1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: Pedro Roque : Retransmit queue handled by TCP. 25 * : Fragmentation on mtu decrease 26 * : Segment collapse on retransmit 27 * : AF independence 28 * 29 * Linus Torvalds : send_delayed_ack 30 * David S. Miller : Charge memory using the right skb 31 * during syn/ack processing. 32 * David S. Miller : Output engine completely rewritten. 33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 34 * Cacophonix Gaul : draft-minshall-nagle-01 35 * J Hadi Salim : ECN support 36 * 37 */ 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/module.h> 43 #include <linux/smp_lock.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse = 1; 47 48 /* This limits the percentage of the congestion window which we 49 * will allow a single TSO frame to consume. Building TSO frames 50 * which are too large can cause TCP streams to be bursty. 51 */ 52 int sysctl_tcp_tso_win_divisor = 3; 53 54 static inline void update_send_head(struct sock *sk, struct tcp_sock *tp, 55 struct sk_buff *skb) 56 { 57 sk->sk_send_head = skb->next; 58 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue) 59 sk->sk_send_head = NULL; 60 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 61 tcp_packets_out_inc(sk, tp, skb); 62 } 63 64 /* SND.NXT, if window was not shrunk. 65 * If window has been shrunk, what should we make? It is not clear at all. 66 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 67 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 68 * invalid. OK, let's make this for now: 69 */ 70 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp) 71 { 72 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt)) 73 return tp->snd_nxt; 74 else 75 return tp->snd_una+tp->snd_wnd; 76 } 77 78 /* Calculate mss to advertise in SYN segment. 79 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 80 * 81 * 1. It is independent of path mtu. 82 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 83 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 84 * attached devices, because some buggy hosts are confused by 85 * large MSS. 86 * 4. We do not make 3, we advertise MSS, calculated from first 87 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 88 * This may be overridden via information stored in routing table. 89 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 90 * probably even Jumbo". 91 */ 92 static __u16 tcp_advertise_mss(struct sock *sk) 93 { 94 struct tcp_sock *tp = tcp_sk(sk); 95 struct dst_entry *dst = __sk_dst_get(sk); 96 int mss = tp->advmss; 97 98 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { 99 mss = dst_metric(dst, RTAX_ADVMSS); 100 tp->advmss = mss; 101 } 102 103 return (__u16)mss; 104 } 105 106 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 107 * This is the first part of cwnd validation mechanism. */ 108 static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst) 109 { 110 s32 delta = tcp_time_stamp - tp->lsndtime; 111 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 112 u32 cwnd = tp->snd_cwnd; 113 114 tcp_ca_event(tp, CA_EVENT_CWND_RESTART); 115 116 tp->snd_ssthresh = tcp_current_ssthresh(tp); 117 restart_cwnd = min(restart_cwnd, cwnd); 118 119 while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd) 120 cwnd >>= 1; 121 tp->snd_cwnd = max(cwnd, restart_cwnd); 122 tp->snd_cwnd_stamp = tcp_time_stamp; 123 tp->snd_cwnd_used = 0; 124 } 125 126 static inline void tcp_event_data_sent(struct tcp_sock *tp, 127 struct sk_buff *skb, struct sock *sk) 128 { 129 u32 now = tcp_time_stamp; 130 131 if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto) 132 tcp_cwnd_restart(tp, __sk_dst_get(sk)); 133 134 tp->lsndtime = now; 135 136 /* If it is a reply for ato after last received 137 * packet, enter pingpong mode. 138 */ 139 if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato) 140 tp->ack.pingpong = 1; 141 } 142 143 static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 144 { 145 struct tcp_sock *tp = tcp_sk(sk); 146 147 tcp_dec_quickack_mode(tp, pkts); 148 tcp_clear_xmit_timer(sk, TCP_TIME_DACK); 149 } 150 151 /* Determine a window scaling and initial window to offer. 152 * Based on the assumption that the given amount of space 153 * will be offered. Store the results in the tp structure. 154 * NOTE: for smooth operation initial space offering should 155 * be a multiple of mss if possible. We assume here that mss >= 1. 156 * This MUST be enforced by all callers. 157 */ 158 void tcp_select_initial_window(int __space, __u32 mss, 159 __u32 *rcv_wnd, __u32 *window_clamp, 160 int wscale_ok, __u8 *rcv_wscale) 161 { 162 unsigned int space = (__space < 0 ? 0 : __space); 163 164 /* If no clamp set the clamp to the max possible scaled window */ 165 if (*window_clamp == 0) 166 (*window_clamp) = (65535 << 14); 167 space = min(*window_clamp, space); 168 169 /* Quantize space offering to a multiple of mss if possible. */ 170 if (space > mss) 171 space = (space / mss) * mss; 172 173 /* NOTE: offering an initial window larger than 32767 174 * will break some buggy TCP stacks. We try to be nice. 175 * If we are not window scaling, then this truncates 176 * our initial window offering to 32k. There should also 177 * be a sysctl option to stop being nice. 178 */ 179 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 180 (*rcv_wscale) = 0; 181 if (wscale_ok) { 182 /* Set window scaling on max possible window 183 * See RFC1323 for an explanation of the limit to 14 184 */ 185 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 186 while (space > 65535 && (*rcv_wscale) < 14) { 187 space >>= 1; 188 (*rcv_wscale)++; 189 } 190 } 191 192 /* Set initial window to value enough for senders, 193 * following RFC1414. Senders, not following this RFC, 194 * will be satisfied with 2. 195 */ 196 if (mss > (1<<*rcv_wscale)) { 197 int init_cwnd = 4; 198 if (mss > 1460*3) 199 init_cwnd = 2; 200 else if (mss > 1460) 201 init_cwnd = 3; 202 if (*rcv_wnd > init_cwnd*mss) 203 *rcv_wnd = init_cwnd*mss; 204 } 205 206 /* Set the clamp no higher than max representable value */ 207 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 208 } 209 210 /* Chose a new window to advertise, update state in tcp_sock for the 211 * socket, and return result with RFC1323 scaling applied. The return 212 * value can be stuffed directly into th->window for an outgoing 213 * frame. 214 */ 215 static __inline__ u16 tcp_select_window(struct sock *sk) 216 { 217 struct tcp_sock *tp = tcp_sk(sk); 218 u32 cur_win = tcp_receive_window(tp); 219 u32 new_win = __tcp_select_window(sk); 220 221 /* Never shrink the offered window */ 222 if(new_win < cur_win) { 223 /* Danger Will Robinson! 224 * Don't update rcv_wup/rcv_wnd here or else 225 * we will not be able to advertise a zero 226 * window in time. --DaveM 227 * 228 * Relax Will Robinson. 229 */ 230 new_win = cur_win; 231 } 232 tp->rcv_wnd = new_win; 233 tp->rcv_wup = tp->rcv_nxt; 234 235 /* Make sure we do not exceed the maximum possible 236 * scaled window. 237 */ 238 if (!tp->rx_opt.rcv_wscale) 239 new_win = min(new_win, MAX_TCP_WINDOW); 240 else 241 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 242 243 /* RFC1323 scaling applied */ 244 new_win >>= tp->rx_opt.rcv_wscale; 245 246 /* If we advertise zero window, disable fast path. */ 247 if (new_win == 0) 248 tp->pred_flags = 0; 249 250 return new_win; 251 } 252 253 254 /* This routine actually transmits TCP packets queued in by 255 * tcp_do_sendmsg(). This is used by both the initial 256 * transmission and possible later retransmissions. 257 * All SKB's seen here are completely headerless. It is our 258 * job to build the TCP header, and pass the packet down to 259 * IP so it can do the same plus pass the packet off to the 260 * device. 261 * 262 * We are working here with either a clone of the original 263 * SKB, or a fresh unique copy made by the retransmit engine. 264 */ 265 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb) 266 { 267 if (skb != NULL) { 268 struct inet_sock *inet = inet_sk(sk); 269 struct tcp_sock *tp = tcp_sk(sk); 270 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 271 int tcp_header_size = tp->tcp_header_len; 272 struct tcphdr *th; 273 int sysctl_flags; 274 int err; 275 276 BUG_ON(!tcp_skb_pcount(skb)); 277 278 #define SYSCTL_FLAG_TSTAMPS 0x1 279 #define SYSCTL_FLAG_WSCALE 0x2 280 #define SYSCTL_FLAG_SACK 0x4 281 282 /* If congestion control is doing timestamping */ 283 if (tp->ca_ops->rtt_sample) 284 do_gettimeofday(&skb->stamp); 285 286 sysctl_flags = 0; 287 if (tcb->flags & TCPCB_FLAG_SYN) { 288 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS; 289 if(sysctl_tcp_timestamps) { 290 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED; 291 sysctl_flags |= SYSCTL_FLAG_TSTAMPS; 292 } 293 if(sysctl_tcp_window_scaling) { 294 tcp_header_size += TCPOLEN_WSCALE_ALIGNED; 295 sysctl_flags |= SYSCTL_FLAG_WSCALE; 296 } 297 if(sysctl_tcp_sack) { 298 sysctl_flags |= SYSCTL_FLAG_SACK; 299 if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS)) 300 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED; 301 } 302 } else if (tp->rx_opt.eff_sacks) { 303 /* A SACK is 2 pad bytes, a 2 byte header, plus 304 * 2 32-bit sequence numbers for each SACK block. 305 */ 306 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED + 307 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); 308 } 309 310 if (tcp_packets_in_flight(tp) == 0) 311 tcp_ca_event(tp, CA_EVENT_TX_START); 312 313 th = (struct tcphdr *) skb_push(skb, tcp_header_size); 314 skb->h.th = th; 315 skb_set_owner_w(skb, sk); 316 317 /* Build TCP header and checksum it. */ 318 th->source = inet->sport; 319 th->dest = inet->dport; 320 th->seq = htonl(tcb->seq); 321 th->ack_seq = htonl(tp->rcv_nxt); 322 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->flags); 323 if (tcb->flags & TCPCB_FLAG_SYN) { 324 /* RFC1323: The window in SYN & SYN/ACK segments 325 * is never scaled. 326 */ 327 th->window = htons(tp->rcv_wnd); 328 } else { 329 th->window = htons(tcp_select_window(sk)); 330 } 331 th->check = 0; 332 th->urg_ptr = 0; 333 334 if (tp->urg_mode && 335 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) { 336 th->urg_ptr = htons(tp->snd_up-tcb->seq); 337 th->urg = 1; 338 } 339 340 if (tcb->flags & TCPCB_FLAG_SYN) { 341 tcp_syn_build_options((__u32 *)(th + 1), 342 tcp_advertise_mss(sk), 343 (sysctl_flags & SYSCTL_FLAG_TSTAMPS), 344 (sysctl_flags & SYSCTL_FLAG_SACK), 345 (sysctl_flags & SYSCTL_FLAG_WSCALE), 346 tp->rx_opt.rcv_wscale, 347 tcb->when, 348 tp->rx_opt.ts_recent); 349 } else { 350 tcp_build_and_update_options((__u32 *)(th + 1), 351 tp, tcb->when); 352 353 TCP_ECN_send(sk, tp, skb, tcp_header_size); 354 } 355 tp->af_specific->send_check(sk, th, skb->len, skb); 356 357 if (tcb->flags & TCPCB_FLAG_ACK) 358 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 359 360 if (skb->len != tcp_header_size) 361 tcp_event_data_sent(tp, skb, sk); 362 363 TCP_INC_STATS(TCP_MIB_OUTSEGS); 364 365 err = tp->af_specific->queue_xmit(skb, 0); 366 if (err <= 0) 367 return err; 368 369 tcp_enter_cwr(tp); 370 371 /* NET_XMIT_CN is special. It does not guarantee, 372 * that this packet is lost. It tells that device 373 * is about to start to drop packets or already 374 * drops some packets of the same priority and 375 * invokes us to send less aggressively. 376 */ 377 return err == NET_XMIT_CN ? 0 : err; 378 } 379 return -ENOBUFS; 380 #undef SYSCTL_FLAG_TSTAMPS 381 #undef SYSCTL_FLAG_WSCALE 382 #undef SYSCTL_FLAG_SACK 383 } 384 385 386 /* This routine just queue's the buffer 387 * 388 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 389 * otherwise socket can stall. 390 */ 391 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 392 { 393 struct tcp_sock *tp = tcp_sk(sk); 394 395 /* Advance write_seq and place onto the write_queue. */ 396 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 397 skb_header_release(skb); 398 __skb_queue_tail(&sk->sk_write_queue, skb); 399 sk_charge_skb(sk, skb); 400 401 /* Queue it, remembering where we must start sending. */ 402 if (sk->sk_send_head == NULL) 403 sk->sk_send_head = skb; 404 } 405 406 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb) 407 { 408 struct tcp_sock *tp = tcp_sk(sk); 409 410 if (skb->len <= tp->mss_cache || 411 !(sk->sk_route_caps & NETIF_F_TSO)) { 412 /* Avoid the costly divide in the normal 413 * non-TSO case. 414 */ 415 skb_shinfo(skb)->tso_segs = 1; 416 skb_shinfo(skb)->tso_size = 0; 417 } else { 418 unsigned int factor; 419 420 factor = skb->len + (tp->mss_cache - 1); 421 factor /= tp->mss_cache; 422 skb_shinfo(skb)->tso_segs = factor; 423 skb_shinfo(skb)->tso_size = tp->mss_cache; 424 } 425 } 426 427 /* Function to create two new TCP segments. Shrinks the given segment 428 * to the specified size and appends a new segment with the rest of the 429 * packet to the list. This won't be called frequently, I hope. 430 * Remember, these are still headerless SKBs at this point. 431 */ 432 static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len) 433 { 434 struct tcp_sock *tp = tcp_sk(sk); 435 struct sk_buff *buff; 436 int nsize; 437 u16 flags; 438 439 nsize = skb_headlen(skb) - len; 440 if (nsize < 0) 441 nsize = 0; 442 443 if (skb_cloned(skb) && 444 skb_is_nonlinear(skb) && 445 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 446 return -ENOMEM; 447 448 /* Get a new skb... force flag on. */ 449 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 450 if (buff == NULL) 451 return -ENOMEM; /* We'll just try again later. */ 452 sk_charge_skb(sk, buff); 453 454 /* Correct the sequence numbers. */ 455 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 456 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 457 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 458 459 /* PSH and FIN should only be set in the second packet. */ 460 flags = TCP_SKB_CB(skb)->flags; 461 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 462 TCP_SKB_CB(buff)->flags = flags; 463 TCP_SKB_CB(buff)->sacked = 464 (TCP_SKB_CB(skb)->sacked & 465 (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL)); 466 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL; 467 468 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) { 469 /* Copy and checksum data tail into the new buffer. */ 470 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize), 471 nsize, 0); 472 473 skb_trim(skb, len); 474 475 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 476 } else { 477 skb->ip_summed = CHECKSUM_HW; 478 skb_split(skb, buff, len); 479 } 480 481 buff->ip_summed = skb->ip_summed; 482 483 /* Looks stupid, but our code really uses when of 484 * skbs, which it never sent before. --ANK 485 */ 486 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 487 buff->stamp = skb->stamp; 488 489 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { 490 tp->lost_out -= tcp_skb_pcount(skb); 491 tp->left_out -= tcp_skb_pcount(skb); 492 } 493 494 /* Fix up tso_factor for both original and new SKB. */ 495 tcp_set_skb_tso_segs(sk, skb); 496 tcp_set_skb_tso_segs(sk, buff); 497 498 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { 499 tp->lost_out += tcp_skb_pcount(skb); 500 tp->left_out += tcp_skb_pcount(skb); 501 } 502 503 if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) { 504 tp->lost_out += tcp_skb_pcount(buff); 505 tp->left_out += tcp_skb_pcount(buff); 506 } 507 508 /* Link BUFF into the send queue. */ 509 skb_header_release(buff); 510 __skb_append(skb, buff); 511 512 return 0; 513 } 514 515 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 516 * eventually). The difference is that pulled data not copied, but 517 * immediately discarded. 518 */ 519 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len) 520 { 521 int i, k, eat; 522 523 eat = len; 524 k = 0; 525 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) { 526 if (skb_shinfo(skb)->frags[i].size <= eat) { 527 put_page(skb_shinfo(skb)->frags[i].page); 528 eat -= skb_shinfo(skb)->frags[i].size; 529 } else { 530 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 531 if (eat) { 532 skb_shinfo(skb)->frags[k].page_offset += eat; 533 skb_shinfo(skb)->frags[k].size -= eat; 534 eat = 0; 535 } 536 k++; 537 } 538 } 539 skb_shinfo(skb)->nr_frags = k; 540 541 skb->tail = skb->data; 542 skb->data_len -= len; 543 skb->len = skb->data_len; 544 return skb->tail; 545 } 546 547 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 548 { 549 if (skb_cloned(skb) && 550 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 551 return -ENOMEM; 552 553 if (len <= skb_headlen(skb)) { 554 __skb_pull(skb, len); 555 } else { 556 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL) 557 return -ENOMEM; 558 } 559 560 TCP_SKB_CB(skb)->seq += len; 561 skb->ip_summed = CHECKSUM_HW; 562 563 skb->truesize -= len; 564 sk->sk_wmem_queued -= len; 565 sk->sk_forward_alloc += len; 566 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 567 568 /* Any change of skb->len requires recalculation of tso 569 * factor and mss. 570 */ 571 if (tcp_skb_pcount(skb) > 1) 572 tcp_set_skb_tso_segs(sk, skb); 573 574 return 0; 575 } 576 577 /* This function synchronize snd mss to current pmtu/exthdr set. 578 579 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 580 for TCP options, but includes only bare TCP header. 581 582 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 583 It is minumum of user_mss and mss received with SYN. 584 It also does not include TCP options. 585 586 tp->pmtu_cookie is last pmtu, seen by this function. 587 588 tp->mss_cache is current effective sending mss, including 589 all tcp options except for SACKs. It is evaluated, 590 taking into account current pmtu, but never exceeds 591 tp->rx_opt.mss_clamp. 592 593 NOTE1. rfc1122 clearly states that advertised MSS 594 DOES NOT include either tcp or ip options. 595 596 NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside 597 this function. --ANK (980731) 598 */ 599 600 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 601 { 602 struct tcp_sock *tp = tcp_sk(sk); 603 int mss_now; 604 605 /* Calculate base mss without TCP options: 606 It is MMS_S - sizeof(tcphdr) of rfc1122 607 */ 608 mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr); 609 610 /* Clamp it (mss_clamp does not include tcp options) */ 611 if (mss_now > tp->rx_opt.mss_clamp) 612 mss_now = tp->rx_opt.mss_clamp; 613 614 /* Now subtract optional transport overhead */ 615 mss_now -= tp->ext_header_len; 616 617 /* Then reserve room for full set of TCP options and 8 bytes of data */ 618 if (mss_now < 48) 619 mss_now = 48; 620 621 /* Now subtract TCP options size, not including SACKs */ 622 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); 623 624 /* Bound mss with half of window */ 625 if (tp->max_window && mss_now > (tp->max_window>>1)) 626 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len); 627 628 /* And store cached results */ 629 tp->pmtu_cookie = pmtu; 630 tp->mss_cache = mss_now; 631 632 return mss_now; 633 } 634 635 /* Compute the current effective MSS, taking SACKs and IP options, 636 * and even PMTU discovery events into account. 637 * 638 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up 639 * cannot be large. However, taking into account rare use of URG, this 640 * is not a big flaw. 641 */ 642 unsigned int tcp_current_mss(struct sock *sk, int large_allowed) 643 { 644 struct tcp_sock *tp = tcp_sk(sk); 645 struct dst_entry *dst = __sk_dst_get(sk); 646 u32 mss_now; 647 u16 xmit_size_goal; 648 int doing_tso = 0; 649 650 mss_now = tp->mss_cache; 651 652 if (large_allowed && 653 (sk->sk_route_caps & NETIF_F_TSO) && 654 !tp->urg_mode) 655 doing_tso = 1; 656 657 if (dst) { 658 u32 mtu = dst_mtu(dst); 659 if (mtu != tp->pmtu_cookie) 660 mss_now = tcp_sync_mss(sk, mtu); 661 } 662 663 if (tp->rx_opt.eff_sacks) 664 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED + 665 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); 666 667 xmit_size_goal = mss_now; 668 669 if (doing_tso) { 670 xmit_size_goal = 65535 - 671 tp->af_specific->net_header_len - 672 tp->ext_header_len - tp->tcp_header_len; 673 674 if (tp->max_window && 675 (xmit_size_goal > (tp->max_window >> 1))) 676 xmit_size_goal = max((tp->max_window >> 1), 677 68U - tp->tcp_header_len); 678 679 xmit_size_goal -= (xmit_size_goal % mss_now); 680 } 681 tp->xmit_size_goal = xmit_size_goal; 682 683 return mss_now; 684 } 685 686 /* Congestion window validation. (RFC2861) */ 687 688 static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp) 689 { 690 __u32 packets_out = tp->packets_out; 691 692 if (packets_out >= tp->snd_cwnd) { 693 /* Network is feed fully. */ 694 tp->snd_cwnd_used = 0; 695 tp->snd_cwnd_stamp = tcp_time_stamp; 696 } else { 697 /* Network starves. */ 698 if (tp->packets_out > tp->snd_cwnd_used) 699 tp->snd_cwnd_used = tp->packets_out; 700 701 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= tp->rto) 702 tcp_cwnd_application_limited(sk); 703 } 704 } 705 706 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd) 707 { 708 u32 window, cwnd_len; 709 710 window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq); 711 cwnd_len = mss_now * cwnd; 712 return min(window, cwnd_len); 713 } 714 715 /* Can at least one segment of SKB be sent right now, according to the 716 * congestion window rules? If so, return how many segments are allowed. 717 */ 718 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb) 719 { 720 u32 in_flight, cwnd; 721 722 /* Don't be strict about the congestion window for the final FIN. */ 723 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 724 return 1; 725 726 in_flight = tcp_packets_in_flight(tp); 727 cwnd = tp->snd_cwnd; 728 if (in_flight < cwnd) 729 return (cwnd - in_flight); 730 731 return 0; 732 } 733 734 /* This must be invoked the first time we consider transmitting 735 * SKB onto the wire. 736 */ 737 static inline int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb) 738 { 739 int tso_segs = tcp_skb_pcount(skb); 740 741 if (!tso_segs) { 742 tcp_set_skb_tso_segs(sk, skb); 743 tso_segs = tcp_skb_pcount(skb); 744 } 745 return tso_segs; 746 } 747 748 static inline int tcp_minshall_check(const struct tcp_sock *tp) 749 { 750 return after(tp->snd_sml,tp->snd_una) && 751 !after(tp->snd_sml, tp->snd_nxt); 752 } 753 754 /* Return 0, if packet can be sent now without violation Nagle's rules: 755 * 1. It is full sized. 756 * 2. Or it contains FIN. (already checked by caller) 757 * 3. Or TCP_NODELAY was set. 758 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 759 * With Minshall's modification: all sent small packets are ACKed. 760 */ 761 762 static inline int tcp_nagle_check(const struct tcp_sock *tp, 763 const struct sk_buff *skb, 764 unsigned mss_now, int nonagle) 765 { 766 return (skb->len < mss_now && 767 ((nonagle&TCP_NAGLE_CORK) || 768 (!nonagle && 769 tp->packets_out && 770 tcp_minshall_check(tp)))); 771 } 772 773 /* Return non-zero if the Nagle test allows this packet to be 774 * sent now. 775 */ 776 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb, 777 unsigned int cur_mss, int nonagle) 778 { 779 /* Nagle rule does not apply to frames, which sit in the middle of the 780 * write_queue (they have no chances to get new data). 781 * 782 * This is implemented in the callers, where they modify the 'nonagle' 783 * argument based upon the location of SKB in the send queue. 784 */ 785 if (nonagle & TCP_NAGLE_PUSH) 786 return 1; 787 788 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 789 if (tp->urg_mode || 790 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) 791 return 1; 792 793 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 794 return 1; 795 796 return 0; 797 } 798 799 /* Does at least the first segment of SKB fit into the send window? */ 800 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss) 801 { 802 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 803 804 if (skb->len > cur_mss) 805 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 806 807 return !after(end_seq, tp->snd_una + tp->snd_wnd); 808 } 809 810 /* This checks if the data bearing packet SKB (usually sk->sk_send_head) 811 * should be put on the wire right now. If so, it returns the number of 812 * packets allowed by the congestion window. 813 */ 814 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb, 815 unsigned int cur_mss, int nonagle) 816 { 817 struct tcp_sock *tp = tcp_sk(sk); 818 unsigned int cwnd_quota; 819 820 tcp_init_tso_segs(sk, skb); 821 822 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 823 return 0; 824 825 cwnd_quota = tcp_cwnd_test(tp, skb); 826 if (cwnd_quota && 827 !tcp_snd_wnd_test(tp, skb, cur_mss)) 828 cwnd_quota = 0; 829 830 return cwnd_quota; 831 } 832 833 static inline int tcp_skb_is_last(const struct sock *sk, 834 const struct sk_buff *skb) 835 { 836 return skb->next == (struct sk_buff *)&sk->sk_write_queue; 837 } 838 839 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp) 840 { 841 struct sk_buff *skb = sk->sk_send_head; 842 843 return (skb && 844 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1), 845 (tcp_skb_is_last(sk, skb) ? 846 TCP_NAGLE_PUSH : 847 tp->nonagle))); 848 } 849 850 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 851 * which is put after SKB on the list. It is very much like 852 * tcp_fragment() except that it may make several kinds of assumptions 853 * in order to speed up the splitting operation. In particular, we 854 * know that all the data is in scatter-gather pages, and that the 855 * packet has never been sent out before (and thus is not cloned). 856 */ 857 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len) 858 { 859 struct sk_buff *buff; 860 int nlen = skb->len - len; 861 u16 flags; 862 863 /* All of a TSO frame must be composed of paged data. */ 864 BUG_ON(skb->len != skb->data_len); 865 866 buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC); 867 if (unlikely(buff == NULL)) 868 return -ENOMEM; 869 870 buff->truesize = nlen; 871 skb->truesize -= nlen; 872 873 /* Correct the sequence numbers. */ 874 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 875 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 876 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 877 878 /* PSH and FIN should only be set in the second packet. */ 879 flags = TCP_SKB_CB(skb)->flags; 880 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 881 TCP_SKB_CB(buff)->flags = flags; 882 883 /* This packet was never sent out yet, so no SACK bits. */ 884 TCP_SKB_CB(buff)->sacked = 0; 885 886 buff->ip_summed = skb->ip_summed = CHECKSUM_HW; 887 skb_split(skb, buff, len); 888 889 /* Fix up tso_factor for both original and new SKB. */ 890 tcp_set_skb_tso_segs(sk, skb); 891 tcp_set_skb_tso_segs(sk, buff); 892 893 /* Link BUFF into the send queue. */ 894 skb_header_release(buff); 895 __skb_append(skb, buff); 896 897 return 0; 898 } 899 900 /* Try to defer sending, if possible, in order to minimize the amount 901 * of TSO splitting we do. View it as a kind of TSO Nagle test. 902 * 903 * This algorithm is from John Heffner. 904 */ 905 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 906 { 907 u32 send_win, cong_win, limit, in_flight; 908 909 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 910 return 0; 911 912 if (tp->ca_state != TCP_CA_Open) 913 return 0; 914 915 in_flight = tcp_packets_in_flight(tp); 916 917 BUG_ON(tcp_skb_pcount(skb) <= 1 || 918 (tp->snd_cwnd <= in_flight)); 919 920 send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq; 921 922 /* From in_flight test above, we know that cwnd > in_flight. */ 923 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 924 925 limit = min(send_win, cong_win); 926 927 /* If sk_send_head can be sent fully now, just do it. */ 928 if (skb->len <= limit) 929 return 0; 930 931 if (sysctl_tcp_tso_win_divisor) { 932 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 933 934 /* If at least some fraction of a window is available, 935 * just use it. 936 */ 937 chunk /= sysctl_tcp_tso_win_divisor; 938 if (limit >= chunk) 939 return 0; 940 } else { 941 /* Different approach, try not to defer past a single 942 * ACK. Receiver should ACK every other full sized 943 * frame, so if we have space for more than 3 frames 944 * then send now. 945 */ 946 if (limit > tcp_max_burst(tp) * tp->mss_cache) 947 return 0; 948 } 949 950 /* Ok, it looks like it is advisable to defer. */ 951 return 1; 952 } 953 954 /* This routine writes packets to the network. It advances the 955 * send_head. This happens as incoming acks open up the remote 956 * window for us. 957 * 958 * Returns 1, if no segments are in flight and we have queued segments, but 959 * cannot send anything now because of SWS or another problem. 960 */ 961 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle) 962 { 963 struct tcp_sock *tp = tcp_sk(sk); 964 struct sk_buff *skb; 965 unsigned int tso_segs, sent_pkts; 966 int cwnd_quota; 967 968 /* If we are closed, the bytes will have to remain here. 969 * In time closedown will finish, we empty the write queue and all 970 * will be happy. 971 */ 972 if (unlikely(sk->sk_state == TCP_CLOSE)) 973 return 0; 974 975 skb = sk->sk_send_head; 976 if (unlikely(!skb)) 977 return 0; 978 979 tso_segs = tcp_init_tso_segs(sk, skb); 980 cwnd_quota = tcp_cwnd_test(tp, skb); 981 if (unlikely(!cwnd_quota)) 982 goto out; 983 984 sent_pkts = 0; 985 while (likely(tcp_snd_wnd_test(tp, skb, mss_now))) { 986 BUG_ON(!tso_segs); 987 988 if (tso_segs == 1) { 989 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 990 (tcp_skb_is_last(sk, skb) ? 991 nonagle : TCP_NAGLE_PUSH)))) 992 break; 993 } else { 994 if (tcp_tso_should_defer(sk, tp, skb)) 995 break; 996 } 997 998 if (tso_segs > 1) { 999 u32 limit = tcp_window_allows(tp, skb, 1000 mss_now, cwnd_quota); 1001 1002 if (skb->len < limit) { 1003 unsigned int trim = skb->len % mss_now; 1004 1005 if (trim) 1006 limit = skb->len - trim; 1007 } 1008 if (skb->len > limit) { 1009 if (tso_fragment(sk, skb, limit)) 1010 break; 1011 } 1012 } else if (unlikely(skb->len > mss_now)) { 1013 if (unlikely(tcp_fragment(sk, skb, mss_now))) 1014 break; 1015 } 1016 1017 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1018 1019 if (unlikely(tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)))) 1020 break; 1021 1022 /* Advance the send_head. This one is sent out. 1023 * This call will increment packets_out. 1024 */ 1025 update_send_head(sk, tp, skb); 1026 1027 tcp_minshall_update(tp, mss_now, skb); 1028 sent_pkts++; 1029 1030 /* Do not optimize this to use tso_segs. If we chopped up 1031 * the packet above, tso_segs will no longer be valid. 1032 */ 1033 cwnd_quota -= tcp_skb_pcount(skb); 1034 1035 BUG_ON(cwnd_quota < 0); 1036 if (!cwnd_quota) 1037 break; 1038 1039 skb = sk->sk_send_head; 1040 if (!skb) 1041 break; 1042 tso_segs = tcp_init_tso_segs(sk, skb); 1043 } 1044 1045 if (likely(sent_pkts)) { 1046 tcp_cwnd_validate(sk, tp); 1047 return 0; 1048 } 1049 out: 1050 return !tp->packets_out && sk->sk_send_head; 1051 } 1052 1053 /* Push out any pending frames which were held back due to 1054 * TCP_CORK or attempt at coalescing tiny packets. 1055 * The socket must be locked by the caller. 1056 */ 1057 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp, 1058 unsigned int cur_mss, int nonagle) 1059 { 1060 struct sk_buff *skb = sk->sk_send_head; 1061 1062 if (skb) { 1063 if (tcp_write_xmit(sk, cur_mss, nonagle)) 1064 tcp_check_probe_timer(sk, tp); 1065 } 1066 } 1067 1068 /* Send _single_ skb sitting at the send head. This function requires 1069 * true push pending frames to setup probe timer etc. 1070 */ 1071 void tcp_push_one(struct sock *sk, unsigned int mss_now) 1072 { 1073 struct tcp_sock *tp = tcp_sk(sk); 1074 struct sk_buff *skb = sk->sk_send_head; 1075 unsigned int tso_segs, cwnd_quota; 1076 1077 BUG_ON(!skb || skb->len < mss_now); 1078 1079 tso_segs = tcp_init_tso_segs(sk, skb); 1080 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH); 1081 1082 if (likely(cwnd_quota)) { 1083 BUG_ON(!tso_segs); 1084 1085 if (tso_segs > 1) { 1086 u32 limit = tcp_window_allows(tp, skb, 1087 mss_now, cwnd_quota); 1088 1089 if (skb->len < limit) { 1090 unsigned int trim = skb->len % mss_now; 1091 1092 if (trim) 1093 limit = skb->len - trim; 1094 } 1095 if (skb->len > limit) { 1096 if (unlikely(tso_fragment(sk, skb, limit))) 1097 return; 1098 } 1099 } else if (unlikely(skb->len > mss_now)) { 1100 if (unlikely(tcp_fragment(sk, skb, mss_now))) 1101 return; 1102 } 1103 1104 /* Send it out now. */ 1105 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1106 1107 if (likely(!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation)))) { 1108 update_send_head(sk, tp, skb); 1109 tcp_cwnd_validate(sk, tp); 1110 return; 1111 } 1112 } 1113 } 1114 1115 /* This function returns the amount that we can raise the 1116 * usable window based on the following constraints 1117 * 1118 * 1. The window can never be shrunk once it is offered (RFC 793) 1119 * 2. We limit memory per socket 1120 * 1121 * RFC 1122: 1122 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 1123 * RECV.NEXT + RCV.WIN fixed until: 1124 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 1125 * 1126 * i.e. don't raise the right edge of the window until you can raise 1127 * it at least MSS bytes. 1128 * 1129 * Unfortunately, the recommended algorithm breaks header prediction, 1130 * since header prediction assumes th->window stays fixed. 1131 * 1132 * Strictly speaking, keeping th->window fixed violates the receiver 1133 * side SWS prevention criteria. The problem is that under this rule 1134 * a stream of single byte packets will cause the right side of the 1135 * window to always advance by a single byte. 1136 * 1137 * Of course, if the sender implements sender side SWS prevention 1138 * then this will not be a problem. 1139 * 1140 * BSD seems to make the following compromise: 1141 * 1142 * If the free space is less than the 1/4 of the maximum 1143 * space available and the free space is less than 1/2 mss, 1144 * then set the window to 0. 1145 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 1146 * Otherwise, just prevent the window from shrinking 1147 * and from being larger than the largest representable value. 1148 * 1149 * This prevents incremental opening of the window in the regime 1150 * where TCP is limited by the speed of the reader side taking 1151 * data out of the TCP receive queue. It does nothing about 1152 * those cases where the window is constrained on the sender side 1153 * because the pipeline is full. 1154 * 1155 * BSD also seems to "accidentally" limit itself to windows that are a 1156 * multiple of MSS, at least until the free space gets quite small. 1157 * This would appear to be a side effect of the mbuf implementation. 1158 * Combining these two algorithms results in the observed behavior 1159 * of having a fixed window size at almost all times. 1160 * 1161 * Below we obtain similar behavior by forcing the offered window to 1162 * a multiple of the mss when it is feasible to do so. 1163 * 1164 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 1165 * Regular options like TIMESTAMP are taken into account. 1166 */ 1167 u32 __tcp_select_window(struct sock *sk) 1168 { 1169 struct tcp_sock *tp = tcp_sk(sk); 1170 /* MSS for the peer's data. Previous verions used mss_clamp 1171 * here. I don't know if the value based on our guesses 1172 * of peer's MSS is better for the performance. It's more correct 1173 * but may be worse for the performance because of rcv_mss 1174 * fluctuations. --SAW 1998/11/1 1175 */ 1176 int mss = tp->ack.rcv_mss; 1177 int free_space = tcp_space(sk); 1178 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 1179 int window; 1180 1181 if (mss > full_space) 1182 mss = full_space; 1183 1184 if (free_space < full_space/2) { 1185 tp->ack.quick = 0; 1186 1187 if (tcp_memory_pressure) 1188 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss); 1189 1190 if (free_space < mss) 1191 return 0; 1192 } 1193 1194 if (free_space > tp->rcv_ssthresh) 1195 free_space = tp->rcv_ssthresh; 1196 1197 /* Don't do rounding if we are using window scaling, since the 1198 * scaled window will not line up with the MSS boundary anyway. 1199 */ 1200 window = tp->rcv_wnd; 1201 if (tp->rx_opt.rcv_wscale) { 1202 window = free_space; 1203 1204 /* Advertise enough space so that it won't get scaled away. 1205 * Import case: prevent zero window announcement if 1206 * 1<<rcv_wscale > mss. 1207 */ 1208 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 1209 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 1210 << tp->rx_opt.rcv_wscale); 1211 } else { 1212 /* Get the largest window that is a nice multiple of mss. 1213 * Window clamp already applied above. 1214 * If our current window offering is within 1 mss of the 1215 * free space we just keep it. This prevents the divide 1216 * and multiply from happening most of the time. 1217 * We also don't do any window rounding when the free space 1218 * is too small. 1219 */ 1220 if (window <= free_space - mss || window > free_space) 1221 window = (free_space/mss)*mss; 1222 } 1223 1224 return window; 1225 } 1226 1227 /* Attempt to collapse two adjacent SKB's during retransmission. */ 1228 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now) 1229 { 1230 struct tcp_sock *tp = tcp_sk(sk); 1231 struct sk_buff *next_skb = skb->next; 1232 1233 /* The first test we must make is that neither of these two 1234 * SKB's are still referenced by someone else. 1235 */ 1236 if (!skb_cloned(skb) && !skb_cloned(next_skb)) { 1237 int skb_size = skb->len, next_skb_size = next_skb->len; 1238 u16 flags = TCP_SKB_CB(skb)->flags; 1239 1240 /* Also punt if next skb has been SACK'd. */ 1241 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) 1242 return; 1243 1244 /* Next skb is out of window. */ 1245 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd)) 1246 return; 1247 1248 /* Punt if not enough space exists in the first SKB for 1249 * the data in the second, or the total combined payload 1250 * would exceed the MSS. 1251 */ 1252 if ((next_skb_size > skb_tailroom(skb)) || 1253 ((skb_size + next_skb_size) > mss_now)) 1254 return; 1255 1256 BUG_ON(tcp_skb_pcount(skb) != 1 || 1257 tcp_skb_pcount(next_skb) != 1); 1258 1259 /* Ok. We will be able to collapse the packet. */ 1260 __skb_unlink(next_skb, next_skb->list); 1261 1262 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size); 1263 1264 if (next_skb->ip_summed == CHECKSUM_HW) 1265 skb->ip_summed = CHECKSUM_HW; 1266 1267 if (skb->ip_summed != CHECKSUM_HW) 1268 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 1269 1270 /* Update sequence range on original skb. */ 1271 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 1272 1273 /* Merge over control information. */ 1274 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ 1275 TCP_SKB_CB(skb)->flags = flags; 1276 1277 /* All done, get rid of second SKB and account for it so 1278 * packet counting does not break. 1279 */ 1280 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL); 1281 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS) 1282 tp->retrans_out -= tcp_skb_pcount(next_skb); 1283 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) { 1284 tp->lost_out -= tcp_skb_pcount(next_skb); 1285 tp->left_out -= tcp_skb_pcount(next_skb); 1286 } 1287 /* Reno case is special. Sigh... */ 1288 if (!tp->rx_opt.sack_ok && tp->sacked_out) { 1289 tcp_dec_pcount_approx(&tp->sacked_out, next_skb); 1290 tp->left_out -= tcp_skb_pcount(next_skb); 1291 } 1292 1293 /* Not quite right: it can be > snd.fack, but 1294 * it is better to underestimate fackets. 1295 */ 1296 tcp_dec_pcount_approx(&tp->fackets_out, next_skb); 1297 tcp_packets_out_dec(tp, next_skb); 1298 sk_stream_free_skb(sk, next_skb); 1299 } 1300 } 1301 1302 /* Do a simple retransmit without using the backoff mechanisms in 1303 * tcp_timer. This is used for path mtu discovery. 1304 * The socket is already locked here. 1305 */ 1306 void tcp_simple_retransmit(struct sock *sk) 1307 { 1308 struct tcp_sock *tp = tcp_sk(sk); 1309 struct sk_buff *skb; 1310 unsigned int mss = tcp_current_mss(sk, 0); 1311 int lost = 0; 1312 1313 sk_stream_for_retrans_queue(skb, sk) { 1314 if (skb->len > mss && 1315 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1316 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { 1317 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1318 tp->retrans_out -= tcp_skb_pcount(skb); 1319 } 1320 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) { 1321 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1322 tp->lost_out += tcp_skb_pcount(skb); 1323 lost = 1; 1324 } 1325 } 1326 } 1327 1328 if (!lost) 1329 return; 1330 1331 tcp_sync_left_out(tp); 1332 1333 /* Don't muck with the congestion window here. 1334 * Reason is that we do not increase amount of _data_ 1335 * in network, but units changed and effective 1336 * cwnd/ssthresh really reduced now. 1337 */ 1338 if (tp->ca_state != TCP_CA_Loss) { 1339 tp->high_seq = tp->snd_nxt; 1340 tp->snd_ssthresh = tcp_current_ssthresh(tp); 1341 tp->prior_ssthresh = 0; 1342 tp->undo_marker = 0; 1343 tcp_set_ca_state(tp, TCP_CA_Loss); 1344 } 1345 tcp_xmit_retransmit_queue(sk); 1346 } 1347 1348 /* This retransmits one SKB. Policy decisions and retransmit queue 1349 * state updates are done by the caller. Returns non-zero if an 1350 * error occurred which prevented the send. 1351 */ 1352 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 1353 { 1354 struct tcp_sock *tp = tcp_sk(sk); 1355 unsigned int cur_mss = tcp_current_mss(sk, 0); 1356 int err; 1357 1358 /* Do not sent more than we queued. 1/4 is reserved for possible 1359 * copying overhead: frgagmentation, tunneling, mangling etc. 1360 */ 1361 if (atomic_read(&sk->sk_wmem_alloc) > 1362 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 1363 return -EAGAIN; 1364 1365 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 1366 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1367 BUG(); 1368 1369 if (sk->sk_route_caps & NETIF_F_TSO) { 1370 sk->sk_route_caps &= ~NETIF_F_TSO; 1371 sock_set_flag(sk, SOCK_NO_LARGESEND); 1372 } 1373 1374 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 1375 return -ENOMEM; 1376 } 1377 1378 /* If receiver has shrunk his window, and skb is out of 1379 * new window, do not retransmit it. The exception is the 1380 * case, when window is shrunk to zero. In this case 1381 * our retransmit serves as a zero window probe. 1382 */ 1383 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd) 1384 && TCP_SKB_CB(skb)->seq != tp->snd_una) 1385 return -EAGAIN; 1386 1387 if (skb->len > cur_mss) { 1388 int old_factor = tcp_skb_pcount(skb); 1389 int new_factor; 1390 1391 if (tcp_fragment(sk, skb, cur_mss)) 1392 return -ENOMEM; /* We'll try again later. */ 1393 1394 /* New SKB created, account for it. */ 1395 new_factor = tcp_skb_pcount(skb); 1396 tp->packets_out -= old_factor - new_factor; 1397 tp->packets_out += tcp_skb_pcount(skb->next); 1398 } 1399 1400 /* Collapse two adjacent packets if worthwhile and we can. */ 1401 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && 1402 (skb->len < (cur_mss >> 1)) && 1403 (skb->next != sk->sk_send_head) && 1404 (skb->next != (struct sk_buff *)&sk->sk_write_queue) && 1405 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) && 1406 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) && 1407 (sysctl_tcp_retrans_collapse != 0)) 1408 tcp_retrans_try_collapse(sk, skb, cur_mss); 1409 1410 if(tp->af_specific->rebuild_header(sk)) 1411 return -EHOSTUNREACH; /* Routing failure or similar. */ 1412 1413 /* Some Solaris stacks overoptimize and ignore the FIN on a 1414 * retransmit when old data is attached. So strip it off 1415 * since it is cheap to do so and saves bytes on the network. 1416 */ 1417 if(skb->len > 0 && 1418 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && 1419 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 1420 if (!pskb_trim(skb, 0)) { 1421 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1; 1422 skb_shinfo(skb)->tso_segs = 1; 1423 skb_shinfo(skb)->tso_size = 0; 1424 skb->ip_summed = CHECKSUM_NONE; 1425 skb->csum = 0; 1426 } 1427 } 1428 1429 /* Make a copy, if the first transmission SKB clone we made 1430 * is still in somebody's hands, else make a clone. 1431 */ 1432 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1433 1434 err = tcp_transmit_skb(sk, (skb_cloned(skb) ? 1435 pskb_copy(skb, GFP_ATOMIC): 1436 skb_clone(skb, GFP_ATOMIC))); 1437 1438 if (err == 0) { 1439 /* Update global TCP statistics. */ 1440 TCP_INC_STATS(TCP_MIB_RETRANSSEGS); 1441 1442 tp->total_retrans++; 1443 1444 #if FASTRETRANS_DEBUG > 0 1445 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { 1446 if (net_ratelimit()) 1447 printk(KERN_DEBUG "retrans_out leaked.\n"); 1448 } 1449 #endif 1450 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 1451 tp->retrans_out += tcp_skb_pcount(skb); 1452 1453 /* Save stamp of the first retransmit. */ 1454 if (!tp->retrans_stamp) 1455 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 1456 1457 tp->undo_retrans++; 1458 1459 /* snd_nxt is stored to detect loss of retransmitted segment, 1460 * see tcp_input.c tcp_sacktag_write_queue(). 1461 */ 1462 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 1463 } 1464 return err; 1465 } 1466 1467 /* This gets called after a retransmit timeout, and the initially 1468 * retransmitted data is acknowledged. It tries to continue 1469 * resending the rest of the retransmit queue, until either 1470 * we've sent it all or the congestion window limit is reached. 1471 * If doing SACK, the first ACK which comes back for a timeout 1472 * based retransmit packet might feed us FACK information again. 1473 * If so, we use it to avoid unnecessarily retransmissions. 1474 */ 1475 void tcp_xmit_retransmit_queue(struct sock *sk) 1476 { 1477 struct tcp_sock *tp = tcp_sk(sk); 1478 struct sk_buff *skb; 1479 int packet_cnt = tp->lost_out; 1480 1481 /* First pass: retransmit lost packets. */ 1482 if (packet_cnt) { 1483 sk_stream_for_retrans_queue(skb, sk) { 1484 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1485 1486 /* Assume this retransmit will generate 1487 * only one packet for congestion window 1488 * calculation purposes. This works because 1489 * tcp_retransmit_skb() will chop up the 1490 * packet to be MSS sized and all the 1491 * packet counting works out. 1492 */ 1493 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 1494 return; 1495 1496 if (sacked&TCPCB_LOST) { 1497 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) { 1498 if (tcp_retransmit_skb(sk, skb)) 1499 return; 1500 if (tp->ca_state != TCP_CA_Loss) 1501 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS); 1502 else 1503 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS); 1504 1505 if (skb == 1506 skb_peek(&sk->sk_write_queue)) 1507 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); 1508 } 1509 1510 packet_cnt -= tcp_skb_pcount(skb); 1511 if (packet_cnt <= 0) 1512 break; 1513 } 1514 } 1515 } 1516 1517 /* OK, demanded retransmission is finished. */ 1518 1519 /* Forward retransmissions are possible only during Recovery. */ 1520 if (tp->ca_state != TCP_CA_Recovery) 1521 return; 1522 1523 /* No forward retransmissions in Reno are possible. */ 1524 if (!tp->rx_opt.sack_ok) 1525 return; 1526 1527 /* Yeah, we have to make difficult choice between forward transmission 1528 * and retransmission... Both ways have their merits... 1529 * 1530 * For now we do not retransmit anything, while we have some new 1531 * segments to send. 1532 */ 1533 1534 if (tcp_may_send_now(sk, tp)) 1535 return; 1536 1537 packet_cnt = 0; 1538 1539 sk_stream_for_retrans_queue(skb, sk) { 1540 /* Similar to the retransmit loop above we 1541 * can pretend that the retransmitted SKB 1542 * we send out here will be composed of one 1543 * real MSS sized packet because tcp_retransmit_skb() 1544 * will fragment it if necessary. 1545 */ 1546 if (++packet_cnt > tp->fackets_out) 1547 break; 1548 1549 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 1550 break; 1551 1552 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) 1553 continue; 1554 1555 /* Ok, retransmit it. */ 1556 if (tcp_retransmit_skb(sk, skb)) 1557 break; 1558 1559 if (skb == skb_peek(&sk->sk_write_queue)) 1560 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); 1561 1562 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS); 1563 } 1564 } 1565 1566 1567 /* Send a fin. The caller locks the socket for us. This cannot be 1568 * allowed to fail queueing a FIN frame under any circumstances. 1569 */ 1570 void tcp_send_fin(struct sock *sk) 1571 { 1572 struct tcp_sock *tp = tcp_sk(sk); 1573 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue); 1574 int mss_now; 1575 1576 /* Optimization, tack on the FIN if we have a queue of 1577 * unsent frames. But be careful about outgoing SACKS 1578 * and IP options. 1579 */ 1580 mss_now = tcp_current_mss(sk, 1); 1581 1582 if (sk->sk_send_head != NULL) { 1583 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; 1584 TCP_SKB_CB(skb)->end_seq++; 1585 tp->write_seq++; 1586 } else { 1587 /* Socket is locked, keep trying until memory is available. */ 1588 for (;;) { 1589 skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL); 1590 if (skb) 1591 break; 1592 yield(); 1593 } 1594 1595 /* Reserve space for headers and prepare control bits. */ 1596 skb_reserve(skb, MAX_TCP_HEADER); 1597 skb->csum = 0; 1598 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); 1599 TCP_SKB_CB(skb)->sacked = 0; 1600 skb_shinfo(skb)->tso_segs = 1; 1601 skb_shinfo(skb)->tso_size = 0; 1602 1603 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 1604 TCP_SKB_CB(skb)->seq = tp->write_seq; 1605 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; 1606 tcp_queue_skb(sk, skb); 1607 } 1608 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF); 1609 } 1610 1611 /* We get here when a process closes a file descriptor (either due to 1612 * an explicit close() or as a byproduct of exit()'ing) and there 1613 * was unread data in the receive queue. This behavior is recommended 1614 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM 1615 */ 1616 void tcp_send_active_reset(struct sock *sk, unsigned int __nocast priority) 1617 { 1618 struct tcp_sock *tp = tcp_sk(sk); 1619 struct sk_buff *skb; 1620 1621 /* NOTE: No TCP options attached and we never retransmit this. */ 1622 skb = alloc_skb(MAX_TCP_HEADER, priority); 1623 if (!skb) { 1624 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); 1625 return; 1626 } 1627 1628 /* Reserve space for headers and prepare control bits. */ 1629 skb_reserve(skb, MAX_TCP_HEADER); 1630 skb->csum = 0; 1631 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST); 1632 TCP_SKB_CB(skb)->sacked = 0; 1633 skb_shinfo(skb)->tso_segs = 1; 1634 skb_shinfo(skb)->tso_size = 0; 1635 1636 /* Send it off. */ 1637 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp); 1638 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; 1639 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1640 if (tcp_transmit_skb(sk, skb)) 1641 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); 1642 } 1643 1644 /* WARNING: This routine must only be called when we have already sent 1645 * a SYN packet that crossed the incoming SYN that caused this routine 1646 * to get called. If this assumption fails then the initial rcv_wnd 1647 * and rcv_wscale values will not be correct. 1648 */ 1649 int tcp_send_synack(struct sock *sk) 1650 { 1651 struct sk_buff* skb; 1652 1653 skb = skb_peek(&sk->sk_write_queue); 1654 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) { 1655 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); 1656 return -EFAULT; 1657 } 1658 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) { 1659 if (skb_cloned(skb)) { 1660 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 1661 if (nskb == NULL) 1662 return -ENOMEM; 1663 __skb_unlink(skb, &sk->sk_write_queue); 1664 skb_header_release(nskb); 1665 __skb_queue_head(&sk->sk_write_queue, nskb); 1666 sk_stream_free_skb(sk, skb); 1667 sk_charge_skb(sk, nskb); 1668 skb = nskb; 1669 } 1670 1671 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; 1672 TCP_ECN_send_synack(tcp_sk(sk), skb); 1673 } 1674 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1675 return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); 1676 } 1677 1678 /* 1679 * Prepare a SYN-ACK. 1680 */ 1681 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst, 1682 struct request_sock *req) 1683 { 1684 struct inet_request_sock *ireq = inet_rsk(req); 1685 struct tcp_sock *tp = tcp_sk(sk); 1686 struct tcphdr *th; 1687 int tcp_header_size; 1688 struct sk_buff *skb; 1689 1690 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); 1691 if (skb == NULL) 1692 return NULL; 1693 1694 /* Reserve space for headers. */ 1695 skb_reserve(skb, MAX_TCP_HEADER); 1696 1697 skb->dst = dst_clone(dst); 1698 1699 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS + 1700 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) + 1701 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) + 1702 /* SACK_PERM is in the place of NOP NOP of TS */ 1703 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0)); 1704 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size); 1705 1706 memset(th, 0, sizeof(struct tcphdr)); 1707 th->syn = 1; 1708 th->ack = 1; 1709 if (dst->dev->features&NETIF_F_TSO) 1710 ireq->ecn_ok = 0; 1711 TCP_ECN_make_synack(req, th); 1712 th->source = inet_sk(sk)->sport; 1713 th->dest = ireq->rmt_port; 1714 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn; 1715 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; 1716 TCP_SKB_CB(skb)->sacked = 0; 1717 skb_shinfo(skb)->tso_segs = 1; 1718 skb_shinfo(skb)->tso_size = 0; 1719 th->seq = htonl(TCP_SKB_CB(skb)->seq); 1720 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); 1721 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 1722 __u8 rcv_wscale; 1723 /* Set this up on the first call only */ 1724 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 1725 /* tcp_full_space because it is guaranteed to be the first packet */ 1726 tcp_select_initial_window(tcp_full_space(sk), 1727 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 1728 &req->rcv_wnd, 1729 &req->window_clamp, 1730 ireq->wscale_ok, 1731 &rcv_wscale); 1732 ireq->rcv_wscale = rcv_wscale; 1733 } 1734 1735 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 1736 th->window = htons(req->rcv_wnd); 1737 1738 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1739 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok, 1740 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale, 1741 TCP_SKB_CB(skb)->when, 1742 req->ts_recent); 1743 1744 skb->csum = 0; 1745 th->doff = (tcp_header_size >> 2); 1746 TCP_INC_STATS(TCP_MIB_OUTSEGS); 1747 return skb; 1748 } 1749 1750 /* 1751 * Do all connect socket setups that can be done AF independent. 1752 */ 1753 static inline void tcp_connect_init(struct sock *sk) 1754 { 1755 struct dst_entry *dst = __sk_dst_get(sk); 1756 struct tcp_sock *tp = tcp_sk(sk); 1757 __u8 rcv_wscale; 1758 1759 /* We'll fix this up when we get a response from the other end. 1760 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 1761 */ 1762 tp->tcp_header_len = sizeof(struct tcphdr) + 1763 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 1764 1765 /* If user gave his TCP_MAXSEG, record it to clamp */ 1766 if (tp->rx_opt.user_mss) 1767 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 1768 tp->max_window = 0; 1769 tcp_sync_mss(sk, dst_mtu(dst)); 1770 1771 if (!tp->window_clamp) 1772 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 1773 tp->advmss = dst_metric(dst, RTAX_ADVMSS); 1774 tcp_initialize_rcv_mss(sk); 1775 1776 tcp_select_initial_window(tcp_full_space(sk), 1777 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 1778 &tp->rcv_wnd, 1779 &tp->window_clamp, 1780 sysctl_tcp_window_scaling, 1781 &rcv_wscale); 1782 1783 tp->rx_opt.rcv_wscale = rcv_wscale; 1784 tp->rcv_ssthresh = tp->rcv_wnd; 1785 1786 sk->sk_err = 0; 1787 sock_reset_flag(sk, SOCK_DONE); 1788 tp->snd_wnd = 0; 1789 tcp_init_wl(tp, tp->write_seq, 0); 1790 tp->snd_una = tp->write_seq; 1791 tp->snd_sml = tp->write_seq; 1792 tp->rcv_nxt = 0; 1793 tp->rcv_wup = 0; 1794 tp->copied_seq = 0; 1795 1796 tp->rto = TCP_TIMEOUT_INIT; 1797 tp->retransmits = 0; 1798 tcp_clear_retrans(tp); 1799 } 1800 1801 /* 1802 * Build a SYN and send it off. 1803 */ 1804 int tcp_connect(struct sock *sk) 1805 { 1806 struct tcp_sock *tp = tcp_sk(sk); 1807 struct sk_buff *buff; 1808 1809 tcp_connect_init(sk); 1810 1811 buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation); 1812 if (unlikely(buff == NULL)) 1813 return -ENOBUFS; 1814 1815 /* Reserve space for headers. */ 1816 skb_reserve(buff, MAX_TCP_HEADER); 1817 1818 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN; 1819 TCP_ECN_send_syn(sk, tp, buff); 1820 TCP_SKB_CB(buff)->sacked = 0; 1821 skb_shinfo(buff)->tso_segs = 1; 1822 skb_shinfo(buff)->tso_size = 0; 1823 buff->csum = 0; 1824 TCP_SKB_CB(buff)->seq = tp->write_seq++; 1825 TCP_SKB_CB(buff)->end_seq = tp->write_seq; 1826 tp->snd_nxt = tp->write_seq; 1827 tp->pushed_seq = tp->write_seq; 1828 1829 /* Send it off. */ 1830 TCP_SKB_CB(buff)->when = tcp_time_stamp; 1831 tp->retrans_stamp = TCP_SKB_CB(buff)->when; 1832 skb_header_release(buff); 1833 __skb_queue_tail(&sk->sk_write_queue, buff); 1834 sk_charge_skb(sk, buff); 1835 tp->packets_out += tcp_skb_pcount(buff); 1836 tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL)); 1837 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS); 1838 1839 /* Timer for repeating the SYN until an answer. */ 1840 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); 1841 return 0; 1842 } 1843 1844 /* Send out a delayed ack, the caller does the policy checking 1845 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 1846 * for details. 1847 */ 1848 void tcp_send_delayed_ack(struct sock *sk) 1849 { 1850 struct tcp_sock *tp = tcp_sk(sk); 1851 int ato = tp->ack.ato; 1852 unsigned long timeout; 1853 1854 if (ato > TCP_DELACK_MIN) { 1855 int max_ato = HZ/2; 1856 1857 if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED)) 1858 max_ato = TCP_DELACK_MAX; 1859 1860 /* Slow path, intersegment interval is "high". */ 1861 1862 /* If some rtt estimate is known, use it to bound delayed ack. 1863 * Do not use tp->rto here, use results of rtt measurements 1864 * directly. 1865 */ 1866 if (tp->srtt) { 1867 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN); 1868 1869 if (rtt < max_ato) 1870 max_ato = rtt; 1871 } 1872 1873 ato = min(ato, max_ato); 1874 } 1875 1876 /* Stay within the limit we were given */ 1877 timeout = jiffies + ato; 1878 1879 /* Use new timeout only if there wasn't a older one earlier. */ 1880 if (tp->ack.pending&TCP_ACK_TIMER) { 1881 /* If delack timer was blocked or is about to expire, 1882 * send ACK now. 1883 */ 1884 if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) { 1885 tcp_send_ack(sk); 1886 return; 1887 } 1888 1889 if (!time_before(timeout, tp->ack.timeout)) 1890 timeout = tp->ack.timeout; 1891 } 1892 tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER; 1893 tp->ack.timeout = timeout; 1894 sk_reset_timer(sk, &tp->delack_timer, timeout); 1895 } 1896 1897 /* This routine sends an ack and also updates the window. */ 1898 void tcp_send_ack(struct sock *sk) 1899 { 1900 /* If we have been reset, we may not send again. */ 1901 if (sk->sk_state != TCP_CLOSE) { 1902 struct tcp_sock *tp = tcp_sk(sk); 1903 struct sk_buff *buff; 1904 1905 /* We are not putting this on the write queue, so 1906 * tcp_transmit_skb() will set the ownership to this 1907 * sock. 1908 */ 1909 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 1910 if (buff == NULL) { 1911 tcp_schedule_ack(tp); 1912 tp->ack.ato = TCP_ATO_MIN; 1913 tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX); 1914 return; 1915 } 1916 1917 /* Reserve space for headers and prepare control bits. */ 1918 skb_reserve(buff, MAX_TCP_HEADER); 1919 buff->csum = 0; 1920 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK; 1921 TCP_SKB_CB(buff)->sacked = 0; 1922 skb_shinfo(buff)->tso_segs = 1; 1923 skb_shinfo(buff)->tso_size = 0; 1924 1925 /* Send it off, this clears delayed acks for us. */ 1926 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp); 1927 TCP_SKB_CB(buff)->when = tcp_time_stamp; 1928 tcp_transmit_skb(sk, buff); 1929 } 1930 } 1931 1932 /* This routine sends a packet with an out of date sequence 1933 * number. It assumes the other end will try to ack it. 1934 * 1935 * Question: what should we make while urgent mode? 1936 * 4.4BSD forces sending single byte of data. We cannot send 1937 * out of window data, because we have SND.NXT==SND.MAX... 1938 * 1939 * Current solution: to send TWO zero-length segments in urgent mode: 1940 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 1941 * out-of-date with SND.UNA-1 to probe window. 1942 */ 1943 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 1944 { 1945 struct tcp_sock *tp = tcp_sk(sk); 1946 struct sk_buff *skb; 1947 1948 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 1949 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 1950 if (skb == NULL) 1951 return -1; 1952 1953 /* Reserve space for headers and set control bits. */ 1954 skb_reserve(skb, MAX_TCP_HEADER); 1955 skb->csum = 0; 1956 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK; 1957 TCP_SKB_CB(skb)->sacked = urgent; 1958 skb_shinfo(skb)->tso_segs = 1; 1959 skb_shinfo(skb)->tso_size = 0; 1960 1961 /* Use a previous sequence. This should cause the other 1962 * end to send an ack. Don't queue or clone SKB, just 1963 * send it. 1964 */ 1965 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1; 1966 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; 1967 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1968 return tcp_transmit_skb(sk, skb); 1969 } 1970 1971 int tcp_write_wakeup(struct sock *sk) 1972 { 1973 if (sk->sk_state != TCP_CLOSE) { 1974 struct tcp_sock *tp = tcp_sk(sk); 1975 struct sk_buff *skb; 1976 1977 if ((skb = sk->sk_send_head) != NULL && 1978 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) { 1979 int err; 1980 unsigned int mss = tcp_current_mss(sk, 0); 1981 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq; 1982 1983 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 1984 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 1985 1986 /* We are probing the opening of a window 1987 * but the window size is != 0 1988 * must have been a result SWS avoidance ( sender ) 1989 */ 1990 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 1991 skb->len > mss) { 1992 seg_size = min(seg_size, mss); 1993 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 1994 if (tcp_fragment(sk, skb, seg_size)) 1995 return -1; 1996 /* SWS override triggered forced fragmentation. 1997 * Disable TSO, the connection is too sick. */ 1998 if (sk->sk_route_caps & NETIF_F_TSO) { 1999 sock_set_flag(sk, SOCK_NO_LARGESEND); 2000 sk->sk_route_caps &= ~NETIF_F_TSO; 2001 } 2002 } else if (!tcp_skb_pcount(skb)) 2003 tcp_set_skb_tso_segs(sk, skb); 2004 2005 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 2006 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2007 err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); 2008 if (!err) { 2009 update_send_head(sk, tp, skb); 2010 } 2011 return err; 2012 } else { 2013 if (tp->urg_mode && 2014 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF)) 2015 tcp_xmit_probe_skb(sk, TCPCB_URG); 2016 return tcp_xmit_probe_skb(sk, 0); 2017 } 2018 } 2019 return -1; 2020 } 2021 2022 /* A window probe timeout has occurred. If window is not closed send 2023 * a partial packet else a zero probe. 2024 */ 2025 void tcp_send_probe0(struct sock *sk) 2026 { 2027 struct tcp_sock *tp = tcp_sk(sk); 2028 int err; 2029 2030 err = tcp_write_wakeup(sk); 2031 2032 if (tp->packets_out || !sk->sk_send_head) { 2033 /* Cancel probe timer, if it is not required. */ 2034 tp->probes_out = 0; 2035 tp->backoff = 0; 2036 return; 2037 } 2038 2039 if (err <= 0) { 2040 if (tp->backoff < sysctl_tcp_retries2) 2041 tp->backoff++; 2042 tp->probes_out++; 2043 tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, 2044 min(tp->rto << tp->backoff, TCP_RTO_MAX)); 2045 } else { 2046 /* If packet was not sent due to local congestion, 2047 * do not backoff and do not remember probes_out. 2048 * Let local senders to fight for local resources. 2049 * 2050 * Use accumulated backoff yet. 2051 */ 2052 if (!tp->probes_out) 2053 tp->probes_out=1; 2054 tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, 2055 min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL)); 2056 } 2057 } 2058 2059 EXPORT_SYMBOL(tcp_connect); 2060 EXPORT_SYMBOL(tcp_make_synack); 2061 EXPORT_SYMBOL(tcp_simple_retransmit); 2062 EXPORT_SYMBOL(tcp_sync_mss); 2063