->lost_skb_hint && 1550 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1551 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1552 tp->lost_cnt_hint -= decr; 1553 1554 tcp_verify_left_out(tp); 1555 } 1556 1557 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1558 { 1559 return TCP_SKB_CB(skb)->txstamp_ack || 1560 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1561 } 1562 1563 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1564 { 1565 struct skb_shared_info *shinfo = skb_shinfo(skb); 1566 1567 if (unlikely(tcp_has_tx_tstamp(skb)) && 1568 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1569 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1570 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1571 1572 shinfo->tx_flags &= ~tsflags; 1573 shinfo2->tx_flags |= tsflags; 1574 swap(shinfo->tskey, shinfo2->tskey); 1575 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1576 TCP_SKB_CB(skb)->txstamp_ack = 0; 1577 } 1578 } 1579 1580 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1581 { 1582 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1583 TCP_SKB_CB(skb)->eor = 0; 1584 } 1585 1586 /* Insert buff after skb on the write or rtx queue of sk. */ 1587 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1588 struct sk_buff *buff, 1589 struct sock *sk, 1590 enum tcp_queue tcp_queue) 1591 { 1592 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1593 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1594 else 1595 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1596 } 1597 1598 /* Function to create two new TCP segments. Shrinks the given segment 1599 * to the specified size and appends a new segment with the rest of the 1600 * packet to the list. This won't be called frequently, I hope. 1601 * Remember, these are still headerless SKBs at this point. 1602 */ 1603 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1604 struct sk_buff *skb, u32 len, 1605 unsigned int mss_now, gfp_t gfp) 1606 { 1607 struct tcp_sock *tp = tcp_sk(sk); 1608 struct sk_buff *buff; 1609 int old_factor; 1610 long limit; 1611 int nlen; 1612 u8 flags; 1613 1614 if (WARN_ON(len > skb->len)) 1615 return -EINVAL; 1616 1617 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1618 1619 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1620 * We need some allowance to not penalize applications setting small 1621 * SO_SNDBUF values. 1622 * Also allow first and last skb in retransmit queue to be split. 1623 */ 1624 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1625 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1626 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1627 skb != tcp_rtx_queue_head(sk) && 1628 skb != tcp_rtx_queue_tail(sk))) { 1629 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1630 return -ENOMEM; 1631 } 1632 1633 if (skb_unclone_keeptruesize(skb, gfp)) 1634 return -ENOMEM; 1635 1636 /* Get a new skb... force flag on. */ 1637 buff = tcp_stream_alloc_skb(sk, gfp, true); 1638 if (!buff) 1639 return -ENOMEM; /* We'll just try again later. */ 1640 skb_copy_decrypted(buff, skb); 1641 mptcp_skb_ext_copy(buff, skb); 1642 1643 sk_wmem_queued_add(sk, buff->truesize); 1644 sk_mem_charge(sk, buff->truesize); 1645 nlen = skb->len - len; 1646 buff->truesize += nlen; 1647 skb->truesize -= nlen; 1648 1649 /* Correct the sequence numbers. */ 1650 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1651 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1652 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1653 1654 /* PSH and FIN should only be set in the second packet. */ 1655 flags = TCP_SKB_CB(skb)->tcp_flags; 1656 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1657 TCP_SKB_CB(buff)->tcp_flags = flags; 1658 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1659 tcp_skb_fragment_eor(skb, buff); 1660 1661 skb_split(skb, buff, len); 1662 1663 skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC); 1664 tcp_fragment_tstamp(skb, buff); 1665 1666 old_factor = tcp_skb_pcount(skb); 1667 1668 /* Fix up tso_factor for both original and new SKB. */ 1669 tcp_set_skb_tso_segs(skb, mss_now); 1670 tcp_set_skb_tso_segs(buff, mss_now); 1671 1672 /* Update delivered info for the new segment */ 1673 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1674 1675 /* If this packet has been sent out already, we must 1676 * adjust the various packet counters. 1677 */ 1678 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1679 int diff = old_factor - tcp_skb_pcount(skb) - 1680 tcp_skb_pcount(buff); 1681 1682 if (diff) 1683 tcp_adjust_pcount(sk, skb, diff); 1684 } 1685 1686 /* Link BUFF into the send queue. */ 1687 __skb_header_release(buff); 1688 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1689 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1690 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1691 1692 return 0; 1693 } 1694 1695 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1696 * data is not copied, but immediately discarded. 1697 */ 1698 static int __pskb_trim_head(struct sk_buff *skb, int len) 1699 { 1700 struct skb_shared_info *shinfo; 1701 int i, k, eat; 1702 1703 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1704 eat = len; 1705 k = 0; 1706 shinfo = skb_shinfo(skb); 1707 for (i = 0; i < shinfo->nr_frags; i++) { 1708 int size = skb_frag_size(&shinfo->frags[i]); 1709 1710 if (size <= eat) { 1711 skb_frag_unref(skb, i); 1712 eat -= size; 1713 } else { 1714 shinfo->frags[k] = shinfo->frags[i]; 1715 if (eat) { 1716 skb_frag_off_add(&shinfo->frags[k], eat); 1717 skb_frag_size_sub(&shinfo->frags[k], eat); 1718 eat = 0; 1719 } 1720 k++; 1721 } 1722 } 1723 shinfo->nr_frags = k; 1724 1725 skb->data_len -= len; 1726 skb->len = skb->data_len; 1727 return len; 1728 } 1729 1730 /* Remove acked data from a packet in the transmit queue. */ 1731 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1732 { 1733 u32 delta_truesize; 1734 1735 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1736 return -ENOMEM; 1737 1738 delta_truesize = __pskb_trim_head(skb, len); 1739 1740 TCP_SKB_CB(skb)->seq += len; 1741 1742 skb->truesize -= delta_truesize; 1743 sk_wmem_queued_add(sk, -delta_truesize); 1744 if (!skb_zcopy_pure(skb)) 1745 sk_mem_uncharge(sk, delta_truesize); 1746 1747 /* Any change of skb->len requires recalculation of tso factor. */ 1748 if (tcp_skb_pcount(skb) > 1) 1749 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1750 1751 return 0; 1752 } 1753 1754 /* Calculate MSS not accounting any TCP options. */ 1755 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1756 { 1757 const struct tcp_sock *tp = tcp_sk(sk); 1758 const struct inet_connection_sock *icsk = inet_csk(sk); 1759 int mss_now; 1760 1761 /* Calculate base mss without TCP options: 1762 It is MMS_S - sizeof(tcphdr) of rfc1122 1763 */ 1764 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1765 1766 /* Clamp it (mss_clamp does not include tcp options) */ 1767 if (mss_now > tp->rx_opt.mss_clamp) 1768 mss_now = tp->rx_opt.mss_clamp; 1769 1770 /* Now subtract optional transport overhead */ 1771 mss_now -= icsk->icsk_ext_hdr_len; 1772 1773 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1774 mss_now = max(mss_now, 1775 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1776 return mss_now; 1777 } 1778 1779 /* Calculate MSS. Not accounting for SACKs here. */ 1780 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1781 { 1782 /* Subtract TCP options size, not including SACKs */ 1783 return __tcp_mtu_to_mss(sk, pmtu) - 1784 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1785 } 1786 EXPORT_SYMBOL(tcp_mtu_to_mss); 1787 1788 /* Inverse of above */ 1789 int tcp_mss_to_mtu(struct sock *sk, int mss) 1790 { 1791 const struct tcp_sock *tp = tcp_sk(sk); 1792 const struct inet_connection_sock *icsk = inet_csk(sk); 1793 1794 return mss + 1795 tp->tcp_header_len + 1796 icsk->icsk_ext_hdr_len + 1797 icsk->icsk_af_ops->net_header_len; 1798 } 1799 EXPORT_SYMBOL(tcp_mss_to_mtu); 1800 1801 /* MTU probing init per socket */ 1802 void tcp_mtup_init(struct sock *sk) 1803 { 1804 struct tcp_sock *tp = tcp_sk(sk); 1805 struct inet_connection_sock *icsk = inet_csk(sk); 1806 struct net *net = sock_net(sk); 1807 1808 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1809 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1810 icsk->icsk_af_ops->net_header_len; 1811 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1812 icsk->icsk_mtup.probe_size = 0; 1813 if (icsk->icsk_mtup.enabled) 1814 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1815 } 1816 1817 /* This function synchronize snd mss to current pmtu/exthdr set. 1818 1819 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1820 for TCP options, but includes only bare TCP header. 1821 1822 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1823 It is minimum of user_mss and mss received with SYN. 1824 It also does not include TCP options. 1825 1826 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1827 1828 tp->mss_cache is current effective sending mss, including 1829 all tcp options except for SACKs. It is evaluated, 1830 taking into account current pmtu, but never exceeds 1831 tp->rx_opt.mss_clamp. 1832 1833 NOTE1. rfc1122 clearly states that advertised MSS 1834 DOES NOT include either tcp or ip options. 1835 1836 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1837 are READ ONLY outside this function. --ANK (980731) 1838 */ 1839 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1840 { 1841 struct tcp_sock *tp = tcp_sk(sk); 1842 struct inet_connection_sock *icsk = inet_csk(sk); 1843 int mss_now; 1844 1845 if (icsk->icsk_mtup.search_high > pmtu) 1846 icsk->icsk_mtup.search_high = pmtu; 1847 1848 mss_now = tcp_mtu_to_mss(sk, pmtu); 1849 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1850 1851 /* And store cached results */ 1852 icsk->icsk_pmtu_cookie = pmtu; 1853 if (icsk->icsk_mtup.enabled) 1854 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1855 tp->mss_cache = mss_now; 1856 1857 return mss_now; 1858 } 1859 EXPORT_SYMBOL(tcp_sync_mss); 1860 1861 /* Compute the current effective MSS, taking SACKs and IP options, 1862 * and even PMTU discovery events into account. 1863 */ 1864 unsigned int tcp_current_mss(struct sock *sk) 1865 { 1866 const struct tcp_sock *tp = tcp_sk(sk); 1867 const struct dst_entry *dst = __sk_dst_get(sk); 1868 u32 mss_now; 1869 unsigned int header_len; 1870 struct tcp_out_options opts; 1871 struct tcp_key key; 1872 1873 mss_now = tp->mss_cache; 1874 1875 if (dst) { 1876 u32 mtu = dst_mtu(dst); 1877 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1878 mss_now = tcp_sync_mss(sk, mtu); 1879 } 1880 tcp_get_current_key(sk, &key); 1881 header_len = tcp_established_options(sk, NULL, &opts, &key) + 1882 sizeof(struct tcphdr); 1883 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1884 * some common options. If this is an odd packet (because we have SACK 1885 * blocks etc) then our calculated header_len will be different, and 1886 * we have to adjust mss_now correspondingly */ 1887 if (header_len != tp->tcp_header_len) { 1888 int delta = (int) header_len - tp->tcp_header_len; 1889 mss_now -= delta; 1890 } 1891 1892 return mss_now; 1893 } 1894 1895 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1896 * As additional protections, we do not touch cwnd in retransmission phases, 1897 * and if application hit its sndbuf limit recently. 1898 */ 1899 static void tcp_cwnd_application_limited(struct sock *sk) 1900 { 1901 struct tcp_sock *tp = tcp_sk(sk); 1902 1903 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1904 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1905 /* Limited by application or receiver window. */ 1906 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1907 u32 win_used = max(tp->snd_cwnd_used, init_win); 1908 if (win_used < tcp_snd_cwnd(tp)) { 1909 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1910 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1911 } 1912 tp->snd_cwnd_used = 0; 1913 } 1914 tp->snd_cwnd_stamp = tcp_jiffies32; 1915 } 1916 1917 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1918 { 1919 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1920 struct tcp_sock *tp = tcp_sk(sk); 1921 1922 /* Track the strongest available signal of the degree to which the cwnd 1923 * is fully utilized. If cwnd-limited then remember that fact for the 1924 * current window. If not cwnd-limited then track the maximum number of 1925 * outstanding packets in the current window. (If cwnd-limited then we 1926 * chose to not update tp->max_packets_out to avoid an extra else 1927 * clause with no functional impact.) 1928 */ 1929 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1930 is_cwnd_limited || 1931 (!tp->is_cwnd_limited && 1932 tp->packets_out > tp->max_packets_out)) { 1933 tp->is_cwnd_limited = is_cwnd_limited; 1934 tp->max_packets_out = tp->packets_out; 1935 tp->cwnd_usage_seq = tp->snd_nxt; 1936 } 1937 1938 if (tcp_is_cwnd_limited(sk)) { 1939 /* Network is feed fully. */ 1940 tp->snd_cwnd_used = 0; 1941 tp->snd_cwnd_stamp = tcp_jiffies32; 1942 } else { 1943 /* Network starves. */ 1944 if (tp->packets_out > tp->snd_cwnd_used) 1945 tp->snd_cwnd_used = tp->packets_out; 1946 1947 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1948 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1949 !ca_ops->cong_control) 1950 tcp_cwnd_application_limited(sk); 1951 1952 /* The following conditions together indicate the starvation 1953 * is caused by insufficient sender buffer: 1954 * 1) just sent some data (see tcp_write_xmit) 1955 * 2) not cwnd limited (this else condition) 1956 * 3) no more data to send (tcp_write_queue_empty()) 1957 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1958 */ 1959 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1960 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1961 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1962 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1963 } 1964 } 1965 1966 /* Minshall's variant of the Nagle send check. */ 1967 static bool tcp_minshall_check(const struct tcp_sock *tp) 1968 { 1969 return after(tp->snd_sml, tp->snd_una) && 1970 !after(tp->snd_sml, tp->snd_nxt); 1971 } 1972 1973 /* Update snd_sml if this skb is under mss 1974 * Note that a TSO packet might end with a sub-mss segment 1975 * The test is really : 1976 * if ((skb->len % mss) != 0) 1977 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1978 * But we can avoid doing the divide again given we already have 1979 * skb_pcount = skb->len / mss_now 1980 */ 1981 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1982 const struct sk_buff *skb) 1983 { 1984 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1985 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1986 } 1987 1988 /* Return false, if packet can be sent now without violation Nagle's rules: 1989 * 1. It is full sized. (provided by caller in %partial bool) 1990 * 2. Or it contains FIN. (already checked by caller) 1991 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1992 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1993 * With Minshall's modification: all sent small packets are ACKed. 1994 */ 1995 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1996 int nonagle) 1997 { 1998 return partial && 1999 ((nonagle & TCP_NAGLE_CORK) || 2000 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 2001 } 2002 2003 /* Return how many segs we'd like on a TSO packet, 2004 * depending on current pacing rate, and how close the peer is. 2005 * 2006 * Rationale is: 2007 * - For close peers, we rather send bigger packets to reduce 2008 * cpu costs, because occasional losses will be repaired fast. 2009 * - For long distance/rtt flows, we would like to get ACK clocking 2010 * with 1 ACK per ms. 2011 * 2012 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 2013 * in bigger TSO bursts. We we cut the RTT-based allowance in half 2014 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 2015 * is below 1500 bytes after 6 * ~500 usec = 3ms. 2016 */ 2017 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 2018 int min_tso_segs) 2019 { 2020 unsigned long bytes; 2021 u32 r; 2022 2023 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 2024 2025 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 2026 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 2027 bytes += sk->sk_gso_max_size >> r; 2028 2029 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 2030 2031 return max_t(u32, bytes / mss_now, min_tso_segs); 2032 } 2033 2034 /* Return the number of segments we want in the skb we are transmitting. 2035 * See if congestion control module wants to decide; otherwise, autosize. 2036 */ 2037 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 2038 { 2039 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2040 u32 min_tso, tso_segs; 2041 2042 min_tso = ca_ops->min_tso_segs ? 2043 ca_ops->min_tso_segs(sk) : 2044 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2045 2046 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2047 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2048 } 2049 2050 /* Returns the portion of skb which can be sent right away */ 2051 static unsigned int tcp_mss_split_point(const struct sock *sk, 2052 const struct sk_buff *skb, 2053 unsigned int mss_now, 2054 unsigned int max_segs, 2055 int nonagle) 2056 { 2057 const struct tcp_sock *tp = tcp_sk(sk); 2058 u32 partial, needed, window, max_len; 2059 2060 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2061 max_len = mss_now * max_segs; 2062 2063 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2064 return max_len; 2065 2066 needed = min(skb->len, window); 2067 2068 if (max_len <= needed) 2069 return max_len; 2070 2071 partial = needed % mss_now; 2072 /* If last segment is not a full MSS, check if Nagle rules allow us 2073 * to include this last segment in this skb. 2074 * Otherwise, we'll split the skb at last MSS boundary 2075 */ 2076 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2077 return needed - partial; 2078 2079 return needed; 2080 } 2081 2082 /* Can at least one segment of SKB be sent right now, according to the 2083 * congestion window rules? If so, return how many segments are allowed. 2084 */ 2085 static u32 tcp_cwnd_test(const struct tcp_sock *tp) 2086 { 2087 u32 in_flight, cwnd, halfcwnd; 2088 2089 in_flight = tcp_packets_in_flight(tp); 2090 cwnd = tcp_snd_cwnd(tp); 2091 if (in_flight >= cwnd) 2092 return 0; 2093 2094 /* For better scheduling, ensure we have at least 2095 * 2 GSO packets in flight. 2096 */ 2097 halfcwnd = max(cwnd >> 1, 1U); 2098 return min(halfcwnd, cwnd - in_flight); 2099 } 2100 2101 /* Initialize TSO state of a skb. 2102 * This must be invoked the first time we consider transmitting 2103 * SKB onto the wire. 2104 */ 2105 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2106 { 2107 int tso_segs = tcp_skb_pcount(skb); 2108 2109 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) 2110 return tcp_set_skb_tso_segs(skb, mss_now); 2111 2112 return tso_segs; 2113 } 2114 2115 2116 /* Return true if the Nagle test allows this packet to be 2117 * sent now. 2118 */ 2119 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2120 unsigned int cur_mss, int nonagle) 2121 { 2122 /* Nagle rule does not apply to frames, which sit in the middle of the 2123 * write_queue (they have no chances to get new data). 2124 * 2125 * This is implemented in the callers, where they modify the 'nonagle' 2126 * argument based upon the location of SKB in the send queue. 2127 */ 2128 if (nonagle & TCP_NAGLE_PUSH) 2129 return true; 2130 2131 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2132 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2133 return true; 2134 2135 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2136 return true; 2137 2138 return false; 2139 } 2140 2141 /* Does at least the first segment of SKB fit into the send window? */ 2142 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2143 const struct sk_buff *skb, 2144 unsigned int cur_mss) 2145 { 2146 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2147 2148 if (skb->len > cur_mss) 2149 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2150 2151 return !after(end_seq, tcp_wnd_end(tp)); 2152 } 2153 2154 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2155 * which is put after SKB on the list. It is very much like 2156 * tcp_fragment() except that it may make several kinds of assumptions 2157 * in order to speed up the splitting operation. In particular, we 2158 * know that all the data is in scatter-gather pages, and that the 2159 * packet has never been sent out before (and thus is not cloned). 2160 */ 2161 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2162 unsigned int mss_now, gfp_t gfp) 2163 { 2164 int nlen = skb->len - len; 2165 struct sk_buff *buff; 2166 u8 flags; 2167 2168 /* All of a TSO frame must be composed of paged data. */ 2169 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2170 2171 buff = tcp_stream_alloc_skb(sk, gfp, true); 2172 if (unlikely(!buff)) 2173 return -ENOMEM; 2174 skb_copy_decrypted(buff, skb); 2175 mptcp_skb_ext_copy(buff, skb); 2176 2177 sk_wmem_queued_add(sk, buff->truesize); 2178 sk_mem_charge(sk, buff->truesize); 2179 buff->truesize += nlen; 2180 skb->truesize -= nlen; 2181 2182 /* Correct the sequence numbers. */ 2183 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2184 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2185 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2186 2187 /* PSH and FIN should only be set in the second packet. */ 2188 flags = TCP_SKB_CB(skb)->tcp_flags; 2189 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2190 TCP_SKB_CB(buff)->tcp_flags = flags; 2191 2192 tcp_skb_fragment_eor(skb, buff); 2193 2194 skb_split(skb, buff, len); 2195 tcp_fragment_tstamp(skb, buff); 2196 2197 /* Fix up tso_factor for both original and new SKB. */ 2198 tcp_set_skb_tso_segs(skb, mss_now); 2199 tcp_set_skb_tso_segs(buff, mss_now); 2200 2201 /* Link BUFF into the send queue. */ 2202 __skb_header_release(buff); 2203 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2204 2205 return 0; 2206 } 2207 2208 /* Try to defer sending, if possible, in order to minimize the amount 2209 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2210 * 2211 * This algorithm is from John Heffner. 2212 */ 2213 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2214 bool *is_cwnd_limited, 2215 bool *is_rwnd_limited, 2216 u32 max_segs) 2217 { 2218 const struct inet_connection_sock *icsk = inet_csk(sk); 2219 u32 send_win, cong_win, limit, in_flight; 2220 struct tcp_sock *tp = tcp_sk(sk); 2221 struct sk_buff *head; 2222 int win_divisor; 2223 s64 delta; 2224 2225 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2226 goto send_now; 2227 2228 /* Avoid bursty behavior by allowing defer 2229 * only if the last write was recent (1 ms). 2230 * Note that tp->tcp_wstamp_ns can be in the future if we have 2231 * packets waiting in a qdisc or device for EDT delivery. 2232 */ 2233 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2234 if (delta > 0) 2235 goto send_now; 2236 2237 in_flight = tcp_packets_in_flight(tp); 2238 2239 BUG_ON(tcp_skb_pcount(skb) <= 1); 2240 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2241 2242 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2243 2244 /* From in_flight test above, we know that cwnd > in_flight. */ 2245 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2246 2247 limit = min(send_win, cong_win); 2248 2249 /* If a full-sized TSO skb can be sent, do it. */ 2250 if (limit >= max_segs * tp->mss_cache) 2251 goto send_now; 2252 2253 /* Middle in queue won't get any more data, full sendable already? */ 2254 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2255 goto send_now; 2256 2257 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2258 if (win_divisor) { 2259 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2260 2261 /* If at least some fraction of a window is available, 2262 * just use it. 2263 */ 2264 chunk /= win_divisor; 2265 if (limit >= chunk) 2266 goto send_now; 2267 } else { 2268 /* Different approach, try not to defer past a single 2269 * ACK. Receiver should ACK every other full sized 2270 * frame, so if we have space for more than 3 frames 2271 * then send now. 2272 */ 2273 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2274 goto send_now; 2275 } 2276 2277 /* TODO : use tsorted_sent_queue ? */ 2278 head = tcp_rtx_queue_head(sk); 2279 if (!head) 2280 goto send_now; 2281 delta = tp->tcp_clock_cache - head->tstamp; 2282 /* If next ACK is likely to come too late (half srtt), do not defer */ 2283 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2284 goto send_now; 2285 2286 /* Ok, it looks like it is advisable to defer. 2287 * Three cases are tracked : 2288 * 1) We are cwnd-limited 2289 * 2) We are rwnd-limited 2290 * 3) We are application limited. 2291 */ 2292 if (cong_win < send_win) { 2293 if (cong_win <= skb->len) { 2294 *is_cwnd_limited = true; 2295 return true; 2296 } 2297 } else { 2298 if (send_win <= skb->len) { 2299 *is_rwnd_limited = true; 2300 return true; 2301 } 2302 } 2303 2304 /* If this packet won't get more data, do not wait. */ 2305 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2306 TCP_SKB_CB(skb)->eor) 2307 goto send_now; 2308 2309 return true; 2310 2311 send_now: 2312 return false; 2313 } 2314 2315 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2316 { 2317 struct inet_connection_sock *icsk = inet_csk(sk); 2318 struct tcp_sock *tp = tcp_sk(sk); 2319 struct net *net = sock_net(sk); 2320 u32 interval; 2321 s32 delta; 2322 2323 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2324 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2325 if (unlikely(delta >= interval * HZ)) { 2326 int mss = tcp_current_mss(sk); 2327 2328 /* Update current search range */ 2329 icsk->icsk_mtup.probe_size = 0; 2330 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2331 sizeof(struct tcphdr) + 2332 icsk->icsk_af_ops->net_header_len; 2333 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2334 2335 /* Update probe time stamp */ 2336 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2337 } 2338 } 2339 2340 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2341 { 2342 struct sk_buff *skb, *next; 2343 2344 skb = tcp_send_head(sk); 2345 tcp_for_write_queue_from_safe(skb, next, sk) { 2346 if (len <= skb->len) 2347 break; 2348 2349 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next)) 2350 return false; 2351 2352 len -= skb->len; 2353 } 2354 2355 return true; 2356 } 2357 2358 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2359 int probe_size) 2360 { 2361 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2362 int i, todo, len = 0, nr_frags = 0; 2363 const struct sk_buff *skb; 2364 2365 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2366 return -ENOMEM; 2367 2368 skb_queue_walk(&sk->sk_write_queue, skb) { 2369 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2370 2371 if (skb_headlen(skb)) 2372 return -EINVAL; 2373 2374 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2375 if (len >= probe_size) 2376 goto commit; 2377 todo = min_t(int, skb_frag_size(fragfrom), 2378 probe_size - len); 2379 len += todo; 2380 if (lastfrag && 2381 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2382 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2383 skb_frag_size(lastfrag)) { 2384 skb_frag_size_add(lastfrag, todo); 2385 continue; 2386 } 2387 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2388 return -E2BIG; 2389 skb_frag_page_copy(fragto, fragfrom); 2390 skb_frag_off_copy(fragto, fragfrom); 2391 skb_frag_size_set(fragto, todo); 2392 nr_frags++; 2393 lastfrag = fragto++; 2394 } 2395 } 2396 commit: 2397 WARN_ON_ONCE(len != probe_size); 2398 for (i = 0; i < nr_frags; i++) 2399 skb_frag_ref(to, i); 2400 2401 skb_shinfo(to)->nr_frags = nr_frags; 2402 to->truesize += probe_size; 2403 to->len += probe_size; 2404 to->data_len += probe_size; 2405 __skb_header_release(to); 2406 return 0; 2407 } 2408 2409 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if 2410 * all its payload was moved to another one (dst). 2411 * Make sure to transfer tcp_flags, eor, and tstamp. 2412 */ 2413 static void tcp_eat_one_skb(struct sock *sk, 2414 struct sk_buff *dst, 2415 struct sk_buff *src) 2416 { 2417 TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags; 2418 TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor; 2419 tcp_skb_collapse_tstamp(dst, src); 2420 tcp_unlink_write_queue(src, sk); 2421 tcp_wmem_free_skb(sk, src); 2422 } 2423 2424 /* Create a new MTU probe if we are ready. 2425 * MTU probe is regularly attempting to increase the path MTU by 2426 * deliberately sending larger packets. This discovers routing 2427 * changes resulting in larger path MTUs. 2428 * 2429 * Returns 0 if we should wait to probe (no cwnd available), 2430 * 1 if a probe was sent, 2431 * -1 otherwise 2432 */ 2433 static int tcp_mtu_probe(struct sock *sk) 2434 { 2435 struct inet_connection_sock *icsk = inet_csk(sk); 2436 struct tcp_sock *tp = tcp_sk(sk); 2437 struct sk_buff *skb, *nskb, *next; 2438 struct net *net = sock_net(sk); 2439 int probe_size; 2440 int size_needed; 2441 int copy, len; 2442 int mss_now; 2443 int interval; 2444 2445 /* Not currently probing/verifying, 2446 * not in recovery, 2447 * have enough cwnd, and 2448 * not SACKing (the variable headers throw things off) 2449 */ 2450 if (likely(!icsk->icsk_mtup.enabled || 2451 icsk->icsk_mtup.probe_size || 2452 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2453 tcp_snd_cwnd(tp) < 11 || 2454 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2455 return -1; 2456 2457 /* Use binary search for probe_size between tcp_mss_base, 2458 * and current mss_clamp. if (search_high - search_low) 2459 * smaller than a threshold, backoff from probing. 2460 */ 2461 mss_now = tcp_current_mss(sk); 2462 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2463 icsk->icsk_mtup.search_low) >> 1); 2464 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2465 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2466 /* When misfortune happens, we are reprobing actively, 2467 * and then reprobe timer has expired. We stick with current 2468 * probing process by not resetting search range to its orignal. 2469 */ 2470 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2471 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2472 /* Check whether enough time has elaplased for 2473 * another round of probing. 2474 */ 2475 tcp_mtu_check_reprobe(sk); 2476 return -1; 2477 } 2478 2479 /* Have enough data in the send queue to probe? */ 2480 if (tp->write_seq - tp->snd_nxt < size_needed) 2481 return -1; 2482 2483 if (tp->snd_wnd < size_needed) 2484 return -1; 2485 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2486 return 0; 2487 2488 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2489 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2490 if (!tcp_packets_in_flight(tp)) 2491 return -1; 2492 else 2493 return 0; 2494 } 2495 2496 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2497 return -1; 2498 2499 /* We're allowed to probe. Build it now. */ 2500 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2501 if (!nskb) 2502 return -1; 2503 2504 /* build the payload, and be prepared to abort if this fails. */ 2505 if (tcp_clone_payload(sk, nskb, probe_size)) { 2506 tcp_skb_tsorted_anchor_cleanup(nskb); 2507 consume_skb(nskb); 2508 return -1; 2509 } 2510 sk_wmem_queued_add(sk, nskb->truesize); 2511 sk_mem_charge(sk, nskb->truesize); 2512 2513 skb = tcp_send_head(sk); 2514 skb_copy_decrypted(nskb, skb); 2515 mptcp_skb_ext_copy(nskb, skb); 2516 2517 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2518 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2519 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2520 2521 tcp_insert_write_queue_before(nskb, skb, sk); 2522 tcp_highest_sack_replace(sk, skb, nskb); 2523 2524 len = 0; 2525 tcp_for_write_queue_from_safe(skb, next, sk) { 2526 copy = min_t(int, skb->len, probe_size - len); 2527 2528 if (skb->len <= copy) { 2529 tcp_eat_one_skb(sk, nskb, skb); 2530 } else { 2531 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2532 ~(TCPHDR_FIN|TCPHDR_PSH); 2533 __pskb_trim_head(skb, copy); 2534 tcp_set_skb_tso_segs(skb, mss_now); 2535 TCP_SKB_CB(skb)->seq += copy; 2536 } 2537 2538 len += copy; 2539 2540 if (len >= probe_size) 2541 break; 2542 } 2543 tcp_init_tso_segs(nskb, nskb->len); 2544 2545 /* We're ready to send. If this fails, the probe will 2546 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2547 */ 2548 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2549 /* Decrement cwnd here because we are sending 2550 * effectively two packets. */ 2551 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2552 tcp_event_new_data_sent(sk, nskb); 2553 2554 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2555 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2556 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2557 2558 return 1; 2559 } 2560 2561 return -1; 2562 } 2563 2564 static bool tcp_pacing_check(struct sock *sk) 2565 { 2566 struct tcp_sock *tp = tcp_sk(sk); 2567 2568 if (!tcp_needs_internal_pacing(sk)) 2569 return false; 2570 2571 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2572 return false; 2573 2574 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2575 hrtimer_start(&tp->pacing_timer, 2576 ns_to_ktime(tp->tcp_wstamp_ns), 2577 HRTIMER_MODE_ABS_PINNED_SOFT); 2578 sock_hold(sk); 2579 } 2580 return true; 2581 } 2582 2583 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2584 { 2585 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2586 2587 /* No skb in the rtx queue. */ 2588 if (!node) 2589 return true; 2590 2591 /* Only one skb in rtx queue. */ 2592 return !node->rb_left && !node->rb_right; 2593 } 2594 2595 /* TCP Small Queues : 2596 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2597 * (These limits are doubled for retransmits) 2598 * This allows for : 2599 * - better RTT estimation and ACK scheduling 2600 * - faster recovery 2601 * - high rates 2602 * Alas, some drivers / subsystems require a fair amount 2603 * of queued bytes to ensure line rate. 2604 * One example is wifi aggregation (802.11 AMPDU) 2605 */ 2606 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2607 unsigned int factor) 2608 { 2609 unsigned long limit; 2610 2611 limit = max_t(unsigned long, 2612 2 * skb->truesize, 2613 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2614 if (sk->sk_pacing_status == SK_PACING_NONE) 2615 limit = min_t(unsigned long, limit, 2616 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2617 limit <<= factor; 2618 2619 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2620 tcp_sk(sk)->tcp_tx_delay) { 2621 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2622 tcp_sk(sk)->tcp_tx_delay; 2623 2624 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2625 * approximate our needs assuming an ~100% skb->truesize overhead. 2626 * USEC_PER_SEC is approximated by 2^20. 2627 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2628 */ 2629 extra_bytes >>= (20 - 1); 2630 limit += extra_bytes; 2631 } 2632 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2633 /* Always send skb if rtx queue is empty or has one skb. 2634 * No need to wait for TX completion to call us back, 2635 * after softirq/tasklet schedule. 2636 * This helps when TX completions are delayed too much. 2637 */ 2638 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2639 return false; 2640 2641 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2642 /* It is possible TX completion already happened 2643 * before we set TSQ_THROTTLED, so we must 2644 * test again the condition. 2645 */ 2646 smp_mb__after_atomic(); 2647 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2648 return true; 2649 } 2650 return false; 2651 } 2652 2653 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2654 { 2655 const u32 now = tcp_jiffies32; 2656 enum tcp_chrono old = tp->chrono_type; 2657 2658 if (old > TCP_CHRONO_UNSPEC) 2659 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2660 tp->chrono_start = now; 2661 tp->chrono_type = new; 2662 } 2663 2664 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2665 { 2666 struct tcp_sock *tp = tcp_sk(sk); 2667 2668 /* If there are multiple conditions worthy of tracking in a 2669 * chronograph then the highest priority enum takes precedence 2670 * over the other conditions. So that if something "more interesting" 2671 * starts happening, stop the previous chrono and start a new one. 2672 */ 2673 if (type > tp->chrono_type) 2674 tcp_chrono_set(tp, type); 2675 } 2676 2677 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2678 { 2679 struct tcp_sock *tp = tcp_sk(sk); 2680 2681 2682 /* There are multiple conditions worthy of tracking in a 2683 * chronograph, so that the highest priority enum takes 2684 * precedence over the other conditions (see tcp_chrono_start). 2685 * If a condition stops, we only stop chrono tracking if 2686 * it's the "most interesting" or current chrono we are 2687 * tracking and starts busy chrono if we have pending data. 2688 */ 2689 if (tcp_rtx_and_write_queues_empty(sk)) 2690 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2691 else if (type == tp->chrono_type) 2692 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2693 } 2694 2695 /* First skb in the write queue is smaller than ideal packet size. 2696 * Check if we can move payload from the second skb in the queue. 2697 */ 2698 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount) 2699 { 2700 struct sk_buff *next_skb = skb->next; 2701 unsigned int nlen; 2702 2703 if (tcp_skb_is_last(sk, skb)) 2704 return; 2705 2706 if (!tcp_skb_can_collapse(skb, next_skb)) 2707 return; 2708 2709 nlen = min_t(u32, amount, next_skb->len); 2710 if (!nlen || !skb_shift(skb, next_skb, nlen)) 2711 return; 2712 2713 TCP_SKB_CB(skb)->end_seq += nlen; 2714 TCP_SKB_CB(next_skb)->seq += nlen; 2715 2716 if (!next_skb->len) { 2717 /* In case FIN is set, we need to update end_seq */ 2718 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2719 2720 tcp_eat_one_skb(sk, skb, next_skb); 2721 } 2722 } 2723 2724 /* This routine writes packets to the network. It advances the 2725 * send_head. This happens as incoming acks open up the remote 2726 * window for us. 2727 * 2728 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2729 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2730 * account rare use of URG, this is not a big flaw. 2731 * 2732 * Send at most one packet when push_one > 0. Temporarily ignore 2733 * cwnd limit to force at most one packet out when push_one == 2. 2734 2735 * Returns true, if no segments are in flight and we have queued segments, 2736 * but cannot send anything now because of SWS or another problem. 2737 */ 2738 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2739 int push_one, gfp_t gfp) 2740 { 2741 struct tcp_sock *tp = tcp_sk(sk); 2742 struct sk_buff *skb; 2743 unsigned int tso_segs, sent_pkts; 2744 u32 cwnd_quota, max_segs; 2745 int result; 2746 bool is_cwnd_limited = false, is_rwnd_limited = false; 2747 2748 sent_pkts = 0; 2749 2750 tcp_mstamp_refresh(tp); 2751 if (!push_one) { 2752 /* Do MTU probing. */ 2753 result = tcp_mtu_probe(sk); 2754 if (!result) { 2755 return false; 2756 } else if (result > 0) { 2757 sent_pkts = 1; 2758 } 2759 } 2760 2761 max_segs = tcp_tso_segs(sk, mss_now); 2762 while ((skb = tcp_send_head(sk))) { 2763 unsigned int limit; 2764 int missing_bytes; 2765 2766 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2767 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2768 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2769 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 2770 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2771 tcp_init_tso_segs(skb, mss_now); 2772 goto repair; /* Skip network transmission */ 2773 } 2774 2775 if (tcp_pacing_check(sk)) 2776 break; 2777 2778 cwnd_quota = tcp_cwnd_test(tp); 2779 if (!cwnd_quota) { 2780 if (push_one == 2) 2781 /* Force out a loss probe pkt. */ 2782 cwnd_quota = 1; 2783 else 2784 break; 2785 } 2786 cwnd_quota = min(cwnd_quota, max_segs); 2787 missing_bytes = cwnd_quota * mss_now - skb->len; 2788 if (missing_bytes > 0) 2789 tcp_grow_skb(sk, skb, missing_bytes); 2790 2791 tso_segs = tcp_set_skb_tso_segs(skb, mss_now); 2792 2793 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2794 is_rwnd_limited = true; 2795 break; 2796 } 2797 2798 if (tso_segs == 1) { 2799 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2800 (tcp_skb_is_last(sk, skb) ? 2801 nonagle : TCP_NAGLE_PUSH)))) 2802 break; 2803 } else { 2804 if (!push_one && 2805 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2806 &is_rwnd_limited, max_segs)) 2807 break; 2808 } 2809 2810 limit = mss_now; 2811 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2812 limit = tcp_mss_split_point(sk, skb, mss_now, 2813 cwnd_quota, 2814 nonagle); 2815 2816 if (skb->len > limit && 2817 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2818 break; 2819 2820 if (tcp_small_queue_check(sk, skb, 0)) 2821 break; 2822 2823 /* Argh, we hit an empty skb(), presumably a thread 2824 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2825 * We do not want to send a pure-ack packet and have 2826 * a strange looking rtx queue with empty packet(s). 2827 */ 2828 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2829 break; 2830 2831 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2832 break; 2833 2834 repair: 2835 /* Advance the send_head. This one is sent out. 2836 * This call will increment packets_out. 2837 */ 2838 tcp_event_new_data_sent(sk, skb); 2839 2840 tcp_minshall_update(tp, mss_now, skb); 2841 sent_pkts += tcp_skb_pcount(skb); 2842 2843 if (push_one) 2844 break; 2845 } 2846 2847 if (is_rwnd_limited) 2848 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2849 else 2850 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2851 2852 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2853 if (likely(sent_pkts || is_cwnd_limited)) 2854 tcp_cwnd_validate(sk, is_cwnd_limited); 2855 2856 if (likely(sent_pkts)) { 2857 if (tcp_in_cwnd_reduction(sk)) 2858 tp->prr_out += sent_pkts; 2859 2860 /* Send one loss probe per tail loss episode. */ 2861 if (push_one != 2) 2862 tcp_schedule_loss_probe(sk, false); 2863 return false; 2864 } 2865 return !tp->packets_out && !tcp_write_queue_empty(sk); 2866 } 2867 2868 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2869 { 2870 struct inet_connection_sock *icsk = inet_csk(sk); 2871 struct tcp_sock *tp = tcp_sk(sk); 2872 u32 timeout, timeout_us, rto_delta_us; 2873 int early_retrans; 2874 2875 /* Don't do any loss probe on a Fast Open connection before 3WHS 2876 * finishes. 2877 */ 2878 if (rcu_access_pointer(tp->fastopen_rsk)) 2879 return false; 2880 2881 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2882 /* Schedule a loss probe in 2*RTT for SACK capable connections 2883 * not in loss recovery, that are either limited by cwnd or application. 2884 */ 2885 if ((early_retrans != 3 && early_retrans != 4) || 2886 !tp->packets_out || !tcp_is_sack(tp) || 2887 (icsk->icsk_ca_state != TCP_CA_Open && 2888 icsk->icsk_ca_state != TCP_CA_CWR)) 2889 return false; 2890 2891 /* Probe timeout is 2*rtt. Add minimum RTO to account 2892 * for delayed ack when there's one outstanding packet. If no RTT 2893 * sample is available then probe after TCP_TIMEOUT_INIT. 2894 */ 2895 if (tp->srtt_us) { 2896 timeout_us = tp->srtt_us >> 2; 2897 if (tp->packets_out == 1) 2898 timeout_us += tcp_rto_min_us(sk); 2899 else 2900 timeout_us += TCP_TIMEOUT_MIN_US; 2901 timeout = usecs_to_jiffies(timeout_us); 2902 } else { 2903 timeout = TCP_TIMEOUT_INIT; 2904 } 2905 2906 /* If the RTO formula yields an earlier time, then use that time. */ 2907 rto_delta_us = advancing_rto ? 2908 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2909 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2910 if (rto_delta_us > 0) 2911 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2912 2913 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, true); 2914 return true; 2915 } 2916 2917 /* Thanks to skb fast clones, we can detect if a prior transmit of 2918 * a packet is still in a qdisc or driver queue. 2919 * In this case, there is very little point doing a retransmit ! 2920 */ 2921 static bool skb_still_in_host_queue(struct sock *sk, 2922 const struct sk_buff *skb) 2923 { 2924 if (unlikely(skb_fclone_busy(sk, skb))) { 2925 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2926 smp_mb__after_atomic(); 2927 if (skb_fclone_busy(sk, skb)) { 2928 NET_INC_STATS(sock_net(sk), 2929 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2930 return true; 2931 } 2932 } 2933 return false; 2934 } 2935 2936 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2937 * retransmit the last segment. 2938 */ 2939 void tcp_send_loss_probe(struct sock *sk) 2940 { 2941 struct tcp_sock *tp = tcp_sk(sk); 2942 struct sk_buff *skb; 2943 int pcount; 2944 int mss = tcp_current_mss(sk); 2945 2946 /* At most one outstanding TLP */ 2947 if (tp->tlp_high_seq) 2948 goto rearm_timer; 2949 2950 tp->tlp_retrans = 0; 2951 skb = tcp_send_head(sk); 2952 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2953 pcount = tp->packets_out; 2954 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2955 if (tp->packets_out > pcount) 2956 goto probe_sent; 2957 goto rearm_timer; 2958 } 2959 skb = skb_rb_last(&sk->tcp_rtx_queue); 2960 if (unlikely(!skb)) { 2961 tcp_warn_once(sk, tp->packets_out, "invalid inflight: "); 2962 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 2963 return; 2964 } 2965 2966 if (skb_still_in_host_queue(sk, skb)) 2967 goto rearm_timer; 2968 2969 pcount = tcp_skb_pcount(skb); 2970 if (WARN_ON(!pcount)) 2971 goto rearm_timer; 2972 2973 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2974 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2975 (pcount - 1) * mss, mss, 2976 GFP_ATOMIC))) 2977 goto rearm_timer; 2978 skb = skb_rb_next(skb); 2979 } 2980 2981 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2982 goto rearm_timer; 2983 2984 if (__tcp_retransmit_skb(sk, skb, 1)) 2985 goto rearm_timer; 2986 2987 tp->tlp_retrans = 1; 2988 2989 probe_sent: 2990 /* Record snd_nxt for loss detection. */ 2991 tp->tlp_high_seq = tp->snd_nxt; 2992 2993 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2994 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2995 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 2996 rearm_timer: 2997 tcp_rearm_rto(sk); 2998 } 2999 3000 /* Push out any pending frames which were held back due to 3001 * TCP_CORK or attempt at coalescing tiny packets. 3002 * The socket must be locked by the caller. 3003 */ 3004 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 3005 int nonagle) 3006 { 3007 /* If we are closed, the bytes will have to remain here. 3008 * In time closedown will finish, we empty the write queue and 3009 * all will be happy. 3010 */ 3011 if (unlikely(sk->sk_state == TCP_CLOSE)) 3012 return; 3013 3014 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 3015 sk_gfp_mask(sk, GFP_ATOMIC))) 3016 tcp_check_probe_timer(sk); 3017 } 3018 3019 /* Send _single_ skb sitting at the send head. This function requires 3020 * true push pending frames to setup probe timer etc. 3021 */ 3022 void tcp_push_one(struct sock *sk, unsigned int mss_now) 3023 { 3024 struct sk_buff *skb = tcp_send_head(sk); 3025 3026 BUG_ON(!skb || skb->len < mss_now); 3027 3028 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 3029 } 3030 3031 /* This function returns the amount that we can raise the 3032 * usable window based on the following constraints 3033 * 3034 * 1. The window can never be shrunk once it is offered (RFC 793) 3035 * 2. We limit memory per socket 3036 * 3037 * RFC 1122: 3038 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 3039 * RECV.NEXT + RCV.WIN fixed until: 3040 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 3041 * 3042 * i.e. don't raise the right edge of the window until you can raise 3043 * it at least MSS bytes. 3044 * 3045 * Unfortunately, the recommended algorithm breaks header prediction, 3046 * since header prediction assumes th->window stays fixed. 3047 * 3048 * Strictly speaking, keeping th->window fixed violates the receiver 3049 * side SWS prevention criteria. The problem is that under this rule 3050 * a stream of single byte packets will cause the right side of the 3051 * window to always advance by a single byte. 3052 * 3053 * Of course, if the sender implements sender side SWS prevention 3054 * then this will not be a problem. 3055 * 3056 * BSD seems to make the following compromise: 3057 * 3058 * If the free space is less than the 1/4 of the maximum 3059 * space available and the free space is less than 1/2 mss, 3060 * then set the window to 0. 3061 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 3062 * Otherwise, just prevent the window from shrinking 3063 * and from being larger than the largest representable value. 3064 * 3065 * This prevents incremental opening of the window in the regime 3066 * where TCP is limited by the speed of the reader side taking 3067 * data out of the TCP receive queue. It does nothing about 3068 * those cases where the window is constrained on the sender side 3069 * because the pipeline is full. 3070 * 3071 * BSD also seems to "accidentally" limit itself to windows that are a 3072 * multiple of MSS, at least until the free space gets quite small. 3073 * This would appear to be a side effect of the mbuf implementation. 3074 * Combining these two algorithms results in the observed behavior 3075 * of having a fixed window size at almost all times. 3076 * 3077 * Below we obtain similar behavior by forcing the offered window to 3078 * a multiple of the mss when it is feasible to do so. 3079 * 3080 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3081 * Regular options like TIMESTAMP are taken into account. 3082 */ 3083 u32 __tcp_select_window(struct sock *sk) 3084 { 3085 struct inet_connection_sock *icsk = inet_csk(sk); 3086 struct tcp_sock *tp = tcp_sk(sk); 3087 struct net *net = sock_net(sk); 3088 /* MSS for the peer's data. Previous versions used mss_clamp 3089 * here. I don't know if the value based on our guesses 3090 * of peer's MSS is better for the performance. It's more correct 3091 * but may be worse for the performance because of rcv_mss 3092 * fluctuations. --SAW 1998/11/1 3093 */ 3094 int mss = icsk->icsk_ack.rcv_mss; 3095 int free_space = tcp_space(sk); 3096 int allowed_space = tcp_full_space(sk); 3097 int full_space, window; 3098 3099 if (sk_is_mptcp(sk)) 3100 mptcp_space(sk, &free_space, &allowed_space); 3101 3102 full_space = min_t(int, tp->window_clamp, allowed_space); 3103 3104 if (unlikely(mss > full_space)) { 3105 mss = full_space; 3106 if (mss <= 0) 3107 return 0; 3108 } 3109 3110 /* Only allow window shrink if the sysctl is enabled and we have 3111 * a non-zero scaling factor in effect. 3112 */ 3113 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3114 goto shrink_window_allowed; 3115 3116 /* do not allow window to shrink */ 3117 3118 if (free_space < (full_space >> 1)) { 3119 icsk->icsk_ack.quick = 0; 3120 3121 if (tcp_under_memory_pressure(sk)) 3122 tcp_adjust_rcv_ssthresh(sk); 3123 3124 /* free_space might become our new window, make sure we don't 3125 * increase it due to wscale. 3126 */ 3127 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3128 3129 /* if free space is less than mss estimate, or is below 1/16th 3130 * of the maximum allowed, try to move to zero-window, else 3131 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3132 * new incoming data is dropped due to memory limits. 3133 * With large window, mss test triggers way too late in order 3134 * to announce zero window in time before rmem limit kicks in. 3135 */ 3136 if (free_space < (allowed_space >> 4) || free_space < mss) 3137 return 0; 3138 } 3139 3140 if (free_space > tp->rcv_ssthresh) 3141 free_space = tp->rcv_ssthresh; 3142 3143 /* Don't do rounding if we are using window scaling, since the 3144 * scaled window will not line up with the MSS boundary anyway. 3145 */ 3146 if (tp->rx_opt.rcv_wscale) { 3147 window = free_space; 3148 3149 /* Advertise enough space so that it won't get scaled away. 3150 * Import case: prevent zero window announcement if 3151 * 1<<rcv_wscale > mss. 3152 */ 3153 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3154 } else { 3155 window = tp->rcv_wnd; 3156 /* Get the largest window that is a nice multiple of mss. 3157 * Window clamp already applied above. 3158 * If our current window offering is within 1 mss of the 3159 * free space we just keep it. This prevents the divide 3160 * and multiply from happening most of the time. 3161 * We also don't do any window rounding when the free space 3162 * is too small. 3163 */ 3164 if (window <= free_space - mss || window > free_space) 3165 window = rounddown(free_space, mss); 3166 else if (mss == full_space && 3167 free_space > window + (full_space >> 1)) 3168 window = free_space; 3169 } 3170 3171 return window; 3172 3173 shrink_window_allowed: 3174 /* new window should always be an exact multiple of scaling factor */ 3175 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3176 3177 if (free_space < (full_space >> 1)) { 3178 icsk->icsk_ack.quick = 0; 3179 3180 if (tcp_under_memory_pressure(sk)) 3181 tcp_adjust_rcv_ssthresh(sk); 3182 3183 /* if free space is too low, return a zero window */ 3184 if (free_space < (allowed_space >> 4) || free_space < mss || 3185 free_space < (1 << tp->rx_opt.rcv_wscale)) 3186 return 0; 3187 } 3188 3189 if (free_space > tp->rcv_ssthresh) { 3190 free_space = tp->rcv_ssthresh; 3191 /* new window should always be an exact multiple of scaling factor 3192 * 3193 * For this case, we ALIGN "up" (increase free_space) because 3194 * we know free_space is not zero here, it has been reduced from 3195 * the memory-based limit, and rcv_ssthresh is not a hard limit 3196 * (unlike sk_rcvbuf). 3197 */ 3198 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3199 } 3200 3201 return free_space; 3202 } 3203 3204 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3205 const struct sk_buff *next_skb) 3206 { 3207 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3208 const struct skb_shared_info *next_shinfo = 3209 skb_shinfo(next_skb); 3210 struct skb_shared_info *shinfo = skb_shinfo(skb); 3211 3212 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3213 shinfo->tskey = next_shinfo->tskey; 3214 TCP_SKB_CB(skb)->txstamp_ack |= 3215 TCP_SKB_CB(next_skb)->txstamp_ack; 3216 } 3217 } 3218 3219 /* Collapses two adjacent SKB's during retransmission. */ 3220 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3221 { 3222 struct tcp_sock *tp = tcp_sk(sk); 3223 struct sk_buff *next_skb = skb_rb_next(skb); 3224 int next_skb_size; 3225 3226 next_skb_size = next_skb->len; 3227 3228 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3229 3230 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3231 return false; 3232 3233 tcp_highest_sack_replace(sk, next_skb, skb); 3234 3235 /* Update sequence range on original skb. */ 3236 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3237 3238 /* Merge over control information. This moves PSH/FIN etc. over */ 3239 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3240 3241 /* All done, get rid of second SKB and account for it so 3242 * packet counting does not break. 3243 */ 3244 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3245 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3246 3247 /* changed transmit queue under us so clear hints */ 3248 tcp_clear_retrans_hints_partial(tp); 3249 if (next_skb == tp->retransmit_skb_hint) 3250 tp->retransmit_skb_hint = skb; 3251 3252 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3253 3254 tcp_skb_collapse_tstamp(skb, next_skb); 3255 3256 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3257 return true; 3258 } 3259 3260 /* Check if coalescing SKBs is legal. */ 3261 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3262 { 3263 if (tcp_skb_pcount(skb) > 1) 3264 return false; 3265 if (skb_cloned(skb)) 3266 return false; 3267 if (!skb_frags_readable(skb)) 3268 return false; 3269 /* Some heuristics for collapsing over SACK'd could be invented */ 3270 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3271 return false; 3272 3273 return true; 3274 } 3275 3276 /* Collapse packets in the retransmit queue to make to create 3277 * less packets on the wire. This is only done on retransmission. 3278 */ 3279 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3280 int space) 3281 { 3282 struct tcp_sock *tp = tcp_sk(sk); 3283 struct sk_buff *skb = to, *tmp; 3284 bool first = true; 3285 3286 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3287 return; 3288 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3289 return; 3290 3291 skb_rbtree_walk_from_safe(skb, tmp) { 3292 if (!tcp_can_collapse(sk, skb)) 3293 break; 3294 3295 if (!tcp_skb_can_collapse(to, skb)) 3296 break; 3297 3298 space -= skb->len; 3299 3300 if (first) { 3301 first = false; 3302 continue; 3303 } 3304 3305 if (space < 0) 3306 break; 3307 3308 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3309 break; 3310 3311 if (!tcp_collapse_retrans(sk, to)) 3312 break; 3313 } 3314 } 3315 3316 /* This retransmits one SKB. Policy decisions and retransmit queue 3317 * state updates are done by the caller. Returns non-zero if an 3318 * error occurred which prevented the send. 3319 */ 3320 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3321 { 3322 struct inet_connection_sock *icsk = inet_csk(sk); 3323 struct tcp_sock *tp = tcp_sk(sk); 3324 unsigned int cur_mss; 3325 int diff, len, err; 3326 int avail_wnd; 3327 3328 /* Inconclusive MTU probe */ 3329 if (icsk->icsk_mtup.probe_size) 3330 icsk->icsk_mtup.probe_size = 0; 3331 3332 if (skb_still_in_host_queue(sk, skb)) 3333 return -EBUSY; 3334 3335 start: 3336 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3337 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3338 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 3339 TCP_SKB_CB(skb)->seq++; 3340 goto start; 3341 } 3342 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3343 WARN_ON_ONCE(1); 3344 return -EINVAL; 3345 } 3346 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3347 return -ENOMEM; 3348 } 3349 3350 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3351 return -EHOSTUNREACH; /* Routing failure or similar. */ 3352 3353 cur_mss = tcp_current_mss(sk); 3354 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3355 3356 /* If receiver has shrunk his window, and skb is out of 3357 * new window, do not retransmit it. The exception is the 3358 * case, when window is shrunk to zero. In this case 3359 * our retransmit of one segment serves as a zero window probe. 3360 */ 3361 if (avail_wnd <= 0) { 3362 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3363 return -EAGAIN; 3364 avail_wnd = cur_mss; 3365 } 3366 3367 len = cur_mss * segs; 3368 if (len > avail_wnd) { 3369 len = rounddown(avail_wnd, cur_mss); 3370 if (!len) 3371 len = avail_wnd; 3372 } 3373 if (skb->len > len) { 3374 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3375 cur_mss, GFP_ATOMIC)) 3376 return -ENOMEM; /* We'll try again later. */ 3377 } else { 3378 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3379 return -ENOMEM; 3380 3381 diff = tcp_skb_pcount(skb); 3382 tcp_set_skb_tso_segs(skb, cur_mss); 3383 diff -= tcp_skb_pcount(skb); 3384 if (diff) 3385 tcp_adjust_pcount(sk, skb, diff); 3386 avail_wnd = min_t(int, avail_wnd, cur_mss); 3387 if (skb->len < avail_wnd) 3388 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3389 } 3390 3391 /* RFC3168, section 6.1.1.1. ECN fallback */ 3392 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3393 tcp_ecn_clear_syn(sk, skb); 3394 3395 /* Update global and local TCP statistics. */ 3396 segs = tcp_skb_pcount(skb); 3397 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3398 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3399 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3400 tp->total_retrans += segs; 3401 tp->bytes_retrans += skb->len; 3402 3403 /* make sure skb->data is aligned on arches that require it 3404 * and check if ack-trimming & collapsing extended the headroom 3405 * beyond what csum_start can cover. 3406 */ 3407 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3408 skb_headroom(skb) >= 0xFFFF)) { 3409 struct sk_buff *nskb; 3410 3411 tcp_skb_tsorted_save(skb) { 3412 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3413 if (nskb) { 3414 nskb->dev = NULL; 3415 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3416 } else { 3417 err = -ENOBUFS; 3418 } 3419 } tcp_skb_tsorted_restore(skb); 3420 3421 if (!err) { 3422 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3423 tcp_rate_skb_sent(sk, skb); 3424 } 3425 } else { 3426 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3427 } 3428 3429 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3430 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3431 TCP_SKB_CB(skb)->seq, segs, err); 3432 3433 if (likely(!err)) { 3434 trace_tcp_retransmit_skb(sk, skb); 3435 } else if (err != -EBUSY) { 3436 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3437 } 3438 3439 /* To avoid taking spuriously low RTT samples based on a timestamp 3440 * for a transmit that never happened, always mark EVER_RETRANS 3441 */ 3442 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3443 3444 return err; 3445 } 3446 3447 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3448 { 3449 struct tcp_sock *tp = tcp_sk(sk); 3450 int err = __tcp_retransmit_skb(sk, skb, segs); 3451 3452 if (err == 0) { 3453 #if FASTRETRANS_DEBUG > 0 3454 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3455 net_dbg_ratelimited("retrans_out leaked\n"); 3456 } 3457 #endif 3458 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3459 tp->retrans_out += tcp_skb_pcount(skb); 3460 } 3461 3462 /* Save stamp of the first (attempted) retransmit. */ 3463 if (!tp->retrans_stamp) 3464 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb); 3465 3466 if (tp->undo_retrans < 0) 3467 tp->undo_retrans = 0; 3468 tp->undo_retrans += tcp_skb_pcount(skb); 3469 return err; 3470 } 3471 3472 /* This gets called after a retransmit timeout, and the initially 3473 * retransmitted data is acknowledged. It tries to continue 3474 * resending the rest of the retransmit queue, until either 3475 * we've sent it all or the congestion window limit is reached. 3476 */ 3477 void tcp_xmit_retransmit_queue(struct sock *sk) 3478 { 3479 const struct inet_connection_sock *icsk = inet_csk(sk); 3480 struct sk_buff *skb, *rtx_head, *hole = NULL; 3481 struct tcp_sock *tp = tcp_sk(sk); 3482 bool rearm_timer = false; 3483 u32 max_segs; 3484 int mib_idx; 3485 3486 if (!tp->packets_out) 3487 return; 3488 3489 rtx_head = tcp_rtx_queue_head(sk); 3490 skb = tp->retransmit_skb_hint ?: rtx_head; 3491 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3492 skb_rbtree_walk_from(skb) { 3493 __u8 sacked; 3494 int segs; 3495 3496 if (tcp_pacing_check(sk)) 3497 break; 3498 3499 /* we could do better than to assign each time */ 3500 if (!hole) 3501 tp->retransmit_skb_hint = skb; 3502 3503 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3504 if (segs <= 0) 3505 break; 3506 sacked = TCP_SKB_CB(skb)->sacked; 3507 /* In case tcp_shift_skb_data() have aggregated large skbs, 3508 * we need to make sure not sending too bigs TSO packets 3509 */ 3510 segs = min_t(int, segs, max_segs); 3511 3512 if (tp->retrans_out >= tp->lost_out) { 3513 break; 3514 } else if (!(sacked & TCPCB_LOST)) { 3515 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3516 hole = skb; 3517 continue; 3518 3519 } else { 3520 if (icsk->icsk_ca_state != TCP_CA_Loss) 3521 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3522 else 3523 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3524 } 3525 3526 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3527 continue; 3528 3529 if (tcp_small_queue_check(sk, skb, 1)) 3530 break; 3531 3532 if (tcp_retransmit_skb(sk, skb, segs)) 3533 break; 3534 3535 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3536 3537 if (tcp_in_cwnd_reduction(sk)) 3538 tp->prr_out += tcp_skb_pcount(skb); 3539 3540 if (skb == rtx_head && 3541 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3542 rearm_timer = true; 3543 3544 } 3545 if (rearm_timer) 3546 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3547 inet_csk(sk)->icsk_rto, true); 3548 } 3549 3550 /* We allow to exceed memory limits for FIN packets to expedite 3551 * connection tear down and (memory) recovery. 3552 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3553 * or even be forced to close flow without any FIN. 3554 * In general, we want to allow one skb per socket to avoid hangs 3555 * with edge trigger epoll() 3556 */ 3557 void sk_forced_mem_schedule(struct sock *sk, int size) 3558 { 3559 int delta, amt; 3560 3561 delta = size - sk->sk_forward_alloc; 3562 if (delta <= 0) 3563 return; 3564 amt = sk_mem_pages(delta); 3565 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3566 sk_memory_allocated_add(sk, amt); 3567 3568 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3569 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3570 gfp_memcg_charge() | __GFP_NOFAIL); 3571 } 3572 3573 /* Send a FIN. The caller locks the socket for us. 3574 * We should try to send a FIN packet really hard, but eventually give up. 3575 */ 3576 void tcp_send_fin(struct sock *sk) 3577 { 3578 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3579 struct tcp_sock *tp = tcp_sk(sk); 3580 3581 /* Optimization, tack on the FIN if we have one skb in write queue and 3582 * this skb was not yet sent, or we are under memory pressure. 3583 * Note: in the latter case, FIN packet will be sent after a timeout, 3584 * as TCP stack thinks it has already been transmitted. 3585 */ 3586 tskb = tail; 3587 if (!tskb && tcp_under_memory_pressure(sk)) 3588 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3589 3590 if (tskb) { 3591 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3592 TCP_SKB_CB(tskb)->end_seq++; 3593 tp->write_seq++; 3594 if (!tail) { 3595 /* This means tskb was already sent. 3596 * Pretend we included the FIN on previous transmit. 3597 * We need to set tp->snd_nxt to the value it would have 3598 * if FIN had been sent. This is because retransmit path 3599 * does not change tp->snd_nxt. 3600 */ 3601 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3602 return; 3603 } 3604 } else { 3605 skb = alloc_skb_fclone(MAX_TCP_HEADER, 3606 sk_gfp_mask(sk, GFP_ATOMIC | 3607 __GFP_NOWARN)); 3608 if (unlikely(!skb)) 3609 return; 3610 3611 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3612 skb_reserve(skb, MAX_TCP_HEADER); 3613 sk_forced_mem_schedule(sk, skb->truesize); 3614 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3615 tcp_init_nondata_skb(skb, tp->write_seq, 3616 TCPHDR_ACK | TCPHDR_FIN); 3617 tcp_queue_skb(sk, skb); 3618 } 3619 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3620 } 3621 3622 /* We get here when a process closes a file descriptor (either due to 3623 * an explicit close() or as a byproduct of exit()'ing) and there 3624 * was unread data in the receive queue. This behavior is recommended 3625 * by RFC 2525, section 2.17. -DaveM 3626 */ 3627 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 3628 enum sk_rst_reason reason) 3629 { 3630 struct sk_buff *skb; 3631 3632 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3633 3634 /* NOTE: No TCP options attached and we never retransmit this. */ 3635 skb = alloc_skb(MAX_TCP_HEADER, priority); 3636 if (!skb) { 3637 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3638 return; 3639 } 3640 3641 /* Reserve space for headers and prepare control bits. */ 3642 skb_reserve(skb, MAX_TCP_HEADER); 3643 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3644 TCPHDR_ACK | TCPHDR_RST); 3645 tcp_mstamp_refresh(tcp_sk(sk)); 3646 /* Send it off. */ 3647 if (tcp_transmit_skb(sk, skb, 0, priority)) 3648 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3649 3650 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3651 * skb here is different to the troublesome skb, so use NULL 3652 */ 3653 trace_tcp_send_reset(sk, NULL, reason); 3654 } 3655 3656 /* Send a crossed SYN-ACK during socket establishment. 3657 * WARNING: This routine must only be called when we have already sent 3658 * a SYN packet that crossed the incoming SYN that caused this routine 3659 * to get called. If this assumption fails then the initial rcv_wnd 3660 * and rcv_wscale values will not be correct. 3661 */ 3662 int tcp_send_synack(struct sock *sk) 3663 { 3664 struct sk_buff *skb; 3665 3666 skb = tcp_rtx_queue_head(sk); 3667 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3668 pr_err("%s: wrong queue state\n", __func__); 3669 return -EFAULT; 3670 } 3671 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3672 if (skb_cloned(skb)) { 3673 struct sk_buff *nskb; 3674 3675 tcp_skb_tsorted_save(skb) { 3676 nskb = skb_copy(skb, GFP_ATOMIC); 3677 } tcp_skb_tsorted_restore(skb); 3678 if (!nskb) 3679 return -ENOMEM; 3680 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3681 tcp_highest_sack_replace(sk, skb, nskb); 3682 tcp_rtx_queue_unlink_and_free(skb, sk); 3683 __skb_header_release(nskb); 3684 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3685 sk_wmem_queued_add(sk, nskb->truesize); 3686 sk_mem_charge(sk, nskb->truesize); 3687 skb = nskb; 3688 } 3689 3690 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3691 tcp_ecn_send_synack(sk, skb); 3692 } 3693 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3694 } 3695 3696 /** 3697 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3698 * @sk: listener socket 3699 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3700 * should not use it again. 3701 * @req: request_sock pointer 3702 * @foc: cookie for tcp fast open 3703 * @synack_type: Type of synack to prepare 3704 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3705 */ 3706 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3707 struct request_sock *req, 3708 struct tcp_fastopen_cookie *foc, 3709 enum tcp_synack_type synack_type, 3710 struct sk_buff *syn_skb) 3711 { 3712 struct inet_request_sock *ireq = inet_rsk(req); 3713 const struct tcp_sock *tp = tcp_sk(sk); 3714 struct tcp_out_options opts; 3715 struct tcp_key key = {}; 3716 struct sk_buff *skb; 3717 int tcp_header_size; 3718 struct tcphdr *th; 3719 int mss; 3720 u64 now; 3721 3722 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3723 if (unlikely(!skb)) { 3724 dst_release(dst); 3725 return NULL; 3726 } 3727 /* Reserve space for headers. */ 3728 skb_reserve(skb, MAX_TCP_HEADER); 3729 3730 switch (synack_type) { 3731 case TCP_SYNACK_NORMAL: 3732 skb_set_owner_edemux(skb, req_to_sk(req)); 3733 break; 3734 case TCP_SYNACK_COOKIE: 3735 /* Under synflood, we do not attach skb to a socket, 3736 * to avoid false sharing. 3737 */ 3738 break; 3739 case TCP_SYNACK_FASTOPEN: 3740 /* sk is a const pointer, because we want to express multiple 3741 * cpu might call us concurrently. 3742 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3743 */ 3744 skb_set_owner_w(skb, (struct sock *)sk); 3745 break; 3746 } 3747 skb_dst_set(skb, dst); 3748 3749 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3750 3751 memset(&opts, 0, sizeof(opts)); 3752 now = tcp_clock_ns(); 3753 #ifdef CONFIG_SYN_COOKIES 3754 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3755 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3756 SKB_CLOCK_MONOTONIC); 3757 else 3758 #endif 3759 { 3760 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 3761 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3762 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3763 } 3764 3765 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3766 rcu_read_lock(); 3767 #endif 3768 if (tcp_rsk_used_ao(req)) { 3769 #ifdef CONFIG_TCP_AO 3770 struct tcp_ao_key *ao_key = NULL; 3771 u8 keyid = tcp_rsk(req)->ao_keyid; 3772 u8 rnext = tcp_rsk(req)->ao_rcv_next; 3773 3774 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req), 3775 keyid, -1); 3776 /* If there is no matching key - avoid sending anything, 3777 * especially usigned segments. It could try harder and lookup 3778 * for another peer-matching key, but the peer has requested 3779 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here. 3780 */ 3781 if (unlikely(!ao_key)) { 3782 trace_tcp_ao_synack_no_key(sk, keyid, rnext); 3783 rcu_read_unlock(); 3784 kfree_skb(skb); 3785 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n", 3786 keyid); 3787 return NULL; 3788 } 3789 key.ao_key = ao_key; 3790 key.type = TCP_KEY_AO; 3791 #endif 3792 } else { 3793 #ifdef CONFIG_TCP_MD5SIG 3794 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk, 3795 req_to_sk(req)); 3796 if (key.md5_key) 3797 key.type = TCP_KEY_MD5; 3798 #endif 3799 } 3800 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3801 /* bpf program will be interested in the tcp_flags */ 3802 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3803 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, 3804 &key, foc, synack_type, syn_skb) 3805 + sizeof(*th); 3806 3807 skb_push(skb, tcp_header_size); 3808 skb_reset_transport_header(skb); 3809 3810 th = (struct tcphdr *)skb->data; 3811 memset(th, 0, sizeof(struct tcphdr)); 3812 th->syn = 1; 3813 th->ack = 1; 3814 tcp_ecn_make_synack(req, th); 3815 th->source = htons(ireq->ir_num); 3816 th->dest = ireq->ir_rmt_port; 3817 skb->mark = ireq->ir_mark; 3818 skb->ip_summed = CHECKSUM_PARTIAL; 3819 th->seq = htonl(tcp_rsk(req)->snt_isn); 3820 /* XXX data is queued and acked as is. No buffer/window check */ 3821 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3822 3823 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3824 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3825 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key); 3826 th->doff = (tcp_header_size >> 2); 3827 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3828 3829 /* Okay, we have all we need - do the md5 hash if needed */ 3830 if (tcp_key_is_md5(&key)) { 3831 #ifdef CONFIG_TCP_MD5SIG 3832 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3833 key.md5_key, req_to_sk(req), skb); 3834 #endif 3835 } else if (tcp_key_is_ao(&key)) { 3836 #ifdef CONFIG_TCP_AO 3837 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location, 3838 key.ao_key, req, skb, 3839 opts.hash_location - (u8 *)th, 0); 3840 #endif 3841 } 3842 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3843 rcu_read_unlock(); 3844 #endif 3845 3846 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3847 synack_type, &opts); 3848 3849 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 3850 tcp_add_tx_delay(skb, tp); 3851 3852 return skb; 3853 } 3854 EXPORT_SYMBOL(tcp_make_synack); 3855 3856 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3857 { 3858 struct inet_connection_sock *icsk = inet_csk(sk); 3859 const struct tcp_congestion_ops *ca; 3860 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3861 3862 if (ca_key == TCP_CA_UNSPEC) 3863 return; 3864 3865 rcu_read_lock(); 3866 ca = tcp_ca_find_key(ca_key); 3867 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3868 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3869 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3870 icsk->icsk_ca_ops = ca; 3871 } 3872 rcu_read_unlock(); 3873 } 3874 3875 /* Do all connect socket setups that can be done AF independent. */ 3876 static void tcp_connect_init(struct sock *sk) 3877 { 3878 const struct dst_entry *dst = __sk_dst_get(sk); 3879 struct tcp_sock *tp = tcp_sk(sk); 3880 __u8 rcv_wscale; 3881 u32 rcv_wnd; 3882 3883 /* We'll fix this up when we get a response from the other end. 3884 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3885 */ 3886 tp->tcp_header_len = sizeof(struct tcphdr); 3887 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3888 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3889 3890 tcp_ao_connect_init(sk); 3891 3892 /* If user gave his TCP_MAXSEG, record it to clamp */ 3893 if (tp->rx_opt.user_mss) 3894 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3895 tp->max_window = 0; 3896 tcp_mtup_init(sk); 3897 tcp_sync_mss(sk, dst_mtu(dst)); 3898 3899 tcp_ca_dst_init(sk, dst); 3900 3901 if (!tp->window_clamp) 3902 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW)); 3903 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3904 3905 tcp_initialize_rcv_mss(sk); 3906 3907 /* limit the window selection if the user enforce a smaller rx buffer */ 3908 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3909 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3910 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk)); 3911 3912 rcv_wnd = tcp_rwnd_init_bpf(sk); 3913 if (rcv_wnd == 0) 3914 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3915 3916 tcp_select_initial_window(sk, tcp_full_space(sk), 3917 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3918 &tp->rcv_wnd, 3919 &tp->window_clamp, 3920 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3921 &rcv_wscale, 3922 rcv_wnd); 3923 3924 tp->rx_opt.rcv_wscale = rcv_wscale; 3925 tp->rcv_ssthresh = tp->rcv_wnd; 3926 3927 WRITE_ONCE(sk->sk_err, 0); 3928 sock_reset_flag(sk, SOCK_DONE); 3929 tp->snd_wnd = 0; 3930 tcp_init_wl(tp, 0); 3931 tcp_write_queue_purge(sk); 3932 tp->snd_una = tp->write_seq; 3933 tp->snd_sml = tp->write_seq; 3934 tp->snd_up = tp->write_seq; 3935 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3936 3937 if (likely(!tp->repair)) 3938 tp->rcv_nxt = 0; 3939 else 3940 tp->rcv_tstamp = tcp_jiffies32; 3941 tp->rcv_wup = tp->rcv_nxt; 3942 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3943 3944 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3945 inet_csk(sk)->icsk_retransmits = 0; 3946 tcp_clear_retrans(tp); 3947 } 3948 3949 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3950 { 3951 struct tcp_sock *tp = tcp_sk(sk); 3952 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3953 3954 tcb->end_seq += skb->len; 3955 __skb_header_release(skb); 3956 sk_wmem_queued_add(sk, skb->truesize); 3957 sk_mem_charge(sk, skb->truesize); 3958 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3959 tp->packets_out += tcp_skb_pcount(skb); 3960 } 3961 3962 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3963 * queue a data-only packet after the regular SYN, such that regular SYNs 3964 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3965 * only the SYN sequence, the data are retransmitted in the first ACK. 3966 * If cookie is not cached or other error occurs, falls back to send a 3967 * regular SYN with Fast Open cookie request option. 3968 */ 3969 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3970 { 3971 struct inet_connection_sock *icsk = inet_csk(sk); 3972 struct tcp_sock *tp = tcp_sk(sk); 3973 struct tcp_fastopen_request *fo = tp->fastopen_req; 3974 struct page_frag *pfrag = sk_page_frag(sk); 3975 struct sk_buff *syn_data; 3976 int space, err = 0; 3977 3978 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3979 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3980 goto fallback; 3981 3982 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3983 * user-MSS. Reserve maximum option space for middleboxes that add 3984 * private TCP options. The cost is reduced data space in SYN :( 3985 */ 3986 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3987 /* Sync mss_cache after updating the mss_clamp */ 3988 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3989 3990 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3991 MAX_TCP_OPTION_SPACE; 3992 3993 space = min_t(size_t, space, fo->size); 3994 3995 if (space && 3996 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3997 pfrag, sk->sk_allocation)) 3998 goto fallback; 3999 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 4000 if (!syn_data) 4001 goto fallback; 4002 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 4003 if (space) { 4004 space = min_t(size_t, space, pfrag->size - pfrag->offset); 4005 space = tcp_wmem_schedule(sk, space); 4006 } 4007 if (space) { 4008 space = copy_page_from_iter(pfrag->page, pfrag->offset, 4009 space, &fo->data->msg_iter); 4010 if (unlikely(!space)) { 4011 tcp_skb_tsorted_anchor_cleanup(syn_data); 4012 kfree_skb(syn_data); 4013 goto fallback; 4014 } 4015 skb_fill_page_desc(syn_data, 0, pfrag->page, 4016 pfrag->offset, space); 4017 page_ref_inc(pfrag->page); 4018 pfrag->offset += space; 4019 skb_len_add(syn_data, space); 4020 skb_zcopy_set(syn_data, fo->uarg, NULL); 4021 } 4022 /* No more data pending in inet_wait_for_connect() */ 4023 if (space == fo->size) 4024 fo->data = NULL; 4025 fo->copied = space; 4026 4027 tcp_connect_queue_skb(sk, syn_data); 4028 if (syn_data->len) 4029 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 4030 4031 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 4032 4033 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC); 4034 4035 /* Now full SYN+DATA was cloned and sent (or not), 4036 * remove the SYN from the original skb (syn_data) 4037 * we keep in write queue in case of a retransmit, as we 4038 * also have the SYN packet (with no data) in the same queue. 4039 */ 4040 TCP_SKB_CB(syn_data)->seq++; 4041 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 4042 if (!err) { 4043 tp->syn_data = (fo->copied > 0); 4044 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 4045 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 4046 goto done; 4047 } 4048 4049 /* data was not sent, put it in write_queue */ 4050 __skb_queue_tail(&sk->sk_write_queue, syn_data); 4051 tp->packets_out -= tcp_skb_pcount(syn_data); 4052 4053 fallback: 4054 /* Send a regular SYN with Fast Open cookie request option */ 4055 if (fo->cookie.len > 0) 4056 fo->cookie.len = 0; 4057 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 4058 if (err) 4059 tp->syn_fastopen = 0; 4060 done: 4061 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 4062 return err; 4063 } 4064 4065 /* Build a SYN and send it off. */ 4066 int tcp_connect(struct sock *sk) 4067 { 4068 struct tcp_sock *tp = tcp_sk(sk); 4069 struct sk_buff *buff; 4070 int err; 4071 4072 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 4073 4074 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO) 4075 /* Has to be checked late, after setting daddr/saddr/ops. 4076 * Return error if the peer has both a md5 and a tcp-ao key 4077 * configured as this is ambiguous. 4078 */ 4079 if (unlikely(rcu_dereference_protected(tp->md5sig_info, 4080 lockdep_sock_is_held(sk)))) { 4081 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1); 4082 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk); 4083 struct tcp_ao_info *ao_info; 4084 4085 ao_info = rcu_dereference_check(tp->ao_info, 4086 lockdep_sock_is_held(sk)); 4087 if (ao_info) { 4088 /* This is an extra check: tcp_ao_required() in 4089 * tcp_v{4,6}_parse_md5_keys() should prevent adding 4090 * md5 keys on ao_required socket. 4091 */ 4092 needs_ao |= ao_info->ao_required; 4093 WARN_ON_ONCE(ao_info->ao_required && needs_md5); 4094 } 4095 if (needs_md5 && needs_ao) 4096 return -EKEYREJECTED; 4097 4098 /* If we have a matching md5 key and no matching tcp-ao key 4099 * then free up ao_info if allocated. 4100 */ 4101 if (needs_md5) { 4102 tcp_ao_destroy_sock(sk, false); 4103 } else if (needs_ao) { 4104 tcp_clear_md5_list(sk); 4105 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 4106 lockdep_sock_is_held(sk))); 4107 } 4108 } 4109 #endif 4110 #ifdef CONFIG_TCP_AO 4111 if (unlikely(rcu_dereference_protected(tp->ao_info, 4112 lockdep_sock_is_held(sk)))) { 4113 /* Don't allow connecting if ao is configured but no 4114 * matching key is found. 4115 */ 4116 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1)) 4117 return -EKEYREJECTED; 4118 } 4119 #endif 4120 4121 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 4122 return -EHOSTUNREACH; /* Routing failure or similar. */ 4123 4124 tcp_connect_init(sk); 4125 4126 if (unlikely(tp->repair)) { 4127 tcp_finish_connect(sk, NULL); 4128 return 0; 4129 } 4130 4131 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 4132 if (unlikely(!buff)) 4133 return -ENOBUFS; 4134 4135 /* SYN eats a sequence byte, write_seq updated by 4136 * tcp_connect_queue_skb(). 4137 */ 4138 tcp_init_nondata_skb(buff, tp->write_seq, TCPHDR_SYN); 4139 tcp_mstamp_refresh(tp); 4140 tp->retrans_stamp = tcp_time_stamp_ts(tp); 4141 tcp_connect_queue_skb(sk, buff); 4142 tcp_ecn_send_syn(sk, buff); 4143 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 4144 4145 /* Send off SYN; include data in Fast Open. */ 4146 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 4147 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 4148 if (err == -ECONNREFUSED) 4149 return err; 4150 4151 /* We change tp->snd_nxt after the tcp_transmit_skb() call 4152 * in order to make this packet get counted in tcpOutSegs. 4153 */ 4154 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4155 tp->pushed_seq = tp->write_seq; 4156 buff = tcp_send_head(sk); 4157 if (unlikely(buff)) { 4158 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 4159 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 4160 } 4161 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 4162 4163 /* Timer for repeating the SYN until an answer. */ 4164 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 4165 inet_csk(sk)->icsk_rto, false); 4166 return 0; 4167 } 4168 EXPORT_SYMBOL(tcp_connect); 4169 4170 u32 tcp_delack_max(const struct sock *sk) 4171 { 4172 u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1; 4173 4174 return min(inet_csk(sk)->icsk_delack_max, delack_from_rto_min); 4175 } 4176 4177 /* Send out a delayed ack, the caller does the policy checking 4178 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 4179 * for details. 4180 */ 4181 void tcp_send_delayed_ack(struct sock *sk) 4182 { 4183 struct inet_connection_sock *icsk = inet_csk(sk); 4184 int ato = icsk->icsk_ack.ato; 4185 unsigned long timeout; 4186 4187 if (ato > TCP_DELACK_MIN) { 4188 const struct tcp_sock *tp = tcp_sk(sk); 4189 int max_ato = HZ / 2; 4190 4191 if (inet_csk_in_pingpong_mode(sk) || 4192 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4193 max_ato = TCP_DELACK_MAX; 4194 4195 /* Slow path, intersegment interval is "high". */ 4196 4197 /* If some rtt estimate is known, use it to bound delayed ack. 4198 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4199 * directly. 4200 */ 4201 if (tp->srtt_us) { 4202 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4203 TCP_DELACK_MIN); 4204 4205 if (rtt < max_ato) 4206 max_ato = rtt; 4207 } 4208 4209 ato = min(ato, max_ato); 4210 } 4211 4212 ato = min_t(u32, ato, tcp_delack_max(sk)); 4213 4214 /* Stay within the limit we were given */ 4215 timeout = jiffies + ato; 4216 4217 /* Use new timeout only if there wasn't a older one earlier. */ 4218 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4219 /* If delack timer is about to expire, send ACK now. */ 4220 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 4221 tcp_send_ack(sk); 4222 return; 4223 } 4224 4225 if (!time_before(timeout, icsk->icsk_ack.timeout)) 4226 timeout = icsk->icsk_ack.timeout; 4227 } 4228 smp_store_release(&icsk->icsk_ack.pending, 4229 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 4230 icsk->icsk_ack.timeout = timeout; 4231 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4232 } 4233 4234 /* This routine sends an ack and also updates the window. */ 4235 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4236 { 4237 struct sk_buff *buff; 4238 4239 /* If we have been reset, we may not send again. */ 4240 if (sk->sk_state == TCP_CLOSE) 4241 return; 4242 4243 /* We are not putting this on the write queue, so 4244 * tcp_transmit_skb() will set the ownership to this 4245 * sock. 4246 */ 4247 buff = alloc_skb(MAX_TCP_HEADER, 4248 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4249 if (unlikely(!buff)) { 4250 struct inet_connection_sock *icsk = inet_csk(sk); 4251 unsigned long delay; 4252 4253 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4254 if (delay < tcp_rto_max(sk)) 4255 icsk->icsk_ack.retry++; 4256 inet_csk_schedule_ack(sk); 4257 icsk->icsk_ack.ato = TCP_ATO_MIN; 4258 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, false); 4259 return; 4260 } 4261 4262 /* Reserve space for headers and prepare control bits. */ 4263 skb_reserve(buff, MAX_TCP_HEADER); 4264 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4265 4266 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4267 * too much. 4268 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4269 */ 4270 skb_set_tcp_pure_ack(buff); 4271 4272 /* Send it off, this clears delayed acks for us. */ 4273 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4274 } 4275 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4276 4277 void tcp_send_ack(struct sock *sk) 4278 { 4279 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4280 } 4281 4282 /* This routine sends a packet with an out of date sequence 4283 * number. It assumes the other end will try to ack it. 4284 * 4285 * Question: what should we make while urgent mode? 4286 * 4.4BSD forces sending single byte of data. We cannot send 4287 * out of window data, because we have SND.NXT==SND.MAX... 4288 * 4289 * Current solution: to send TWO zero-length segments in urgent mode: 4290 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4291 * out-of-date with SND.UNA-1 to probe window. 4292 */ 4293 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4294 { 4295 struct tcp_sock *tp = tcp_sk(sk); 4296 struct sk_buff *skb; 4297 4298 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4299 skb = alloc_skb(MAX_TCP_HEADER, 4300 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4301 if (!skb) 4302 return -1; 4303 4304 /* Reserve space for headers and set control bits. */ 4305 skb_reserve(skb, MAX_TCP_HEADER); 4306 /* Use a previous sequence. This should cause the other 4307 * end to send an ack. Don't queue or clone SKB, just 4308 * send it. 4309 */ 4310 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4311 NET_INC_STATS(sock_net(sk), mib); 4312 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4313 } 4314 4315 /* Called from setsockopt( ... TCP_REPAIR ) */ 4316 void tcp_send_window_probe(struct sock *sk) 4317 { 4318 if (sk->sk_state == TCP_ESTABLISHED) { 4319 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4320 tcp_mstamp_refresh(tcp_sk(sk)); 4321 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4322 } 4323 } 4324 4325 /* Initiate keepalive or window probe from timer. */ 4326 int tcp_write_wakeup(struct sock *sk, int mib) 4327 { 4328 struct tcp_sock *tp = tcp_sk(sk); 4329 struct sk_buff *skb; 4330 4331 if (sk->sk_state == TCP_CLOSE) 4332 return -1; 4333 4334 skb = tcp_send_head(sk); 4335 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4336 int err; 4337 unsigned int mss = tcp_current_mss(sk); 4338 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4339 4340 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4341 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4342 4343 /* We are probing the opening of a window 4344 * but the window size is != 0 4345 * must have been a result SWS avoidance ( sender ) 4346 */ 4347 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4348 skb->len > mss) { 4349 seg_size = min(seg_size, mss); 4350 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4351 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4352 skb, seg_size, mss, GFP_ATOMIC)) 4353 return -1; 4354 } else if (!tcp_skb_pcount(skb)) 4355 tcp_set_skb_tso_segs(skb, mss); 4356 4357 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4358 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4359 if (!err) 4360 tcp_event_new_data_sent(sk, skb); 4361 return err; 4362 } else { 4363 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4364 tcp_xmit_probe_skb(sk, 1, mib); 4365 return tcp_xmit_probe_skb(sk, 0, mib); 4366 } 4367 } 4368 4369 /* A window probe timeout has occurred. If window is not closed send 4370 * a partial packet else a zero probe. 4371 */ 4372 void tcp_send_probe0(struct sock *sk) 4373 { 4374 struct inet_connection_sock *icsk = inet_csk(sk); 4375 struct tcp_sock *tp = tcp_sk(sk); 4376 struct net *net = sock_net(sk); 4377 unsigned long timeout; 4378 int err; 4379 4380 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4381 4382 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4383 /* Cancel probe timer, if it is not required. */ 4384 icsk->icsk_probes_out = 0; 4385 icsk->icsk_backoff = 0; 4386 icsk->icsk_probes_tstamp = 0; 4387 return; 4388 } 4389 4390 icsk->icsk_probes_out++; 4391 if (err <= 0) { 4392 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4393 icsk->icsk_backoff++; 4394 timeout = tcp_probe0_when(sk, tcp_rto_max(sk)); 4395 } else { 4396 /* If packet was not sent due to local congestion, 4397 * Let senders fight for local resources conservatively. 4398 */ 4399 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4400 } 4401 4402 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4403 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, true); 4404 } 4405 4406 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4407 { 4408 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4409 struct flowi fl; 4410 int res; 4411 4412 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4413 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4414 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4415 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4416 NULL); 4417 if (!res) { 4418 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4419 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4420 if (unlikely(tcp_passive_fastopen(sk))) { 4421 /* sk has const attribute because listeners are lockless. 4422 * However in this case, we are dealing with a passive fastopen 4423 * socket thus we can change total_retrans value. 4424 */ 4425 tcp_sk_rw(sk)->total_retrans++; 4426 } 4427 trace_tcp_retransmit_synack(sk, req); 4428 } 4429 return res; 4430 } 4431 EXPORT_SYMBOL(tcp_rtx_synack); 4432