1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 } 86 87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 88 * window scaling factor due to loss of precision. 89 * If window has been shrunk, what should we make? It is not clear at all. 90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 92 * invalid. OK, let's make this for now: 93 */ 94 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 95 { 96 const struct tcp_sock *tp = tcp_sk(sk); 97 98 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 99 (tp->rx_opt.wscale_ok && 100 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 101 return tp->snd_nxt; 102 else 103 return tcp_wnd_end(tp); 104 } 105 106 /* Calculate mss to advertise in SYN segment. 107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 108 * 109 * 1. It is independent of path mtu. 110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 112 * attached devices, because some buggy hosts are confused by 113 * large MSS. 114 * 4. We do not make 3, we advertise MSS, calculated from first 115 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 116 * This may be overridden via information stored in routing table. 117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 118 * probably even Jumbo". 119 */ 120 static __u16 tcp_advertise_mss(struct sock *sk) 121 { 122 struct tcp_sock *tp = tcp_sk(sk); 123 const struct dst_entry *dst = __sk_dst_get(sk); 124 int mss = tp->advmss; 125 126 if (dst) { 127 unsigned int metric = dst_metric_advmss(dst); 128 129 if (metric < mss) { 130 mss = metric; 131 tp->advmss = mss; 132 } 133 } 134 135 return (__u16)mss; 136 } 137 138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 139 * This is the first part of cwnd validation mechanism. 140 */ 141 void tcp_cwnd_restart(struct sock *sk, s32 delta) 142 { 143 struct tcp_sock *tp = tcp_sk(sk); 144 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 145 u32 cwnd = tp->snd_cwnd; 146 147 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 148 149 tp->snd_ssthresh = tcp_current_ssthresh(sk); 150 restart_cwnd = min(restart_cwnd, cwnd); 151 152 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 153 cwnd >>= 1; 154 tp->snd_cwnd = max(cwnd, restart_cwnd); 155 tp->snd_cwnd_stamp = tcp_jiffies32; 156 tp->snd_cwnd_used = 0; 157 } 158 159 /* Congestion state accounting after a packet has been sent. */ 160 static void tcp_event_data_sent(struct tcp_sock *tp, 161 struct sock *sk) 162 { 163 struct inet_connection_sock *icsk = inet_csk(sk); 164 const u32 now = tcp_jiffies32; 165 166 if (tcp_packets_in_flight(tp) == 0) 167 tcp_ca_event(sk, CA_EVENT_TX_START); 168 169 /* If this is the first data packet sent in response to the 170 * previous received data, 171 * and it is a reply for ato after last received packet, 172 * increase pingpong count. 173 */ 174 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 175 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_inc_pingpong_cnt(sk); 177 178 tp->lsndtime = now; 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 183 u32 rcv_nxt) 184 { 185 struct tcp_sock *tp = tcp_sk(sk); 186 187 if (unlikely(tp->compressed_ack)) { 188 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 189 tp->compressed_ack); 190 tp->compressed_ack = 0; 191 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 192 __sock_put(sk); 193 } 194 195 if (unlikely(rcv_nxt != tp->rcv_nxt)) 196 return; /* Special ACK sent by DCTCP to reflect ECN */ 197 tcp_dec_quickack_mode(sk, pkts); 198 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 199 } 200 201 /* Determine a window scaling and initial window to offer. 202 * Based on the assumption that the given amount of space 203 * will be offered. Store the results in the tp structure. 204 * NOTE: for smooth operation initial space offering should 205 * be a multiple of mss if possible. We assume here that mss >= 1. 206 * This MUST be enforced by all callers. 207 */ 208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 209 __u32 *rcv_wnd, __u32 *window_clamp, 210 int wscale_ok, __u8 *rcv_wscale, 211 __u32 init_rcv_wnd) 212 { 213 unsigned int space = (__space < 0 ? 0 : __space); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (*window_clamp == 0) 217 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 218 space = min(*window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = rounddown(space, mss); 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = min_t(u32, space, U16_MAX); 236 237 if (init_rcv_wnd) 238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 239 240 *rcv_wscale = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window */ 243 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 244 space = max_t(u32, space, sysctl_rmem_max); 245 space = min_t(u32, space, *window_clamp); 246 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 247 0, TCP_MAX_WSCALE); 248 } 249 /* Set the clamp no higher than max representable value */ 250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 251 } 252 EXPORT_SYMBOL(tcp_select_initial_window); 253 254 /* Chose a new window to advertise, update state in tcp_sock for the 255 * socket, and return result with RFC1323 scaling applied. The return 256 * value can be stuffed directly into th->window for an outgoing 257 * frame. 258 */ 259 static u16 tcp_select_window(struct sock *sk) 260 { 261 struct tcp_sock *tp = tcp_sk(sk); 262 u32 old_win = tp->rcv_wnd; 263 u32 cur_win = tcp_receive_window(tp); 264 u32 new_win = __tcp_select_window(sk); 265 266 /* Never shrink the offered window */ 267 if (new_win < cur_win) { 268 /* Danger Will Robinson! 269 * Don't update rcv_wup/rcv_wnd here or else 270 * we will not be able to advertise a zero 271 * window in time. --DaveM 272 * 273 * Relax Will Robinson. 274 */ 275 if (new_win == 0) 276 NET_INC_STATS(sock_net(sk), 277 LINUX_MIB_TCPWANTZEROWINDOWADV); 278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 279 } 280 tp->rcv_wnd = new_win; 281 tp->rcv_wup = tp->rcv_nxt; 282 283 /* Make sure we do not exceed the maximum possible 284 * scaled window. 285 */ 286 if (!tp->rx_opt.rcv_wscale && 287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 288 new_win = min(new_win, MAX_TCP_WINDOW); 289 else 290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 291 292 /* RFC1323 scaling applied */ 293 new_win >>= tp->rx_opt.rcv_wscale; 294 295 /* If we advertise zero window, disable fast path. */ 296 if (new_win == 0) { 297 tp->pred_flags = 0; 298 if (old_win) 299 NET_INC_STATS(sock_net(sk), 300 LINUX_MIB_TCPTOZEROWINDOWADV); 301 } else if (old_win == 0) { 302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 303 } 304 305 return new_win; 306 } 307 308 /* Packet ECN state for a SYN-ACK */ 309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 314 if (!(tp->ecn_flags & TCP_ECN_OK)) 315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 316 else if (tcp_ca_needs_ecn(sk) || 317 tcp_bpf_ca_needs_ecn(sk)) 318 INET_ECN_xmit(sk); 319 } 320 321 /* Packet ECN state for a SYN. */ 322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 323 { 324 struct tcp_sock *tp = tcp_sk(sk); 325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 328 329 if (!use_ecn) { 330 const struct dst_entry *dst = __sk_dst_get(sk); 331 332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 333 use_ecn = true; 334 } 335 336 tp->ecn_flags = 0; 337 338 if (use_ecn) { 339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 340 tp->ecn_flags = TCP_ECN_OK; 341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 342 INET_ECN_xmit(sk); 343 } 344 } 345 346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 347 { 348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 349 /* tp->ecn_flags are cleared at a later point in time when 350 * SYN ACK is ultimatively being received. 351 */ 352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 353 } 354 355 static void 356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 357 { 358 if (inet_rsk(req)->ecn_ok) 359 th->ece = 1; 360 } 361 362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 363 * be sent. 364 */ 365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 366 struct tcphdr *th, int tcp_header_len) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 370 if (tp->ecn_flags & TCP_ECN_OK) { 371 /* Not-retransmitted data segment: set ECT and inject CWR. */ 372 if (skb->len != tcp_header_len && 373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 374 INET_ECN_xmit(sk); 375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 377 th->cwr = 1; 378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 379 } 380 } else if (!tcp_ca_needs_ecn(sk)) { 381 /* ACK or retransmitted segment: clear ECT|CE */ 382 INET_ECN_dontxmit(sk); 383 } 384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 385 th->ece = 1; 386 } 387 } 388 389 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 390 * auto increment end seqno. 391 */ 392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 393 { 394 skb->ip_summed = CHECKSUM_PARTIAL; 395 396 TCP_SKB_CB(skb)->tcp_flags = flags; 397 TCP_SKB_CB(skb)->sacked = 0; 398 399 tcp_skb_pcount_set(skb, 1); 400 401 TCP_SKB_CB(skb)->seq = seq; 402 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 403 seq++; 404 TCP_SKB_CB(skb)->end_seq = seq; 405 } 406 407 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 408 { 409 return tp->snd_una != tp->snd_up; 410 } 411 412 #define OPTION_SACK_ADVERTISE (1 << 0) 413 #define OPTION_TS (1 << 1) 414 #define OPTION_MD5 (1 << 2) 415 #define OPTION_WSCALE (1 << 3) 416 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 417 #define OPTION_SMC (1 << 9) 418 #define OPTION_MPTCP (1 << 10) 419 420 static void smc_options_write(__be32 *ptr, u16 *options) 421 { 422 #if IS_ENABLED(CONFIG_SMC) 423 if (static_branch_unlikely(&tcp_have_smc)) { 424 if (unlikely(OPTION_SMC & *options)) { 425 *ptr++ = htonl((TCPOPT_NOP << 24) | 426 (TCPOPT_NOP << 16) | 427 (TCPOPT_EXP << 8) | 428 (TCPOLEN_EXP_SMC_BASE)); 429 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 430 } 431 } 432 #endif 433 } 434 435 struct tcp_out_options { 436 u16 options; /* bit field of OPTION_* */ 437 u16 mss; /* 0 to disable */ 438 u8 ws; /* window scale, 0 to disable */ 439 u8 num_sack_blocks; /* number of SACK blocks to include */ 440 u8 hash_size; /* bytes in hash_location */ 441 u8 bpf_opt_len; /* length of BPF hdr option */ 442 __u8 *hash_location; /* temporary pointer, overloaded */ 443 __u32 tsval, tsecr; /* need to include OPTION_TS */ 444 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 445 struct mptcp_out_options mptcp; 446 }; 447 448 static void mptcp_options_write(__be32 *ptr, const struct tcp_sock *tp, 449 struct tcp_out_options *opts) 450 { 451 #if IS_ENABLED(CONFIG_MPTCP) 452 if (unlikely(OPTION_MPTCP & opts->options)) 453 mptcp_write_options(ptr, tp, &opts->mptcp); 454 #endif 455 } 456 457 #ifdef CONFIG_CGROUP_BPF 458 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 459 enum tcp_synack_type synack_type) 460 { 461 if (unlikely(!skb)) 462 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 463 464 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 465 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 466 467 return 0; 468 } 469 470 /* req, syn_skb and synack_type are used when writing synack */ 471 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 472 struct request_sock *req, 473 struct sk_buff *syn_skb, 474 enum tcp_synack_type synack_type, 475 struct tcp_out_options *opts, 476 unsigned int *remaining) 477 { 478 struct bpf_sock_ops_kern sock_ops; 479 int err; 480 481 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 482 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 483 !*remaining) 484 return; 485 486 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 487 488 /* init sock_ops */ 489 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 490 491 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 492 493 if (req) { 494 /* The listen "sk" cannot be passed here because 495 * it is not locked. It would not make too much 496 * sense to do bpf_setsockopt(listen_sk) based 497 * on individual connection request also. 498 * 499 * Thus, "req" is passed here and the cgroup-bpf-progs 500 * of the listen "sk" will be run. 501 * 502 * "req" is also used here for fastopen even the "sk" here is 503 * a fullsock "child" sk. It is to keep the behavior 504 * consistent between fastopen and non-fastopen on 505 * the bpf programming side. 506 */ 507 sock_ops.sk = (struct sock *)req; 508 sock_ops.syn_skb = syn_skb; 509 } else { 510 sock_owned_by_me(sk); 511 512 sock_ops.is_fullsock = 1; 513 sock_ops.sk = sk; 514 } 515 516 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 517 sock_ops.remaining_opt_len = *remaining; 518 /* tcp_current_mss() does not pass a skb */ 519 if (skb) 520 bpf_skops_init_skb(&sock_ops, skb, 0); 521 522 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 523 524 if (err || sock_ops.remaining_opt_len == *remaining) 525 return; 526 527 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 528 /* round up to 4 bytes */ 529 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 530 531 *remaining -= opts->bpf_opt_len; 532 } 533 534 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 535 struct request_sock *req, 536 struct sk_buff *syn_skb, 537 enum tcp_synack_type synack_type, 538 struct tcp_out_options *opts) 539 { 540 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 541 struct bpf_sock_ops_kern sock_ops; 542 int err; 543 544 if (likely(!max_opt_len)) 545 return; 546 547 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 548 549 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 550 551 if (req) { 552 sock_ops.sk = (struct sock *)req; 553 sock_ops.syn_skb = syn_skb; 554 } else { 555 sock_owned_by_me(sk); 556 557 sock_ops.is_fullsock = 1; 558 sock_ops.sk = sk; 559 } 560 561 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 562 sock_ops.remaining_opt_len = max_opt_len; 563 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 564 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 565 566 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 567 568 if (err) 569 nr_written = 0; 570 else 571 nr_written = max_opt_len - sock_ops.remaining_opt_len; 572 573 if (nr_written < max_opt_len) 574 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 575 max_opt_len - nr_written); 576 } 577 #else 578 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 579 struct request_sock *req, 580 struct sk_buff *syn_skb, 581 enum tcp_synack_type synack_type, 582 struct tcp_out_options *opts, 583 unsigned int *remaining) 584 { 585 } 586 587 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 588 struct request_sock *req, 589 struct sk_buff *syn_skb, 590 enum tcp_synack_type synack_type, 591 struct tcp_out_options *opts) 592 { 593 } 594 #endif 595 596 /* Write previously computed TCP options to the packet. 597 * 598 * Beware: Something in the Internet is very sensitive to the ordering of 599 * TCP options, we learned this through the hard way, so be careful here. 600 * Luckily we can at least blame others for their non-compliance but from 601 * inter-operability perspective it seems that we're somewhat stuck with 602 * the ordering which we have been using if we want to keep working with 603 * those broken things (not that it currently hurts anybody as there isn't 604 * particular reason why the ordering would need to be changed). 605 * 606 * At least SACK_PERM as the first option is known to lead to a disaster 607 * (but it may well be that other scenarios fail similarly). 608 */ 609 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 610 struct tcp_out_options *opts) 611 { 612 u16 options = opts->options; /* mungable copy */ 613 614 if (unlikely(OPTION_MD5 & options)) { 615 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 616 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 617 /* overload cookie hash location */ 618 opts->hash_location = (__u8 *)ptr; 619 ptr += 4; 620 } 621 622 if (unlikely(opts->mss)) { 623 *ptr++ = htonl((TCPOPT_MSS << 24) | 624 (TCPOLEN_MSS << 16) | 625 opts->mss); 626 } 627 628 if (likely(OPTION_TS & options)) { 629 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 630 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 631 (TCPOLEN_SACK_PERM << 16) | 632 (TCPOPT_TIMESTAMP << 8) | 633 TCPOLEN_TIMESTAMP); 634 options &= ~OPTION_SACK_ADVERTISE; 635 } else { 636 *ptr++ = htonl((TCPOPT_NOP << 24) | 637 (TCPOPT_NOP << 16) | 638 (TCPOPT_TIMESTAMP << 8) | 639 TCPOLEN_TIMESTAMP); 640 } 641 *ptr++ = htonl(opts->tsval); 642 *ptr++ = htonl(opts->tsecr); 643 } 644 645 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 646 *ptr++ = htonl((TCPOPT_NOP << 24) | 647 (TCPOPT_NOP << 16) | 648 (TCPOPT_SACK_PERM << 8) | 649 TCPOLEN_SACK_PERM); 650 } 651 652 if (unlikely(OPTION_WSCALE & options)) { 653 *ptr++ = htonl((TCPOPT_NOP << 24) | 654 (TCPOPT_WINDOW << 16) | 655 (TCPOLEN_WINDOW << 8) | 656 opts->ws); 657 } 658 659 if (unlikely(opts->num_sack_blocks)) { 660 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 661 tp->duplicate_sack : tp->selective_acks; 662 int this_sack; 663 664 *ptr++ = htonl((TCPOPT_NOP << 24) | 665 (TCPOPT_NOP << 16) | 666 (TCPOPT_SACK << 8) | 667 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 668 TCPOLEN_SACK_PERBLOCK))); 669 670 for (this_sack = 0; this_sack < opts->num_sack_blocks; 671 ++this_sack) { 672 *ptr++ = htonl(sp[this_sack].start_seq); 673 *ptr++ = htonl(sp[this_sack].end_seq); 674 } 675 676 tp->rx_opt.dsack = 0; 677 } 678 679 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 680 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 681 u8 *p = (u8 *)ptr; 682 u32 len; /* Fast Open option length */ 683 684 if (foc->exp) { 685 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 686 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 687 TCPOPT_FASTOPEN_MAGIC); 688 p += TCPOLEN_EXP_FASTOPEN_BASE; 689 } else { 690 len = TCPOLEN_FASTOPEN_BASE + foc->len; 691 *p++ = TCPOPT_FASTOPEN; 692 *p++ = len; 693 } 694 695 memcpy(p, foc->val, foc->len); 696 if ((len & 3) == 2) { 697 p[foc->len] = TCPOPT_NOP; 698 p[foc->len + 1] = TCPOPT_NOP; 699 } 700 ptr += (len + 3) >> 2; 701 } 702 703 smc_options_write(ptr, &options); 704 705 mptcp_options_write(ptr, tp, opts); 706 } 707 708 static void smc_set_option(const struct tcp_sock *tp, 709 struct tcp_out_options *opts, 710 unsigned int *remaining) 711 { 712 #if IS_ENABLED(CONFIG_SMC) 713 if (static_branch_unlikely(&tcp_have_smc)) { 714 if (tp->syn_smc) { 715 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 716 opts->options |= OPTION_SMC; 717 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 718 } 719 } 720 } 721 #endif 722 } 723 724 static void smc_set_option_cond(const struct tcp_sock *tp, 725 const struct inet_request_sock *ireq, 726 struct tcp_out_options *opts, 727 unsigned int *remaining) 728 { 729 #if IS_ENABLED(CONFIG_SMC) 730 if (static_branch_unlikely(&tcp_have_smc)) { 731 if (tp->syn_smc && ireq->smc_ok) { 732 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 733 opts->options |= OPTION_SMC; 734 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 735 } 736 } 737 } 738 #endif 739 } 740 741 static void mptcp_set_option_cond(const struct request_sock *req, 742 struct tcp_out_options *opts, 743 unsigned int *remaining) 744 { 745 if (rsk_is_mptcp(req)) { 746 unsigned int size; 747 748 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 749 if (*remaining >= size) { 750 opts->options |= OPTION_MPTCP; 751 *remaining -= size; 752 } 753 } 754 } 755 } 756 757 /* Compute TCP options for SYN packets. This is not the final 758 * network wire format yet. 759 */ 760 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 761 struct tcp_out_options *opts, 762 struct tcp_md5sig_key **md5) 763 { 764 struct tcp_sock *tp = tcp_sk(sk); 765 unsigned int remaining = MAX_TCP_OPTION_SPACE; 766 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 767 768 *md5 = NULL; 769 #ifdef CONFIG_TCP_MD5SIG 770 if (static_branch_unlikely(&tcp_md5_needed) && 771 rcu_access_pointer(tp->md5sig_info)) { 772 *md5 = tp->af_specific->md5_lookup(sk, sk); 773 if (*md5) { 774 opts->options |= OPTION_MD5; 775 remaining -= TCPOLEN_MD5SIG_ALIGNED; 776 } 777 } 778 #endif 779 780 /* We always get an MSS option. The option bytes which will be seen in 781 * normal data packets should timestamps be used, must be in the MSS 782 * advertised. But we subtract them from tp->mss_cache so that 783 * calculations in tcp_sendmsg are simpler etc. So account for this 784 * fact here if necessary. If we don't do this correctly, as a 785 * receiver we won't recognize data packets as being full sized when we 786 * should, and thus we won't abide by the delayed ACK rules correctly. 787 * SACKs don't matter, we never delay an ACK when we have any of those 788 * going out. */ 789 opts->mss = tcp_advertise_mss(sk); 790 remaining -= TCPOLEN_MSS_ALIGNED; 791 792 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 793 opts->options |= OPTION_TS; 794 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 795 opts->tsecr = tp->rx_opt.ts_recent; 796 remaining -= TCPOLEN_TSTAMP_ALIGNED; 797 } 798 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 799 opts->ws = tp->rx_opt.rcv_wscale; 800 opts->options |= OPTION_WSCALE; 801 remaining -= TCPOLEN_WSCALE_ALIGNED; 802 } 803 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 804 opts->options |= OPTION_SACK_ADVERTISE; 805 if (unlikely(!(OPTION_TS & opts->options))) 806 remaining -= TCPOLEN_SACKPERM_ALIGNED; 807 } 808 809 if (fastopen && fastopen->cookie.len >= 0) { 810 u32 need = fastopen->cookie.len; 811 812 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 813 TCPOLEN_FASTOPEN_BASE; 814 need = (need + 3) & ~3U; /* Align to 32 bits */ 815 if (remaining >= need) { 816 opts->options |= OPTION_FAST_OPEN_COOKIE; 817 opts->fastopen_cookie = &fastopen->cookie; 818 remaining -= need; 819 tp->syn_fastopen = 1; 820 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 821 } 822 } 823 824 smc_set_option(tp, opts, &remaining); 825 826 if (sk_is_mptcp(sk)) { 827 unsigned int size; 828 829 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 830 opts->options |= OPTION_MPTCP; 831 remaining -= size; 832 } 833 } 834 835 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 836 837 return MAX_TCP_OPTION_SPACE - remaining; 838 } 839 840 /* Set up TCP options for SYN-ACKs. */ 841 static unsigned int tcp_synack_options(const struct sock *sk, 842 struct request_sock *req, 843 unsigned int mss, struct sk_buff *skb, 844 struct tcp_out_options *opts, 845 const struct tcp_md5sig_key *md5, 846 struct tcp_fastopen_cookie *foc, 847 enum tcp_synack_type synack_type, 848 struct sk_buff *syn_skb) 849 { 850 struct inet_request_sock *ireq = inet_rsk(req); 851 unsigned int remaining = MAX_TCP_OPTION_SPACE; 852 853 #ifdef CONFIG_TCP_MD5SIG 854 if (md5) { 855 opts->options |= OPTION_MD5; 856 remaining -= TCPOLEN_MD5SIG_ALIGNED; 857 858 /* We can't fit any SACK blocks in a packet with MD5 + TS 859 * options. There was discussion about disabling SACK 860 * rather than TS in order to fit in better with old, 861 * buggy kernels, but that was deemed to be unnecessary. 862 */ 863 if (synack_type != TCP_SYNACK_COOKIE) 864 ireq->tstamp_ok &= !ireq->sack_ok; 865 } 866 #endif 867 868 /* We always send an MSS option. */ 869 opts->mss = mss; 870 remaining -= TCPOLEN_MSS_ALIGNED; 871 872 if (likely(ireq->wscale_ok)) { 873 opts->ws = ireq->rcv_wscale; 874 opts->options |= OPTION_WSCALE; 875 remaining -= TCPOLEN_WSCALE_ALIGNED; 876 } 877 if (likely(ireq->tstamp_ok)) { 878 opts->options |= OPTION_TS; 879 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 880 opts->tsecr = req->ts_recent; 881 remaining -= TCPOLEN_TSTAMP_ALIGNED; 882 } 883 if (likely(ireq->sack_ok)) { 884 opts->options |= OPTION_SACK_ADVERTISE; 885 if (unlikely(!ireq->tstamp_ok)) 886 remaining -= TCPOLEN_SACKPERM_ALIGNED; 887 } 888 if (foc != NULL && foc->len >= 0) { 889 u32 need = foc->len; 890 891 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 892 TCPOLEN_FASTOPEN_BASE; 893 need = (need + 3) & ~3U; /* Align to 32 bits */ 894 if (remaining >= need) { 895 opts->options |= OPTION_FAST_OPEN_COOKIE; 896 opts->fastopen_cookie = foc; 897 remaining -= need; 898 } 899 } 900 901 mptcp_set_option_cond(req, opts, &remaining); 902 903 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 904 905 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 906 synack_type, opts, &remaining); 907 908 return MAX_TCP_OPTION_SPACE - remaining; 909 } 910 911 /* Compute TCP options for ESTABLISHED sockets. This is not the 912 * final wire format yet. 913 */ 914 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 915 struct tcp_out_options *opts, 916 struct tcp_md5sig_key **md5) 917 { 918 struct tcp_sock *tp = tcp_sk(sk); 919 unsigned int size = 0; 920 unsigned int eff_sacks; 921 922 opts->options = 0; 923 924 *md5 = NULL; 925 #ifdef CONFIG_TCP_MD5SIG 926 if (static_branch_unlikely(&tcp_md5_needed) && 927 rcu_access_pointer(tp->md5sig_info)) { 928 *md5 = tp->af_specific->md5_lookup(sk, sk); 929 if (*md5) { 930 opts->options |= OPTION_MD5; 931 size += TCPOLEN_MD5SIG_ALIGNED; 932 } 933 } 934 #endif 935 936 if (likely(tp->rx_opt.tstamp_ok)) { 937 opts->options |= OPTION_TS; 938 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 939 opts->tsecr = tp->rx_opt.ts_recent; 940 size += TCPOLEN_TSTAMP_ALIGNED; 941 } 942 943 /* MPTCP options have precedence over SACK for the limited TCP 944 * option space because a MPTCP connection would be forced to 945 * fall back to regular TCP if a required multipath option is 946 * missing. SACK still gets a chance to use whatever space is 947 * left. 948 */ 949 if (sk_is_mptcp(sk)) { 950 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 951 unsigned int opt_size = 0; 952 953 if (mptcp_established_options(sk, skb, &opt_size, remaining, 954 &opts->mptcp)) { 955 opts->options |= OPTION_MPTCP; 956 size += opt_size; 957 } 958 } 959 960 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 961 if (unlikely(eff_sacks)) { 962 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 963 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 964 TCPOLEN_SACK_PERBLOCK)) 965 return size; 966 967 opts->num_sack_blocks = 968 min_t(unsigned int, eff_sacks, 969 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 970 TCPOLEN_SACK_PERBLOCK); 971 972 size += TCPOLEN_SACK_BASE_ALIGNED + 973 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 974 } 975 976 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 977 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 978 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 979 980 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 981 982 size = MAX_TCP_OPTION_SPACE - remaining; 983 } 984 985 return size; 986 } 987 988 989 /* TCP SMALL QUEUES (TSQ) 990 * 991 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 992 * to reduce RTT and bufferbloat. 993 * We do this using a special skb destructor (tcp_wfree). 994 * 995 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 996 * needs to be reallocated in a driver. 997 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 998 * 999 * Since transmit from skb destructor is forbidden, we use a tasklet 1000 * to process all sockets that eventually need to send more skbs. 1001 * We use one tasklet per cpu, with its own queue of sockets. 1002 */ 1003 struct tsq_tasklet { 1004 struct tasklet_struct tasklet; 1005 struct list_head head; /* queue of tcp sockets */ 1006 }; 1007 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1008 1009 static void tcp_tsq_write(struct sock *sk) 1010 { 1011 if ((1 << sk->sk_state) & 1012 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1013 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1014 struct tcp_sock *tp = tcp_sk(sk); 1015 1016 if (tp->lost_out > tp->retrans_out && 1017 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 1018 tcp_mstamp_refresh(tp); 1019 tcp_xmit_retransmit_queue(sk); 1020 } 1021 1022 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1023 0, GFP_ATOMIC); 1024 } 1025 } 1026 1027 static void tcp_tsq_handler(struct sock *sk) 1028 { 1029 bh_lock_sock(sk); 1030 if (!sock_owned_by_user(sk)) 1031 tcp_tsq_write(sk); 1032 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1033 sock_hold(sk); 1034 bh_unlock_sock(sk); 1035 } 1036 /* 1037 * One tasklet per cpu tries to send more skbs. 1038 * We run in tasklet context but need to disable irqs when 1039 * transferring tsq->head because tcp_wfree() might 1040 * interrupt us (non NAPI drivers) 1041 */ 1042 static void tcp_tasklet_func(struct tasklet_struct *t) 1043 { 1044 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1045 LIST_HEAD(list); 1046 unsigned long flags; 1047 struct list_head *q, *n; 1048 struct tcp_sock *tp; 1049 struct sock *sk; 1050 1051 local_irq_save(flags); 1052 list_splice_init(&tsq->head, &list); 1053 local_irq_restore(flags); 1054 1055 list_for_each_safe(q, n, &list) { 1056 tp = list_entry(q, struct tcp_sock, tsq_node); 1057 list_del(&tp->tsq_node); 1058 1059 sk = (struct sock *)tp; 1060 smp_mb__before_atomic(); 1061 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1062 1063 tcp_tsq_handler(sk); 1064 sk_free(sk); 1065 } 1066 } 1067 1068 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1069 TCPF_WRITE_TIMER_DEFERRED | \ 1070 TCPF_DELACK_TIMER_DEFERRED | \ 1071 TCPF_MTU_REDUCED_DEFERRED) 1072 /** 1073 * tcp_release_cb - tcp release_sock() callback 1074 * @sk: socket 1075 * 1076 * called from release_sock() to perform protocol dependent 1077 * actions before socket release. 1078 */ 1079 void tcp_release_cb(struct sock *sk) 1080 { 1081 unsigned long flags, nflags; 1082 1083 /* perform an atomic operation only if at least one flag is set */ 1084 do { 1085 flags = sk->sk_tsq_flags; 1086 if (!(flags & TCP_DEFERRED_ALL)) 1087 return; 1088 nflags = flags & ~TCP_DEFERRED_ALL; 1089 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 1090 1091 if (flags & TCPF_TSQ_DEFERRED) { 1092 tcp_tsq_write(sk); 1093 __sock_put(sk); 1094 } 1095 /* Here begins the tricky part : 1096 * We are called from release_sock() with : 1097 * 1) BH disabled 1098 * 2) sk_lock.slock spinlock held 1099 * 3) socket owned by us (sk->sk_lock.owned == 1) 1100 * 1101 * But following code is meant to be called from BH handlers, 1102 * so we should keep BH disabled, but early release socket ownership 1103 */ 1104 sock_release_ownership(sk); 1105 1106 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1107 tcp_write_timer_handler(sk); 1108 __sock_put(sk); 1109 } 1110 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1111 tcp_delack_timer_handler(sk); 1112 __sock_put(sk); 1113 } 1114 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1115 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1116 __sock_put(sk); 1117 } 1118 } 1119 EXPORT_SYMBOL(tcp_release_cb); 1120 1121 void __init tcp_tasklet_init(void) 1122 { 1123 int i; 1124 1125 for_each_possible_cpu(i) { 1126 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1127 1128 INIT_LIST_HEAD(&tsq->head); 1129 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1130 } 1131 } 1132 1133 /* 1134 * Write buffer destructor automatically called from kfree_skb. 1135 * We can't xmit new skbs from this context, as we might already 1136 * hold qdisc lock. 1137 */ 1138 void tcp_wfree(struct sk_buff *skb) 1139 { 1140 struct sock *sk = skb->sk; 1141 struct tcp_sock *tp = tcp_sk(sk); 1142 unsigned long flags, nval, oval; 1143 1144 /* Keep one reference on sk_wmem_alloc. 1145 * Will be released by sk_free() from here or tcp_tasklet_func() 1146 */ 1147 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1148 1149 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1150 * Wait until our queues (qdisc + devices) are drained. 1151 * This gives : 1152 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1153 * - chance for incoming ACK (processed by another cpu maybe) 1154 * to migrate this flow (skb->ooo_okay will be eventually set) 1155 */ 1156 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1157 goto out; 1158 1159 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 1160 struct tsq_tasklet *tsq; 1161 bool empty; 1162 1163 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1164 goto out; 1165 1166 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1167 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 1168 if (nval != oval) 1169 continue; 1170 1171 /* queue this socket to tasklet queue */ 1172 local_irq_save(flags); 1173 tsq = this_cpu_ptr(&tsq_tasklet); 1174 empty = list_empty(&tsq->head); 1175 list_add(&tp->tsq_node, &tsq->head); 1176 if (empty) 1177 tasklet_schedule(&tsq->tasklet); 1178 local_irq_restore(flags); 1179 return; 1180 } 1181 out: 1182 sk_free(sk); 1183 } 1184 1185 /* Note: Called under soft irq. 1186 * We can call TCP stack right away, unless socket is owned by user. 1187 */ 1188 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1189 { 1190 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1191 struct sock *sk = (struct sock *)tp; 1192 1193 tcp_tsq_handler(sk); 1194 sock_put(sk); 1195 1196 return HRTIMER_NORESTART; 1197 } 1198 1199 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1200 u64 prior_wstamp) 1201 { 1202 struct tcp_sock *tp = tcp_sk(sk); 1203 1204 if (sk->sk_pacing_status != SK_PACING_NONE) { 1205 unsigned long rate = sk->sk_pacing_rate; 1206 1207 /* Original sch_fq does not pace first 10 MSS 1208 * Note that tp->data_segs_out overflows after 2^32 packets, 1209 * this is a minor annoyance. 1210 */ 1211 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1212 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1213 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1214 1215 /* take into account OS jitter */ 1216 len_ns -= min_t(u64, len_ns / 2, credit); 1217 tp->tcp_wstamp_ns += len_ns; 1218 } 1219 } 1220 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1221 } 1222 1223 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1224 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1225 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1226 1227 /* This routine actually transmits TCP packets queued in by 1228 * tcp_do_sendmsg(). This is used by both the initial 1229 * transmission and possible later retransmissions. 1230 * All SKB's seen here are completely headerless. It is our 1231 * job to build the TCP header, and pass the packet down to 1232 * IP so it can do the same plus pass the packet off to the 1233 * device. 1234 * 1235 * We are working here with either a clone of the original 1236 * SKB, or a fresh unique copy made by the retransmit engine. 1237 */ 1238 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1239 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1240 { 1241 const struct inet_connection_sock *icsk = inet_csk(sk); 1242 struct inet_sock *inet; 1243 struct tcp_sock *tp; 1244 struct tcp_skb_cb *tcb; 1245 struct tcp_out_options opts; 1246 unsigned int tcp_options_size, tcp_header_size; 1247 struct sk_buff *oskb = NULL; 1248 struct tcp_md5sig_key *md5; 1249 struct tcphdr *th; 1250 u64 prior_wstamp; 1251 int err; 1252 1253 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1254 tp = tcp_sk(sk); 1255 prior_wstamp = tp->tcp_wstamp_ns; 1256 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1257 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1258 if (clone_it) { 1259 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1260 - tp->snd_una; 1261 oskb = skb; 1262 1263 tcp_skb_tsorted_save(oskb) { 1264 if (unlikely(skb_cloned(oskb))) 1265 skb = pskb_copy(oskb, gfp_mask); 1266 else 1267 skb = skb_clone(oskb, gfp_mask); 1268 } tcp_skb_tsorted_restore(oskb); 1269 1270 if (unlikely(!skb)) 1271 return -ENOBUFS; 1272 /* retransmit skbs might have a non zero value in skb->dev 1273 * because skb->dev is aliased with skb->rbnode.rb_left 1274 */ 1275 skb->dev = NULL; 1276 } 1277 1278 inet = inet_sk(sk); 1279 tcb = TCP_SKB_CB(skb); 1280 memset(&opts, 0, sizeof(opts)); 1281 1282 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1283 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1284 } else { 1285 tcp_options_size = tcp_established_options(sk, skb, &opts, 1286 &md5); 1287 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1288 * at receiver : This slightly improve GRO performance. 1289 * Note that we do not force the PSH flag for non GSO packets, 1290 * because they might be sent under high congestion events, 1291 * and in this case it is better to delay the delivery of 1-MSS 1292 * packets and thus the corresponding ACK packet that would 1293 * release the following packet. 1294 */ 1295 if (tcp_skb_pcount(skb) > 1) 1296 tcb->tcp_flags |= TCPHDR_PSH; 1297 } 1298 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1299 1300 /* if no packet is in qdisc/device queue, then allow XPS to select 1301 * another queue. We can be called from tcp_tsq_handler() 1302 * which holds one reference to sk. 1303 * 1304 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1305 * One way to get this would be to set skb->truesize = 2 on them. 1306 */ 1307 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1308 1309 /* If we had to use memory reserve to allocate this skb, 1310 * this might cause drops if packet is looped back : 1311 * Other socket might not have SOCK_MEMALLOC. 1312 * Packets not looped back do not care about pfmemalloc. 1313 */ 1314 skb->pfmemalloc = 0; 1315 1316 skb_push(skb, tcp_header_size); 1317 skb_reset_transport_header(skb); 1318 1319 skb_orphan(skb); 1320 skb->sk = sk; 1321 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1322 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1323 1324 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1325 1326 /* Build TCP header and checksum it. */ 1327 th = (struct tcphdr *)skb->data; 1328 th->source = inet->inet_sport; 1329 th->dest = inet->inet_dport; 1330 th->seq = htonl(tcb->seq); 1331 th->ack_seq = htonl(rcv_nxt); 1332 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1333 tcb->tcp_flags); 1334 1335 th->check = 0; 1336 th->urg_ptr = 0; 1337 1338 /* The urg_mode check is necessary during a below snd_una win probe */ 1339 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1340 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1341 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1342 th->urg = 1; 1343 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1344 th->urg_ptr = htons(0xFFFF); 1345 th->urg = 1; 1346 } 1347 } 1348 1349 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1350 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1351 th->window = htons(tcp_select_window(sk)); 1352 tcp_ecn_send(sk, skb, th, tcp_header_size); 1353 } else { 1354 /* RFC1323: The window in SYN & SYN/ACK segments 1355 * is never scaled. 1356 */ 1357 th->window = htons(min(tp->rcv_wnd, 65535U)); 1358 } 1359 1360 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1361 1362 #ifdef CONFIG_TCP_MD5SIG 1363 /* Calculate the MD5 hash, as we have all we need now */ 1364 if (md5) { 1365 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1366 tp->af_specific->calc_md5_hash(opts.hash_location, 1367 md5, sk, skb); 1368 } 1369 #endif 1370 1371 /* BPF prog is the last one writing header option */ 1372 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1373 1374 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1375 tcp_v6_send_check, tcp_v4_send_check, 1376 sk, skb); 1377 1378 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1379 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1380 1381 if (skb->len != tcp_header_size) { 1382 tcp_event_data_sent(tp, sk); 1383 tp->data_segs_out += tcp_skb_pcount(skb); 1384 tp->bytes_sent += skb->len - tcp_header_size; 1385 } 1386 1387 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1388 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1389 tcp_skb_pcount(skb)); 1390 1391 tp->segs_out += tcp_skb_pcount(skb); 1392 skb_set_hash_from_sk(skb, sk); 1393 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1394 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1395 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1396 1397 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1398 1399 /* Cleanup our debris for IP stacks */ 1400 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1401 sizeof(struct inet6_skb_parm))); 1402 1403 tcp_add_tx_delay(skb, tp); 1404 1405 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1406 inet6_csk_xmit, ip_queue_xmit, 1407 sk, skb, &inet->cork.fl); 1408 1409 if (unlikely(err > 0)) { 1410 tcp_enter_cwr(sk); 1411 err = net_xmit_eval(err); 1412 } 1413 if (!err && oskb) { 1414 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1415 tcp_rate_skb_sent(sk, oskb); 1416 } 1417 return err; 1418 } 1419 1420 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1421 gfp_t gfp_mask) 1422 { 1423 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1424 tcp_sk(sk)->rcv_nxt); 1425 } 1426 1427 /* This routine just queues the buffer for sending. 1428 * 1429 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1430 * otherwise socket can stall. 1431 */ 1432 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1433 { 1434 struct tcp_sock *tp = tcp_sk(sk); 1435 1436 /* Advance write_seq and place onto the write_queue. */ 1437 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1438 __skb_header_release(skb); 1439 tcp_add_write_queue_tail(sk, skb); 1440 sk_wmem_queued_add(sk, skb->truesize); 1441 sk_mem_charge(sk, skb->truesize); 1442 } 1443 1444 /* Initialize TSO segments for a packet. */ 1445 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1446 { 1447 if (skb->len <= mss_now) { 1448 /* Avoid the costly divide in the normal 1449 * non-TSO case. 1450 */ 1451 tcp_skb_pcount_set(skb, 1); 1452 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1453 } else { 1454 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1455 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1456 } 1457 } 1458 1459 /* Pcount in the middle of the write queue got changed, we need to do various 1460 * tweaks to fix counters 1461 */ 1462 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1463 { 1464 struct tcp_sock *tp = tcp_sk(sk); 1465 1466 tp->packets_out -= decr; 1467 1468 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1469 tp->sacked_out -= decr; 1470 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1471 tp->retrans_out -= decr; 1472 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1473 tp->lost_out -= decr; 1474 1475 /* Reno case is special. Sigh... */ 1476 if (tcp_is_reno(tp) && decr > 0) 1477 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1478 1479 if (tp->lost_skb_hint && 1480 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1481 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1482 tp->lost_cnt_hint -= decr; 1483 1484 tcp_verify_left_out(tp); 1485 } 1486 1487 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1488 { 1489 return TCP_SKB_CB(skb)->txstamp_ack || 1490 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1491 } 1492 1493 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1494 { 1495 struct skb_shared_info *shinfo = skb_shinfo(skb); 1496 1497 if (unlikely(tcp_has_tx_tstamp(skb)) && 1498 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1499 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1500 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1501 1502 shinfo->tx_flags &= ~tsflags; 1503 shinfo2->tx_flags |= tsflags; 1504 swap(shinfo->tskey, shinfo2->tskey); 1505 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1506 TCP_SKB_CB(skb)->txstamp_ack = 0; 1507 } 1508 } 1509 1510 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1511 { 1512 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1513 TCP_SKB_CB(skb)->eor = 0; 1514 } 1515 1516 /* Insert buff after skb on the write or rtx queue of sk. */ 1517 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1518 struct sk_buff *buff, 1519 struct sock *sk, 1520 enum tcp_queue tcp_queue) 1521 { 1522 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1523 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1524 else 1525 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1526 } 1527 1528 /* Function to create two new TCP segments. Shrinks the given segment 1529 * to the specified size and appends a new segment with the rest of the 1530 * packet to the list. This won't be called frequently, I hope. 1531 * Remember, these are still headerless SKBs at this point. 1532 */ 1533 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1534 struct sk_buff *skb, u32 len, 1535 unsigned int mss_now, gfp_t gfp) 1536 { 1537 struct tcp_sock *tp = tcp_sk(sk); 1538 struct sk_buff *buff; 1539 int nsize, old_factor; 1540 long limit; 1541 int nlen; 1542 u8 flags; 1543 1544 if (WARN_ON(len > skb->len)) 1545 return -EINVAL; 1546 1547 nsize = skb_headlen(skb) - len; 1548 if (nsize < 0) 1549 nsize = 0; 1550 1551 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1552 * We need some allowance to not penalize applications setting small 1553 * SO_SNDBUF values. 1554 * Also allow first and last skb in retransmit queue to be split. 1555 */ 1556 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE); 1557 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1558 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1559 skb != tcp_rtx_queue_head(sk) && 1560 skb != tcp_rtx_queue_tail(sk))) { 1561 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1562 return -ENOMEM; 1563 } 1564 1565 if (skb_unclone(skb, gfp)) 1566 return -ENOMEM; 1567 1568 /* Get a new skb... force flag on. */ 1569 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1570 if (!buff) 1571 return -ENOMEM; /* We'll just try again later. */ 1572 skb_copy_decrypted(buff, skb); 1573 mptcp_skb_ext_copy(buff, skb); 1574 1575 sk_wmem_queued_add(sk, buff->truesize); 1576 sk_mem_charge(sk, buff->truesize); 1577 nlen = skb->len - len - nsize; 1578 buff->truesize += nlen; 1579 skb->truesize -= nlen; 1580 1581 /* Correct the sequence numbers. */ 1582 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1583 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1584 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1585 1586 /* PSH and FIN should only be set in the second packet. */ 1587 flags = TCP_SKB_CB(skb)->tcp_flags; 1588 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1589 TCP_SKB_CB(buff)->tcp_flags = flags; 1590 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1591 tcp_skb_fragment_eor(skb, buff); 1592 1593 skb_split(skb, buff, len); 1594 1595 buff->ip_summed = CHECKSUM_PARTIAL; 1596 1597 buff->tstamp = skb->tstamp; 1598 tcp_fragment_tstamp(skb, buff); 1599 1600 old_factor = tcp_skb_pcount(skb); 1601 1602 /* Fix up tso_factor for both original and new SKB. */ 1603 tcp_set_skb_tso_segs(skb, mss_now); 1604 tcp_set_skb_tso_segs(buff, mss_now); 1605 1606 /* Update delivered info for the new segment */ 1607 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1608 1609 /* If this packet has been sent out already, we must 1610 * adjust the various packet counters. 1611 */ 1612 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1613 int diff = old_factor - tcp_skb_pcount(skb) - 1614 tcp_skb_pcount(buff); 1615 1616 if (diff) 1617 tcp_adjust_pcount(sk, skb, diff); 1618 } 1619 1620 /* Link BUFF into the send queue. */ 1621 __skb_header_release(buff); 1622 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1623 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1624 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1625 1626 return 0; 1627 } 1628 1629 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1630 * data is not copied, but immediately discarded. 1631 */ 1632 static int __pskb_trim_head(struct sk_buff *skb, int len) 1633 { 1634 struct skb_shared_info *shinfo; 1635 int i, k, eat; 1636 1637 eat = min_t(int, len, skb_headlen(skb)); 1638 if (eat) { 1639 __skb_pull(skb, eat); 1640 len -= eat; 1641 if (!len) 1642 return 0; 1643 } 1644 eat = len; 1645 k = 0; 1646 shinfo = skb_shinfo(skb); 1647 for (i = 0; i < shinfo->nr_frags; i++) { 1648 int size = skb_frag_size(&shinfo->frags[i]); 1649 1650 if (size <= eat) { 1651 skb_frag_unref(skb, i); 1652 eat -= size; 1653 } else { 1654 shinfo->frags[k] = shinfo->frags[i]; 1655 if (eat) { 1656 skb_frag_off_add(&shinfo->frags[k], eat); 1657 skb_frag_size_sub(&shinfo->frags[k], eat); 1658 eat = 0; 1659 } 1660 k++; 1661 } 1662 } 1663 shinfo->nr_frags = k; 1664 1665 skb->data_len -= len; 1666 skb->len = skb->data_len; 1667 return len; 1668 } 1669 1670 /* Remove acked data from a packet in the transmit queue. */ 1671 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1672 { 1673 u32 delta_truesize; 1674 1675 if (skb_unclone(skb, GFP_ATOMIC)) 1676 return -ENOMEM; 1677 1678 delta_truesize = __pskb_trim_head(skb, len); 1679 1680 TCP_SKB_CB(skb)->seq += len; 1681 skb->ip_summed = CHECKSUM_PARTIAL; 1682 1683 if (delta_truesize) { 1684 skb->truesize -= delta_truesize; 1685 sk_wmem_queued_add(sk, -delta_truesize); 1686 sk_mem_uncharge(sk, delta_truesize); 1687 } 1688 1689 /* Any change of skb->len requires recalculation of tso factor. */ 1690 if (tcp_skb_pcount(skb) > 1) 1691 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1692 1693 return 0; 1694 } 1695 1696 /* Calculate MSS not accounting any TCP options. */ 1697 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1698 { 1699 const struct tcp_sock *tp = tcp_sk(sk); 1700 const struct inet_connection_sock *icsk = inet_csk(sk); 1701 int mss_now; 1702 1703 /* Calculate base mss without TCP options: 1704 It is MMS_S - sizeof(tcphdr) of rfc1122 1705 */ 1706 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1707 1708 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1709 if (icsk->icsk_af_ops->net_frag_header_len) { 1710 const struct dst_entry *dst = __sk_dst_get(sk); 1711 1712 if (dst && dst_allfrag(dst)) 1713 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1714 } 1715 1716 /* Clamp it (mss_clamp does not include tcp options) */ 1717 if (mss_now > tp->rx_opt.mss_clamp) 1718 mss_now = tp->rx_opt.mss_clamp; 1719 1720 /* Now subtract optional transport overhead */ 1721 mss_now -= icsk->icsk_ext_hdr_len; 1722 1723 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1724 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss); 1725 return mss_now; 1726 } 1727 1728 /* Calculate MSS. Not accounting for SACKs here. */ 1729 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1730 { 1731 /* Subtract TCP options size, not including SACKs */ 1732 return __tcp_mtu_to_mss(sk, pmtu) - 1733 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1734 } 1735 1736 /* Inverse of above */ 1737 int tcp_mss_to_mtu(struct sock *sk, int mss) 1738 { 1739 const struct tcp_sock *tp = tcp_sk(sk); 1740 const struct inet_connection_sock *icsk = inet_csk(sk); 1741 int mtu; 1742 1743 mtu = mss + 1744 tp->tcp_header_len + 1745 icsk->icsk_ext_hdr_len + 1746 icsk->icsk_af_ops->net_header_len; 1747 1748 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1749 if (icsk->icsk_af_ops->net_frag_header_len) { 1750 const struct dst_entry *dst = __sk_dst_get(sk); 1751 1752 if (dst && dst_allfrag(dst)) 1753 mtu += icsk->icsk_af_ops->net_frag_header_len; 1754 } 1755 return mtu; 1756 } 1757 EXPORT_SYMBOL(tcp_mss_to_mtu); 1758 1759 /* MTU probing init per socket */ 1760 void tcp_mtup_init(struct sock *sk) 1761 { 1762 struct tcp_sock *tp = tcp_sk(sk); 1763 struct inet_connection_sock *icsk = inet_csk(sk); 1764 struct net *net = sock_net(sk); 1765 1766 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1767 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1768 icsk->icsk_af_ops->net_header_len; 1769 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1770 icsk->icsk_mtup.probe_size = 0; 1771 if (icsk->icsk_mtup.enabled) 1772 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1773 } 1774 EXPORT_SYMBOL(tcp_mtup_init); 1775 1776 /* This function synchronize snd mss to current pmtu/exthdr set. 1777 1778 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1779 for TCP options, but includes only bare TCP header. 1780 1781 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1782 It is minimum of user_mss and mss received with SYN. 1783 It also does not include TCP options. 1784 1785 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1786 1787 tp->mss_cache is current effective sending mss, including 1788 all tcp options except for SACKs. It is evaluated, 1789 taking into account current pmtu, but never exceeds 1790 tp->rx_opt.mss_clamp. 1791 1792 NOTE1. rfc1122 clearly states that advertised MSS 1793 DOES NOT include either tcp or ip options. 1794 1795 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1796 are READ ONLY outside this function. --ANK (980731) 1797 */ 1798 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1799 { 1800 struct tcp_sock *tp = tcp_sk(sk); 1801 struct inet_connection_sock *icsk = inet_csk(sk); 1802 int mss_now; 1803 1804 if (icsk->icsk_mtup.search_high > pmtu) 1805 icsk->icsk_mtup.search_high = pmtu; 1806 1807 mss_now = tcp_mtu_to_mss(sk, pmtu); 1808 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1809 1810 /* And store cached results */ 1811 icsk->icsk_pmtu_cookie = pmtu; 1812 if (icsk->icsk_mtup.enabled) 1813 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1814 tp->mss_cache = mss_now; 1815 1816 return mss_now; 1817 } 1818 EXPORT_SYMBOL(tcp_sync_mss); 1819 1820 /* Compute the current effective MSS, taking SACKs and IP options, 1821 * and even PMTU discovery events into account. 1822 */ 1823 unsigned int tcp_current_mss(struct sock *sk) 1824 { 1825 const struct tcp_sock *tp = tcp_sk(sk); 1826 const struct dst_entry *dst = __sk_dst_get(sk); 1827 u32 mss_now; 1828 unsigned int header_len; 1829 struct tcp_out_options opts; 1830 struct tcp_md5sig_key *md5; 1831 1832 mss_now = tp->mss_cache; 1833 1834 if (dst) { 1835 u32 mtu = dst_mtu(dst); 1836 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1837 mss_now = tcp_sync_mss(sk, mtu); 1838 } 1839 1840 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1841 sizeof(struct tcphdr); 1842 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1843 * some common options. If this is an odd packet (because we have SACK 1844 * blocks etc) then our calculated header_len will be different, and 1845 * we have to adjust mss_now correspondingly */ 1846 if (header_len != tp->tcp_header_len) { 1847 int delta = (int) header_len - tp->tcp_header_len; 1848 mss_now -= delta; 1849 } 1850 1851 return mss_now; 1852 } 1853 1854 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1855 * As additional protections, we do not touch cwnd in retransmission phases, 1856 * and if application hit its sndbuf limit recently. 1857 */ 1858 static void tcp_cwnd_application_limited(struct sock *sk) 1859 { 1860 struct tcp_sock *tp = tcp_sk(sk); 1861 1862 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1863 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1864 /* Limited by application or receiver window. */ 1865 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1866 u32 win_used = max(tp->snd_cwnd_used, init_win); 1867 if (win_used < tp->snd_cwnd) { 1868 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1869 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1870 } 1871 tp->snd_cwnd_used = 0; 1872 } 1873 tp->snd_cwnd_stamp = tcp_jiffies32; 1874 } 1875 1876 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1877 { 1878 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1879 struct tcp_sock *tp = tcp_sk(sk); 1880 1881 /* Track the maximum number of outstanding packets in each 1882 * window, and remember whether we were cwnd-limited then. 1883 */ 1884 if (!before(tp->snd_una, tp->max_packets_seq) || 1885 tp->packets_out > tp->max_packets_out || 1886 is_cwnd_limited) { 1887 tp->max_packets_out = tp->packets_out; 1888 tp->max_packets_seq = tp->snd_nxt; 1889 tp->is_cwnd_limited = is_cwnd_limited; 1890 } 1891 1892 if (tcp_is_cwnd_limited(sk)) { 1893 /* Network is feed fully. */ 1894 tp->snd_cwnd_used = 0; 1895 tp->snd_cwnd_stamp = tcp_jiffies32; 1896 } else { 1897 /* Network starves. */ 1898 if (tp->packets_out > tp->snd_cwnd_used) 1899 tp->snd_cwnd_used = tp->packets_out; 1900 1901 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1902 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1903 !ca_ops->cong_control) 1904 tcp_cwnd_application_limited(sk); 1905 1906 /* The following conditions together indicate the starvation 1907 * is caused by insufficient sender buffer: 1908 * 1) just sent some data (see tcp_write_xmit) 1909 * 2) not cwnd limited (this else condition) 1910 * 3) no more data to send (tcp_write_queue_empty()) 1911 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1912 */ 1913 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1914 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1915 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1916 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1917 } 1918 } 1919 1920 /* Minshall's variant of the Nagle send check. */ 1921 static bool tcp_minshall_check(const struct tcp_sock *tp) 1922 { 1923 return after(tp->snd_sml, tp->snd_una) && 1924 !after(tp->snd_sml, tp->snd_nxt); 1925 } 1926 1927 /* Update snd_sml if this skb is under mss 1928 * Note that a TSO packet might end with a sub-mss segment 1929 * The test is really : 1930 * if ((skb->len % mss) != 0) 1931 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1932 * But we can avoid doing the divide again given we already have 1933 * skb_pcount = skb->len / mss_now 1934 */ 1935 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1936 const struct sk_buff *skb) 1937 { 1938 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1939 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1940 } 1941 1942 /* Return false, if packet can be sent now without violation Nagle's rules: 1943 * 1. It is full sized. (provided by caller in %partial bool) 1944 * 2. Or it contains FIN. (already checked by caller) 1945 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1946 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1947 * With Minshall's modification: all sent small packets are ACKed. 1948 */ 1949 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1950 int nonagle) 1951 { 1952 return partial && 1953 ((nonagle & TCP_NAGLE_CORK) || 1954 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1955 } 1956 1957 /* Return how many segs we'd like on a TSO packet, 1958 * to send one TSO packet per ms 1959 */ 1960 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1961 int min_tso_segs) 1962 { 1963 u32 bytes, segs; 1964 1965 bytes = min_t(unsigned long, 1966 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift), 1967 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1968 1969 /* Goal is to send at least one packet per ms, 1970 * not one big TSO packet every 100 ms. 1971 * This preserves ACK clocking and is consistent 1972 * with tcp_tso_should_defer() heuristic. 1973 */ 1974 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1975 1976 return segs; 1977 } 1978 1979 /* Return the number of segments we want in the skb we are transmitting. 1980 * See if congestion control module wants to decide; otherwise, autosize. 1981 */ 1982 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1983 { 1984 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1985 u32 min_tso, tso_segs; 1986 1987 min_tso = ca_ops->min_tso_segs ? 1988 ca_ops->min_tso_segs(sk) : 1989 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1990 1991 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1992 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1993 } 1994 1995 /* Returns the portion of skb which can be sent right away */ 1996 static unsigned int tcp_mss_split_point(const struct sock *sk, 1997 const struct sk_buff *skb, 1998 unsigned int mss_now, 1999 unsigned int max_segs, 2000 int nonagle) 2001 { 2002 const struct tcp_sock *tp = tcp_sk(sk); 2003 u32 partial, needed, window, max_len; 2004 2005 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2006 max_len = mss_now * max_segs; 2007 2008 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2009 return max_len; 2010 2011 needed = min(skb->len, window); 2012 2013 if (max_len <= needed) 2014 return max_len; 2015 2016 partial = needed % mss_now; 2017 /* If last segment is not a full MSS, check if Nagle rules allow us 2018 * to include this last segment in this skb. 2019 * Otherwise, we'll split the skb at last MSS boundary 2020 */ 2021 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2022 return needed - partial; 2023 2024 return needed; 2025 } 2026 2027 /* Can at least one segment of SKB be sent right now, according to the 2028 * congestion window rules? If so, return how many segments are allowed. 2029 */ 2030 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 2031 const struct sk_buff *skb) 2032 { 2033 u32 in_flight, cwnd, halfcwnd; 2034 2035 /* Don't be strict about the congestion window for the final FIN. */ 2036 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2037 tcp_skb_pcount(skb) == 1) 2038 return 1; 2039 2040 in_flight = tcp_packets_in_flight(tp); 2041 cwnd = tp->snd_cwnd; 2042 if (in_flight >= cwnd) 2043 return 0; 2044 2045 /* For better scheduling, ensure we have at least 2046 * 2 GSO packets in flight. 2047 */ 2048 halfcwnd = max(cwnd >> 1, 1U); 2049 return min(halfcwnd, cwnd - in_flight); 2050 } 2051 2052 /* Initialize TSO state of a skb. 2053 * This must be invoked the first time we consider transmitting 2054 * SKB onto the wire. 2055 */ 2056 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2057 { 2058 int tso_segs = tcp_skb_pcount(skb); 2059 2060 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 2061 tcp_set_skb_tso_segs(skb, mss_now); 2062 tso_segs = tcp_skb_pcount(skb); 2063 } 2064 return tso_segs; 2065 } 2066 2067 2068 /* Return true if the Nagle test allows this packet to be 2069 * sent now. 2070 */ 2071 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2072 unsigned int cur_mss, int nonagle) 2073 { 2074 /* Nagle rule does not apply to frames, which sit in the middle of the 2075 * write_queue (they have no chances to get new data). 2076 * 2077 * This is implemented in the callers, where they modify the 'nonagle' 2078 * argument based upon the location of SKB in the send queue. 2079 */ 2080 if (nonagle & TCP_NAGLE_PUSH) 2081 return true; 2082 2083 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2084 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2085 return true; 2086 2087 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2088 return true; 2089 2090 return false; 2091 } 2092 2093 /* Does at least the first segment of SKB fit into the send window? */ 2094 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2095 const struct sk_buff *skb, 2096 unsigned int cur_mss) 2097 { 2098 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2099 2100 if (skb->len > cur_mss) 2101 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2102 2103 return !after(end_seq, tcp_wnd_end(tp)); 2104 } 2105 2106 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2107 * which is put after SKB on the list. It is very much like 2108 * tcp_fragment() except that it may make several kinds of assumptions 2109 * in order to speed up the splitting operation. In particular, we 2110 * know that all the data is in scatter-gather pages, and that the 2111 * packet has never been sent out before (and thus is not cloned). 2112 */ 2113 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2114 unsigned int mss_now, gfp_t gfp) 2115 { 2116 int nlen = skb->len - len; 2117 struct sk_buff *buff; 2118 u8 flags; 2119 2120 /* All of a TSO frame must be composed of paged data. */ 2121 if (skb->len != skb->data_len) 2122 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 2123 skb, len, mss_now, gfp); 2124 2125 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 2126 if (unlikely(!buff)) 2127 return -ENOMEM; 2128 skb_copy_decrypted(buff, skb); 2129 mptcp_skb_ext_copy(buff, skb); 2130 2131 sk_wmem_queued_add(sk, buff->truesize); 2132 sk_mem_charge(sk, buff->truesize); 2133 buff->truesize += nlen; 2134 skb->truesize -= nlen; 2135 2136 /* Correct the sequence numbers. */ 2137 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2138 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2139 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2140 2141 /* PSH and FIN should only be set in the second packet. */ 2142 flags = TCP_SKB_CB(skb)->tcp_flags; 2143 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2144 TCP_SKB_CB(buff)->tcp_flags = flags; 2145 2146 /* This packet was never sent out yet, so no SACK bits. */ 2147 TCP_SKB_CB(buff)->sacked = 0; 2148 2149 tcp_skb_fragment_eor(skb, buff); 2150 2151 buff->ip_summed = CHECKSUM_PARTIAL; 2152 skb_split(skb, buff, len); 2153 tcp_fragment_tstamp(skb, buff); 2154 2155 /* Fix up tso_factor for both original and new SKB. */ 2156 tcp_set_skb_tso_segs(skb, mss_now); 2157 tcp_set_skb_tso_segs(buff, mss_now); 2158 2159 /* Link BUFF into the send queue. */ 2160 __skb_header_release(buff); 2161 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2162 2163 return 0; 2164 } 2165 2166 /* Try to defer sending, if possible, in order to minimize the amount 2167 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2168 * 2169 * This algorithm is from John Heffner. 2170 */ 2171 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2172 bool *is_cwnd_limited, 2173 bool *is_rwnd_limited, 2174 u32 max_segs) 2175 { 2176 const struct inet_connection_sock *icsk = inet_csk(sk); 2177 u32 send_win, cong_win, limit, in_flight; 2178 struct tcp_sock *tp = tcp_sk(sk); 2179 struct sk_buff *head; 2180 int win_divisor; 2181 s64 delta; 2182 2183 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2184 goto send_now; 2185 2186 /* Avoid bursty behavior by allowing defer 2187 * only if the last write was recent (1 ms). 2188 * Note that tp->tcp_wstamp_ns can be in the future if we have 2189 * packets waiting in a qdisc or device for EDT delivery. 2190 */ 2191 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2192 if (delta > 0) 2193 goto send_now; 2194 2195 in_flight = tcp_packets_in_flight(tp); 2196 2197 BUG_ON(tcp_skb_pcount(skb) <= 1); 2198 BUG_ON(tp->snd_cwnd <= in_flight); 2199 2200 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2201 2202 /* From in_flight test above, we know that cwnd > in_flight. */ 2203 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 2204 2205 limit = min(send_win, cong_win); 2206 2207 /* If a full-sized TSO skb can be sent, do it. */ 2208 if (limit >= max_segs * tp->mss_cache) 2209 goto send_now; 2210 2211 /* Middle in queue won't get any more data, full sendable already? */ 2212 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2213 goto send_now; 2214 2215 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2216 if (win_divisor) { 2217 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 2218 2219 /* If at least some fraction of a window is available, 2220 * just use it. 2221 */ 2222 chunk /= win_divisor; 2223 if (limit >= chunk) 2224 goto send_now; 2225 } else { 2226 /* Different approach, try not to defer past a single 2227 * ACK. Receiver should ACK every other full sized 2228 * frame, so if we have space for more than 3 frames 2229 * then send now. 2230 */ 2231 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2232 goto send_now; 2233 } 2234 2235 /* TODO : use tsorted_sent_queue ? */ 2236 head = tcp_rtx_queue_head(sk); 2237 if (!head) 2238 goto send_now; 2239 delta = tp->tcp_clock_cache - head->tstamp; 2240 /* If next ACK is likely to come too late (half srtt), do not defer */ 2241 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2242 goto send_now; 2243 2244 /* Ok, it looks like it is advisable to defer. 2245 * Three cases are tracked : 2246 * 1) We are cwnd-limited 2247 * 2) We are rwnd-limited 2248 * 3) We are application limited. 2249 */ 2250 if (cong_win < send_win) { 2251 if (cong_win <= skb->len) { 2252 *is_cwnd_limited = true; 2253 return true; 2254 } 2255 } else { 2256 if (send_win <= skb->len) { 2257 *is_rwnd_limited = true; 2258 return true; 2259 } 2260 } 2261 2262 /* If this packet won't get more data, do not wait. */ 2263 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2264 TCP_SKB_CB(skb)->eor) 2265 goto send_now; 2266 2267 return true; 2268 2269 send_now: 2270 return false; 2271 } 2272 2273 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2274 { 2275 struct inet_connection_sock *icsk = inet_csk(sk); 2276 struct tcp_sock *tp = tcp_sk(sk); 2277 struct net *net = sock_net(sk); 2278 u32 interval; 2279 s32 delta; 2280 2281 interval = net->ipv4.sysctl_tcp_probe_interval; 2282 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2283 if (unlikely(delta >= interval * HZ)) { 2284 int mss = tcp_current_mss(sk); 2285 2286 /* Update current search range */ 2287 icsk->icsk_mtup.probe_size = 0; 2288 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2289 sizeof(struct tcphdr) + 2290 icsk->icsk_af_ops->net_header_len; 2291 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2292 2293 /* Update probe time stamp */ 2294 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2295 } 2296 } 2297 2298 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2299 { 2300 struct sk_buff *skb, *next; 2301 2302 skb = tcp_send_head(sk); 2303 tcp_for_write_queue_from_safe(skb, next, sk) { 2304 if (len <= skb->len) 2305 break; 2306 2307 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb)) 2308 return false; 2309 2310 len -= skb->len; 2311 } 2312 2313 return true; 2314 } 2315 2316 /* Create a new MTU probe if we are ready. 2317 * MTU probe is regularly attempting to increase the path MTU by 2318 * deliberately sending larger packets. This discovers routing 2319 * changes resulting in larger path MTUs. 2320 * 2321 * Returns 0 if we should wait to probe (no cwnd available), 2322 * 1 if a probe was sent, 2323 * -1 otherwise 2324 */ 2325 static int tcp_mtu_probe(struct sock *sk) 2326 { 2327 struct inet_connection_sock *icsk = inet_csk(sk); 2328 struct tcp_sock *tp = tcp_sk(sk); 2329 struct sk_buff *skb, *nskb, *next; 2330 struct net *net = sock_net(sk); 2331 int probe_size; 2332 int size_needed; 2333 int copy, len; 2334 int mss_now; 2335 int interval; 2336 2337 /* Not currently probing/verifying, 2338 * not in recovery, 2339 * have enough cwnd, and 2340 * not SACKing (the variable headers throw things off) 2341 */ 2342 if (likely(!icsk->icsk_mtup.enabled || 2343 icsk->icsk_mtup.probe_size || 2344 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2345 tp->snd_cwnd < 11 || 2346 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2347 return -1; 2348 2349 /* Use binary search for probe_size between tcp_mss_base, 2350 * and current mss_clamp. if (search_high - search_low) 2351 * smaller than a threshold, backoff from probing. 2352 */ 2353 mss_now = tcp_current_mss(sk); 2354 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2355 icsk->icsk_mtup.search_low) >> 1); 2356 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2357 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2358 /* When misfortune happens, we are reprobing actively, 2359 * and then reprobe timer has expired. We stick with current 2360 * probing process by not resetting search range to its orignal. 2361 */ 2362 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2363 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2364 /* Check whether enough time has elaplased for 2365 * another round of probing. 2366 */ 2367 tcp_mtu_check_reprobe(sk); 2368 return -1; 2369 } 2370 2371 /* Have enough data in the send queue to probe? */ 2372 if (tp->write_seq - tp->snd_nxt < size_needed) 2373 return -1; 2374 2375 if (tp->snd_wnd < size_needed) 2376 return -1; 2377 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2378 return 0; 2379 2380 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2381 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2382 if (!tcp_packets_in_flight(tp)) 2383 return -1; 2384 else 2385 return 0; 2386 } 2387 2388 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2389 return -1; 2390 2391 /* We're allowed to probe. Build it now. */ 2392 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2393 if (!nskb) 2394 return -1; 2395 sk_wmem_queued_add(sk, nskb->truesize); 2396 sk_mem_charge(sk, nskb->truesize); 2397 2398 skb = tcp_send_head(sk); 2399 skb_copy_decrypted(nskb, skb); 2400 mptcp_skb_ext_copy(nskb, skb); 2401 2402 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2403 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2404 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2405 TCP_SKB_CB(nskb)->sacked = 0; 2406 nskb->csum = 0; 2407 nskb->ip_summed = CHECKSUM_PARTIAL; 2408 2409 tcp_insert_write_queue_before(nskb, skb, sk); 2410 tcp_highest_sack_replace(sk, skb, nskb); 2411 2412 len = 0; 2413 tcp_for_write_queue_from_safe(skb, next, sk) { 2414 copy = min_t(int, skb->len, probe_size - len); 2415 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2416 2417 if (skb->len <= copy) { 2418 /* We've eaten all the data from this skb. 2419 * Throw it away. */ 2420 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2421 /* If this is the last SKB we copy and eor is set 2422 * we need to propagate it to the new skb. 2423 */ 2424 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2425 tcp_skb_collapse_tstamp(nskb, skb); 2426 tcp_unlink_write_queue(skb, sk); 2427 sk_wmem_free_skb(sk, skb); 2428 } else { 2429 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2430 ~(TCPHDR_FIN|TCPHDR_PSH); 2431 if (!skb_shinfo(skb)->nr_frags) { 2432 skb_pull(skb, copy); 2433 } else { 2434 __pskb_trim_head(skb, copy); 2435 tcp_set_skb_tso_segs(skb, mss_now); 2436 } 2437 TCP_SKB_CB(skb)->seq += copy; 2438 } 2439 2440 len += copy; 2441 2442 if (len >= probe_size) 2443 break; 2444 } 2445 tcp_init_tso_segs(nskb, nskb->len); 2446 2447 /* We're ready to send. If this fails, the probe will 2448 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2449 */ 2450 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2451 /* Decrement cwnd here because we are sending 2452 * effectively two packets. */ 2453 tp->snd_cwnd--; 2454 tcp_event_new_data_sent(sk, nskb); 2455 2456 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2457 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2458 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2459 2460 return 1; 2461 } 2462 2463 return -1; 2464 } 2465 2466 static bool tcp_pacing_check(struct sock *sk) 2467 { 2468 struct tcp_sock *tp = tcp_sk(sk); 2469 2470 if (!tcp_needs_internal_pacing(sk)) 2471 return false; 2472 2473 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2474 return false; 2475 2476 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2477 hrtimer_start(&tp->pacing_timer, 2478 ns_to_ktime(tp->tcp_wstamp_ns), 2479 HRTIMER_MODE_ABS_PINNED_SOFT); 2480 sock_hold(sk); 2481 } 2482 return true; 2483 } 2484 2485 /* TCP Small Queues : 2486 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2487 * (These limits are doubled for retransmits) 2488 * This allows for : 2489 * - better RTT estimation and ACK scheduling 2490 * - faster recovery 2491 * - high rates 2492 * Alas, some drivers / subsystems require a fair amount 2493 * of queued bytes to ensure line rate. 2494 * One example is wifi aggregation (802.11 AMPDU) 2495 */ 2496 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2497 unsigned int factor) 2498 { 2499 unsigned long limit; 2500 2501 limit = max_t(unsigned long, 2502 2 * skb->truesize, 2503 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); 2504 if (sk->sk_pacing_status == SK_PACING_NONE) 2505 limit = min_t(unsigned long, limit, 2506 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2507 limit <<= factor; 2508 2509 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2510 tcp_sk(sk)->tcp_tx_delay) { 2511 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2512 2513 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2514 * approximate our needs assuming an ~100% skb->truesize overhead. 2515 * USEC_PER_SEC is approximated by 2^20. 2516 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2517 */ 2518 extra_bytes >>= (20 - 1); 2519 limit += extra_bytes; 2520 } 2521 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2522 /* Always send skb if rtx queue is empty. 2523 * No need to wait for TX completion to call us back, 2524 * after softirq/tasklet schedule. 2525 * This helps when TX completions are delayed too much. 2526 */ 2527 if (tcp_rtx_queue_empty(sk)) 2528 return false; 2529 2530 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2531 /* It is possible TX completion already happened 2532 * before we set TSQ_THROTTLED, so we must 2533 * test again the condition. 2534 */ 2535 smp_mb__after_atomic(); 2536 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2537 return true; 2538 } 2539 return false; 2540 } 2541 2542 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2543 { 2544 const u32 now = tcp_jiffies32; 2545 enum tcp_chrono old = tp->chrono_type; 2546 2547 if (old > TCP_CHRONO_UNSPEC) 2548 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2549 tp->chrono_start = now; 2550 tp->chrono_type = new; 2551 } 2552 2553 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2554 { 2555 struct tcp_sock *tp = tcp_sk(sk); 2556 2557 /* If there are multiple conditions worthy of tracking in a 2558 * chronograph then the highest priority enum takes precedence 2559 * over the other conditions. So that if something "more interesting" 2560 * starts happening, stop the previous chrono and start a new one. 2561 */ 2562 if (type > tp->chrono_type) 2563 tcp_chrono_set(tp, type); 2564 } 2565 2566 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2567 { 2568 struct tcp_sock *tp = tcp_sk(sk); 2569 2570 2571 /* There are multiple conditions worthy of tracking in a 2572 * chronograph, so that the highest priority enum takes 2573 * precedence over the other conditions (see tcp_chrono_start). 2574 * If a condition stops, we only stop chrono tracking if 2575 * it's the "most interesting" or current chrono we are 2576 * tracking and starts busy chrono if we have pending data. 2577 */ 2578 if (tcp_rtx_and_write_queues_empty(sk)) 2579 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2580 else if (type == tp->chrono_type) 2581 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2582 } 2583 2584 /* This routine writes packets to the network. It advances the 2585 * send_head. This happens as incoming acks open up the remote 2586 * window for us. 2587 * 2588 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2589 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2590 * account rare use of URG, this is not a big flaw. 2591 * 2592 * Send at most one packet when push_one > 0. Temporarily ignore 2593 * cwnd limit to force at most one packet out when push_one == 2. 2594 2595 * Returns true, if no segments are in flight and we have queued segments, 2596 * but cannot send anything now because of SWS or another problem. 2597 */ 2598 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2599 int push_one, gfp_t gfp) 2600 { 2601 struct tcp_sock *tp = tcp_sk(sk); 2602 struct sk_buff *skb; 2603 unsigned int tso_segs, sent_pkts; 2604 int cwnd_quota; 2605 int result; 2606 bool is_cwnd_limited = false, is_rwnd_limited = false; 2607 u32 max_segs; 2608 2609 sent_pkts = 0; 2610 2611 tcp_mstamp_refresh(tp); 2612 if (!push_one) { 2613 /* Do MTU probing. */ 2614 result = tcp_mtu_probe(sk); 2615 if (!result) { 2616 return false; 2617 } else if (result > 0) { 2618 sent_pkts = 1; 2619 } 2620 } 2621 2622 max_segs = tcp_tso_segs(sk, mss_now); 2623 while ((skb = tcp_send_head(sk))) { 2624 unsigned int limit; 2625 2626 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2627 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2628 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2629 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2630 tcp_init_tso_segs(skb, mss_now); 2631 goto repair; /* Skip network transmission */ 2632 } 2633 2634 if (tcp_pacing_check(sk)) 2635 break; 2636 2637 tso_segs = tcp_init_tso_segs(skb, mss_now); 2638 BUG_ON(!tso_segs); 2639 2640 cwnd_quota = tcp_cwnd_test(tp, skb); 2641 if (!cwnd_quota) { 2642 if (push_one == 2) 2643 /* Force out a loss probe pkt. */ 2644 cwnd_quota = 1; 2645 else 2646 break; 2647 } 2648 2649 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2650 is_rwnd_limited = true; 2651 break; 2652 } 2653 2654 if (tso_segs == 1) { 2655 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2656 (tcp_skb_is_last(sk, skb) ? 2657 nonagle : TCP_NAGLE_PUSH)))) 2658 break; 2659 } else { 2660 if (!push_one && 2661 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2662 &is_rwnd_limited, max_segs)) 2663 break; 2664 } 2665 2666 limit = mss_now; 2667 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2668 limit = tcp_mss_split_point(sk, skb, mss_now, 2669 min_t(unsigned int, 2670 cwnd_quota, 2671 max_segs), 2672 nonagle); 2673 2674 if (skb->len > limit && 2675 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2676 break; 2677 2678 if (tcp_small_queue_check(sk, skb, 0)) 2679 break; 2680 2681 /* Argh, we hit an empty skb(), presumably a thread 2682 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2683 * We do not want to send a pure-ack packet and have 2684 * a strange looking rtx queue with empty packet(s). 2685 */ 2686 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2687 break; 2688 2689 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2690 break; 2691 2692 repair: 2693 /* Advance the send_head. This one is sent out. 2694 * This call will increment packets_out. 2695 */ 2696 tcp_event_new_data_sent(sk, skb); 2697 2698 tcp_minshall_update(tp, mss_now, skb); 2699 sent_pkts += tcp_skb_pcount(skb); 2700 2701 if (push_one) 2702 break; 2703 } 2704 2705 if (is_rwnd_limited) 2706 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2707 else 2708 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2709 2710 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2711 if (likely(sent_pkts || is_cwnd_limited)) 2712 tcp_cwnd_validate(sk, is_cwnd_limited); 2713 2714 if (likely(sent_pkts)) { 2715 if (tcp_in_cwnd_reduction(sk)) 2716 tp->prr_out += sent_pkts; 2717 2718 /* Send one loss probe per tail loss episode. */ 2719 if (push_one != 2) 2720 tcp_schedule_loss_probe(sk, false); 2721 return false; 2722 } 2723 return !tp->packets_out && !tcp_write_queue_empty(sk); 2724 } 2725 2726 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2727 { 2728 struct inet_connection_sock *icsk = inet_csk(sk); 2729 struct tcp_sock *tp = tcp_sk(sk); 2730 u32 timeout, rto_delta_us; 2731 int early_retrans; 2732 2733 /* Don't do any loss probe on a Fast Open connection before 3WHS 2734 * finishes. 2735 */ 2736 if (rcu_access_pointer(tp->fastopen_rsk)) 2737 return false; 2738 2739 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2740 /* Schedule a loss probe in 2*RTT for SACK capable connections 2741 * not in loss recovery, that are either limited by cwnd or application. 2742 */ 2743 if ((early_retrans != 3 && early_retrans != 4) || 2744 !tp->packets_out || !tcp_is_sack(tp) || 2745 (icsk->icsk_ca_state != TCP_CA_Open && 2746 icsk->icsk_ca_state != TCP_CA_CWR)) 2747 return false; 2748 2749 /* Probe timeout is 2*rtt. Add minimum RTO to account 2750 * for delayed ack when there's one outstanding packet. If no RTT 2751 * sample is available then probe after TCP_TIMEOUT_INIT. 2752 */ 2753 if (tp->srtt_us) { 2754 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2755 if (tp->packets_out == 1) 2756 timeout += TCP_RTO_MIN; 2757 else 2758 timeout += TCP_TIMEOUT_MIN; 2759 } else { 2760 timeout = TCP_TIMEOUT_INIT; 2761 } 2762 2763 /* If the RTO formula yields an earlier time, then use that time. */ 2764 rto_delta_us = advancing_rto ? 2765 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2766 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2767 if (rto_delta_us > 0) 2768 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2769 2770 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2771 return true; 2772 } 2773 2774 /* Thanks to skb fast clones, we can detect if a prior transmit of 2775 * a packet is still in a qdisc or driver queue. 2776 * In this case, there is very little point doing a retransmit ! 2777 */ 2778 static bool skb_still_in_host_queue(struct sock *sk, 2779 const struct sk_buff *skb) 2780 { 2781 if (unlikely(skb_fclone_busy(sk, skb))) { 2782 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2783 smp_mb__after_atomic(); 2784 if (skb_fclone_busy(sk, skb)) { 2785 NET_INC_STATS(sock_net(sk), 2786 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2787 return true; 2788 } 2789 } 2790 return false; 2791 } 2792 2793 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2794 * retransmit the last segment. 2795 */ 2796 void tcp_send_loss_probe(struct sock *sk) 2797 { 2798 struct tcp_sock *tp = tcp_sk(sk); 2799 struct sk_buff *skb; 2800 int pcount; 2801 int mss = tcp_current_mss(sk); 2802 2803 /* At most one outstanding TLP */ 2804 if (tp->tlp_high_seq) 2805 goto rearm_timer; 2806 2807 tp->tlp_retrans = 0; 2808 skb = tcp_send_head(sk); 2809 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2810 pcount = tp->packets_out; 2811 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2812 if (tp->packets_out > pcount) 2813 goto probe_sent; 2814 goto rearm_timer; 2815 } 2816 skb = skb_rb_last(&sk->tcp_rtx_queue); 2817 if (unlikely(!skb)) { 2818 WARN_ONCE(tp->packets_out, 2819 "invalid inflight: %u state %u cwnd %u mss %d\n", 2820 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2821 inet_csk(sk)->icsk_pending = 0; 2822 return; 2823 } 2824 2825 if (skb_still_in_host_queue(sk, skb)) 2826 goto rearm_timer; 2827 2828 pcount = tcp_skb_pcount(skb); 2829 if (WARN_ON(!pcount)) 2830 goto rearm_timer; 2831 2832 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2833 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2834 (pcount - 1) * mss, mss, 2835 GFP_ATOMIC))) 2836 goto rearm_timer; 2837 skb = skb_rb_next(skb); 2838 } 2839 2840 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2841 goto rearm_timer; 2842 2843 if (__tcp_retransmit_skb(sk, skb, 1)) 2844 goto rearm_timer; 2845 2846 tp->tlp_retrans = 1; 2847 2848 probe_sent: 2849 /* Record snd_nxt for loss detection. */ 2850 tp->tlp_high_seq = tp->snd_nxt; 2851 2852 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2853 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2854 inet_csk(sk)->icsk_pending = 0; 2855 rearm_timer: 2856 tcp_rearm_rto(sk); 2857 } 2858 2859 /* Push out any pending frames which were held back due to 2860 * TCP_CORK or attempt at coalescing tiny packets. 2861 * The socket must be locked by the caller. 2862 */ 2863 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2864 int nonagle) 2865 { 2866 /* If we are closed, the bytes will have to remain here. 2867 * In time closedown will finish, we empty the write queue and 2868 * all will be happy. 2869 */ 2870 if (unlikely(sk->sk_state == TCP_CLOSE)) 2871 return; 2872 2873 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2874 sk_gfp_mask(sk, GFP_ATOMIC))) 2875 tcp_check_probe_timer(sk); 2876 } 2877 2878 /* Send _single_ skb sitting at the send head. This function requires 2879 * true push pending frames to setup probe timer etc. 2880 */ 2881 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2882 { 2883 struct sk_buff *skb = tcp_send_head(sk); 2884 2885 BUG_ON(!skb || skb->len < mss_now); 2886 2887 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2888 } 2889 2890 /* This function returns the amount that we can raise the 2891 * usable window based on the following constraints 2892 * 2893 * 1. The window can never be shrunk once it is offered (RFC 793) 2894 * 2. We limit memory per socket 2895 * 2896 * RFC 1122: 2897 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2898 * RECV.NEXT + RCV.WIN fixed until: 2899 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2900 * 2901 * i.e. don't raise the right edge of the window until you can raise 2902 * it at least MSS bytes. 2903 * 2904 * Unfortunately, the recommended algorithm breaks header prediction, 2905 * since header prediction assumes th->window stays fixed. 2906 * 2907 * Strictly speaking, keeping th->window fixed violates the receiver 2908 * side SWS prevention criteria. The problem is that under this rule 2909 * a stream of single byte packets will cause the right side of the 2910 * window to always advance by a single byte. 2911 * 2912 * Of course, if the sender implements sender side SWS prevention 2913 * then this will not be a problem. 2914 * 2915 * BSD seems to make the following compromise: 2916 * 2917 * If the free space is less than the 1/4 of the maximum 2918 * space available and the free space is less than 1/2 mss, 2919 * then set the window to 0. 2920 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2921 * Otherwise, just prevent the window from shrinking 2922 * and from being larger than the largest representable value. 2923 * 2924 * This prevents incremental opening of the window in the regime 2925 * where TCP is limited by the speed of the reader side taking 2926 * data out of the TCP receive queue. It does nothing about 2927 * those cases where the window is constrained on the sender side 2928 * because the pipeline is full. 2929 * 2930 * BSD also seems to "accidentally" limit itself to windows that are a 2931 * multiple of MSS, at least until the free space gets quite small. 2932 * This would appear to be a side effect of the mbuf implementation. 2933 * Combining these two algorithms results in the observed behavior 2934 * of having a fixed window size at almost all times. 2935 * 2936 * Below we obtain similar behavior by forcing the offered window to 2937 * a multiple of the mss when it is feasible to do so. 2938 * 2939 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2940 * Regular options like TIMESTAMP are taken into account. 2941 */ 2942 u32 __tcp_select_window(struct sock *sk) 2943 { 2944 struct inet_connection_sock *icsk = inet_csk(sk); 2945 struct tcp_sock *tp = tcp_sk(sk); 2946 /* MSS for the peer's data. Previous versions used mss_clamp 2947 * here. I don't know if the value based on our guesses 2948 * of peer's MSS is better for the performance. It's more correct 2949 * but may be worse for the performance because of rcv_mss 2950 * fluctuations. --SAW 1998/11/1 2951 */ 2952 int mss = icsk->icsk_ack.rcv_mss; 2953 int free_space = tcp_space(sk); 2954 int allowed_space = tcp_full_space(sk); 2955 int full_space, window; 2956 2957 if (sk_is_mptcp(sk)) 2958 mptcp_space(sk, &free_space, &allowed_space); 2959 2960 full_space = min_t(int, tp->window_clamp, allowed_space); 2961 2962 if (unlikely(mss > full_space)) { 2963 mss = full_space; 2964 if (mss <= 0) 2965 return 0; 2966 } 2967 if (free_space < (full_space >> 1)) { 2968 icsk->icsk_ack.quick = 0; 2969 2970 if (tcp_under_memory_pressure(sk)) 2971 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2972 4U * tp->advmss); 2973 2974 /* free_space might become our new window, make sure we don't 2975 * increase it due to wscale. 2976 */ 2977 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2978 2979 /* if free space is less than mss estimate, or is below 1/16th 2980 * of the maximum allowed, try to move to zero-window, else 2981 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2982 * new incoming data is dropped due to memory limits. 2983 * With large window, mss test triggers way too late in order 2984 * to announce zero window in time before rmem limit kicks in. 2985 */ 2986 if (free_space < (allowed_space >> 4) || free_space < mss) 2987 return 0; 2988 } 2989 2990 if (free_space > tp->rcv_ssthresh) 2991 free_space = tp->rcv_ssthresh; 2992 2993 /* Don't do rounding if we are using window scaling, since the 2994 * scaled window will not line up with the MSS boundary anyway. 2995 */ 2996 if (tp->rx_opt.rcv_wscale) { 2997 window = free_space; 2998 2999 /* Advertise enough space so that it won't get scaled away. 3000 * Import case: prevent zero window announcement if 3001 * 1<<rcv_wscale > mss. 3002 */ 3003 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3004 } else { 3005 window = tp->rcv_wnd; 3006 /* Get the largest window that is a nice multiple of mss. 3007 * Window clamp already applied above. 3008 * If our current window offering is within 1 mss of the 3009 * free space we just keep it. This prevents the divide 3010 * and multiply from happening most of the time. 3011 * We also don't do any window rounding when the free space 3012 * is too small. 3013 */ 3014 if (window <= free_space - mss || window > free_space) 3015 window = rounddown(free_space, mss); 3016 else if (mss == full_space && 3017 free_space > window + (full_space >> 1)) 3018 window = free_space; 3019 } 3020 3021 return window; 3022 } 3023 3024 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3025 const struct sk_buff *next_skb) 3026 { 3027 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3028 const struct skb_shared_info *next_shinfo = 3029 skb_shinfo(next_skb); 3030 struct skb_shared_info *shinfo = skb_shinfo(skb); 3031 3032 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3033 shinfo->tskey = next_shinfo->tskey; 3034 TCP_SKB_CB(skb)->txstamp_ack |= 3035 TCP_SKB_CB(next_skb)->txstamp_ack; 3036 } 3037 } 3038 3039 /* Collapses two adjacent SKB's during retransmission. */ 3040 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3041 { 3042 struct tcp_sock *tp = tcp_sk(sk); 3043 struct sk_buff *next_skb = skb_rb_next(skb); 3044 int next_skb_size; 3045 3046 next_skb_size = next_skb->len; 3047 3048 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3049 3050 if (next_skb_size) { 3051 if (next_skb_size <= skb_availroom(skb)) 3052 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 3053 next_skb_size); 3054 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3055 return false; 3056 } 3057 tcp_highest_sack_replace(sk, next_skb, skb); 3058 3059 /* Update sequence range on original skb. */ 3060 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3061 3062 /* Merge over control information. This moves PSH/FIN etc. over */ 3063 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3064 3065 /* All done, get rid of second SKB and account for it so 3066 * packet counting does not break. 3067 */ 3068 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3069 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3070 3071 /* changed transmit queue under us so clear hints */ 3072 tcp_clear_retrans_hints_partial(tp); 3073 if (next_skb == tp->retransmit_skb_hint) 3074 tp->retransmit_skb_hint = skb; 3075 3076 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3077 3078 tcp_skb_collapse_tstamp(skb, next_skb); 3079 3080 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3081 return true; 3082 } 3083 3084 /* Check if coalescing SKBs is legal. */ 3085 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3086 { 3087 if (tcp_skb_pcount(skb) > 1) 3088 return false; 3089 if (skb_cloned(skb)) 3090 return false; 3091 /* Some heuristics for collapsing over SACK'd could be invented */ 3092 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3093 return false; 3094 3095 return true; 3096 } 3097 3098 /* Collapse packets in the retransmit queue to make to create 3099 * less packets on the wire. This is only done on retransmission. 3100 */ 3101 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3102 int space) 3103 { 3104 struct tcp_sock *tp = tcp_sk(sk); 3105 struct sk_buff *skb = to, *tmp; 3106 bool first = true; 3107 3108 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 3109 return; 3110 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3111 return; 3112 3113 skb_rbtree_walk_from_safe(skb, tmp) { 3114 if (!tcp_can_collapse(sk, skb)) 3115 break; 3116 3117 if (!tcp_skb_can_collapse(to, skb)) 3118 break; 3119 3120 space -= skb->len; 3121 3122 if (first) { 3123 first = false; 3124 continue; 3125 } 3126 3127 if (space < 0) 3128 break; 3129 3130 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3131 break; 3132 3133 if (!tcp_collapse_retrans(sk, to)) 3134 break; 3135 } 3136 } 3137 3138 /* This retransmits one SKB. Policy decisions and retransmit queue 3139 * state updates are done by the caller. Returns non-zero if an 3140 * error occurred which prevented the send. 3141 */ 3142 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3143 { 3144 struct inet_connection_sock *icsk = inet_csk(sk); 3145 struct tcp_sock *tp = tcp_sk(sk); 3146 unsigned int cur_mss; 3147 int diff, len, err; 3148 3149 3150 /* Inconclusive MTU probe */ 3151 if (icsk->icsk_mtup.probe_size) 3152 icsk->icsk_mtup.probe_size = 0; 3153 3154 if (skb_still_in_host_queue(sk, skb)) 3155 return -EBUSY; 3156 3157 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3158 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3159 WARN_ON_ONCE(1); 3160 return -EINVAL; 3161 } 3162 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3163 return -ENOMEM; 3164 } 3165 3166 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3167 return -EHOSTUNREACH; /* Routing failure or similar. */ 3168 3169 cur_mss = tcp_current_mss(sk); 3170 3171 /* If receiver has shrunk his window, and skb is out of 3172 * new window, do not retransmit it. The exception is the 3173 * case, when window is shrunk to zero. In this case 3174 * our retransmit serves as a zero window probe. 3175 */ 3176 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 3177 TCP_SKB_CB(skb)->seq != tp->snd_una) 3178 return -EAGAIN; 3179 3180 len = cur_mss * segs; 3181 if (skb->len > len) { 3182 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3183 cur_mss, GFP_ATOMIC)) 3184 return -ENOMEM; /* We'll try again later. */ 3185 } else { 3186 if (skb_unclone(skb, GFP_ATOMIC)) 3187 return -ENOMEM; 3188 3189 diff = tcp_skb_pcount(skb); 3190 tcp_set_skb_tso_segs(skb, cur_mss); 3191 diff -= tcp_skb_pcount(skb); 3192 if (diff) 3193 tcp_adjust_pcount(sk, skb, diff); 3194 if (skb->len < cur_mss) 3195 tcp_retrans_try_collapse(sk, skb, cur_mss); 3196 } 3197 3198 /* RFC3168, section 6.1.1.1. ECN fallback */ 3199 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3200 tcp_ecn_clear_syn(sk, skb); 3201 3202 /* Update global and local TCP statistics. */ 3203 segs = tcp_skb_pcount(skb); 3204 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3205 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3206 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3207 tp->total_retrans += segs; 3208 tp->bytes_retrans += skb->len; 3209 3210 /* make sure skb->data is aligned on arches that require it 3211 * and check if ack-trimming & collapsing extended the headroom 3212 * beyond what csum_start can cover. 3213 */ 3214 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3215 skb_headroom(skb) >= 0xFFFF)) { 3216 struct sk_buff *nskb; 3217 3218 tcp_skb_tsorted_save(skb) { 3219 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3220 if (nskb) { 3221 nskb->dev = NULL; 3222 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3223 } else { 3224 err = -ENOBUFS; 3225 } 3226 } tcp_skb_tsorted_restore(skb); 3227 3228 if (!err) { 3229 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3230 tcp_rate_skb_sent(sk, skb); 3231 } 3232 } else { 3233 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3234 } 3235 3236 /* To avoid taking spuriously low RTT samples based on a timestamp 3237 * for a transmit that never happened, always mark EVER_RETRANS 3238 */ 3239 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3240 3241 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3242 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3243 TCP_SKB_CB(skb)->seq, segs, err); 3244 3245 if (likely(!err)) { 3246 trace_tcp_retransmit_skb(sk, skb); 3247 } else if (err != -EBUSY) { 3248 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3249 } 3250 return err; 3251 } 3252 3253 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3254 { 3255 struct tcp_sock *tp = tcp_sk(sk); 3256 int err = __tcp_retransmit_skb(sk, skb, segs); 3257 3258 if (err == 0) { 3259 #if FASTRETRANS_DEBUG > 0 3260 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3261 net_dbg_ratelimited("retrans_out leaked\n"); 3262 } 3263 #endif 3264 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3265 tp->retrans_out += tcp_skb_pcount(skb); 3266 } 3267 3268 /* Save stamp of the first (attempted) retransmit. */ 3269 if (!tp->retrans_stamp) 3270 tp->retrans_stamp = tcp_skb_timestamp(skb); 3271 3272 if (tp->undo_retrans < 0) 3273 tp->undo_retrans = 0; 3274 tp->undo_retrans += tcp_skb_pcount(skb); 3275 return err; 3276 } 3277 3278 /* This gets called after a retransmit timeout, and the initially 3279 * retransmitted data is acknowledged. It tries to continue 3280 * resending the rest of the retransmit queue, until either 3281 * we've sent it all or the congestion window limit is reached. 3282 */ 3283 void tcp_xmit_retransmit_queue(struct sock *sk) 3284 { 3285 const struct inet_connection_sock *icsk = inet_csk(sk); 3286 struct sk_buff *skb, *rtx_head, *hole = NULL; 3287 struct tcp_sock *tp = tcp_sk(sk); 3288 bool rearm_timer = false; 3289 u32 max_segs; 3290 int mib_idx; 3291 3292 if (!tp->packets_out) 3293 return; 3294 3295 rtx_head = tcp_rtx_queue_head(sk); 3296 skb = tp->retransmit_skb_hint ?: rtx_head; 3297 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3298 skb_rbtree_walk_from(skb) { 3299 __u8 sacked; 3300 int segs; 3301 3302 if (tcp_pacing_check(sk)) 3303 break; 3304 3305 /* we could do better than to assign each time */ 3306 if (!hole) 3307 tp->retransmit_skb_hint = skb; 3308 3309 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3310 if (segs <= 0) 3311 break; 3312 sacked = TCP_SKB_CB(skb)->sacked; 3313 /* In case tcp_shift_skb_data() have aggregated large skbs, 3314 * we need to make sure not sending too bigs TSO packets 3315 */ 3316 segs = min_t(int, segs, max_segs); 3317 3318 if (tp->retrans_out >= tp->lost_out) { 3319 break; 3320 } else if (!(sacked & TCPCB_LOST)) { 3321 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3322 hole = skb; 3323 continue; 3324 3325 } else { 3326 if (icsk->icsk_ca_state != TCP_CA_Loss) 3327 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3328 else 3329 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3330 } 3331 3332 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3333 continue; 3334 3335 if (tcp_small_queue_check(sk, skb, 1)) 3336 break; 3337 3338 if (tcp_retransmit_skb(sk, skb, segs)) 3339 break; 3340 3341 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3342 3343 if (tcp_in_cwnd_reduction(sk)) 3344 tp->prr_out += tcp_skb_pcount(skb); 3345 3346 if (skb == rtx_head && 3347 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3348 rearm_timer = true; 3349 3350 } 3351 if (rearm_timer) 3352 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3353 inet_csk(sk)->icsk_rto, 3354 TCP_RTO_MAX); 3355 } 3356 3357 /* We allow to exceed memory limits for FIN packets to expedite 3358 * connection tear down and (memory) recovery. 3359 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3360 * or even be forced to close flow without any FIN. 3361 * In general, we want to allow one skb per socket to avoid hangs 3362 * with edge trigger epoll() 3363 */ 3364 void sk_forced_mem_schedule(struct sock *sk, int size) 3365 { 3366 int amt; 3367 3368 if (size <= sk->sk_forward_alloc) 3369 return; 3370 amt = sk_mem_pages(size); 3371 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3372 sk_memory_allocated_add(sk, amt); 3373 3374 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3375 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3376 } 3377 3378 /* Send a FIN. The caller locks the socket for us. 3379 * We should try to send a FIN packet really hard, but eventually give up. 3380 */ 3381 void tcp_send_fin(struct sock *sk) 3382 { 3383 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3384 struct tcp_sock *tp = tcp_sk(sk); 3385 3386 /* Optimization, tack on the FIN if we have one skb in write queue and 3387 * this skb was not yet sent, or we are under memory pressure. 3388 * Note: in the latter case, FIN packet will be sent after a timeout, 3389 * as TCP stack thinks it has already been transmitted. 3390 */ 3391 tskb = tail; 3392 if (!tskb && tcp_under_memory_pressure(sk)) 3393 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3394 3395 if (tskb) { 3396 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3397 TCP_SKB_CB(tskb)->end_seq++; 3398 tp->write_seq++; 3399 if (!tail) { 3400 /* This means tskb was already sent. 3401 * Pretend we included the FIN on previous transmit. 3402 * We need to set tp->snd_nxt to the value it would have 3403 * if FIN had been sent. This is because retransmit path 3404 * does not change tp->snd_nxt. 3405 */ 3406 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3407 return; 3408 } 3409 } else { 3410 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3411 if (unlikely(!skb)) 3412 return; 3413 3414 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3415 skb_reserve(skb, MAX_TCP_HEADER); 3416 sk_forced_mem_schedule(sk, skb->truesize); 3417 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3418 tcp_init_nondata_skb(skb, tp->write_seq, 3419 TCPHDR_ACK | TCPHDR_FIN); 3420 tcp_queue_skb(sk, skb); 3421 } 3422 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3423 } 3424 3425 /* We get here when a process closes a file descriptor (either due to 3426 * an explicit close() or as a byproduct of exit()'ing) and there 3427 * was unread data in the receive queue. This behavior is recommended 3428 * by RFC 2525, section 2.17. -DaveM 3429 */ 3430 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3431 { 3432 struct sk_buff *skb; 3433 3434 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3435 3436 /* NOTE: No TCP options attached and we never retransmit this. */ 3437 skb = alloc_skb(MAX_TCP_HEADER, priority); 3438 if (!skb) { 3439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3440 return; 3441 } 3442 3443 /* Reserve space for headers and prepare control bits. */ 3444 skb_reserve(skb, MAX_TCP_HEADER); 3445 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3446 TCPHDR_ACK | TCPHDR_RST); 3447 tcp_mstamp_refresh(tcp_sk(sk)); 3448 /* Send it off. */ 3449 if (tcp_transmit_skb(sk, skb, 0, priority)) 3450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3451 3452 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3453 * skb here is different to the troublesome skb, so use NULL 3454 */ 3455 trace_tcp_send_reset(sk, NULL); 3456 } 3457 3458 /* Send a crossed SYN-ACK during socket establishment. 3459 * WARNING: This routine must only be called when we have already sent 3460 * a SYN packet that crossed the incoming SYN that caused this routine 3461 * to get called. If this assumption fails then the initial rcv_wnd 3462 * and rcv_wscale values will not be correct. 3463 */ 3464 int tcp_send_synack(struct sock *sk) 3465 { 3466 struct sk_buff *skb; 3467 3468 skb = tcp_rtx_queue_head(sk); 3469 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3470 pr_err("%s: wrong queue state\n", __func__); 3471 return -EFAULT; 3472 } 3473 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3474 if (skb_cloned(skb)) { 3475 struct sk_buff *nskb; 3476 3477 tcp_skb_tsorted_save(skb) { 3478 nskb = skb_copy(skb, GFP_ATOMIC); 3479 } tcp_skb_tsorted_restore(skb); 3480 if (!nskb) 3481 return -ENOMEM; 3482 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3483 tcp_highest_sack_replace(sk, skb, nskb); 3484 tcp_rtx_queue_unlink_and_free(skb, sk); 3485 __skb_header_release(nskb); 3486 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3487 sk_wmem_queued_add(sk, nskb->truesize); 3488 sk_mem_charge(sk, nskb->truesize); 3489 skb = nskb; 3490 } 3491 3492 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3493 tcp_ecn_send_synack(sk, skb); 3494 } 3495 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3496 } 3497 3498 /** 3499 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3500 * @sk: listener socket 3501 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3502 * should not use it again. 3503 * @req: request_sock pointer 3504 * @foc: cookie for tcp fast open 3505 * @synack_type: Type of synack to prepare 3506 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3507 */ 3508 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3509 struct request_sock *req, 3510 struct tcp_fastopen_cookie *foc, 3511 enum tcp_synack_type synack_type, 3512 struct sk_buff *syn_skb) 3513 { 3514 struct inet_request_sock *ireq = inet_rsk(req); 3515 const struct tcp_sock *tp = tcp_sk(sk); 3516 struct tcp_md5sig_key *md5 = NULL; 3517 struct tcp_out_options opts; 3518 struct sk_buff *skb; 3519 int tcp_header_size; 3520 struct tcphdr *th; 3521 int mss; 3522 u64 now; 3523 3524 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3525 if (unlikely(!skb)) { 3526 dst_release(dst); 3527 return NULL; 3528 } 3529 /* Reserve space for headers. */ 3530 skb_reserve(skb, MAX_TCP_HEADER); 3531 3532 switch (synack_type) { 3533 case TCP_SYNACK_NORMAL: 3534 skb_set_owner_w(skb, req_to_sk(req)); 3535 break; 3536 case TCP_SYNACK_COOKIE: 3537 /* Under synflood, we do not attach skb to a socket, 3538 * to avoid false sharing. 3539 */ 3540 break; 3541 case TCP_SYNACK_FASTOPEN: 3542 /* sk is a const pointer, because we want to express multiple 3543 * cpu might call us concurrently. 3544 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3545 */ 3546 skb_set_owner_w(skb, (struct sock *)sk); 3547 break; 3548 } 3549 skb_dst_set(skb, dst); 3550 3551 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3552 3553 memset(&opts, 0, sizeof(opts)); 3554 now = tcp_clock_ns(); 3555 #ifdef CONFIG_SYN_COOKIES 3556 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3557 skb->skb_mstamp_ns = cookie_init_timestamp(req, now); 3558 else 3559 #endif 3560 { 3561 skb->skb_mstamp_ns = now; 3562 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3563 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3564 } 3565 3566 #ifdef CONFIG_TCP_MD5SIG 3567 rcu_read_lock(); 3568 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3569 #endif 3570 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3571 /* bpf program will be interested in the tcp_flags */ 3572 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3573 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3574 foc, synack_type, 3575 syn_skb) + sizeof(*th); 3576 3577 skb_push(skb, tcp_header_size); 3578 skb_reset_transport_header(skb); 3579 3580 th = (struct tcphdr *)skb->data; 3581 memset(th, 0, sizeof(struct tcphdr)); 3582 th->syn = 1; 3583 th->ack = 1; 3584 tcp_ecn_make_synack(req, th); 3585 th->source = htons(ireq->ir_num); 3586 th->dest = ireq->ir_rmt_port; 3587 skb->mark = ireq->ir_mark; 3588 skb->ip_summed = CHECKSUM_PARTIAL; 3589 th->seq = htonl(tcp_rsk(req)->snt_isn); 3590 /* XXX data is queued and acked as is. No buffer/window check */ 3591 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3592 3593 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3594 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3595 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3596 th->doff = (tcp_header_size >> 2); 3597 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3598 3599 #ifdef CONFIG_TCP_MD5SIG 3600 /* Okay, we have all we need - do the md5 hash if needed */ 3601 if (md5) 3602 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3603 md5, req_to_sk(req), skb); 3604 rcu_read_unlock(); 3605 #endif 3606 3607 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3608 synack_type, &opts); 3609 3610 skb->skb_mstamp_ns = now; 3611 tcp_add_tx_delay(skb, tp); 3612 3613 return skb; 3614 } 3615 EXPORT_SYMBOL(tcp_make_synack); 3616 3617 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3618 { 3619 struct inet_connection_sock *icsk = inet_csk(sk); 3620 const struct tcp_congestion_ops *ca; 3621 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3622 3623 if (ca_key == TCP_CA_UNSPEC) 3624 return; 3625 3626 rcu_read_lock(); 3627 ca = tcp_ca_find_key(ca_key); 3628 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3629 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3630 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3631 icsk->icsk_ca_ops = ca; 3632 } 3633 rcu_read_unlock(); 3634 } 3635 3636 /* Do all connect socket setups that can be done AF independent. */ 3637 static void tcp_connect_init(struct sock *sk) 3638 { 3639 const struct dst_entry *dst = __sk_dst_get(sk); 3640 struct tcp_sock *tp = tcp_sk(sk); 3641 __u8 rcv_wscale; 3642 u32 rcv_wnd; 3643 3644 /* We'll fix this up when we get a response from the other end. 3645 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3646 */ 3647 tp->tcp_header_len = sizeof(struct tcphdr); 3648 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3649 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3650 3651 #ifdef CONFIG_TCP_MD5SIG 3652 if (tp->af_specific->md5_lookup(sk, sk)) 3653 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3654 #endif 3655 3656 /* If user gave his TCP_MAXSEG, record it to clamp */ 3657 if (tp->rx_opt.user_mss) 3658 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3659 tp->max_window = 0; 3660 tcp_mtup_init(sk); 3661 tcp_sync_mss(sk, dst_mtu(dst)); 3662 3663 tcp_ca_dst_init(sk, dst); 3664 3665 if (!tp->window_clamp) 3666 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3667 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3668 3669 tcp_initialize_rcv_mss(sk); 3670 3671 /* limit the window selection if the user enforce a smaller rx buffer */ 3672 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3673 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3674 tp->window_clamp = tcp_full_space(sk); 3675 3676 rcv_wnd = tcp_rwnd_init_bpf(sk); 3677 if (rcv_wnd == 0) 3678 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3679 3680 tcp_select_initial_window(sk, tcp_full_space(sk), 3681 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3682 &tp->rcv_wnd, 3683 &tp->window_clamp, 3684 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3685 &rcv_wscale, 3686 rcv_wnd); 3687 3688 tp->rx_opt.rcv_wscale = rcv_wscale; 3689 tp->rcv_ssthresh = tp->rcv_wnd; 3690 3691 sk->sk_err = 0; 3692 sock_reset_flag(sk, SOCK_DONE); 3693 tp->snd_wnd = 0; 3694 tcp_init_wl(tp, 0); 3695 tcp_write_queue_purge(sk); 3696 tp->snd_una = tp->write_seq; 3697 tp->snd_sml = tp->write_seq; 3698 tp->snd_up = tp->write_seq; 3699 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3700 3701 if (likely(!tp->repair)) 3702 tp->rcv_nxt = 0; 3703 else 3704 tp->rcv_tstamp = tcp_jiffies32; 3705 tp->rcv_wup = tp->rcv_nxt; 3706 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3707 3708 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3709 inet_csk(sk)->icsk_retransmits = 0; 3710 tcp_clear_retrans(tp); 3711 } 3712 3713 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3714 { 3715 struct tcp_sock *tp = tcp_sk(sk); 3716 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3717 3718 tcb->end_seq += skb->len; 3719 __skb_header_release(skb); 3720 sk_wmem_queued_add(sk, skb->truesize); 3721 sk_mem_charge(sk, skb->truesize); 3722 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3723 tp->packets_out += tcp_skb_pcount(skb); 3724 } 3725 3726 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3727 * queue a data-only packet after the regular SYN, such that regular SYNs 3728 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3729 * only the SYN sequence, the data are retransmitted in the first ACK. 3730 * If cookie is not cached or other error occurs, falls back to send a 3731 * regular SYN with Fast Open cookie request option. 3732 */ 3733 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3734 { 3735 struct tcp_sock *tp = tcp_sk(sk); 3736 struct tcp_fastopen_request *fo = tp->fastopen_req; 3737 int space, err = 0; 3738 struct sk_buff *syn_data; 3739 3740 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3741 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3742 goto fallback; 3743 3744 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3745 * user-MSS. Reserve maximum option space for middleboxes that add 3746 * private TCP options. The cost is reduced data space in SYN :( 3747 */ 3748 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3749 3750 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3751 MAX_TCP_OPTION_SPACE; 3752 3753 space = min_t(size_t, space, fo->size); 3754 3755 /* limit to order-0 allocations */ 3756 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3757 3758 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3759 if (!syn_data) 3760 goto fallback; 3761 syn_data->ip_summed = CHECKSUM_PARTIAL; 3762 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3763 if (space) { 3764 int copied = copy_from_iter(skb_put(syn_data, space), space, 3765 &fo->data->msg_iter); 3766 if (unlikely(!copied)) { 3767 tcp_skb_tsorted_anchor_cleanup(syn_data); 3768 kfree_skb(syn_data); 3769 goto fallback; 3770 } 3771 if (copied != space) { 3772 skb_trim(syn_data, copied); 3773 space = copied; 3774 } 3775 skb_zcopy_set(syn_data, fo->uarg, NULL); 3776 } 3777 /* No more data pending in inet_wait_for_connect() */ 3778 if (space == fo->size) 3779 fo->data = NULL; 3780 fo->copied = space; 3781 3782 tcp_connect_queue_skb(sk, syn_data); 3783 if (syn_data->len) 3784 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3785 3786 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3787 3788 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3789 3790 /* Now full SYN+DATA was cloned and sent (or not), 3791 * remove the SYN from the original skb (syn_data) 3792 * we keep in write queue in case of a retransmit, as we 3793 * also have the SYN packet (with no data) in the same queue. 3794 */ 3795 TCP_SKB_CB(syn_data)->seq++; 3796 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3797 if (!err) { 3798 tp->syn_data = (fo->copied > 0); 3799 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3800 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3801 goto done; 3802 } 3803 3804 /* data was not sent, put it in write_queue */ 3805 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3806 tp->packets_out -= tcp_skb_pcount(syn_data); 3807 3808 fallback: 3809 /* Send a regular SYN with Fast Open cookie request option */ 3810 if (fo->cookie.len > 0) 3811 fo->cookie.len = 0; 3812 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3813 if (err) 3814 tp->syn_fastopen = 0; 3815 done: 3816 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3817 return err; 3818 } 3819 3820 /* Build a SYN and send it off. */ 3821 int tcp_connect(struct sock *sk) 3822 { 3823 struct tcp_sock *tp = tcp_sk(sk); 3824 struct sk_buff *buff; 3825 int err; 3826 3827 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3828 3829 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3830 return -EHOSTUNREACH; /* Routing failure or similar. */ 3831 3832 tcp_connect_init(sk); 3833 3834 if (unlikely(tp->repair)) { 3835 tcp_finish_connect(sk, NULL); 3836 return 0; 3837 } 3838 3839 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3840 if (unlikely(!buff)) 3841 return -ENOBUFS; 3842 3843 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3844 tcp_mstamp_refresh(tp); 3845 tp->retrans_stamp = tcp_time_stamp(tp); 3846 tcp_connect_queue_skb(sk, buff); 3847 tcp_ecn_send_syn(sk, buff); 3848 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3849 3850 /* Send off SYN; include data in Fast Open. */ 3851 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3852 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3853 if (err == -ECONNREFUSED) 3854 return err; 3855 3856 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3857 * in order to make this packet get counted in tcpOutSegs. 3858 */ 3859 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3860 tp->pushed_seq = tp->write_seq; 3861 buff = tcp_send_head(sk); 3862 if (unlikely(buff)) { 3863 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3864 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3865 } 3866 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3867 3868 /* Timer for repeating the SYN until an answer. */ 3869 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3870 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3871 return 0; 3872 } 3873 EXPORT_SYMBOL(tcp_connect); 3874 3875 /* Send out a delayed ack, the caller does the policy checking 3876 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3877 * for details. 3878 */ 3879 void tcp_send_delayed_ack(struct sock *sk) 3880 { 3881 struct inet_connection_sock *icsk = inet_csk(sk); 3882 int ato = icsk->icsk_ack.ato; 3883 unsigned long timeout; 3884 3885 if (ato > TCP_DELACK_MIN) { 3886 const struct tcp_sock *tp = tcp_sk(sk); 3887 int max_ato = HZ / 2; 3888 3889 if (inet_csk_in_pingpong_mode(sk) || 3890 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3891 max_ato = TCP_DELACK_MAX; 3892 3893 /* Slow path, intersegment interval is "high". */ 3894 3895 /* If some rtt estimate is known, use it to bound delayed ack. 3896 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3897 * directly. 3898 */ 3899 if (tp->srtt_us) { 3900 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3901 TCP_DELACK_MIN); 3902 3903 if (rtt < max_ato) 3904 max_ato = rtt; 3905 } 3906 3907 ato = min(ato, max_ato); 3908 } 3909 3910 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max); 3911 3912 /* Stay within the limit we were given */ 3913 timeout = jiffies + ato; 3914 3915 /* Use new timeout only if there wasn't a older one earlier. */ 3916 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3917 /* If delack timer is about to expire, send ACK now. */ 3918 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3919 tcp_send_ack(sk); 3920 return; 3921 } 3922 3923 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3924 timeout = icsk->icsk_ack.timeout; 3925 } 3926 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3927 icsk->icsk_ack.timeout = timeout; 3928 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3929 } 3930 3931 /* This routine sends an ack and also updates the window. */ 3932 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3933 { 3934 struct sk_buff *buff; 3935 3936 /* If we have been reset, we may not send again. */ 3937 if (sk->sk_state == TCP_CLOSE) 3938 return; 3939 3940 /* We are not putting this on the write queue, so 3941 * tcp_transmit_skb() will set the ownership to this 3942 * sock. 3943 */ 3944 buff = alloc_skb(MAX_TCP_HEADER, 3945 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3946 if (unlikely(!buff)) { 3947 struct inet_connection_sock *icsk = inet_csk(sk); 3948 unsigned long delay; 3949 3950 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 3951 if (delay < TCP_RTO_MAX) 3952 icsk->icsk_ack.retry++; 3953 inet_csk_schedule_ack(sk); 3954 icsk->icsk_ack.ato = TCP_ATO_MIN; 3955 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 3956 return; 3957 } 3958 3959 /* Reserve space for headers and prepare control bits. */ 3960 skb_reserve(buff, MAX_TCP_HEADER); 3961 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3962 3963 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3964 * too much. 3965 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3966 */ 3967 skb_set_tcp_pure_ack(buff); 3968 3969 /* Send it off, this clears delayed acks for us. */ 3970 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3971 } 3972 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3973 3974 void tcp_send_ack(struct sock *sk) 3975 { 3976 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3977 } 3978 3979 /* This routine sends a packet with an out of date sequence 3980 * number. It assumes the other end will try to ack it. 3981 * 3982 * Question: what should we make while urgent mode? 3983 * 4.4BSD forces sending single byte of data. We cannot send 3984 * out of window data, because we have SND.NXT==SND.MAX... 3985 * 3986 * Current solution: to send TWO zero-length segments in urgent mode: 3987 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3988 * out-of-date with SND.UNA-1 to probe window. 3989 */ 3990 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3991 { 3992 struct tcp_sock *tp = tcp_sk(sk); 3993 struct sk_buff *skb; 3994 3995 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3996 skb = alloc_skb(MAX_TCP_HEADER, 3997 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3998 if (!skb) 3999 return -1; 4000 4001 /* Reserve space for headers and set control bits. */ 4002 skb_reserve(skb, MAX_TCP_HEADER); 4003 /* Use a previous sequence. This should cause the other 4004 * end to send an ack. Don't queue or clone SKB, just 4005 * send it. 4006 */ 4007 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4008 NET_INC_STATS(sock_net(sk), mib); 4009 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4010 } 4011 4012 /* Called from setsockopt( ... TCP_REPAIR ) */ 4013 void tcp_send_window_probe(struct sock *sk) 4014 { 4015 if (sk->sk_state == TCP_ESTABLISHED) { 4016 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4017 tcp_mstamp_refresh(tcp_sk(sk)); 4018 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4019 } 4020 } 4021 4022 /* Initiate keepalive or window probe from timer. */ 4023 int tcp_write_wakeup(struct sock *sk, int mib) 4024 { 4025 struct tcp_sock *tp = tcp_sk(sk); 4026 struct sk_buff *skb; 4027 4028 if (sk->sk_state == TCP_CLOSE) 4029 return -1; 4030 4031 skb = tcp_send_head(sk); 4032 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4033 int err; 4034 unsigned int mss = tcp_current_mss(sk); 4035 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4036 4037 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4038 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4039 4040 /* We are probing the opening of a window 4041 * but the window size is != 0 4042 * must have been a result SWS avoidance ( sender ) 4043 */ 4044 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4045 skb->len > mss) { 4046 seg_size = min(seg_size, mss); 4047 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4048 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4049 skb, seg_size, mss, GFP_ATOMIC)) 4050 return -1; 4051 } else if (!tcp_skb_pcount(skb)) 4052 tcp_set_skb_tso_segs(skb, mss); 4053 4054 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4055 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4056 if (!err) 4057 tcp_event_new_data_sent(sk, skb); 4058 return err; 4059 } else { 4060 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4061 tcp_xmit_probe_skb(sk, 1, mib); 4062 return tcp_xmit_probe_skb(sk, 0, mib); 4063 } 4064 } 4065 4066 /* A window probe timeout has occurred. If window is not closed send 4067 * a partial packet else a zero probe. 4068 */ 4069 void tcp_send_probe0(struct sock *sk) 4070 { 4071 struct inet_connection_sock *icsk = inet_csk(sk); 4072 struct tcp_sock *tp = tcp_sk(sk); 4073 struct net *net = sock_net(sk); 4074 unsigned long timeout; 4075 int err; 4076 4077 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4078 4079 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4080 /* Cancel probe timer, if it is not required. */ 4081 icsk->icsk_probes_out = 0; 4082 icsk->icsk_backoff = 0; 4083 icsk->icsk_probes_tstamp = 0; 4084 return; 4085 } 4086 4087 icsk->icsk_probes_out++; 4088 if (err <= 0) { 4089 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 4090 icsk->icsk_backoff++; 4091 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4092 } else { 4093 /* If packet was not sent due to local congestion, 4094 * Let senders fight for local resources conservatively. 4095 */ 4096 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4097 } 4098 4099 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4100 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4101 } 4102 4103 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4104 { 4105 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4106 struct flowi fl; 4107 int res; 4108 4109 tcp_rsk(req)->txhash = net_tx_rndhash(); 4110 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4111 NULL); 4112 if (!res) { 4113 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4114 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4115 if (unlikely(tcp_passive_fastopen(sk))) 4116 tcp_sk(sk)->total_retrans++; 4117 trace_tcp_retransmit_synack(sk, req); 4118 } 4119 return res; 4120 } 4121 EXPORT_SYMBOL(tcp_rtx_synack); 4122