xref: /linux/net/ipv4/tcp_output.c (revision 20d0021394c1b070bf04b22c5bc8fdb437edd4c5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
25  *				:	Fragmentation on mtu decrease
26  *				:	Segment collapse on retransmit
27  *				:	AF independence
28  *
29  *		Linus Torvalds	:	send_delayed_ack
30  *		David S. Miller	:	Charge memory using the right skb
31  *					during syn/ack processing.
32  *		David S. Miller :	Output engine completely rewritten.
33  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
34  *		Cacophonix Gaul :	draft-minshall-nagle-01
35  *		J Hadi Salim	:	ECN support
36  *
37  */
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/module.h>
43 #include <linux/smp_lock.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse = 1;
47 
48 /* This limits the percentage of the congestion window which we
49  * will allow a single TSO frame to consume.  Building TSO frames
50  * which are too large can cause TCP streams to be bursty.
51  */
52 int sysctl_tcp_tso_win_divisor = 3;
53 
54 static inline void update_send_head(struct sock *sk, struct tcp_sock *tp,
55 				    struct sk_buff *skb)
56 {
57 	sk->sk_send_head = skb->next;
58 	if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
59 		sk->sk_send_head = NULL;
60 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
61 	tcp_packets_out_inc(sk, tp, skb);
62 }
63 
64 /* SND.NXT, if window was not shrunk.
65  * If window has been shrunk, what should we make? It is not clear at all.
66  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
67  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
68  * invalid. OK, let's make this for now:
69  */
70 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
71 {
72 	if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
73 		return tp->snd_nxt;
74 	else
75 		return tp->snd_una+tp->snd_wnd;
76 }
77 
78 /* Calculate mss to advertise in SYN segment.
79  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
80  *
81  * 1. It is independent of path mtu.
82  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
83  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
84  *    attached devices, because some buggy hosts are confused by
85  *    large MSS.
86  * 4. We do not make 3, we advertise MSS, calculated from first
87  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
88  *    This may be overridden via information stored in routing table.
89  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
90  *    probably even Jumbo".
91  */
92 static __u16 tcp_advertise_mss(struct sock *sk)
93 {
94 	struct tcp_sock *tp = tcp_sk(sk);
95 	struct dst_entry *dst = __sk_dst_get(sk);
96 	int mss = tp->advmss;
97 
98 	if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
99 		mss = dst_metric(dst, RTAX_ADVMSS);
100 		tp->advmss = mss;
101 	}
102 
103 	return (__u16)mss;
104 }
105 
106 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
107  * This is the first part of cwnd validation mechanism. */
108 static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst)
109 {
110 	s32 delta = tcp_time_stamp - tp->lsndtime;
111 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
112 	u32 cwnd = tp->snd_cwnd;
113 
114 	tcp_ca_event(tp, CA_EVENT_CWND_RESTART);
115 
116 	tp->snd_ssthresh = tcp_current_ssthresh(tp);
117 	restart_cwnd = min(restart_cwnd, cwnd);
118 
119 	while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd)
120 		cwnd >>= 1;
121 	tp->snd_cwnd = max(cwnd, restart_cwnd);
122 	tp->snd_cwnd_stamp = tcp_time_stamp;
123 	tp->snd_cwnd_used = 0;
124 }
125 
126 static inline void tcp_event_data_sent(struct tcp_sock *tp,
127 				       struct sk_buff *skb, struct sock *sk)
128 {
129 	u32 now = tcp_time_stamp;
130 
131 	if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto)
132 		tcp_cwnd_restart(tp, __sk_dst_get(sk));
133 
134 	tp->lsndtime = now;
135 
136 	/* If it is a reply for ato after last received
137 	 * packet, enter pingpong mode.
138 	 */
139 	if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato)
140 		tp->ack.pingpong = 1;
141 }
142 
143 static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
144 {
145 	struct tcp_sock *tp = tcp_sk(sk);
146 
147 	tcp_dec_quickack_mode(tp, pkts);
148 	tcp_clear_xmit_timer(sk, TCP_TIME_DACK);
149 }
150 
151 /* Determine a window scaling and initial window to offer.
152  * Based on the assumption that the given amount of space
153  * will be offered. Store the results in the tp structure.
154  * NOTE: for smooth operation initial space offering should
155  * be a multiple of mss if possible. We assume here that mss >= 1.
156  * This MUST be enforced by all callers.
157  */
158 void tcp_select_initial_window(int __space, __u32 mss,
159 			       __u32 *rcv_wnd, __u32 *window_clamp,
160 			       int wscale_ok, __u8 *rcv_wscale)
161 {
162 	unsigned int space = (__space < 0 ? 0 : __space);
163 
164 	/* If no clamp set the clamp to the max possible scaled window */
165 	if (*window_clamp == 0)
166 		(*window_clamp) = (65535 << 14);
167 	space = min(*window_clamp, space);
168 
169 	/* Quantize space offering to a multiple of mss if possible. */
170 	if (space > mss)
171 		space = (space / mss) * mss;
172 
173 	/* NOTE: offering an initial window larger than 32767
174 	 * will break some buggy TCP stacks. We try to be nice.
175 	 * If we are not window scaling, then this truncates
176 	 * our initial window offering to 32k. There should also
177 	 * be a sysctl option to stop being nice.
178 	 */
179 	(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
180 	(*rcv_wscale) = 0;
181 	if (wscale_ok) {
182 		/* Set window scaling on max possible window
183 		 * See RFC1323 for an explanation of the limit to 14
184 		 */
185 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
186 		while (space > 65535 && (*rcv_wscale) < 14) {
187 			space >>= 1;
188 			(*rcv_wscale)++;
189 		}
190 	}
191 
192 	/* Set initial window to value enough for senders,
193 	 * following RFC1414. Senders, not following this RFC,
194 	 * will be satisfied with 2.
195 	 */
196 	if (mss > (1<<*rcv_wscale)) {
197 		int init_cwnd = 4;
198 		if (mss > 1460*3)
199 			init_cwnd = 2;
200 		else if (mss > 1460)
201 			init_cwnd = 3;
202 		if (*rcv_wnd > init_cwnd*mss)
203 			*rcv_wnd = init_cwnd*mss;
204 	}
205 
206 	/* Set the clamp no higher than max representable value */
207 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
208 }
209 
210 /* Chose a new window to advertise, update state in tcp_sock for the
211  * socket, and return result with RFC1323 scaling applied.  The return
212  * value can be stuffed directly into th->window for an outgoing
213  * frame.
214  */
215 static __inline__ u16 tcp_select_window(struct sock *sk)
216 {
217 	struct tcp_sock *tp = tcp_sk(sk);
218 	u32 cur_win = tcp_receive_window(tp);
219 	u32 new_win = __tcp_select_window(sk);
220 
221 	/* Never shrink the offered window */
222 	if(new_win < cur_win) {
223 		/* Danger Will Robinson!
224 		 * Don't update rcv_wup/rcv_wnd here or else
225 		 * we will not be able to advertise a zero
226 		 * window in time.  --DaveM
227 		 *
228 		 * Relax Will Robinson.
229 		 */
230 		new_win = cur_win;
231 	}
232 	tp->rcv_wnd = new_win;
233 	tp->rcv_wup = tp->rcv_nxt;
234 
235 	/* Make sure we do not exceed the maximum possible
236 	 * scaled window.
237 	 */
238 	if (!tp->rx_opt.rcv_wscale)
239 		new_win = min(new_win, MAX_TCP_WINDOW);
240 	else
241 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
242 
243 	/* RFC1323 scaling applied */
244 	new_win >>= tp->rx_opt.rcv_wscale;
245 
246 	/* If we advertise zero window, disable fast path. */
247 	if (new_win == 0)
248 		tp->pred_flags = 0;
249 
250 	return new_win;
251 }
252 
253 
254 /* This routine actually transmits TCP packets queued in by
255  * tcp_do_sendmsg().  This is used by both the initial
256  * transmission and possible later retransmissions.
257  * All SKB's seen here are completely headerless.  It is our
258  * job to build the TCP header, and pass the packet down to
259  * IP so it can do the same plus pass the packet off to the
260  * device.
261  *
262  * We are working here with either a clone of the original
263  * SKB, or a fresh unique copy made by the retransmit engine.
264  */
265 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
266 {
267 	if (skb != NULL) {
268 		struct inet_sock *inet = inet_sk(sk);
269 		struct tcp_sock *tp = tcp_sk(sk);
270 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
271 		int tcp_header_size = tp->tcp_header_len;
272 		struct tcphdr *th;
273 		int sysctl_flags;
274 		int err;
275 
276 		BUG_ON(!tcp_skb_pcount(skb));
277 
278 #define SYSCTL_FLAG_TSTAMPS	0x1
279 #define SYSCTL_FLAG_WSCALE	0x2
280 #define SYSCTL_FLAG_SACK	0x4
281 
282 		/* If congestion control is doing timestamping */
283 		if (tp->ca_ops->rtt_sample)
284 			do_gettimeofday(&skb->stamp);
285 
286 		sysctl_flags = 0;
287 		if (tcb->flags & TCPCB_FLAG_SYN) {
288 			tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
289 			if(sysctl_tcp_timestamps) {
290 				tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
291 				sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
292 			}
293 			if(sysctl_tcp_window_scaling) {
294 				tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
295 				sysctl_flags |= SYSCTL_FLAG_WSCALE;
296 			}
297 			if(sysctl_tcp_sack) {
298 				sysctl_flags |= SYSCTL_FLAG_SACK;
299 				if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
300 					tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
301 			}
302 		} else if (tp->rx_opt.eff_sacks) {
303 			/* A SACK is 2 pad bytes, a 2 byte header, plus
304 			 * 2 32-bit sequence numbers for each SACK block.
305 			 */
306 			tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
307 					    (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
308 		}
309 
310 		if (tcp_packets_in_flight(tp) == 0)
311 			tcp_ca_event(tp, CA_EVENT_TX_START);
312 
313 		th = (struct tcphdr *) skb_push(skb, tcp_header_size);
314 		skb->h.th = th;
315 		skb_set_owner_w(skb, sk);
316 
317 		/* Build TCP header and checksum it. */
318 		th->source		= inet->sport;
319 		th->dest		= inet->dport;
320 		th->seq			= htonl(tcb->seq);
321 		th->ack_seq		= htonl(tp->rcv_nxt);
322 		*(((__u16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) | tcb->flags);
323 		if (tcb->flags & TCPCB_FLAG_SYN) {
324 			/* RFC1323: The window in SYN & SYN/ACK segments
325 			 * is never scaled.
326 			 */
327 			th->window	= htons(tp->rcv_wnd);
328 		} else {
329 			th->window	= htons(tcp_select_window(sk));
330 		}
331 		th->check		= 0;
332 		th->urg_ptr		= 0;
333 
334 		if (tp->urg_mode &&
335 		    between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) {
336 			th->urg_ptr		= htons(tp->snd_up-tcb->seq);
337 			th->urg			= 1;
338 		}
339 
340 		if (tcb->flags & TCPCB_FLAG_SYN) {
341 			tcp_syn_build_options((__u32 *)(th + 1),
342 					      tcp_advertise_mss(sk),
343 					      (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
344 					      (sysctl_flags & SYSCTL_FLAG_SACK),
345 					      (sysctl_flags & SYSCTL_FLAG_WSCALE),
346 					      tp->rx_opt.rcv_wscale,
347 					      tcb->when,
348 		      			      tp->rx_opt.ts_recent);
349 		} else {
350 			tcp_build_and_update_options((__u32 *)(th + 1),
351 						     tp, tcb->when);
352 
353 			TCP_ECN_send(sk, tp, skb, tcp_header_size);
354 		}
355 		tp->af_specific->send_check(sk, th, skb->len, skb);
356 
357 		if (tcb->flags & TCPCB_FLAG_ACK)
358 			tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
359 
360 		if (skb->len != tcp_header_size)
361 			tcp_event_data_sent(tp, skb, sk);
362 
363 		TCP_INC_STATS(TCP_MIB_OUTSEGS);
364 
365 		err = tp->af_specific->queue_xmit(skb, 0);
366 		if (err <= 0)
367 			return err;
368 
369 		tcp_enter_cwr(tp);
370 
371 		/* NET_XMIT_CN is special. It does not guarantee,
372 		 * that this packet is lost. It tells that device
373 		 * is about to start to drop packets or already
374 		 * drops some packets of the same priority and
375 		 * invokes us to send less aggressively.
376 		 */
377 		return err == NET_XMIT_CN ? 0 : err;
378 	}
379 	return -ENOBUFS;
380 #undef SYSCTL_FLAG_TSTAMPS
381 #undef SYSCTL_FLAG_WSCALE
382 #undef SYSCTL_FLAG_SACK
383 }
384 
385 
386 /* This routine just queue's the buffer
387  *
388  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
389  * otherwise socket can stall.
390  */
391 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
392 {
393 	struct tcp_sock *tp = tcp_sk(sk);
394 
395 	/* Advance write_seq and place onto the write_queue. */
396 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
397 	skb_header_release(skb);
398 	__skb_queue_tail(&sk->sk_write_queue, skb);
399 	sk_charge_skb(sk, skb);
400 
401 	/* Queue it, remembering where we must start sending. */
402 	if (sk->sk_send_head == NULL)
403 		sk->sk_send_head = skb;
404 }
405 
406 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb)
407 {
408 	struct tcp_sock *tp = tcp_sk(sk);
409 
410 	if (skb->len <= tp->mss_cache ||
411 	    !(sk->sk_route_caps & NETIF_F_TSO)) {
412 		/* Avoid the costly divide in the normal
413 		 * non-TSO case.
414 		 */
415 		skb_shinfo(skb)->tso_segs = 1;
416 		skb_shinfo(skb)->tso_size = 0;
417 	} else {
418 		unsigned int factor;
419 
420 		factor = skb->len + (tp->mss_cache - 1);
421 		factor /= tp->mss_cache;
422 		skb_shinfo(skb)->tso_segs = factor;
423 		skb_shinfo(skb)->tso_size = tp->mss_cache;
424 	}
425 }
426 
427 /* Function to create two new TCP segments.  Shrinks the given segment
428  * to the specified size and appends a new segment with the rest of the
429  * packet to the list.  This won't be called frequently, I hope.
430  * Remember, these are still headerless SKBs at this point.
431  */
432 static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len)
433 {
434 	struct tcp_sock *tp = tcp_sk(sk);
435 	struct sk_buff *buff;
436 	int nsize;
437 	u16 flags;
438 
439 	nsize = skb_headlen(skb) - len;
440 	if (nsize < 0)
441 		nsize = 0;
442 
443 	if (skb_cloned(skb) &&
444 	    skb_is_nonlinear(skb) &&
445 	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
446 		return -ENOMEM;
447 
448 	/* Get a new skb... force flag on. */
449 	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
450 	if (buff == NULL)
451 		return -ENOMEM; /* We'll just try again later. */
452 	sk_charge_skb(sk, buff);
453 
454 	/* Correct the sequence numbers. */
455 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
456 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
457 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
458 
459 	/* PSH and FIN should only be set in the second packet. */
460 	flags = TCP_SKB_CB(skb)->flags;
461 	TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
462 	TCP_SKB_CB(buff)->flags = flags;
463 	TCP_SKB_CB(buff)->sacked =
464 		(TCP_SKB_CB(skb)->sacked &
465 		 (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL));
466 	TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
467 
468 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
469 		/* Copy and checksum data tail into the new buffer. */
470 		buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
471 						       nsize, 0);
472 
473 		skb_trim(skb, len);
474 
475 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
476 	} else {
477 		skb->ip_summed = CHECKSUM_HW;
478 		skb_split(skb, buff, len);
479 	}
480 
481 	buff->ip_summed = skb->ip_summed;
482 
483 	/* Looks stupid, but our code really uses when of
484 	 * skbs, which it never sent before. --ANK
485 	 */
486 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
487 	buff->stamp = skb->stamp;
488 
489 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
490 		tp->lost_out -= tcp_skb_pcount(skb);
491 		tp->left_out -= tcp_skb_pcount(skb);
492 	}
493 
494 	/* Fix up tso_factor for both original and new SKB.  */
495 	tcp_set_skb_tso_segs(sk, skb);
496 	tcp_set_skb_tso_segs(sk, buff);
497 
498 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
499 		tp->lost_out += tcp_skb_pcount(skb);
500 		tp->left_out += tcp_skb_pcount(skb);
501 	}
502 
503 	if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) {
504 		tp->lost_out += tcp_skb_pcount(buff);
505 		tp->left_out += tcp_skb_pcount(buff);
506 	}
507 
508 	/* Link BUFF into the send queue. */
509 	skb_header_release(buff);
510 	__skb_append(skb, buff);
511 
512 	return 0;
513 }
514 
515 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
516  * eventually). The difference is that pulled data not copied, but
517  * immediately discarded.
518  */
519 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
520 {
521 	int i, k, eat;
522 
523 	eat = len;
524 	k = 0;
525 	for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
526 		if (skb_shinfo(skb)->frags[i].size <= eat) {
527 			put_page(skb_shinfo(skb)->frags[i].page);
528 			eat -= skb_shinfo(skb)->frags[i].size;
529 		} else {
530 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
531 			if (eat) {
532 				skb_shinfo(skb)->frags[k].page_offset += eat;
533 				skb_shinfo(skb)->frags[k].size -= eat;
534 				eat = 0;
535 			}
536 			k++;
537 		}
538 	}
539 	skb_shinfo(skb)->nr_frags = k;
540 
541 	skb->tail = skb->data;
542 	skb->data_len -= len;
543 	skb->len = skb->data_len;
544 	return skb->tail;
545 }
546 
547 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
548 {
549 	if (skb_cloned(skb) &&
550 	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
551 		return -ENOMEM;
552 
553 	if (len <= skb_headlen(skb)) {
554 		__skb_pull(skb, len);
555 	} else {
556 		if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
557 			return -ENOMEM;
558 	}
559 
560 	TCP_SKB_CB(skb)->seq += len;
561 	skb->ip_summed = CHECKSUM_HW;
562 
563 	skb->truesize	     -= len;
564 	sk->sk_wmem_queued   -= len;
565 	sk->sk_forward_alloc += len;
566 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
567 
568 	/* Any change of skb->len requires recalculation of tso
569 	 * factor and mss.
570 	 */
571 	if (tcp_skb_pcount(skb) > 1)
572 		tcp_set_skb_tso_segs(sk, skb);
573 
574 	return 0;
575 }
576 
577 /* This function synchronize snd mss to current pmtu/exthdr set.
578 
579    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
580    for TCP options, but includes only bare TCP header.
581 
582    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
583    It is minumum of user_mss and mss received with SYN.
584    It also does not include TCP options.
585 
586    tp->pmtu_cookie is last pmtu, seen by this function.
587 
588    tp->mss_cache is current effective sending mss, including
589    all tcp options except for SACKs. It is evaluated,
590    taking into account current pmtu, but never exceeds
591    tp->rx_opt.mss_clamp.
592 
593    NOTE1. rfc1122 clearly states that advertised MSS
594    DOES NOT include either tcp or ip options.
595 
596    NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside
597    this function.			--ANK (980731)
598  */
599 
600 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
601 {
602 	struct tcp_sock *tp = tcp_sk(sk);
603 	int mss_now;
604 
605 	/* Calculate base mss without TCP options:
606 	   It is MMS_S - sizeof(tcphdr) of rfc1122
607 	 */
608 	mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr);
609 
610 	/* Clamp it (mss_clamp does not include tcp options) */
611 	if (mss_now > tp->rx_opt.mss_clamp)
612 		mss_now = tp->rx_opt.mss_clamp;
613 
614 	/* Now subtract optional transport overhead */
615 	mss_now -= tp->ext_header_len;
616 
617 	/* Then reserve room for full set of TCP options and 8 bytes of data */
618 	if (mss_now < 48)
619 		mss_now = 48;
620 
621 	/* Now subtract TCP options size, not including SACKs */
622 	mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
623 
624 	/* Bound mss with half of window */
625 	if (tp->max_window && mss_now > (tp->max_window>>1))
626 		mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
627 
628 	/* And store cached results */
629 	tp->pmtu_cookie = pmtu;
630 	tp->mss_cache = mss_now;
631 
632 	return mss_now;
633 }
634 
635 /* Compute the current effective MSS, taking SACKs and IP options,
636  * and even PMTU discovery events into account.
637  *
638  * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
639  * cannot be large. However, taking into account rare use of URG, this
640  * is not a big flaw.
641  */
642 unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
643 {
644 	struct tcp_sock *tp = tcp_sk(sk);
645 	struct dst_entry *dst = __sk_dst_get(sk);
646 	u32 mss_now;
647 	u16 xmit_size_goal;
648 	int doing_tso = 0;
649 
650 	mss_now = tp->mss_cache;
651 
652 	if (large_allowed &&
653 	    (sk->sk_route_caps & NETIF_F_TSO) &&
654 	    !tp->urg_mode)
655 		doing_tso = 1;
656 
657 	if (dst) {
658 		u32 mtu = dst_mtu(dst);
659 		if (mtu != tp->pmtu_cookie)
660 			mss_now = tcp_sync_mss(sk, mtu);
661 	}
662 
663 	if (tp->rx_opt.eff_sacks)
664 		mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
665 			    (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
666 
667 	xmit_size_goal = mss_now;
668 
669 	if (doing_tso) {
670 		xmit_size_goal = 65535 -
671 			tp->af_specific->net_header_len -
672 			tp->ext_header_len - tp->tcp_header_len;
673 
674 		if (tp->max_window &&
675 		    (xmit_size_goal > (tp->max_window >> 1)))
676 			xmit_size_goal = max((tp->max_window >> 1),
677 					     68U - tp->tcp_header_len);
678 
679 		xmit_size_goal -= (xmit_size_goal % mss_now);
680 	}
681 	tp->xmit_size_goal = xmit_size_goal;
682 
683 	return mss_now;
684 }
685 
686 /* Congestion window validation. (RFC2861) */
687 
688 static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
689 {
690 	__u32 packets_out = tp->packets_out;
691 
692 	if (packets_out >= tp->snd_cwnd) {
693 		/* Network is feed fully. */
694 		tp->snd_cwnd_used = 0;
695 		tp->snd_cwnd_stamp = tcp_time_stamp;
696 	} else {
697 		/* Network starves. */
698 		if (tp->packets_out > tp->snd_cwnd_used)
699 			tp->snd_cwnd_used = tp->packets_out;
700 
701 		if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= tp->rto)
702 			tcp_cwnd_application_limited(sk);
703 	}
704 }
705 
706 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd)
707 {
708 	u32 window, cwnd_len;
709 
710 	window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq);
711 	cwnd_len = mss_now * cwnd;
712 	return min(window, cwnd_len);
713 }
714 
715 /* Can at least one segment of SKB be sent right now, according to the
716  * congestion window rules?  If so, return how many segments are allowed.
717  */
718 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb)
719 {
720 	u32 in_flight, cwnd;
721 
722 	/* Don't be strict about the congestion window for the final FIN.  */
723 	if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
724 		return 1;
725 
726 	in_flight = tcp_packets_in_flight(tp);
727 	cwnd = tp->snd_cwnd;
728 	if (in_flight < cwnd)
729 		return (cwnd - in_flight);
730 
731 	return 0;
732 }
733 
734 /* This must be invoked the first time we consider transmitting
735  * SKB onto the wire.
736  */
737 static inline int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb)
738 {
739 	int tso_segs = tcp_skb_pcount(skb);
740 
741 	if (!tso_segs) {
742 		tcp_set_skb_tso_segs(sk, skb);
743 		tso_segs = tcp_skb_pcount(skb);
744 	}
745 	return tso_segs;
746 }
747 
748 static inline int tcp_minshall_check(const struct tcp_sock *tp)
749 {
750 	return after(tp->snd_sml,tp->snd_una) &&
751 		!after(tp->snd_sml, tp->snd_nxt);
752 }
753 
754 /* Return 0, if packet can be sent now without violation Nagle's rules:
755  * 1. It is full sized.
756  * 2. Or it contains FIN. (already checked by caller)
757  * 3. Or TCP_NODELAY was set.
758  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
759  *    With Minshall's modification: all sent small packets are ACKed.
760  */
761 
762 static inline int tcp_nagle_check(const struct tcp_sock *tp,
763 				  const struct sk_buff *skb,
764 				  unsigned mss_now, int nonagle)
765 {
766 	return (skb->len < mss_now &&
767 		((nonagle&TCP_NAGLE_CORK) ||
768 		 (!nonagle &&
769 		  tp->packets_out &&
770 		  tcp_minshall_check(tp))));
771 }
772 
773 /* Return non-zero if the Nagle test allows this packet to be
774  * sent now.
775  */
776 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
777 				 unsigned int cur_mss, int nonagle)
778 {
779 	/* Nagle rule does not apply to frames, which sit in the middle of the
780 	 * write_queue (they have no chances to get new data).
781 	 *
782 	 * This is implemented in the callers, where they modify the 'nonagle'
783 	 * argument based upon the location of SKB in the send queue.
784 	 */
785 	if (nonagle & TCP_NAGLE_PUSH)
786 		return 1;
787 
788 	/* Don't use the nagle rule for urgent data (or for the final FIN).  */
789 	if (tp->urg_mode ||
790 	    (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
791 		return 1;
792 
793 	if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
794 		return 1;
795 
796 	return 0;
797 }
798 
799 /* Does at least the first segment of SKB fit into the send window? */
800 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss)
801 {
802 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
803 
804 	if (skb->len > cur_mss)
805 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
806 
807 	return !after(end_seq, tp->snd_una + tp->snd_wnd);
808 }
809 
810 /* This checks if the data bearing packet SKB (usually sk->sk_send_head)
811  * should be put on the wire right now.  If so, it returns the number of
812  * packets allowed by the congestion window.
813  */
814 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
815 				 unsigned int cur_mss, int nonagle)
816 {
817 	struct tcp_sock *tp = tcp_sk(sk);
818 	unsigned int cwnd_quota;
819 
820 	tcp_init_tso_segs(sk, skb);
821 
822 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
823 		return 0;
824 
825 	cwnd_quota = tcp_cwnd_test(tp, skb);
826 	if (cwnd_quota &&
827 	    !tcp_snd_wnd_test(tp, skb, cur_mss))
828 		cwnd_quota = 0;
829 
830 	return cwnd_quota;
831 }
832 
833 static inline int tcp_skb_is_last(const struct sock *sk,
834 				  const struct sk_buff *skb)
835 {
836 	return skb->next == (struct sk_buff *)&sk->sk_write_queue;
837 }
838 
839 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
840 {
841 	struct sk_buff *skb = sk->sk_send_head;
842 
843 	return (skb &&
844 		tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
845 			     (tcp_skb_is_last(sk, skb) ?
846 			      TCP_NAGLE_PUSH :
847 			      tp->nonagle)));
848 }
849 
850 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
851  * which is put after SKB on the list.  It is very much like
852  * tcp_fragment() except that it may make several kinds of assumptions
853  * in order to speed up the splitting operation.  In particular, we
854  * know that all the data is in scatter-gather pages, and that the
855  * packet has never been sent out before (and thus is not cloned).
856  */
857 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len)
858 {
859 	struct sk_buff *buff;
860 	int nlen = skb->len - len;
861 	u16 flags;
862 
863 	/* All of a TSO frame must be composed of paged data.  */
864 	BUG_ON(skb->len != skb->data_len);
865 
866 	buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC);
867 	if (unlikely(buff == NULL))
868 		return -ENOMEM;
869 
870 	buff->truesize = nlen;
871 	skb->truesize -= nlen;
872 
873 	/* Correct the sequence numbers. */
874 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
875 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
876 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
877 
878 	/* PSH and FIN should only be set in the second packet. */
879 	flags = TCP_SKB_CB(skb)->flags;
880 	TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
881 	TCP_SKB_CB(buff)->flags = flags;
882 
883 	/* This packet was never sent out yet, so no SACK bits. */
884 	TCP_SKB_CB(buff)->sacked = 0;
885 
886 	buff->ip_summed = skb->ip_summed = CHECKSUM_HW;
887 	skb_split(skb, buff, len);
888 
889 	/* Fix up tso_factor for both original and new SKB.  */
890 	tcp_set_skb_tso_segs(sk, skb);
891 	tcp_set_skb_tso_segs(sk, buff);
892 
893 	/* Link BUFF into the send queue. */
894 	skb_header_release(buff);
895 	__skb_append(skb, buff);
896 
897 	return 0;
898 }
899 
900 /* Try to defer sending, if possible, in order to minimize the amount
901  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
902  *
903  * This algorithm is from John Heffner.
904  */
905 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
906 {
907 	u32 send_win, cong_win, limit, in_flight;
908 
909 	if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
910 		return 0;
911 
912 	if (tp->ca_state != TCP_CA_Open)
913 		return 0;
914 
915 	in_flight = tcp_packets_in_flight(tp);
916 
917 	BUG_ON(tcp_skb_pcount(skb) <= 1 ||
918 	       (tp->snd_cwnd <= in_flight));
919 
920 	send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq;
921 
922 	/* From in_flight test above, we know that cwnd > in_flight.  */
923 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
924 
925 	limit = min(send_win, cong_win);
926 
927 	/* If sk_send_head can be sent fully now, just do it.  */
928 	if (skb->len <= limit)
929 		return 0;
930 
931 	if (sysctl_tcp_tso_win_divisor) {
932 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
933 
934 		/* If at least some fraction of a window is available,
935 		 * just use it.
936 		 */
937 		chunk /= sysctl_tcp_tso_win_divisor;
938 		if (limit >= chunk)
939 			return 0;
940 	} else {
941 		/* Different approach, try not to defer past a single
942 		 * ACK.  Receiver should ACK every other full sized
943 		 * frame, so if we have space for more than 3 frames
944 		 * then send now.
945 		 */
946 		if (limit > tcp_max_burst(tp) * tp->mss_cache)
947 			return 0;
948 	}
949 
950 	/* Ok, it looks like it is advisable to defer.  */
951 	return 1;
952 }
953 
954 /* This routine writes packets to the network.  It advances the
955  * send_head.  This happens as incoming acks open up the remote
956  * window for us.
957  *
958  * Returns 1, if no segments are in flight and we have queued segments, but
959  * cannot send anything now because of SWS or another problem.
960  */
961 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
962 {
963 	struct tcp_sock *tp = tcp_sk(sk);
964 	struct sk_buff *skb;
965 	unsigned int tso_segs, sent_pkts;
966 	int cwnd_quota;
967 
968 	/* If we are closed, the bytes will have to remain here.
969 	 * In time closedown will finish, we empty the write queue and all
970 	 * will be happy.
971 	 */
972 	if (unlikely(sk->sk_state == TCP_CLOSE))
973 		return 0;
974 
975 	skb = sk->sk_send_head;
976 	if (unlikely(!skb))
977 		return 0;
978 
979 	tso_segs = tcp_init_tso_segs(sk, skb);
980 	cwnd_quota = tcp_cwnd_test(tp, skb);
981 	if (unlikely(!cwnd_quota))
982 		goto out;
983 
984 	sent_pkts = 0;
985 	while (likely(tcp_snd_wnd_test(tp, skb, mss_now))) {
986 		BUG_ON(!tso_segs);
987 
988 		if (tso_segs == 1) {
989 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
990 						     (tcp_skb_is_last(sk, skb) ?
991 						      nonagle : TCP_NAGLE_PUSH))))
992 				break;
993 		} else {
994 			if (tcp_tso_should_defer(sk, tp, skb))
995 				break;
996 		}
997 
998 		if (tso_segs > 1) {
999 			u32 limit = tcp_window_allows(tp, skb,
1000 						      mss_now, cwnd_quota);
1001 
1002 			if (skb->len < limit) {
1003 				unsigned int trim = skb->len % mss_now;
1004 
1005 				if (trim)
1006 					limit = skb->len - trim;
1007 			}
1008 			if (skb->len > limit) {
1009 				if (tso_fragment(sk, skb, limit))
1010 					break;
1011 			}
1012 		} else if (unlikely(skb->len > mss_now)) {
1013 			if (unlikely(tcp_fragment(sk, skb,  mss_now)))
1014 				break;
1015 		}
1016 
1017 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1018 
1019 		if (unlikely(tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC))))
1020 			break;
1021 
1022 		/* Advance the send_head.  This one is sent out.
1023 		 * This call will increment packets_out.
1024 		 */
1025 		update_send_head(sk, tp, skb);
1026 
1027 		tcp_minshall_update(tp, mss_now, skb);
1028 		sent_pkts++;
1029 
1030 		/* Do not optimize this to use tso_segs. If we chopped up
1031 		 * the packet above, tso_segs will no longer be valid.
1032 		 */
1033 		cwnd_quota -= tcp_skb_pcount(skb);
1034 
1035 		BUG_ON(cwnd_quota < 0);
1036 		if (!cwnd_quota)
1037 			break;
1038 
1039 		skb = sk->sk_send_head;
1040 		if (!skb)
1041 			break;
1042 		tso_segs = tcp_init_tso_segs(sk, skb);
1043 	}
1044 
1045 	if (likely(sent_pkts)) {
1046 		tcp_cwnd_validate(sk, tp);
1047 		return 0;
1048 	}
1049 out:
1050 	return !tp->packets_out && sk->sk_send_head;
1051 }
1052 
1053 /* Push out any pending frames which were held back due to
1054  * TCP_CORK or attempt at coalescing tiny packets.
1055  * The socket must be locked by the caller.
1056  */
1057 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp,
1058 			       unsigned int cur_mss, int nonagle)
1059 {
1060 	struct sk_buff *skb = sk->sk_send_head;
1061 
1062 	if (skb) {
1063 		if (tcp_write_xmit(sk, cur_mss, nonagle))
1064 			tcp_check_probe_timer(sk, tp);
1065 	}
1066 }
1067 
1068 /* Send _single_ skb sitting at the send head. This function requires
1069  * true push pending frames to setup probe timer etc.
1070  */
1071 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1072 {
1073 	struct tcp_sock *tp = tcp_sk(sk);
1074 	struct sk_buff *skb = sk->sk_send_head;
1075 	unsigned int tso_segs, cwnd_quota;
1076 
1077 	BUG_ON(!skb || skb->len < mss_now);
1078 
1079 	tso_segs = tcp_init_tso_segs(sk, skb);
1080 	cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH);
1081 
1082 	if (likely(cwnd_quota)) {
1083 		BUG_ON(!tso_segs);
1084 
1085 		if (tso_segs > 1) {
1086 			u32 limit = tcp_window_allows(tp, skb,
1087 						      mss_now, cwnd_quota);
1088 
1089 			if (skb->len < limit) {
1090 				unsigned int trim = skb->len % mss_now;
1091 
1092 				if (trim)
1093 					limit = skb->len - trim;
1094 			}
1095 			if (skb->len > limit) {
1096 				if (unlikely(tso_fragment(sk, skb, limit)))
1097 					return;
1098 			}
1099 		} else if (unlikely(skb->len > mss_now)) {
1100 			if (unlikely(tcp_fragment(sk, skb, mss_now)))
1101 				return;
1102 		}
1103 
1104 		/* Send it out now. */
1105 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1106 
1107 		if (likely(!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation)))) {
1108 			update_send_head(sk, tp, skb);
1109 			tcp_cwnd_validate(sk, tp);
1110 			return;
1111 		}
1112 	}
1113 }
1114 
1115 /* This function returns the amount that we can raise the
1116  * usable window based on the following constraints
1117  *
1118  * 1. The window can never be shrunk once it is offered (RFC 793)
1119  * 2. We limit memory per socket
1120  *
1121  * RFC 1122:
1122  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1123  *  RECV.NEXT + RCV.WIN fixed until:
1124  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1125  *
1126  * i.e. don't raise the right edge of the window until you can raise
1127  * it at least MSS bytes.
1128  *
1129  * Unfortunately, the recommended algorithm breaks header prediction,
1130  * since header prediction assumes th->window stays fixed.
1131  *
1132  * Strictly speaking, keeping th->window fixed violates the receiver
1133  * side SWS prevention criteria. The problem is that under this rule
1134  * a stream of single byte packets will cause the right side of the
1135  * window to always advance by a single byte.
1136  *
1137  * Of course, if the sender implements sender side SWS prevention
1138  * then this will not be a problem.
1139  *
1140  * BSD seems to make the following compromise:
1141  *
1142  *	If the free space is less than the 1/4 of the maximum
1143  *	space available and the free space is less than 1/2 mss,
1144  *	then set the window to 0.
1145  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1146  *	Otherwise, just prevent the window from shrinking
1147  *	and from being larger than the largest representable value.
1148  *
1149  * This prevents incremental opening of the window in the regime
1150  * where TCP is limited by the speed of the reader side taking
1151  * data out of the TCP receive queue. It does nothing about
1152  * those cases where the window is constrained on the sender side
1153  * because the pipeline is full.
1154  *
1155  * BSD also seems to "accidentally" limit itself to windows that are a
1156  * multiple of MSS, at least until the free space gets quite small.
1157  * This would appear to be a side effect of the mbuf implementation.
1158  * Combining these two algorithms results in the observed behavior
1159  * of having a fixed window size at almost all times.
1160  *
1161  * Below we obtain similar behavior by forcing the offered window to
1162  * a multiple of the mss when it is feasible to do so.
1163  *
1164  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1165  * Regular options like TIMESTAMP are taken into account.
1166  */
1167 u32 __tcp_select_window(struct sock *sk)
1168 {
1169 	struct tcp_sock *tp = tcp_sk(sk);
1170 	/* MSS for the peer's data.  Previous verions used mss_clamp
1171 	 * here.  I don't know if the value based on our guesses
1172 	 * of peer's MSS is better for the performance.  It's more correct
1173 	 * but may be worse for the performance because of rcv_mss
1174 	 * fluctuations.  --SAW  1998/11/1
1175 	 */
1176 	int mss = tp->ack.rcv_mss;
1177 	int free_space = tcp_space(sk);
1178 	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1179 	int window;
1180 
1181 	if (mss > full_space)
1182 		mss = full_space;
1183 
1184 	if (free_space < full_space/2) {
1185 		tp->ack.quick = 0;
1186 
1187 		if (tcp_memory_pressure)
1188 			tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
1189 
1190 		if (free_space < mss)
1191 			return 0;
1192 	}
1193 
1194 	if (free_space > tp->rcv_ssthresh)
1195 		free_space = tp->rcv_ssthresh;
1196 
1197 	/* Don't do rounding if we are using window scaling, since the
1198 	 * scaled window will not line up with the MSS boundary anyway.
1199 	 */
1200 	window = tp->rcv_wnd;
1201 	if (tp->rx_opt.rcv_wscale) {
1202 		window = free_space;
1203 
1204 		/* Advertise enough space so that it won't get scaled away.
1205 		 * Import case: prevent zero window announcement if
1206 		 * 1<<rcv_wscale > mss.
1207 		 */
1208 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1209 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1210 				  << tp->rx_opt.rcv_wscale);
1211 	} else {
1212 		/* Get the largest window that is a nice multiple of mss.
1213 		 * Window clamp already applied above.
1214 		 * If our current window offering is within 1 mss of the
1215 		 * free space we just keep it. This prevents the divide
1216 		 * and multiply from happening most of the time.
1217 		 * We also don't do any window rounding when the free space
1218 		 * is too small.
1219 		 */
1220 		if (window <= free_space - mss || window > free_space)
1221 			window = (free_space/mss)*mss;
1222 	}
1223 
1224 	return window;
1225 }
1226 
1227 /* Attempt to collapse two adjacent SKB's during retransmission. */
1228 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
1229 {
1230 	struct tcp_sock *tp = tcp_sk(sk);
1231 	struct sk_buff *next_skb = skb->next;
1232 
1233 	/* The first test we must make is that neither of these two
1234 	 * SKB's are still referenced by someone else.
1235 	 */
1236 	if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
1237 		int skb_size = skb->len, next_skb_size = next_skb->len;
1238 		u16 flags = TCP_SKB_CB(skb)->flags;
1239 
1240 		/* Also punt if next skb has been SACK'd. */
1241 		if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1242 			return;
1243 
1244 		/* Next skb is out of window. */
1245 		if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
1246 			return;
1247 
1248 		/* Punt if not enough space exists in the first SKB for
1249 		 * the data in the second, or the total combined payload
1250 		 * would exceed the MSS.
1251 		 */
1252 		if ((next_skb_size > skb_tailroom(skb)) ||
1253 		    ((skb_size + next_skb_size) > mss_now))
1254 			return;
1255 
1256 		BUG_ON(tcp_skb_pcount(skb) != 1 ||
1257 		       tcp_skb_pcount(next_skb) != 1);
1258 
1259 		/* Ok.  We will be able to collapse the packet. */
1260 		__skb_unlink(next_skb, next_skb->list);
1261 
1262 		memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
1263 
1264 		if (next_skb->ip_summed == CHECKSUM_HW)
1265 			skb->ip_summed = CHECKSUM_HW;
1266 
1267 		if (skb->ip_summed != CHECKSUM_HW)
1268 			skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1269 
1270 		/* Update sequence range on original skb. */
1271 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1272 
1273 		/* Merge over control information. */
1274 		flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1275 		TCP_SKB_CB(skb)->flags = flags;
1276 
1277 		/* All done, get rid of second SKB and account for it so
1278 		 * packet counting does not break.
1279 		 */
1280 		TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
1281 		if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
1282 			tp->retrans_out -= tcp_skb_pcount(next_skb);
1283 		if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
1284 			tp->lost_out -= tcp_skb_pcount(next_skb);
1285 			tp->left_out -= tcp_skb_pcount(next_skb);
1286 		}
1287 		/* Reno case is special. Sigh... */
1288 		if (!tp->rx_opt.sack_ok && tp->sacked_out) {
1289 			tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1290 			tp->left_out -= tcp_skb_pcount(next_skb);
1291 		}
1292 
1293 		/* Not quite right: it can be > snd.fack, but
1294 		 * it is better to underestimate fackets.
1295 		 */
1296 		tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
1297 		tcp_packets_out_dec(tp, next_skb);
1298 		sk_stream_free_skb(sk, next_skb);
1299 	}
1300 }
1301 
1302 /* Do a simple retransmit without using the backoff mechanisms in
1303  * tcp_timer. This is used for path mtu discovery.
1304  * The socket is already locked here.
1305  */
1306 void tcp_simple_retransmit(struct sock *sk)
1307 {
1308 	struct tcp_sock *tp = tcp_sk(sk);
1309 	struct sk_buff *skb;
1310 	unsigned int mss = tcp_current_mss(sk, 0);
1311 	int lost = 0;
1312 
1313 	sk_stream_for_retrans_queue(skb, sk) {
1314 		if (skb->len > mss &&
1315 		    !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1316 			if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1317 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1318 				tp->retrans_out -= tcp_skb_pcount(skb);
1319 			}
1320 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
1321 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1322 				tp->lost_out += tcp_skb_pcount(skb);
1323 				lost = 1;
1324 			}
1325 		}
1326 	}
1327 
1328 	if (!lost)
1329 		return;
1330 
1331 	tcp_sync_left_out(tp);
1332 
1333  	/* Don't muck with the congestion window here.
1334 	 * Reason is that we do not increase amount of _data_
1335 	 * in network, but units changed and effective
1336 	 * cwnd/ssthresh really reduced now.
1337 	 */
1338 	if (tp->ca_state != TCP_CA_Loss) {
1339 		tp->high_seq = tp->snd_nxt;
1340 		tp->snd_ssthresh = tcp_current_ssthresh(tp);
1341 		tp->prior_ssthresh = 0;
1342 		tp->undo_marker = 0;
1343 		tcp_set_ca_state(tp, TCP_CA_Loss);
1344 	}
1345 	tcp_xmit_retransmit_queue(sk);
1346 }
1347 
1348 /* This retransmits one SKB.  Policy decisions and retransmit queue
1349  * state updates are done by the caller.  Returns non-zero if an
1350  * error occurred which prevented the send.
1351  */
1352 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1353 {
1354 	struct tcp_sock *tp = tcp_sk(sk);
1355  	unsigned int cur_mss = tcp_current_mss(sk, 0);
1356 	int err;
1357 
1358 	/* Do not sent more than we queued. 1/4 is reserved for possible
1359 	 * copying overhead: frgagmentation, tunneling, mangling etc.
1360 	 */
1361 	if (atomic_read(&sk->sk_wmem_alloc) >
1362 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1363 		return -EAGAIN;
1364 
1365 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1366 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1367 			BUG();
1368 
1369 		if (sk->sk_route_caps & NETIF_F_TSO) {
1370 			sk->sk_route_caps &= ~NETIF_F_TSO;
1371 			sock_set_flag(sk, SOCK_NO_LARGESEND);
1372 		}
1373 
1374 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1375 			return -ENOMEM;
1376 	}
1377 
1378 	/* If receiver has shrunk his window, and skb is out of
1379 	 * new window, do not retransmit it. The exception is the
1380 	 * case, when window is shrunk to zero. In this case
1381 	 * our retransmit serves as a zero window probe.
1382 	 */
1383 	if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
1384 	    && TCP_SKB_CB(skb)->seq != tp->snd_una)
1385 		return -EAGAIN;
1386 
1387 	if (skb->len > cur_mss) {
1388 		int old_factor = tcp_skb_pcount(skb);
1389 		int new_factor;
1390 
1391 		if (tcp_fragment(sk, skb, cur_mss))
1392 			return -ENOMEM; /* We'll try again later. */
1393 
1394 		/* New SKB created, account for it. */
1395 		new_factor = tcp_skb_pcount(skb);
1396 		tp->packets_out -= old_factor - new_factor;
1397 		tp->packets_out += tcp_skb_pcount(skb->next);
1398 	}
1399 
1400 	/* Collapse two adjacent packets if worthwhile and we can. */
1401 	if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1402 	   (skb->len < (cur_mss >> 1)) &&
1403 	   (skb->next != sk->sk_send_head) &&
1404 	   (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
1405 	   (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
1406 	   (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
1407 	   (sysctl_tcp_retrans_collapse != 0))
1408 		tcp_retrans_try_collapse(sk, skb, cur_mss);
1409 
1410 	if(tp->af_specific->rebuild_header(sk))
1411 		return -EHOSTUNREACH; /* Routing failure or similar. */
1412 
1413 	/* Some Solaris stacks overoptimize and ignore the FIN on a
1414 	 * retransmit when old data is attached.  So strip it off
1415 	 * since it is cheap to do so and saves bytes on the network.
1416 	 */
1417 	if(skb->len > 0 &&
1418 	   (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1419 	   tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1420 		if (!pskb_trim(skb, 0)) {
1421 			TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
1422 			skb_shinfo(skb)->tso_segs = 1;
1423 			skb_shinfo(skb)->tso_size = 0;
1424 			skb->ip_summed = CHECKSUM_NONE;
1425 			skb->csum = 0;
1426 		}
1427 	}
1428 
1429 	/* Make a copy, if the first transmission SKB clone we made
1430 	 * is still in somebody's hands, else make a clone.
1431 	 */
1432 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1433 
1434 	err = tcp_transmit_skb(sk, (skb_cloned(skb) ?
1435 				    pskb_copy(skb, GFP_ATOMIC):
1436 				    skb_clone(skb, GFP_ATOMIC)));
1437 
1438 	if (err == 0) {
1439 		/* Update global TCP statistics. */
1440 		TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
1441 
1442 		tp->total_retrans++;
1443 
1444 #if FASTRETRANS_DEBUG > 0
1445 		if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1446 			if (net_ratelimit())
1447 				printk(KERN_DEBUG "retrans_out leaked.\n");
1448 		}
1449 #endif
1450 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1451 		tp->retrans_out += tcp_skb_pcount(skb);
1452 
1453 		/* Save stamp of the first retransmit. */
1454 		if (!tp->retrans_stamp)
1455 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1456 
1457 		tp->undo_retrans++;
1458 
1459 		/* snd_nxt is stored to detect loss of retransmitted segment,
1460 		 * see tcp_input.c tcp_sacktag_write_queue().
1461 		 */
1462 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1463 	}
1464 	return err;
1465 }
1466 
1467 /* This gets called after a retransmit timeout, and the initially
1468  * retransmitted data is acknowledged.  It tries to continue
1469  * resending the rest of the retransmit queue, until either
1470  * we've sent it all or the congestion window limit is reached.
1471  * If doing SACK, the first ACK which comes back for a timeout
1472  * based retransmit packet might feed us FACK information again.
1473  * If so, we use it to avoid unnecessarily retransmissions.
1474  */
1475 void tcp_xmit_retransmit_queue(struct sock *sk)
1476 {
1477 	struct tcp_sock *tp = tcp_sk(sk);
1478 	struct sk_buff *skb;
1479 	int packet_cnt = tp->lost_out;
1480 
1481 	/* First pass: retransmit lost packets. */
1482 	if (packet_cnt) {
1483 		sk_stream_for_retrans_queue(skb, sk) {
1484 			__u8 sacked = TCP_SKB_CB(skb)->sacked;
1485 
1486 			/* Assume this retransmit will generate
1487 			 * only one packet for congestion window
1488 			 * calculation purposes.  This works because
1489 			 * tcp_retransmit_skb() will chop up the
1490 			 * packet to be MSS sized and all the
1491 			 * packet counting works out.
1492 			 */
1493 			if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1494 				return;
1495 
1496 			if (sacked&TCPCB_LOST) {
1497 				if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1498 					if (tcp_retransmit_skb(sk, skb))
1499 						return;
1500 					if (tp->ca_state != TCP_CA_Loss)
1501 						NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
1502 					else
1503 						NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
1504 
1505 					if (skb ==
1506 					    skb_peek(&sk->sk_write_queue))
1507 						tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1508 				}
1509 
1510 				packet_cnt -= tcp_skb_pcount(skb);
1511 				if (packet_cnt <= 0)
1512 					break;
1513 			}
1514 		}
1515 	}
1516 
1517 	/* OK, demanded retransmission is finished. */
1518 
1519 	/* Forward retransmissions are possible only during Recovery. */
1520 	if (tp->ca_state != TCP_CA_Recovery)
1521 		return;
1522 
1523 	/* No forward retransmissions in Reno are possible. */
1524 	if (!tp->rx_opt.sack_ok)
1525 		return;
1526 
1527 	/* Yeah, we have to make difficult choice between forward transmission
1528 	 * and retransmission... Both ways have their merits...
1529 	 *
1530 	 * For now we do not retransmit anything, while we have some new
1531 	 * segments to send.
1532 	 */
1533 
1534 	if (tcp_may_send_now(sk, tp))
1535 		return;
1536 
1537 	packet_cnt = 0;
1538 
1539 	sk_stream_for_retrans_queue(skb, sk) {
1540 		/* Similar to the retransmit loop above we
1541 		 * can pretend that the retransmitted SKB
1542 		 * we send out here will be composed of one
1543 		 * real MSS sized packet because tcp_retransmit_skb()
1544 		 * will fragment it if necessary.
1545 		 */
1546 		if (++packet_cnt > tp->fackets_out)
1547 			break;
1548 
1549 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1550 			break;
1551 
1552 		if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
1553 			continue;
1554 
1555 		/* Ok, retransmit it. */
1556 		if (tcp_retransmit_skb(sk, skb))
1557 			break;
1558 
1559 		if (skb == skb_peek(&sk->sk_write_queue))
1560 			tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1561 
1562 		NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
1563 	}
1564 }
1565 
1566 
1567 /* Send a fin.  The caller locks the socket for us.  This cannot be
1568  * allowed to fail queueing a FIN frame under any circumstances.
1569  */
1570 void tcp_send_fin(struct sock *sk)
1571 {
1572 	struct tcp_sock *tp = tcp_sk(sk);
1573 	struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
1574 	int mss_now;
1575 
1576 	/* Optimization, tack on the FIN if we have a queue of
1577 	 * unsent frames.  But be careful about outgoing SACKS
1578 	 * and IP options.
1579 	 */
1580 	mss_now = tcp_current_mss(sk, 1);
1581 
1582 	if (sk->sk_send_head != NULL) {
1583 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
1584 		TCP_SKB_CB(skb)->end_seq++;
1585 		tp->write_seq++;
1586 	} else {
1587 		/* Socket is locked, keep trying until memory is available. */
1588 		for (;;) {
1589 			skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL);
1590 			if (skb)
1591 				break;
1592 			yield();
1593 		}
1594 
1595 		/* Reserve space for headers and prepare control bits. */
1596 		skb_reserve(skb, MAX_TCP_HEADER);
1597 		skb->csum = 0;
1598 		TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
1599 		TCP_SKB_CB(skb)->sacked = 0;
1600 		skb_shinfo(skb)->tso_segs = 1;
1601 		skb_shinfo(skb)->tso_size = 0;
1602 
1603 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1604 		TCP_SKB_CB(skb)->seq = tp->write_seq;
1605 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1606 		tcp_queue_skb(sk, skb);
1607 	}
1608 	__tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
1609 }
1610 
1611 /* We get here when a process closes a file descriptor (either due to
1612  * an explicit close() or as a byproduct of exit()'ing) and there
1613  * was unread data in the receive queue.  This behavior is recommended
1614  * by draft-ietf-tcpimpl-prob-03.txt section 3.10.  -DaveM
1615  */
1616 void tcp_send_active_reset(struct sock *sk, unsigned int __nocast priority)
1617 {
1618 	struct tcp_sock *tp = tcp_sk(sk);
1619 	struct sk_buff *skb;
1620 
1621 	/* NOTE: No TCP options attached and we never retransmit this. */
1622 	skb = alloc_skb(MAX_TCP_HEADER, priority);
1623 	if (!skb) {
1624 		NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1625 		return;
1626 	}
1627 
1628 	/* Reserve space for headers and prepare control bits. */
1629 	skb_reserve(skb, MAX_TCP_HEADER);
1630 	skb->csum = 0;
1631 	TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
1632 	TCP_SKB_CB(skb)->sacked = 0;
1633 	skb_shinfo(skb)->tso_segs = 1;
1634 	skb_shinfo(skb)->tso_size = 0;
1635 
1636 	/* Send it off. */
1637 	TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
1638 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1639 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1640 	if (tcp_transmit_skb(sk, skb))
1641 		NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1642 }
1643 
1644 /* WARNING: This routine must only be called when we have already sent
1645  * a SYN packet that crossed the incoming SYN that caused this routine
1646  * to get called. If this assumption fails then the initial rcv_wnd
1647  * and rcv_wscale values will not be correct.
1648  */
1649 int tcp_send_synack(struct sock *sk)
1650 {
1651 	struct sk_buff* skb;
1652 
1653 	skb = skb_peek(&sk->sk_write_queue);
1654 	if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
1655 		printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
1656 		return -EFAULT;
1657 	}
1658 	if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
1659 		if (skb_cloned(skb)) {
1660 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
1661 			if (nskb == NULL)
1662 				return -ENOMEM;
1663 			__skb_unlink(skb, &sk->sk_write_queue);
1664 			skb_header_release(nskb);
1665 			__skb_queue_head(&sk->sk_write_queue, nskb);
1666 			sk_stream_free_skb(sk, skb);
1667 			sk_charge_skb(sk, nskb);
1668 			skb = nskb;
1669 		}
1670 
1671 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
1672 		TCP_ECN_send_synack(tcp_sk(sk), skb);
1673 	}
1674 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1675 	return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1676 }
1677 
1678 /*
1679  * Prepare a SYN-ACK.
1680  */
1681 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
1682 				 struct request_sock *req)
1683 {
1684 	struct inet_request_sock *ireq = inet_rsk(req);
1685 	struct tcp_sock *tp = tcp_sk(sk);
1686 	struct tcphdr *th;
1687 	int tcp_header_size;
1688 	struct sk_buff *skb;
1689 
1690 	skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
1691 	if (skb == NULL)
1692 		return NULL;
1693 
1694 	/* Reserve space for headers. */
1695 	skb_reserve(skb, MAX_TCP_HEADER);
1696 
1697 	skb->dst = dst_clone(dst);
1698 
1699 	tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
1700 			   (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
1701 			   (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
1702 			   /* SACK_PERM is in the place of NOP NOP of TS */
1703 			   ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
1704 	skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
1705 
1706 	memset(th, 0, sizeof(struct tcphdr));
1707 	th->syn = 1;
1708 	th->ack = 1;
1709 	if (dst->dev->features&NETIF_F_TSO)
1710 		ireq->ecn_ok = 0;
1711 	TCP_ECN_make_synack(req, th);
1712 	th->source = inet_sk(sk)->sport;
1713 	th->dest = ireq->rmt_port;
1714 	TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn;
1715 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1716 	TCP_SKB_CB(skb)->sacked = 0;
1717 	skb_shinfo(skb)->tso_segs = 1;
1718 	skb_shinfo(skb)->tso_size = 0;
1719 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
1720 	th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
1721 	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
1722 		__u8 rcv_wscale;
1723 		/* Set this up on the first call only */
1724 		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
1725 		/* tcp_full_space because it is guaranteed to be the first packet */
1726 		tcp_select_initial_window(tcp_full_space(sk),
1727 			dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
1728 			&req->rcv_wnd,
1729 			&req->window_clamp,
1730 			ireq->wscale_ok,
1731 			&rcv_wscale);
1732 		ireq->rcv_wscale = rcv_wscale;
1733 	}
1734 
1735 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
1736 	th->window = htons(req->rcv_wnd);
1737 
1738 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1739 	tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
1740 			      ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
1741 			      TCP_SKB_CB(skb)->when,
1742 			      req->ts_recent);
1743 
1744 	skb->csum = 0;
1745 	th->doff = (tcp_header_size >> 2);
1746 	TCP_INC_STATS(TCP_MIB_OUTSEGS);
1747 	return skb;
1748 }
1749 
1750 /*
1751  * Do all connect socket setups that can be done AF independent.
1752  */
1753 static inline void tcp_connect_init(struct sock *sk)
1754 {
1755 	struct dst_entry *dst = __sk_dst_get(sk);
1756 	struct tcp_sock *tp = tcp_sk(sk);
1757 	__u8 rcv_wscale;
1758 
1759 	/* We'll fix this up when we get a response from the other end.
1760 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
1761 	 */
1762 	tp->tcp_header_len = sizeof(struct tcphdr) +
1763 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
1764 
1765 	/* If user gave his TCP_MAXSEG, record it to clamp */
1766 	if (tp->rx_opt.user_mss)
1767 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
1768 	tp->max_window = 0;
1769 	tcp_sync_mss(sk, dst_mtu(dst));
1770 
1771 	if (!tp->window_clamp)
1772 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
1773 	tp->advmss = dst_metric(dst, RTAX_ADVMSS);
1774 	tcp_initialize_rcv_mss(sk);
1775 
1776 	tcp_select_initial_window(tcp_full_space(sk),
1777 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
1778 				  &tp->rcv_wnd,
1779 				  &tp->window_clamp,
1780 				  sysctl_tcp_window_scaling,
1781 				  &rcv_wscale);
1782 
1783 	tp->rx_opt.rcv_wscale = rcv_wscale;
1784 	tp->rcv_ssthresh = tp->rcv_wnd;
1785 
1786 	sk->sk_err = 0;
1787 	sock_reset_flag(sk, SOCK_DONE);
1788 	tp->snd_wnd = 0;
1789 	tcp_init_wl(tp, tp->write_seq, 0);
1790 	tp->snd_una = tp->write_seq;
1791 	tp->snd_sml = tp->write_seq;
1792 	tp->rcv_nxt = 0;
1793 	tp->rcv_wup = 0;
1794 	tp->copied_seq = 0;
1795 
1796 	tp->rto = TCP_TIMEOUT_INIT;
1797 	tp->retransmits = 0;
1798 	tcp_clear_retrans(tp);
1799 }
1800 
1801 /*
1802  * Build a SYN and send it off.
1803  */
1804 int tcp_connect(struct sock *sk)
1805 {
1806 	struct tcp_sock *tp = tcp_sk(sk);
1807 	struct sk_buff *buff;
1808 
1809 	tcp_connect_init(sk);
1810 
1811 	buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation);
1812 	if (unlikely(buff == NULL))
1813 		return -ENOBUFS;
1814 
1815 	/* Reserve space for headers. */
1816 	skb_reserve(buff, MAX_TCP_HEADER);
1817 
1818 	TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
1819 	TCP_ECN_send_syn(sk, tp, buff);
1820 	TCP_SKB_CB(buff)->sacked = 0;
1821 	skb_shinfo(buff)->tso_segs = 1;
1822 	skb_shinfo(buff)->tso_size = 0;
1823 	buff->csum = 0;
1824 	TCP_SKB_CB(buff)->seq = tp->write_seq++;
1825 	TCP_SKB_CB(buff)->end_seq = tp->write_seq;
1826 	tp->snd_nxt = tp->write_seq;
1827 	tp->pushed_seq = tp->write_seq;
1828 
1829 	/* Send it off. */
1830 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
1831 	tp->retrans_stamp = TCP_SKB_CB(buff)->when;
1832 	skb_header_release(buff);
1833 	__skb_queue_tail(&sk->sk_write_queue, buff);
1834 	sk_charge_skb(sk, buff);
1835 	tp->packets_out += tcp_skb_pcount(buff);
1836 	tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL));
1837 	TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
1838 
1839 	/* Timer for repeating the SYN until an answer. */
1840 	tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1841 	return 0;
1842 }
1843 
1844 /* Send out a delayed ack, the caller does the policy checking
1845  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
1846  * for details.
1847  */
1848 void tcp_send_delayed_ack(struct sock *sk)
1849 {
1850 	struct tcp_sock *tp = tcp_sk(sk);
1851 	int ato = tp->ack.ato;
1852 	unsigned long timeout;
1853 
1854 	if (ato > TCP_DELACK_MIN) {
1855 		int max_ato = HZ/2;
1856 
1857 		if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED))
1858 			max_ato = TCP_DELACK_MAX;
1859 
1860 		/* Slow path, intersegment interval is "high". */
1861 
1862 		/* If some rtt estimate is known, use it to bound delayed ack.
1863 		 * Do not use tp->rto here, use results of rtt measurements
1864 		 * directly.
1865 		 */
1866 		if (tp->srtt) {
1867 			int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
1868 
1869 			if (rtt < max_ato)
1870 				max_ato = rtt;
1871 		}
1872 
1873 		ato = min(ato, max_ato);
1874 	}
1875 
1876 	/* Stay within the limit we were given */
1877 	timeout = jiffies + ato;
1878 
1879 	/* Use new timeout only if there wasn't a older one earlier. */
1880 	if (tp->ack.pending&TCP_ACK_TIMER) {
1881 		/* If delack timer was blocked or is about to expire,
1882 		 * send ACK now.
1883 		 */
1884 		if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) {
1885 			tcp_send_ack(sk);
1886 			return;
1887 		}
1888 
1889 		if (!time_before(timeout, tp->ack.timeout))
1890 			timeout = tp->ack.timeout;
1891 	}
1892 	tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER;
1893 	tp->ack.timeout = timeout;
1894 	sk_reset_timer(sk, &tp->delack_timer, timeout);
1895 }
1896 
1897 /* This routine sends an ack and also updates the window. */
1898 void tcp_send_ack(struct sock *sk)
1899 {
1900 	/* If we have been reset, we may not send again. */
1901 	if (sk->sk_state != TCP_CLOSE) {
1902 		struct tcp_sock *tp = tcp_sk(sk);
1903 		struct sk_buff *buff;
1904 
1905 		/* We are not putting this on the write queue, so
1906 		 * tcp_transmit_skb() will set the ownership to this
1907 		 * sock.
1908 		 */
1909 		buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1910 		if (buff == NULL) {
1911 			tcp_schedule_ack(tp);
1912 			tp->ack.ato = TCP_ATO_MIN;
1913 			tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
1914 			return;
1915 		}
1916 
1917 		/* Reserve space for headers and prepare control bits. */
1918 		skb_reserve(buff, MAX_TCP_HEADER);
1919 		buff->csum = 0;
1920 		TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
1921 		TCP_SKB_CB(buff)->sacked = 0;
1922 		skb_shinfo(buff)->tso_segs = 1;
1923 		skb_shinfo(buff)->tso_size = 0;
1924 
1925 		/* Send it off, this clears delayed acks for us. */
1926 		TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
1927 		TCP_SKB_CB(buff)->when = tcp_time_stamp;
1928 		tcp_transmit_skb(sk, buff);
1929 	}
1930 }
1931 
1932 /* This routine sends a packet with an out of date sequence
1933  * number. It assumes the other end will try to ack it.
1934  *
1935  * Question: what should we make while urgent mode?
1936  * 4.4BSD forces sending single byte of data. We cannot send
1937  * out of window data, because we have SND.NXT==SND.MAX...
1938  *
1939  * Current solution: to send TWO zero-length segments in urgent mode:
1940  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
1941  * out-of-date with SND.UNA-1 to probe window.
1942  */
1943 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
1944 {
1945 	struct tcp_sock *tp = tcp_sk(sk);
1946 	struct sk_buff *skb;
1947 
1948 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
1949 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1950 	if (skb == NULL)
1951 		return -1;
1952 
1953 	/* Reserve space for headers and set control bits. */
1954 	skb_reserve(skb, MAX_TCP_HEADER);
1955 	skb->csum = 0;
1956 	TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
1957 	TCP_SKB_CB(skb)->sacked = urgent;
1958 	skb_shinfo(skb)->tso_segs = 1;
1959 	skb_shinfo(skb)->tso_size = 0;
1960 
1961 	/* Use a previous sequence.  This should cause the other
1962 	 * end to send an ack.  Don't queue or clone SKB, just
1963 	 * send it.
1964 	 */
1965 	TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
1966 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1967 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1968 	return tcp_transmit_skb(sk, skb);
1969 }
1970 
1971 int tcp_write_wakeup(struct sock *sk)
1972 {
1973 	if (sk->sk_state != TCP_CLOSE) {
1974 		struct tcp_sock *tp = tcp_sk(sk);
1975 		struct sk_buff *skb;
1976 
1977 		if ((skb = sk->sk_send_head) != NULL &&
1978 		    before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
1979 			int err;
1980 			unsigned int mss = tcp_current_mss(sk, 0);
1981 			unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
1982 
1983 			if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
1984 				tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
1985 
1986 			/* We are probing the opening of a window
1987 			 * but the window size is != 0
1988 			 * must have been a result SWS avoidance ( sender )
1989 			 */
1990 			if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
1991 			    skb->len > mss) {
1992 				seg_size = min(seg_size, mss);
1993 				TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
1994 				if (tcp_fragment(sk, skb, seg_size))
1995 					return -1;
1996 				/* SWS override triggered forced fragmentation.
1997 				 * Disable TSO, the connection is too sick. */
1998 				if (sk->sk_route_caps & NETIF_F_TSO) {
1999 					sock_set_flag(sk, SOCK_NO_LARGESEND);
2000 					sk->sk_route_caps &= ~NETIF_F_TSO;
2001 				}
2002 			} else if (!tcp_skb_pcount(skb))
2003 				tcp_set_skb_tso_segs(sk, skb);
2004 
2005 			TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2006 			TCP_SKB_CB(skb)->when = tcp_time_stamp;
2007 			err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
2008 			if (!err) {
2009 				update_send_head(sk, tp, skb);
2010 			}
2011 			return err;
2012 		} else {
2013 			if (tp->urg_mode &&
2014 			    between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
2015 				tcp_xmit_probe_skb(sk, TCPCB_URG);
2016 			return tcp_xmit_probe_skb(sk, 0);
2017 		}
2018 	}
2019 	return -1;
2020 }
2021 
2022 /* A window probe timeout has occurred.  If window is not closed send
2023  * a partial packet else a zero probe.
2024  */
2025 void tcp_send_probe0(struct sock *sk)
2026 {
2027 	struct tcp_sock *tp = tcp_sk(sk);
2028 	int err;
2029 
2030 	err = tcp_write_wakeup(sk);
2031 
2032 	if (tp->packets_out || !sk->sk_send_head) {
2033 		/* Cancel probe timer, if it is not required. */
2034 		tp->probes_out = 0;
2035 		tp->backoff = 0;
2036 		return;
2037 	}
2038 
2039 	if (err <= 0) {
2040 		if (tp->backoff < sysctl_tcp_retries2)
2041 			tp->backoff++;
2042 		tp->probes_out++;
2043 		tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0,
2044 				      min(tp->rto << tp->backoff, TCP_RTO_MAX));
2045 	} else {
2046 		/* If packet was not sent due to local congestion,
2047 		 * do not backoff and do not remember probes_out.
2048 		 * Let local senders to fight for local resources.
2049 		 *
2050 		 * Use accumulated backoff yet.
2051 		 */
2052 		if (!tp->probes_out)
2053 			tp->probes_out=1;
2054 		tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0,
2055 				      min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL));
2056 	}
2057 }
2058 
2059 EXPORT_SYMBOL(tcp_connect);
2060 EXPORT_SYMBOL(tcp_make_synack);
2061 EXPORT_SYMBOL(tcp_simple_retransmit);
2062 EXPORT_SYMBOL(tcp_sync_mss);
2063