1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: Pedro Roque : Retransmit queue handled by TCP. 25 * : Fragmentation on mtu decrease 26 * : Segment collapse on retransmit 27 * : AF independence 28 * 29 * Linus Torvalds : send_delayed_ack 30 * David S. Miller : Charge memory using the right skb 31 * during syn/ack processing. 32 * David S. Miller : Output engine completely rewritten. 33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 34 * Cacophonix Gaul : draft-minshall-nagle-01 35 * J Hadi Salim : ECN support 36 * 37 */ 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/module.h> 43 #include <linux/smp_lock.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse = 1; 47 48 /* People can turn this on to work with those rare, broken TCPs that 49 * interpret the window field as a signed quantity. 50 */ 51 int sysctl_tcp_workaround_signed_windows = 0; 52 53 /* This limits the percentage of the congestion window which we 54 * will allow a single TSO frame to consume. Building TSO frames 55 * which are too large can cause TCP streams to be bursty. 56 */ 57 int sysctl_tcp_tso_win_divisor = 3; 58 59 int sysctl_tcp_mtu_probing = 0; 60 int sysctl_tcp_base_mss = 512; 61 62 /* By default, RFC2861 behavior. */ 63 int sysctl_tcp_slow_start_after_idle = 1; 64 65 static void update_send_head(struct sock *sk, struct tcp_sock *tp, 66 struct sk_buff *skb) 67 { 68 sk->sk_send_head = skb->next; 69 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue) 70 sk->sk_send_head = NULL; 71 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 72 tcp_packets_out_inc(sk, tp, skb); 73 } 74 75 /* SND.NXT, if window was not shrunk. 76 * If window has been shrunk, what should we make? It is not clear at all. 77 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 78 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 79 * invalid. OK, let's make this for now: 80 */ 81 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp) 82 { 83 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt)) 84 return tp->snd_nxt; 85 else 86 return tp->snd_una+tp->snd_wnd; 87 } 88 89 /* Calculate mss to advertise in SYN segment. 90 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 91 * 92 * 1. It is independent of path mtu. 93 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 94 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 95 * attached devices, because some buggy hosts are confused by 96 * large MSS. 97 * 4. We do not make 3, we advertise MSS, calculated from first 98 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 99 * This may be overridden via information stored in routing table. 100 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 101 * probably even Jumbo". 102 */ 103 static __u16 tcp_advertise_mss(struct sock *sk) 104 { 105 struct tcp_sock *tp = tcp_sk(sk); 106 struct dst_entry *dst = __sk_dst_get(sk); 107 int mss = tp->advmss; 108 109 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { 110 mss = dst_metric(dst, RTAX_ADVMSS); 111 tp->advmss = mss; 112 } 113 114 return (__u16)mss; 115 } 116 117 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 118 * This is the first part of cwnd validation mechanism. */ 119 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst) 120 { 121 struct tcp_sock *tp = tcp_sk(sk); 122 s32 delta = tcp_time_stamp - tp->lsndtime; 123 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 124 u32 cwnd = tp->snd_cwnd; 125 126 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 127 128 tp->snd_ssthresh = tcp_current_ssthresh(sk); 129 restart_cwnd = min(restart_cwnd, cwnd); 130 131 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 132 cwnd >>= 1; 133 tp->snd_cwnd = max(cwnd, restart_cwnd); 134 tp->snd_cwnd_stamp = tcp_time_stamp; 135 tp->snd_cwnd_used = 0; 136 } 137 138 static void tcp_event_data_sent(struct tcp_sock *tp, 139 struct sk_buff *skb, struct sock *sk) 140 { 141 struct inet_connection_sock *icsk = inet_csk(sk); 142 const u32 now = tcp_time_stamp; 143 144 if (sysctl_tcp_slow_start_after_idle && 145 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 146 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 147 148 tp->lsndtime = now; 149 150 /* If it is a reply for ato after last received 151 * packet, enter pingpong mode. 152 */ 153 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 154 icsk->icsk_ack.pingpong = 1; 155 } 156 157 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 158 { 159 tcp_dec_quickack_mode(sk, pkts); 160 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 161 } 162 163 /* Determine a window scaling and initial window to offer. 164 * Based on the assumption that the given amount of space 165 * will be offered. Store the results in the tp structure. 166 * NOTE: for smooth operation initial space offering should 167 * be a multiple of mss if possible. We assume here that mss >= 1. 168 * This MUST be enforced by all callers. 169 */ 170 void tcp_select_initial_window(int __space, __u32 mss, 171 __u32 *rcv_wnd, __u32 *window_clamp, 172 int wscale_ok, __u8 *rcv_wscale) 173 { 174 unsigned int space = (__space < 0 ? 0 : __space); 175 176 /* If no clamp set the clamp to the max possible scaled window */ 177 if (*window_clamp == 0) 178 (*window_clamp) = (65535 << 14); 179 space = min(*window_clamp, space); 180 181 /* Quantize space offering to a multiple of mss if possible. */ 182 if (space > mss) 183 space = (space / mss) * mss; 184 185 /* NOTE: offering an initial window larger than 32767 186 * will break some buggy TCP stacks. If the admin tells us 187 * it is likely we could be speaking with such a buggy stack 188 * we will truncate our initial window offering to 32K-1 189 * unless the remote has sent us a window scaling option, 190 * which we interpret as a sign the remote TCP is not 191 * misinterpreting the window field as a signed quantity. 192 */ 193 if (sysctl_tcp_workaround_signed_windows) 194 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 195 else 196 (*rcv_wnd) = space; 197 198 (*rcv_wscale) = 0; 199 if (wscale_ok) { 200 /* Set window scaling on max possible window 201 * See RFC1323 for an explanation of the limit to 14 202 */ 203 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 204 while (space > 65535 && (*rcv_wscale) < 14) { 205 space >>= 1; 206 (*rcv_wscale)++; 207 } 208 } 209 210 /* Set initial window to value enough for senders, 211 * following RFC2414. Senders, not following this RFC, 212 * will be satisfied with 2. 213 */ 214 if (mss > (1<<*rcv_wscale)) { 215 int init_cwnd = 4; 216 if (mss > 1460*3) 217 init_cwnd = 2; 218 else if (mss > 1460) 219 init_cwnd = 3; 220 if (*rcv_wnd > init_cwnd*mss) 221 *rcv_wnd = init_cwnd*mss; 222 } 223 224 /* Set the clamp no higher than max representable value */ 225 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 226 } 227 228 /* Chose a new window to advertise, update state in tcp_sock for the 229 * socket, and return result with RFC1323 scaling applied. The return 230 * value can be stuffed directly into th->window for an outgoing 231 * frame. 232 */ 233 static u16 tcp_select_window(struct sock *sk) 234 { 235 struct tcp_sock *tp = tcp_sk(sk); 236 u32 cur_win = tcp_receive_window(tp); 237 u32 new_win = __tcp_select_window(sk); 238 239 /* Never shrink the offered window */ 240 if(new_win < cur_win) { 241 /* Danger Will Robinson! 242 * Don't update rcv_wup/rcv_wnd here or else 243 * we will not be able to advertise a zero 244 * window in time. --DaveM 245 * 246 * Relax Will Robinson. 247 */ 248 new_win = cur_win; 249 } 250 tp->rcv_wnd = new_win; 251 tp->rcv_wup = tp->rcv_nxt; 252 253 /* Make sure we do not exceed the maximum possible 254 * scaled window. 255 */ 256 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 257 new_win = min(new_win, MAX_TCP_WINDOW); 258 else 259 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 260 261 /* RFC1323 scaling applied */ 262 new_win >>= tp->rx_opt.rcv_wscale; 263 264 /* If we advertise zero window, disable fast path. */ 265 if (new_win == 0) 266 tp->pred_flags = 0; 267 268 return new_win; 269 } 270 271 static void tcp_build_and_update_options(__u32 *ptr, struct tcp_sock *tp, 272 __u32 tstamp) 273 { 274 if (tp->rx_opt.tstamp_ok) { 275 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) | 276 (TCPOPT_NOP << 16) | 277 (TCPOPT_TIMESTAMP << 8) | 278 TCPOLEN_TIMESTAMP); 279 *ptr++ = htonl(tstamp); 280 *ptr++ = htonl(tp->rx_opt.ts_recent); 281 } 282 if (tp->rx_opt.eff_sacks) { 283 struct tcp_sack_block *sp = tp->rx_opt.dsack ? tp->duplicate_sack : tp->selective_acks; 284 int this_sack; 285 286 *ptr++ = htonl((TCPOPT_NOP << 24) | 287 (TCPOPT_NOP << 16) | 288 (TCPOPT_SACK << 8) | 289 (TCPOLEN_SACK_BASE + (tp->rx_opt.eff_sacks * 290 TCPOLEN_SACK_PERBLOCK))); 291 for(this_sack = 0; this_sack < tp->rx_opt.eff_sacks; this_sack++) { 292 *ptr++ = htonl(sp[this_sack].start_seq); 293 *ptr++ = htonl(sp[this_sack].end_seq); 294 } 295 if (tp->rx_opt.dsack) { 296 tp->rx_opt.dsack = 0; 297 tp->rx_opt.eff_sacks--; 298 } 299 } 300 } 301 302 /* Construct a tcp options header for a SYN or SYN_ACK packet. 303 * If this is every changed make sure to change the definition of 304 * MAX_SYN_SIZE to match the new maximum number of options that you 305 * can generate. 306 */ 307 static void tcp_syn_build_options(__u32 *ptr, int mss, int ts, int sack, 308 int offer_wscale, int wscale, __u32 tstamp, 309 __u32 ts_recent) 310 { 311 /* We always get an MSS option. 312 * The option bytes which will be seen in normal data 313 * packets should timestamps be used, must be in the MSS 314 * advertised. But we subtract them from tp->mss_cache so 315 * that calculations in tcp_sendmsg are simpler etc. 316 * So account for this fact here if necessary. If we 317 * don't do this correctly, as a receiver we won't 318 * recognize data packets as being full sized when we 319 * should, and thus we won't abide by the delayed ACK 320 * rules correctly. 321 * SACKs don't matter, we never delay an ACK when we 322 * have any of those going out. 323 */ 324 *ptr++ = htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss); 325 if (ts) { 326 if(sack) 327 *ptr++ = __constant_htonl((TCPOPT_SACK_PERM << 24) | (TCPOLEN_SACK_PERM << 16) | 328 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP); 329 else 330 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 331 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP); 332 *ptr++ = htonl(tstamp); /* TSVAL */ 333 *ptr++ = htonl(ts_recent); /* TSECR */ 334 } else if(sack) 335 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 336 (TCPOPT_SACK_PERM << 8) | TCPOLEN_SACK_PERM); 337 if (offer_wscale) 338 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_WINDOW << 16) | (TCPOLEN_WINDOW << 8) | (wscale)); 339 } 340 341 /* This routine actually transmits TCP packets queued in by 342 * tcp_do_sendmsg(). This is used by both the initial 343 * transmission and possible later retransmissions. 344 * All SKB's seen here are completely headerless. It is our 345 * job to build the TCP header, and pass the packet down to 346 * IP so it can do the same plus pass the packet off to the 347 * device. 348 * 349 * We are working here with either a clone of the original 350 * SKB, or a fresh unique copy made by the retransmit engine. 351 */ 352 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, gfp_t gfp_mask) 353 { 354 const struct inet_connection_sock *icsk = inet_csk(sk); 355 struct inet_sock *inet; 356 struct tcp_sock *tp; 357 struct tcp_skb_cb *tcb; 358 int tcp_header_size; 359 struct tcphdr *th; 360 int sysctl_flags; 361 int err; 362 363 BUG_ON(!skb || !tcp_skb_pcount(skb)); 364 365 /* If congestion control is doing timestamping, we must 366 * take such a timestamp before we potentially clone/copy. 367 */ 368 if (icsk->icsk_ca_ops->rtt_sample) 369 __net_timestamp(skb); 370 371 if (likely(clone_it)) { 372 if (unlikely(skb_cloned(skb))) 373 skb = pskb_copy(skb, gfp_mask); 374 else 375 skb = skb_clone(skb, gfp_mask); 376 if (unlikely(!skb)) 377 return -ENOBUFS; 378 } 379 380 inet = inet_sk(sk); 381 tp = tcp_sk(sk); 382 tcb = TCP_SKB_CB(skb); 383 tcp_header_size = tp->tcp_header_len; 384 385 #define SYSCTL_FLAG_TSTAMPS 0x1 386 #define SYSCTL_FLAG_WSCALE 0x2 387 #define SYSCTL_FLAG_SACK 0x4 388 389 sysctl_flags = 0; 390 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { 391 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS; 392 if(sysctl_tcp_timestamps) { 393 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED; 394 sysctl_flags |= SYSCTL_FLAG_TSTAMPS; 395 } 396 if (sysctl_tcp_window_scaling) { 397 tcp_header_size += TCPOLEN_WSCALE_ALIGNED; 398 sysctl_flags |= SYSCTL_FLAG_WSCALE; 399 } 400 if (sysctl_tcp_sack) { 401 sysctl_flags |= SYSCTL_FLAG_SACK; 402 if (!(sysctl_flags & SYSCTL_FLAG_TSTAMPS)) 403 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED; 404 } 405 } else if (unlikely(tp->rx_opt.eff_sacks)) { 406 /* A SACK is 2 pad bytes, a 2 byte header, plus 407 * 2 32-bit sequence numbers for each SACK block. 408 */ 409 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED + 410 (tp->rx_opt.eff_sacks * 411 TCPOLEN_SACK_PERBLOCK)); 412 } 413 414 if (tcp_packets_in_flight(tp) == 0) 415 tcp_ca_event(sk, CA_EVENT_TX_START); 416 417 th = (struct tcphdr *) skb_push(skb, tcp_header_size); 418 skb->h.th = th; 419 skb_set_owner_w(skb, sk); 420 421 /* Build TCP header and checksum it. */ 422 th->source = inet->sport; 423 th->dest = inet->dport; 424 th->seq = htonl(tcb->seq); 425 th->ack_seq = htonl(tp->rcv_nxt); 426 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 427 tcb->flags); 428 429 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { 430 /* RFC1323: The window in SYN & SYN/ACK segments 431 * is never scaled. 432 */ 433 th->window = htons(tp->rcv_wnd); 434 } else { 435 th->window = htons(tcp_select_window(sk)); 436 } 437 th->check = 0; 438 th->urg_ptr = 0; 439 440 if (unlikely(tp->urg_mode && 441 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF))) { 442 th->urg_ptr = htons(tp->snd_up-tcb->seq); 443 th->urg = 1; 444 } 445 446 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { 447 tcp_syn_build_options((__u32 *)(th + 1), 448 tcp_advertise_mss(sk), 449 (sysctl_flags & SYSCTL_FLAG_TSTAMPS), 450 (sysctl_flags & SYSCTL_FLAG_SACK), 451 (sysctl_flags & SYSCTL_FLAG_WSCALE), 452 tp->rx_opt.rcv_wscale, 453 tcb->when, 454 tp->rx_opt.ts_recent); 455 } else { 456 tcp_build_and_update_options((__u32 *)(th + 1), 457 tp, tcb->when); 458 TCP_ECN_send(sk, tp, skb, tcp_header_size); 459 } 460 461 icsk->icsk_af_ops->send_check(sk, skb->len, skb); 462 463 if (likely(tcb->flags & TCPCB_FLAG_ACK)) 464 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 465 466 if (skb->len != tcp_header_size) 467 tcp_event_data_sent(tp, skb, sk); 468 469 TCP_INC_STATS(TCP_MIB_OUTSEGS); 470 471 err = icsk->icsk_af_ops->queue_xmit(skb, 0); 472 if (likely(err <= 0)) 473 return err; 474 475 tcp_enter_cwr(sk); 476 477 /* NET_XMIT_CN is special. It does not guarantee, 478 * that this packet is lost. It tells that device 479 * is about to start to drop packets or already 480 * drops some packets of the same priority and 481 * invokes us to send less aggressively. 482 */ 483 return err == NET_XMIT_CN ? 0 : err; 484 485 #undef SYSCTL_FLAG_TSTAMPS 486 #undef SYSCTL_FLAG_WSCALE 487 #undef SYSCTL_FLAG_SACK 488 } 489 490 491 /* This routine just queue's the buffer 492 * 493 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 494 * otherwise socket can stall. 495 */ 496 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 497 { 498 struct tcp_sock *tp = tcp_sk(sk); 499 500 /* Advance write_seq and place onto the write_queue. */ 501 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 502 skb_header_release(skb); 503 __skb_queue_tail(&sk->sk_write_queue, skb); 504 sk_charge_skb(sk, skb); 505 506 /* Queue it, remembering where we must start sending. */ 507 if (sk->sk_send_head == NULL) 508 sk->sk_send_head = skb; 509 } 510 511 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now) 512 { 513 if (skb->len <= mss_now || !sk_can_gso(sk)) { 514 /* Avoid the costly divide in the normal 515 * non-TSO case. 516 */ 517 skb_shinfo(skb)->gso_segs = 1; 518 skb_shinfo(skb)->gso_size = 0; 519 skb_shinfo(skb)->gso_type = 0; 520 } else { 521 unsigned int factor; 522 523 factor = skb->len + (mss_now - 1); 524 factor /= mss_now; 525 skb_shinfo(skb)->gso_segs = factor; 526 skb_shinfo(skb)->gso_size = mss_now; 527 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 528 } 529 } 530 531 /* Function to create two new TCP segments. Shrinks the given segment 532 * to the specified size and appends a new segment with the rest of the 533 * packet to the list. This won't be called frequently, I hope. 534 * Remember, these are still headerless SKBs at this point. 535 */ 536 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now) 537 { 538 struct tcp_sock *tp = tcp_sk(sk); 539 struct sk_buff *buff; 540 int nsize, old_factor; 541 int nlen; 542 u16 flags; 543 544 BUG_ON(len > skb->len); 545 546 clear_all_retrans_hints(tp); 547 nsize = skb_headlen(skb) - len; 548 if (nsize < 0) 549 nsize = 0; 550 551 if (skb_cloned(skb) && 552 skb_is_nonlinear(skb) && 553 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 554 return -ENOMEM; 555 556 /* Get a new skb... force flag on. */ 557 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 558 if (buff == NULL) 559 return -ENOMEM; /* We'll just try again later. */ 560 561 sk_charge_skb(sk, buff); 562 nlen = skb->len - len - nsize; 563 buff->truesize += nlen; 564 skb->truesize -= nlen; 565 566 /* Correct the sequence numbers. */ 567 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 568 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 569 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 570 571 /* PSH and FIN should only be set in the second packet. */ 572 flags = TCP_SKB_CB(skb)->flags; 573 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 574 TCP_SKB_CB(buff)->flags = flags; 575 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 576 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL; 577 578 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) { 579 /* Copy and checksum data tail into the new buffer. */ 580 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize), 581 nsize, 0); 582 583 skb_trim(skb, len); 584 585 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 586 } else { 587 skb->ip_summed = CHECKSUM_HW; 588 skb_split(skb, buff, len); 589 } 590 591 buff->ip_summed = skb->ip_summed; 592 593 /* Looks stupid, but our code really uses when of 594 * skbs, which it never sent before. --ANK 595 */ 596 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 597 buff->tstamp = skb->tstamp; 598 599 old_factor = tcp_skb_pcount(skb); 600 601 /* Fix up tso_factor for both original and new SKB. */ 602 tcp_set_skb_tso_segs(sk, skb, mss_now); 603 tcp_set_skb_tso_segs(sk, buff, mss_now); 604 605 /* If this packet has been sent out already, we must 606 * adjust the various packet counters. 607 */ 608 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 609 int diff = old_factor - tcp_skb_pcount(skb) - 610 tcp_skb_pcount(buff); 611 612 tp->packets_out -= diff; 613 614 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 615 tp->sacked_out -= diff; 616 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 617 tp->retrans_out -= diff; 618 619 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { 620 tp->lost_out -= diff; 621 tp->left_out -= diff; 622 } 623 624 if (diff > 0) { 625 /* Adjust Reno SACK estimate. */ 626 if (!tp->rx_opt.sack_ok) { 627 tp->sacked_out -= diff; 628 if ((int)tp->sacked_out < 0) 629 tp->sacked_out = 0; 630 tcp_sync_left_out(tp); 631 } 632 633 tp->fackets_out -= diff; 634 if ((int)tp->fackets_out < 0) 635 tp->fackets_out = 0; 636 } 637 } 638 639 /* Link BUFF into the send queue. */ 640 skb_header_release(buff); 641 __skb_append(skb, buff, &sk->sk_write_queue); 642 643 return 0; 644 } 645 646 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 647 * eventually). The difference is that pulled data not copied, but 648 * immediately discarded. 649 */ 650 static void __pskb_trim_head(struct sk_buff *skb, int len) 651 { 652 int i, k, eat; 653 654 eat = len; 655 k = 0; 656 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) { 657 if (skb_shinfo(skb)->frags[i].size <= eat) { 658 put_page(skb_shinfo(skb)->frags[i].page); 659 eat -= skb_shinfo(skb)->frags[i].size; 660 } else { 661 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 662 if (eat) { 663 skb_shinfo(skb)->frags[k].page_offset += eat; 664 skb_shinfo(skb)->frags[k].size -= eat; 665 eat = 0; 666 } 667 k++; 668 } 669 } 670 skb_shinfo(skb)->nr_frags = k; 671 672 skb->tail = skb->data; 673 skb->data_len -= len; 674 skb->len = skb->data_len; 675 } 676 677 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 678 { 679 if (skb_cloned(skb) && 680 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 681 return -ENOMEM; 682 683 /* If len == headlen, we avoid __skb_pull to preserve alignment. */ 684 if (unlikely(len < skb_headlen(skb))) 685 __skb_pull(skb, len); 686 else 687 __pskb_trim_head(skb, len - skb_headlen(skb)); 688 689 TCP_SKB_CB(skb)->seq += len; 690 skb->ip_summed = CHECKSUM_HW; 691 692 skb->truesize -= len; 693 sk->sk_wmem_queued -= len; 694 sk->sk_forward_alloc += len; 695 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 696 697 /* Any change of skb->len requires recalculation of tso 698 * factor and mss. 699 */ 700 if (tcp_skb_pcount(skb) > 1) 701 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1)); 702 703 return 0; 704 } 705 706 /* Not accounting for SACKs here. */ 707 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 708 { 709 struct tcp_sock *tp = tcp_sk(sk); 710 struct inet_connection_sock *icsk = inet_csk(sk); 711 int mss_now; 712 713 /* Calculate base mss without TCP options: 714 It is MMS_S - sizeof(tcphdr) of rfc1122 715 */ 716 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 717 718 /* Clamp it (mss_clamp does not include tcp options) */ 719 if (mss_now > tp->rx_opt.mss_clamp) 720 mss_now = tp->rx_opt.mss_clamp; 721 722 /* Now subtract optional transport overhead */ 723 mss_now -= icsk->icsk_ext_hdr_len; 724 725 /* Then reserve room for full set of TCP options and 8 bytes of data */ 726 if (mss_now < 48) 727 mss_now = 48; 728 729 /* Now subtract TCP options size, not including SACKs */ 730 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); 731 732 return mss_now; 733 } 734 735 /* Inverse of above */ 736 int tcp_mss_to_mtu(struct sock *sk, int mss) 737 { 738 struct tcp_sock *tp = tcp_sk(sk); 739 struct inet_connection_sock *icsk = inet_csk(sk); 740 int mtu; 741 742 mtu = mss + 743 tp->tcp_header_len + 744 icsk->icsk_ext_hdr_len + 745 icsk->icsk_af_ops->net_header_len; 746 747 return mtu; 748 } 749 750 void tcp_mtup_init(struct sock *sk) 751 { 752 struct tcp_sock *tp = tcp_sk(sk); 753 struct inet_connection_sock *icsk = inet_csk(sk); 754 755 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 756 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 757 icsk->icsk_af_ops->net_header_len; 758 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 759 icsk->icsk_mtup.probe_size = 0; 760 } 761 762 /* This function synchronize snd mss to current pmtu/exthdr set. 763 764 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 765 for TCP options, but includes only bare TCP header. 766 767 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 768 It is minimum of user_mss and mss received with SYN. 769 It also does not include TCP options. 770 771 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 772 773 tp->mss_cache is current effective sending mss, including 774 all tcp options except for SACKs. It is evaluated, 775 taking into account current pmtu, but never exceeds 776 tp->rx_opt.mss_clamp. 777 778 NOTE1. rfc1122 clearly states that advertised MSS 779 DOES NOT include either tcp or ip options. 780 781 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 782 are READ ONLY outside this function. --ANK (980731) 783 */ 784 785 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 786 { 787 struct tcp_sock *tp = tcp_sk(sk); 788 struct inet_connection_sock *icsk = inet_csk(sk); 789 int mss_now; 790 791 if (icsk->icsk_mtup.search_high > pmtu) 792 icsk->icsk_mtup.search_high = pmtu; 793 794 mss_now = tcp_mtu_to_mss(sk, pmtu); 795 796 /* Bound mss with half of window */ 797 if (tp->max_window && mss_now > (tp->max_window>>1)) 798 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len); 799 800 /* And store cached results */ 801 icsk->icsk_pmtu_cookie = pmtu; 802 if (icsk->icsk_mtup.enabled) 803 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 804 tp->mss_cache = mss_now; 805 806 return mss_now; 807 } 808 809 /* Compute the current effective MSS, taking SACKs and IP options, 810 * and even PMTU discovery events into account. 811 * 812 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up 813 * cannot be large. However, taking into account rare use of URG, this 814 * is not a big flaw. 815 */ 816 unsigned int tcp_current_mss(struct sock *sk, int large_allowed) 817 { 818 struct tcp_sock *tp = tcp_sk(sk); 819 struct dst_entry *dst = __sk_dst_get(sk); 820 u32 mss_now; 821 u16 xmit_size_goal; 822 int doing_tso = 0; 823 824 mss_now = tp->mss_cache; 825 826 if (large_allowed && sk_can_gso(sk) && !tp->urg_mode) 827 doing_tso = 1; 828 829 if (dst) { 830 u32 mtu = dst_mtu(dst); 831 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 832 mss_now = tcp_sync_mss(sk, mtu); 833 } 834 835 if (tp->rx_opt.eff_sacks) 836 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED + 837 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); 838 839 xmit_size_goal = mss_now; 840 841 if (doing_tso) { 842 xmit_size_goal = (65535 - 843 inet_csk(sk)->icsk_af_ops->net_header_len - 844 inet_csk(sk)->icsk_ext_hdr_len - 845 tp->tcp_header_len); 846 847 if (tp->max_window && 848 (xmit_size_goal > (tp->max_window >> 1))) 849 xmit_size_goal = max((tp->max_window >> 1), 850 68U - tp->tcp_header_len); 851 852 xmit_size_goal -= (xmit_size_goal % mss_now); 853 } 854 tp->xmit_size_goal = xmit_size_goal; 855 856 return mss_now; 857 } 858 859 /* Congestion window validation. (RFC2861) */ 860 861 static void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp) 862 { 863 __u32 packets_out = tp->packets_out; 864 865 if (packets_out >= tp->snd_cwnd) { 866 /* Network is feed fully. */ 867 tp->snd_cwnd_used = 0; 868 tp->snd_cwnd_stamp = tcp_time_stamp; 869 } else { 870 /* Network starves. */ 871 if (tp->packets_out > tp->snd_cwnd_used) 872 tp->snd_cwnd_used = tp->packets_out; 873 874 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 875 tcp_cwnd_application_limited(sk); 876 } 877 } 878 879 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd) 880 { 881 u32 window, cwnd_len; 882 883 window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq); 884 cwnd_len = mss_now * cwnd; 885 return min(window, cwnd_len); 886 } 887 888 /* Can at least one segment of SKB be sent right now, according to the 889 * congestion window rules? If so, return how many segments are allowed. 890 */ 891 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb) 892 { 893 u32 in_flight, cwnd; 894 895 /* Don't be strict about the congestion window for the final FIN. */ 896 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 897 return 1; 898 899 in_flight = tcp_packets_in_flight(tp); 900 cwnd = tp->snd_cwnd; 901 if (in_flight < cwnd) 902 return (cwnd - in_flight); 903 904 return 0; 905 } 906 907 /* This must be invoked the first time we consider transmitting 908 * SKB onto the wire. 909 */ 910 static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now) 911 { 912 int tso_segs = tcp_skb_pcount(skb); 913 914 if (!tso_segs || 915 (tso_segs > 1 && 916 tcp_skb_mss(skb) != mss_now)) { 917 tcp_set_skb_tso_segs(sk, skb, mss_now); 918 tso_segs = tcp_skb_pcount(skb); 919 } 920 return tso_segs; 921 } 922 923 static inline int tcp_minshall_check(const struct tcp_sock *tp) 924 { 925 return after(tp->snd_sml,tp->snd_una) && 926 !after(tp->snd_sml, tp->snd_nxt); 927 } 928 929 /* Return 0, if packet can be sent now without violation Nagle's rules: 930 * 1. It is full sized. 931 * 2. Or it contains FIN. (already checked by caller) 932 * 3. Or TCP_NODELAY was set. 933 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 934 * With Minshall's modification: all sent small packets are ACKed. 935 */ 936 937 static inline int tcp_nagle_check(const struct tcp_sock *tp, 938 const struct sk_buff *skb, 939 unsigned mss_now, int nonagle) 940 { 941 return (skb->len < mss_now && 942 ((nonagle&TCP_NAGLE_CORK) || 943 (!nonagle && 944 tp->packets_out && 945 tcp_minshall_check(tp)))); 946 } 947 948 /* Return non-zero if the Nagle test allows this packet to be 949 * sent now. 950 */ 951 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb, 952 unsigned int cur_mss, int nonagle) 953 { 954 /* Nagle rule does not apply to frames, which sit in the middle of the 955 * write_queue (they have no chances to get new data). 956 * 957 * This is implemented in the callers, where they modify the 'nonagle' 958 * argument based upon the location of SKB in the send queue. 959 */ 960 if (nonagle & TCP_NAGLE_PUSH) 961 return 1; 962 963 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 964 if (tp->urg_mode || 965 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) 966 return 1; 967 968 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 969 return 1; 970 971 return 0; 972 } 973 974 /* Does at least the first segment of SKB fit into the send window? */ 975 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss) 976 { 977 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 978 979 if (skb->len > cur_mss) 980 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 981 982 return !after(end_seq, tp->snd_una + tp->snd_wnd); 983 } 984 985 /* This checks if the data bearing packet SKB (usually sk->sk_send_head) 986 * should be put on the wire right now. If so, it returns the number of 987 * packets allowed by the congestion window. 988 */ 989 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb, 990 unsigned int cur_mss, int nonagle) 991 { 992 struct tcp_sock *tp = tcp_sk(sk); 993 unsigned int cwnd_quota; 994 995 tcp_init_tso_segs(sk, skb, cur_mss); 996 997 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 998 return 0; 999 1000 cwnd_quota = tcp_cwnd_test(tp, skb); 1001 if (cwnd_quota && 1002 !tcp_snd_wnd_test(tp, skb, cur_mss)) 1003 cwnd_quota = 0; 1004 1005 return cwnd_quota; 1006 } 1007 1008 static inline int tcp_skb_is_last(const struct sock *sk, 1009 const struct sk_buff *skb) 1010 { 1011 return skb->next == (struct sk_buff *)&sk->sk_write_queue; 1012 } 1013 1014 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp) 1015 { 1016 struct sk_buff *skb = sk->sk_send_head; 1017 1018 return (skb && 1019 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1), 1020 (tcp_skb_is_last(sk, skb) ? 1021 TCP_NAGLE_PUSH : 1022 tp->nonagle))); 1023 } 1024 1025 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1026 * which is put after SKB on the list. It is very much like 1027 * tcp_fragment() except that it may make several kinds of assumptions 1028 * in order to speed up the splitting operation. In particular, we 1029 * know that all the data is in scatter-gather pages, and that the 1030 * packet has never been sent out before (and thus is not cloned). 1031 */ 1032 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now) 1033 { 1034 struct sk_buff *buff; 1035 int nlen = skb->len - len; 1036 u16 flags; 1037 1038 /* All of a TSO frame must be composed of paged data. */ 1039 if (skb->len != skb->data_len) 1040 return tcp_fragment(sk, skb, len, mss_now); 1041 1042 buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC); 1043 if (unlikely(buff == NULL)) 1044 return -ENOMEM; 1045 1046 sk_charge_skb(sk, buff); 1047 buff->truesize += nlen; 1048 skb->truesize -= nlen; 1049 1050 /* Correct the sequence numbers. */ 1051 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1052 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1053 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1054 1055 /* PSH and FIN should only be set in the second packet. */ 1056 flags = TCP_SKB_CB(skb)->flags; 1057 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 1058 TCP_SKB_CB(buff)->flags = flags; 1059 1060 /* This packet was never sent out yet, so no SACK bits. */ 1061 TCP_SKB_CB(buff)->sacked = 0; 1062 1063 buff->ip_summed = skb->ip_summed = CHECKSUM_HW; 1064 skb_split(skb, buff, len); 1065 1066 /* Fix up tso_factor for both original and new SKB. */ 1067 tcp_set_skb_tso_segs(sk, skb, mss_now); 1068 tcp_set_skb_tso_segs(sk, buff, mss_now); 1069 1070 /* Link BUFF into the send queue. */ 1071 skb_header_release(buff); 1072 __skb_append(skb, buff, &sk->sk_write_queue); 1073 1074 return 0; 1075 } 1076 1077 /* Try to defer sending, if possible, in order to minimize the amount 1078 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1079 * 1080 * This algorithm is from John Heffner. 1081 */ 1082 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 1083 { 1084 const struct inet_connection_sock *icsk = inet_csk(sk); 1085 u32 send_win, cong_win, limit, in_flight; 1086 1087 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 1088 return 0; 1089 1090 if (icsk->icsk_ca_state != TCP_CA_Open) 1091 return 0; 1092 1093 in_flight = tcp_packets_in_flight(tp); 1094 1095 BUG_ON(tcp_skb_pcount(skb) <= 1 || 1096 (tp->snd_cwnd <= in_flight)); 1097 1098 send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq; 1099 1100 /* From in_flight test above, we know that cwnd > in_flight. */ 1101 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1102 1103 limit = min(send_win, cong_win); 1104 1105 /* If a full-sized TSO skb can be sent, do it. */ 1106 if (limit >= 65536) 1107 return 0; 1108 1109 if (sysctl_tcp_tso_win_divisor) { 1110 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1111 1112 /* If at least some fraction of a window is available, 1113 * just use it. 1114 */ 1115 chunk /= sysctl_tcp_tso_win_divisor; 1116 if (limit >= chunk) 1117 return 0; 1118 } else { 1119 /* Different approach, try not to defer past a single 1120 * ACK. Receiver should ACK every other full sized 1121 * frame, so if we have space for more than 3 frames 1122 * then send now. 1123 */ 1124 if (limit > tcp_max_burst(tp) * tp->mss_cache) 1125 return 0; 1126 } 1127 1128 /* Ok, it looks like it is advisable to defer. */ 1129 return 1; 1130 } 1131 1132 /* Create a new MTU probe if we are ready. 1133 * Returns 0 if we should wait to probe (no cwnd available), 1134 * 1 if a probe was sent, 1135 * -1 otherwise */ 1136 static int tcp_mtu_probe(struct sock *sk) 1137 { 1138 struct tcp_sock *tp = tcp_sk(sk); 1139 struct inet_connection_sock *icsk = inet_csk(sk); 1140 struct sk_buff *skb, *nskb, *next; 1141 int len; 1142 int probe_size; 1143 unsigned int pif; 1144 int copy; 1145 int mss_now; 1146 1147 /* Not currently probing/verifying, 1148 * not in recovery, 1149 * have enough cwnd, and 1150 * not SACKing (the variable headers throw things off) */ 1151 if (!icsk->icsk_mtup.enabled || 1152 icsk->icsk_mtup.probe_size || 1153 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1154 tp->snd_cwnd < 11 || 1155 tp->rx_opt.eff_sacks) 1156 return -1; 1157 1158 /* Very simple search strategy: just double the MSS. */ 1159 mss_now = tcp_current_mss(sk, 0); 1160 probe_size = 2*tp->mss_cache; 1161 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1162 /* TODO: set timer for probe_converge_event */ 1163 return -1; 1164 } 1165 1166 /* Have enough data in the send queue to probe? */ 1167 len = 0; 1168 if ((skb = sk->sk_send_head) == NULL) 1169 return -1; 1170 while ((len += skb->len) < probe_size && !tcp_skb_is_last(sk, skb)) 1171 skb = skb->next; 1172 if (len < probe_size) 1173 return -1; 1174 1175 /* Receive window check. */ 1176 if (after(TCP_SKB_CB(skb)->seq + probe_size, tp->snd_una + tp->snd_wnd)) { 1177 if (tp->snd_wnd < probe_size) 1178 return -1; 1179 else 1180 return 0; 1181 } 1182 1183 /* Do we need to wait to drain cwnd? */ 1184 pif = tcp_packets_in_flight(tp); 1185 if (pif + 2 > tp->snd_cwnd) { 1186 /* With no packets in flight, don't stall. */ 1187 if (pif == 0) 1188 return -1; 1189 else 1190 return 0; 1191 } 1192 1193 /* We're allowed to probe. Build it now. */ 1194 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1195 return -1; 1196 sk_charge_skb(sk, nskb); 1197 1198 skb = sk->sk_send_head; 1199 __skb_insert(nskb, skb->prev, skb, &sk->sk_write_queue); 1200 sk->sk_send_head = nskb; 1201 1202 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1203 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1204 TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK; 1205 TCP_SKB_CB(nskb)->sacked = 0; 1206 nskb->csum = 0; 1207 if (skb->ip_summed == CHECKSUM_HW) 1208 nskb->ip_summed = CHECKSUM_HW; 1209 1210 len = 0; 1211 while (len < probe_size) { 1212 next = skb->next; 1213 1214 copy = min_t(int, skb->len, probe_size - len); 1215 if (nskb->ip_summed) 1216 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1217 else 1218 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1219 skb_put(nskb, copy), copy, nskb->csum); 1220 1221 if (skb->len <= copy) { 1222 /* We've eaten all the data from this skb. 1223 * Throw it away. */ 1224 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags; 1225 __skb_unlink(skb, &sk->sk_write_queue); 1226 sk_stream_free_skb(sk, skb); 1227 } else { 1228 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags & 1229 ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 1230 if (!skb_shinfo(skb)->nr_frags) { 1231 skb_pull(skb, copy); 1232 if (skb->ip_summed != CHECKSUM_HW) 1233 skb->csum = csum_partial(skb->data, skb->len, 0); 1234 } else { 1235 __pskb_trim_head(skb, copy); 1236 tcp_set_skb_tso_segs(sk, skb, mss_now); 1237 } 1238 TCP_SKB_CB(skb)->seq += copy; 1239 } 1240 1241 len += copy; 1242 skb = next; 1243 } 1244 tcp_init_tso_segs(sk, nskb, nskb->len); 1245 1246 /* We're ready to send. If this fails, the probe will 1247 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1248 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1249 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1250 /* Decrement cwnd here because we are sending 1251 * effectively two packets. */ 1252 tp->snd_cwnd--; 1253 update_send_head(sk, tp, nskb); 1254 1255 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1256 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1257 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1258 1259 return 1; 1260 } 1261 1262 return -1; 1263 } 1264 1265 1266 /* This routine writes packets to the network. It advances the 1267 * send_head. This happens as incoming acks open up the remote 1268 * window for us. 1269 * 1270 * Returns 1, if no segments are in flight and we have queued segments, but 1271 * cannot send anything now because of SWS or another problem. 1272 */ 1273 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle) 1274 { 1275 struct tcp_sock *tp = tcp_sk(sk); 1276 struct sk_buff *skb; 1277 unsigned int tso_segs, sent_pkts; 1278 int cwnd_quota; 1279 int result; 1280 1281 /* If we are closed, the bytes will have to remain here. 1282 * In time closedown will finish, we empty the write queue and all 1283 * will be happy. 1284 */ 1285 if (unlikely(sk->sk_state == TCP_CLOSE)) 1286 return 0; 1287 1288 sent_pkts = 0; 1289 1290 /* Do MTU probing. */ 1291 if ((result = tcp_mtu_probe(sk)) == 0) { 1292 return 0; 1293 } else if (result > 0) { 1294 sent_pkts = 1; 1295 } 1296 1297 while ((skb = sk->sk_send_head)) { 1298 unsigned int limit; 1299 1300 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1301 BUG_ON(!tso_segs); 1302 1303 cwnd_quota = tcp_cwnd_test(tp, skb); 1304 if (!cwnd_quota) 1305 break; 1306 1307 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1308 break; 1309 1310 if (tso_segs == 1) { 1311 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1312 (tcp_skb_is_last(sk, skb) ? 1313 nonagle : TCP_NAGLE_PUSH)))) 1314 break; 1315 } else { 1316 if (tcp_tso_should_defer(sk, tp, skb)) 1317 break; 1318 } 1319 1320 limit = mss_now; 1321 if (tso_segs > 1) { 1322 limit = tcp_window_allows(tp, skb, 1323 mss_now, cwnd_quota); 1324 1325 if (skb->len < limit) { 1326 unsigned int trim = skb->len % mss_now; 1327 1328 if (trim) 1329 limit = skb->len - trim; 1330 } 1331 } 1332 1333 if (skb->len > limit && 1334 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1335 break; 1336 1337 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1338 1339 if (unlikely(tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC))) 1340 break; 1341 1342 /* Advance the send_head. This one is sent out. 1343 * This call will increment packets_out. 1344 */ 1345 update_send_head(sk, tp, skb); 1346 1347 tcp_minshall_update(tp, mss_now, skb); 1348 sent_pkts++; 1349 } 1350 1351 if (likely(sent_pkts)) { 1352 tcp_cwnd_validate(sk, tp); 1353 return 0; 1354 } 1355 return !tp->packets_out && sk->sk_send_head; 1356 } 1357 1358 /* Push out any pending frames which were held back due to 1359 * TCP_CORK or attempt at coalescing tiny packets. 1360 * The socket must be locked by the caller. 1361 */ 1362 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp, 1363 unsigned int cur_mss, int nonagle) 1364 { 1365 struct sk_buff *skb = sk->sk_send_head; 1366 1367 if (skb) { 1368 if (tcp_write_xmit(sk, cur_mss, nonagle)) 1369 tcp_check_probe_timer(sk, tp); 1370 } 1371 } 1372 1373 /* Send _single_ skb sitting at the send head. This function requires 1374 * true push pending frames to setup probe timer etc. 1375 */ 1376 void tcp_push_one(struct sock *sk, unsigned int mss_now) 1377 { 1378 struct tcp_sock *tp = tcp_sk(sk); 1379 struct sk_buff *skb = sk->sk_send_head; 1380 unsigned int tso_segs, cwnd_quota; 1381 1382 BUG_ON(!skb || skb->len < mss_now); 1383 1384 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1385 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH); 1386 1387 if (likely(cwnd_quota)) { 1388 unsigned int limit; 1389 1390 BUG_ON(!tso_segs); 1391 1392 limit = mss_now; 1393 if (tso_segs > 1) { 1394 limit = tcp_window_allows(tp, skb, 1395 mss_now, cwnd_quota); 1396 1397 if (skb->len < limit) { 1398 unsigned int trim = skb->len % mss_now; 1399 1400 if (trim) 1401 limit = skb->len - trim; 1402 } 1403 } 1404 1405 if (skb->len > limit && 1406 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1407 return; 1408 1409 /* Send it out now. */ 1410 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1411 1412 if (likely(!tcp_transmit_skb(sk, skb, 1, sk->sk_allocation))) { 1413 update_send_head(sk, tp, skb); 1414 tcp_cwnd_validate(sk, tp); 1415 return; 1416 } 1417 } 1418 } 1419 1420 /* This function returns the amount that we can raise the 1421 * usable window based on the following constraints 1422 * 1423 * 1. The window can never be shrunk once it is offered (RFC 793) 1424 * 2. We limit memory per socket 1425 * 1426 * RFC 1122: 1427 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 1428 * RECV.NEXT + RCV.WIN fixed until: 1429 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 1430 * 1431 * i.e. don't raise the right edge of the window until you can raise 1432 * it at least MSS bytes. 1433 * 1434 * Unfortunately, the recommended algorithm breaks header prediction, 1435 * since header prediction assumes th->window stays fixed. 1436 * 1437 * Strictly speaking, keeping th->window fixed violates the receiver 1438 * side SWS prevention criteria. The problem is that under this rule 1439 * a stream of single byte packets will cause the right side of the 1440 * window to always advance by a single byte. 1441 * 1442 * Of course, if the sender implements sender side SWS prevention 1443 * then this will not be a problem. 1444 * 1445 * BSD seems to make the following compromise: 1446 * 1447 * If the free space is less than the 1/4 of the maximum 1448 * space available and the free space is less than 1/2 mss, 1449 * then set the window to 0. 1450 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 1451 * Otherwise, just prevent the window from shrinking 1452 * and from being larger than the largest representable value. 1453 * 1454 * This prevents incremental opening of the window in the regime 1455 * where TCP is limited by the speed of the reader side taking 1456 * data out of the TCP receive queue. It does nothing about 1457 * those cases where the window is constrained on the sender side 1458 * because the pipeline is full. 1459 * 1460 * BSD also seems to "accidentally" limit itself to windows that are a 1461 * multiple of MSS, at least until the free space gets quite small. 1462 * This would appear to be a side effect of the mbuf implementation. 1463 * Combining these two algorithms results in the observed behavior 1464 * of having a fixed window size at almost all times. 1465 * 1466 * Below we obtain similar behavior by forcing the offered window to 1467 * a multiple of the mss when it is feasible to do so. 1468 * 1469 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 1470 * Regular options like TIMESTAMP are taken into account. 1471 */ 1472 u32 __tcp_select_window(struct sock *sk) 1473 { 1474 struct inet_connection_sock *icsk = inet_csk(sk); 1475 struct tcp_sock *tp = tcp_sk(sk); 1476 /* MSS for the peer's data. Previous versions used mss_clamp 1477 * here. I don't know if the value based on our guesses 1478 * of peer's MSS is better for the performance. It's more correct 1479 * but may be worse for the performance because of rcv_mss 1480 * fluctuations. --SAW 1998/11/1 1481 */ 1482 int mss = icsk->icsk_ack.rcv_mss; 1483 int free_space = tcp_space(sk); 1484 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 1485 int window; 1486 1487 if (mss > full_space) 1488 mss = full_space; 1489 1490 if (free_space < full_space/2) { 1491 icsk->icsk_ack.quick = 0; 1492 1493 if (tcp_memory_pressure) 1494 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss); 1495 1496 if (free_space < mss) 1497 return 0; 1498 } 1499 1500 if (free_space > tp->rcv_ssthresh) 1501 free_space = tp->rcv_ssthresh; 1502 1503 /* Don't do rounding if we are using window scaling, since the 1504 * scaled window will not line up with the MSS boundary anyway. 1505 */ 1506 window = tp->rcv_wnd; 1507 if (tp->rx_opt.rcv_wscale) { 1508 window = free_space; 1509 1510 /* Advertise enough space so that it won't get scaled away. 1511 * Import case: prevent zero window announcement if 1512 * 1<<rcv_wscale > mss. 1513 */ 1514 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 1515 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 1516 << tp->rx_opt.rcv_wscale); 1517 } else { 1518 /* Get the largest window that is a nice multiple of mss. 1519 * Window clamp already applied above. 1520 * If our current window offering is within 1 mss of the 1521 * free space we just keep it. This prevents the divide 1522 * and multiply from happening most of the time. 1523 * We also don't do any window rounding when the free space 1524 * is too small. 1525 */ 1526 if (window <= free_space - mss || window > free_space) 1527 window = (free_space/mss)*mss; 1528 } 1529 1530 return window; 1531 } 1532 1533 /* Attempt to collapse two adjacent SKB's during retransmission. */ 1534 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now) 1535 { 1536 struct tcp_sock *tp = tcp_sk(sk); 1537 struct sk_buff *next_skb = skb->next; 1538 1539 /* The first test we must make is that neither of these two 1540 * SKB's are still referenced by someone else. 1541 */ 1542 if (!skb_cloned(skb) && !skb_cloned(next_skb)) { 1543 int skb_size = skb->len, next_skb_size = next_skb->len; 1544 u16 flags = TCP_SKB_CB(skb)->flags; 1545 1546 /* Also punt if next skb has been SACK'd. */ 1547 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) 1548 return; 1549 1550 /* Next skb is out of window. */ 1551 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd)) 1552 return; 1553 1554 /* Punt if not enough space exists in the first SKB for 1555 * the data in the second, or the total combined payload 1556 * would exceed the MSS. 1557 */ 1558 if ((next_skb_size > skb_tailroom(skb)) || 1559 ((skb_size + next_skb_size) > mss_now)) 1560 return; 1561 1562 BUG_ON(tcp_skb_pcount(skb) != 1 || 1563 tcp_skb_pcount(next_skb) != 1); 1564 1565 /* changing transmit queue under us so clear hints */ 1566 clear_all_retrans_hints(tp); 1567 1568 /* Ok. We will be able to collapse the packet. */ 1569 __skb_unlink(next_skb, &sk->sk_write_queue); 1570 1571 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size); 1572 1573 if (next_skb->ip_summed == CHECKSUM_HW) 1574 skb->ip_summed = CHECKSUM_HW; 1575 1576 if (skb->ip_summed != CHECKSUM_HW) 1577 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 1578 1579 /* Update sequence range on original skb. */ 1580 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 1581 1582 /* Merge over control information. */ 1583 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ 1584 TCP_SKB_CB(skb)->flags = flags; 1585 1586 /* All done, get rid of second SKB and account for it so 1587 * packet counting does not break. 1588 */ 1589 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL); 1590 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS) 1591 tp->retrans_out -= tcp_skb_pcount(next_skb); 1592 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) { 1593 tp->lost_out -= tcp_skb_pcount(next_skb); 1594 tp->left_out -= tcp_skb_pcount(next_skb); 1595 } 1596 /* Reno case is special. Sigh... */ 1597 if (!tp->rx_opt.sack_ok && tp->sacked_out) { 1598 tcp_dec_pcount_approx(&tp->sacked_out, next_skb); 1599 tp->left_out -= tcp_skb_pcount(next_skb); 1600 } 1601 1602 /* Not quite right: it can be > snd.fack, but 1603 * it is better to underestimate fackets. 1604 */ 1605 tcp_dec_pcount_approx(&tp->fackets_out, next_skb); 1606 tcp_packets_out_dec(tp, next_skb); 1607 sk_stream_free_skb(sk, next_skb); 1608 } 1609 } 1610 1611 /* Do a simple retransmit without using the backoff mechanisms in 1612 * tcp_timer. This is used for path mtu discovery. 1613 * The socket is already locked here. 1614 */ 1615 void tcp_simple_retransmit(struct sock *sk) 1616 { 1617 const struct inet_connection_sock *icsk = inet_csk(sk); 1618 struct tcp_sock *tp = tcp_sk(sk); 1619 struct sk_buff *skb; 1620 unsigned int mss = tcp_current_mss(sk, 0); 1621 int lost = 0; 1622 1623 sk_stream_for_retrans_queue(skb, sk) { 1624 if (skb->len > mss && 1625 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1626 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { 1627 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1628 tp->retrans_out -= tcp_skb_pcount(skb); 1629 } 1630 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) { 1631 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1632 tp->lost_out += tcp_skb_pcount(skb); 1633 lost = 1; 1634 } 1635 } 1636 } 1637 1638 clear_all_retrans_hints(tp); 1639 1640 if (!lost) 1641 return; 1642 1643 tcp_sync_left_out(tp); 1644 1645 /* Don't muck with the congestion window here. 1646 * Reason is that we do not increase amount of _data_ 1647 * in network, but units changed and effective 1648 * cwnd/ssthresh really reduced now. 1649 */ 1650 if (icsk->icsk_ca_state != TCP_CA_Loss) { 1651 tp->high_seq = tp->snd_nxt; 1652 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1653 tp->prior_ssthresh = 0; 1654 tp->undo_marker = 0; 1655 tcp_set_ca_state(sk, TCP_CA_Loss); 1656 } 1657 tcp_xmit_retransmit_queue(sk); 1658 } 1659 1660 /* This retransmits one SKB. Policy decisions and retransmit queue 1661 * state updates are done by the caller. Returns non-zero if an 1662 * error occurred which prevented the send. 1663 */ 1664 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 1665 { 1666 struct tcp_sock *tp = tcp_sk(sk); 1667 struct inet_connection_sock *icsk = inet_csk(sk); 1668 unsigned int cur_mss = tcp_current_mss(sk, 0); 1669 int err; 1670 1671 /* Inconslusive MTU probe */ 1672 if (icsk->icsk_mtup.probe_size) { 1673 icsk->icsk_mtup.probe_size = 0; 1674 } 1675 1676 /* Do not sent more than we queued. 1/4 is reserved for possible 1677 * copying overhead: fragmentation, tunneling, mangling etc. 1678 */ 1679 if (atomic_read(&sk->sk_wmem_alloc) > 1680 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 1681 return -EAGAIN; 1682 1683 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 1684 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1685 BUG(); 1686 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 1687 return -ENOMEM; 1688 } 1689 1690 /* If receiver has shrunk his window, and skb is out of 1691 * new window, do not retransmit it. The exception is the 1692 * case, when window is shrunk to zero. In this case 1693 * our retransmit serves as a zero window probe. 1694 */ 1695 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd) 1696 && TCP_SKB_CB(skb)->seq != tp->snd_una) 1697 return -EAGAIN; 1698 1699 if (skb->len > cur_mss) { 1700 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 1701 return -ENOMEM; /* We'll try again later. */ 1702 } 1703 1704 /* Collapse two adjacent packets if worthwhile and we can. */ 1705 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && 1706 (skb->len < (cur_mss >> 1)) && 1707 (skb->next != sk->sk_send_head) && 1708 (skb->next != (struct sk_buff *)&sk->sk_write_queue) && 1709 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) && 1710 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) && 1711 (sysctl_tcp_retrans_collapse != 0)) 1712 tcp_retrans_try_collapse(sk, skb, cur_mss); 1713 1714 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 1715 return -EHOSTUNREACH; /* Routing failure or similar. */ 1716 1717 /* Some Solaris stacks overoptimize and ignore the FIN on a 1718 * retransmit when old data is attached. So strip it off 1719 * since it is cheap to do so and saves bytes on the network. 1720 */ 1721 if(skb->len > 0 && 1722 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && 1723 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 1724 if (!pskb_trim(skb, 0)) { 1725 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1; 1726 skb_shinfo(skb)->gso_segs = 1; 1727 skb_shinfo(skb)->gso_size = 0; 1728 skb_shinfo(skb)->gso_type = 0; 1729 skb->ip_summed = CHECKSUM_NONE; 1730 skb->csum = 0; 1731 } 1732 } 1733 1734 /* Make a copy, if the first transmission SKB clone we made 1735 * is still in somebody's hands, else make a clone. 1736 */ 1737 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1738 1739 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 1740 1741 if (err == 0) { 1742 /* Update global TCP statistics. */ 1743 TCP_INC_STATS(TCP_MIB_RETRANSSEGS); 1744 1745 tp->total_retrans++; 1746 1747 #if FASTRETRANS_DEBUG > 0 1748 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { 1749 if (net_ratelimit()) 1750 printk(KERN_DEBUG "retrans_out leaked.\n"); 1751 } 1752 #endif 1753 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 1754 tp->retrans_out += tcp_skb_pcount(skb); 1755 1756 /* Save stamp of the first retransmit. */ 1757 if (!tp->retrans_stamp) 1758 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 1759 1760 tp->undo_retrans++; 1761 1762 /* snd_nxt is stored to detect loss of retransmitted segment, 1763 * see tcp_input.c tcp_sacktag_write_queue(). 1764 */ 1765 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 1766 } 1767 return err; 1768 } 1769 1770 /* This gets called after a retransmit timeout, and the initially 1771 * retransmitted data is acknowledged. It tries to continue 1772 * resending the rest of the retransmit queue, until either 1773 * we've sent it all or the congestion window limit is reached. 1774 * If doing SACK, the first ACK which comes back for a timeout 1775 * based retransmit packet might feed us FACK information again. 1776 * If so, we use it to avoid unnecessarily retransmissions. 1777 */ 1778 void tcp_xmit_retransmit_queue(struct sock *sk) 1779 { 1780 const struct inet_connection_sock *icsk = inet_csk(sk); 1781 struct tcp_sock *tp = tcp_sk(sk); 1782 struct sk_buff *skb; 1783 int packet_cnt; 1784 1785 if (tp->retransmit_skb_hint) { 1786 skb = tp->retransmit_skb_hint; 1787 packet_cnt = tp->retransmit_cnt_hint; 1788 }else{ 1789 skb = sk->sk_write_queue.next; 1790 packet_cnt = 0; 1791 } 1792 1793 /* First pass: retransmit lost packets. */ 1794 if (tp->lost_out) { 1795 sk_stream_for_retrans_queue_from(skb, sk) { 1796 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1797 1798 /* we could do better than to assign each time */ 1799 tp->retransmit_skb_hint = skb; 1800 tp->retransmit_cnt_hint = packet_cnt; 1801 1802 /* Assume this retransmit will generate 1803 * only one packet for congestion window 1804 * calculation purposes. This works because 1805 * tcp_retransmit_skb() will chop up the 1806 * packet to be MSS sized and all the 1807 * packet counting works out. 1808 */ 1809 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 1810 return; 1811 1812 if (sacked & TCPCB_LOST) { 1813 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) { 1814 if (tcp_retransmit_skb(sk, skb)) { 1815 tp->retransmit_skb_hint = NULL; 1816 return; 1817 } 1818 if (icsk->icsk_ca_state != TCP_CA_Loss) 1819 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS); 1820 else 1821 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS); 1822 1823 if (skb == 1824 skb_peek(&sk->sk_write_queue)) 1825 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1826 inet_csk(sk)->icsk_rto, 1827 TCP_RTO_MAX); 1828 } 1829 1830 packet_cnt += tcp_skb_pcount(skb); 1831 if (packet_cnt >= tp->lost_out) 1832 break; 1833 } 1834 } 1835 } 1836 1837 /* OK, demanded retransmission is finished. */ 1838 1839 /* Forward retransmissions are possible only during Recovery. */ 1840 if (icsk->icsk_ca_state != TCP_CA_Recovery) 1841 return; 1842 1843 /* No forward retransmissions in Reno are possible. */ 1844 if (!tp->rx_opt.sack_ok) 1845 return; 1846 1847 /* Yeah, we have to make difficult choice between forward transmission 1848 * and retransmission... Both ways have their merits... 1849 * 1850 * For now we do not retransmit anything, while we have some new 1851 * segments to send. 1852 */ 1853 1854 if (tcp_may_send_now(sk, tp)) 1855 return; 1856 1857 if (tp->forward_skb_hint) { 1858 skb = tp->forward_skb_hint; 1859 packet_cnt = tp->forward_cnt_hint; 1860 } else{ 1861 skb = sk->sk_write_queue.next; 1862 packet_cnt = 0; 1863 } 1864 1865 sk_stream_for_retrans_queue_from(skb, sk) { 1866 tp->forward_cnt_hint = packet_cnt; 1867 tp->forward_skb_hint = skb; 1868 1869 /* Similar to the retransmit loop above we 1870 * can pretend that the retransmitted SKB 1871 * we send out here will be composed of one 1872 * real MSS sized packet because tcp_retransmit_skb() 1873 * will fragment it if necessary. 1874 */ 1875 if (++packet_cnt > tp->fackets_out) 1876 break; 1877 1878 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 1879 break; 1880 1881 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) 1882 continue; 1883 1884 /* Ok, retransmit it. */ 1885 if (tcp_retransmit_skb(sk, skb)) { 1886 tp->forward_skb_hint = NULL; 1887 break; 1888 } 1889 1890 if (skb == skb_peek(&sk->sk_write_queue)) 1891 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1892 inet_csk(sk)->icsk_rto, 1893 TCP_RTO_MAX); 1894 1895 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS); 1896 } 1897 } 1898 1899 1900 /* Send a fin. The caller locks the socket for us. This cannot be 1901 * allowed to fail queueing a FIN frame under any circumstances. 1902 */ 1903 void tcp_send_fin(struct sock *sk) 1904 { 1905 struct tcp_sock *tp = tcp_sk(sk); 1906 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue); 1907 int mss_now; 1908 1909 /* Optimization, tack on the FIN if we have a queue of 1910 * unsent frames. But be careful about outgoing SACKS 1911 * and IP options. 1912 */ 1913 mss_now = tcp_current_mss(sk, 1); 1914 1915 if (sk->sk_send_head != NULL) { 1916 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; 1917 TCP_SKB_CB(skb)->end_seq++; 1918 tp->write_seq++; 1919 } else { 1920 /* Socket is locked, keep trying until memory is available. */ 1921 for (;;) { 1922 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL); 1923 if (skb) 1924 break; 1925 yield(); 1926 } 1927 1928 /* Reserve space for headers and prepare control bits. */ 1929 skb_reserve(skb, MAX_TCP_HEADER); 1930 skb->csum = 0; 1931 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); 1932 TCP_SKB_CB(skb)->sacked = 0; 1933 skb_shinfo(skb)->gso_segs = 1; 1934 skb_shinfo(skb)->gso_size = 0; 1935 skb_shinfo(skb)->gso_type = 0; 1936 1937 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 1938 TCP_SKB_CB(skb)->seq = tp->write_seq; 1939 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; 1940 tcp_queue_skb(sk, skb); 1941 } 1942 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF); 1943 } 1944 1945 /* We get here when a process closes a file descriptor (either due to 1946 * an explicit close() or as a byproduct of exit()'ing) and there 1947 * was unread data in the receive queue. This behavior is recommended 1948 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM 1949 */ 1950 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 1951 { 1952 struct tcp_sock *tp = tcp_sk(sk); 1953 struct sk_buff *skb; 1954 1955 /* NOTE: No TCP options attached and we never retransmit this. */ 1956 skb = alloc_skb(MAX_TCP_HEADER, priority); 1957 if (!skb) { 1958 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); 1959 return; 1960 } 1961 1962 /* Reserve space for headers and prepare control bits. */ 1963 skb_reserve(skb, MAX_TCP_HEADER); 1964 skb->csum = 0; 1965 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST); 1966 TCP_SKB_CB(skb)->sacked = 0; 1967 skb_shinfo(skb)->gso_segs = 1; 1968 skb_shinfo(skb)->gso_size = 0; 1969 skb_shinfo(skb)->gso_type = 0; 1970 1971 /* Send it off. */ 1972 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp); 1973 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; 1974 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1975 if (tcp_transmit_skb(sk, skb, 0, priority)) 1976 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); 1977 } 1978 1979 /* WARNING: This routine must only be called when we have already sent 1980 * a SYN packet that crossed the incoming SYN that caused this routine 1981 * to get called. If this assumption fails then the initial rcv_wnd 1982 * and rcv_wscale values will not be correct. 1983 */ 1984 int tcp_send_synack(struct sock *sk) 1985 { 1986 struct sk_buff* skb; 1987 1988 skb = skb_peek(&sk->sk_write_queue); 1989 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) { 1990 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); 1991 return -EFAULT; 1992 } 1993 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) { 1994 if (skb_cloned(skb)) { 1995 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 1996 if (nskb == NULL) 1997 return -ENOMEM; 1998 __skb_unlink(skb, &sk->sk_write_queue); 1999 skb_header_release(nskb); 2000 __skb_queue_head(&sk->sk_write_queue, nskb); 2001 sk_stream_free_skb(sk, skb); 2002 sk_charge_skb(sk, nskb); 2003 skb = nskb; 2004 } 2005 2006 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; 2007 TCP_ECN_send_synack(tcp_sk(sk), skb); 2008 } 2009 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2010 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2011 } 2012 2013 /* 2014 * Prepare a SYN-ACK. 2015 */ 2016 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2017 struct request_sock *req) 2018 { 2019 struct inet_request_sock *ireq = inet_rsk(req); 2020 struct tcp_sock *tp = tcp_sk(sk); 2021 struct tcphdr *th; 2022 int tcp_header_size; 2023 struct sk_buff *skb; 2024 2025 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); 2026 if (skb == NULL) 2027 return NULL; 2028 2029 /* Reserve space for headers. */ 2030 skb_reserve(skb, MAX_TCP_HEADER); 2031 2032 skb->dst = dst_clone(dst); 2033 2034 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS + 2035 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) + 2036 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) + 2037 /* SACK_PERM is in the place of NOP NOP of TS */ 2038 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0)); 2039 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size); 2040 2041 memset(th, 0, sizeof(struct tcphdr)); 2042 th->syn = 1; 2043 th->ack = 1; 2044 TCP_ECN_make_synack(req, th); 2045 th->source = inet_sk(sk)->sport; 2046 th->dest = ireq->rmt_port; 2047 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn; 2048 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; 2049 TCP_SKB_CB(skb)->sacked = 0; 2050 skb_shinfo(skb)->gso_segs = 1; 2051 skb_shinfo(skb)->gso_size = 0; 2052 skb_shinfo(skb)->gso_type = 0; 2053 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2054 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); 2055 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 2056 __u8 rcv_wscale; 2057 /* Set this up on the first call only */ 2058 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 2059 /* tcp_full_space because it is guaranteed to be the first packet */ 2060 tcp_select_initial_window(tcp_full_space(sk), 2061 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 2062 &req->rcv_wnd, 2063 &req->window_clamp, 2064 ireq->wscale_ok, 2065 &rcv_wscale); 2066 ireq->rcv_wscale = rcv_wscale; 2067 } 2068 2069 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2070 th->window = htons(req->rcv_wnd); 2071 2072 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2073 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok, 2074 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale, 2075 TCP_SKB_CB(skb)->when, 2076 req->ts_recent); 2077 2078 skb->csum = 0; 2079 th->doff = (tcp_header_size >> 2); 2080 TCP_INC_STATS(TCP_MIB_OUTSEGS); 2081 return skb; 2082 } 2083 2084 /* 2085 * Do all connect socket setups that can be done AF independent. 2086 */ 2087 static void tcp_connect_init(struct sock *sk) 2088 { 2089 struct dst_entry *dst = __sk_dst_get(sk); 2090 struct tcp_sock *tp = tcp_sk(sk); 2091 __u8 rcv_wscale; 2092 2093 /* We'll fix this up when we get a response from the other end. 2094 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2095 */ 2096 tp->tcp_header_len = sizeof(struct tcphdr) + 2097 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2098 2099 /* If user gave his TCP_MAXSEG, record it to clamp */ 2100 if (tp->rx_opt.user_mss) 2101 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2102 tp->max_window = 0; 2103 tcp_mtup_init(sk); 2104 tcp_sync_mss(sk, dst_mtu(dst)); 2105 2106 if (!tp->window_clamp) 2107 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2108 tp->advmss = dst_metric(dst, RTAX_ADVMSS); 2109 tcp_initialize_rcv_mss(sk); 2110 2111 tcp_select_initial_window(tcp_full_space(sk), 2112 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2113 &tp->rcv_wnd, 2114 &tp->window_clamp, 2115 sysctl_tcp_window_scaling, 2116 &rcv_wscale); 2117 2118 tp->rx_opt.rcv_wscale = rcv_wscale; 2119 tp->rcv_ssthresh = tp->rcv_wnd; 2120 2121 sk->sk_err = 0; 2122 sock_reset_flag(sk, SOCK_DONE); 2123 tp->snd_wnd = 0; 2124 tcp_init_wl(tp, tp->write_seq, 0); 2125 tp->snd_una = tp->write_seq; 2126 tp->snd_sml = tp->write_seq; 2127 tp->rcv_nxt = 0; 2128 tp->rcv_wup = 0; 2129 tp->copied_seq = 0; 2130 2131 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2132 inet_csk(sk)->icsk_retransmits = 0; 2133 tcp_clear_retrans(tp); 2134 } 2135 2136 /* 2137 * Build a SYN and send it off. 2138 */ 2139 int tcp_connect(struct sock *sk) 2140 { 2141 struct tcp_sock *tp = tcp_sk(sk); 2142 struct sk_buff *buff; 2143 2144 tcp_connect_init(sk); 2145 2146 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 2147 if (unlikely(buff == NULL)) 2148 return -ENOBUFS; 2149 2150 /* Reserve space for headers. */ 2151 skb_reserve(buff, MAX_TCP_HEADER); 2152 2153 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN; 2154 TCP_ECN_send_syn(sk, tp, buff); 2155 TCP_SKB_CB(buff)->sacked = 0; 2156 skb_shinfo(buff)->gso_segs = 1; 2157 skb_shinfo(buff)->gso_size = 0; 2158 skb_shinfo(buff)->gso_type = 0; 2159 buff->csum = 0; 2160 TCP_SKB_CB(buff)->seq = tp->write_seq++; 2161 TCP_SKB_CB(buff)->end_seq = tp->write_seq; 2162 tp->snd_nxt = tp->write_seq; 2163 tp->pushed_seq = tp->write_seq; 2164 2165 /* Send it off. */ 2166 TCP_SKB_CB(buff)->when = tcp_time_stamp; 2167 tp->retrans_stamp = TCP_SKB_CB(buff)->when; 2168 skb_header_release(buff); 2169 __skb_queue_tail(&sk->sk_write_queue, buff); 2170 sk_charge_skb(sk, buff); 2171 tp->packets_out += tcp_skb_pcount(buff); 2172 tcp_transmit_skb(sk, buff, 1, GFP_KERNEL); 2173 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS); 2174 2175 /* Timer for repeating the SYN until an answer. */ 2176 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2177 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2178 return 0; 2179 } 2180 2181 /* Send out a delayed ack, the caller does the policy checking 2182 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 2183 * for details. 2184 */ 2185 void tcp_send_delayed_ack(struct sock *sk) 2186 { 2187 struct inet_connection_sock *icsk = inet_csk(sk); 2188 int ato = icsk->icsk_ack.ato; 2189 unsigned long timeout; 2190 2191 if (ato > TCP_DELACK_MIN) { 2192 const struct tcp_sock *tp = tcp_sk(sk); 2193 int max_ato = HZ/2; 2194 2195 if (icsk->icsk_ack.pingpong || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 2196 max_ato = TCP_DELACK_MAX; 2197 2198 /* Slow path, intersegment interval is "high". */ 2199 2200 /* If some rtt estimate is known, use it to bound delayed ack. 2201 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 2202 * directly. 2203 */ 2204 if (tp->srtt) { 2205 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN); 2206 2207 if (rtt < max_ato) 2208 max_ato = rtt; 2209 } 2210 2211 ato = min(ato, max_ato); 2212 } 2213 2214 /* Stay within the limit we were given */ 2215 timeout = jiffies + ato; 2216 2217 /* Use new timeout only if there wasn't a older one earlier. */ 2218 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 2219 /* If delack timer was blocked or is about to expire, 2220 * send ACK now. 2221 */ 2222 if (icsk->icsk_ack.blocked || 2223 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 2224 tcp_send_ack(sk); 2225 return; 2226 } 2227 2228 if (!time_before(timeout, icsk->icsk_ack.timeout)) 2229 timeout = icsk->icsk_ack.timeout; 2230 } 2231 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 2232 icsk->icsk_ack.timeout = timeout; 2233 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 2234 } 2235 2236 /* This routine sends an ack and also updates the window. */ 2237 void tcp_send_ack(struct sock *sk) 2238 { 2239 /* If we have been reset, we may not send again. */ 2240 if (sk->sk_state != TCP_CLOSE) { 2241 struct tcp_sock *tp = tcp_sk(sk); 2242 struct sk_buff *buff; 2243 2244 /* We are not putting this on the write queue, so 2245 * tcp_transmit_skb() will set the ownership to this 2246 * sock. 2247 */ 2248 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2249 if (buff == NULL) { 2250 inet_csk_schedule_ack(sk); 2251 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 2252 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 2253 TCP_DELACK_MAX, TCP_RTO_MAX); 2254 return; 2255 } 2256 2257 /* Reserve space for headers and prepare control bits. */ 2258 skb_reserve(buff, MAX_TCP_HEADER); 2259 buff->csum = 0; 2260 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK; 2261 TCP_SKB_CB(buff)->sacked = 0; 2262 skb_shinfo(buff)->gso_segs = 1; 2263 skb_shinfo(buff)->gso_size = 0; 2264 skb_shinfo(buff)->gso_type = 0; 2265 2266 /* Send it off, this clears delayed acks for us. */ 2267 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp); 2268 TCP_SKB_CB(buff)->when = tcp_time_stamp; 2269 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC); 2270 } 2271 } 2272 2273 /* This routine sends a packet with an out of date sequence 2274 * number. It assumes the other end will try to ack it. 2275 * 2276 * Question: what should we make while urgent mode? 2277 * 4.4BSD forces sending single byte of data. We cannot send 2278 * out of window data, because we have SND.NXT==SND.MAX... 2279 * 2280 * Current solution: to send TWO zero-length segments in urgent mode: 2281 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 2282 * out-of-date with SND.UNA-1 to probe window. 2283 */ 2284 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 2285 { 2286 struct tcp_sock *tp = tcp_sk(sk); 2287 struct sk_buff *skb; 2288 2289 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 2290 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2291 if (skb == NULL) 2292 return -1; 2293 2294 /* Reserve space for headers and set control bits. */ 2295 skb_reserve(skb, MAX_TCP_HEADER); 2296 skb->csum = 0; 2297 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK; 2298 TCP_SKB_CB(skb)->sacked = urgent; 2299 skb_shinfo(skb)->gso_segs = 1; 2300 skb_shinfo(skb)->gso_size = 0; 2301 skb_shinfo(skb)->gso_type = 0; 2302 2303 /* Use a previous sequence. This should cause the other 2304 * end to send an ack. Don't queue or clone SKB, just 2305 * send it. 2306 */ 2307 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1; 2308 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; 2309 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2310 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 2311 } 2312 2313 int tcp_write_wakeup(struct sock *sk) 2314 { 2315 if (sk->sk_state != TCP_CLOSE) { 2316 struct tcp_sock *tp = tcp_sk(sk); 2317 struct sk_buff *skb; 2318 2319 if ((skb = sk->sk_send_head) != NULL && 2320 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) { 2321 int err; 2322 unsigned int mss = tcp_current_mss(sk, 0); 2323 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq; 2324 2325 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 2326 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 2327 2328 /* We are probing the opening of a window 2329 * but the window size is != 0 2330 * must have been a result SWS avoidance ( sender ) 2331 */ 2332 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 2333 skb->len > mss) { 2334 seg_size = min(seg_size, mss); 2335 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 2336 if (tcp_fragment(sk, skb, seg_size, mss)) 2337 return -1; 2338 } else if (!tcp_skb_pcount(skb)) 2339 tcp_set_skb_tso_segs(sk, skb, mss); 2340 2341 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 2342 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2343 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2344 if (!err) { 2345 update_send_head(sk, tp, skb); 2346 } 2347 return err; 2348 } else { 2349 if (tp->urg_mode && 2350 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF)) 2351 tcp_xmit_probe_skb(sk, TCPCB_URG); 2352 return tcp_xmit_probe_skb(sk, 0); 2353 } 2354 } 2355 return -1; 2356 } 2357 2358 /* A window probe timeout has occurred. If window is not closed send 2359 * a partial packet else a zero probe. 2360 */ 2361 void tcp_send_probe0(struct sock *sk) 2362 { 2363 struct inet_connection_sock *icsk = inet_csk(sk); 2364 struct tcp_sock *tp = tcp_sk(sk); 2365 int err; 2366 2367 err = tcp_write_wakeup(sk); 2368 2369 if (tp->packets_out || !sk->sk_send_head) { 2370 /* Cancel probe timer, if it is not required. */ 2371 icsk->icsk_probes_out = 0; 2372 icsk->icsk_backoff = 0; 2373 return; 2374 } 2375 2376 if (err <= 0) { 2377 if (icsk->icsk_backoff < sysctl_tcp_retries2) 2378 icsk->icsk_backoff++; 2379 icsk->icsk_probes_out++; 2380 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2381 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2382 TCP_RTO_MAX); 2383 } else { 2384 /* If packet was not sent due to local congestion, 2385 * do not backoff and do not remember icsk_probes_out. 2386 * Let local senders to fight for local resources. 2387 * 2388 * Use accumulated backoff yet. 2389 */ 2390 if (!icsk->icsk_probes_out) 2391 icsk->icsk_probes_out = 1; 2392 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2393 min(icsk->icsk_rto << icsk->icsk_backoff, 2394 TCP_RESOURCE_PROBE_INTERVAL), 2395 TCP_RTO_MAX); 2396 } 2397 } 2398 2399 EXPORT_SYMBOL(tcp_connect); 2400 EXPORT_SYMBOL(tcp_make_synack); 2401 EXPORT_SYMBOL(tcp_simple_retransmit); 2402 EXPORT_SYMBOL(tcp_sync_mss); 2403 EXPORT_SYMBOL(sysctl_tcp_tso_win_divisor); 2404 EXPORT_SYMBOL(tcp_mtup_init); 2405