1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 42 #include <linux/compiler.h> 43 #include <linux/gfp.h> 44 #include <linux/module.h> 45 #include <linux/static_key.h> 46 47 #include <trace/events/tcp.h> 48 49 /* Refresh clocks of a TCP socket, 50 * ensuring monotically increasing values. 51 */ 52 void tcp_mstamp_refresh(struct tcp_sock *tp) 53 { 54 u64 val = tcp_clock_ns(); 55 56 tp->tcp_clock_cache = val; 57 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 58 } 59 60 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 61 int push_one, gfp_t gfp); 62 63 /* Account for new data that has been sent to the network. */ 64 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 65 { 66 struct inet_connection_sock *icsk = inet_csk(sk); 67 struct tcp_sock *tp = tcp_sk(sk); 68 unsigned int prior_packets = tp->packets_out; 69 70 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 71 72 __skb_unlink(skb, &sk->sk_write_queue); 73 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 74 75 tp->packets_out += tcp_skb_pcount(skb); 76 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 77 tcp_rearm_rto(sk); 78 79 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 80 tcp_skb_pcount(skb)); 81 } 82 83 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 84 * window scaling factor due to loss of precision. 85 * If window has been shrunk, what should we make? It is not clear at all. 86 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 87 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 88 * invalid. OK, let's make this for now: 89 */ 90 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 91 { 92 const struct tcp_sock *tp = tcp_sk(sk); 93 94 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 95 (tp->rx_opt.wscale_ok && 96 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 97 return tp->snd_nxt; 98 else 99 return tcp_wnd_end(tp); 100 } 101 102 /* Calculate mss to advertise in SYN segment. 103 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 104 * 105 * 1. It is independent of path mtu. 106 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 107 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 108 * attached devices, because some buggy hosts are confused by 109 * large MSS. 110 * 4. We do not make 3, we advertise MSS, calculated from first 111 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 112 * This may be overridden via information stored in routing table. 113 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 114 * probably even Jumbo". 115 */ 116 static __u16 tcp_advertise_mss(struct sock *sk) 117 { 118 struct tcp_sock *tp = tcp_sk(sk); 119 const struct dst_entry *dst = __sk_dst_get(sk); 120 int mss = tp->advmss; 121 122 if (dst) { 123 unsigned int metric = dst_metric_advmss(dst); 124 125 if (metric < mss) { 126 mss = metric; 127 tp->advmss = mss; 128 } 129 } 130 131 return (__u16)mss; 132 } 133 134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 135 * This is the first part of cwnd validation mechanism. 136 */ 137 void tcp_cwnd_restart(struct sock *sk, s32 delta) 138 { 139 struct tcp_sock *tp = tcp_sk(sk); 140 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 141 u32 cwnd = tp->snd_cwnd; 142 143 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 144 145 tp->snd_ssthresh = tcp_current_ssthresh(sk); 146 restart_cwnd = min(restart_cwnd, cwnd); 147 148 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 149 cwnd >>= 1; 150 tp->snd_cwnd = max(cwnd, restart_cwnd); 151 tp->snd_cwnd_stamp = tcp_jiffies32; 152 tp->snd_cwnd_used = 0; 153 } 154 155 /* Congestion state accounting after a packet has been sent. */ 156 static void tcp_event_data_sent(struct tcp_sock *tp, 157 struct sock *sk) 158 { 159 struct inet_connection_sock *icsk = inet_csk(sk); 160 const u32 now = tcp_jiffies32; 161 162 if (tcp_packets_in_flight(tp) == 0) 163 tcp_ca_event(sk, CA_EVENT_TX_START); 164 165 /* If this is the first data packet sent in response to the 166 * previous received data, 167 * and it is a reply for ato after last received packet, 168 * increase pingpong count. 169 */ 170 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) && 171 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 172 inet_csk_inc_pingpong_cnt(sk); 173 174 tp->lsndtime = now; 175 } 176 177 /* Account for an ACK we sent. */ 178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, 179 u32 rcv_nxt) 180 { 181 struct tcp_sock *tp = tcp_sk(sk); 182 183 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) { 184 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 185 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 186 tp->compressed_ack = TCP_FASTRETRANS_THRESH; 187 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 188 __sock_put(sk); 189 } 190 191 if (unlikely(rcv_nxt != tp->rcv_nxt)) 192 return; /* Special ACK sent by DCTCP to reflect ECN */ 193 tcp_dec_quickack_mode(sk, pkts); 194 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 195 } 196 197 /* Determine a window scaling and initial window to offer. 198 * Based on the assumption that the given amount of space 199 * will be offered. Store the results in the tp structure. 200 * NOTE: for smooth operation initial space offering should 201 * be a multiple of mss if possible. We assume here that mss >= 1. 202 * This MUST be enforced by all callers. 203 */ 204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 205 __u32 *rcv_wnd, __u32 *window_clamp, 206 int wscale_ok, __u8 *rcv_wscale, 207 __u32 init_rcv_wnd) 208 { 209 unsigned int space = (__space < 0 ? 0 : __space); 210 211 /* If no clamp set the clamp to the max possible scaled window */ 212 if (*window_clamp == 0) 213 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 214 space = min(*window_clamp, space); 215 216 /* Quantize space offering to a multiple of mss if possible. */ 217 if (space > mss) 218 space = rounddown(space, mss); 219 220 /* NOTE: offering an initial window larger than 32767 221 * will break some buggy TCP stacks. If the admin tells us 222 * it is likely we could be speaking with such a buggy stack 223 * we will truncate our initial window offering to 32K-1 224 * unless the remote has sent us a window scaling option, 225 * which we interpret as a sign the remote TCP is not 226 * misinterpreting the window field as a signed quantity. 227 */ 228 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 229 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 230 else 231 (*rcv_wnd) = min_t(u32, space, U16_MAX); 232 233 if (init_rcv_wnd) 234 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 235 236 *rcv_wscale = 0; 237 if (wscale_ok) { 238 /* Set window scaling on max possible window */ 239 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 240 space = max_t(u32, space, sysctl_rmem_max); 241 space = min_t(u32, space, *window_clamp); 242 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 243 0, TCP_MAX_WSCALE); 244 } 245 /* Set the clamp no higher than max representable value */ 246 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 247 } 248 EXPORT_SYMBOL(tcp_select_initial_window); 249 250 /* Chose a new window to advertise, update state in tcp_sock for the 251 * socket, and return result with RFC1323 scaling applied. The return 252 * value can be stuffed directly into th->window for an outgoing 253 * frame. 254 */ 255 static u16 tcp_select_window(struct sock *sk) 256 { 257 struct tcp_sock *tp = tcp_sk(sk); 258 u32 old_win = tp->rcv_wnd; 259 u32 cur_win = tcp_receive_window(tp); 260 u32 new_win = __tcp_select_window(sk); 261 262 /* Never shrink the offered window */ 263 if (new_win < cur_win) { 264 /* Danger Will Robinson! 265 * Don't update rcv_wup/rcv_wnd here or else 266 * we will not be able to advertise a zero 267 * window in time. --DaveM 268 * 269 * Relax Will Robinson. 270 */ 271 if (new_win == 0) 272 NET_INC_STATS(sock_net(sk), 273 LINUX_MIB_TCPWANTZEROWINDOWADV); 274 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 275 } 276 tp->rcv_wnd = new_win; 277 tp->rcv_wup = tp->rcv_nxt; 278 279 /* Make sure we do not exceed the maximum possible 280 * scaled window. 281 */ 282 if (!tp->rx_opt.rcv_wscale && 283 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows) 284 new_win = min(new_win, MAX_TCP_WINDOW); 285 else 286 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 287 288 /* RFC1323 scaling applied */ 289 new_win >>= tp->rx_opt.rcv_wscale; 290 291 /* If we advertise zero window, disable fast path. */ 292 if (new_win == 0) { 293 tp->pred_flags = 0; 294 if (old_win) 295 NET_INC_STATS(sock_net(sk), 296 LINUX_MIB_TCPTOZEROWINDOWADV); 297 } else if (old_win == 0) { 298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); 299 } 300 301 return new_win; 302 } 303 304 /* Packet ECN state for a SYN-ACK */ 305 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 306 { 307 const struct tcp_sock *tp = tcp_sk(sk); 308 309 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 310 if (!(tp->ecn_flags & TCP_ECN_OK)) 311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 312 else if (tcp_ca_needs_ecn(sk) || 313 tcp_bpf_ca_needs_ecn(sk)) 314 INET_ECN_xmit(sk); 315 } 316 317 /* Packet ECN state for a SYN. */ 318 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 319 { 320 struct tcp_sock *tp = tcp_sk(sk); 321 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 322 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 || 323 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 324 325 if (!use_ecn) { 326 const struct dst_entry *dst = __sk_dst_get(sk); 327 328 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 329 use_ecn = true; 330 } 331 332 tp->ecn_flags = 0; 333 334 if (use_ecn) { 335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 336 tp->ecn_flags = TCP_ECN_OK; 337 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 338 INET_ECN_xmit(sk); 339 } 340 } 341 342 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 343 { 344 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback) 345 /* tp->ecn_flags are cleared at a later point in time when 346 * SYN ACK is ultimatively being received. 347 */ 348 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 349 } 350 351 static void 352 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 353 { 354 if (inet_rsk(req)->ecn_ok) 355 th->ece = 1; 356 } 357 358 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 359 * be sent. 360 */ 361 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 362 struct tcphdr *th, int tcp_header_len) 363 { 364 struct tcp_sock *tp = tcp_sk(sk); 365 366 if (tp->ecn_flags & TCP_ECN_OK) { 367 /* Not-retransmitted data segment: set ECT and inject CWR. */ 368 if (skb->len != tcp_header_len && 369 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 370 INET_ECN_xmit(sk); 371 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 372 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 373 th->cwr = 1; 374 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 375 } 376 } else if (!tcp_ca_needs_ecn(sk)) { 377 /* ACK or retransmitted segment: clear ECT|CE */ 378 INET_ECN_dontxmit(sk); 379 } 380 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 381 th->ece = 1; 382 } 383 } 384 385 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 386 * auto increment end seqno. 387 */ 388 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 389 { 390 skb->ip_summed = CHECKSUM_PARTIAL; 391 392 TCP_SKB_CB(skb)->tcp_flags = flags; 393 TCP_SKB_CB(skb)->sacked = 0; 394 395 tcp_skb_pcount_set(skb, 1); 396 397 TCP_SKB_CB(skb)->seq = seq; 398 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 399 seq++; 400 TCP_SKB_CB(skb)->end_seq = seq; 401 } 402 403 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 404 { 405 return tp->snd_una != tp->snd_up; 406 } 407 408 #define OPTION_SACK_ADVERTISE (1 << 0) 409 #define OPTION_TS (1 << 1) 410 #define OPTION_MD5 (1 << 2) 411 #define OPTION_WSCALE (1 << 3) 412 #define OPTION_FAST_OPEN_COOKIE (1 << 8) 413 #define OPTION_SMC (1 << 9) 414 415 static void smc_options_write(__be32 *ptr, u16 *options) 416 { 417 #if IS_ENABLED(CONFIG_SMC) 418 if (static_branch_unlikely(&tcp_have_smc)) { 419 if (unlikely(OPTION_SMC & *options)) { 420 *ptr++ = htonl((TCPOPT_NOP << 24) | 421 (TCPOPT_NOP << 16) | 422 (TCPOPT_EXP << 8) | 423 (TCPOLEN_EXP_SMC_BASE)); 424 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 425 } 426 } 427 #endif 428 } 429 430 struct tcp_out_options { 431 u16 options; /* bit field of OPTION_* */ 432 u16 mss; /* 0 to disable */ 433 u8 ws; /* window scale, 0 to disable */ 434 u8 num_sack_blocks; /* number of SACK blocks to include */ 435 u8 hash_size; /* bytes in hash_location */ 436 __u8 *hash_location; /* temporary pointer, overloaded */ 437 __u32 tsval, tsecr; /* need to include OPTION_TS */ 438 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 439 }; 440 441 /* Write previously computed TCP options to the packet. 442 * 443 * Beware: Something in the Internet is very sensitive to the ordering of 444 * TCP options, we learned this through the hard way, so be careful here. 445 * Luckily we can at least blame others for their non-compliance but from 446 * inter-operability perspective it seems that we're somewhat stuck with 447 * the ordering which we have been using if we want to keep working with 448 * those broken things (not that it currently hurts anybody as there isn't 449 * particular reason why the ordering would need to be changed). 450 * 451 * At least SACK_PERM as the first option is known to lead to a disaster 452 * (but it may well be that other scenarios fail similarly). 453 */ 454 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 455 struct tcp_out_options *opts) 456 { 457 u16 options = opts->options; /* mungable copy */ 458 459 if (unlikely(OPTION_MD5 & options)) { 460 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 461 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 462 /* overload cookie hash location */ 463 opts->hash_location = (__u8 *)ptr; 464 ptr += 4; 465 } 466 467 if (unlikely(opts->mss)) { 468 *ptr++ = htonl((TCPOPT_MSS << 24) | 469 (TCPOLEN_MSS << 16) | 470 opts->mss); 471 } 472 473 if (likely(OPTION_TS & options)) { 474 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 475 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 476 (TCPOLEN_SACK_PERM << 16) | 477 (TCPOPT_TIMESTAMP << 8) | 478 TCPOLEN_TIMESTAMP); 479 options &= ~OPTION_SACK_ADVERTISE; 480 } else { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_TIMESTAMP << 8) | 484 TCPOLEN_TIMESTAMP); 485 } 486 *ptr++ = htonl(opts->tsval); 487 *ptr++ = htonl(opts->tsecr); 488 } 489 490 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 491 *ptr++ = htonl((TCPOPT_NOP << 24) | 492 (TCPOPT_NOP << 16) | 493 (TCPOPT_SACK_PERM << 8) | 494 TCPOLEN_SACK_PERM); 495 } 496 497 if (unlikely(OPTION_WSCALE & options)) { 498 *ptr++ = htonl((TCPOPT_NOP << 24) | 499 (TCPOPT_WINDOW << 16) | 500 (TCPOLEN_WINDOW << 8) | 501 opts->ws); 502 } 503 504 if (unlikely(opts->num_sack_blocks)) { 505 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 506 tp->duplicate_sack : tp->selective_acks; 507 int this_sack; 508 509 *ptr++ = htonl((TCPOPT_NOP << 24) | 510 (TCPOPT_NOP << 16) | 511 (TCPOPT_SACK << 8) | 512 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 513 TCPOLEN_SACK_PERBLOCK))); 514 515 for (this_sack = 0; this_sack < opts->num_sack_blocks; 516 ++this_sack) { 517 *ptr++ = htonl(sp[this_sack].start_seq); 518 *ptr++ = htonl(sp[this_sack].end_seq); 519 } 520 521 tp->rx_opt.dsack = 0; 522 } 523 524 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 525 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 526 u8 *p = (u8 *)ptr; 527 u32 len; /* Fast Open option length */ 528 529 if (foc->exp) { 530 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 531 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 532 TCPOPT_FASTOPEN_MAGIC); 533 p += TCPOLEN_EXP_FASTOPEN_BASE; 534 } else { 535 len = TCPOLEN_FASTOPEN_BASE + foc->len; 536 *p++ = TCPOPT_FASTOPEN; 537 *p++ = len; 538 } 539 540 memcpy(p, foc->val, foc->len); 541 if ((len & 3) == 2) { 542 p[foc->len] = TCPOPT_NOP; 543 p[foc->len + 1] = TCPOPT_NOP; 544 } 545 ptr += (len + 3) >> 2; 546 } 547 548 smc_options_write(ptr, &options); 549 } 550 551 static void smc_set_option(const struct tcp_sock *tp, 552 struct tcp_out_options *opts, 553 unsigned int *remaining) 554 { 555 #if IS_ENABLED(CONFIG_SMC) 556 if (static_branch_unlikely(&tcp_have_smc)) { 557 if (tp->syn_smc) { 558 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 559 opts->options |= OPTION_SMC; 560 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 561 } 562 } 563 } 564 #endif 565 } 566 567 static void smc_set_option_cond(const struct tcp_sock *tp, 568 const struct inet_request_sock *ireq, 569 struct tcp_out_options *opts, 570 unsigned int *remaining) 571 { 572 #if IS_ENABLED(CONFIG_SMC) 573 if (static_branch_unlikely(&tcp_have_smc)) { 574 if (tp->syn_smc && ireq->smc_ok) { 575 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 576 opts->options |= OPTION_SMC; 577 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 578 } 579 } 580 } 581 #endif 582 } 583 584 /* Compute TCP options for SYN packets. This is not the final 585 * network wire format yet. 586 */ 587 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 588 struct tcp_out_options *opts, 589 struct tcp_md5sig_key **md5) 590 { 591 struct tcp_sock *tp = tcp_sk(sk); 592 unsigned int remaining = MAX_TCP_OPTION_SPACE; 593 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 594 595 *md5 = NULL; 596 #ifdef CONFIG_TCP_MD5SIG 597 if (static_branch_unlikely(&tcp_md5_needed) && 598 rcu_access_pointer(tp->md5sig_info)) { 599 *md5 = tp->af_specific->md5_lookup(sk, sk); 600 if (*md5) { 601 opts->options |= OPTION_MD5; 602 remaining -= TCPOLEN_MD5SIG_ALIGNED; 603 } 604 } 605 #endif 606 607 /* We always get an MSS option. The option bytes which will be seen in 608 * normal data packets should timestamps be used, must be in the MSS 609 * advertised. But we subtract them from tp->mss_cache so that 610 * calculations in tcp_sendmsg are simpler etc. So account for this 611 * fact here if necessary. If we don't do this correctly, as a 612 * receiver we won't recognize data packets as being full sized when we 613 * should, and thus we won't abide by the delayed ACK rules correctly. 614 * SACKs don't matter, we never delay an ACK when we have any of those 615 * going out. */ 616 opts->mss = tcp_advertise_mss(sk); 617 remaining -= TCPOLEN_MSS_ALIGNED; 618 619 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) { 620 opts->options |= OPTION_TS; 621 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 622 opts->tsecr = tp->rx_opt.ts_recent; 623 remaining -= TCPOLEN_TSTAMP_ALIGNED; 624 } 625 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) { 626 opts->ws = tp->rx_opt.rcv_wscale; 627 opts->options |= OPTION_WSCALE; 628 remaining -= TCPOLEN_WSCALE_ALIGNED; 629 } 630 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) { 631 opts->options |= OPTION_SACK_ADVERTISE; 632 if (unlikely(!(OPTION_TS & opts->options))) 633 remaining -= TCPOLEN_SACKPERM_ALIGNED; 634 } 635 636 if (fastopen && fastopen->cookie.len >= 0) { 637 u32 need = fastopen->cookie.len; 638 639 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 640 TCPOLEN_FASTOPEN_BASE; 641 need = (need + 3) & ~3U; /* Align to 32 bits */ 642 if (remaining >= need) { 643 opts->options |= OPTION_FAST_OPEN_COOKIE; 644 opts->fastopen_cookie = &fastopen->cookie; 645 remaining -= need; 646 tp->syn_fastopen = 1; 647 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 648 } 649 } 650 651 smc_set_option(tp, opts, &remaining); 652 653 return MAX_TCP_OPTION_SPACE - remaining; 654 } 655 656 /* Set up TCP options for SYN-ACKs. */ 657 static unsigned int tcp_synack_options(const struct sock *sk, 658 struct request_sock *req, 659 unsigned int mss, struct sk_buff *skb, 660 struct tcp_out_options *opts, 661 const struct tcp_md5sig_key *md5, 662 struct tcp_fastopen_cookie *foc) 663 { 664 struct inet_request_sock *ireq = inet_rsk(req); 665 unsigned int remaining = MAX_TCP_OPTION_SPACE; 666 667 #ifdef CONFIG_TCP_MD5SIG 668 if (md5) { 669 opts->options |= OPTION_MD5; 670 remaining -= TCPOLEN_MD5SIG_ALIGNED; 671 672 /* We can't fit any SACK blocks in a packet with MD5 + TS 673 * options. There was discussion about disabling SACK 674 * rather than TS in order to fit in better with old, 675 * buggy kernels, but that was deemed to be unnecessary. 676 */ 677 ireq->tstamp_ok &= !ireq->sack_ok; 678 } 679 #endif 680 681 /* We always send an MSS option. */ 682 opts->mss = mss; 683 remaining -= TCPOLEN_MSS_ALIGNED; 684 685 if (likely(ireq->wscale_ok)) { 686 opts->ws = ireq->rcv_wscale; 687 opts->options |= OPTION_WSCALE; 688 remaining -= TCPOLEN_WSCALE_ALIGNED; 689 } 690 if (likely(ireq->tstamp_ok)) { 691 opts->options |= OPTION_TS; 692 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 693 opts->tsecr = req->ts_recent; 694 remaining -= TCPOLEN_TSTAMP_ALIGNED; 695 } 696 if (likely(ireq->sack_ok)) { 697 opts->options |= OPTION_SACK_ADVERTISE; 698 if (unlikely(!ireq->tstamp_ok)) 699 remaining -= TCPOLEN_SACKPERM_ALIGNED; 700 } 701 if (foc != NULL && foc->len >= 0) { 702 u32 need = foc->len; 703 704 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 705 TCPOLEN_FASTOPEN_BASE; 706 need = (need + 3) & ~3U; /* Align to 32 bits */ 707 if (remaining >= need) { 708 opts->options |= OPTION_FAST_OPEN_COOKIE; 709 opts->fastopen_cookie = foc; 710 remaining -= need; 711 } 712 } 713 714 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 715 716 return MAX_TCP_OPTION_SPACE - remaining; 717 } 718 719 /* Compute TCP options for ESTABLISHED sockets. This is not the 720 * final wire format yet. 721 */ 722 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 723 struct tcp_out_options *opts, 724 struct tcp_md5sig_key **md5) 725 { 726 struct tcp_sock *tp = tcp_sk(sk); 727 unsigned int size = 0; 728 unsigned int eff_sacks; 729 730 opts->options = 0; 731 732 *md5 = NULL; 733 #ifdef CONFIG_TCP_MD5SIG 734 if (static_branch_unlikely(&tcp_md5_needed) && 735 rcu_access_pointer(tp->md5sig_info)) { 736 *md5 = tp->af_specific->md5_lookup(sk, sk); 737 if (*md5) { 738 opts->options |= OPTION_MD5; 739 size += TCPOLEN_MD5SIG_ALIGNED; 740 } 741 } 742 #endif 743 744 if (likely(tp->rx_opt.tstamp_ok)) { 745 opts->options |= OPTION_TS; 746 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 747 opts->tsecr = tp->rx_opt.ts_recent; 748 size += TCPOLEN_TSTAMP_ALIGNED; 749 } 750 751 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 752 if (unlikely(eff_sacks)) { 753 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 754 opts->num_sack_blocks = 755 min_t(unsigned int, eff_sacks, 756 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 757 TCPOLEN_SACK_PERBLOCK); 758 size += TCPOLEN_SACK_BASE_ALIGNED + 759 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 760 } 761 762 return size; 763 } 764 765 766 /* TCP SMALL QUEUES (TSQ) 767 * 768 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 769 * to reduce RTT and bufferbloat. 770 * We do this using a special skb destructor (tcp_wfree). 771 * 772 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 773 * needs to be reallocated in a driver. 774 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 775 * 776 * Since transmit from skb destructor is forbidden, we use a tasklet 777 * to process all sockets that eventually need to send more skbs. 778 * We use one tasklet per cpu, with its own queue of sockets. 779 */ 780 struct tsq_tasklet { 781 struct tasklet_struct tasklet; 782 struct list_head head; /* queue of tcp sockets */ 783 }; 784 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 785 786 static void tcp_tsq_write(struct sock *sk) 787 { 788 if ((1 << sk->sk_state) & 789 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 790 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 791 struct tcp_sock *tp = tcp_sk(sk); 792 793 if (tp->lost_out > tp->retrans_out && 794 tp->snd_cwnd > tcp_packets_in_flight(tp)) { 795 tcp_mstamp_refresh(tp); 796 tcp_xmit_retransmit_queue(sk); 797 } 798 799 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 800 0, GFP_ATOMIC); 801 } 802 } 803 804 static void tcp_tsq_handler(struct sock *sk) 805 { 806 bh_lock_sock(sk); 807 if (!sock_owned_by_user(sk)) 808 tcp_tsq_write(sk); 809 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 810 sock_hold(sk); 811 bh_unlock_sock(sk); 812 } 813 /* 814 * One tasklet per cpu tries to send more skbs. 815 * We run in tasklet context but need to disable irqs when 816 * transferring tsq->head because tcp_wfree() might 817 * interrupt us (non NAPI drivers) 818 */ 819 static void tcp_tasklet_func(unsigned long data) 820 { 821 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data; 822 LIST_HEAD(list); 823 unsigned long flags; 824 struct list_head *q, *n; 825 struct tcp_sock *tp; 826 struct sock *sk; 827 828 local_irq_save(flags); 829 list_splice_init(&tsq->head, &list); 830 local_irq_restore(flags); 831 832 list_for_each_safe(q, n, &list) { 833 tp = list_entry(q, struct tcp_sock, tsq_node); 834 list_del(&tp->tsq_node); 835 836 sk = (struct sock *)tp; 837 smp_mb__before_atomic(); 838 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 839 840 tcp_tsq_handler(sk); 841 sk_free(sk); 842 } 843 } 844 845 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 846 TCPF_WRITE_TIMER_DEFERRED | \ 847 TCPF_DELACK_TIMER_DEFERRED | \ 848 TCPF_MTU_REDUCED_DEFERRED) 849 /** 850 * tcp_release_cb - tcp release_sock() callback 851 * @sk: socket 852 * 853 * called from release_sock() to perform protocol dependent 854 * actions before socket release. 855 */ 856 void tcp_release_cb(struct sock *sk) 857 { 858 unsigned long flags, nflags; 859 860 /* perform an atomic operation only if at least one flag is set */ 861 do { 862 flags = sk->sk_tsq_flags; 863 if (!(flags & TCP_DEFERRED_ALL)) 864 return; 865 nflags = flags & ~TCP_DEFERRED_ALL; 866 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 867 868 if (flags & TCPF_TSQ_DEFERRED) { 869 tcp_tsq_write(sk); 870 __sock_put(sk); 871 } 872 /* Here begins the tricky part : 873 * We are called from release_sock() with : 874 * 1) BH disabled 875 * 2) sk_lock.slock spinlock held 876 * 3) socket owned by us (sk->sk_lock.owned == 1) 877 * 878 * But following code is meant to be called from BH handlers, 879 * so we should keep BH disabled, but early release socket ownership 880 */ 881 sock_release_ownership(sk); 882 883 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 884 tcp_write_timer_handler(sk); 885 __sock_put(sk); 886 } 887 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 888 tcp_delack_timer_handler(sk); 889 __sock_put(sk); 890 } 891 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 892 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 893 __sock_put(sk); 894 } 895 } 896 EXPORT_SYMBOL(tcp_release_cb); 897 898 void __init tcp_tasklet_init(void) 899 { 900 int i; 901 902 for_each_possible_cpu(i) { 903 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 904 905 INIT_LIST_HEAD(&tsq->head); 906 tasklet_init(&tsq->tasklet, 907 tcp_tasklet_func, 908 (unsigned long)tsq); 909 } 910 } 911 912 /* 913 * Write buffer destructor automatically called from kfree_skb. 914 * We can't xmit new skbs from this context, as we might already 915 * hold qdisc lock. 916 */ 917 void tcp_wfree(struct sk_buff *skb) 918 { 919 struct sock *sk = skb->sk; 920 struct tcp_sock *tp = tcp_sk(sk); 921 unsigned long flags, nval, oval; 922 923 /* Keep one reference on sk_wmem_alloc. 924 * Will be released by sk_free() from here or tcp_tasklet_func() 925 */ 926 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 927 928 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 929 * Wait until our queues (qdisc + devices) are drained. 930 * This gives : 931 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 932 * - chance for incoming ACK (processed by another cpu maybe) 933 * to migrate this flow (skb->ooo_okay will be eventually set) 934 */ 935 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 936 goto out; 937 938 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { 939 struct tsq_tasklet *tsq; 940 bool empty; 941 942 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 943 goto out; 944 945 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 946 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); 947 if (nval != oval) 948 continue; 949 950 /* queue this socket to tasklet queue */ 951 local_irq_save(flags); 952 tsq = this_cpu_ptr(&tsq_tasklet); 953 empty = list_empty(&tsq->head); 954 list_add(&tp->tsq_node, &tsq->head); 955 if (empty) 956 tasklet_schedule(&tsq->tasklet); 957 local_irq_restore(flags); 958 return; 959 } 960 out: 961 sk_free(sk); 962 } 963 964 /* Note: Called under soft irq. 965 * We can call TCP stack right away, unless socket is owned by user. 966 */ 967 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 968 { 969 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 970 struct sock *sk = (struct sock *)tp; 971 972 tcp_tsq_handler(sk); 973 sock_put(sk); 974 975 return HRTIMER_NORESTART; 976 } 977 978 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 979 u64 prior_wstamp) 980 { 981 struct tcp_sock *tp = tcp_sk(sk); 982 983 if (sk->sk_pacing_status != SK_PACING_NONE) { 984 unsigned long rate = sk->sk_pacing_rate; 985 986 /* Original sch_fq does not pace first 10 MSS 987 * Note that tp->data_segs_out overflows after 2^32 packets, 988 * this is a minor annoyance. 989 */ 990 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 991 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 992 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 993 994 /* take into account OS jitter */ 995 len_ns -= min_t(u64, len_ns / 2, credit); 996 tp->tcp_wstamp_ns += len_ns; 997 } 998 } 999 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1000 } 1001 1002 /* This routine actually transmits TCP packets queued in by 1003 * tcp_do_sendmsg(). This is used by both the initial 1004 * transmission and possible later retransmissions. 1005 * All SKB's seen here are completely headerless. It is our 1006 * job to build the TCP header, and pass the packet down to 1007 * IP so it can do the same plus pass the packet off to the 1008 * device. 1009 * 1010 * We are working here with either a clone of the original 1011 * SKB, or a fresh unique copy made by the retransmit engine. 1012 */ 1013 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1014 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1015 { 1016 const struct inet_connection_sock *icsk = inet_csk(sk); 1017 struct inet_sock *inet; 1018 struct tcp_sock *tp; 1019 struct tcp_skb_cb *tcb; 1020 struct tcp_out_options opts; 1021 unsigned int tcp_options_size, tcp_header_size; 1022 struct sk_buff *oskb = NULL; 1023 struct tcp_md5sig_key *md5; 1024 struct tcphdr *th; 1025 u64 prior_wstamp; 1026 int err; 1027 1028 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1029 tp = tcp_sk(sk); 1030 prior_wstamp = tp->tcp_wstamp_ns; 1031 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1032 skb->skb_mstamp_ns = tp->tcp_wstamp_ns; 1033 if (clone_it) { 1034 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq 1035 - tp->snd_una; 1036 oskb = skb; 1037 1038 tcp_skb_tsorted_save(oskb) { 1039 if (unlikely(skb_cloned(oskb))) 1040 skb = pskb_copy(oskb, gfp_mask); 1041 else 1042 skb = skb_clone(oskb, gfp_mask); 1043 } tcp_skb_tsorted_restore(oskb); 1044 1045 if (unlikely(!skb)) 1046 return -ENOBUFS; 1047 } 1048 1049 inet = inet_sk(sk); 1050 tcb = TCP_SKB_CB(skb); 1051 memset(&opts, 0, sizeof(opts)); 1052 1053 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) 1054 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1055 else 1056 tcp_options_size = tcp_established_options(sk, skb, &opts, 1057 &md5); 1058 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1059 1060 /* if no packet is in qdisc/device queue, then allow XPS to select 1061 * another queue. We can be called from tcp_tsq_handler() 1062 * which holds one reference to sk. 1063 * 1064 * TODO: Ideally, in-flight pure ACK packets should not matter here. 1065 * One way to get this would be to set skb->truesize = 2 on them. 1066 */ 1067 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); 1068 1069 /* If we had to use memory reserve to allocate this skb, 1070 * this might cause drops if packet is looped back : 1071 * Other socket might not have SOCK_MEMALLOC. 1072 * Packets not looped back do not care about pfmemalloc. 1073 */ 1074 skb->pfmemalloc = 0; 1075 1076 skb_push(skb, tcp_header_size); 1077 skb_reset_transport_header(skb); 1078 1079 skb_orphan(skb); 1080 skb->sk = sk; 1081 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1082 skb_set_hash_from_sk(skb, sk); 1083 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1084 1085 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); 1086 1087 /* Build TCP header and checksum it. */ 1088 th = (struct tcphdr *)skb->data; 1089 th->source = inet->inet_sport; 1090 th->dest = inet->inet_dport; 1091 th->seq = htonl(tcb->seq); 1092 th->ack_seq = htonl(rcv_nxt); 1093 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1094 tcb->tcp_flags); 1095 1096 th->check = 0; 1097 th->urg_ptr = 0; 1098 1099 /* The urg_mode check is necessary during a below snd_una win probe */ 1100 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1101 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1102 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1103 th->urg = 1; 1104 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1105 th->urg_ptr = htons(0xFFFF); 1106 th->urg = 1; 1107 } 1108 } 1109 1110 tcp_options_write((__be32 *)(th + 1), tp, &opts); 1111 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1112 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1113 th->window = htons(tcp_select_window(sk)); 1114 tcp_ecn_send(sk, skb, th, tcp_header_size); 1115 } else { 1116 /* RFC1323: The window in SYN & SYN/ACK segments 1117 * is never scaled. 1118 */ 1119 th->window = htons(min(tp->rcv_wnd, 65535U)); 1120 } 1121 #ifdef CONFIG_TCP_MD5SIG 1122 /* Calculate the MD5 hash, as we have all we need now */ 1123 if (md5) { 1124 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1125 tp->af_specific->calc_md5_hash(opts.hash_location, 1126 md5, sk, skb); 1127 } 1128 #endif 1129 1130 icsk->icsk_af_ops->send_check(sk, skb); 1131 1132 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1133 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); 1134 1135 if (skb->len != tcp_header_size) { 1136 tcp_event_data_sent(tp, sk); 1137 tp->data_segs_out += tcp_skb_pcount(skb); 1138 tp->bytes_sent += skb->len - tcp_header_size; 1139 } 1140 1141 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1142 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1143 tcp_skb_pcount(skb)); 1144 1145 tp->segs_out += tcp_skb_pcount(skb); 1146 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1147 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1148 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1149 1150 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1151 1152 /* Cleanup our debris for IP stacks */ 1153 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1154 sizeof(struct inet6_skb_parm))); 1155 1156 tcp_add_tx_delay(skb, tp); 1157 1158 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl); 1159 1160 if (unlikely(err > 0)) { 1161 tcp_enter_cwr(sk); 1162 err = net_xmit_eval(err); 1163 } 1164 if (!err && oskb) { 1165 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1166 tcp_rate_skb_sent(sk, oskb); 1167 } 1168 return err; 1169 } 1170 1171 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1172 gfp_t gfp_mask) 1173 { 1174 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1175 tcp_sk(sk)->rcv_nxt); 1176 } 1177 1178 /* This routine just queues the buffer for sending. 1179 * 1180 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1181 * otherwise socket can stall. 1182 */ 1183 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1184 { 1185 struct tcp_sock *tp = tcp_sk(sk); 1186 1187 /* Advance write_seq and place onto the write_queue. */ 1188 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 1189 __skb_header_release(skb); 1190 tcp_add_write_queue_tail(sk, skb); 1191 sk->sk_wmem_queued += skb->truesize; 1192 sk_mem_charge(sk, skb->truesize); 1193 } 1194 1195 /* Initialize TSO segments for a packet. */ 1196 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1197 { 1198 if (skb->len <= mss_now) { 1199 /* Avoid the costly divide in the normal 1200 * non-TSO case. 1201 */ 1202 tcp_skb_pcount_set(skb, 1); 1203 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1204 } else { 1205 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1206 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1207 } 1208 } 1209 1210 /* Pcount in the middle of the write queue got changed, we need to do various 1211 * tweaks to fix counters 1212 */ 1213 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1214 { 1215 struct tcp_sock *tp = tcp_sk(sk); 1216 1217 tp->packets_out -= decr; 1218 1219 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1220 tp->sacked_out -= decr; 1221 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1222 tp->retrans_out -= decr; 1223 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1224 tp->lost_out -= decr; 1225 1226 /* Reno case is special. Sigh... */ 1227 if (tcp_is_reno(tp) && decr > 0) 1228 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1229 1230 if (tp->lost_skb_hint && 1231 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1232 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1233 tp->lost_cnt_hint -= decr; 1234 1235 tcp_verify_left_out(tp); 1236 } 1237 1238 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1239 { 1240 return TCP_SKB_CB(skb)->txstamp_ack || 1241 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1242 } 1243 1244 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1245 { 1246 struct skb_shared_info *shinfo = skb_shinfo(skb); 1247 1248 if (unlikely(tcp_has_tx_tstamp(skb)) && 1249 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1250 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1251 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1252 1253 shinfo->tx_flags &= ~tsflags; 1254 shinfo2->tx_flags |= tsflags; 1255 swap(shinfo->tskey, shinfo2->tskey); 1256 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1257 TCP_SKB_CB(skb)->txstamp_ack = 0; 1258 } 1259 } 1260 1261 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1262 { 1263 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1264 TCP_SKB_CB(skb)->eor = 0; 1265 } 1266 1267 /* Insert buff after skb on the write or rtx queue of sk. */ 1268 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1269 struct sk_buff *buff, 1270 struct sock *sk, 1271 enum tcp_queue tcp_queue) 1272 { 1273 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1274 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1275 else 1276 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1277 } 1278 1279 /* Function to create two new TCP segments. Shrinks the given segment 1280 * to the specified size and appends a new segment with the rest of the 1281 * packet to the list. This won't be called frequently, I hope. 1282 * Remember, these are still headerless SKBs at this point. 1283 */ 1284 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1285 struct sk_buff *skb, u32 len, 1286 unsigned int mss_now, gfp_t gfp) 1287 { 1288 struct tcp_sock *tp = tcp_sk(sk); 1289 struct sk_buff *buff; 1290 int nsize, old_factor; 1291 int nlen; 1292 u8 flags; 1293 1294 if (WARN_ON(len > skb->len)) 1295 return -EINVAL; 1296 1297 nsize = skb_headlen(skb) - len; 1298 if (nsize < 0) 1299 nsize = 0; 1300 1301 if (unlikely((sk->sk_wmem_queued >> 1) > sk->sk_sndbuf)) { 1302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1303 return -ENOMEM; 1304 } 1305 1306 if (skb_unclone(skb, gfp)) 1307 return -ENOMEM; 1308 1309 /* Get a new skb... force flag on. */ 1310 buff = sk_stream_alloc_skb(sk, nsize, gfp, true); 1311 if (!buff) 1312 return -ENOMEM; /* We'll just try again later. */ 1313 1314 sk->sk_wmem_queued += buff->truesize; 1315 sk_mem_charge(sk, buff->truesize); 1316 nlen = skb->len - len - nsize; 1317 buff->truesize += nlen; 1318 skb->truesize -= nlen; 1319 1320 /* Correct the sequence numbers. */ 1321 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1322 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1323 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1324 1325 /* PSH and FIN should only be set in the second packet. */ 1326 flags = TCP_SKB_CB(skb)->tcp_flags; 1327 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1328 TCP_SKB_CB(buff)->tcp_flags = flags; 1329 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1330 tcp_skb_fragment_eor(skb, buff); 1331 1332 skb_split(skb, buff, len); 1333 1334 buff->ip_summed = CHECKSUM_PARTIAL; 1335 1336 buff->tstamp = skb->tstamp; 1337 tcp_fragment_tstamp(skb, buff); 1338 1339 old_factor = tcp_skb_pcount(skb); 1340 1341 /* Fix up tso_factor for both original and new SKB. */ 1342 tcp_set_skb_tso_segs(skb, mss_now); 1343 tcp_set_skb_tso_segs(buff, mss_now); 1344 1345 /* Update delivered info for the new segment */ 1346 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1347 1348 /* If this packet has been sent out already, we must 1349 * adjust the various packet counters. 1350 */ 1351 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1352 int diff = old_factor - tcp_skb_pcount(skb) - 1353 tcp_skb_pcount(buff); 1354 1355 if (diff) 1356 tcp_adjust_pcount(sk, skb, diff); 1357 } 1358 1359 /* Link BUFF into the send queue. */ 1360 __skb_header_release(buff); 1361 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1362 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1363 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1364 1365 return 0; 1366 } 1367 1368 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1369 * data is not copied, but immediately discarded. 1370 */ 1371 static int __pskb_trim_head(struct sk_buff *skb, int len) 1372 { 1373 struct skb_shared_info *shinfo; 1374 int i, k, eat; 1375 1376 eat = min_t(int, len, skb_headlen(skb)); 1377 if (eat) { 1378 __skb_pull(skb, eat); 1379 len -= eat; 1380 if (!len) 1381 return 0; 1382 } 1383 eat = len; 1384 k = 0; 1385 shinfo = skb_shinfo(skb); 1386 for (i = 0; i < shinfo->nr_frags; i++) { 1387 int size = skb_frag_size(&shinfo->frags[i]); 1388 1389 if (size <= eat) { 1390 skb_frag_unref(skb, i); 1391 eat -= size; 1392 } else { 1393 shinfo->frags[k] = shinfo->frags[i]; 1394 if (eat) { 1395 shinfo->frags[k].page_offset += eat; 1396 skb_frag_size_sub(&shinfo->frags[k], eat); 1397 eat = 0; 1398 } 1399 k++; 1400 } 1401 } 1402 shinfo->nr_frags = k; 1403 1404 skb->data_len -= len; 1405 skb->len = skb->data_len; 1406 return len; 1407 } 1408 1409 /* Remove acked data from a packet in the transmit queue. */ 1410 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1411 { 1412 u32 delta_truesize; 1413 1414 if (skb_unclone(skb, GFP_ATOMIC)) 1415 return -ENOMEM; 1416 1417 delta_truesize = __pskb_trim_head(skb, len); 1418 1419 TCP_SKB_CB(skb)->seq += len; 1420 skb->ip_summed = CHECKSUM_PARTIAL; 1421 1422 if (delta_truesize) { 1423 skb->truesize -= delta_truesize; 1424 sk->sk_wmem_queued -= delta_truesize; 1425 sk_mem_uncharge(sk, delta_truesize); 1426 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1427 } 1428 1429 /* Any change of skb->len requires recalculation of tso factor. */ 1430 if (tcp_skb_pcount(skb) > 1) 1431 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1432 1433 return 0; 1434 } 1435 1436 /* Calculate MSS not accounting any TCP options. */ 1437 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1438 { 1439 const struct tcp_sock *tp = tcp_sk(sk); 1440 const struct inet_connection_sock *icsk = inet_csk(sk); 1441 int mss_now; 1442 1443 /* Calculate base mss without TCP options: 1444 It is MMS_S - sizeof(tcphdr) of rfc1122 1445 */ 1446 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1447 1448 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1449 if (icsk->icsk_af_ops->net_frag_header_len) { 1450 const struct dst_entry *dst = __sk_dst_get(sk); 1451 1452 if (dst && dst_allfrag(dst)) 1453 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1454 } 1455 1456 /* Clamp it (mss_clamp does not include tcp options) */ 1457 if (mss_now > tp->rx_opt.mss_clamp) 1458 mss_now = tp->rx_opt.mss_clamp; 1459 1460 /* Now subtract optional transport overhead */ 1461 mss_now -= icsk->icsk_ext_hdr_len; 1462 1463 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1464 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss); 1465 return mss_now; 1466 } 1467 1468 /* Calculate MSS. Not accounting for SACKs here. */ 1469 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1470 { 1471 /* Subtract TCP options size, not including SACKs */ 1472 return __tcp_mtu_to_mss(sk, pmtu) - 1473 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1474 } 1475 1476 /* Inverse of above */ 1477 int tcp_mss_to_mtu(struct sock *sk, int mss) 1478 { 1479 const struct tcp_sock *tp = tcp_sk(sk); 1480 const struct inet_connection_sock *icsk = inet_csk(sk); 1481 int mtu; 1482 1483 mtu = mss + 1484 tp->tcp_header_len + 1485 icsk->icsk_ext_hdr_len + 1486 icsk->icsk_af_ops->net_header_len; 1487 1488 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1489 if (icsk->icsk_af_ops->net_frag_header_len) { 1490 const struct dst_entry *dst = __sk_dst_get(sk); 1491 1492 if (dst && dst_allfrag(dst)) 1493 mtu += icsk->icsk_af_ops->net_frag_header_len; 1494 } 1495 return mtu; 1496 } 1497 EXPORT_SYMBOL(tcp_mss_to_mtu); 1498 1499 /* MTU probing init per socket */ 1500 void tcp_mtup_init(struct sock *sk) 1501 { 1502 struct tcp_sock *tp = tcp_sk(sk); 1503 struct inet_connection_sock *icsk = inet_csk(sk); 1504 struct net *net = sock_net(sk); 1505 1506 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1; 1507 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1508 icsk->icsk_af_ops->net_header_len; 1509 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss); 1510 icsk->icsk_mtup.probe_size = 0; 1511 if (icsk->icsk_mtup.enabled) 1512 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1513 } 1514 EXPORT_SYMBOL(tcp_mtup_init); 1515 1516 /* This function synchronize snd mss to current pmtu/exthdr set. 1517 1518 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1519 for TCP options, but includes only bare TCP header. 1520 1521 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1522 It is minimum of user_mss and mss received with SYN. 1523 It also does not include TCP options. 1524 1525 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1526 1527 tp->mss_cache is current effective sending mss, including 1528 all tcp options except for SACKs. It is evaluated, 1529 taking into account current pmtu, but never exceeds 1530 tp->rx_opt.mss_clamp. 1531 1532 NOTE1. rfc1122 clearly states that advertised MSS 1533 DOES NOT include either tcp or ip options. 1534 1535 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1536 are READ ONLY outside this function. --ANK (980731) 1537 */ 1538 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1539 { 1540 struct tcp_sock *tp = tcp_sk(sk); 1541 struct inet_connection_sock *icsk = inet_csk(sk); 1542 int mss_now; 1543 1544 if (icsk->icsk_mtup.search_high > pmtu) 1545 icsk->icsk_mtup.search_high = pmtu; 1546 1547 mss_now = tcp_mtu_to_mss(sk, pmtu); 1548 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1549 1550 /* And store cached results */ 1551 icsk->icsk_pmtu_cookie = pmtu; 1552 if (icsk->icsk_mtup.enabled) 1553 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1554 tp->mss_cache = mss_now; 1555 1556 return mss_now; 1557 } 1558 EXPORT_SYMBOL(tcp_sync_mss); 1559 1560 /* Compute the current effective MSS, taking SACKs and IP options, 1561 * and even PMTU discovery events into account. 1562 */ 1563 unsigned int tcp_current_mss(struct sock *sk) 1564 { 1565 const struct tcp_sock *tp = tcp_sk(sk); 1566 const struct dst_entry *dst = __sk_dst_get(sk); 1567 u32 mss_now; 1568 unsigned int header_len; 1569 struct tcp_out_options opts; 1570 struct tcp_md5sig_key *md5; 1571 1572 mss_now = tp->mss_cache; 1573 1574 if (dst) { 1575 u32 mtu = dst_mtu(dst); 1576 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1577 mss_now = tcp_sync_mss(sk, mtu); 1578 } 1579 1580 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1581 sizeof(struct tcphdr); 1582 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1583 * some common options. If this is an odd packet (because we have SACK 1584 * blocks etc) then our calculated header_len will be different, and 1585 * we have to adjust mss_now correspondingly */ 1586 if (header_len != tp->tcp_header_len) { 1587 int delta = (int) header_len - tp->tcp_header_len; 1588 mss_now -= delta; 1589 } 1590 1591 return mss_now; 1592 } 1593 1594 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1595 * As additional protections, we do not touch cwnd in retransmission phases, 1596 * and if application hit its sndbuf limit recently. 1597 */ 1598 static void tcp_cwnd_application_limited(struct sock *sk) 1599 { 1600 struct tcp_sock *tp = tcp_sk(sk); 1601 1602 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1603 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1604 /* Limited by application or receiver window. */ 1605 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1606 u32 win_used = max(tp->snd_cwnd_used, init_win); 1607 if (win_used < tp->snd_cwnd) { 1608 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1609 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 1610 } 1611 tp->snd_cwnd_used = 0; 1612 } 1613 tp->snd_cwnd_stamp = tcp_jiffies32; 1614 } 1615 1616 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1617 { 1618 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1619 struct tcp_sock *tp = tcp_sk(sk); 1620 1621 /* Track the maximum number of outstanding packets in each 1622 * window, and remember whether we were cwnd-limited then. 1623 */ 1624 if (!before(tp->snd_una, tp->max_packets_seq) || 1625 tp->packets_out > tp->max_packets_out) { 1626 tp->max_packets_out = tp->packets_out; 1627 tp->max_packets_seq = tp->snd_nxt; 1628 tp->is_cwnd_limited = is_cwnd_limited; 1629 } 1630 1631 if (tcp_is_cwnd_limited(sk)) { 1632 /* Network is feed fully. */ 1633 tp->snd_cwnd_used = 0; 1634 tp->snd_cwnd_stamp = tcp_jiffies32; 1635 } else { 1636 /* Network starves. */ 1637 if (tp->packets_out > tp->snd_cwnd_used) 1638 tp->snd_cwnd_used = tp->packets_out; 1639 1640 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle && 1641 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1642 !ca_ops->cong_control) 1643 tcp_cwnd_application_limited(sk); 1644 1645 /* The following conditions together indicate the starvation 1646 * is caused by insufficient sender buffer: 1647 * 1) just sent some data (see tcp_write_xmit) 1648 * 2) not cwnd limited (this else condition) 1649 * 3) no more data to send (tcp_write_queue_empty()) 1650 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1651 */ 1652 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1653 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1654 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1655 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1656 } 1657 } 1658 1659 /* Minshall's variant of the Nagle send check. */ 1660 static bool tcp_minshall_check(const struct tcp_sock *tp) 1661 { 1662 return after(tp->snd_sml, tp->snd_una) && 1663 !after(tp->snd_sml, tp->snd_nxt); 1664 } 1665 1666 /* Update snd_sml if this skb is under mss 1667 * Note that a TSO packet might end with a sub-mss segment 1668 * The test is really : 1669 * if ((skb->len % mss) != 0) 1670 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1671 * But we can avoid doing the divide again given we already have 1672 * skb_pcount = skb->len / mss_now 1673 */ 1674 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1675 const struct sk_buff *skb) 1676 { 1677 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1678 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1679 } 1680 1681 /* Return false, if packet can be sent now without violation Nagle's rules: 1682 * 1. It is full sized. (provided by caller in %partial bool) 1683 * 2. Or it contains FIN. (already checked by caller) 1684 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1685 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1686 * With Minshall's modification: all sent small packets are ACKed. 1687 */ 1688 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1689 int nonagle) 1690 { 1691 return partial && 1692 ((nonagle & TCP_NAGLE_CORK) || 1693 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1694 } 1695 1696 /* Return how many segs we'd like on a TSO packet, 1697 * to send one TSO packet per ms 1698 */ 1699 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1700 int min_tso_segs) 1701 { 1702 u32 bytes, segs; 1703 1704 bytes = min_t(unsigned long, 1705 sk->sk_pacing_rate >> sk->sk_pacing_shift, 1706 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER); 1707 1708 /* Goal is to send at least one packet per ms, 1709 * not one big TSO packet every 100 ms. 1710 * This preserves ACK clocking and is consistent 1711 * with tcp_tso_should_defer() heuristic. 1712 */ 1713 segs = max_t(u32, bytes / mss_now, min_tso_segs); 1714 1715 return segs; 1716 } 1717 1718 /* Return the number of segments we want in the skb we are transmitting. 1719 * See if congestion control module wants to decide; otherwise, autosize. 1720 */ 1721 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1722 { 1723 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1724 u32 min_tso, tso_segs; 1725 1726 min_tso = ca_ops->min_tso_segs ? 1727 ca_ops->min_tso_segs(sk) : 1728 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs; 1729 1730 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1731 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 1732 } 1733 1734 /* Returns the portion of skb which can be sent right away */ 1735 static unsigned int tcp_mss_split_point(const struct sock *sk, 1736 const struct sk_buff *skb, 1737 unsigned int mss_now, 1738 unsigned int max_segs, 1739 int nonagle) 1740 { 1741 const struct tcp_sock *tp = tcp_sk(sk); 1742 u32 partial, needed, window, max_len; 1743 1744 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1745 max_len = mss_now * max_segs; 1746 1747 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 1748 return max_len; 1749 1750 needed = min(skb->len, window); 1751 1752 if (max_len <= needed) 1753 return max_len; 1754 1755 partial = needed % mss_now; 1756 /* If last segment is not a full MSS, check if Nagle rules allow us 1757 * to include this last segment in this skb. 1758 * Otherwise, we'll split the skb at last MSS boundary 1759 */ 1760 if (tcp_nagle_check(partial != 0, tp, nonagle)) 1761 return needed - partial; 1762 1763 return needed; 1764 } 1765 1766 /* Can at least one segment of SKB be sent right now, according to the 1767 * congestion window rules? If so, return how many segments are allowed. 1768 */ 1769 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 1770 const struct sk_buff *skb) 1771 { 1772 u32 in_flight, cwnd, halfcwnd; 1773 1774 /* Don't be strict about the congestion window for the final FIN. */ 1775 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 1776 tcp_skb_pcount(skb) == 1) 1777 return 1; 1778 1779 in_flight = tcp_packets_in_flight(tp); 1780 cwnd = tp->snd_cwnd; 1781 if (in_flight >= cwnd) 1782 return 0; 1783 1784 /* For better scheduling, ensure we have at least 1785 * 2 GSO packets in flight. 1786 */ 1787 halfcwnd = max(cwnd >> 1, 1U); 1788 return min(halfcwnd, cwnd - in_flight); 1789 } 1790 1791 /* Initialize TSO state of a skb. 1792 * This must be invoked the first time we consider transmitting 1793 * SKB onto the wire. 1794 */ 1795 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1796 { 1797 int tso_segs = tcp_skb_pcount(skb); 1798 1799 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1800 tcp_set_skb_tso_segs(skb, mss_now); 1801 tso_segs = tcp_skb_pcount(skb); 1802 } 1803 return tso_segs; 1804 } 1805 1806 1807 /* Return true if the Nagle test allows this packet to be 1808 * sent now. 1809 */ 1810 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 1811 unsigned int cur_mss, int nonagle) 1812 { 1813 /* Nagle rule does not apply to frames, which sit in the middle of the 1814 * write_queue (they have no chances to get new data). 1815 * 1816 * This is implemented in the callers, where they modify the 'nonagle' 1817 * argument based upon the location of SKB in the send queue. 1818 */ 1819 if (nonagle & TCP_NAGLE_PUSH) 1820 return true; 1821 1822 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 1823 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 1824 return true; 1825 1826 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 1827 return true; 1828 1829 return false; 1830 } 1831 1832 /* Does at least the first segment of SKB fit into the send window? */ 1833 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 1834 const struct sk_buff *skb, 1835 unsigned int cur_mss) 1836 { 1837 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1838 1839 if (skb->len > cur_mss) 1840 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1841 1842 return !after(end_seq, tcp_wnd_end(tp)); 1843 } 1844 1845 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1846 * which is put after SKB on the list. It is very much like 1847 * tcp_fragment() except that it may make several kinds of assumptions 1848 * in order to speed up the splitting operation. In particular, we 1849 * know that all the data is in scatter-gather pages, and that the 1850 * packet has never been sent out before (and thus is not cloned). 1851 */ 1852 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1853 unsigned int mss_now, gfp_t gfp) 1854 { 1855 int nlen = skb->len - len; 1856 struct sk_buff *buff; 1857 u8 flags; 1858 1859 /* All of a TSO frame must be composed of paged data. */ 1860 if (skb->len != skb->data_len) 1861 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 1862 skb, len, mss_now, gfp); 1863 1864 buff = sk_stream_alloc_skb(sk, 0, gfp, true); 1865 if (unlikely(!buff)) 1866 return -ENOMEM; 1867 1868 sk->sk_wmem_queued += buff->truesize; 1869 sk_mem_charge(sk, buff->truesize); 1870 buff->truesize += nlen; 1871 skb->truesize -= nlen; 1872 1873 /* Correct the sequence numbers. */ 1874 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1875 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1876 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1877 1878 /* PSH and FIN should only be set in the second packet. */ 1879 flags = TCP_SKB_CB(skb)->tcp_flags; 1880 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1881 TCP_SKB_CB(buff)->tcp_flags = flags; 1882 1883 /* This packet was never sent out yet, so no SACK bits. */ 1884 TCP_SKB_CB(buff)->sacked = 0; 1885 1886 tcp_skb_fragment_eor(skb, buff); 1887 1888 buff->ip_summed = CHECKSUM_PARTIAL; 1889 skb_split(skb, buff, len); 1890 tcp_fragment_tstamp(skb, buff); 1891 1892 /* Fix up tso_factor for both original and new SKB. */ 1893 tcp_set_skb_tso_segs(skb, mss_now); 1894 tcp_set_skb_tso_segs(buff, mss_now); 1895 1896 /* Link BUFF into the send queue. */ 1897 __skb_header_release(buff); 1898 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 1899 1900 return 0; 1901 } 1902 1903 /* Try to defer sending, if possible, in order to minimize the amount 1904 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1905 * 1906 * This algorithm is from John Heffner. 1907 */ 1908 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 1909 bool *is_cwnd_limited, 1910 bool *is_rwnd_limited, 1911 u32 max_segs) 1912 { 1913 const struct inet_connection_sock *icsk = inet_csk(sk); 1914 u32 send_win, cong_win, limit, in_flight; 1915 struct tcp_sock *tp = tcp_sk(sk); 1916 struct sk_buff *head; 1917 int win_divisor; 1918 s64 delta; 1919 1920 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 1921 goto send_now; 1922 1923 /* Avoid bursty behavior by allowing defer 1924 * only if the last write was recent (1 ms). 1925 * Note that tp->tcp_wstamp_ns can be in the future if we have 1926 * packets waiting in a qdisc or device for EDT delivery. 1927 */ 1928 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 1929 if (delta > 0) 1930 goto send_now; 1931 1932 in_flight = tcp_packets_in_flight(tp); 1933 1934 BUG_ON(tcp_skb_pcount(skb) <= 1); 1935 BUG_ON(tp->snd_cwnd <= in_flight); 1936 1937 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1938 1939 /* From in_flight test above, we know that cwnd > in_flight. */ 1940 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1941 1942 limit = min(send_win, cong_win); 1943 1944 /* If a full-sized TSO skb can be sent, do it. */ 1945 if (limit >= max_segs * tp->mss_cache) 1946 goto send_now; 1947 1948 /* Middle in queue won't get any more data, full sendable already? */ 1949 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1950 goto send_now; 1951 1952 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 1953 if (win_divisor) { 1954 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1955 1956 /* If at least some fraction of a window is available, 1957 * just use it. 1958 */ 1959 chunk /= win_divisor; 1960 if (limit >= chunk) 1961 goto send_now; 1962 } else { 1963 /* Different approach, try not to defer past a single 1964 * ACK. Receiver should ACK every other full sized 1965 * frame, so if we have space for more than 3 frames 1966 * then send now. 1967 */ 1968 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 1969 goto send_now; 1970 } 1971 1972 /* TODO : use tsorted_sent_queue ? */ 1973 head = tcp_rtx_queue_head(sk); 1974 if (!head) 1975 goto send_now; 1976 delta = tp->tcp_clock_cache - head->tstamp; 1977 /* If next ACK is likely to come too late (half srtt), do not defer */ 1978 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 1979 goto send_now; 1980 1981 /* Ok, it looks like it is advisable to defer. 1982 * Three cases are tracked : 1983 * 1) We are cwnd-limited 1984 * 2) We are rwnd-limited 1985 * 3) We are application limited. 1986 */ 1987 if (cong_win < send_win) { 1988 if (cong_win <= skb->len) { 1989 *is_cwnd_limited = true; 1990 return true; 1991 } 1992 } else { 1993 if (send_win <= skb->len) { 1994 *is_rwnd_limited = true; 1995 return true; 1996 } 1997 } 1998 1999 /* If this packet won't get more data, do not wait. */ 2000 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2001 TCP_SKB_CB(skb)->eor) 2002 goto send_now; 2003 2004 return true; 2005 2006 send_now: 2007 return false; 2008 } 2009 2010 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2011 { 2012 struct inet_connection_sock *icsk = inet_csk(sk); 2013 struct tcp_sock *tp = tcp_sk(sk); 2014 struct net *net = sock_net(sk); 2015 u32 interval; 2016 s32 delta; 2017 2018 interval = net->ipv4.sysctl_tcp_probe_interval; 2019 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2020 if (unlikely(delta >= interval * HZ)) { 2021 int mss = tcp_current_mss(sk); 2022 2023 /* Update current search range */ 2024 icsk->icsk_mtup.probe_size = 0; 2025 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2026 sizeof(struct tcphdr) + 2027 icsk->icsk_af_ops->net_header_len; 2028 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2029 2030 /* Update probe time stamp */ 2031 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2032 } 2033 } 2034 2035 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2036 { 2037 struct sk_buff *skb, *next; 2038 2039 skb = tcp_send_head(sk); 2040 tcp_for_write_queue_from_safe(skb, next, sk) { 2041 if (len <= skb->len) 2042 break; 2043 2044 if (unlikely(TCP_SKB_CB(skb)->eor)) 2045 return false; 2046 2047 len -= skb->len; 2048 } 2049 2050 return true; 2051 } 2052 2053 /* Create a new MTU probe if we are ready. 2054 * MTU probe is regularly attempting to increase the path MTU by 2055 * deliberately sending larger packets. This discovers routing 2056 * changes resulting in larger path MTUs. 2057 * 2058 * Returns 0 if we should wait to probe (no cwnd available), 2059 * 1 if a probe was sent, 2060 * -1 otherwise 2061 */ 2062 static int tcp_mtu_probe(struct sock *sk) 2063 { 2064 struct inet_connection_sock *icsk = inet_csk(sk); 2065 struct tcp_sock *tp = tcp_sk(sk); 2066 struct sk_buff *skb, *nskb, *next; 2067 struct net *net = sock_net(sk); 2068 int probe_size; 2069 int size_needed; 2070 int copy, len; 2071 int mss_now; 2072 int interval; 2073 2074 /* Not currently probing/verifying, 2075 * not in recovery, 2076 * have enough cwnd, and 2077 * not SACKing (the variable headers throw things off) 2078 */ 2079 if (likely(!icsk->icsk_mtup.enabled || 2080 icsk->icsk_mtup.probe_size || 2081 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2082 tp->snd_cwnd < 11 || 2083 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2084 return -1; 2085 2086 /* Use binary search for probe_size between tcp_mss_base, 2087 * and current mss_clamp. if (search_high - search_low) 2088 * smaller than a threshold, backoff from probing. 2089 */ 2090 mss_now = tcp_current_mss(sk); 2091 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2092 icsk->icsk_mtup.search_low) >> 1); 2093 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2094 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2095 /* When misfortune happens, we are reprobing actively, 2096 * and then reprobe timer has expired. We stick with current 2097 * probing process by not resetting search range to its orignal. 2098 */ 2099 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2100 interval < net->ipv4.sysctl_tcp_probe_threshold) { 2101 /* Check whether enough time has elaplased for 2102 * another round of probing. 2103 */ 2104 tcp_mtu_check_reprobe(sk); 2105 return -1; 2106 } 2107 2108 /* Have enough data in the send queue to probe? */ 2109 if (tp->write_seq - tp->snd_nxt < size_needed) 2110 return -1; 2111 2112 if (tp->snd_wnd < size_needed) 2113 return -1; 2114 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2115 return 0; 2116 2117 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2118 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 2119 if (!tcp_packets_in_flight(tp)) 2120 return -1; 2121 else 2122 return 0; 2123 } 2124 2125 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2126 return -1; 2127 2128 /* We're allowed to probe. Build it now. */ 2129 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); 2130 if (!nskb) 2131 return -1; 2132 sk->sk_wmem_queued += nskb->truesize; 2133 sk_mem_charge(sk, nskb->truesize); 2134 2135 skb = tcp_send_head(sk); 2136 2137 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2138 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2139 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2140 TCP_SKB_CB(nskb)->sacked = 0; 2141 nskb->csum = 0; 2142 nskb->ip_summed = CHECKSUM_PARTIAL; 2143 2144 tcp_insert_write_queue_before(nskb, skb, sk); 2145 tcp_highest_sack_replace(sk, skb, nskb); 2146 2147 len = 0; 2148 tcp_for_write_queue_from_safe(skb, next, sk) { 2149 copy = min_t(int, skb->len, probe_size - len); 2150 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 2151 2152 if (skb->len <= copy) { 2153 /* We've eaten all the data from this skb. 2154 * Throw it away. */ 2155 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2156 /* If this is the last SKB we copy and eor is set 2157 * we need to propagate it to the new skb. 2158 */ 2159 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2160 tcp_unlink_write_queue(skb, sk); 2161 sk_wmem_free_skb(sk, skb); 2162 } else { 2163 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2164 ~(TCPHDR_FIN|TCPHDR_PSH); 2165 if (!skb_shinfo(skb)->nr_frags) { 2166 skb_pull(skb, copy); 2167 } else { 2168 __pskb_trim_head(skb, copy); 2169 tcp_set_skb_tso_segs(skb, mss_now); 2170 } 2171 TCP_SKB_CB(skb)->seq += copy; 2172 } 2173 2174 len += copy; 2175 2176 if (len >= probe_size) 2177 break; 2178 } 2179 tcp_init_tso_segs(nskb, nskb->len); 2180 2181 /* We're ready to send. If this fails, the probe will 2182 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2183 */ 2184 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2185 /* Decrement cwnd here because we are sending 2186 * effectively two packets. */ 2187 tp->snd_cwnd--; 2188 tcp_event_new_data_sent(sk, nskb); 2189 2190 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2191 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2192 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2193 2194 return 1; 2195 } 2196 2197 return -1; 2198 } 2199 2200 static bool tcp_pacing_check(struct sock *sk) 2201 { 2202 struct tcp_sock *tp = tcp_sk(sk); 2203 2204 if (!tcp_needs_internal_pacing(sk)) 2205 return false; 2206 2207 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2208 return false; 2209 2210 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2211 hrtimer_start(&tp->pacing_timer, 2212 ns_to_ktime(tp->tcp_wstamp_ns), 2213 HRTIMER_MODE_ABS_PINNED_SOFT); 2214 sock_hold(sk); 2215 } 2216 return true; 2217 } 2218 2219 /* TCP Small Queues : 2220 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2221 * (These limits are doubled for retransmits) 2222 * This allows for : 2223 * - better RTT estimation and ACK scheduling 2224 * - faster recovery 2225 * - high rates 2226 * Alas, some drivers / subsystems require a fair amount 2227 * of queued bytes to ensure line rate. 2228 * One example is wifi aggregation (802.11 AMPDU) 2229 */ 2230 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2231 unsigned int factor) 2232 { 2233 unsigned long limit; 2234 2235 limit = max_t(unsigned long, 2236 2 * skb->truesize, 2237 sk->sk_pacing_rate >> sk->sk_pacing_shift); 2238 if (sk->sk_pacing_status == SK_PACING_NONE) 2239 limit = min_t(unsigned long, limit, 2240 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes); 2241 limit <<= factor; 2242 2243 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2244 tcp_sk(sk)->tcp_tx_delay) { 2245 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; 2246 2247 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2248 * approximate our needs assuming an ~100% skb->truesize overhead. 2249 * USEC_PER_SEC is approximated by 2^20. 2250 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2251 */ 2252 extra_bytes >>= (20 - 1); 2253 limit += extra_bytes; 2254 } 2255 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2256 /* Always send skb if rtx queue is empty. 2257 * No need to wait for TX completion to call us back, 2258 * after softirq/tasklet schedule. 2259 * This helps when TX completions are delayed too much. 2260 */ 2261 if (tcp_rtx_queue_empty(sk)) 2262 return false; 2263 2264 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2265 /* It is possible TX completion already happened 2266 * before we set TSQ_THROTTLED, so we must 2267 * test again the condition. 2268 */ 2269 smp_mb__after_atomic(); 2270 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2271 return true; 2272 } 2273 return false; 2274 } 2275 2276 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2277 { 2278 const u32 now = tcp_jiffies32; 2279 enum tcp_chrono old = tp->chrono_type; 2280 2281 if (old > TCP_CHRONO_UNSPEC) 2282 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2283 tp->chrono_start = now; 2284 tp->chrono_type = new; 2285 } 2286 2287 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2288 { 2289 struct tcp_sock *tp = tcp_sk(sk); 2290 2291 /* If there are multiple conditions worthy of tracking in a 2292 * chronograph then the highest priority enum takes precedence 2293 * over the other conditions. So that if something "more interesting" 2294 * starts happening, stop the previous chrono and start a new one. 2295 */ 2296 if (type > tp->chrono_type) 2297 tcp_chrono_set(tp, type); 2298 } 2299 2300 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2301 { 2302 struct tcp_sock *tp = tcp_sk(sk); 2303 2304 2305 /* There are multiple conditions worthy of tracking in a 2306 * chronograph, so that the highest priority enum takes 2307 * precedence over the other conditions (see tcp_chrono_start). 2308 * If a condition stops, we only stop chrono tracking if 2309 * it's the "most interesting" or current chrono we are 2310 * tracking and starts busy chrono if we have pending data. 2311 */ 2312 if (tcp_rtx_and_write_queues_empty(sk)) 2313 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2314 else if (type == tp->chrono_type) 2315 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2316 } 2317 2318 /* This routine writes packets to the network. It advances the 2319 * send_head. This happens as incoming acks open up the remote 2320 * window for us. 2321 * 2322 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2323 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2324 * account rare use of URG, this is not a big flaw. 2325 * 2326 * Send at most one packet when push_one > 0. Temporarily ignore 2327 * cwnd limit to force at most one packet out when push_one == 2. 2328 2329 * Returns true, if no segments are in flight and we have queued segments, 2330 * but cannot send anything now because of SWS or another problem. 2331 */ 2332 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2333 int push_one, gfp_t gfp) 2334 { 2335 struct tcp_sock *tp = tcp_sk(sk); 2336 struct sk_buff *skb; 2337 unsigned int tso_segs, sent_pkts; 2338 int cwnd_quota; 2339 int result; 2340 bool is_cwnd_limited = false, is_rwnd_limited = false; 2341 u32 max_segs; 2342 2343 sent_pkts = 0; 2344 2345 tcp_mstamp_refresh(tp); 2346 if (!push_one) { 2347 /* Do MTU probing. */ 2348 result = tcp_mtu_probe(sk); 2349 if (!result) { 2350 return false; 2351 } else if (result > 0) { 2352 sent_pkts = 1; 2353 } 2354 } 2355 2356 max_segs = tcp_tso_segs(sk, mss_now); 2357 while ((skb = tcp_send_head(sk))) { 2358 unsigned int limit; 2359 2360 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2361 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2362 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2363 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2364 tcp_init_tso_segs(skb, mss_now); 2365 goto repair; /* Skip network transmission */ 2366 } 2367 2368 if (tcp_pacing_check(sk)) 2369 break; 2370 2371 tso_segs = tcp_init_tso_segs(skb, mss_now); 2372 BUG_ON(!tso_segs); 2373 2374 cwnd_quota = tcp_cwnd_test(tp, skb); 2375 if (!cwnd_quota) { 2376 if (push_one == 2) 2377 /* Force out a loss probe pkt. */ 2378 cwnd_quota = 1; 2379 else 2380 break; 2381 } 2382 2383 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2384 is_rwnd_limited = true; 2385 break; 2386 } 2387 2388 if (tso_segs == 1) { 2389 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2390 (tcp_skb_is_last(sk, skb) ? 2391 nonagle : TCP_NAGLE_PUSH)))) 2392 break; 2393 } else { 2394 if (!push_one && 2395 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2396 &is_rwnd_limited, max_segs)) 2397 break; 2398 } 2399 2400 limit = mss_now; 2401 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2402 limit = tcp_mss_split_point(sk, skb, mss_now, 2403 min_t(unsigned int, 2404 cwnd_quota, 2405 max_segs), 2406 nonagle); 2407 2408 if (skb->len > limit && 2409 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2410 break; 2411 2412 if (tcp_small_queue_check(sk, skb, 0)) 2413 break; 2414 2415 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2416 break; 2417 2418 repair: 2419 /* Advance the send_head. This one is sent out. 2420 * This call will increment packets_out. 2421 */ 2422 tcp_event_new_data_sent(sk, skb); 2423 2424 tcp_minshall_update(tp, mss_now, skb); 2425 sent_pkts += tcp_skb_pcount(skb); 2426 2427 if (push_one) 2428 break; 2429 } 2430 2431 if (is_rwnd_limited) 2432 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2433 else 2434 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2435 2436 if (likely(sent_pkts)) { 2437 if (tcp_in_cwnd_reduction(sk)) 2438 tp->prr_out += sent_pkts; 2439 2440 /* Send one loss probe per tail loss episode. */ 2441 if (push_one != 2) 2442 tcp_schedule_loss_probe(sk, false); 2443 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd); 2444 tcp_cwnd_validate(sk, is_cwnd_limited); 2445 return false; 2446 } 2447 return !tp->packets_out && !tcp_write_queue_empty(sk); 2448 } 2449 2450 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2451 { 2452 struct inet_connection_sock *icsk = inet_csk(sk); 2453 struct tcp_sock *tp = tcp_sk(sk); 2454 u32 timeout, rto_delta_us; 2455 int early_retrans; 2456 2457 /* Don't do any loss probe on a Fast Open connection before 3WHS 2458 * finishes. 2459 */ 2460 if (tp->fastopen_rsk) 2461 return false; 2462 2463 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans; 2464 /* Schedule a loss probe in 2*RTT for SACK capable connections 2465 * not in loss recovery, that are either limited by cwnd or application. 2466 */ 2467 if ((early_retrans != 3 && early_retrans != 4) || 2468 !tp->packets_out || !tcp_is_sack(tp) || 2469 (icsk->icsk_ca_state != TCP_CA_Open && 2470 icsk->icsk_ca_state != TCP_CA_CWR)) 2471 return false; 2472 2473 /* Probe timeout is 2*rtt. Add minimum RTO to account 2474 * for delayed ack when there's one outstanding packet. If no RTT 2475 * sample is available then probe after TCP_TIMEOUT_INIT. 2476 */ 2477 if (tp->srtt_us) { 2478 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2479 if (tp->packets_out == 1) 2480 timeout += TCP_RTO_MIN; 2481 else 2482 timeout += TCP_TIMEOUT_MIN; 2483 } else { 2484 timeout = TCP_TIMEOUT_INIT; 2485 } 2486 2487 /* If the RTO formula yields an earlier time, then use that time. */ 2488 rto_delta_us = advancing_rto ? 2489 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2490 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2491 if (rto_delta_us > 0) 2492 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2493 2494 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, 2495 TCP_RTO_MAX, NULL); 2496 return true; 2497 } 2498 2499 /* Thanks to skb fast clones, we can detect if a prior transmit of 2500 * a packet is still in a qdisc or driver queue. 2501 * In this case, there is very little point doing a retransmit ! 2502 */ 2503 static bool skb_still_in_host_queue(const struct sock *sk, 2504 const struct sk_buff *skb) 2505 { 2506 if (unlikely(skb_fclone_busy(sk, skb))) { 2507 NET_INC_STATS(sock_net(sk), 2508 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2509 return true; 2510 } 2511 return false; 2512 } 2513 2514 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2515 * retransmit the last segment. 2516 */ 2517 void tcp_send_loss_probe(struct sock *sk) 2518 { 2519 struct tcp_sock *tp = tcp_sk(sk); 2520 struct sk_buff *skb; 2521 int pcount; 2522 int mss = tcp_current_mss(sk); 2523 2524 skb = tcp_send_head(sk); 2525 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2526 pcount = tp->packets_out; 2527 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2528 if (tp->packets_out > pcount) 2529 goto probe_sent; 2530 goto rearm_timer; 2531 } 2532 skb = skb_rb_last(&sk->tcp_rtx_queue); 2533 if (unlikely(!skb)) { 2534 WARN_ONCE(tp->packets_out, 2535 "invalid inflight: %u state %u cwnd %u mss %d\n", 2536 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss); 2537 inet_csk(sk)->icsk_pending = 0; 2538 return; 2539 } 2540 2541 /* At most one outstanding TLP retransmission. */ 2542 if (tp->tlp_high_seq) 2543 goto rearm_timer; 2544 2545 if (skb_still_in_host_queue(sk, skb)) 2546 goto rearm_timer; 2547 2548 pcount = tcp_skb_pcount(skb); 2549 if (WARN_ON(!pcount)) 2550 goto rearm_timer; 2551 2552 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2553 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2554 (pcount - 1) * mss, mss, 2555 GFP_ATOMIC))) 2556 goto rearm_timer; 2557 skb = skb_rb_next(skb); 2558 } 2559 2560 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2561 goto rearm_timer; 2562 2563 if (__tcp_retransmit_skb(sk, skb, 1)) 2564 goto rearm_timer; 2565 2566 /* Record snd_nxt for loss detection. */ 2567 tp->tlp_high_seq = tp->snd_nxt; 2568 2569 probe_sent: 2570 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2571 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2572 inet_csk(sk)->icsk_pending = 0; 2573 rearm_timer: 2574 tcp_rearm_rto(sk); 2575 } 2576 2577 /* Push out any pending frames which were held back due to 2578 * TCP_CORK or attempt at coalescing tiny packets. 2579 * The socket must be locked by the caller. 2580 */ 2581 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2582 int nonagle) 2583 { 2584 /* If we are closed, the bytes will have to remain here. 2585 * In time closedown will finish, we empty the write queue and 2586 * all will be happy. 2587 */ 2588 if (unlikely(sk->sk_state == TCP_CLOSE)) 2589 return; 2590 2591 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2592 sk_gfp_mask(sk, GFP_ATOMIC))) 2593 tcp_check_probe_timer(sk); 2594 } 2595 2596 /* Send _single_ skb sitting at the send head. This function requires 2597 * true push pending frames to setup probe timer etc. 2598 */ 2599 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2600 { 2601 struct sk_buff *skb = tcp_send_head(sk); 2602 2603 BUG_ON(!skb || skb->len < mss_now); 2604 2605 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2606 } 2607 2608 /* This function returns the amount that we can raise the 2609 * usable window based on the following constraints 2610 * 2611 * 1. The window can never be shrunk once it is offered (RFC 793) 2612 * 2. We limit memory per socket 2613 * 2614 * RFC 1122: 2615 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2616 * RECV.NEXT + RCV.WIN fixed until: 2617 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2618 * 2619 * i.e. don't raise the right edge of the window until you can raise 2620 * it at least MSS bytes. 2621 * 2622 * Unfortunately, the recommended algorithm breaks header prediction, 2623 * since header prediction assumes th->window stays fixed. 2624 * 2625 * Strictly speaking, keeping th->window fixed violates the receiver 2626 * side SWS prevention criteria. The problem is that under this rule 2627 * a stream of single byte packets will cause the right side of the 2628 * window to always advance by a single byte. 2629 * 2630 * Of course, if the sender implements sender side SWS prevention 2631 * then this will not be a problem. 2632 * 2633 * BSD seems to make the following compromise: 2634 * 2635 * If the free space is less than the 1/4 of the maximum 2636 * space available and the free space is less than 1/2 mss, 2637 * then set the window to 0. 2638 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2639 * Otherwise, just prevent the window from shrinking 2640 * and from being larger than the largest representable value. 2641 * 2642 * This prevents incremental opening of the window in the regime 2643 * where TCP is limited by the speed of the reader side taking 2644 * data out of the TCP receive queue. It does nothing about 2645 * those cases where the window is constrained on the sender side 2646 * because the pipeline is full. 2647 * 2648 * BSD also seems to "accidentally" limit itself to windows that are a 2649 * multiple of MSS, at least until the free space gets quite small. 2650 * This would appear to be a side effect of the mbuf implementation. 2651 * Combining these two algorithms results in the observed behavior 2652 * of having a fixed window size at almost all times. 2653 * 2654 * Below we obtain similar behavior by forcing the offered window to 2655 * a multiple of the mss when it is feasible to do so. 2656 * 2657 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2658 * Regular options like TIMESTAMP are taken into account. 2659 */ 2660 u32 __tcp_select_window(struct sock *sk) 2661 { 2662 struct inet_connection_sock *icsk = inet_csk(sk); 2663 struct tcp_sock *tp = tcp_sk(sk); 2664 /* MSS for the peer's data. Previous versions used mss_clamp 2665 * here. I don't know if the value based on our guesses 2666 * of peer's MSS is better for the performance. It's more correct 2667 * but may be worse for the performance because of rcv_mss 2668 * fluctuations. --SAW 1998/11/1 2669 */ 2670 int mss = icsk->icsk_ack.rcv_mss; 2671 int free_space = tcp_space(sk); 2672 int allowed_space = tcp_full_space(sk); 2673 int full_space = min_t(int, tp->window_clamp, allowed_space); 2674 int window; 2675 2676 if (unlikely(mss > full_space)) { 2677 mss = full_space; 2678 if (mss <= 0) 2679 return 0; 2680 } 2681 if (free_space < (full_space >> 1)) { 2682 icsk->icsk_ack.quick = 0; 2683 2684 if (tcp_under_memory_pressure(sk)) 2685 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 2686 4U * tp->advmss); 2687 2688 /* free_space might become our new window, make sure we don't 2689 * increase it due to wscale. 2690 */ 2691 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 2692 2693 /* if free space is less than mss estimate, or is below 1/16th 2694 * of the maximum allowed, try to move to zero-window, else 2695 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 2696 * new incoming data is dropped due to memory limits. 2697 * With large window, mss test triggers way too late in order 2698 * to announce zero window in time before rmem limit kicks in. 2699 */ 2700 if (free_space < (allowed_space >> 4) || free_space < mss) 2701 return 0; 2702 } 2703 2704 if (free_space > tp->rcv_ssthresh) 2705 free_space = tp->rcv_ssthresh; 2706 2707 /* Don't do rounding if we are using window scaling, since the 2708 * scaled window will not line up with the MSS boundary anyway. 2709 */ 2710 if (tp->rx_opt.rcv_wscale) { 2711 window = free_space; 2712 2713 /* Advertise enough space so that it won't get scaled away. 2714 * Import case: prevent zero window announcement if 2715 * 1<<rcv_wscale > mss. 2716 */ 2717 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 2718 } else { 2719 window = tp->rcv_wnd; 2720 /* Get the largest window that is a nice multiple of mss. 2721 * Window clamp already applied above. 2722 * If our current window offering is within 1 mss of the 2723 * free space we just keep it. This prevents the divide 2724 * and multiply from happening most of the time. 2725 * We also don't do any window rounding when the free space 2726 * is too small. 2727 */ 2728 if (window <= free_space - mss || window > free_space) 2729 window = rounddown(free_space, mss); 2730 else if (mss == full_space && 2731 free_space > window + (full_space >> 1)) 2732 window = free_space; 2733 } 2734 2735 return window; 2736 } 2737 2738 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 2739 const struct sk_buff *next_skb) 2740 { 2741 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 2742 const struct skb_shared_info *next_shinfo = 2743 skb_shinfo(next_skb); 2744 struct skb_shared_info *shinfo = skb_shinfo(skb); 2745 2746 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 2747 shinfo->tskey = next_shinfo->tskey; 2748 TCP_SKB_CB(skb)->txstamp_ack |= 2749 TCP_SKB_CB(next_skb)->txstamp_ack; 2750 } 2751 } 2752 2753 /* Collapses two adjacent SKB's during retransmission. */ 2754 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 2755 { 2756 struct tcp_sock *tp = tcp_sk(sk); 2757 struct sk_buff *next_skb = skb_rb_next(skb); 2758 int next_skb_size; 2759 2760 next_skb_size = next_skb->len; 2761 2762 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 2763 2764 if (next_skb_size) { 2765 if (next_skb_size <= skb_availroom(skb)) 2766 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size), 2767 next_skb_size); 2768 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 2769 return false; 2770 } 2771 tcp_highest_sack_replace(sk, next_skb, skb); 2772 2773 /* Update sequence range on original skb. */ 2774 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 2775 2776 /* Merge over control information. This moves PSH/FIN etc. over */ 2777 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 2778 2779 /* All done, get rid of second SKB and account for it so 2780 * packet counting does not break. 2781 */ 2782 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 2783 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 2784 2785 /* changed transmit queue under us so clear hints */ 2786 tcp_clear_retrans_hints_partial(tp); 2787 if (next_skb == tp->retransmit_skb_hint) 2788 tp->retransmit_skb_hint = skb; 2789 2790 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2791 2792 tcp_skb_collapse_tstamp(skb, next_skb); 2793 2794 tcp_rtx_queue_unlink_and_free(next_skb, sk); 2795 return true; 2796 } 2797 2798 /* Check if coalescing SKBs is legal. */ 2799 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 2800 { 2801 if (tcp_skb_pcount(skb) > 1) 2802 return false; 2803 if (skb_cloned(skb)) 2804 return false; 2805 /* Some heuristics for collapsing over SACK'd could be invented */ 2806 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2807 return false; 2808 2809 return true; 2810 } 2811 2812 /* Collapse packets in the retransmit queue to make to create 2813 * less packets on the wire. This is only done on retransmission. 2814 */ 2815 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2816 int space) 2817 { 2818 struct tcp_sock *tp = tcp_sk(sk); 2819 struct sk_buff *skb = to, *tmp; 2820 bool first = true; 2821 2822 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse) 2823 return; 2824 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2825 return; 2826 2827 skb_rbtree_walk_from_safe(skb, tmp) { 2828 if (!tcp_can_collapse(sk, skb)) 2829 break; 2830 2831 if (!tcp_skb_can_collapse_to(to)) 2832 break; 2833 2834 space -= skb->len; 2835 2836 if (first) { 2837 first = false; 2838 continue; 2839 } 2840 2841 if (space < 0) 2842 break; 2843 2844 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2845 break; 2846 2847 if (!tcp_collapse_retrans(sk, to)) 2848 break; 2849 } 2850 } 2851 2852 /* This retransmits one SKB. Policy decisions and retransmit queue 2853 * state updates are done by the caller. Returns non-zero if an 2854 * error occurred which prevented the send. 2855 */ 2856 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2857 { 2858 struct inet_connection_sock *icsk = inet_csk(sk); 2859 struct tcp_sock *tp = tcp_sk(sk); 2860 unsigned int cur_mss; 2861 int diff, len, err; 2862 2863 2864 /* Inconclusive MTU probe */ 2865 if (icsk->icsk_mtup.probe_size) 2866 icsk->icsk_mtup.probe_size = 0; 2867 2868 /* Do not sent more than we queued. 1/4 is reserved for possible 2869 * copying overhead: fragmentation, tunneling, mangling etc. 2870 */ 2871 if (refcount_read(&sk->sk_wmem_alloc) > 2872 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), 2873 sk->sk_sndbuf)) 2874 return -EAGAIN; 2875 2876 if (skb_still_in_host_queue(sk, skb)) 2877 return -EBUSY; 2878 2879 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2880 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 2881 WARN_ON_ONCE(1); 2882 return -EINVAL; 2883 } 2884 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2885 return -ENOMEM; 2886 } 2887 2888 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2889 return -EHOSTUNREACH; /* Routing failure or similar. */ 2890 2891 cur_mss = tcp_current_mss(sk); 2892 2893 /* If receiver has shrunk his window, and skb is out of 2894 * new window, do not retransmit it. The exception is the 2895 * case, when window is shrunk to zero. In this case 2896 * our retransmit serves as a zero window probe. 2897 */ 2898 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2899 TCP_SKB_CB(skb)->seq != tp->snd_una) 2900 return -EAGAIN; 2901 2902 len = cur_mss * segs; 2903 if (skb->len > len) { 2904 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 2905 cur_mss, GFP_ATOMIC)) 2906 return -ENOMEM; /* We'll try again later. */ 2907 } else { 2908 if (skb_unclone(skb, GFP_ATOMIC)) 2909 return -ENOMEM; 2910 2911 diff = tcp_skb_pcount(skb); 2912 tcp_set_skb_tso_segs(skb, cur_mss); 2913 diff -= tcp_skb_pcount(skb); 2914 if (diff) 2915 tcp_adjust_pcount(sk, skb, diff); 2916 if (skb->len < cur_mss) 2917 tcp_retrans_try_collapse(sk, skb, cur_mss); 2918 } 2919 2920 /* RFC3168, section 6.1.1.1. ECN fallback */ 2921 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 2922 tcp_ecn_clear_syn(sk, skb); 2923 2924 /* Update global and local TCP statistics. */ 2925 segs = tcp_skb_pcount(skb); 2926 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 2927 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 2928 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 2929 tp->total_retrans += segs; 2930 tp->bytes_retrans += skb->len; 2931 2932 /* make sure skb->data is aligned on arches that require it 2933 * and check if ack-trimming & collapsing extended the headroom 2934 * beyond what csum_start can cover. 2935 */ 2936 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 2937 skb_headroom(skb) >= 0xFFFF)) { 2938 struct sk_buff *nskb; 2939 2940 tcp_skb_tsorted_save(skb) { 2941 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 2942 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) : 2943 -ENOBUFS; 2944 } tcp_skb_tsorted_restore(skb); 2945 2946 if (!err) { 2947 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 2948 tcp_rate_skb_sent(sk, skb); 2949 } 2950 } else { 2951 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2952 } 2953 2954 /* To avoid taking spuriously low RTT samples based on a timestamp 2955 * for a transmit that never happened, always mark EVER_RETRANS 2956 */ 2957 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 2958 2959 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 2960 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 2961 TCP_SKB_CB(skb)->seq, segs, err); 2962 2963 if (likely(!err)) { 2964 trace_tcp_retransmit_skb(sk, skb); 2965 } else if (err != -EBUSY) { 2966 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 2967 } 2968 return err; 2969 } 2970 2971 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 2972 { 2973 struct tcp_sock *tp = tcp_sk(sk); 2974 int err = __tcp_retransmit_skb(sk, skb, segs); 2975 2976 if (err == 0) { 2977 #if FASTRETRANS_DEBUG > 0 2978 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2979 net_dbg_ratelimited("retrans_out leaked\n"); 2980 } 2981 #endif 2982 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2983 tp->retrans_out += tcp_skb_pcount(skb); 2984 } 2985 2986 /* Save stamp of the first (attempted) retransmit. */ 2987 if (!tp->retrans_stamp) 2988 tp->retrans_stamp = tcp_skb_timestamp(skb); 2989 2990 if (tp->undo_retrans < 0) 2991 tp->undo_retrans = 0; 2992 tp->undo_retrans += tcp_skb_pcount(skb); 2993 return err; 2994 } 2995 2996 /* This gets called after a retransmit timeout, and the initially 2997 * retransmitted data is acknowledged. It tries to continue 2998 * resending the rest of the retransmit queue, until either 2999 * we've sent it all or the congestion window limit is reached. 3000 */ 3001 void tcp_xmit_retransmit_queue(struct sock *sk) 3002 { 3003 const struct inet_connection_sock *icsk = inet_csk(sk); 3004 struct sk_buff *skb, *rtx_head, *hole = NULL; 3005 struct tcp_sock *tp = tcp_sk(sk); 3006 u32 max_segs; 3007 int mib_idx; 3008 3009 if (!tp->packets_out) 3010 return; 3011 3012 rtx_head = tcp_rtx_queue_head(sk); 3013 skb = tp->retransmit_skb_hint ?: rtx_head; 3014 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3015 skb_rbtree_walk_from(skb) { 3016 __u8 sacked; 3017 int segs; 3018 3019 if (tcp_pacing_check(sk)) 3020 break; 3021 3022 /* we could do better than to assign each time */ 3023 if (!hole) 3024 tp->retransmit_skb_hint = skb; 3025 3026 segs = tp->snd_cwnd - tcp_packets_in_flight(tp); 3027 if (segs <= 0) 3028 return; 3029 sacked = TCP_SKB_CB(skb)->sacked; 3030 /* In case tcp_shift_skb_data() have aggregated large skbs, 3031 * we need to make sure not sending too bigs TSO packets 3032 */ 3033 segs = min_t(int, segs, max_segs); 3034 3035 if (tp->retrans_out >= tp->lost_out) { 3036 break; 3037 } else if (!(sacked & TCPCB_LOST)) { 3038 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3039 hole = skb; 3040 continue; 3041 3042 } else { 3043 if (icsk->icsk_ca_state != TCP_CA_Loss) 3044 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3045 else 3046 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3047 } 3048 3049 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3050 continue; 3051 3052 if (tcp_small_queue_check(sk, skb, 1)) 3053 return; 3054 3055 if (tcp_retransmit_skb(sk, skb, segs)) 3056 return; 3057 3058 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3059 3060 if (tcp_in_cwnd_reduction(sk)) 3061 tp->prr_out += tcp_skb_pcount(skb); 3062 3063 if (skb == rtx_head && 3064 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3065 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3066 inet_csk(sk)->icsk_rto, 3067 TCP_RTO_MAX, 3068 skb); 3069 } 3070 } 3071 3072 /* We allow to exceed memory limits for FIN packets to expedite 3073 * connection tear down and (memory) recovery. 3074 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3075 * or even be forced to close flow without any FIN. 3076 * In general, we want to allow one skb per socket to avoid hangs 3077 * with edge trigger epoll() 3078 */ 3079 void sk_forced_mem_schedule(struct sock *sk, int size) 3080 { 3081 int amt; 3082 3083 if (size <= sk->sk_forward_alloc) 3084 return; 3085 amt = sk_mem_pages(size); 3086 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM; 3087 sk_memory_allocated_add(sk, amt); 3088 3089 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3090 mem_cgroup_charge_skmem(sk->sk_memcg, amt); 3091 } 3092 3093 /* Send a FIN. The caller locks the socket for us. 3094 * We should try to send a FIN packet really hard, but eventually give up. 3095 */ 3096 void tcp_send_fin(struct sock *sk) 3097 { 3098 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk); 3099 struct tcp_sock *tp = tcp_sk(sk); 3100 3101 /* Optimization, tack on the FIN if we have one skb in write queue and 3102 * this skb was not yet sent, or we are under memory pressure. 3103 * Note: in the latter case, FIN packet will be sent after a timeout, 3104 * as TCP stack thinks it has already been transmitted. 3105 */ 3106 if (!tskb && tcp_under_memory_pressure(sk)) 3107 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3108 3109 if (tskb) { 3110 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3111 TCP_SKB_CB(tskb)->end_seq++; 3112 tp->write_seq++; 3113 if (tcp_write_queue_empty(sk)) { 3114 /* This means tskb was already sent. 3115 * Pretend we included the FIN on previous transmit. 3116 * We need to set tp->snd_nxt to the value it would have 3117 * if FIN had been sent. This is because retransmit path 3118 * does not change tp->snd_nxt. 3119 */ 3120 tp->snd_nxt++; 3121 return; 3122 } 3123 } else { 3124 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3125 if (unlikely(!skb)) 3126 return; 3127 3128 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3129 skb_reserve(skb, MAX_TCP_HEADER); 3130 sk_forced_mem_schedule(sk, skb->truesize); 3131 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3132 tcp_init_nondata_skb(skb, tp->write_seq, 3133 TCPHDR_ACK | TCPHDR_FIN); 3134 tcp_queue_skb(sk, skb); 3135 } 3136 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3137 } 3138 3139 /* We get here when a process closes a file descriptor (either due to 3140 * an explicit close() or as a byproduct of exit()'ing) and there 3141 * was unread data in the receive queue. This behavior is recommended 3142 * by RFC 2525, section 2.17. -DaveM 3143 */ 3144 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3145 { 3146 struct sk_buff *skb; 3147 3148 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3149 3150 /* NOTE: No TCP options attached and we never retransmit this. */ 3151 skb = alloc_skb(MAX_TCP_HEADER, priority); 3152 if (!skb) { 3153 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3154 return; 3155 } 3156 3157 /* Reserve space for headers and prepare control bits. */ 3158 skb_reserve(skb, MAX_TCP_HEADER); 3159 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3160 TCPHDR_ACK | TCPHDR_RST); 3161 tcp_mstamp_refresh(tcp_sk(sk)); 3162 /* Send it off. */ 3163 if (tcp_transmit_skb(sk, skb, 0, priority)) 3164 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3165 3166 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3167 * skb here is different to the troublesome skb, so use NULL 3168 */ 3169 trace_tcp_send_reset(sk, NULL); 3170 } 3171 3172 /* Send a crossed SYN-ACK during socket establishment. 3173 * WARNING: This routine must only be called when we have already sent 3174 * a SYN packet that crossed the incoming SYN that caused this routine 3175 * to get called. If this assumption fails then the initial rcv_wnd 3176 * and rcv_wscale values will not be correct. 3177 */ 3178 int tcp_send_synack(struct sock *sk) 3179 { 3180 struct sk_buff *skb; 3181 3182 skb = tcp_rtx_queue_head(sk); 3183 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3184 pr_err("%s: wrong queue state\n", __func__); 3185 return -EFAULT; 3186 } 3187 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3188 if (skb_cloned(skb)) { 3189 struct sk_buff *nskb; 3190 3191 tcp_skb_tsorted_save(skb) { 3192 nskb = skb_copy(skb, GFP_ATOMIC); 3193 } tcp_skb_tsorted_restore(skb); 3194 if (!nskb) 3195 return -ENOMEM; 3196 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3197 tcp_rtx_queue_unlink_and_free(skb, sk); 3198 __skb_header_release(nskb); 3199 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3200 sk->sk_wmem_queued += nskb->truesize; 3201 sk_mem_charge(sk, nskb->truesize); 3202 skb = nskb; 3203 } 3204 3205 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3206 tcp_ecn_send_synack(sk, skb); 3207 } 3208 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3209 } 3210 3211 /** 3212 * tcp_make_synack - Prepare a SYN-ACK. 3213 * sk: listener socket 3214 * dst: dst entry attached to the SYNACK 3215 * req: request_sock pointer 3216 * 3217 * Allocate one skb and build a SYNACK packet. 3218 * @dst is consumed : Caller should not use it again. 3219 */ 3220 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3221 struct request_sock *req, 3222 struct tcp_fastopen_cookie *foc, 3223 enum tcp_synack_type synack_type) 3224 { 3225 struct inet_request_sock *ireq = inet_rsk(req); 3226 const struct tcp_sock *tp = tcp_sk(sk); 3227 struct tcp_md5sig_key *md5 = NULL; 3228 struct tcp_out_options opts; 3229 struct sk_buff *skb; 3230 int tcp_header_size; 3231 struct tcphdr *th; 3232 int mss; 3233 u64 now; 3234 3235 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3236 if (unlikely(!skb)) { 3237 dst_release(dst); 3238 return NULL; 3239 } 3240 /* Reserve space for headers. */ 3241 skb_reserve(skb, MAX_TCP_HEADER); 3242 3243 switch (synack_type) { 3244 case TCP_SYNACK_NORMAL: 3245 skb_set_owner_w(skb, req_to_sk(req)); 3246 break; 3247 case TCP_SYNACK_COOKIE: 3248 /* Under synflood, we do not attach skb to a socket, 3249 * to avoid false sharing. 3250 */ 3251 break; 3252 case TCP_SYNACK_FASTOPEN: 3253 /* sk is a const pointer, because we want to express multiple 3254 * cpu might call us concurrently. 3255 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3256 */ 3257 skb_set_owner_w(skb, (struct sock *)sk); 3258 break; 3259 } 3260 skb_dst_set(skb, dst); 3261 3262 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3263 3264 memset(&opts, 0, sizeof(opts)); 3265 now = tcp_clock_ns(); 3266 #ifdef CONFIG_SYN_COOKIES 3267 if (unlikely(req->cookie_ts)) 3268 skb->skb_mstamp_ns = cookie_init_timestamp(req); 3269 else 3270 #endif 3271 { 3272 skb->skb_mstamp_ns = now; 3273 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3274 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3275 } 3276 3277 #ifdef CONFIG_TCP_MD5SIG 3278 rcu_read_lock(); 3279 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3280 #endif 3281 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4); 3282 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3283 foc) + sizeof(*th); 3284 3285 skb_push(skb, tcp_header_size); 3286 skb_reset_transport_header(skb); 3287 3288 th = (struct tcphdr *)skb->data; 3289 memset(th, 0, sizeof(struct tcphdr)); 3290 th->syn = 1; 3291 th->ack = 1; 3292 tcp_ecn_make_synack(req, th); 3293 th->source = htons(ireq->ir_num); 3294 th->dest = ireq->ir_rmt_port; 3295 skb->mark = ireq->ir_mark; 3296 skb->ip_summed = CHECKSUM_PARTIAL; 3297 th->seq = htonl(tcp_rsk(req)->snt_isn); 3298 /* XXX data is queued and acked as is. No buffer/window check */ 3299 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3300 3301 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3302 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3303 tcp_options_write((__be32 *)(th + 1), NULL, &opts); 3304 th->doff = (tcp_header_size >> 2); 3305 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3306 3307 #ifdef CONFIG_TCP_MD5SIG 3308 /* Okay, we have all we need - do the md5 hash if needed */ 3309 if (md5) 3310 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3311 md5, req_to_sk(req), skb); 3312 rcu_read_unlock(); 3313 #endif 3314 3315 skb->skb_mstamp_ns = now; 3316 tcp_add_tx_delay(skb, tp); 3317 3318 return skb; 3319 } 3320 EXPORT_SYMBOL(tcp_make_synack); 3321 3322 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3323 { 3324 struct inet_connection_sock *icsk = inet_csk(sk); 3325 const struct tcp_congestion_ops *ca; 3326 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3327 3328 if (ca_key == TCP_CA_UNSPEC) 3329 return; 3330 3331 rcu_read_lock(); 3332 ca = tcp_ca_find_key(ca_key); 3333 if (likely(ca && try_module_get(ca->owner))) { 3334 module_put(icsk->icsk_ca_ops->owner); 3335 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3336 icsk->icsk_ca_ops = ca; 3337 } 3338 rcu_read_unlock(); 3339 } 3340 3341 /* Do all connect socket setups that can be done AF independent. */ 3342 static void tcp_connect_init(struct sock *sk) 3343 { 3344 const struct dst_entry *dst = __sk_dst_get(sk); 3345 struct tcp_sock *tp = tcp_sk(sk); 3346 __u8 rcv_wscale; 3347 u32 rcv_wnd; 3348 3349 /* We'll fix this up when we get a response from the other end. 3350 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3351 */ 3352 tp->tcp_header_len = sizeof(struct tcphdr); 3353 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps) 3354 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3355 3356 #ifdef CONFIG_TCP_MD5SIG 3357 if (tp->af_specific->md5_lookup(sk, sk)) 3358 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 3359 #endif 3360 3361 /* If user gave his TCP_MAXSEG, record it to clamp */ 3362 if (tp->rx_opt.user_mss) 3363 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3364 tp->max_window = 0; 3365 tcp_mtup_init(sk); 3366 tcp_sync_mss(sk, dst_mtu(dst)); 3367 3368 tcp_ca_dst_init(sk, dst); 3369 3370 if (!tp->window_clamp) 3371 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3372 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3373 3374 tcp_initialize_rcv_mss(sk); 3375 3376 /* limit the window selection if the user enforce a smaller rx buffer */ 3377 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3378 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3379 tp->window_clamp = tcp_full_space(sk); 3380 3381 rcv_wnd = tcp_rwnd_init_bpf(sk); 3382 if (rcv_wnd == 0) 3383 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3384 3385 tcp_select_initial_window(sk, tcp_full_space(sk), 3386 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3387 &tp->rcv_wnd, 3388 &tp->window_clamp, 3389 sock_net(sk)->ipv4.sysctl_tcp_window_scaling, 3390 &rcv_wscale, 3391 rcv_wnd); 3392 3393 tp->rx_opt.rcv_wscale = rcv_wscale; 3394 tp->rcv_ssthresh = tp->rcv_wnd; 3395 3396 sk->sk_err = 0; 3397 sock_reset_flag(sk, SOCK_DONE); 3398 tp->snd_wnd = 0; 3399 tcp_init_wl(tp, 0); 3400 tcp_write_queue_purge(sk); 3401 tp->snd_una = tp->write_seq; 3402 tp->snd_sml = tp->write_seq; 3403 tp->snd_up = tp->write_seq; 3404 tp->snd_nxt = tp->write_seq; 3405 3406 if (likely(!tp->repair)) 3407 tp->rcv_nxt = 0; 3408 else 3409 tp->rcv_tstamp = tcp_jiffies32; 3410 tp->rcv_wup = tp->rcv_nxt; 3411 tp->copied_seq = tp->rcv_nxt; 3412 3413 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3414 inet_csk(sk)->icsk_retransmits = 0; 3415 tcp_clear_retrans(tp); 3416 } 3417 3418 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3419 { 3420 struct tcp_sock *tp = tcp_sk(sk); 3421 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3422 3423 tcb->end_seq += skb->len; 3424 __skb_header_release(skb); 3425 sk->sk_wmem_queued += skb->truesize; 3426 sk_mem_charge(sk, skb->truesize); 3427 tp->write_seq = tcb->end_seq; 3428 tp->packets_out += tcp_skb_pcount(skb); 3429 } 3430 3431 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3432 * queue a data-only packet after the regular SYN, such that regular SYNs 3433 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3434 * only the SYN sequence, the data are retransmitted in the first ACK. 3435 * If cookie is not cached or other error occurs, falls back to send a 3436 * regular SYN with Fast Open cookie request option. 3437 */ 3438 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3439 { 3440 struct tcp_sock *tp = tcp_sk(sk); 3441 struct tcp_fastopen_request *fo = tp->fastopen_req; 3442 int space, err = 0; 3443 struct sk_buff *syn_data; 3444 3445 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3446 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3447 goto fallback; 3448 3449 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3450 * user-MSS. Reserve maximum option space for middleboxes that add 3451 * private TCP options. The cost is reduced data space in SYN :( 3452 */ 3453 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3454 3455 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) - 3456 MAX_TCP_OPTION_SPACE; 3457 3458 space = min_t(size_t, space, fo->size); 3459 3460 /* limit to order-0 allocations */ 3461 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); 3462 3463 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false); 3464 if (!syn_data) 3465 goto fallback; 3466 syn_data->ip_summed = CHECKSUM_PARTIAL; 3467 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3468 if (space) { 3469 int copied = copy_from_iter(skb_put(syn_data, space), space, 3470 &fo->data->msg_iter); 3471 if (unlikely(!copied)) { 3472 tcp_skb_tsorted_anchor_cleanup(syn_data); 3473 kfree_skb(syn_data); 3474 goto fallback; 3475 } 3476 if (copied != space) { 3477 skb_trim(syn_data, copied); 3478 space = copied; 3479 } 3480 skb_zcopy_set(syn_data, fo->uarg, NULL); 3481 } 3482 /* No more data pending in inet_wait_for_connect() */ 3483 if (space == fo->size) 3484 fo->data = NULL; 3485 fo->copied = space; 3486 3487 tcp_connect_queue_skb(sk, syn_data); 3488 if (syn_data->len) 3489 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3490 3491 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3492 3493 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns; 3494 3495 /* Now full SYN+DATA was cloned and sent (or not), 3496 * remove the SYN from the original skb (syn_data) 3497 * we keep in write queue in case of a retransmit, as we 3498 * also have the SYN packet (with no data) in the same queue. 3499 */ 3500 TCP_SKB_CB(syn_data)->seq++; 3501 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3502 if (!err) { 3503 tp->syn_data = (fo->copied > 0); 3504 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3505 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3506 goto done; 3507 } 3508 3509 /* data was not sent, put it in write_queue */ 3510 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3511 tp->packets_out -= tcp_skb_pcount(syn_data); 3512 3513 fallback: 3514 /* Send a regular SYN with Fast Open cookie request option */ 3515 if (fo->cookie.len > 0) 3516 fo->cookie.len = 0; 3517 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3518 if (err) 3519 tp->syn_fastopen = 0; 3520 done: 3521 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3522 return err; 3523 } 3524 3525 /* Build a SYN and send it off. */ 3526 int tcp_connect(struct sock *sk) 3527 { 3528 struct tcp_sock *tp = tcp_sk(sk); 3529 struct sk_buff *buff; 3530 int err; 3531 3532 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3533 3534 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3535 return -EHOSTUNREACH; /* Routing failure or similar. */ 3536 3537 tcp_connect_init(sk); 3538 3539 if (unlikely(tp->repair)) { 3540 tcp_finish_connect(sk, NULL); 3541 return 0; 3542 } 3543 3544 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true); 3545 if (unlikely(!buff)) 3546 return -ENOBUFS; 3547 3548 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3549 tcp_mstamp_refresh(tp); 3550 tp->retrans_stamp = tcp_time_stamp(tp); 3551 tcp_connect_queue_skb(sk, buff); 3552 tcp_ecn_send_syn(sk, buff); 3553 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3554 3555 /* Send off SYN; include data in Fast Open. */ 3556 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3557 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3558 if (err == -ECONNREFUSED) 3559 return err; 3560 3561 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3562 * in order to make this packet get counted in tcpOutSegs. 3563 */ 3564 tp->snd_nxt = tp->write_seq; 3565 tp->pushed_seq = tp->write_seq; 3566 buff = tcp_send_head(sk); 3567 if (unlikely(buff)) { 3568 tp->snd_nxt = TCP_SKB_CB(buff)->seq; 3569 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3570 } 3571 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3572 3573 /* Timer for repeating the SYN until an answer. */ 3574 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3575 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3576 return 0; 3577 } 3578 EXPORT_SYMBOL(tcp_connect); 3579 3580 /* Send out a delayed ack, the caller does the policy checking 3581 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3582 * for details. 3583 */ 3584 void tcp_send_delayed_ack(struct sock *sk) 3585 { 3586 struct inet_connection_sock *icsk = inet_csk(sk); 3587 int ato = icsk->icsk_ack.ato; 3588 unsigned long timeout; 3589 3590 if (ato > TCP_DELACK_MIN) { 3591 const struct tcp_sock *tp = tcp_sk(sk); 3592 int max_ato = HZ / 2; 3593 3594 if (inet_csk_in_pingpong_mode(sk) || 3595 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 3596 max_ato = TCP_DELACK_MAX; 3597 3598 /* Slow path, intersegment interval is "high". */ 3599 3600 /* If some rtt estimate is known, use it to bound delayed ack. 3601 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 3602 * directly. 3603 */ 3604 if (tp->srtt_us) { 3605 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 3606 TCP_DELACK_MIN); 3607 3608 if (rtt < max_ato) 3609 max_ato = rtt; 3610 } 3611 3612 ato = min(ato, max_ato); 3613 } 3614 3615 /* Stay within the limit we were given */ 3616 timeout = jiffies + ato; 3617 3618 /* Use new timeout only if there wasn't a older one earlier. */ 3619 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 3620 /* If delack timer was blocked or is about to expire, 3621 * send ACK now. 3622 */ 3623 if (icsk->icsk_ack.blocked || 3624 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 3625 tcp_send_ack(sk); 3626 return; 3627 } 3628 3629 if (!time_before(timeout, icsk->icsk_ack.timeout)) 3630 timeout = icsk->icsk_ack.timeout; 3631 } 3632 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3633 icsk->icsk_ack.timeout = timeout; 3634 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 3635 } 3636 3637 /* This routine sends an ack and also updates the window. */ 3638 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 3639 { 3640 struct sk_buff *buff; 3641 3642 /* If we have been reset, we may not send again. */ 3643 if (sk->sk_state == TCP_CLOSE) 3644 return; 3645 3646 /* We are not putting this on the write queue, so 3647 * tcp_transmit_skb() will set the ownership to this 3648 * sock. 3649 */ 3650 buff = alloc_skb(MAX_TCP_HEADER, 3651 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3652 if (unlikely(!buff)) { 3653 inet_csk_schedule_ack(sk); 3654 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 3655 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 3656 TCP_DELACK_MAX, TCP_RTO_MAX); 3657 return; 3658 } 3659 3660 /* Reserve space for headers and prepare control bits. */ 3661 skb_reserve(buff, MAX_TCP_HEADER); 3662 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 3663 3664 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 3665 * too much. 3666 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 3667 */ 3668 skb_set_tcp_pure_ack(buff); 3669 3670 /* Send it off, this clears delayed acks for us. */ 3671 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 3672 } 3673 EXPORT_SYMBOL_GPL(__tcp_send_ack); 3674 3675 void tcp_send_ack(struct sock *sk) 3676 { 3677 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 3678 } 3679 3680 /* This routine sends a packet with an out of date sequence 3681 * number. It assumes the other end will try to ack it. 3682 * 3683 * Question: what should we make while urgent mode? 3684 * 4.4BSD forces sending single byte of data. We cannot send 3685 * out of window data, because we have SND.NXT==SND.MAX... 3686 * 3687 * Current solution: to send TWO zero-length segments in urgent mode: 3688 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 3689 * out-of-date with SND.UNA-1 to probe window. 3690 */ 3691 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 3692 { 3693 struct tcp_sock *tp = tcp_sk(sk); 3694 struct sk_buff *skb; 3695 3696 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 3697 skb = alloc_skb(MAX_TCP_HEADER, 3698 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 3699 if (!skb) 3700 return -1; 3701 3702 /* Reserve space for headers and set control bits. */ 3703 skb_reserve(skb, MAX_TCP_HEADER); 3704 /* Use a previous sequence. This should cause the other 3705 * end to send an ack. Don't queue or clone SKB, just 3706 * send it. 3707 */ 3708 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 3709 NET_INC_STATS(sock_net(sk), mib); 3710 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 3711 } 3712 3713 /* Called from setsockopt( ... TCP_REPAIR ) */ 3714 void tcp_send_window_probe(struct sock *sk) 3715 { 3716 if (sk->sk_state == TCP_ESTABLISHED) { 3717 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 3718 tcp_mstamp_refresh(tcp_sk(sk)); 3719 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 3720 } 3721 } 3722 3723 /* Initiate keepalive or window probe from timer. */ 3724 int tcp_write_wakeup(struct sock *sk, int mib) 3725 { 3726 struct tcp_sock *tp = tcp_sk(sk); 3727 struct sk_buff *skb; 3728 3729 if (sk->sk_state == TCP_CLOSE) 3730 return -1; 3731 3732 skb = tcp_send_head(sk); 3733 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 3734 int err; 3735 unsigned int mss = tcp_current_mss(sk); 3736 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3737 3738 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 3739 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 3740 3741 /* We are probing the opening of a window 3742 * but the window size is != 0 3743 * must have been a result SWS avoidance ( sender ) 3744 */ 3745 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 3746 skb->len > mss) { 3747 seg_size = min(seg_size, mss); 3748 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3749 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 3750 skb, seg_size, mss, GFP_ATOMIC)) 3751 return -1; 3752 } else if (!tcp_skb_pcount(skb)) 3753 tcp_set_skb_tso_segs(skb, mss); 3754 3755 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 3756 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3757 if (!err) 3758 tcp_event_new_data_sent(sk, skb); 3759 return err; 3760 } else { 3761 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 3762 tcp_xmit_probe_skb(sk, 1, mib); 3763 return tcp_xmit_probe_skb(sk, 0, mib); 3764 } 3765 } 3766 3767 /* A window probe timeout has occurred. If window is not closed send 3768 * a partial packet else a zero probe. 3769 */ 3770 void tcp_send_probe0(struct sock *sk) 3771 { 3772 struct inet_connection_sock *icsk = inet_csk(sk); 3773 struct tcp_sock *tp = tcp_sk(sk); 3774 struct net *net = sock_net(sk); 3775 unsigned long timeout; 3776 int err; 3777 3778 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 3779 3780 if (tp->packets_out || tcp_write_queue_empty(sk)) { 3781 /* Cancel probe timer, if it is not required. */ 3782 icsk->icsk_probes_out = 0; 3783 icsk->icsk_backoff = 0; 3784 return; 3785 } 3786 3787 icsk->icsk_probes_out++; 3788 if (err <= 0) { 3789 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2) 3790 icsk->icsk_backoff++; 3791 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 3792 } else { 3793 /* If packet was not sent due to local congestion, 3794 * Let senders fight for local resources conservatively. 3795 */ 3796 timeout = TCP_RESOURCE_PROBE_INTERVAL; 3797 } 3798 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL); 3799 } 3800 3801 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 3802 { 3803 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 3804 struct flowi fl; 3805 int res; 3806 3807 tcp_rsk(req)->txhash = net_tx_rndhash(); 3808 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL); 3809 if (!res) { 3810 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 3811 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3812 if (unlikely(tcp_passive_fastopen(sk))) 3813 tcp_sk(sk)->total_retrans++; 3814 trace_tcp_retransmit_synack(sk, req); 3815 } 3816 return res; 3817 } 3818 EXPORT_SYMBOL(tcp_rtx_synack); 3819