1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 #include <net/proto_memory.h> 43 44 #include <linux/compiler.h> 45 #include <linux/gfp.h> 46 #include <linux/module.h> 47 #include <linux/static_key.h> 48 #include <linux/skbuff_ref.h> 49 50 #include <trace/events/tcp.h> 51 52 /* Refresh clocks of a TCP socket, 53 * ensuring monotically increasing values. 54 */ 55 void tcp_mstamp_refresh(struct tcp_sock *tp) 56 { 57 u64 val = tcp_clock_ns(); 58 59 tp->tcp_clock_cache = val; 60 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 61 } 62 63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 64 int push_one, gfp_t gfp); 65 66 /* Account for new data that has been sent to the network. */ 67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 68 { 69 struct inet_connection_sock *icsk = inet_csk(sk); 70 struct tcp_sock *tp = tcp_sk(sk); 71 unsigned int prior_packets = tp->packets_out; 72 73 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 74 75 __skb_unlink(skb, &sk->sk_write_queue); 76 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 77 78 if (tp->highest_sack == NULL) 79 tp->highest_sack = skb; 80 81 tp->packets_out += tcp_skb_pcount(skb); 82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 83 tcp_rearm_rto(sk); 84 85 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 86 tcp_skb_pcount(skb)); 87 tcp_check_space(sk); 88 } 89 90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 91 * window scaling factor due to loss of precision. 92 * If window has been shrunk, what should we make? It is not clear at all. 93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 95 * invalid. OK, let's make this for now: 96 */ 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 98 { 99 const struct tcp_sock *tp = tcp_sk(sk); 100 101 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 102 (tp->rx_opt.wscale_ok && 103 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 104 return tp->snd_nxt; 105 else 106 return tcp_wnd_end(tp); 107 } 108 109 /* Calculate mss to advertise in SYN segment. 110 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 111 * 112 * 1. It is independent of path mtu. 113 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 114 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 115 * attached devices, because some buggy hosts are confused by 116 * large MSS. 117 * 4. We do not make 3, we advertise MSS, calculated from first 118 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 119 * This may be overridden via information stored in routing table. 120 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 121 * probably even Jumbo". 122 */ 123 static __u16 tcp_advertise_mss(struct sock *sk) 124 { 125 struct tcp_sock *tp = tcp_sk(sk); 126 const struct dst_entry *dst = __sk_dst_get(sk); 127 int mss = tp->advmss; 128 129 if (dst) { 130 unsigned int metric = dst_metric_advmss(dst); 131 132 if (metric < mss) { 133 mss = metric; 134 tp->advmss = mss; 135 } 136 } 137 138 return (__u16)mss; 139 } 140 141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 142 * This is the first part of cwnd validation mechanism. 143 */ 144 void tcp_cwnd_restart(struct sock *sk, s32 delta) 145 { 146 struct tcp_sock *tp = tcp_sk(sk); 147 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 148 u32 cwnd = tcp_snd_cwnd(tp); 149 150 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 151 152 tp->snd_ssthresh = tcp_current_ssthresh(sk); 153 restart_cwnd = min(restart_cwnd, cwnd); 154 155 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 156 cwnd >>= 1; 157 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 158 tp->snd_cwnd_stamp = tcp_jiffies32; 159 tp->snd_cwnd_used = 0; 160 } 161 162 /* Congestion state accounting after a packet has been sent. */ 163 static void tcp_event_data_sent(struct tcp_sock *tp, 164 struct sock *sk) 165 { 166 struct inet_connection_sock *icsk = inet_csk(sk); 167 const u32 now = tcp_jiffies32; 168 169 if (tcp_packets_in_flight(tp) == 0) 170 tcp_ca_event(sk, CA_EVENT_TX_START); 171 172 tp->lsndtime = now; 173 174 /* If it is a reply for ato after last received 175 * packet, increase pingpong count. 176 */ 177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 178 inet_csk_inc_pingpong_cnt(sk); 179 } 180 181 /* Account for an ACK we sent. */ 182 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 183 { 184 struct tcp_sock *tp = tcp_sk(sk); 185 186 if (unlikely(tp->compressed_ack)) { 187 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 188 tp->compressed_ack); 189 tp->compressed_ack = 0; 190 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 191 __sock_put(sk); 192 } 193 194 if (unlikely(rcv_nxt != tp->rcv_nxt)) 195 return; /* Special ACK sent by DCTCP to reflect ECN */ 196 tcp_dec_quickack_mode(sk); 197 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 198 } 199 200 /* Determine a window scaling and initial window to offer. 201 * Based on the assumption that the given amount of space 202 * will be offered. Store the results in the tp structure. 203 * NOTE: for smooth operation initial space offering should 204 * be a multiple of mss if possible. We assume here that mss >= 1. 205 * This MUST be enforced by all callers. 206 */ 207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 208 __u32 *rcv_wnd, __u32 *__window_clamp, 209 int wscale_ok, __u8 *rcv_wscale, 210 __u32 init_rcv_wnd) 211 { 212 unsigned int space = (__space < 0 ? 0 : __space); 213 u32 window_clamp = READ_ONCE(*__window_clamp); 214 215 /* If no clamp set the clamp to the max possible scaled window */ 216 if (window_clamp == 0) 217 window_clamp = (U16_MAX << TCP_MAX_WSCALE); 218 space = min(window_clamp, space); 219 220 /* Quantize space offering to a multiple of mss if possible. */ 221 if (space > mss) 222 space = rounddown(space, mss); 223 224 /* NOTE: offering an initial window larger than 32767 225 * will break some buggy TCP stacks. If the admin tells us 226 * it is likely we could be speaking with such a buggy stack 227 * we will truncate our initial window offering to 32K-1 228 * unless the remote has sent us a window scaling option, 229 * which we interpret as a sign the remote TCP is not 230 * misinterpreting the window field as a signed quantity. 231 */ 232 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 234 else 235 (*rcv_wnd) = space; 236 237 if (init_rcv_wnd) 238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 239 240 *rcv_wscale = 0; 241 if (wscale_ok) { 242 /* Set window scaling on max possible window */ 243 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 244 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 245 space = min_t(u32, space, window_clamp); 246 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 247 0, TCP_MAX_WSCALE); 248 } 249 /* Set the clamp no higher than max representable value */ 250 WRITE_ONCE(*__window_clamp, 251 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp)); 252 } 253 EXPORT_SYMBOL(tcp_select_initial_window); 254 255 /* Chose a new window to advertise, update state in tcp_sock for the 256 * socket, and return result with RFC1323 scaling applied. The return 257 * value can be stuffed directly into th->window for an outgoing 258 * frame. 259 */ 260 static u16 tcp_select_window(struct sock *sk) 261 { 262 struct tcp_sock *tp = tcp_sk(sk); 263 struct net *net = sock_net(sk); 264 u32 old_win = tp->rcv_wnd; 265 u32 cur_win, new_win; 266 267 /* Make the window 0 if we failed to queue the data because we 268 * are out of memory. The window is temporary, so we don't store 269 * it on the socket. 270 */ 271 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) 272 return 0; 273 274 cur_win = tcp_receive_window(tp); 275 new_win = __tcp_select_window(sk); 276 if (new_win < cur_win) { 277 /* Danger Will Robinson! 278 * Don't update rcv_wup/rcv_wnd here or else 279 * we will not be able to advertise a zero 280 * window in time. --DaveM 281 * 282 * Relax Will Robinson. 283 */ 284 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 285 /* Never shrink the offered window */ 286 if (new_win == 0) 287 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 288 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 289 } 290 } 291 292 tp->rcv_wnd = new_win; 293 tp->rcv_wup = tp->rcv_nxt; 294 295 /* Make sure we do not exceed the maximum possible 296 * scaled window. 297 */ 298 if (!tp->rx_opt.rcv_wscale && 299 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 300 new_win = min(new_win, MAX_TCP_WINDOW); 301 else 302 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 303 304 /* RFC1323 scaling applied */ 305 new_win >>= tp->rx_opt.rcv_wscale; 306 307 /* If we advertise zero window, disable fast path. */ 308 if (new_win == 0) { 309 tp->pred_flags = 0; 310 if (old_win) 311 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 312 } else if (old_win == 0) { 313 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 314 } 315 316 return new_win; 317 } 318 319 /* Packet ECN state for a SYN-ACK */ 320 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 321 { 322 const struct tcp_sock *tp = tcp_sk(sk); 323 324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 325 if (!(tp->ecn_flags & TCP_ECN_OK)) 326 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 327 else if (tcp_ca_needs_ecn(sk) || 328 tcp_bpf_ca_needs_ecn(sk)) 329 INET_ECN_xmit(sk); 330 } 331 332 /* Packet ECN state for a SYN. */ 333 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 334 { 335 struct tcp_sock *tp = tcp_sk(sk); 336 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 337 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 338 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 339 340 if (!use_ecn) { 341 const struct dst_entry *dst = __sk_dst_get(sk); 342 343 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 344 use_ecn = true; 345 } 346 347 tp->ecn_flags = 0; 348 349 if (use_ecn) { 350 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 351 tp->ecn_flags = TCP_ECN_OK; 352 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 353 INET_ECN_xmit(sk); 354 } 355 } 356 357 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 358 { 359 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 360 /* tp->ecn_flags are cleared at a later point in time when 361 * SYN ACK is ultimatively being received. 362 */ 363 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 364 } 365 366 static void 367 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 368 { 369 if (inet_rsk(req)->ecn_ok) 370 th->ece = 1; 371 } 372 373 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 374 * be sent. 375 */ 376 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 377 struct tcphdr *th, int tcp_header_len) 378 { 379 struct tcp_sock *tp = tcp_sk(sk); 380 381 if (tp->ecn_flags & TCP_ECN_OK) { 382 /* Not-retransmitted data segment: set ECT and inject CWR. */ 383 if (skb->len != tcp_header_len && 384 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 385 INET_ECN_xmit(sk); 386 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 387 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 388 th->cwr = 1; 389 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 390 } 391 } else if (!tcp_ca_needs_ecn(sk)) { 392 /* ACK or retransmitted segment: clear ECT|CE */ 393 INET_ECN_dontxmit(sk); 394 } 395 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 396 th->ece = 1; 397 } 398 } 399 400 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 401 * auto increment end seqno. 402 */ 403 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 404 { 405 skb->ip_summed = CHECKSUM_PARTIAL; 406 407 TCP_SKB_CB(skb)->tcp_flags = flags; 408 409 tcp_skb_pcount_set(skb, 1); 410 411 TCP_SKB_CB(skb)->seq = seq; 412 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 413 seq++; 414 TCP_SKB_CB(skb)->end_seq = seq; 415 } 416 417 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 418 { 419 return tp->snd_una != tp->snd_up; 420 } 421 422 #define OPTION_SACK_ADVERTISE BIT(0) 423 #define OPTION_TS BIT(1) 424 #define OPTION_MD5 BIT(2) 425 #define OPTION_WSCALE BIT(3) 426 #define OPTION_FAST_OPEN_COOKIE BIT(8) 427 #define OPTION_SMC BIT(9) 428 #define OPTION_MPTCP BIT(10) 429 #define OPTION_AO BIT(11) 430 431 static void smc_options_write(__be32 *ptr, u16 *options) 432 { 433 #if IS_ENABLED(CONFIG_SMC) 434 if (static_branch_unlikely(&tcp_have_smc)) { 435 if (unlikely(OPTION_SMC & *options)) { 436 *ptr++ = htonl((TCPOPT_NOP << 24) | 437 (TCPOPT_NOP << 16) | 438 (TCPOPT_EXP << 8) | 439 (TCPOLEN_EXP_SMC_BASE)); 440 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 441 } 442 } 443 #endif 444 } 445 446 struct tcp_out_options { 447 u16 options; /* bit field of OPTION_* */ 448 u16 mss; /* 0 to disable */ 449 u8 ws; /* window scale, 0 to disable */ 450 u8 num_sack_blocks; /* number of SACK blocks to include */ 451 u8 hash_size; /* bytes in hash_location */ 452 u8 bpf_opt_len; /* length of BPF hdr option */ 453 __u8 *hash_location; /* temporary pointer, overloaded */ 454 __u32 tsval, tsecr; /* need to include OPTION_TS */ 455 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 456 struct mptcp_out_options mptcp; 457 }; 458 459 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 460 struct tcp_sock *tp, 461 struct tcp_out_options *opts) 462 { 463 #if IS_ENABLED(CONFIG_MPTCP) 464 if (unlikely(OPTION_MPTCP & opts->options)) 465 mptcp_write_options(th, ptr, tp, &opts->mptcp); 466 #endif 467 } 468 469 #ifdef CONFIG_CGROUP_BPF 470 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 471 enum tcp_synack_type synack_type) 472 { 473 if (unlikely(!skb)) 474 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 475 476 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 477 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 478 479 return 0; 480 } 481 482 /* req, syn_skb and synack_type are used when writing synack */ 483 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 484 struct request_sock *req, 485 struct sk_buff *syn_skb, 486 enum tcp_synack_type synack_type, 487 struct tcp_out_options *opts, 488 unsigned int *remaining) 489 { 490 struct bpf_sock_ops_kern sock_ops; 491 int err; 492 493 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 494 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 495 !*remaining) 496 return; 497 498 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 499 500 /* init sock_ops */ 501 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 502 503 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 504 505 if (req) { 506 /* The listen "sk" cannot be passed here because 507 * it is not locked. It would not make too much 508 * sense to do bpf_setsockopt(listen_sk) based 509 * on individual connection request also. 510 * 511 * Thus, "req" is passed here and the cgroup-bpf-progs 512 * of the listen "sk" will be run. 513 * 514 * "req" is also used here for fastopen even the "sk" here is 515 * a fullsock "child" sk. It is to keep the behavior 516 * consistent between fastopen and non-fastopen on 517 * the bpf programming side. 518 */ 519 sock_ops.sk = (struct sock *)req; 520 sock_ops.syn_skb = syn_skb; 521 } else { 522 sock_owned_by_me(sk); 523 524 sock_ops.is_fullsock = 1; 525 sock_ops.sk = sk; 526 } 527 528 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 529 sock_ops.remaining_opt_len = *remaining; 530 /* tcp_current_mss() does not pass a skb */ 531 if (skb) 532 bpf_skops_init_skb(&sock_ops, skb, 0); 533 534 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 535 536 if (err || sock_ops.remaining_opt_len == *remaining) 537 return; 538 539 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 540 /* round up to 4 bytes */ 541 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 542 543 *remaining -= opts->bpf_opt_len; 544 } 545 546 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 547 struct request_sock *req, 548 struct sk_buff *syn_skb, 549 enum tcp_synack_type synack_type, 550 struct tcp_out_options *opts) 551 { 552 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 553 struct bpf_sock_ops_kern sock_ops; 554 int err; 555 556 if (likely(!max_opt_len)) 557 return; 558 559 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 560 561 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 562 563 if (req) { 564 sock_ops.sk = (struct sock *)req; 565 sock_ops.syn_skb = syn_skb; 566 } else { 567 sock_owned_by_me(sk); 568 569 sock_ops.is_fullsock = 1; 570 sock_ops.sk = sk; 571 } 572 573 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 574 sock_ops.remaining_opt_len = max_opt_len; 575 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 576 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 577 578 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 579 580 if (err) 581 nr_written = 0; 582 else 583 nr_written = max_opt_len - sock_ops.remaining_opt_len; 584 585 if (nr_written < max_opt_len) 586 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 587 max_opt_len - nr_written); 588 } 589 #else 590 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 591 struct request_sock *req, 592 struct sk_buff *syn_skb, 593 enum tcp_synack_type synack_type, 594 struct tcp_out_options *opts, 595 unsigned int *remaining) 596 { 597 } 598 599 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 600 struct request_sock *req, 601 struct sk_buff *syn_skb, 602 enum tcp_synack_type synack_type, 603 struct tcp_out_options *opts) 604 { 605 } 606 #endif 607 608 static __be32 *process_tcp_ao_options(struct tcp_sock *tp, 609 const struct tcp_request_sock *tcprsk, 610 struct tcp_out_options *opts, 611 struct tcp_key *key, __be32 *ptr) 612 { 613 #ifdef CONFIG_TCP_AO 614 u8 maclen = tcp_ao_maclen(key->ao_key); 615 616 if (tcprsk) { 617 u8 aolen = maclen + sizeof(struct tcp_ao_hdr); 618 619 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) | 620 (tcprsk->ao_keyid << 8) | 621 (tcprsk->ao_rcv_next)); 622 } else { 623 struct tcp_ao_key *rnext_key; 624 struct tcp_ao_info *ao_info; 625 626 ao_info = rcu_dereference_check(tp->ao_info, 627 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk)); 628 rnext_key = READ_ONCE(ao_info->rnext_key); 629 if (WARN_ON_ONCE(!rnext_key)) 630 return ptr; 631 *ptr++ = htonl((TCPOPT_AO << 24) | 632 (tcp_ao_len(key->ao_key) << 16) | 633 (key->ao_key->sndid << 8) | 634 (rnext_key->rcvid)); 635 } 636 opts->hash_location = (__u8 *)ptr; 637 ptr += maclen / sizeof(*ptr); 638 if (unlikely(maclen % sizeof(*ptr))) { 639 memset(ptr, TCPOPT_NOP, sizeof(*ptr)); 640 ptr++; 641 } 642 #endif 643 return ptr; 644 } 645 646 /* Write previously computed TCP options to the packet. 647 * 648 * Beware: Something in the Internet is very sensitive to the ordering of 649 * TCP options, we learned this through the hard way, so be careful here. 650 * Luckily we can at least blame others for their non-compliance but from 651 * inter-operability perspective it seems that we're somewhat stuck with 652 * the ordering which we have been using if we want to keep working with 653 * those broken things (not that it currently hurts anybody as there isn't 654 * particular reason why the ordering would need to be changed). 655 * 656 * At least SACK_PERM as the first option is known to lead to a disaster 657 * (but it may well be that other scenarios fail similarly). 658 */ 659 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 660 const struct tcp_request_sock *tcprsk, 661 struct tcp_out_options *opts, 662 struct tcp_key *key) 663 { 664 __be32 *ptr = (__be32 *)(th + 1); 665 u16 options = opts->options; /* mungable copy */ 666 667 if (tcp_key_is_md5(key)) { 668 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 669 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 670 /* overload cookie hash location */ 671 opts->hash_location = (__u8 *)ptr; 672 ptr += 4; 673 } else if (tcp_key_is_ao(key)) { 674 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr); 675 } 676 if (unlikely(opts->mss)) { 677 *ptr++ = htonl((TCPOPT_MSS << 24) | 678 (TCPOLEN_MSS << 16) | 679 opts->mss); 680 } 681 682 if (likely(OPTION_TS & options)) { 683 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 684 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 685 (TCPOLEN_SACK_PERM << 16) | 686 (TCPOPT_TIMESTAMP << 8) | 687 TCPOLEN_TIMESTAMP); 688 options &= ~OPTION_SACK_ADVERTISE; 689 } else { 690 *ptr++ = htonl((TCPOPT_NOP << 24) | 691 (TCPOPT_NOP << 16) | 692 (TCPOPT_TIMESTAMP << 8) | 693 TCPOLEN_TIMESTAMP); 694 } 695 *ptr++ = htonl(opts->tsval); 696 *ptr++ = htonl(opts->tsecr); 697 } 698 699 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 700 *ptr++ = htonl((TCPOPT_NOP << 24) | 701 (TCPOPT_NOP << 16) | 702 (TCPOPT_SACK_PERM << 8) | 703 TCPOLEN_SACK_PERM); 704 } 705 706 if (unlikely(OPTION_WSCALE & options)) { 707 *ptr++ = htonl((TCPOPT_NOP << 24) | 708 (TCPOPT_WINDOW << 16) | 709 (TCPOLEN_WINDOW << 8) | 710 opts->ws); 711 } 712 713 if (unlikely(opts->num_sack_blocks)) { 714 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 715 tp->duplicate_sack : tp->selective_acks; 716 int this_sack; 717 718 *ptr++ = htonl((TCPOPT_NOP << 24) | 719 (TCPOPT_NOP << 16) | 720 (TCPOPT_SACK << 8) | 721 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 722 TCPOLEN_SACK_PERBLOCK))); 723 724 for (this_sack = 0; this_sack < opts->num_sack_blocks; 725 ++this_sack) { 726 *ptr++ = htonl(sp[this_sack].start_seq); 727 *ptr++ = htonl(sp[this_sack].end_seq); 728 } 729 730 tp->rx_opt.dsack = 0; 731 } 732 733 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 734 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 735 u8 *p = (u8 *)ptr; 736 u32 len; /* Fast Open option length */ 737 738 if (foc->exp) { 739 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 740 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 741 TCPOPT_FASTOPEN_MAGIC); 742 p += TCPOLEN_EXP_FASTOPEN_BASE; 743 } else { 744 len = TCPOLEN_FASTOPEN_BASE + foc->len; 745 *p++ = TCPOPT_FASTOPEN; 746 *p++ = len; 747 } 748 749 memcpy(p, foc->val, foc->len); 750 if ((len & 3) == 2) { 751 p[foc->len] = TCPOPT_NOP; 752 p[foc->len + 1] = TCPOPT_NOP; 753 } 754 ptr += (len + 3) >> 2; 755 } 756 757 smc_options_write(ptr, &options); 758 759 mptcp_options_write(th, ptr, tp, opts); 760 } 761 762 static void smc_set_option(const struct tcp_sock *tp, 763 struct tcp_out_options *opts, 764 unsigned int *remaining) 765 { 766 #if IS_ENABLED(CONFIG_SMC) 767 if (static_branch_unlikely(&tcp_have_smc)) { 768 if (tp->syn_smc) { 769 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 770 opts->options |= OPTION_SMC; 771 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 772 } 773 } 774 } 775 #endif 776 } 777 778 static void smc_set_option_cond(const struct tcp_sock *tp, 779 const struct inet_request_sock *ireq, 780 struct tcp_out_options *opts, 781 unsigned int *remaining) 782 { 783 #if IS_ENABLED(CONFIG_SMC) 784 if (static_branch_unlikely(&tcp_have_smc)) { 785 if (tp->syn_smc && ireq->smc_ok) { 786 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 787 opts->options |= OPTION_SMC; 788 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 789 } 790 } 791 } 792 #endif 793 } 794 795 static void mptcp_set_option_cond(const struct request_sock *req, 796 struct tcp_out_options *opts, 797 unsigned int *remaining) 798 { 799 if (rsk_is_mptcp(req)) { 800 unsigned int size; 801 802 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 803 if (*remaining >= size) { 804 opts->options |= OPTION_MPTCP; 805 *remaining -= size; 806 } 807 } 808 } 809 } 810 811 /* Compute TCP options for SYN packets. This is not the final 812 * network wire format yet. 813 */ 814 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 815 struct tcp_out_options *opts, 816 struct tcp_key *key) 817 { 818 struct tcp_sock *tp = tcp_sk(sk); 819 unsigned int remaining = MAX_TCP_OPTION_SPACE; 820 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 821 bool timestamps; 822 823 /* Better than switch (key.type) as it has static branches */ 824 if (tcp_key_is_md5(key)) { 825 timestamps = false; 826 opts->options |= OPTION_MD5; 827 remaining -= TCPOLEN_MD5SIG_ALIGNED; 828 } else { 829 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps); 830 if (tcp_key_is_ao(key)) { 831 opts->options |= OPTION_AO; 832 remaining -= tcp_ao_len_aligned(key->ao_key); 833 } 834 } 835 836 /* We always get an MSS option. The option bytes which will be seen in 837 * normal data packets should timestamps be used, must be in the MSS 838 * advertised. But we subtract them from tp->mss_cache so that 839 * calculations in tcp_sendmsg are simpler etc. So account for this 840 * fact here if necessary. If we don't do this correctly, as a 841 * receiver we won't recognize data packets as being full sized when we 842 * should, and thus we won't abide by the delayed ACK rules correctly. 843 * SACKs don't matter, we never delay an ACK when we have any of those 844 * going out. */ 845 opts->mss = tcp_advertise_mss(sk); 846 remaining -= TCPOLEN_MSS_ALIGNED; 847 848 if (likely(timestamps)) { 849 opts->options |= OPTION_TS; 850 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset; 851 opts->tsecr = tp->rx_opt.ts_recent; 852 remaining -= TCPOLEN_TSTAMP_ALIGNED; 853 } 854 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 855 opts->ws = tp->rx_opt.rcv_wscale; 856 opts->options |= OPTION_WSCALE; 857 remaining -= TCPOLEN_WSCALE_ALIGNED; 858 } 859 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 860 opts->options |= OPTION_SACK_ADVERTISE; 861 if (unlikely(!(OPTION_TS & opts->options))) 862 remaining -= TCPOLEN_SACKPERM_ALIGNED; 863 } 864 865 if (fastopen && fastopen->cookie.len >= 0) { 866 u32 need = fastopen->cookie.len; 867 868 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 869 TCPOLEN_FASTOPEN_BASE; 870 need = (need + 3) & ~3U; /* Align to 32 bits */ 871 if (remaining >= need) { 872 opts->options |= OPTION_FAST_OPEN_COOKIE; 873 opts->fastopen_cookie = &fastopen->cookie; 874 remaining -= need; 875 tp->syn_fastopen = 1; 876 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 877 } 878 } 879 880 smc_set_option(tp, opts, &remaining); 881 882 if (sk_is_mptcp(sk)) { 883 unsigned int size; 884 885 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 886 if (remaining >= size) { 887 opts->options |= OPTION_MPTCP; 888 remaining -= size; 889 } 890 } 891 } 892 893 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 894 895 return MAX_TCP_OPTION_SPACE - remaining; 896 } 897 898 /* Set up TCP options for SYN-ACKs. */ 899 static unsigned int tcp_synack_options(const struct sock *sk, 900 struct request_sock *req, 901 unsigned int mss, struct sk_buff *skb, 902 struct tcp_out_options *opts, 903 const struct tcp_key *key, 904 struct tcp_fastopen_cookie *foc, 905 enum tcp_synack_type synack_type, 906 struct sk_buff *syn_skb) 907 { 908 struct inet_request_sock *ireq = inet_rsk(req); 909 unsigned int remaining = MAX_TCP_OPTION_SPACE; 910 911 if (tcp_key_is_md5(key)) { 912 opts->options |= OPTION_MD5; 913 remaining -= TCPOLEN_MD5SIG_ALIGNED; 914 915 /* We can't fit any SACK blocks in a packet with MD5 + TS 916 * options. There was discussion about disabling SACK 917 * rather than TS in order to fit in better with old, 918 * buggy kernels, but that was deemed to be unnecessary. 919 */ 920 if (synack_type != TCP_SYNACK_COOKIE) 921 ireq->tstamp_ok &= !ireq->sack_ok; 922 } else if (tcp_key_is_ao(key)) { 923 opts->options |= OPTION_AO; 924 remaining -= tcp_ao_len_aligned(key->ao_key); 925 ireq->tstamp_ok &= !ireq->sack_ok; 926 } 927 928 /* We always send an MSS option. */ 929 opts->mss = mss; 930 remaining -= TCPOLEN_MSS_ALIGNED; 931 932 if (likely(ireq->wscale_ok)) { 933 opts->ws = ireq->rcv_wscale; 934 opts->options |= OPTION_WSCALE; 935 remaining -= TCPOLEN_WSCALE_ALIGNED; 936 } 937 if (likely(ireq->tstamp_ok)) { 938 opts->options |= OPTION_TS; 939 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) + 940 tcp_rsk(req)->ts_off; 941 opts->tsecr = READ_ONCE(req->ts_recent); 942 remaining -= TCPOLEN_TSTAMP_ALIGNED; 943 } 944 if (likely(ireq->sack_ok)) { 945 opts->options |= OPTION_SACK_ADVERTISE; 946 if (unlikely(!ireq->tstamp_ok)) 947 remaining -= TCPOLEN_SACKPERM_ALIGNED; 948 } 949 if (foc != NULL && foc->len >= 0) { 950 u32 need = foc->len; 951 952 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 953 TCPOLEN_FASTOPEN_BASE; 954 need = (need + 3) & ~3U; /* Align to 32 bits */ 955 if (remaining >= need) { 956 opts->options |= OPTION_FAST_OPEN_COOKIE; 957 opts->fastopen_cookie = foc; 958 remaining -= need; 959 } 960 } 961 962 mptcp_set_option_cond(req, opts, &remaining); 963 964 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 965 966 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 967 synack_type, opts, &remaining); 968 969 return MAX_TCP_OPTION_SPACE - remaining; 970 } 971 972 /* Compute TCP options for ESTABLISHED sockets. This is not the 973 * final wire format yet. 974 */ 975 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 976 struct tcp_out_options *opts, 977 struct tcp_key *key) 978 { 979 struct tcp_sock *tp = tcp_sk(sk); 980 unsigned int size = 0; 981 unsigned int eff_sacks; 982 983 opts->options = 0; 984 985 /* Better than switch (key.type) as it has static branches */ 986 if (tcp_key_is_md5(key)) { 987 opts->options |= OPTION_MD5; 988 size += TCPOLEN_MD5SIG_ALIGNED; 989 } else if (tcp_key_is_ao(key)) { 990 opts->options |= OPTION_AO; 991 size += tcp_ao_len_aligned(key->ao_key); 992 } 993 994 if (likely(tp->rx_opt.tstamp_ok)) { 995 opts->options |= OPTION_TS; 996 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + 997 tp->tsoffset : 0; 998 opts->tsecr = tp->rx_opt.ts_recent; 999 size += TCPOLEN_TSTAMP_ALIGNED; 1000 } 1001 1002 /* MPTCP options have precedence over SACK for the limited TCP 1003 * option space because a MPTCP connection would be forced to 1004 * fall back to regular TCP if a required multipath option is 1005 * missing. SACK still gets a chance to use whatever space is 1006 * left. 1007 */ 1008 if (sk_is_mptcp(sk)) { 1009 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1010 unsigned int opt_size = 0; 1011 1012 if (mptcp_established_options(sk, skb, &opt_size, remaining, 1013 &opts->mptcp)) { 1014 opts->options |= OPTION_MPTCP; 1015 size += opt_size; 1016 } 1017 } 1018 1019 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 1020 if (unlikely(eff_sacks)) { 1021 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1022 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 1023 TCPOLEN_SACK_PERBLOCK)) 1024 return size; 1025 1026 opts->num_sack_blocks = 1027 min_t(unsigned int, eff_sacks, 1028 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 1029 TCPOLEN_SACK_PERBLOCK); 1030 1031 size += TCPOLEN_SACK_BASE_ALIGNED + 1032 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 1033 } 1034 1035 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 1036 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 1037 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 1038 1039 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 1040 1041 size = MAX_TCP_OPTION_SPACE - remaining; 1042 } 1043 1044 return size; 1045 } 1046 1047 1048 /* TCP SMALL QUEUES (TSQ) 1049 * 1050 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1051 * to reduce RTT and bufferbloat. 1052 * We do this using a special skb destructor (tcp_wfree). 1053 * 1054 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1055 * needs to be reallocated in a driver. 1056 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1057 * 1058 * Since transmit from skb destructor is forbidden, we use a tasklet 1059 * to process all sockets that eventually need to send more skbs. 1060 * We use one tasklet per cpu, with its own queue of sockets. 1061 */ 1062 struct tsq_tasklet { 1063 struct tasklet_struct tasklet; 1064 struct list_head head; /* queue of tcp sockets */ 1065 }; 1066 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1067 1068 static void tcp_tsq_write(struct sock *sk) 1069 { 1070 if ((1 << sk->sk_state) & 1071 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1072 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1073 struct tcp_sock *tp = tcp_sk(sk); 1074 1075 if (tp->lost_out > tp->retrans_out && 1076 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1077 tcp_mstamp_refresh(tp); 1078 tcp_xmit_retransmit_queue(sk); 1079 } 1080 1081 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1082 0, GFP_ATOMIC); 1083 } 1084 } 1085 1086 static void tcp_tsq_handler(struct sock *sk) 1087 { 1088 bh_lock_sock(sk); 1089 if (!sock_owned_by_user(sk)) 1090 tcp_tsq_write(sk); 1091 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1092 sock_hold(sk); 1093 bh_unlock_sock(sk); 1094 } 1095 /* 1096 * One tasklet per cpu tries to send more skbs. 1097 * We run in tasklet context but need to disable irqs when 1098 * transferring tsq->head because tcp_wfree() might 1099 * interrupt us (non NAPI drivers) 1100 */ 1101 static void tcp_tasklet_func(struct tasklet_struct *t) 1102 { 1103 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1104 LIST_HEAD(list); 1105 unsigned long flags; 1106 struct list_head *q, *n; 1107 struct tcp_sock *tp; 1108 struct sock *sk; 1109 1110 local_irq_save(flags); 1111 list_splice_init(&tsq->head, &list); 1112 local_irq_restore(flags); 1113 1114 list_for_each_safe(q, n, &list) { 1115 tp = list_entry(q, struct tcp_sock, tsq_node); 1116 list_del(&tp->tsq_node); 1117 1118 sk = (struct sock *)tp; 1119 smp_mb__before_atomic(); 1120 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1121 1122 tcp_tsq_handler(sk); 1123 sk_free(sk); 1124 } 1125 } 1126 1127 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1128 TCPF_WRITE_TIMER_DEFERRED | \ 1129 TCPF_DELACK_TIMER_DEFERRED | \ 1130 TCPF_MTU_REDUCED_DEFERRED | \ 1131 TCPF_ACK_DEFERRED) 1132 /** 1133 * tcp_release_cb - tcp release_sock() callback 1134 * @sk: socket 1135 * 1136 * called from release_sock() to perform protocol dependent 1137 * actions before socket release. 1138 */ 1139 void tcp_release_cb(struct sock *sk) 1140 { 1141 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1142 unsigned long nflags; 1143 1144 /* perform an atomic operation only if at least one flag is set */ 1145 do { 1146 if (!(flags & TCP_DEFERRED_ALL)) 1147 return; 1148 nflags = flags & ~TCP_DEFERRED_ALL; 1149 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1150 1151 if (flags & TCPF_TSQ_DEFERRED) { 1152 tcp_tsq_write(sk); 1153 __sock_put(sk); 1154 } 1155 1156 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1157 tcp_write_timer_handler(sk); 1158 __sock_put(sk); 1159 } 1160 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1161 tcp_delack_timer_handler(sk); 1162 __sock_put(sk); 1163 } 1164 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1165 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1166 __sock_put(sk); 1167 } 1168 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1169 tcp_send_ack(sk); 1170 } 1171 EXPORT_SYMBOL(tcp_release_cb); 1172 1173 void __init tcp_tasklet_init(void) 1174 { 1175 int i; 1176 1177 for_each_possible_cpu(i) { 1178 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1179 1180 INIT_LIST_HEAD(&tsq->head); 1181 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1182 } 1183 } 1184 1185 /* 1186 * Write buffer destructor automatically called from kfree_skb. 1187 * We can't xmit new skbs from this context, as we might already 1188 * hold qdisc lock. 1189 */ 1190 void tcp_wfree(struct sk_buff *skb) 1191 { 1192 struct sock *sk = skb->sk; 1193 struct tcp_sock *tp = tcp_sk(sk); 1194 unsigned long flags, nval, oval; 1195 struct tsq_tasklet *tsq; 1196 bool empty; 1197 1198 /* Keep one reference on sk_wmem_alloc. 1199 * Will be released by sk_free() from here or tcp_tasklet_func() 1200 */ 1201 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1202 1203 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1204 * Wait until our queues (qdisc + devices) are drained. 1205 * This gives : 1206 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1207 * - chance for incoming ACK (processed by another cpu maybe) 1208 * to migrate this flow (skb->ooo_okay will be eventually set) 1209 */ 1210 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1211 goto out; 1212 1213 oval = smp_load_acquire(&sk->sk_tsq_flags); 1214 do { 1215 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1216 goto out; 1217 1218 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1219 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1220 1221 /* queue this socket to tasklet queue */ 1222 local_irq_save(flags); 1223 tsq = this_cpu_ptr(&tsq_tasklet); 1224 empty = list_empty(&tsq->head); 1225 list_add(&tp->tsq_node, &tsq->head); 1226 if (empty) 1227 tasklet_schedule(&tsq->tasklet); 1228 local_irq_restore(flags); 1229 return; 1230 out: 1231 sk_free(sk); 1232 } 1233 1234 /* Note: Called under soft irq. 1235 * We can call TCP stack right away, unless socket is owned by user. 1236 */ 1237 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1238 { 1239 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1240 struct sock *sk = (struct sock *)tp; 1241 1242 tcp_tsq_handler(sk); 1243 sock_put(sk); 1244 1245 return HRTIMER_NORESTART; 1246 } 1247 1248 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1249 u64 prior_wstamp) 1250 { 1251 struct tcp_sock *tp = tcp_sk(sk); 1252 1253 if (sk->sk_pacing_status != SK_PACING_NONE) { 1254 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1255 1256 /* Original sch_fq does not pace first 10 MSS 1257 * Note that tp->data_segs_out overflows after 2^32 packets, 1258 * this is a minor annoyance. 1259 */ 1260 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1261 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1262 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1263 1264 /* take into account OS jitter */ 1265 len_ns -= min_t(u64, len_ns / 2, credit); 1266 tp->tcp_wstamp_ns += len_ns; 1267 } 1268 } 1269 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1270 } 1271 1272 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1273 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1274 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1275 1276 /* This routine actually transmits TCP packets queued in by 1277 * tcp_do_sendmsg(). This is used by both the initial 1278 * transmission and possible later retransmissions. 1279 * All SKB's seen here are completely headerless. It is our 1280 * job to build the TCP header, and pass the packet down to 1281 * IP so it can do the same plus pass the packet off to the 1282 * device. 1283 * 1284 * We are working here with either a clone of the original 1285 * SKB, or a fresh unique copy made by the retransmit engine. 1286 */ 1287 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1288 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1289 { 1290 const struct inet_connection_sock *icsk = inet_csk(sk); 1291 struct inet_sock *inet; 1292 struct tcp_sock *tp; 1293 struct tcp_skb_cb *tcb; 1294 struct tcp_out_options opts; 1295 unsigned int tcp_options_size, tcp_header_size; 1296 struct sk_buff *oskb = NULL; 1297 struct tcp_key key; 1298 struct tcphdr *th; 1299 u64 prior_wstamp; 1300 int err; 1301 1302 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1303 tp = tcp_sk(sk); 1304 prior_wstamp = tp->tcp_wstamp_ns; 1305 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1306 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 1307 if (clone_it) { 1308 oskb = skb; 1309 1310 tcp_skb_tsorted_save(oskb) { 1311 if (unlikely(skb_cloned(oskb))) 1312 skb = pskb_copy(oskb, gfp_mask); 1313 else 1314 skb = skb_clone(oskb, gfp_mask); 1315 } tcp_skb_tsorted_restore(oskb); 1316 1317 if (unlikely(!skb)) 1318 return -ENOBUFS; 1319 /* retransmit skbs might have a non zero value in skb->dev 1320 * because skb->dev is aliased with skb->rbnode.rb_left 1321 */ 1322 skb->dev = NULL; 1323 } 1324 1325 inet = inet_sk(sk); 1326 tcb = TCP_SKB_CB(skb); 1327 memset(&opts, 0, sizeof(opts)); 1328 1329 tcp_get_current_key(sk, &key); 1330 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1331 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key); 1332 } else { 1333 tcp_options_size = tcp_established_options(sk, skb, &opts, &key); 1334 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1335 * at receiver : This slightly improve GRO performance. 1336 * Note that we do not force the PSH flag for non GSO packets, 1337 * because they might be sent under high congestion events, 1338 * and in this case it is better to delay the delivery of 1-MSS 1339 * packets and thus the corresponding ACK packet that would 1340 * release the following packet. 1341 */ 1342 if (tcp_skb_pcount(skb) > 1) 1343 tcb->tcp_flags |= TCPHDR_PSH; 1344 } 1345 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1346 1347 /* We set skb->ooo_okay to one if this packet can select 1348 * a different TX queue than prior packets of this flow, 1349 * to avoid self inflicted reorders. 1350 * The 'other' queue decision is based on current cpu number 1351 * if XPS is enabled, or sk->sk_txhash otherwise. 1352 * We can switch to another (and better) queue if: 1353 * 1) No packet with payload is in qdisc/device queues. 1354 * Delays in TX completion can defeat the test 1355 * even if packets were already sent. 1356 * 2) Or rtx queue is empty. 1357 * This mitigates above case if ACK packets for 1358 * all prior packets were already processed. 1359 */ 1360 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1361 tcp_rtx_queue_empty(sk); 1362 1363 /* If we had to use memory reserve to allocate this skb, 1364 * this might cause drops if packet is looped back : 1365 * Other socket might not have SOCK_MEMALLOC. 1366 * Packets not looped back do not care about pfmemalloc. 1367 */ 1368 skb->pfmemalloc = 0; 1369 1370 skb_push(skb, tcp_header_size); 1371 skb_reset_transport_header(skb); 1372 1373 skb_orphan(skb); 1374 skb->sk = sk; 1375 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1376 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1377 1378 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1379 1380 /* Build TCP header and checksum it. */ 1381 th = (struct tcphdr *)skb->data; 1382 th->source = inet->inet_sport; 1383 th->dest = inet->inet_dport; 1384 th->seq = htonl(tcb->seq); 1385 th->ack_seq = htonl(rcv_nxt); 1386 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1387 tcb->tcp_flags); 1388 1389 th->check = 0; 1390 th->urg_ptr = 0; 1391 1392 /* The urg_mode check is necessary during a below snd_una win probe */ 1393 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1394 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1395 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1396 th->urg = 1; 1397 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1398 th->urg_ptr = htons(0xFFFF); 1399 th->urg = 1; 1400 } 1401 } 1402 1403 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1404 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1405 th->window = htons(tcp_select_window(sk)); 1406 tcp_ecn_send(sk, skb, th, tcp_header_size); 1407 } else { 1408 /* RFC1323: The window in SYN & SYN/ACK segments 1409 * is never scaled. 1410 */ 1411 th->window = htons(min(tp->rcv_wnd, 65535U)); 1412 } 1413 1414 tcp_options_write(th, tp, NULL, &opts, &key); 1415 1416 if (tcp_key_is_md5(&key)) { 1417 #ifdef CONFIG_TCP_MD5SIG 1418 /* Calculate the MD5 hash, as we have all we need now */ 1419 sk_gso_disable(sk); 1420 tp->af_specific->calc_md5_hash(opts.hash_location, 1421 key.md5_key, sk, skb); 1422 #endif 1423 } else if (tcp_key_is_ao(&key)) { 1424 int err; 1425 1426 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th, 1427 opts.hash_location); 1428 if (err) { 1429 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1430 return -ENOMEM; 1431 } 1432 } 1433 1434 /* BPF prog is the last one writing header option */ 1435 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1436 1437 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1438 tcp_v6_send_check, tcp_v4_send_check, 1439 sk, skb); 1440 1441 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1442 tcp_event_ack_sent(sk, rcv_nxt); 1443 1444 if (skb->len != tcp_header_size) { 1445 tcp_event_data_sent(tp, sk); 1446 tp->data_segs_out += tcp_skb_pcount(skb); 1447 tp->bytes_sent += skb->len - tcp_header_size; 1448 } 1449 1450 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1451 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1452 tcp_skb_pcount(skb)); 1453 1454 tp->segs_out += tcp_skb_pcount(skb); 1455 skb_set_hash_from_sk(skb, sk); 1456 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1457 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1458 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1459 1460 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1461 1462 /* Cleanup our debris for IP stacks */ 1463 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1464 sizeof(struct inet6_skb_parm))); 1465 1466 tcp_add_tx_delay(skb, tp); 1467 1468 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1469 inet6_csk_xmit, ip_queue_xmit, 1470 sk, skb, &inet->cork.fl); 1471 1472 if (unlikely(err > 0)) { 1473 tcp_enter_cwr(sk); 1474 err = net_xmit_eval(err); 1475 } 1476 if (!err && oskb) { 1477 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1478 tcp_rate_skb_sent(sk, oskb); 1479 } 1480 return err; 1481 } 1482 1483 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1484 gfp_t gfp_mask) 1485 { 1486 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1487 tcp_sk(sk)->rcv_nxt); 1488 } 1489 1490 /* This routine just queues the buffer for sending. 1491 * 1492 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1493 * otherwise socket can stall. 1494 */ 1495 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1496 { 1497 struct tcp_sock *tp = tcp_sk(sk); 1498 1499 /* Advance write_seq and place onto the write_queue. */ 1500 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1501 __skb_header_release(skb); 1502 tcp_add_write_queue_tail(sk, skb); 1503 sk_wmem_queued_add(sk, skb->truesize); 1504 sk_mem_charge(sk, skb->truesize); 1505 } 1506 1507 /* Initialize TSO segments for a packet. */ 1508 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1509 { 1510 int tso_segs; 1511 1512 if (skb->len <= mss_now) { 1513 /* Avoid the costly divide in the normal 1514 * non-TSO case. 1515 */ 1516 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1517 tcp_skb_pcount_set(skb, 1); 1518 return 1; 1519 } 1520 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1521 tso_segs = DIV_ROUND_UP(skb->len, mss_now); 1522 tcp_skb_pcount_set(skb, tso_segs); 1523 return tso_segs; 1524 } 1525 1526 /* Pcount in the middle of the write queue got changed, we need to do various 1527 * tweaks to fix counters 1528 */ 1529 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1530 { 1531 struct tcp_sock *tp = tcp_sk(sk); 1532 1533 tp->packets_out -= decr; 1534 1535 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1536 tp->sacked_out -= decr; 1537 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1538 tp->retrans_out -= decr; 1539 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1540 tp->lost_out -= decr; 1541 1542 /* Reno case is special. Sigh... */ 1543 if (tcp_is_reno(tp) && decr > 0) 1544 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1545 1546 if (tp->lost_skb_hint && 1547 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1548 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1549 tp->lost_cnt_hint -= decr; 1550 1551 tcp_verify_left_out(tp); 1552 } 1553 1554 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1555 { 1556 return TCP_SKB_CB(skb)->txstamp_ack || 1557 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1558 } 1559 1560 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1561 { 1562 struct skb_shared_info *shinfo = skb_shinfo(skb); 1563 1564 if (unlikely(tcp_has_tx_tstamp(skb)) && 1565 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1566 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1567 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1568 1569 shinfo->tx_flags &= ~tsflags; 1570 shinfo2->tx_flags |= tsflags; 1571 swap(shinfo->tskey, shinfo2->tskey); 1572 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1573 TCP_SKB_CB(skb)->txstamp_ack = 0; 1574 } 1575 } 1576 1577 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1578 { 1579 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1580 TCP_SKB_CB(skb)->eor = 0; 1581 } 1582 1583 /* Insert buff after skb on the write or rtx queue of sk. */ 1584 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1585 struct sk_buff *buff, 1586 struct sock *sk, 1587 enum tcp_queue tcp_queue) 1588 { 1589 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1590 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1591 else 1592 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1593 } 1594 1595 /* Function to create two new TCP segments. Shrinks the given segment 1596 * to the specified size and appends a new segment with the rest of the 1597 * packet to the list. This won't be called frequently, I hope. 1598 * Remember, these are still headerless SKBs at this point. 1599 */ 1600 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1601 struct sk_buff *skb, u32 len, 1602 unsigned int mss_now, gfp_t gfp) 1603 { 1604 struct tcp_sock *tp = tcp_sk(sk); 1605 struct sk_buff *buff; 1606 int old_factor; 1607 long limit; 1608 int nlen; 1609 u8 flags; 1610 1611 if (WARN_ON(len > skb->len)) 1612 return -EINVAL; 1613 1614 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1615 1616 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1617 * We need some allowance to not penalize applications setting small 1618 * SO_SNDBUF values. 1619 * Also allow first and last skb in retransmit queue to be split. 1620 */ 1621 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1622 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1623 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1624 skb != tcp_rtx_queue_head(sk) && 1625 skb != tcp_rtx_queue_tail(sk))) { 1626 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1627 return -ENOMEM; 1628 } 1629 1630 if (skb_unclone_keeptruesize(skb, gfp)) 1631 return -ENOMEM; 1632 1633 /* Get a new skb... force flag on. */ 1634 buff = tcp_stream_alloc_skb(sk, gfp, true); 1635 if (!buff) 1636 return -ENOMEM; /* We'll just try again later. */ 1637 skb_copy_decrypted(buff, skb); 1638 mptcp_skb_ext_copy(buff, skb); 1639 1640 sk_wmem_queued_add(sk, buff->truesize); 1641 sk_mem_charge(sk, buff->truesize); 1642 nlen = skb->len - len; 1643 buff->truesize += nlen; 1644 skb->truesize -= nlen; 1645 1646 /* Correct the sequence numbers. */ 1647 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1648 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1649 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1650 1651 /* PSH and FIN should only be set in the second packet. */ 1652 flags = TCP_SKB_CB(skb)->tcp_flags; 1653 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1654 TCP_SKB_CB(buff)->tcp_flags = flags; 1655 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1656 tcp_skb_fragment_eor(skb, buff); 1657 1658 skb_split(skb, buff, len); 1659 1660 skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC); 1661 tcp_fragment_tstamp(skb, buff); 1662 1663 old_factor = tcp_skb_pcount(skb); 1664 1665 /* Fix up tso_factor for both original and new SKB. */ 1666 tcp_set_skb_tso_segs(skb, mss_now); 1667 tcp_set_skb_tso_segs(buff, mss_now); 1668 1669 /* Update delivered info for the new segment */ 1670 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1671 1672 /* If this packet has been sent out already, we must 1673 * adjust the various packet counters. 1674 */ 1675 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1676 int diff = old_factor - tcp_skb_pcount(skb) - 1677 tcp_skb_pcount(buff); 1678 1679 if (diff) 1680 tcp_adjust_pcount(sk, skb, diff); 1681 } 1682 1683 /* Link BUFF into the send queue. */ 1684 __skb_header_release(buff); 1685 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1686 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1687 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1688 1689 return 0; 1690 } 1691 1692 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1693 * data is not copied, but immediately discarded. 1694 */ 1695 static int __pskb_trim_head(struct sk_buff *skb, int len) 1696 { 1697 struct skb_shared_info *shinfo; 1698 int i, k, eat; 1699 1700 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1701 eat = len; 1702 k = 0; 1703 shinfo = skb_shinfo(skb); 1704 for (i = 0; i < shinfo->nr_frags; i++) { 1705 int size = skb_frag_size(&shinfo->frags[i]); 1706 1707 if (size <= eat) { 1708 skb_frag_unref(skb, i); 1709 eat -= size; 1710 } else { 1711 shinfo->frags[k] = shinfo->frags[i]; 1712 if (eat) { 1713 skb_frag_off_add(&shinfo->frags[k], eat); 1714 skb_frag_size_sub(&shinfo->frags[k], eat); 1715 eat = 0; 1716 } 1717 k++; 1718 } 1719 } 1720 shinfo->nr_frags = k; 1721 1722 skb->data_len -= len; 1723 skb->len = skb->data_len; 1724 return len; 1725 } 1726 1727 /* Remove acked data from a packet in the transmit queue. */ 1728 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1729 { 1730 u32 delta_truesize; 1731 1732 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1733 return -ENOMEM; 1734 1735 delta_truesize = __pskb_trim_head(skb, len); 1736 1737 TCP_SKB_CB(skb)->seq += len; 1738 1739 skb->truesize -= delta_truesize; 1740 sk_wmem_queued_add(sk, -delta_truesize); 1741 if (!skb_zcopy_pure(skb)) 1742 sk_mem_uncharge(sk, delta_truesize); 1743 1744 /* Any change of skb->len requires recalculation of tso factor. */ 1745 if (tcp_skb_pcount(skb) > 1) 1746 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1747 1748 return 0; 1749 } 1750 1751 /* Calculate MSS not accounting any TCP options. */ 1752 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1753 { 1754 const struct tcp_sock *tp = tcp_sk(sk); 1755 const struct inet_connection_sock *icsk = inet_csk(sk); 1756 int mss_now; 1757 1758 /* Calculate base mss without TCP options: 1759 It is MMS_S - sizeof(tcphdr) of rfc1122 1760 */ 1761 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1762 1763 /* Clamp it (mss_clamp does not include tcp options) */ 1764 if (mss_now > tp->rx_opt.mss_clamp) 1765 mss_now = tp->rx_opt.mss_clamp; 1766 1767 /* Now subtract optional transport overhead */ 1768 mss_now -= icsk->icsk_ext_hdr_len; 1769 1770 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1771 mss_now = max(mss_now, 1772 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1773 return mss_now; 1774 } 1775 1776 /* Calculate MSS. Not accounting for SACKs here. */ 1777 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1778 { 1779 /* Subtract TCP options size, not including SACKs */ 1780 return __tcp_mtu_to_mss(sk, pmtu) - 1781 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1782 } 1783 EXPORT_SYMBOL(tcp_mtu_to_mss); 1784 1785 /* Inverse of above */ 1786 int tcp_mss_to_mtu(struct sock *sk, int mss) 1787 { 1788 const struct tcp_sock *tp = tcp_sk(sk); 1789 const struct inet_connection_sock *icsk = inet_csk(sk); 1790 1791 return mss + 1792 tp->tcp_header_len + 1793 icsk->icsk_ext_hdr_len + 1794 icsk->icsk_af_ops->net_header_len; 1795 } 1796 EXPORT_SYMBOL(tcp_mss_to_mtu); 1797 1798 /* MTU probing init per socket */ 1799 void tcp_mtup_init(struct sock *sk) 1800 { 1801 struct tcp_sock *tp = tcp_sk(sk); 1802 struct inet_connection_sock *icsk = inet_csk(sk); 1803 struct net *net = sock_net(sk); 1804 1805 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1806 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1807 icsk->icsk_af_ops->net_header_len; 1808 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1809 icsk->icsk_mtup.probe_size = 0; 1810 if (icsk->icsk_mtup.enabled) 1811 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1812 } 1813 EXPORT_SYMBOL(tcp_mtup_init); 1814 1815 /* This function synchronize snd mss to current pmtu/exthdr set. 1816 1817 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1818 for TCP options, but includes only bare TCP header. 1819 1820 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1821 It is minimum of user_mss and mss received with SYN. 1822 It also does not include TCP options. 1823 1824 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1825 1826 tp->mss_cache is current effective sending mss, including 1827 all tcp options except for SACKs. It is evaluated, 1828 taking into account current pmtu, but never exceeds 1829 tp->rx_opt.mss_clamp. 1830 1831 NOTE1. rfc1122 clearly states that advertised MSS 1832 DOES NOT include either tcp or ip options. 1833 1834 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1835 are READ ONLY outside this function. --ANK (980731) 1836 */ 1837 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1838 { 1839 struct tcp_sock *tp = tcp_sk(sk); 1840 struct inet_connection_sock *icsk = inet_csk(sk); 1841 int mss_now; 1842 1843 if (icsk->icsk_mtup.search_high > pmtu) 1844 icsk->icsk_mtup.search_high = pmtu; 1845 1846 mss_now = tcp_mtu_to_mss(sk, pmtu); 1847 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1848 1849 /* And store cached results */ 1850 icsk->icsk_pmtu_cookie = pmtu; 1851 if (icsk->icsk_mtup.enabled) 1852 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1853 tp->mss_cache = mss_now; 1854 1855 return mss_now; 1856 } 1857 EXPORT_SYMBOL(tcp_sync_mss); 1858 1859 /* Compute the current effective MSS, taking SACKs and IP options, 1860 * and even PMTU discovery events into account. 1861 */ 1862 unsigned int tcp_current_mss(struct sock *sk) 1863 { 1864 const struct tcp_sock *tp = tcp_sk(sk); 1865 const struct dst_entry *dst = __sk_dst_get(sk); 1866 u32 mss_now; 1867 unsigned int header_len; 1868 struct tcp_out_options opts; 1869 struct tcp_key key; 1870 1871 mss_now = tp->mss_cache; 1872 1873 if (dst) { 1874 u32 mtu = dst_mtu(dst); 1875 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1876 mss_now = tcp_sync_mss(sk, mtu); 1877 } 1878 tcp_get_current_key(sk, &key); 1879 header_len = tcp_established_options(sk, NULL, &opts, &key) + 1880 sizeof(struct tcphdr); 1881 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1882 * some common options. If this is an odd packet (because we have SACK 1883 * blocks etc) then our calculated header_len will be different, and 1884 * we have to adjust mss_now correspondingly */ 1885 if (header_len != tp->tcp_header_len) { 1886 int delta = (int) header_len - tp->tcp_header_len; 1887 mss_now -= delta; 1888 } 1889 1890 return mss_now; 1891 } 1892 1893 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1894 * As additional protections, we do not touch cwnd in retransmission phases, 1895 * and if application hit its sndbuf limit recently. 1896 */ 1897 static void tcp_cwnd_application_limited(struct sock *sk) 1898 { 1899 struct tcp_sock *tp = tcp_sk(sk); 1900 1901 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1902 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1903 /* Limited by application or receiver window. */ 1904 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1905 u32 win_used = max(tp->snd_cwnd_used, init_win); 1906 if (win_used < tcp_snd_cwnd(tp)) { 1907 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1908 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1909 } 1910 tp->snd_cwnd_used = 0; 1911 } 1912 tp->snd_cwnd_stamp = tcp_jiffies32; 1913 } 1914 1915 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1916 { 1917 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1918 struct tcp_sock *tp = tcp_sk(sk); 1919 1920 /* Track the strongest available signal of the degree to which the cwnd 1921 * is fully utilized. If cwnd-limited then remember that fact for the 1922 * current window. If not cwnd-limited then track the maximum number of 1923 * outstanding packets in the current window. (If cwnd-limited then we 1924 * chose to not update tp->max_packets_out to avoid an extra else 1925 * clause with no functional impact.) 1926 */ 1927 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1928 is_cwnd_limited || 1929 (!tp->is_cwnd_limited && 1930 tp->packets_out > tp->max_packets_out)) { 1931 tp->is_cwnd_limited = is_cwnd_limited; 1932 tp->max_packets_out = tp->packets_out; 1933 tp->cwnd_usage_seq = tp->snd_nxt; 1934 } 1935 1936 if (tcp_is_cwnd_limited(sk)) { 1937 /* Network is feed fully. */ 1938 tp->snd_cwnd_used = 0; 1939 tp->snd_cwnd_stamp = tcp_jiffies32; 1940 } else { 1941 /* Network starves. */ 1942 if (tp->packets_out > tp->snd_cwnd_used) 1943 tp->snd_cwnd_used = tp->packets_out; 1944 1945 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1946 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1947 !ca_ops->cong_control) 1948 tcp_cwnd_application_limited(sk); 1949 1950 /* The following conditions together indicate the starvation 1951 * is caused by insufficient sender buffer: 1952 * 1) just sent some data (see tcp_write_xmit) 1953 * 2) not cwnd limited (this else condition) 1954 * 3) no more data to send (tcp_write_queue_empty()) 1955 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1956 */ 1957 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1958 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1959 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1960 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1961 } 1962 } 1963 1964 /* Minshall's variant of the Nagle send check. */ 1965 static bool tcp_minshall_check(const struct tcp_sock *tp) 1966 { 1967 return after(tp->snd_sml, tp->snd_una) && 1968 !after(tp->snd_sml, tp->snd_nxt); 1969 } 1970 1971 /* Update snd_sml if this skb is under mss 1972 * Note that a TSO packet might end with a sub-mss segment 1973 * The test is really : 1974 * if ((skb->len % mss) != 0) 1975 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1976 * But we can avoid doing the divide again given we already have 1977 * skb_pcount = skb->len / mss_now 1978 */ 1979 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1980 const struct sk_buff *skb) 1981 { 1982 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1983 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1984 } 1985 1986 /* Return false, if packet can be sent now without violation Nagle's rules: 1987 * 1. It is full sized. (provided by caller in %partial bool) 1988 * 2. Or it contains FIN. (already checked by caller) 1989 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1990 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1991 * With Minshall's modification: all sent small packets are ACKed. 1992 */ 1993 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1994 int nonagle) 1995 { 1996 return partial && 1997 ((nonagle & TCP_NAGLE_CORK) || 1998 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1999 } 2000 2001 /* Return how many segs we'd like on a TSO packet, 2002 * depending on current pacing rate, and how close the peer is. 2003 * 2004 * Rationale is: 2005 * - For close peers, we rather send bigger packets to reduce 2006 * cpu costs, because occasional losses will be repaired fast. 2007 * - For long distance/rtt flows, we would like to get ACK clocking 2008 * with 1 ACK per ms. 2009 * 2010 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 2011 * in bigger TSO bursts. We we cut the RTT-based allowance in half 2012 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 2013 * is below 1500 bytes after 6 * ~500 usec = 3ms. 2014 */ 2015 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 2016 int min_tso_segs) 2017 { 2018 unsigned long bytes; 2019 u32 r; 2020 2021 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 2022 2023 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 2024 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 2025 bytes += sk->sk_gso_max_size >> r; 2026 2027 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 2028 2029 return max_t(u32, bytes / mss_now, min_tso_segs); 2030 } 2031 2032 /* Return the number of segments we want in the skb we are transmitting. 2033 * See if congestion control module wants to decide; otherwise, autosize. 2034 */ 2035 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 2036 { 2037 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2038 u32 min_tso, tso_segs; 2039 2040 min_tso = ca_ops->min_tso_segs ? 2041 ca_ops->min_tso_segs(sk) : 2042 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 2043 2044 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 2045 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2046 } 2047 2048 /* Returns the portion of skb which can be sent right away */ 2049 static unsigned int tcp_mss_split_point(const struct sock *sk, 2050 const struct sk_buff *skb, 2051 unsigned int mss_now, 2052 unsigned int max_segs, 2053 int nonagle) 2054 { 2055 const struct tcp_sock *tp = tcp_sk(sk); 2056 u32 partial, needed, window, max_len; 2057 2058 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2059 max_len = mss_now * max_segs; 2060 2061 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2062 return max_len; 2063 2064 needed = min(skb->len, window); 2065 2066 if (max_len <= needed) 2067 return max_len; 2068 2069 partial = needed % mss_now; 2070 /* If last segment is not a full MSS, check if Nagle rules allow us 2071 * to include this last segment in this skb. 2072 * Otherwise, we'll split the skb at last MSS boundary 2073 */ 2074 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2075 return needed - partial; 2076 2077 return needed; 2078 } 2079 2080 /* Can at least one segment of SKB be sent right now, according to the 2081 * congestion window rules? If so, return how many segments are allowed. 2082 */ 2083 static u32 tcp_cwnd_test(const struct tcp_sock *tp) 2084 { 2085 u32 in_flight, cwnd, halfcwnd; 2086 2087 in_flight = tcp_packets_in_flight(tp); 2088 cwnd = tcp_snd_cwnd(tp); 2089 if (in_flight >= cwnd) 2090 return 0; 2091 2092 /* For better scheduling, ensure we have at least 2093 * 2 GSO packets in flight. 2094 */ 2095 halfcwnd = max(cwnd >> 1, 1U); 2096 return min(halfcwnd, cwnd - in_flight); 2097 } 2098 2099 /* Initialize TSO state of a skb. 2100 * This must be invoked the first time we consider transmitting 2101 * SKB onto the wire. 2102 */ 2103 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2104 { 2105 int tso_segs = tcp_skb_pcount(skb); 2106 2107 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) 2108 return tcp_set_skb_tso_segs(skb, mss_now); 2109 2110 return tso_segs; 2111 } 2112 2113 2114 /* Return true if the Nagle test allows this packet to be 2115 * sent now. 2116 */ 2117 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2118 unsigned int cur_mss, int nonagle) 2119 { 2120 /* Nagle rule does not apply to frames, which sit in the middle of the 2121 * write_queue (they have no chances to get new data). 2122 * 2123 * This is implemented in the callers, where they modify the 'nonagle' 2124 * argument based upon the location of SKB in the send queue. 2125 */ 2126 if (nonagle & TCP_NAGLE_PUSH) 2127 return true; 2128 2129 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2130 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2131 return true; 2132 2133 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2134 return true; 2135 2136 return false; 2137 } 2138 2139 /* Does at least the first segment of SKB fit into the send window? */ 2140 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2141 const struct sk_buff *skb, 2142 unsigned int cur_mss) 2143 { 2144 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2145 2146 if (skb->len > cur_mss) 2147 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2148 2149 return !after(end_seq, tcp_wnd_end(tp)); 2150 } 2151 2152 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2153 * which is put after SKB on the list. It is very much like 2154 * tcp_fragment() except that it may make several kinds of assumptions 2155 * in order to speed up the splitting operation. In particular, we 2156 * know that all the data is in scatter-gather pages, and that the 2157 * packet has never been sent out before (and thus is not cloned). 2158 */ 2159 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2160 unsigned int mss_now, gfp_t gfp) 2161 { 2162 int nlen = skb->len - len; 2163 struct sk_buff *buff; 2164 u8 flags; 2165 2166 /* All of a TSO frame must be composed of paged data. */ 2167 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2168 2169 buff = tcp_stream_alloc_skb(sk, gfp, true); 2170 if (unlikely(!buff)) 2171 return -ENOMEM; 2172 skb_copy_decrypted(buff, skb); 2173 mptcp_skb_ext_copy(buff, skb); 2174 2175 sk_wmem_queued_add(sk, buff->truesize); 2176 sk_mem_charge(sk, buff->truesize); 2177 buff->truesize += nlen; 2178 skb->truesize -= nlen; 2179 2180 /* Correct the sequence numbers. */ 2181 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2182 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2183 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2184 2185 /* PSH and FIN should only be set in the second packet. */ 2186 flags = TCP_SKB_CB(skb)->tcp_flags; 2187 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2188 TCP_SKB_CB(buff)->tcp_flags = flags; 2189 2190 tcp_skb_fragment_eor(skb, buff); 2191 2192 skb_split(skb, buff, len); 2193 tcp_fragment_tstamp(skb, buff); 2194 2195 /* Fix up tso_factor for both original and new SKB. */ 2196 tcp_set_skb_tso_segs(skb, mss_now); 2197 tcp_set_skb_tso_segs(buff, mss_now); 2198 2199 /* Link BUFF into the send queue. */ 2200 __skb_header_release(buff); 2201 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2202 2203 return 0; 2204 } 2205 2206 /* Try to defer sending, if possible, in order to minimize the amount 2207 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2208 * 2209 * This algorithm is from John Heffner. 2210 */ 2211 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2212 bool *is_cwnd_limited, 2213 bool *is_rwnd_limited, 2214 u32 max_segs) 2215 { 2216 const struct inet_connection_sock *icsk = inet_csk(sk); 2217 u32 send_win, cong_win, limit, in_flight; 2218 struct tcp_sock *tp = tcp_sk(sk); 2219 struct sk_buff *head; 2220 int win_divisor; 2221 s64 delta; 2222 2223 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2224 goto send_now; 2225 2226 /* Avoid bursty behavior by allowing defer 2227 * only if the last write was recent (1 ms). 2228 * Note that tp->tcp_wstamp_ns can be in the future if we have 2229 * packets waiting in a qdisc or device for EDT delivery. 2230 */ 2231 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2232 if (delta > 0) 2233 goto send_now; 2234 2235 in_flight = tcp_packets_in_flight(tp); 2236 2237 BUG_ON(tcp_skb_pcount(skb) <= 1); 2238 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2239 2240 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2241 2242 /* From in_flight test above, we know that cwnd > in_flight. */ 2243 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2244 2245 limit = min(send_win, cong_win); 2246 2247 /* If a full-sized TSO skb can be sent, do it. */ 2248 if (limit >= max_segs * tp->mss_cache) 2249 goto send_now; 2250 2251 /* Middle in queue won't get any more data, full sendable already? */ 2252 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2253 goto send_now; 2254 2255 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2256 if (win_divisor) { 2257 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2258 2259 /* If at least some fraction of a window is available, 2260 * just use it. 2261 */ 2262 chunk /= win_divisor; 2263 if (limit >= chunk) 2264 goto send_now; 2265 } else { 2266 /* Different approach, try not to defer past a single 2267 * ACK. Receiver should ACK every other full sized 2268 * frame, so if we have space for more than 3 frames 2269 * then send now. 2270 */ 2271 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2272 goto send_now; 2273 } 2274 2275 /* TODO : use tsorted_sent_queue ? */ 2276 head = tcp_rtx_queue_head(sk); 2277 if (!head) 2278 goto send_now; 2279 delta = tp->tcp_clock_cache - head->tstamp; 2280 /* If next ACK is likely to come too late (half srtt), do not defer */ 2281 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2282 goto send_now; 2283 2284 /* Ok, it looks like it is advisable to defer. 2285 * Three cases are tracked : 2286 * 1) We are cwnd-limited 2287 * 2) We are rwnd-limited 2288 * 3) We are application limited. 2289 */ 2290 if (cong_win < send_win) { 2291 if (cong_win <= skb->len) { 2292 *is_cwnd_limited = true; 2293 return true; 2294 } 2295 } else { 2296 if (send_win <= skb->len) { 2297 *is_rwnd_limited = true; 2298 return true; 2299 } 2300 } 2301 2302 /* If this packet won't get more data, do not wait. */ 2303 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2304 TCP_SKB_CB(skb)->eor) 2305 goto send_now; 2306 2307 return true; 2308 2309 send_now: 2310 return false; 2311 } 2312 2313 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2314 { 2315 struct inet_connection_sock *icsk = inet_csk(sk); 2316 struct tcp_sock *tp = tcp_sk(sk); 2317 struct net *net = sock_net(sk); 2318 u32 interval; 2319 s32 delta; 2320 2321 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2322 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2323 if (unlikely(delta >= interval * HZ)) { 2324 int mss = tcp_current_mss(sk); 2325 2326 /* Update current search range */ 2327 icsk->icsk_mtup.probe_size = 0; 2328 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2329 sizeof(struct tcphdr) + 2330 icsk->icsk_af_ops->net_header_len; 2331 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2332 2333 /* Update probe time stamp */ 2334 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2335 } 2336 } 2337 2338 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2339 { 2340 struct sk_buff *skb, *next; 2341 2342 skb = tcp_send_head(sk); 2343 tcp_for_write_queue_from_safe(skb, next, sk) { 2344 if (len <= skb->len) 2345 break; 2346 2347 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next)) 2348 return false; 2349 2350 len -= skb->len; 2351 } 2352 2353 return true; 2354 } 2355 2356 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2357 int probe_size) 2358 { 2359 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2360 int i, todo, len = 0, nr_frags = 0; 2361 const struct sk_buff *skb; 2362 2363 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2364 return -ENOMEM; 2365 2366 skb_queue_walk(&sk->sk_write_queue, skb) { 2367 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2368 2369 if (skb_headlen(skb)) 2370 return -EINVAL; 2371 2372 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2373 if (len >= probe_size) 2374 goto commit; 2375 todo = min_t(int, skb_frag_size(fragfrom), 2376 probe_size - len); 2377 len += todo; 2378 if (lastfrag && 2379 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2380 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2381 skb_frag_size(lastfrag)) { 2382 skb_frag_size_add(lastfrag, todo); 2383 continue; 2384 } 2385 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2386 return -E2BIG; 2387 skb_frag_page_copy(fragto, fragfrom); 2388 skb_frag_off_copy(fragto, fragfrom); 2389 skb_frag_size_set(fragto, todo); 2390 nr_frags++; 2391 lastfrag = fragto++; 2392 } 2393 } 2394 commit: 2395 WARN_ON_ONCE(len != probe_size); 2396 for (i = 0; i < nr_frags; i++) 2397 skb_frag_ref(to, i); 2398 2399 skb_shinfo(to)->nr_frags = nr_frags; 2400 to->truesize += probe_size; 2401 to->len += probe_size; 2402 to->data_len += probe_size; 2403 __skb_header_release(to); 2404 return 0; 2405 } 2406 2407 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if 2408 * all its payload was moved to another one (dst). 2409 * Make sure to transfer tcp_flags, eor, and tstamp. 2410 */ 2411 static void tcp_eat_one_skb(struct sock *sk, 2412 struct sk_buff *dst, 2413 struct sk_buff *src) 2414 { 2415 TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags; 2416 TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor; 2417 tcp_skb_collapse_tstamp(dst, src); 2418 tcp_unlink_write_queue(src, sk); 2419 tcp_wmem_free_skb(sk, src); 2420 } 2421 2422 /* Create a new MTU probe if we are ready. 2423 * MTU probe is regularly attempting to increase the path MTU by 2424 * deliberately sending larger packets. This discovers routing 2425 * changes resulting in larger path MTUs. 2426 * 2427 * Returns 0 if we should wait to probe (no cwnd available), 2428 * 1 if a probe was sent, 2429 * -1 otherwise 2430 */ 2431 static int tcp_mtu_probe(struct sock *sk) 2432 { 2433 struct inet_connection_sock *icsk = inet_csk(sk); 2434 struct tcp_sock *tp = tcp_sk(sk); 2435 struct sk_buff *skb, *nskb, *next; 2436 struct net *net = sock_net(sk); 2437 int probe_size; 2438 int size_needed; 2439 int copy, len; 2440 int mss_now; 2441 int interval; 2442 2443 /* Not currently probing/verifying, 2444 * not in recovery, 2445 * have enough cwnd, and 2446 * not SACKing (the variable headers throw things off) 2447 */ 2448 if (likely(!icsk->icsk_mtup.enabled || 2449 icsk->icsk_mtup.probe_size || 2450 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2451 tcp_snd_cwnd(tp) < 11 || 2452 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2453 return -1; 2454 2455 /* Use binary search for probe_size between tcp_mss_base, 2456 * and current mss_clamp. if (search_high - search_low) 2457 * smaller than a threshold, backoff from probing. 2458 */ 2459 mss_now = tcp_current_mss(sk); 2460 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2461 icsk->icsk_mtup.search_low) >> 1); 2462 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2463 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2464 /* When misfortune happens, we are reprobing actively, 2465 * and then reprobe timer has expired. We stick with current 2466 * probing process by not resetting search range to its orignal. 2467 */ 2468 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2469 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2470 /* Check whether enough time has elaplased for 2471 * another round of probing. 2472 */ 2473 tcp_mtu_check_reprobe(sk); 2474 return -1; 2475 } 2476 2477 /* Have enough data in the send queue to probe? */ 2478 if (tp->write_seq - tp->snd_nxt < size_needed) 2479 return -1; 2480 2481 if (tp->snd_wnd < size_needed) 2482 return -1; 2483 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2484 return 0; 2485 2486 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2487 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2488 if (!tcp_packets_in_flight(tp)) 2489 return -1; 2490 else 2491 return 0; 2492 } 2493 2494 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2495 return -1; 2496 2497 /* We're allowed to probe. Build it now. */ 2498 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2499 if (!nskb) 2500 return -1; 2501 2502 /* build the payload, and be prepared to abort if this fails. */ 2503 if (tcp_clone_payload(sk, nskb, probe_size)) { 2504 tcp_skb_tsorted_anchor_cleanup(nskb); 2505 consume_skb(nskb); 2506 return -1; 2507 } 2508 sk_wmem_queued_add(sk, nskb->truesize); 2509 sk_mem_charge(sk, nskb->truesize); 2510 2511 skb = tcp_send_head(sk); 2512 skb_copy_decrypted(nskb, skb); 2513 mptcp_skb_ext_copy(nskb, skb); 2514 2515 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2516 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2517 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2518 2519 tcp_insert_write_queue_before(nskb, skb, sk); 2520 tcp_highest_sack_replace(sk, skb, nskb); 2521 2522 len = 0; 2523 tcp_for_write_queue_from_safe(skb, next, sk) { 2524 copy = min_t(int, skb->len, probe_size - len); 2525 2526 if (skb->len <= copy) { 2527 tcp_eat_one_skb(sk, nskb, skb); 2528 } else { 2529 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2530 ~(TCPHDR_FIN|TCPHDR_PSH); 2531 __pskb_trim_head(skb, copy); 2532 tcp_set_skb_tso_segs(skb, mss_now); 2533 TCP_SKB_CB(skb)->seq += copy; 2534 } 2535 2536 len += copy; 2537 2538 if (len >= probe_size) 2539 break; 2540 } 2541 tcp_init_tso_segs(nskb, nskb->len); 2542 2543 /* We're ready to send. If this fails, the probe will 2544 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2545 */ 2546 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2547 /* Decrement cwnd here because we are sending 2548 * effectively two packets. */ 2549 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2550 tcp_event_new_data_sent(sk, nskb); 2551 2552 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2553 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2554 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2555 2556 return 1; 2557 } 2558 2559 return -1; 2560 } 2561 2562 static bool tcp_pacing_check(struct sock *sk) 2563 { 2564 struct tcp_sock *tp = tcp_sk(sk); 2565 2566 if (!tcp_needs_internal_pacing(sk)) 2567 return false; 2568 2569 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2570 return false; 2571 2572 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2573 hrtimer_start(&tp->pacing_timer, 2574 ns_to_ktime(tp->tcp_wstamp_ns), 2575 HRTIMER_MODE_ABS_PINNED_SOFT); 2576 sock_hold(sk); 2577 } 2578 return true; 2579 } 2580 2581 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk) 2582 { 2583 const struct rb_node *node = sk->tcp_rtx_queue.rb_node; 2584 2585 /* No skb in the rtx queue. */ 2586 if (!node) 2587 return true; 2588 2589 /* Only one skb in rtx queue. */ 2590 return !node->rb_left && !node->rb_right; 2591 } 2592 2593 /* TCP Small Queues : 2594 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2595 * (These limits are doubled for retransmits) 2596 * This allows for : 2597 * - better RTT estimation and ACK scheduling 2598 * - faster recovery 2599 * - high rates 2600 * Alas, some drivers / subsystems require a fair amount 2601 * of queued bytes to ensure line rate. 2602 * One example is wifi aggregation (802.11 AMPDU) 2603 */ 2604 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2605 unsigned int factor) 2606 { 2607 unsigned long limit; 2608 2609 limit = max_t(unsigned long, 2610 2 * skb->truesize, 2611 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2612 if (sk->sk_pacing_status == SK_PACING_NONE) 2613 limit = min_t(unsigned long, limit, 2614 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2615 limit <<= factor; 2616 2617 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2618 tcp_sk(sk)->tcp_tx_delay) { 2619 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2620 tcp_sk(sk)->tcp_tx_delay; 2621 2622 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2623 * approximate our needs assuming an ~100% skb->truesize overhead. 2624 * USEC_PER_SEC is approximated by 2^20. 2625 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2626 */ 2627 extra_bytes >>= (20 - 1); 2628 limit += extra_bytes; 2629 } 2630 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2631 /* Always send skb if rtx queue is empty or has one skb. 2632 * No need to wait for TX completion to call us back, 2633 * after softirq/tasklet schedule. 2634 * This helps when TX completions are delayed too much. 2635 */ 2636 if (tcp_rtx_queue_empty_or_single_skb(sk)) 2637 return false; 2638 2639 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2640 /* It is possible TX completion already happened 2641 * before we set TSQ_THROTTLED, so we must 2642 * test again the condition. 2643 */ 2644 smp_mb__after_atomic(); 2645 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2646 return true; 2647 } 2648 return false; 2649 } 2650 2651 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2652 { 2653 const u32 now = tcp_jiffies32; 2654 enum tcp_chrono old = tp->chrono_type; 2655 2656 if (old > TCP_CHRONO_UNSPEC) 2657 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2658 tp->chrono_start = now; 2659 tp->chrono_type = new; 2660 } 2661 2662 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2663 { 2664 struct tcp_sock *tp = tcp_sk(sk); 2665 2666 /* If there are multiple conditions worthy of tracking in a 2667 * chronograph then the highest priority enum takes precedence 2668 * over the other conditions. So that if something "more interesting" 2669 * starts happening, stop the previous chrono and start a new one. 2670 */ 2671 if (type > tp->chrono_type) 2672 tcp_chrono_set(tp, type); 2673 } 2674 2675 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2676 { 2677 struct tcp_sock *tp = tcp_sk(sk); 2678 2679 2680 /* There are multiple conditions worthy of tracking in a 2681 * chronograph, so that the highest priority enum takes 2682 * precedence over the other conditions (see tcp_chrono_start). 2683 * If a condition stops, we only stop chrono tracking if 2684 * it's the "most interesting" or current chrono we are 2685 * tracking and starts busy chrono if we have pending data. 2686 */ 2687 if (tcp_rtx_and_write_queues_empty(sk)) 2688 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2689 else if (type == tp->chrono_type) 2690 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2691 } 2692 2693 /* First skb in the write queue is smaller than ideal packet size. 2694 * Check if we can move payload from the second skb in the queue. 2695 */ 2696 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount) 2697 { 2698 struct sk_buff *next_skb = skb->next; 2699 unsigned int nlen; 2700 2701 if (tcp_skb_is_last(sk, skb)) 2702 return; 2703 2704 if (!tcp_skb_can_collapse(skb, next_skb)) 2705 return; 2706 2707 nlen = min_t(u32, amount, next_skb->len); 2708 if (!nlen || !skb_shift(skb, next_skb, nlen)) 2709 return; 2710 2711 TCP_SKB_CB(skb)->end_seq += nlen; 2712 TCP_SKB_CB(next_skb)->seq += nlen; 2713 2714 if (!next_skb->len) { 2715 /* In case FIN is set, we need to update end_seq */ 2716 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2717 2718 tcp_eat_one_skb(sk, skb, next_skb); 2719 } 2720 } 2721 2722 /* This routine writes packets to the network. It advances the 2723 * send_head. This happens as incoming acks open up the remote 2724 * window for us. 2725 * 2726 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2727 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2728 * account rare use of URG, this is not a big flaw. 2729 * 2730 * Send at most one packet when push_one > 0. Temporarily ignore 2731 * cwnd limit to force at most one packet out when push_one == 2. 2732 2733 * Returns true, if no segments are in flight and we have queued segments, 2734 * but cannot send anything now because of SWS or another problem. 2735 */ 2736 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2737 int push_one, gfp_t gfp) 2738 { 2739 struct tcp_sock *tp = tcp_sk(sk); 2740 struct sk_buff *skb; 2741 unsigned int tso_segs, sent_pkts; 2742 u32 cwnd_quota, max_segs; 2743 int result; 2744 bool is_cwnd_limited = false, is_rwnd_limited = false; 2745 2746 sent_pkts = 0; 2747 2748 tcp_mstamp_refresh(tp); 2749 if (!push_one) { 2750 /* Do MTU probing. */ 2751 result = tcp_mtu_probe(sk); 2752 if (!result) { 2753 return false; 2754 } else if (result > 0) { 2755 sent_pkts = 1; 2756 } 2757 } 2758 2759 max_segs = tcp_tso_segs(sk, mss_now); 2760 while ((skb = tcp_send_head(sk))) { 2761 unsigned int limit; 2762 int missing_bytes; 2763 2764 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2765 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2766 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2767 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC); 2768 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2769 tcp_init_tso_segs(skb, mss_now); 2770 goto repair; /* Skip network transmission */ 2771 } 2772 2773 if (tcp_pacing_check(sk)) 2774 break; 2775 2776 cwnd_quota = tcp_cwnd_test(tp); 2777 if (!cwnd_quota) { 2778 if (push_one == 2) 2779 /* Force out a loss probe pkt. */ 2780 cwnd_quota = 1; 2781 else 2782 break; 2783 } 2784 cwnd_quota = min(cwnd_quota, max_segs); 2785 missing_bytes = cwnd_quota * mss_now - skb->len; 2786 if (missing_bytes > 0) 2787 tcp_grow_skb(sk, skb, missing_bytes); 2788 2789 tso_segs = tcp_set_skb_tso_segs(skb, mss_now); 2790 2791 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2792 is_rwnd_limited = true; 2793 break; 2794 } 2795 2796 if (tso_segs == 1) { 2797 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2798 (tcp_skb_is_last(sk, skb) ? 2799 nonagle : TCP_NAGLE_PUSH)))) 2800 break; 2801 } else { 2802 if (!push_one && 2803 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2804 &is_rwnd_limited, max_segs)) 2805 break; 2806 } 2807 2808 limit = mss_now; 2809 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2810 limit = tcp_mss_split_point(sk, skb, mss_now, 2811 cwnd_quota, 2812 nonagle); 2813 2814 if (skb->len > limit && 2815 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2816 break; 2817 2818 if (tcp_small_queue_check(sk, skb, 0)) 2819 break; 2820 2821 /* Argh, we hit an empty skb(), presumably a thread 2822 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2823 * We do not want to send a pure-ack packet and have 2824 * a strange looking rtx queue with empty packet(s). 2825 */ 2826 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2827 break; 2828 2829 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2830 break; 2831 2832 repair: 2833 /* Advance the send_head. This one is sent out. 2834 * This call will increment packets_out. 2835 */ 2836 tcp_event_new_data_sent(sk, skb); 2837 2838 tcp_minshall_update(tp, mss_now, skb); 2839 sent_pkts += tcp_skb_pcount(skb); 2840 2841 if (push_one) 2842 break; 2843 } 2844 2845 if (is_rwnd_limited) 2846 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2847 else 2848 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2849 2850 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2851 if (likely(sent_pkts || is_cwnd_limited)) 2852 tcp_cwnd_validate(sk, is_cwnd_limited); 2853 2854 if (likely(sent_pkts)) { 2855 if (tcp_in_cwnd_reduction(sk)) 2856 tp->prr_out += sent_pkts; 2857 2858 /* Send one loss probe per tail loss episode. */ 2859 if (push_one != 2) 2860 tcp_schedule_loss_probe(sk, false); 2861 return false; 2862 } 2863 return !tp->packets_out && !tcp_write_queue_empty(sk); 2864 } 2865 2866 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2867 { 2868 struct inet_connection_sock *icsk = inet_csk(sk); 2869 struct tcp_sock *tp = tcp_sk(sk); 2870 u32 timeout, timeout_us, rto_delta_us; 2871 int early_retrans; 2872 2873 /* Don't do any loss probe on a Fast Open connection before 3WHS 2874 * finishes. 2875 */ 2876 if (rcu_access_pointer(tp->fastopen_rsk)) 2877 return false; 2878 2879 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2880 /* Schedule a loss probe in 2*RTT for SACK capable connections 2881 * not in loss recovery, that are either limited by cwnd or application. 2882 */ 2883 if ((early_retrans != 3 && early_retrans != 4) || 2884 !tp->packets_out || !tcp_is_sack(tp) || 2885 (icsk->icsk_ca_state != TCP_CA_Open && 2886 icsk->icsk_ca_state != TCP_CA_CWR)) 2887 return false; 2888 2889 /* Probe timeout is 2*rtt. Add minimum RTO to account 2890 * for delayed ack when there's one outstanding packet. If no RTT 2891 * sample is available then probe after TCP_TIMEOUT_INIT. 2892 */ 2893 if (tp->srtt_us) { 2894 timeout_us = tp->srtt_us >> 2; 2895 if (tp->packets_out == 1) 2896 timeout_us += tcp_rto_min_us(sk); 2897 else 2898 timeout_us += TCP_TIMEOUT_MIN_US; 2899 timeout = usecs_to_jiffies(timeout_us); 2900 } else { 2901 timeout = TCP_TIMEOUT_INIT; 2902 } 2903 2904 /* If the RTO formula yields an earlier time, then use that time. */ 2905 rto_delta_us = advancing_rto ? 2906 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2907 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2908 if (rto_delta_us > 0) 2909 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2910 2911 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2912 return true; 2913 } 2914 2915 /* Thanks to skb fast clones, we can detect if a prior transmit of 2916 * a packet is still in a qdisc or driver queue. 2917 * In this case, there is very little point doing a retransmit ! 2918 */ 2919 static bool skb_still_in_host_queue(struct sock *sk, 2920 const struct sk_buff *skb) 2921 { 2922 if (unlikely(skb_fclone_busy(sk, skb))) { 2923 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2924 smp_mb__after_atomic(); 2925 if (skb_fclone_busy(sk, skb)) { 2926 NET_INC_STATS(sock_net(sk), 2927 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2928 return true; 2929 } 2930 } 2931 return false; 2932 } 2933 2934 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2935 * retransmit the last segment. 2936 */ 2937 void tcp_send_loss_probe(struct sock *sk) 2938 { 2939 struct tcp_sock *tp = tcp_sk(sk); 2940 struct sk_buff *skb; 2941 int pcount; 2942 int mss = tcp_current_mss(sk); 2943 2944 /* At most one outstanding TLP */ 2945 if (tp->tlp_high_seq) 2946 goto rearm_timer; 2947 2948 tp->tlp_retrans = 0; 2949 skb = tcp_send_head(sk); 2950 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2951 pcount = tp->packets_out; 2952 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2953 if (tp->packets_out > pcount) 2954 goto probe_sent; 2955 goto rearm_timer; 2956 } 2957 skb = skb_rb_last(&sk->tcp_rtx_queue); 2958 if (unlikely(!skb)) { 2959 tcp_warn_once(sk, tp->packets_out, "invalid inflight: "); 2960 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 2961 return; 2962 } 2963 2964 if (skb_still_in_host_queue(sk, skb)) 2965 goto rearm_timer; 2966 2967 pcount = tcp_skb_pcount(skb); 2968 if (WARN_ON(!pcount)) 2969 goto rearm_timer; 2970 2971 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2972 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2973 (pcount - 1) * mss, mss, 2974 GFP_ATOMIC))) 2975 goto rearm_timer; 2976 skb = skb_rb_next(skb); 2977 } 2978 2979 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2980 goto rearm_timer; 2981 2982 if (__tcp_retransmit_skb(sk, skb, 1)) 2983 goto rearm_timer; 2984 2985 tp->tlp_retrans = 1; 2986 2987 probe_sent: 2988 /* Record snd_nxt for loss detection. */ 2989 tp->tlp_high_seq = tp->snd_nxt; 2990 2991 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2992 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2993 smp_store_release(&inet_csk(sk)->icsk_pending, 0); 2994 rearm_timer: 2995 tcp_rearm_rto(sk); 2996 } 2997 2998 /* Push out any pending frames which were held back due to 2999 * TCP_CORK or attempt at coalescing tiny packets. 3000 * The socket must be locked by the caller. 3001 */ 3002 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 3003 int nonagle) 3004 { 3005 /* If we are closed, the bytes will have to remain here. 3006 * In time closedown will finish, we empty the write queue and 3007 * all will be happy. 3008 */ 3009 if (unlikely(sk->sk_state == TCP_CLOSE)) 3010 return; 3011 3012 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 3013 sk_gfp_mask(sk, GFP_ATOMIC))) 3014 tcp_check_probe_timer(sk); 3015 } 3016 3017 /* Send _single_ skb sitting at the send head. This function requires 3018 * true push pending frames to setup probe timer etc. 3019 */ 3020 void tcp_push_one(struct sock *sk, unsigned int mss_now) 3021 { 3022 struct sk_buff *skb = tcp_send_head(sk); 3023 3024 BUG_ON(!skb || skb->len < mss_now); 3025 3026 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 3027 } 3028 3029 /* This function returns the amount that we can raise the 3030 * usable window based on the following constraints 3031 * 3032 * 1. The window can never be shrunk once it is offered (RFC 793) 3033 * 2. We limit memory per socket 3034 * 3035 * RFC 1122: 3036 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 3037 * RECV.NEXT + RCV.WIN fixed until: 3038 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 3039 * 3040 * i.e. don't raise the right edge of the window until you can raise 3041 * it at least MSS bytes. 3042 * 3043 * Unfortunately, the recommended algorithm breaks header prediction, 3044 * since header prediction assumes th->window stays fixed. 3045 * 3046 * Strictly speaking, keeping th->window fixed violates the receiver 3047 * side SWS prevention criteria. The problem is that under this rule 3048 * a stream of single byte packets will cause the right side of the 3049 * window to always advance by a single byte. 3050 * 3051 * Of course, if the sender implements sender side SWS prevention 3052 * then this will not be a problem. 3053 * 3054 * BSD seems to make the following compromise: 3055 * 3056 * If the free space is less than the 1/4 of the maximum 3057 * space available and the free space is less than 1/2 mss, 3058 * then set the window to 0. 3059 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 3060 * Otherwise, just prevent the window from shrinking 3061 * and from being larger than the largest representable value. 3062 * 3063 * This prevents incremental opening of the window in the regime 3064 * where TCP is limited by the speed of the reader side taking 3065 * data out of the TCP receive queue. It does nothing about 3066 * those cases where the window is constrained on the sender side 3067 * because the pipeline is full. 3068 * 3069 * BSD also seems to "accidentally" limit itself to windows that are a 3070 * multiple of MSS, at least until the free space gets quite small. 3071 * This would appear to be a side effect of the mbuf implementation. 3072 * Combining these two algorithms results in the observed behavior 3073 * of having a fixed window size at almost all times. 3074 * 3075 * Below we obtain similar behavior by forcing the offered window to 3076 * a multiple of the mss when it is feasible to do so. 3077 * 3078 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 3079 * Regular options like TIMESTAMP are taken into account. 3080 */ 3081 u32 __tcp_select_window(struct sock *sk) 3082 { 3083 struct inet_connection_sock *icsk = inet_csk(sk); 3084 struct tcp_sock *tp = tcp_sk(sk); 3085 struct net *net = sock_net(sk); 3086 /* MSS for the peer's data. Previous versions used mss_clamp 3087 * here. I don't know if the value based on our guesses 3088 * of peer's MSS is better for the performance. It's more correct 3089 * but may be worse for the performance because of rcv_mss 3090 * fluctuations. --SAW 1998/11/1 3091 */ 3092 int mss = icsk->icsk_ack.rcv_mss; 3093 int free_space = tcp_space(sk); 3094 int allowed_space = tcp_full_space(sk); 3095 int full_space, window; 3096 3097 if (sk_is_mptcp(sk)) 3098 mptcp_space(sk, &free_space, &allowed_space); 3099 3100 full_space = min_t(int, tp->window_clamp, allowed_space); 3101 3102 if (unlikely(mss > full_space)) { 3103 mss = full_space; 3104 if (mss <= 0) 3105 return 0; 3106 } 3107 3108 /* Only allow window shrink if the sysctl is enabled and we have 3109 * a non-zero scaling factor in effect. 3110 */ 3111 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3112 goto shrink_window_allowed; 3113 3114 /* do not allow window to shrink */ 3115 3116 if (free_space < (full_space >> 1)) { 3117 icsk->icsk_ack.quick = 0; 3118 3119 if (tcp_under_memory_pressure(sk)) 3120 tcp_adjust_rcv_ssthresh(sk); 3121 3122 /* free_space might become our new window, make sure we don't 3123 * increase it due to wscale. 3124 */ 3125 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3126 3127 /* if free space is less than mss estimate, or is below 1/16th 3128 * of the maximum allowed, try to move to zero-window, else 3129 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3130 * new incoming data is dropped due to memory limits. 3131 * With large window, mss test triggers way too late in order 3132 * to announce zero window in time before rmem limit kicks in. 3133 */ 3134 if (free_space < (allowed_space >> 4) || free_space < mss) 3135 return 0; 3136 } 3137 3138 if (free_space > tp->rcv_ssthresh) 3139 free_space = tp->rcv_ssthresh; 3140 3141 /* Don't do rounding if we are using window scaling, since the 3142 * scaled window will not line up with the MSS boundary anyway. 3143 */ 3144 if (tp->rx_opt.rcv_wscale) { 3145 window = free_space; 3146 3147 /* Advertise enough space so that it won't get scaled away. 3148 * Import case: prevent zero window announcement if 3149 * 1<<rcv_wscale > mss. 3150 */ 3151 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3152 } else { 3153 window = tp->rcv_wnd; 3154 /* Get the largest window that is a nice multiple of mss. 3155 * Window clamp already applied above. 3156 * If our current window offering is within 1 mss of the 3157 * free space we just keep it. This prevents the divide 3158 * and multiply from happening most of the time. 3159 * We also don't do any window rounding when the free space 3160 * is too small. 3161 */ 3162 if (window <= free_space - mss || window > free_space) 3163 window = rounddown(free_space, mss); 3164 else if (mss == full_space && 3165 free_space > window + (full_space >> 1)) 3166 window = free_space; 3167 } 3168 3169 return window; 3170 3171 shrink_window_allowed: 3172 /* new window should always be an exact multiple of scaling factor */ 3173 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3174 3175 if (free_space < (full_space >> 1)) { 3176 icsk->icsk_ack.quick = 0; 3177 3178 if (tcp_under_memory_pressure(sk)) 3179 tcp_adjust_rcv_ssthresh(sk); 3180 3181 /* if free space is too low, return a zero window */ 3182 if (free_space < (allowed_space >> 4) || free_space < mss || 3183 free_space < (1 << tp->rx_opt.rcv_wscale)) 3184 return 0; 3185 } 3186 3187 if (free_space > tp->rcv_ssthresh) { 3188 free_space = tp->rcv_ssthresh; 3189 /* new window should always be an exact multiple of scaling factor 3190 * 3191 * For this case, we ALIGN "up" (increase free_space) because 3192 * we know free_space is not zero here, it has been reduced from 3193 * the memory-based limit, and rcv_ssthresh is not a hard limit 3194 * (unlike sk_rcvbuf). 3195 */ 3196 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3197 } 3198 3199 return free_space; 3200 } 3201 3202 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3203 const struct sk_buff *next_skb) 3204 { 3205 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3206 const struct skb_shared_info *next_shinfo = 3207 skb_shinfo(next_skb); 3208 struct skb_shared_info *shinfo = skb_shinfo(skb); 3209 3210 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3211 shinfo->tskey = next_shinfo->tskey; 3212 TCP_SKB_CB(skb)->txstamp_ack |= 3213 TCP_SKB_CB(next_skb)->txstamp_ack; 3214 } 3215 } 3216 3217 /* Collapses two adjacent SKB's during retransmission. */ 3218 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3219 { 3220 struct tcp_sock *tp = tcp_sk(sk); 3221 struct sk_buff *next_skb = skb_rb_next(skb); 3222 int next_skb_size; 3223 3224 next_skb_size = next_skb->len; 3225 3226 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3227 3228 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3229 return false; 3230 3231 tcp_highest_sack_replace(sk, next_skb, skb); 3232 3233 /* Update sequence range on original skb. */ 3234 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3235 3236 /* Merge over control information. This moves PSH/FIN etc. over */ 3237 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3238 3239 /* All done, get rid of second SKB and account for it so 3240 * packet counting does not break. 3241 */ 3242 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3243 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3244 3245 /* changed transmit queue under us so clear hints */ 3246 tcp_clear_retrans_hints_partial(tp); 3247 if (next_skb == tp->retransmit_skb_hint) 3248 tp->retransmit_skb_hint = skb; 3249 3250 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3251 3252 tcp_skb_collapse_tstamp(skb, next_skb); 3253 3254 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3255 return true; 3256 } 3257 3258 /* Check if coalescing SKBs is legal. */ 3259 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3260 { 3261 if (tcp_skb_pcount(skb) > 1) 3262 return false; 3263 if (skb_cloned(skb)) 3264 return false; 3265 if (!skb_frags_readable(skb)) 3266 return false; 3267 /* Some heuristics for collapsing over SACK'd could be invented */ 3268 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3269 return false; 3270 3271 return true; 3272 } 3273 3274 /* Collapse packets in the retransmit queue to make to create 3275 * less packets on the wire. This is only done on retransmission. 3276 */ 3277 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3278 int space) 3279 { 3280 struct tcp_sock *tp = tcp_sk(sk); 3281 struct sk_buff *skb = to, *tmp; 3282 bool first = true; 3283 3284 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3285 return; 3286 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3287 return; 3288 3289 skb_rbtree_walk_from_safe(skb, tmp) { 3290 if (!tcp_can_collapse(sk, skb)) 3291 break; 3292 3293 if (!tcp_skb_can_collapse(to, skb)) 3294 break; 3295 3296 space -= skb->len; 3297 3298 if (first) { 3299 first = false; 3300 continue; 3301 } 3302 3303 if (space < 0) 3304 break; 3305 3306 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3307 break; 3308 3309 if (!tcp_collapse_retrans(sk, to)) 3310 break; 3311 } 3312 } 3313 3314 /* This retransmits one SKB. Policy decisions and retransmit queue 3315 * state updates are done by the caller. Returns non-zero if an 3316 * error occurred which prevented the send. 3317 */ 3318 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3319 { 3320 struct inet_connection_sock *icsk = inet_csk(sk); 3321 struct tcp_sock *tp = tcp_sk(sk); 3322 unsigned int cur_mss; 3323 int diff, len, err; 3324 int avail_wnd; 3325 3326 /* Inconclusive MTU probe */ 3327 if (icsk->icsk_mtup.probe_size) 3328 icsk->icsk_mtup.probe_size = 0; 3329 3330 if (skb_still_in_host_queue(sk, skb)) 3331 return -EBUSY; 3332 3333 start: 3334 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3335 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3336 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; 3337 TCP_SKB_CB(skb)->seq++; 3338 goto start; 3339 } 3340 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3341 WARN_ON_ONCE(1); 3342 return -EINVAL; 3343 } 3344 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3345 return -ENOMEM; 3346 } 3347 3348 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3349 return -EHOSTUNREACH; /* Routing failure or similar. */ 3350 3351 cur_mss = tcp_current_mss(sk); 3352 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3353 3354 /* If receiver has shrunk his window, and skb is out of 3355 * new window, do not retransmit it. The exception is the 3356 * case, when window is shrunk to zero. In this case 3357 * our retransmit of one segment serves as a zero window probe. 3358 */ 3359 if (avail_wnd <= 0) { 3360 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3361 return -EAGAIN; 3362 avail_wnd = cur_mss; 3363 } 3364 3365 len = cur_mss * segs; 3366 if (len > avail_wnd) { 3367 len = rounddown(avail_wnd, cur_mss); 3368 if (!len) 3369 len = avail_wnd; 3370 } 3371 if (skb->len > len) { 3372 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3373 cur_mss, GFP_ATOMIC)) 3374 return -ENOMEM; /* We'll try again later. */ 3375 } else { 3376 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3377 return -ENOMEM; 3378 3379 diff = tcp_skb_pcount(skb); 3380 tcp_set_skb_tso_segs(skb, cur_mss); 3381 diff -= tcp_skb_pcount(skb); 3382 if (diff) 3383 tcp_adjust_pcount(sk, skb, diff); 3384 avail_wnd = min_t(int, avail_wnd, cur_mss); 3385 if (skb->len < avail_wnd) 3386 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3387 } 3388 3389 /* RFC3168, section 6.1.1.1. ECN fallback */ 3390 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3391 tcp_ecn_clear_syn(sk, skb); 3392 3393 /* Update global and local TCP statistics. */ 3394 segs = tcp_skb_pcount(skb); 3395 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3396 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3397 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3398 tp->total_retrans += segs; 3399 tp->bytes_retrans += skb->len; 3400 3401 /* make sure skb->data is aligned on arches that require it 3402 * and check if ack-trimming & collapsing extended the headroom 3403 * beyond what csum_start can cover. 3404 */ 3405 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3406 skb_headroom(skb) >= 0xFFFF)) { 3407 struct sk_buff *nskb; 3408 3409 tcp_skb_tsorted_save(skb) { 3410 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3411 if (nskb) { 3412 nskb->dev = NULL; 3413 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3414 } else { 3415 err = -ENOBUFS; 3416 } 3417 } tcp_skb_tsorted_restore(skb); 3418 3419 if (!err) { 3420 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3421 tcp_rate_skb_sent(sk, skb); 3422 } 3423 } else { 3424 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3425 } 3426 3427 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3428 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3429 TCP_SKB_CB(skb)->seq, segs, err); 3430 3431 if (likely(!err)) { 3432 trace_tcp_retransmit_skb(sk, skb); 3433 } else if (err != -EBUSY) { 3434 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3435 } 3436 3437 /* To avoid taking spuriously low RTT samples based on a timestamp 3438 * for a transmit that never happened, always mark EVER_RETRANS 3439 */ 3440 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3441 3442 return err; 3443 } 3444 3445 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3446 { 3447 struct tcp_sock *tp = tcp_sk(sk); 3448 int err = __tcp_retransmit_skb(sk, skb, segs); 3449 3450 if (err == 0) { 3451 #if FASTRETRANS_DEBUG > 0 3452 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3453 net_dbg_ratelimited("retrans_out leaked\n"); 3454 } 3455 #endif 3456 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3457 tp->retrans_out += tcp_skb_pcount(skb); 3458 } 3459 3460 /* Save stamp of the first (attempted) retransmit. */ 3461 if (!tp->retrans_stamp) 3462 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb); 3463 3464 if (tp->undo_retrans < 0) 3465 tp->undo_retrans = 0; 3466 tp->undo_retrans += tcp_skb_pcount(skb); 3467 return err; 3468 } 3469 3470 /* This gets called after a retransmit timeout, and the initially 3471 * retransmitted data is acknowledged. It tries to continue 3472 * resending the rest of the retransmit queue, until either 3473 * we've sent it all or the congestion window limit is reached. 3474 */ 3475 void tcp_xmit_retransmit_queue(struct sock *sk) 3476 { 3477 const struct inet_connection_sock *icsk = inet_csk(sk); 3478 struct sk_buff *skb, *rtx_head, *hole = NULL; 3479 struct tcp_sock *tp = tcp_sk(sk); 3480 bool rearm_timer = false; 3481 u32 max_segs; 3482 int mib_idx; 3483 3484 if (!tp->packets_out) 3485 return; 3486 3487 rtx_head = tcp_rtx_queue_head(sk); 3488 skb = tp->retransmit_skb_hint ?: rtx_head; 3489 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3490 skb_rbtree_walk_from(skb) { 3491 __u8 sacked; 3492 int segs; 3493 3494 if (tcp_pacing_check(sk)) 3495 break; 3496 3497 /* we could do better than to assign each time */ 3498 if (!hole) 3499 tp->retransmit_skb_hint = skb; 3500 3501 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3502 if (segs <= 0) 3503 break; 3504 sacked = TCP_SKB_CB(skb)->sacked; 3505 /* In case tcp_shift_skb_data() have aggregated large skbs, 3506 * we need to make sure not sending too bigs TSO packets 3507 */ 3508 segs = min_t(int, segs, max_segs); 3509 3510 if (tp->retrans_out >= tp->lost_out) { 3511 break; 3512 } else if (!(sacked & TCPCB_LOST)) { 3513 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3514 hole = skb; 3515 continue; 3516 3517 } else { 3518 if (icsk->icsk_ca_state != TCP_CA_Loss) 3519 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3520 else 3521 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3522 } 3523 3524 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3525 continue; 3526 3527 if (tcp_small_queue_check(sk, skb, 1)) 3528 break; 3529 3530 if (tcp_retransmit_skb(sk, skb, segs)) 3531 break; 3532 3533 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3534 3535 if (tcp_in_cwnd_reduction(sk)) 3536 tp->prr_out += tcp_skb_pcount(skb); 3537 3538 if (skb == rtx_head && 3539 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3540 rearm_timer = true; 3541 3542 } 3543 if (rearm_timer) 3544 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3545 inet_csk(sk)->icsk_rto, 3546 TCP_RTO_MAX); 3547 } 3548 3549 /* We allow to exceed memory limits for FIN packets to expedite 3550 * connection tear down and (memory) recovery. 3551 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3552 * or even be forced to close flow without any FIN. 3553 * In general, we want to allow one skb per socket to avoid hangs 3554 * with edge trigger epoll() 3555 */ 3556 void sk_forced_mem_schedule(struct sock *sk, int size) 3557 { 3558 int delta, amt; 3559 3560 delta = size - sk->sk_forward_alloc; 3561 if (delta <= 0) 3562 return; 3563 amt = sk_mem_pages(delta); 3564 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3565 sk_memory_allocated_add(sk, amt); 3566 3567 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3568 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3569 gfp_memcg_charge() | __GFP_NOFAIL); 3570 } 3571 3572 /* Send a FIN. The caller locks the socket for us. 3573 * We should try to send a FIN packet really hard, but eventually give up. 3574 */ 3575 void tcp_send_fin(struct sock *sk) 3576 { 3577 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3578 struct tcp_sock *tp = tcp_sk(sk); 3579 3580 /* Optimization, tack on the FIN if we have one skb in write queue and 3581 * this skb was not yet sent, or we are under memory pressure. 3582 * Note: in the latter case, FIN packet will be sent after a timeout, 3583 * as TCP stack thinks it has already been transmitted. 3584 */ 3585 tskb = tail; 3586 if (!tskb && tcp_under_memory_pressure(sk)) 3587 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3588 3589 if (tskb) { 3590 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3591 TCP_SKB_CB(tskb)->end_seq++; 3592 tp->write_seq++; 3593 if (!tail) { 3594 /* This means tskb was already sent. 3595 * Pretend we included the FIN on previous transmit. 3596 * We need to set tp->snd_nxt to the value it would have 3597 * if FIN had been sent. This is because retransmit path 3598 * does not change tp->snd_nxt. 3599 */ 3600 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3601 return; 3602 } 3603 } else { 3604 skb = alloc_skb_fclone(MAX_TCP_HEADER, 3605 sk_gfp_mask(sk, GFP_ATOMIC | 3606 __GFP_NOWARN)); 3607 if (unlikely(!skb)) 3608 return; 3609 3610 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3611 skb_reserve(skb, MAX_TCP_HEADER); 3612 sk_forced_mem_schedule(sk, skb->truesize); 3613 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3614 tcp_init_nondata_skb(skb, tp->write_seq, 3615 TCPHDR_ACK | TCPHDR_FIN); 3616 tcp_queue_skb(sk, skb); 3617 } 3618 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3619 } 3620 3621 /* We get here when a process closes a file descriptor (either due to 3622 * an explicit close() or as a byproduct of exit()'ing) and there 3623 * was unread data in the receive queue. This behavior is recommended 3624 * by RFC 2525, section 2.17. -DaveM 3625 */ 3626 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 3627 enum sk_rst_reason reason) 3628 { 3629 struct sk_buff *skb; 3630 3631 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3632 3633 /* NOTE: No TCP options attached and we never retransmit this. */ 3634 skb = alloc_skb(MAX_TCP_HEADER, priority); 3635 if (!skb) { 3636 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3637 return; 3638 } 3639 3640 /* Reserve space for headers and prepare control bits. */ 3641 skb_reserve(skb, MAX_TCP_HEADER); 3642 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3643 TCPHDR_ACK | TCPHDR_RST); 3644 tcp_mstamp_refresh(tcp_sk(sk)); 3645 /* Send it off. */ 3646 if (tcp_transmit_skb(sk, skb, 0, priority)) 3647 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3648 3649 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3650 * skb here is different to the troublesome skb, so use NULL 3651 */ 3652 trace_tcp_send_reset(sk, NULL, reason); 3653 } 3654 3655 /* Send a crossed SYN-ACK during socket establishment. 3656 * WARNING: This routine must only be called when we have already sent 3657 * a SYN packet that crossed the incoming SYN that caused this routine 3658 * to get called. If this assumption fails then the initial rcv_wnd 3659 * and rcv_wscale values will not be correct. 3660 */ 3661 int tcp_send_synack(struct sock *sk) 3662 { 3663 struct sk_buff *skb; 3664 3665 skb = tcp_rtx_queue_head(sk); 3666 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3667 pr_err("%s: wrong queue state\n", __func__); 3668 return -EFAULT; 3669 } 3670 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3671 if (skb_cloned(skb)) { 3672 struct sk_buff *nskb; 3673 3674 tcp_skb_tsorted_save(skb) { 3675 nskb = skb_copy(skb, GFP_ATOMIC); 3676 } tcp_skb_tsorted_restore(skb); 3677 if (!nskb) 3678 return -ENOMEM; 3679 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3680 tcp_highest_sack_replace(sk, skb, nskb); 3681 tcp_rtx_queue_unlink_and_free(skb, sk); 3682 __skb_header_release(nskb); 3683 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3684 sk_wmem_queued_add(sk, nskb->truesize); 3685 sk_mem_charge(sk, nskb->truesize); 3686 skb = nskb; 3687 } 3688 3689 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3690 tcp_ecn_send_synack(sk, skb); 3691 } 3692 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3693 } 3694 3695 /** 3696 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3697 * @sk: listener socket 3698 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3699 * should not use it again. 3700 * @req: request_sock pointer 3701 * @foc: cookie for tcp fast open 3702 * @synack_type: Type of synack to prepare 3703 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3704 */ 3705 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3706 struct request_sock *req, 3707 struct tcp_fastopen_cookie *foc, 3708 enum tcp_synack_type synack_type, 3709 struct sk_buff *syn_skb) 3710 { 3711 struct inet_request_sock *ireq = inet_rsk(req); 3712 const struct tcp_sock *tp = tcp_sk(sk); 3713 struct tcp_out_options opts; 3714 struct tcp_key key = {}; 3715 struct sk_buff *skb; 3716 int tcp_header_size; 3717 struct tcphdr *th; 3718 int mss; 3719 u64 now; 3720 3721 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3722 if (unlikely(!skb)) { 3723 dst_release(dst); 3724 return NULL; 3725 } 3726 /* Reserve space for headers. */ 3727 skb_reserve(skb, MAX_TCP_HEADER); 3728 3729 switch (synack_type) { 3730 case TCP_SYNACK_NORMAL: 3731 skb_set_owner_edemux(skb, req_to_sk(req)); 3732 break; 3733 case TCP_SYNACK_COOKIE: 3734 /* Under synflood, we do not attach skb to a socket, 3735 * to avoid false sharing. 3736 */ 3737 break; 3738 case TCP_SYNACK_FASTOPEN: 3739 /* sk is a const pointer, because we want to express multiple 3740 * cpu might call us concurrently. 3741 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3742 */ 3743 skb_set_owner_w(skb, (struct sock *)sk); 3744 break; 3745 } 3746 skb_dst_set(skb, dst); 3747 3748 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3749 3750 memset(&opts, 0, sizeof(opts)); 3751 now = tcp_clock_ns(); 3752 #ifdef CONFIG_SYN_COOKIES 3753 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3754 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3755 SKB_CLOCK_MONOTONIC); 3756 else 3757 #endif 3758 { 3759 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 3760 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3761 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3762 } 3763 3764 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3765 rcu_read_lock(); 3766 #endif 3767 if (tcp_rsk_used_ao(req)) { 3768 #ifdef CONFIG_TCP_AO 3769 struct tcp_ao_key *ao_key = NULL; 3770 u8 keyid = tcp_rsk(req)->ao_keyid; 3771 u8 rnext = tcp_rsk(req)->ao_rcv_next; 3772 3773 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req), 3774 keyid, -1); 3775 /* If there is no matching key - avoid sending anything, 3776 * especially usigned segments. It could try harder and lookup 3777 * for another peer-matching key, but the peer has requested 3778 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here. 3779 */ 3780 if (unlikely(!ao_key)) { 3781 trace_tcp_ao_synack_no_key(sk, keyid, rnext); 3782 rcu_read_unlock(); 3783 kfree_skb(skb); 3784 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n", 3785 keyid); 3786 return NULL; 3787 } 3788 key.ao_key = ao_key; 3789 key.type = TCP_KEY_AO; 3790 #endif 3791 } else { 3792 #ifdef CONFIG_TCP_MD5SIG 3793 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk, 3794 req_to_sk(req)); 3795 if (key.md5_key) 3796 key.type = TCP_KEY_MD5; 3797 #endif 3798 } 3799 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3800 /* bpf program will be interested in the tcp_flags */ 3801 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3802 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, 3803 &key, foc, synack_type, syn_skb) 3804 + sizeof(*th); 3805 3806 skb_push(skb, tcp_header_size); 3807 skb_reset_transport_header(skb); 3808 3809 th = (struct tcphdr *)skb->data; 3810 memset(th, 0, sizeof(struct tcphdr)); 3811 th->syn = 1; 3812 th->ack = 1; 3813 tcp_ecn_make_synack(req, th); 3814 th->source = htons(ireq->ir_num); 3815 th->dest = ireq->ir_rmt_port; 3816 skb->mark = ireq->ir_mark; 3817 skb->ip_summed = CHECKSUM_PARTIAL; 3818 th->seq = htonl(tcp_rsk(req)->snt_isn); 3819 /* XXX data is queued and acked as is. No buffer/window check */ 3820 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3821 3822 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3823 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3824 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key); 3825 th->doff = (tcp_header_size >> 2); 3826 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3827 3828 /* Okay, we have all we need - do the md5 hash if needed */ 3829 if (tcp_key_is_md5(&key)) { 3830 #ifdef CONFIG_TCP_MD5SIG 3831 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3832 key.md5_key, req_to_sk(req), skb); 3833 #endif 3834 } else if (tcp_key_is_ao(&key)) { 3835 #ifdef CONFIG_TCP_AO 3836 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location, 3837 key.ao_key, req, skb, 3838 opts.hash_location - (u8 *)th, 0); 3839 #endif 3840 } 3841 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 3842 rcu_read_unlock(); 3843 #endif 3844 3845 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3846 synack_type, &opts); 3847 3848 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC); 3849 tcp_add_tx_delay(skb, tp); 3850 3851 return skb; 3852 } 3853 EXPORT_SYMBOL(tcp_make_synack); 3854 3855 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3856 { 3857 struct inet_connection_sock *icsk = inet_csk(sk); 3858 const struct tcp_congestion_ops *ca; 3859 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3860 3861 if (ca_key == TCP_CA_UNSPEC) 3862 return; 3863 3864 rcu_read_lock(); 3865 ca = tcp_ca_find_key(ca_key); 3866 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3867 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3868 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3869 icsk->icsk_ca_ops = ca; 3870 } 3871 rcu_read_unlock(); 3872 } 3873 3874 /* Do all connect socket setups that can be done AF independent. */ 3875 static void tcp_connect_init(struct sock *sk) 3876 { 3877 const struct dst_entry *dst = __sk_dst_get(sk); 3878 struct tcp_sock *tp = tcp_sk(sk); 3879 __u8 rcv_wscale; 3880 u32 rcv_wnd; 3881 3882 /* We'll fix this up when we get a response from the other end. 3883 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3884 */ 3885 tp->tcp_header_len = sizeof(struct tcphdr); 3886 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3887 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3888 3889 tcp_ao_connect_init(sk); 3890 3891 /* If user gave his TCP_MAXSEG, record it to clamp */ 3892 if (tp->rx_opt.user_mss) 3893 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3894 tp->max_window = 0; 3895 tcp_mtup_init(sk); 3896 tcp_sync_mss(sk, dst_mtu(dst)); 3897 3898 tcp_ca_dst_init(sk, dst); 3899 3900 if (!tp->window_clamp) 3901 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW)); 3902 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3903 3904 tcp_initialize_rcv_mss(sk); 3905 3906 /* limit the window selection if the user enforce a smaller rx buffer */ 3907 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3908 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3909 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk)); 3910 3911 rcv_wnd = tcp_rwnd_init_bpf(sk); 3912 if (rcv_wnd == 0) 3913 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3914 3915 tcp_select_initial_window(sk, tcp_full_space(sk), 3916 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3917 &tp->rcv_wnd, 3918 &tp->window_clamp, 3919 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3920 &rcv_wscale, 3921 rcv_wnd); 3922 3923 tp->rx_opt.rcv_wscale = rcv_wscale; 3924 tp->rcv_ssthresh = tp->rcv_wnd; 3925 3926 WRITE_ONCE(sk->sk_err, 0); 3927 sock_reset_flag(sk, SOCK_DONE); 3928 tp->snd_wnd = 0; 3929 tcp_init_wl(tp, 0); 3930 tcp_write_queue_purge(sk); 3931 tp->snd_una = tp->write_seq; 3932 tp->snd_sml = tp->write_seq; 3933 tp->snd_up = tp->write_seq; 3934 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3935 3936 if (likely(!tp->repair)) 3937 tp->rcv_nxt = 0; 3938 else 3939 tp->rcv_tstamp = tcp_jiffies32; 3940 tp->rcv_wup = tp->rcv_nxt; 3941 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3942 3943 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3944 inet_csk(sk)->icsk_retransmits = 0; 3945 tcp_clear_retrans(tp); 3946 } 3947 3948 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3949 { 3950 struct tcp_sock *tp = tcp_sk(sk); 3951 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3952 3953 tcb->end_seq += skb->len; 3954 __skb_header_release(skb); 3955 sk_wmem_queued_add(sk, skb->truesize); 3956 sk_mem_charge(sk, skb->truesize); 3957 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3958 tp->packets_out += tcp_skb_pcount(skb); 3959 } 3960 3961 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3962 * queue a data-only packet after the regular SYN, such that regular SYNs 3963 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3964 * only the SYN sequence, the data are retransmitted in the first ACK. 3965 * If cookie is not cached or other error occurs, falls back to send a 3966 * regular SYN with Fast Open cookie request option. 3967 */ 3968 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3969 { 3970 struct inet_connection_sock *icsk = inet_csk(sk); 3971 struct tcp_sock *tp = tcp_sk(sk); 3972 struct tcp_fastopen_request *fo = tp->fastopen_req; 3973 struct page_frag *pfrag = sk_page_frag(sk); 3974 struct sk_buff *syn_data; 3975 int space, err = 0; 3976 3977 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3978 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3979 goto fallback; 3980 3981 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3982 * user-MSS. Reserve maximum option space for middleboxes that add 3983 * private TCP options. The cost is reduced data space in SYN :( 3984 */ 3985 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3986 /* Sync mss_cache after updating the mss_clamp */ 3987 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3988 3989 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3990 MAX_TCP_OPTION_SPACE; 3991 3992 space = min_t(size_t, space, fo->size); 3993 3994 if (space && 3995 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3996 pfrag, sk->sk_allocation)) 3997 goto fallback; 3998 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 3999 if (!syn_data) 4000 goto fallback; 4001 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 4002 if (space) { 4003 space = min_t(size_t, space, pfrag->size - pfrag->offset); 4004 space = tcp_wmem_schedule(sk, space); 4005 } 4006 if (space) { 4007 space = copy_page_from_iter(pfrag->page, pfrag->offset, 4008 space, &fo->data->msg_iter); 4009 if (unlikely(!space)) { 4010 tcp_skb_tsorted_anchor_cleanup(syn_data); 4011 kfree_skb(syn_data); 4012 goto fallback; 4013 } 4014 skb_fill_page_desc(syn_data, 0, pfrag->page, 4015 pfrag->offset, space); 4016 page_ref_inc(pfrag->page); 4017 pfrag->offset += space; 4018 skb_len_add(syn_data, space); 4019 skb_zcopy_set(syn_data, fo->uarg, NULL); 4020 } 4021 /* No more data pending in inet_wait_for_connect() */ 4022 if (space == fo->size) 4023 fo->data = NULL; 4024 fo->copied = space; 4025 4026 tcp_connect_queue_skb(sk, syn_data); 4027 if (syn_data->len) 4028 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 4029 4030 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 4031 4032 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC); 4033 4034 /* Now full SYN+DATA was cloned and sent (or not), 4035 * remove the SYN from the original skb (syn_data) 4036 * we keep in write queue in case of a retransmit, as we 4037 * also have the SYN packet (with no data) in the same queue. 4038 */ 4039 TCP_SKB_CB(syn_data)->seq++; 4040 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 4041 if (!err) { 4042 tp->syn_data = (fo->copied > 0); 4043 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 4044 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 4045 goto done; 4046 } 4047 4048 /* data was not sent, put it in write_queue */ 4049 __skb_queue_tail(&sk->sk_write_queue, syn_data); 4050 tp->packets_out -= tcp_skb_pcount(syn_data); 4051 4052 fallback: 4053 /* Send a regular SYN with Fast Open cookie request option */ 4054 if (fo->cookie.len > 0) 4055 fo->cookie.len = 0; 4056 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 4057 if (err) 4058 tp->syn_fastopen = 0; 4059 done: 4060 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 4061 return err; 4062 } 4063 4064 /* Build a SYN and send it off. */ 4065 int tcp_connect(struct sock *sk) 4066 { 4067 struct tcp_sock *tp = tcp_sk(sk); 4068 struct sk_buff *buff; 4069 int err; 4070 4071 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 4072 4073 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO) 4074 /* Has to be checked late, after setting daddr/saddr/ops. 4075 * Return error if the peer has both a md5 and a tcp-ao key 4076 * configured as this is ambiguous. 4077 */ 4078 if (unlikely(rcu_dereference_protected(tp->md5sig_info, 4079 lockdep_sock_is_held(sk)))) { 4080 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1); 4081 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk); 4082 struct tcp_ao_info *ao_info; 4083 4084 ao_info = rcu_dereference_check(tp->ao_info, 4085 lockdep_sock_is_held(sk)); 4086 if (ao_info) { 4087 /* This is an extra check: tcp_ao_required() in 4088 * tcp_v{4,6}_parse_md5_keys() should prevent adding 4089 * md5 keys on ao_required socket. 4090 */ 4091 needs_ao |= ao_info->ao_required; 4092 WARN_ON_ONCE(ao_info->ao_required && needs_md5); 4093 } 4094 if (needs_md5 && needs_ao) 4095 return -EKEYREJECTED; 4096 4097 /* If we have a matching md5 key and no matching tcp-ao key 4098 * then free up ao_info if allocated. 4099 */ 4100 if (needs_md5) { 4101 tcp_ao_destroy_sock(sk, false); 4102 } else if (needs_ao) { 4103 tcp_clear_md5_list(sk); 4104 kfree(rcu_replace_pointer(tp->md5sig_info, NULL, 4105 lockdep_sock_is_held(sk))); 4106 } 4107 } 4108 #endif 4109 #ifdef CONFIG_TCP_AO 4110 if (unlikely(rcu_dereference_protected(tp->ao_info, 4111 lockdep_sock_is_held(sk)))) { 4112 /* Don't allow connecting if ao is configured but no 4113 * matching key is found. 4114 */ 4115 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1)) 4116 return -EKEYREJECTED; 4117 } 4118 #endif 4119 4120 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 4121 return -EHOSTUNREACH; /* Routing failure or similar. */ 4122 4123 tcp_connect_init(sk); 4124 4125 if (unlikely(tp->repair)) { 4126 tcp_finish_connect(sk, NULL); 4127 return 0; 4128 } 4129 4130 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 4131 if (unlikely(!buff)) 4132 return -ENOBUFS; 4133 4134 /* SYN eats a sequence byte, write_seq updated by 4135 * tcp_connect_queue_skb(). 4136 */ 4137 tcp_init_nondata_skb(buff, tp->write_seq, TCPHDR_SYN); 4138 tcp_mstamp_refresh(tp); 4139 tp->retrans_stamp = tcp_time_stamp_ts(tp); 4140 tcp_connect_queue_skb(sk, buff); 4141 tcp_ecn_send_syn(sk, buff); 4142 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 4143 4144 /* Send off SYN; include data in Fast Open. */ 4145 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 4146 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 4147 if (err == -ECONNREFUSED) 4148 return err; 4149 4150 /* We change tp->snd_nxt after the tcp_transmit_skb() call 4151 * in order to make this packet get counted in tcpOutSegs. 4152 */ 4153 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 4154 tp->pushed_seq = tp->write_seq; 4155 buff = tcp_send_head(sk); 4156 if (unlikely(buff)) { 4157 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 4158 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 4159 } 4160 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 4161 4162 /* Timer for repeating the SYN until an answer. */ 4163 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 4164 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 4165 return 0; 4166 } 4167 EXPORT_SYMBOL(tcp_connect); 4168 4169 u32 tcp_delack_max(const struct sock *sk) 4170 { 4171 u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1; 4172 4173 return min(inet_csk(sk)->icsk_delack_max, delack_from_rto_min); 4174 } 4175 4176 /* Send out a delayed ack, the caller does the policy checking 4177 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 4178 * for details. 4179 */ 4180 void tcp_send_delayed_ack(struct sock *sk) 4181 { 4182 struct inet_connection_sock *icsk = inet_csk(sk); 4183 int ato = icsk->icsk_ack.ato; 4184 unsigned long timeout; 4185 4186 if (ato > TCP_DELACK_MIN) { 4187 const struct tcp_sock *tp = tcp_sk(sk); 4188 int max_ato = HZ / 2; 4189 4190 if (inet_csk_in_pingpong_mode(sk) || 4191 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4192 max_ato = TCP_DELACK_MAX; 4193 4194 /* Slow path, intersegment interval is "high". */ 4195 4196 /* If some rtt estimate is known, use it to bound delayed ack. 4197 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4198 * directly. 4199 */ 4200 if (tp->srtt_us) { 4201 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4202 TCP_DELACK_MIN); 4203 4204 if (rtt < max_ato) 4205 max_ato = rtt; 4206 } 4207 4208 ato = min(ato, max_ato); 4209 } 4210 4211 ato = min_t(u32, ato, tcp_delack_max(sk)); 4212 4213 /* Stay within the limit we were given */ 4214 timeout = jiffies + ato; 4215 4216 /* Use new timeout only if there wasn't a older one earlier. */ 4217 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4218 /* If delack timer is about to expire, send ACK now. */ 4219 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 4220 tcp_send_ack(sk); 4221 return; 4222 } 4223 4224 if (!time_before(timeout, icsk->icsk_ack.timeout)) 4225 timeout = icsk->icsk_ack.timeout; 4226 } 4227 smp_store_release(&icsk->icsk_ack.pending, 4228 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 4229 icsk->icsk_ack.timeout = timeout; 4230 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4231 } 4232 4233 /* This routine sends an ack and also updates the window. */ 4234 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4235 { 4236 struct sk_buff *buff; 4237 4238 /* If we have been reset, we may not send again. */ 4239 if (sk->sk_state == TCP_CLOSE) 4240 return; 4241 4242 /* We are not putting this on the write queue, so 4243 * tcp_transmit_skb() will set the ownership to this 4244 * sock. 4245 */ 4246 buff = alloc_skb(MAX_TCP_HEADER, 4247 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4248 if (unlikely(!buff)) { 4249 struct inet_connection_sock *icsk = inet_csk(sk); 4250 unsigned long delay; 4251 4252 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4253 if (delay < TCP_RTO_MAX) 4254 icsk->icsk_ack.retry++; 4255 inet_csk_schedule_ack(sk); 4256 icsk->icsk_ack.ato = TCP_ATO_MIN; 4257 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 4258 return; 4259 } 4260 4261 /* Reserve space for headers and prepare control bits. */ 4262 skb_reserve(buff, MAX_TCP_HEADER); 4263 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4264 4265 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4266 * too much. 4267 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4268 */ 4269 skb_set_tcp_pure_ack(buff); 4270 4271 /* Send it off, this clears delayed acks for us. */ 4272 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4273 } 4274 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4275 4276 void tcp_send_ack(struct sock *sk) 4277 { 4278 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4279 } 4280 4281 /* This routine sends a packet with an out of date sequence 4282 * number. It assumes the other end will try to ack it. 4283 * 4284 * Question: what should we make while urgent mode? 4285 * 4.4BSD forces sending single byte of data. We cannot send 4286 * out of window data, because we have SND.NXT==SND.MAX... 4287 * 4288 * Current solution: to send TWO zero-length segments in urgent mode: 4289 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4290 * out-of-date with SND.UNA-1 to probe window. 4291 */ 4292 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4293 { 4294 struct tcp_sock *tp = tcp_sk(sk); 4295 struct sk_buff *skb; 4296 4297 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4298 skb = alloc_skb(MAX_TCP_HEADER, 4299 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4300 if (!skb) 4301 return -1; 4302 4303 /* Reserve space for headers and set control bits. */ 4304 skb_reserve(skb, MAX_TCP_HEADER); 4305 /* Use a previous sequence. This should cause the other 4306 * end to send an ack. Don't queue or clone SKB, just 4307 * send it. 4308 */ 4309 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4310 NET_INC_STATS(sock_net(sk), mib); 4311 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4312 } 4313 4314 /* Called from setsockopt( ... TCP_REPAIR ) */ 4315 void tcp_send_window_probe(struct sock *sk) 4316 { 4317 if (sk->sk_state == TCP_ESTABLISHED) { 4318 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4319 tcp_mstamp_refresh(tcp_sk(sk)); 4320 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4321 } 4322 } 4323 4324 /* Initiate keepalive or window probe from timer. */ 4325 int tcp_write_wakeup(struct sock *sk, int mib) 4326 { 4327 struct tcp_sock *tp = tcp_sk(sk); 4328 struct sk_buff *skb; 4329 4330 if (sk->sk_state == TCP_CLOSE) 4331 return -1; 4332 4333 skb = tcp_send_head(sk); 4334 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4335 int err; 4336 unsigned int mss = tcp_current_mss(sk); 4337 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4338 4339 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4340 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4341 4342 /* We are probing the opening of a window 4343 * but the window size is != 0 4344 * must have been a result SWS avoidance ( sender ) 4345 */ 4346 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4347 skb->len > mss) { 4348 seg_size = min(seg_size, mss); 4349 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4350 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4351 skb, seg_size, mss, GFP_ATOMIC)) 4352 return -1; 4353 } else if (!tcp_skb_pcount(skb)) 4354 tcp_set_skb_tso_segs(skb, mss); 4355 4356 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4357 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4358 if (!err) 4359 tcp_event_new_data_sent(sk, skb); 4360 return err; 4361 } else { 4362 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4363 tcp_xmit_probe_skb(sk, 1, mib); 4364 return tcp_xmit_probe_skb(sk, 0, mib); 4365 } 4366 } 4367 4368 /* A window probe timeout has occurred. If window is not closed send 4369 * a partial packet else a zero probe. 4370 */ 4371 void tcp_send_probe0(struct sock *sk) 4372 { 4373 struct inet_connection_sock *icsk = inet_csk(sk); 4374 struct tcp_sock *tp = tcp_sk(sk); 4375 struct net *net = sock_net(sk); 4376 unsigned long timeout; 4377 int err; 4378 4379 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4380 4381 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4382 /* Cancel probe timer, if it is not required. */ 4383 icsk->icsk_probes_out = 0; 4384 icsk->icsk_backoff = 0; 4385 icsk->icsk_probes_tstamp = 0; 4386 return; 4387 } 4388 4389 icsk->icsk_probes_out++; 4390 if (err <= 0) { 4391 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4392 icsk->icsk_backoff++; 4393 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4394 } else { 4395 /* If packet was not sent due to local congestion, 4396 * Let senders fight for local resources conservatively. 4397 */ 4398 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4399 } 4400 4401 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4402 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4403 } 4404 4405 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4406 { 4407 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4408 struct flowi fl; 4409 int res; 4410 4411 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4412 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4413 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4414 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4415 NULL); 4416 if (!res) { 4417 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4418 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4419 if (unlikely(tcp_passive_fastopen(sk))) { 4420 /* sk has const attribute because listeners are lockless. 4421 * However in this case, we are dealing with a passive fastopen 4422 * socket thus we can change total_retrans value. 4423 */ 4424 tcp_sk_rw(sk)->total_retrans++; 4425 } 4426 trace_tcp_retransmit_synack(sk, req); 4427 } 4428 return res; 4429 } 4430 EXPORT_SYMBOL(tcp_rtx_synack); 4431