1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: Pedro Roque : Retransmit queue handled by TCP. 23 * : Fragmentation on mtu decrease 24 * : Segment collapse on retransmit 25 * : AF independence 26 * 27 * Linus Torvalds : send_delayed_ack 28 * David S. Miller : Charge memory using the right skb 29 * during syn/ack processing. 30 * David S. Miller : Output engine completely rewritten. 31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 32 * Cacophonix Gaul : draft-minshall-nagle-01 33 * J Hadi Salim : ECN support 34 * 35 */ 36 37 #include <net/tcp.h> 38 39 #include <linux/compiler.h> 40 #include <linux/gfp.h> 41 #include <linux/module.h> 42 43 /* People can turn this off for buggy TCP's found in printers etc. */ 44 int sysctl_tcp_retrans_collapse __read_mostly = 1; 45 46 /* People can turn this on to work with those rare, broken TCPs that 47 * interpret the window field as a signed quantity. 48 */ 49 int sysctl_tcp_workaround_signed_windows __read_mostly = 0; 50 51 /* This limits the percentage of the congestion window which we 52 * will allow a single TSO frame to consume. Building TSO frames 53 * which are too large can cause TCP streams to be bursty. 54 */ 55 int sysctl_tcp_tso_win_divisor __read_mostly = 3; 56 57 int sysctl_tcp_mtu_probing __read_mostly = 0; 58 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS; 59 60 /* By default, RFC2861 behavior. */ 61 int sysctl_tcp_slow_start_after_idle __read_mostly = 1; 62 63 int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */ 64 EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size); 65 66 67 /* Account for new data that has been sent to the network. */ 68 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 69 { 70 struct tcp_sock *tp = tcp_sk(sk); 71 unsigned int prior_packets = tp->packets_out; 72 73 tcp_advance_send_head(sk, skb); 74 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 75 76 /* Don't override Nagle indefinitely with F-RTO */ 77 if (tp->frto_counter == 2) 78 tp->frto_counter = 3; 79 80 tp->packets_out += tcp_skb_pcount(skb); 81 if (!prior_packets) 82 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 83 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 84 } 85 86 /* SND.NXT, if window was not shrunk. 87 * If window has been shrunk, what should we make? It is not clear at all. 88 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 89 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 90 * invalid. OK, let's make this for now: 91 */ 92 static inline __u32 tcp_acceptable_seq(struct sock *sk) 93 { 94 struct tcp_sock *tp = tcp_sk(sk); 95 96 if (!before(tcp_wnd_end(tp), tp->snd_nxt)) 97 return tp->snd_nxt; 98 else 99 return tcp_wnd_end(tp); 100 } 101 102 /* Calculate mss to advertise in SYN segment. 103 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 104 * 105 * 1. It is independent of path mtu. 106 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 107 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 108 * attached devices, because some buggy hosts are confused by 109 * large MSS. 110 * 4. We do not make 3, we advertise MSS, calculated from first 111 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 112 * This may be overridden via information stored in routing table. 113 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 114 * probably even Jumbo". 115 */ 116 static __u16 tcp_advertise_mss(struct sock *sk) 117 { 118 struct tcp_sock *tp = tcp_sk(sk); 119 struct dst_entry *dst = __sk_dst_get(sk); 120 int mss = tp->advmss; 121 122 if (dst) { 123 unsigned int metric = dst_metric_advmss(dst); 124 125 if (metric < mss) { 126 mss = metric; 127 tp->advmss = mss; 128 } 129 } 130 131 return (__u16)mss; 132 } 133 134 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 135 * This is the first part of cwnd validation mechanism. */ 136 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst) 137 { 138 struct tcp_sock *tp = tcp_sk(sk); 139 s32 delta = tcp_time_stamp - tp->lsndtime; 140 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 141 u32 cwnd = tp->snd_cwnd; 142 143 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 144 145 tp->snd_ssthresh = tcp_current_ssthresh(sk); 146 restart_cwnd = min(restart_cwnd, cwnd); 147 148 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 149 cwnd >>= 1; 150 tp->snd_cwnd = max(cwnd, restart_cwnd); 151 tp->snd_cwnd_stamp = tcp_time_stamp; 152 tp->snd_cwnd_used = 0; 153 } 154 155 /* Congestion state accounting after a packet has been sent. */ 156 static void tcp_event_data_sent(struct tcp_sock *tp, 157 struct sk_buff *skb, struct sock *sk) 158 { 159 struct inet_connection_sock *icsk = inet_csk(sk); 160 const u32 now = tcp_time_stamp; 161 162 if (sysctl_tcp_slow_start_after_idle && 163 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) 164 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 165 166 tp->lsndtime = now; 167 168 /* If it is a reply for ato after last received 169 * packet, enter pingpong mode. 170 */ 171 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 172 icsk->icsk_ack.pingpong = 1; 173 } 174 175 /* Account for an ACK we sent. */ 176 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 177 { 178 tcp_dec_quickack_mode(sk, pkts); 179 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 180 } 181 182 /* Determine a window scaling and initial window to offer. 183 * Based on the assumption that the given amount of space 184 * will be offered. Store the results in the tp structure. 185 * NOTE: for smooth operation initial space offering should 186 * be a multiple of mss if possible. We assume here that mss >= 1. 187 * This MUST be enforced by all callers. 188 */ 189 void tcp_select_initial_window(int __space, __u32 mss, 190 __u32 *rcv_wnd, __u32 *window_clamp, 191 int wscale_ok, __u8 *rcv_wscale, 192 __u32 init_rcv_wnd) 193 { 194 unsigned int space = (__space < 0 ? 0 : __space); 195 196 /* If no clamp set the clamp to the max possible scaled window */ 197 if (*window_clamp == 0) 198 (*window_clamp) = (65535 << 14); 199 space = min(*window_clamp, space); 200 201 /* Quantize space offering to a multiple of mss if possible. */ 202 if (space > mss) 203 space = (space / mss) * mss; 204 205 /* NOTE: offering an initial window larger than 32767 206 * will break some buggy TCP stacks. If the admin tells us 207 * it is likely we could be speaking with such a buggy stack 208 * we will truncate our initial window offering to 32K-1 209 * unless the remote has sent us a window scaling option, 210 * which we interpret as a sign the remote TCP is not 211 * misinterpreting the window field as a signed quantity. 212 */ 213 if (sysctl_tcp_workaround_signed_windows) 214 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 215 else 216 (*rcv_wnd) = space; 217 218 (*rcv_wscale) = 0; 219 if (wscale_ok) { 220 /* Set window scaling on max possible window 221 * See RFC1323 for an explanation of the limit to 14 222 */ 223 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 224 space = min_t(u32, space, *window_clamp); 225 while (space > 65535 && (*rcv_wscale) < 14) { 226 space >>= 1; 227 (*rcv_wscale)++; 228 } 229 } 230 231 /* Set initial window to a value enough for senders starting with 232 * initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place 233 * a limit on the initial window when mss is larger than 1460. 234 */ 235 if (mss > (1 << *rcv_wscale)) { 236 int init_cwnd = TCP_DEFAULT_INIT_RCVWND; 237 if (mss > 1460) 238 init_cwnd = 239 max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2); 240 /* when initializing use the value from init_rcv_wnd 241 * rather than the default from above 242 */ 243 if (init_rcv_wnd) 244 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 245 else 246 *rcv_wnd = min(*rcv_wnd, init_cwnd * mss); 247 } 248 249 /* Set the clamp no higher than max representable value */ 250 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 251 } 252 EXPORT_SYMBOL(tcp_select_initial_window); 253 254 /* Chose a new window to advertise, update state in tcp_sock for the 255 * socket, and return result with RFC1323 scaling applied. The return 256 * value can be stuffed directly into th->window for an outgoing 257 * frame. 258 */ 259 static u16 tcp_select_window(struct sock *sk) 260 { 261 struct tcp_sock *tp = tcp_sk(sk); 262 u32 cur_win = tcp_receive_window(tp); 263 u32 new_win = __tcp_select_window(sk); 264 265 /* Never shrink the offered window */ 266 if (new_win < cur_win) { 267 /* Danger Will Robinson! 268 * Don't update rcv_wup/rcv_wnd here or else 269 * we will not be able to advertise a zero 270 * window in time. --DaveM 271 * 272 * Relax Will Robinson. 273 */ 274 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 275 } 276 tp->rcv_wnd = new_win; 277 tp->rcv_wup = tp->rcv_nxt; 278 279 /* Make sure we do not exceed the maximum possible 280 * scaled window. 281 */ 282 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) 283 new_win = min(new_win, MAX_TCP_WINDOW); 284 else 285 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 286 287 /* RFC1323 scaling applied */ 288 new_win >>= tp->rx_opt.rcv_wscale; 289 290 /* If we advertise zero window, disable fast path. */ 291 if (new_win == 0) 292 tp->pred_flags = 0; 293 294 return new_win; 295 } 296 297 /* Packet ECN state for a SYN-ACK */ 298 static inline void TCP_ECN_send_synack(struct tcp_sock *tp, struct sk_buff *skb) 299 { 300 TCP_SKB_CB(skb)->flags &= ~TCPHDR_CWR; 301 if (!(tp->ecn_flags & TCP_ECN_OK)) 302 TCP_SKB_CB(skb)->flags &= ~TCPHDR_ECE; 303 } 304 305 /* Packet ECN state for a SYN. */ 306 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb) 307 { 308 struct tcp_sock *tp = tcp_sk(sk); 309 310 tp->ecn_flags = 0; 311 if (sysctl_tcp_ecn == 1) { 312 TCP_SKB_CB(skb)->flags |= TCPHDR_ECE | TCPHDR_CWR; 313 tp->ecn_flags = TCP_ECN_OK; 314 } 315 } 316 317 static __inline__ void 318 TCP_ECN_make_synack(struct request_sock *req, struct tcphdr *th) 319 { 320 if (inet_rsk(req)->ecn_ok) 321 th->ece = 1; 322 } 323 324 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 325 * be sent. 326 */ 327 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb, 328 int tcp_header_len) 329 { 330 struct tcp_sock *tp = tcp_sk(sk); 331 332 if (tp->ecn_flags & TCP_ECN_OK) { 333 /* Not-retransmitted data segment: set ECT and inject CWR. */ 334 if (skb->len != tcp_header_len && 335 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 336 INET_ECN_xmit(sk); 337 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 338 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 339 tcp_hdr(skb)->cwr = 1; 340 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 341 } 342 } else { 343 /* ACK or retransmitted segment: clear ECT|CE */ 344 INET_ECN_dontxmit(sk); 345 } 346 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 347 tcp_hdr(skb)->ece = 1; 348 } 349 } 350 351 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 352 * auto increment end seqno. 353 */ 354 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 355 { 356 skb->ip_summed = CHECKSUM_PARTIAL; 357 skb->csum = 0; 358 359 TCP_SKB_CB(skb)->flags = flags; 360 TCP_SKB_CB(skb)->sacked = 0; 361 362 skb_shinfo(skb)->gso_segs = 1; 363 skb_shinfo(skb)->gso_size = 0; 364 skb_shinfo(skb)->gso_type = 0; 365 366 TCP_SKB_CB(skb)->seq = seq; 367 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 368 seq++; 369 TCP_SKB_CB(skb)->end_seq = seq; 370 } 371 372 static inline int tcp_urg_mode(const struct tcp_sock *tp) 373 { 374 return tp->snd_una != tp->snd_up; 375 } 376 377 #define OPTION_SACK_ADVERTISE (1 << 0) 378 #define OPTION_TS (1 << 1) 379 #define OPTION_MD5 (1 << 2) 380 #define OPTION_WSCALE (1 << 3) 381 #define OPTION_COOKIE_EXTENSION (1 << 4) 382 383 struct tcp_out_options { 384 u8 options; /* bit field of OPTION_* */ 385 u8 ws; /* window scale, 0 to disable */ 386 u8 num_sack_blocks; /* number of SACK blocks to include */ 387 u8 hash_size; /* bytes in hash_location */ 388 u16 mss; /* 0 to disable */ 389 __u32 tsval, tsecr; /* need to include OPTION_TS */ 390 __u8 *hash_location; /* temporary pointer, overloaded */ 391 }; 392 393 /* The sysctl int routines are generic, so check consistency here. 394 */ 395 static u8 tcp_cookie_size_check(u8 desired) 396 { 397 int cookie_size; 398 399 if (desired > 0) 400 /* previously specified */ 401 return desired; 402 403 cookie_size = ACCESS_ONCE(sysctl_tcp_cookie_size); 404 if (cookie_size <= 0) 405 /* no default specified */ 406 return 0; 407 408 if (cookie_size <= TCP_COOKIE_MIN) 409 /* value too small, specify minimum */ 410 return TCP_COOKIE_MIN; 411 412 if (cookie_size >= TCP_COOKIE_MAX) 413 /* value too large, specify maximum */ 414 return TCP_COOKIE_MAX; 415 416 if (cookie_size & 1) 417 /* 8-bit multiple, illegal, fix it */ 418 cookie_size++; 419 420 return (u8)cookie_size; 421 } 422 423 /* Write previously computed TCP options to the packet. 424 * 425 * Beware: Something in the Internet is very sensitive to the ordering of 426 * TCP options, we learned this through the hard way, so be careful here. 427 * Luckily we can at least blame others for their non-compliance but from 428 * inter-operatibility perspective it seems that we're somewhat stuck with 429 * the ordering which we have been using if we want to keep working with 430 * those broken things (not that it currently hurts anybody as there isn't 431 * particular reason why the ordering would need to be changed). 432 * 433 * At least SACK_PERM as the first option is known to lead to a disaster 434 * (but it may well be that other scenarios fail similarly). 435 */ 436 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp, 437 struct tcp_out_options *opts) 438 { 439 u8 options = opts->options; /* mungable copy */ 440 441 /* Having both authentication and cookies for security is redundant, 442 * and there's certainly not enough room. Instead, the cookie-less 443 * extension variant is proposed. 444 * 445 * Consider the pessimal case with authentication. The options 446 * could look like: 447 * COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40 448 */ 449 if (unlikely(OPTION_MD5 & options)) { 450 if (unlikely(OPTION_COOKIE_EXTENSION & options)) { 451 *ptr++ = htonl((TCPOPT_COOKIE << 24) | 452 (TCPOLEN_COOKIE_BASE << 16) | 453 (TCPOPT_MD5SIG << 8) | 454 TCPOLEN_MD5SIG); 455 } else { 456 *ptr++ = htonl((TCPOPT_NOP << 24) | 457 (TCPOPT_NOP << 16) | 458 (TCPOPT_MD5SIG << 8) | 459 TCPOLEN_MD5SIG); 460 } 461 options &= ~OPTION_COOKIE_EXTENSION; 462 /* overload cookie hash location */ 463 opts->hash_location = (__u8 *)ptr; 464 ptr += 4; 465 } 466 467 if (unlikely(opts->mss)) { 468 *ptr++ = htonl((TCPOPT_MSS << 24) | 469 (TCPOLEN_MSS << 16) | 470 opts->mss); 471 } 472 473 if (likely(OPTION_TS & options)) { 474 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 475 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 476 (TCPOLEN_SACK_PERM << 16) | 477 (TCPOPT_TIMESTAMP << 8) | 478 TCPOLEN_TIMESTAMP); 479 options &= ~OPTION_SACK_ADVERTISE; 480 } else { 481 *ptr++ = htonl((TCPOPT_NOP << 24) | 482 (TCPOPT_NOP << 16) | 483 (TCPOPT_TIMESTAMP << 8) | 484 TCPOLEN_TIMESTAMP); 485 } 486 *ptr++ = htonl(opts->tsval); 487 *ptr++ = htonl(opts->tsecr); 488 } 489 490 /* Specification requires after timestamp, so do it now. 491 * 492 * Consider the pessimal case without authentication. The options 493 * could look like: 494 * MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40 495 */ 496 if (unlikely(OPTION_COOKIE_EXTENSION & options)) { 497 __u8 *cookie_copy = opts->hash_location; 498 u8 cookie_size = opts->hash_size; 499 500 /* 8-bit multiple handled in tcp_cookie_size_check() above, 501 * and elsewhere. 502 */ 503 if (0x2 & cookie_size) { 504 __u8 *p = (__u8 *)ptr; 505 506 /* 16-bit multiple */ 507 *p++ = TCPOPT_COOKIE; 508 *p++ = TCPOLEN_COOKIE_BASE + cookie_size; 509 *p++ = *cookie_copy++; 510 *p++ = *cookie_copy++; 511 ptr++; 512 cookie_size -= 2; 513 } else { 514 /* 32-bit multiple */ 515 *ptr++ = htonl(((TCPOPT_NOP << 24) | 516 (TCPOPT_NOP << 16) | 517 (TCPOPT_COOKIE << 8) | 518 TCPOLEN_COOKIE_BASE) + 519 cookie_size); 520 } 521 522 if (cookie_size > 0) { 523 memcpy(ptr, cookie_copy, cookie_size); 524 ptr += (cookie_size / 4); 525 } 526 } 527 528 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 529 *ptr++ = htonl((TCPOPT_NOP << 24) | 530 (TCPOPT_NOP << 16) | 531 (TCPOPT_SACK_PERM << 8) | 532 TCPOLEN_SACK_PERM); 533 } 534 535 if (unlikely(OPTION_WSCALE & options)) { 536 *ptr++ = htonl((TCPOPT_NOP << 24) | 537 (TCPOPT_WINDOW << 16) | 538 (TCPOLEN_WINDOW << 8) | 539 opts->ws); 540 } 541 542 if (unlikely(opts->num_sack_blocks)) { 543 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 544 tp->duplicate_sack : tp->selective_acks; 545 int this_sack; 546 547 *ptr++ = htonl((TCPOPT_NOP << 24) | 548 (TCPOPT_NOP << 16) | 549 (TCPOPT_SACK << 8) | 550 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 551 TCPOLEN_SACK_PERBLOCK))); 552 553 for (this_sack = 0; this_sack < opts->num_sack_blocks; 554 ++this_sack) { 555 *ptr++ = htonl(sp[this_sack].start_seq); 556 *ptr++ = htonl(sp[this_sack].end_seq); 557 } 558 559 tp->rx_opt.dsack = 0; 560 } 561 } 562 563 /* Compute TCP options for SYN packets. This is not the final 564 * network wire format yet. 565 */ 566 static unsigned tcp_syn_options(struct sock *sk, struct sk_buff *skb, 567 struct tcp_out_options *opts, 568 struct tcp_md5sig_key **md5) { 569 struct tcp_sock *tp = tcp_sk(sk); 570 struct tcp_cookie_values *cvp = tp->cookie_values; 571 unsigned remaining = MAX_TCP_OPTION_SPACE; 572 u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ? 573 tcp_cookie_size_check(cvp->cookie_desired) : 574 0; 575 576 #ifdef CONFIG_TCP_MD5SIG 577 *md5 = tp->af_specific->md5_lookup(sk, sk); 578 if (*md5) { 579 opts->options |= OPTION_MD5; 580 remaining -= TCPOLEN_MD5SIG_ALIGNED; 581 } 582 #else 583 *md5 = NULL; 584 #endif 585 586 /* We always get an MSS option. The option bytes which will be seen in 587 * normal data packets should timestamps be used, must be in the MSS 588 * advertised. But we subtract them from tp->mss_cache so that 589 * calculations in tcp_sendmsg are simpler etc. So account for this 590 * fact here if necessary. If we don't do this correctly, as a 591 * receiver we won't recognize data packets as being full sized when we 592 * should, and thus we won't abide by the delayed ACK rules correctly. 593 * SACKs don't matter, we never delay an ACK when we have any of those 594 * going out. */ 595 opts->mss = tcp_advertise_mss(sk); 596 remaining -= TCPOLEN_MSS_ALIGNED; 597 598 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) { 599 opts->options |= OPTION_TS; 600 opts->tsval = TCP_SKB_CB(skb)->when; 601 opts->tsecr = tp->rx_opt.ts_recent; 602 remaining -= TCPOLEN_TSTAMP_ALIGNED; 603 } 604 if (likely(sysctl_tcp_window_scaling)) { 605 opts->ws = tp->rx_opt.rcv_wscale; 606 opts->options |= OPTION_WSCALE; 607 remaining -= TCPOLEN_WSCALE_ALIGNED; 608 } 609 if (likely(sysctl_tcp_sack)) { 610 opts->options |= OPTION_SACK_ADVERTISE; 611 if (unlikely(!(OPTION_TS & opts->options))) 612 remaining -= TCPOLEN_SACKPERM_ALIGNED; 613 } 614 615 /* Note that timestamps are required by the specification. 616 * 617 * Odd numbers of bytes are prohibited by the specification, ensuring 618 * that the cookie is 16-bit aligned, and the resulting cookie pair is 619 * 32-bit aligned. 620 */ 621 if (*md5 == NULL && 622 (OPTION_TS & opts->options) && 623 cookie_size > 0) { 624 int need = TCPOLEN_COOKIE_BASE + cookie_size; 625 626 if (0x2 & need) { 627 /* 32-bit multiple */ 628 need += 2; /* NOPs */ 629 630 if (need > remaining) { 631 /* try shrinking cookie to fit */ 632 cookie_size -= 2; 633 need -= 4; 634 } 635 } 636 while (need > remaining && TCP_COOKIE_MIN <= cookie_size) { 637 cookie_size -= 4; 638 need -= 4; 639 } 640 if (TCP_COOKIE_MIN <= cookie_size) { 641 opts->options |= OPTION_COOKIE_EXTENSION; 642 opts->hash_location = (__u8 *)&cvp->cookie_pair[0]; 643 opts->hash_size = cookie_size; 644 645 /* Remember for future incarnations. */ 646 cvp->cookie_desired = cookie_size; 647 648 if (cvp->cookie_desired != cvp->cookie_pair_size) { 649 /* Currently use random bytes as a nonce, 650 * assuming these are completely unpredictable 651 * by hostile users of the same system. 652 */ 653 get_random_bytes(&cvp->cookie_pair[0], 654 cookie_size); 655 cvp->cookie_pair_size = cookie_size; 656 } 657 658 remaining -= need; 659 } 660 } 661 return MAX_TCP_OPTION_SPACE - remaining; 662 } 663 664 /* Set up TCP options for SYN-ACKs. */ 665 static unsigned tcp_synack_options(struct sock *sk, 666 struct request_sock *req, 667 unsigned mss, struct sk_buff *skb, 668 struct tcp_out_options *opts, 669 struct tcp_md5sig_key **md5, 670 struct tcp_extend_values *xvp) 671 { 672 struct inet_request_sock *ireq = inet_rsk(req); 673 unsigned remaining = MAX_TCP_OPTION_SPACE; 674 u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ? 675 xvp->cookie_plus : 676 0; 677 678 #ifdef CONFIG_TCP_MD5SIG 679 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); 680 if (*md5) { 681 opts->options |= OPTION_MD5; 682 remaining -= TCPOLEN_MD5SIG_ALIGNED; 683 684 /* We can't fit any SACK blocks in a packet with MD5 + TS 685 * options. There was discussion about disabling SACK 686 * rather than TS in order to fit in better with old, 687 * buggy kernels, but that was deemed to be unnecessary. 688 */ 689 ireq->tstamp_ok &= !ireq->sack_ok; 690 } 691 #else 692 *md5 = NULL; 693 #endif 694 695 /* We always send an MSS option. */ 696 opts->mss = mss; 697 remaining -= TCPOLEN_MSS_ALIGNED; 698 699 if (likely(ireq->wscale_ok)) { 700 opts->ws = ireq->rcv_wscale; 701 opts->options |= OPTION_WSCALE; 702 remaining -= TCPOLEN_WSCALE_ALIGNED; 703 } 704 if (likely(ireq->tstamp_ok)) { 705 opts->options |= OPTION_TS; 706 opts->tsval = TCP_SKB_CB(skb)->when; 707 opts->tsecr = req->ts_recent; 708 remaining -= TCPOLEN_TSTAMP_ALIGNED; 709 } 710 if (likely(ireq->sack_ok)) { 711 opts->options |= OPTION_SACK_ADVERTISE; 712 if (unlikely(!ireq->tstamp_ok)) 713 remaining -= TCPOLEN_SACKPERM_ALIGNED; 714 } 715 716 /* Similar rationale to tcp_syn_options() applies here, too. 717 * If the <SYN> options fit, the same options should fit now! 718 */ 719 if (*md5 == NULL && 720 ireq->tstamp_ok && 721 cookie_plus > TCPOLEN_COOKIE_BASE) { 722 int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */ 723 724 if (0x2 & need) { 725 /* 32-bit multiple */ 726 need += 2; /* NOPs */ 727 } 728 if (need <= remaining) { 729 opts->options |= OPTION_COOKIE_EXTENSION; 730 opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE; 731 remaining -= need; 732 } else { 733 /* There's no error return, so flag it. */ 734 xvp->cookie_out_never = 1; /* true */ 735 opts->hash_size = 0; 736 } 737 } 738 return MAX_TCP_OPTION_SPACE - remaining; 739 } 740 741 /* Compute TCP options for ESTABLISHED sockets. This is not the 742 * final wire format yet. 743 */ 744 static unsigned tcp_established_options(struct sock *sk, struct sk_buff *skb, 745 struct tcp_out_options *opts, 746 struct tcp_md5sig_key **md5) { 747 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL; 748 struct tcp_sock *tp = tcp_sk(sk); 749 unsigned size = 0; 750 unsigned int eff_sacks; 751 752 #ifdef CONFIG_TCP_MD5SIG 753 *md5 = tp->af_specific->md5_lookup(sk, sk); 754 if (unlikely(*md5)) { 755 opts->options |= OPTION_MD5; 756 size += TCPOLEN_MD5SIG_ALIGNED; 757 } 758 #else 759 *md5 = NULL; 760 #endif 761 762 if (likely(tp->rx_opt.tstamp_ok)) { 763 opts->options |= OPTION_TS; 764 opts->tsval = tcb ? tcb->when : 0; 765 opts->tsecr = tp->rx_opt.ts_recent; 766 size += TCPOLEN_TSTAMP_ALIGNED; 767 } 768 769 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 770 if (unlikely(eff_sacks)) { 771 const unsigned remaining = MAX_TCP_OPTION_SPACE - size; 772 opts->num_sack_blocks = 773 min_t(unsigned, eff_sacks, 774 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 775 TCPOLEN_SACK_PERBLOCK); 776 size += TCPOLEN_SACK_BASE_ALIGNED + 777 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 778 } 779 780 return size; 781 } 782 783 /* This routine actually transmits TCP packets queued in by 784 * tcp_do_sendmsg(). This is used by both the initial 785 * transmission and possible later retransmissions. 786 * All SKB's seen here are completely headerless. It is our 787 * job to build the TCP header, and pass the packet down to 788 * IP so it can do the same plus pass the packet off to the 789 * device. 790 * 791 * We are working here with either a clone of the original 792 * SKB, or a fresh unique copy made by the retransmit engine. 793 */ 794 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 795 gfp_t gfp_mask) 796 { 797 const struct inet_connection_sock *icsk = inet_csk(sk); 798 struct inet_sock *inet; 799 struct tcp_sock *tp; 800 struct tcp_skb_cb *tcb; 801 struct tcp_out_options opts; 802 unsigned tcp_options_size, tcp_header_size; 803 struct tcp_md5sig_key *md5; 804 struct tcphdr *th; 805 int err; 806 807 BUG_ON(!skb || !tcp_skb_pcount(skb)); 808 809 /* If congestion control is doing timestamping, we must 810 * take such a timestamp before we potentially clone/copy. 811 */ 812 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP) 813 __net_timestamp(skb); 814 815 if (likely(clone_it)) { 816 if (unlikely(skb_cloned(skb))) 817 skb = pskb_copy(skb, gfp_mask); 818 else 819 skb = skb_clone(skb, gfp_mask); 820 if (unlikely(!skb)) 821 return -ENOBUFS; 822 } 823 824 inet = inet_sk(sk); 825 tp = tcp_sk(sk); 826 tcb = TCP_SKB_CB(skb); 827 memset(&opts, 0, sizeof(opts)); 828 829 if (unlikely(tcb->flags & TCPHDR_SYN)) 830 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 831 else 832 tcp_options_size = tcp_established_options(sk, skb, &opts, 833 &md5); 834 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 835 836 if (tcp_packets_in_flight(tp) == 0) { 837 tcp_ca_event(sk, CA_EVENT_TX_START); 838 skb->ooo_okay = 1; 839 } else 840 skb->ooo_okay = 0; 841 842 skb_push(skb, tcp_header_size); 843 skb_reset_transport_header(skb); 844 skb_set_owner_w(skb, sk); 845 846 /* Build TCP header and checksum it. */ 847 th = tcp_hdr(skb); 848 th->source = inet->inet_sport; 849 th->dest = inet->inet_dport; 850 th->seq = htonl(tcb->seq); 851 th->ack_seq = htonl(tp->rcv_nxt); 852 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 853 tcb->flags); 854 855 if (unlikely(tcb->flags & TCPHDR_SYN)) { 856 /* RFC1323: The window in SYN & SYN/ACK segments 857 * is never scaled. 858 */ 859 th->window = htons(min(tp->rcv_wnd, 65535U)); 860 } else { 861 th->window = htons(tcp_select_window(sk)); 862 } 863 th->check = 0; 864 th->urg_ptr = 0; 865 866 /* The urg_mode check is necessary during a below snd_una win probe */ 867 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 868 if (before(tp->snd_up, tcb->seq + 0x10000)) { 869 th->urg_ptr = htons(tp->snd_up - tcb->seq); 870 th->urg = 1; 871 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 872 th->urg_ptr = htons(0xFFFF); 873 th->urg = 1; 874 } 875 } 876 877 tcp_options_write((__be32 *)(th + 1), tp, &opts); 878 if (likely((tcb->flags & TCPHDR_SYN) == 0)) 879 TCP_ECN_send(sk, skb, tcp_header_size); 880 881 #ifdef CONFIG_TCP_MD5SIG 882 /* Calculate the MD5 hash, as we have all we need now */ 883 if (md5) { 884 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 885 tp->af_specific->calc_md5_hash(opts.hash_location, 886 md5, sk, NULL, skb); 887 } 888 #endif 889 890 icsk->icsk_af_ops->send_check(sk, skb); 891 892 if (likely(tcb->flags & TCPHDR_ACK)) 893 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 894 895 if (skb->len != tcp_header_size) 896 tcp_event_data_sent(tp, skb, sk); 897 898 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 899 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 900 tcp_skb_pcount(skb)); 901 902 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl); 903 if (likely(err <= 0)) 904 return err; 905 906 tcp_enter_cwr(sk, 1); 907 908 return net_xmit_eval(err); 909 } 910 911 /* This routine just queues the buffer for sending. 912 * 913 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 914 * otherwise socket can stall. 915 */ 916 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 917 { 918 struct tcp_sock *tp = tcp_sk(sk); 919 920 /* Advance write_seq and place onto the write_queue. */ 921 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 922 skb_header_release(skb); 923 tcp_add_write_queue_tail(sk, skb); 924 sk->sk_wmem_queued += skb->truesize; 925 sk_mem_charge(sk, skb->truesize); 926 } 927 928 /* Initialize TSO segments for a packet. */ 929 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, 930 unsigned int mss_now) 931 { 932 if (skb->len <= mss_now || !sk_can_gso(sk) || 933 skb->ip_summed == CHECKSUM_NONE) { 934 /* Avoid the costly divide in the normal 935 * non-TSO case. 936 */ 937 skb_shinfo(skb)->gso_segs = 1; 938 skb_shinfo(skb)->gso_size = 0; 939 skb_shinfo(skb)->gso_type = 0; 940 } else { 941 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now); 942 skb_shinfo(skb)->gso_size = mss_now; 943 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 944 } 945 } 946 947 /* When a modification to fackets out becomes necessary, we need to check 948 * skb is counted to fackets_out or not. 949 */ 950 static void tcp_adjust_fackets_out(struct sock *sk, struct sk_buff *skb, 951 int decr) 952 { 953 struct tcp_sock *tp = tcp_sk(sk); 954 955 if (!tp->sacked_out || tcp_is_reno(tp)) 956 return; 957 958 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq)) 959 tp->fackets_out -= decr; 960 } 961 962 /* Pcount in the middle of the write queue got changed, we need to do various 963 * tweaks to fix counters 964 */ 965 static void tcp_adjust_pcount(struct sock *sk, struct sk_buff *skb, int decr) 966 { 967 struct tcp_sock *tp = tcp_sk(sk); 968 969 tp->packets_out -= decr; 970 971 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 972 tp->sacked_out -= decr; 973 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 974 tp->retrans_out -= decr; 975 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 976 tp->lost_out -= decr; 977 978 /* Reno case is special. Sigh... */ 979 if (tcp_is_reno(tp) && decr > 0) 980 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 981 982 tcp_adjust_fackets_out(sk, skb, decr); 983 984 if (tp->lost_skb_hint && 985 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 986 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))) 987 tp->lost_cnt_hint -= decr; 988 989 tcp_verify_left_out(tp); 990 } 991 992 /* Function to create two new TCP segments. Shrinks the given segment 993 * to the specified size and appends a new segment with the rest of the 994 * packet to the list. This won't be called frequently, I hope. 995 * Remember, these are still headerless SKBs at this point. 996 */ 997 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, 998 unsigned int mss_now) 999 { 1000 struct tcp_sock *tp = tcp_sk(sk); 1001 struct sk_buff *buff; 1002 int nsize, old_factor; 1003 int nlen; 1004 u8 flags; 1005 1006 if (WARN_ON(len > skb->len)) 1007 return -EINVAL; 1008 1009 nsize = skb_headlen(skb) - len; 1010 if (nsize < 0) 1011 nsize = 0; 1012 1013 if (skb_cloned(skb) && 1014 skb_is_nonlinear(skb) && 1015 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1016 return -ENOMEM; 1017 1018 /* Get a new skb... force flag on. */ 1019 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 1020 if (buff == NULL) 1021 return -ENOMEM; /* We'll just try again later. */ 1022 1023 sk->sk_wmem_queued += buff->truesize; 1024 sk_mem_charge(sk, buff->truesize); 1025 nlen = skb->len - len - nsize; 1026 buff->truesize += nlen; 1027 skb->truesize -= nlen; 1028 1029 /* Correct the sequence numbers. */ 1030 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1031 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1032 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1033 1034 /* PSH and FIN should only be set in the second packet. */ 1035 flags = TCP_SKB_CB(skb)->flags; 1036 TCP_SKB_CB(skb)->flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1037 TCP_SKB_CB(buff)->flags = flags; 1038 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1039 1040 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { 1041 /* Copy and checksum data tail into the new buffer. */ 1042 buff->csum = csum_partial_copy_nocheck(skb->data + len, 1043 skb_put(buff, nsize), 1044 nsize, 0); 1045 1046 skb_trim(skb, len); 1047 1048 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 1049 } else { 1050 skb->ip_summed = CHECKSUM_PARTIAL; 1051 skb_split(skb, buff, len); 1052 } 1053 1054 buff->ip_summed = skb->ip_summed; 1055 1056 /* Looks stupid, but our code really uses when of 1057 * skbs, which it never sent before. --ANK 1058 */ 1059 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 1060 buff->tstamp = skb->tstamp; 1061 1062 old_factor = tcp_skb_pcount(skb); 1063 1064 /* Fix up tso_factor for both original and new SKB. */ 1065 tcp_set_skb_tso_segs(sk, skb, mss_now); 1066 tcp_set_skb_tso_segs(sk, buff, mss_now); 1067 1068 /* If this packet has been sent out already, we must 1069 * adjust the various packet counters. 1070 */ 1071 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1072 int diff = old_factor - tcp_skb_pcount(skb) - 1073 tcp_skb_pcount(buff); 1074 1075 if (diff) 1076 tcp_adjust_pcount(sk, skb, diff); 1077 } 1078 1079 /* Link BUFF into the send queue. */ 1080 skb_header_release(buff); 1081 tcp_insert_write_queue_after(skb, buff, sk); 1082 1083 return 0; 1084 } 1085 1086 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 1087 * eventually). The difference is that pulled data not copied, but 1088 * immediately discarded. 1089 */ 1090 static void __pskb_trim_head(struct sk_buff *skb, int len) 1091 { 1092 int i, k, eat; 1093 1094 eat = len; 1095 k = 0; 1096 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1097 if (skb_shinfo(skb)->frags[i].size <= eat) { 1098 put_page(skb_shinfo(skb)->frags[i].page); 1099 eat -= skb_shinfo(skb)->frags[i].size; 1100 } else { 1101 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1102 if (eat) { 1103 skb_shinfo(skb)->frags[k].page_offset += eat; 1104 skb_shinfo(skb)->frags[k].size -= eat; 1105 eat = 0; 1106 } 1107 k++; 1108 } 1109 } 1110 skb_shinfo(skb)->nr_frags = k; 1111 1112 skb_reset_tail_pointer(skb); 1113 skb->data_len -= len; 1114 skb->len = skb->data_len; 1115 } 1116 1117 /* Remove acked data from a packet in the transmit queue. */ 1118 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1119 { 1120 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 1121 return -ENOMEM; 1122 1123 /* If len == headlen, we avoid __skb_pull to preserve alignment. */ 1124 if (unlikely(len < skb_headlen(skb))) 1125 __skb_pull(skb, len); 1126 else 1127 __pskb_trim_head(skb, len - skb_headlen(skb)); 1128 1129 TCP_SKB_CB(skb)->seq += len; 1130 skb->ip_summed = CHECKSUM_PARTIAL; 1131 1132 skb->truesize -= len; 1133 sk->sk_wmem_queued -= len; 1134 sk_mem_uncharge(sk, len); 1135 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 1136 1137 /* Any change of skb->len requires recalculation of tso 1138 * factor and mss. 1139 */ 1140 if (tcp_skb_pcount(skb) > 1) 1141 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk)); 1142 1143 return 0; 1144 } 1145 1146 /* Calculate MSS. Not accounting for SACKs here. */ 1147 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1148 { 1149 struct tcp_sock *tp = tcp_sk(sk); 1150 struct inet_connection_sock *icsk = inet_csk(sk); 1151 int mss_now; 1152 1153 /* Calculate base mss without TCP options: 1154 It is MMS_S - sizeof(tcphdr) of rfc1122 1155 */ 1156 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1157 1158 /* Clamp it (mss_clamp does not include tcp options) */ 1159 if (mss_now > tp->rx_opt.mss_clamp) 1160 mss_now = tp->rx_opt.mss_clamp; 1161 1162 /* Now subtract optional transport overhead */ 1163 mss_now -= icsk->icsk_ext_hdr_len; 1164 1165 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1166 if (mss_now < 48) 1167 mss_now = 48; 1168 1169 /* Now subtract TCP options size, not including SACKs */ 1170 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); 1171 1172 return mss_now; 1173 } 1174 1175 /* Inverse of above */ 1176 int tcp_mss_to_mtu(struct sock *sk, int mss) 1177 { 1178 struct tcp_sock *tp = tcp_sk(sk); 1179 struct inet_connection_sock *icsk = inet_csk(sk); 1180 int mtu; 1181 1182 mtu = mss + 1183 tp->tcp_header_len + 1184 icsk->icsk_ext_hdr_len + 1185 icsk->icsk_af_ops->net_header_len; 1186 1187 return mtu; 1188 } 1189 1190 /* MTU probing init per socket */ 1191 void tcp_mtup_init(struct sock *sk) 1192 { 1193 struct tcp_sock *tp = tcp_sk(sk); 1194 struct inet_connection_sock *icsk = inet_csk(sk); 1195 1196 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; 1197 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1198 icsk->icsk_af_ops->net_header_len; 1199 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); 1200 icsk->icsk_mtup.probe_size = 0; 1201 } 1202 EXPORT_SYMBOL(tcp_mtup_init); 1203 1204 /* This function synchronize snd mss to current pmtu/exthdr set. 1205 1206 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1207 for TCP options, but includes only bare TCP header. 1208 1209 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1210 It is minimum of user_mss and mss received with SYN. 1211 It also does not include TCP options. 1212 1213 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1214 1215 tp->mss_cache is current effective sending mss, including 1216 all tcp options except for SACKs. It is evaluated, 1217 taking into account current pmtu, but never exceeds 1218 tp->rx_opt.mss_clamp. 1219 1220 NOTE1. rfc1122 clearly states that advertised MSS 1221 DOES NOT include either tcp or ip options. 1222 1223 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1224 are READ ONLY outside this function. --ANK (980731) 1225 */ 1226 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1227 { 1228 struct tcp_sock *tp = tcp_sk(sk); 1229 struct inet_connection_sock *icsk = inet_csk(sk); 1230 int mss_now; 1231 1232 if (icsk->icsk_mtup.search_high > pmtu) 1233 icsk->icsk_mtup.search_high = pmtu; 1234 1235 mss_now = tcp_mtu_to_mss(sk, pmtu); 1236 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1237 1238 /* And store cached results */ 1239 icsk->icsk_pmtu_cookie = pmtu; 1240 if (icsk->icsk_mtup.enabled) 1241 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1242 tp->mss_cache = mss_now; 1243 1244 return mss_now; 1245 } 1246 EXPORT_SYMBOL(tcp_sync_mss); 1247 1248 /* Compute the current effective MSS, taking SACKs and IP options, 1249 * and even PMTU discovery events into account. 1250 */ 1251 unsigned int tcp_current_mss(struct sock *sk) 1252 { 1253 struct tcp_sock *tp = tcp_sk(sk); 1254 struct dst_entry *dst = __sk_dst_get(sk); 1255 u32 mss_now; 1256 unsigned header_len; 1257 struct tcp_out_options opts; 1258 struct tcp_md5sig_key *md5; 1259 1260 mss_now = tp->mss_cache; 1261 1262 if (dst) { 1263 u32 mtu = dst_mtu(dst); 1264 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1265 mss_now = tcp_sync_mss(sk, mtu); 1266 } 1267 1268 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1269 sizeof(struct tcphdr); 1270 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1271 * some common options. If this is an odd packet (because we have SACK 1272 * blocks etc) then our calculated header_len will be different, and 1273 * we have to adjust mss_now correspondingly */ 1274 if (header_len != tp->tcp_header_len) { 1275 int delta = (int) header_len - tp->tcp_header_len; 1276 mss_now -= delta; 1277 } 1278 1279 return mss_now; 1280 } 1281 1282 /* Congestion window validation. (RFC2861) */ 1283 static void tcp_cwnd_validate(struct sock *sk) 1284 { 1285 struct tcp_sock *tp = tcp_sk(sk); 1286 1287 if (tp->packets_out >= tp->snd_cwnd) { 1288 /* Network is feed fully. */ 1289 tp->snd_cwnd_used = 0; 1290 tp->snd_cwnd_stamp = tcp_time_stamp; 1291 } else { 1292 /* Network starves. */ 1293 if (tp->packets_out > tp->snd_cwnd_used) 1294 tp->snd_cwnd_used = tp->packets_out; 1295 1296 if (sysctl_tcp_slow_start_after_idle && 1297 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 1298 tcp_cwnd_application_limited(sk); 1299 } 1300 } 1301 1302 /* Returns the portion of skb which can be sent right away without 1303 * introducing MSS oddities to segment boundaries. In rare cases where 1304 * mss_now != mss_cache, we will request caller to create a small skb 1305 * per input skb which could be mostly avoided here (if desired). 1306 * 1307 * We explicitly want to create a request for splitting write queue tail 1308 * to a small skb for Nagle purposes while avoiding unnecessary modulos, 1309 * thus all the complexity (cwnd_len is always MSS multiple which we 1310 * return whenever allowed by the other factors). Basically we need the 1311 * modulo only when the receiver window alone is the limiting factor or 1312 * when we would be allowed to send the split-due-to-Nagle skb fully. 1313 */ 1314 static unsigned int tcp_mss_split_point(struct sock *sk, struct sk_buff *skb, 1315 unsigned int mss_now, unsigned int cwnd) 1316 { 1317 struct tcp_sock *tp = tcp_sk(sk); 1318 u32 needed, window, cwnd_len; 1319 1320 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1321 cwnd_len = mss_now * cwnd; 1322 1323 if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk))) 1324 return cwnd_len; 1325 1326 needed = min(skb->len, window); 1327 1328 if (cwnd_len <= needed) 1329 return cwnd_len; 1330 1331 return needed - needed % mss_now; 1332 } 1333 1334 /* Can at least one segment of SKB be sent right now, according to the 1335 * congestion window rules? If so, return how many segments are allowed. 1336 */ 1337 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, 1338 struct sk_buff *skb) 1339 { 1340 u32 in_flight, cwnd; 1341 1342 /* Don't be strict about the congestion window for the final FIN. */ 1343 if ((TCP_SKB_CB(skb)->flags & TCPHDR_FIN) && tcp_skb_pcount(skb) == 1) 1344 return 1; 1345 1346 in_flight = tcp_packets_in_flight(tp); 1347 cwnd = tp->snd_cwnd; 1348 if (in_flight < cwnd) 1349 return (cwnd - in_flight); 1350 1351 return 0; 1352 } 1353 1354 /* Initialize TSO state of a skb. 1355 * This must be invoked the first time we consider transmitting 1356 * SKB onto the wire. 1357 */ 1358 static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, 1359 unsigned int mss_now) 1360 { 1361 int tso_segs = tcp_skb_pcount(skb); 1362 1363 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 1364 tcp_set_skb_tso_segs(sk, skb, mss_now); 1365 tso_segs = tcp_skb_pcount(skb); 1366 } 1367 return tso_segs; 1368 } 1369 1370 /* Minshall's variant of the Nagle send check. */ 1371 static inline int tcp_minshall_check(const struct tcp_sock *tp) 1372 { 1373 return after(tp->snd_sml, tp->snd_una) && 1374 !after(tp->snd_sml, tp->snd_nxt); 1375 } 1376 1377 /* Return 0, if packet can be sent now without violation Nagle's rules: 1378 * 1. It is full sized. 1379 * 2. Or it contains FIN. (already checked by caller) 1380 * 3. Or TCP_NODELAY was set. 1381 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1382 * With Minshall's modification: all sent small packets are ACKed. 1383 */ 1384 static inline int tcp_nagle_check(const struct tcp_sock *tp, 1385 const struct sk_buff *skb, 1386 unsigned mss_now, int nonagle) 1387 { 1388 return skb->len < mss_now && 1389 ((nonagle & TCP_NAGLE_CORK) || 1390 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1391 } 1392 1393 /* Return non-zero if the Nagle test allows this packet to be 1394 * sent now. 1395 */ 1396 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb, 1397 unsigned int cur_mss, int nonagle) 1398 { 1399 /* Nagle rule does not apply to frames, which sit in the middle of the 1400 * write_queue (they have no chances to get new data). 1401 * 1402 * This is implemented in the callers, where they modify the 'nonagle' 1403 * argument based upon the location of SKB in the send queue. 1404 */ 1405 if (nonagle & TCP_NAGLE_PUSH) 1406 return 1; 1407 1408 /* Don't use the nagle rule for urgent data (or for the final FIN). 1409 * Nagle can be ignored during F-RTO too (see RFC4138). 1410 */ 1411 if (tcp_urg_mode(tp) || (tp->frto_counter == 2) || 1412 (TCP_SKB_CB(skb)->flags & TCPHDR_FIN)) 1413 return 1; 1414 1415 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 1416 return 1; 1417 1418 return 0; 1419 } 1420 1421 /* Does at least the first segment of SKB fit into the send window? */ 1422 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, 1423 unsigned int cur_mss) 1424 { 1425 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 1426 1427 if (skb->len > cur_mss) 1428 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 1429 1430 return !after(end_seq, tcp_wnd_end(tp)); 1431 } 1432 1433 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk)) 1434 * should be put on the wire right now. If so, it returns the number of 1435 * packets allowed by the congestion window. 1436 */ 1437 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb, 1438 unsigned int cur_mss, int nonagle) 1439 { 1440 struct tcp_sock *tp = tcp_sk(sk); 1441 unsigned int cwnd_quota; 1442 1443 tcp_init_tso_segs(sk, skb, cur_mss); 1444 1445 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 1446 return 0; 1447 1448 cwnd_quota = tcp_cwnd_test(tp, skb); 1449 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss)) 1450 cwnd_quota = 0; 1451 1452 return cwnd_quota; 1453 } 1454 1455 /* Test if sending is allowed right now. */ 1456 int tcp_may_send_now(struct sock *sk) 1457 { 1458 struct tcp_sock *tp = tcp_sk(sk); 1459 struct sk_buff *skb = tcp_send_head(sk); 1460 1461 return skb && 1462 tcp_snd_test(sk, skb, tcp_current_mss(sk), 1463 (tcp_skb_is_last(sk, skb) ? 1464 tp->nonagle : TCP_NAGLE_PUSH)); 1465 } 1466 1467 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 1468 * which is put after SKB on the list. It is very much like 1469 * tcp_fragment() except that it may make several kinds of assumptions 1470 * in order to speed up the splitting operation. In particular, we 1471 * know that all the data is in scatter-gather pages, and that the 1472 * packet has never been sent out before (and thus is not cloned). 1473 */ 1474 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 1475 unsigned int mss_now, gfp_t gfp) 1476 { 1477 struct sk_buff *buff; 1478 int nlen = skb->len - len; 1479 u8 flags; 1480 1481 /* All of a TSO frame must be composed of paged data. */ 1482 if (skb->len != skb->data_len) 1483 return tcp_fragment(sk, skb, len, mss_now); 1484 1485 buff = sk_stream_alloc_skb(sk, 0, gfp); 1486 if (unlikely(buff == NULL)) 1487 return -ENOMEM; 1488 1489 sk->sk_wmem_queued += buff->truesize; 1490 sk_mem_charge(sk, buff->truesize); 1491 buff->truesize += nlen; 1492 skb->truesize -= nlen; 1493 1494 /* Correct the sequence numbers. */ 1495 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1496 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1497 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1498 1499 /* PSH and FIN should only be set in the second packet. */ 1500 flags = TCP_SKB_CB(skb)->flags; 1501 TCP_SKB_CB(skb)->flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1502 TCP_SKB_CB(buff)->flags = flags; 1503 1504 /* This packet was never sent out yet, so no SACK bits. */ 1505 TCP_SKB_CB(buff)->sacked = 0; 1506 1507 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; 1508 skb_split(skb, buff, len); 1509 1510 /* Fix up tso_factor for both original and new SKB. */ 1511 tcp_set_skb_tso_segs(sk, skb, mss_now); 1512 tcp_set_skb_tso_segs(sk, buff, mss_now); 1513 1514 /* Link BUFF into the send queue. */ 1515 skb_header_release(buff); 1516 tcp_insert_write_queue_after(skb, buff, sk); 1517 1518 return 0; 1519 } 1520 1521 /* Try to defer sending, if possible, in order to minimize the amount 1522 * of TSO splitting we do. View it as a kind of TSO Nagle test. 1523 * 1524 * This algorithm is from John Heffner. 1525 */ 1526 static int tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb) 1527 { 1528 struct tcp_sock *tp = tcp_sk(sk); 1529 const struct inet_connection_sock *icsk = inet_csk(sk); 1530 u32 send_win, cong_win, limit, in_flight; 1531 int win_divisor; 1532 1533 if (TCP_SKB_CB(skb)->flags & TCPHDR_FIN) 1534 goto send_now; 1535 1536 if (icsk->icsk_ca_state != TCP_CA_Open) 1537 goto send_now; 1538 1539 /* Defer for less than two clock ticks. */ 1540 if (tp->tso_deferred && 1541 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1) 1542 goto send_now; 1543 1544 in_flight = tcp_packets_in_flight(tp); 1545 1546 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight)); 1547 1548 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 1549 1550 /* From in_flight test above, we know that cwnd > in_flight. */ 1551 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 1552 1553 limit = min(send_win, cong_win); 1554 1555 /* If a full-sized TSO skb can be sent, do it. */ 1556 if (limit >= sk->sk_gso_max_size) 1557 goto send_now; 1558 1559 /* Middle in queue won't get any more data, full sendable already? */ 1560 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 1561 goto send_now; 1562 1563 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor); 1564 if (win_divisor) { 1565 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 1566 1567 /* If at least some fraction of a window is available, 1568 * just use it. 1569 */ 1570 chunk /= win_divisor; 1571 if (limit >= chunk) 1572 goto send_now; 1573 } else { 1574 /* Different approach, try not to defer past a single 1575 * ACK. Receiver should ACK every other full sized 1576 * frame, so if we have space for more than 3 frames 1577 * then send now. 1578 */ 1579 if (limit > tcp_max_burst(tp) * tp->mss_cache) 1580 goto send_now; 1581 } 1582 1583 /* Ok, it looks like it is advisable to defer. */ 1584 tp->tso_deferred = 1 | (jiffies << 1); 1585 1586 return 1; 1587 1588 send_now: 1589 tp->tso_deferred = 0; 1590 return 0; 1591 } 1592 1593 /* Create a new MTU probe if we are ready. 1594 * MTU probe is regularly attempting to increase the path MTU by 1595 * deliberately sending larger packets. This discovers routing 1596 * changes resulting in larger path MTUs. 1597 * 1598 * Returns 0 if we should wait to probe (no cwnd available), 1599 * 1 if a probe was sent, 1600 * -1 otherwise 1601 */ 1602 static int tcp_mtu_probe(struct sock *sk) 1603 { 1604 struct tcp_sock *tp = tcp_sk(sk); 1605 struct inet_connection_sock *icsk = inet_csk(sk); 1606 struct sk_buff *skb, *nskb, *next; 1607 int len; 1608 int probe_size; 1609 int size_needed; 1610 int copy; 1611 int mss_now; 1612 1613 /* Not currently probing/verifying, 1614 * not in recovery, 1615 * have enough cwnd, and 1616 * not SACKing (the variable headers throw things off) */ 1617 if (!icsk->icsk_mtup.enabled || 1618 icsk->icsk_mtup.probe_size || 1619 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 1620 tp->snd_cwnd < 11 || 1621 tp->rx_opt.num_sacks || tp->rx_opt.dsack) 1622 return -1; 1623 1624 /* Very simple search strategy: just double the MSS. */ 1625 mss_now = tcp_current_mss(sk); 1626 probe_size = 2 * tp->mss_cache; 1627 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 1628 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { 1629 /* TODO: set timer for probe_converge_event */ 1630 return -1; 1631 } 1632 1633 /* Have enough data in the send queue to probe? */ 1634 if (tp->write_seq - tp->snd_nxt < size_needed) 1635 return -1; 1636 1637 if (tp->snd_wnd < size_needed) 1638 return -1; 1639 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 1640 return 0; 1641 1642 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 1643 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) { 1644 if (!tcp_packets_in_flight(tp)) 1645 return -1; 1646 else 1647 return 0; 1648 } 1649 1650 /* We're allowed to probe. Build it now. */ 1651 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) 1652 return -1; 1653 sk->sk_wmem_queued += nskb->truesize; 1654 sk_mem_charge(sk, nskb->truesize); 1655 1656 skb = tcp_send_head(sk); 1657 1658 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 1659 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 1660 TCP_SKB_CB(nskb)->flags = TCPHDR_ACK; 1661 TCP_SKB_CB(nskb)->sacked = 0; 1662 nskb->csum = 0; 1663 nskb->ip_summed = skb->ip_summed; 1664 1665 tcp_insert_write_queue_before(nskb, skb, sk); 1666 1667 len = 0; 1668 tcp_for_write_queue_from_safe(skb, next, sk) { 1669 copy = min_t(int, skb->len, probe_size - len); 1670 if (nskb->ip_summed) 1671 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); 1672 else 1673 nskb->csum = skb_copy_and_csum_bits(skb, 0, 1674 skb_put(nskb, copy), 1675 copy, nskb->csum); 1676 1677 if (skb->len <= copy) { 1678 /* We've eaten all the data from this skb. 1679 * Throw it away. */ 1680 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags; 1681 tcp_unlink_write_queue(skb, sk); 1682 sk_wmem_free_skb(sk, skb); 1683 } else { 1684 TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags & 1685 ~(TCPHDR_FIN|TCPHDR_PSH); 1686 if (!skb_shinfo(skb)->nr_frags) { 1687 skb_pull(skb, copy); 1688 if (skb->ip_summed != CHECKSUM_PARTIAL) 1689 skb->csum = csum_partial(skb->data, 1690 skb->len, 0); 1691 } else { 1692 __pskb_trim_head(skb, copy); 1693 tcp_set_skb_tso_segs(sk, skb, mss_now); 1694 } 1695 TCP_SKB_CB(skb)->seq += copy; 1696 } 1697 1698 len += copy; 1699 1700 if (len >= probe_size) 1701 break; 1702 } 1703 tcp_init_tso_segs(sk, nskb, nskb->len); 1704 1705 /* We're ready to send. If this fails, the probe will 1706 * be resegmented into mss-sized pieces by tcp_write_xmit(). */ 1707 TCP_SKB_CB(nskb)->when = tcp_time_stamp; 1708 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 1709 /* Decrement cwnd here because we are sending 1710 * effectively two packets. */ 1711 tp->snd_cwnd--; 1712 tcp_event_new_data_sent(sk, nskb); 1713 1714 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 1715 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 1716 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 1717 1718 return 1; 1719 } 1720 1721 return -1; 1722 } 1723 1724 /* This routine writes packets to the network. It advances the 1725 * send_head. This happens as incoming acks open up the remote 1726 * window for us. 1727 * 1728 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 1729 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 1730 * account rare use of URG, this is not a big flaw. 1731 * 1732 * Returns 1, if no segments are in flight and we have queued segments, but 1733 * cannot send anything now because of SWS or another problem. 1734 */ 1735 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 1736 int push_one, gfp_t gfp) 1737 { 1738 struct tcp_sock *tp = tcp_sk(sk); 1739 struct sk_buff *skb; 1740 unsigned int tso_segs, sent_pkts; 1741 int cwnd_quota; 1742 int result; 1743 1744 sent_pkts = 0; 1745 1746 if (!push_one) { 1747 /* Do MTU probing. */ 1748 result = tcp_mtu_probe(sk); 1749 if (!result) { 1750 return 0; 1751 } else if (result > 0) { 1752 sent_pkts = 1; 1753 } 1754 } 1755 1756 while ((skb = tcp_send_head(sk))) { 1757 unsigned int limit; 1758 1759 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1760 BUG_ON(!tso_segs); 1761 1762 cwnd_quota = tcp_cwnd_test(tp, skb); 1763 if (!cwnd_quota) 1764 break; 1765 1766 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 1767 break; 1768 1769 if (tso_segs == 1) { 1770 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1771 (tcp_skb_is_last(sk, skb) ? 1772 nonagle : TCP_NAGLE_PUSH)))) 1773 break; 1774 } else { 1775 if (!push_one && tcp_tso_should_defer(sk, skb)) 1776 break; 1777 } 1778 1779 limit = mss_now; 1780 if (tso_segs > 1 && !tcp_urg_mode(tp)) 1781 limit = tcp_mss_split_point(sk, skb, mss_now, 1782 cwnd_quota); 1783 1784 if (skb->len > limit && 1785 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 1786 break; 1787 1788 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1789 1790 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 1791 break; 1792 1793 /* Advance the send_head. This one is sent out. 1794 * This call will increment packets_out. 1795 */ 1796 tcp_event_new_data_sent(sk, skb); 1797 1798 tcp_minshall_update(tp, mss_now, skb); 1799 sent_pkts++; 1800 1801 if (push_one) 1802 break; 1803 } 1804 1805 if (likely(sent_pkts)) { 1806 tcp_cwnd_validate(sk); 1807 return 0; 1808 } 1809 return !tp->packets_out && tcp_send_head(sk); 1810 } 1811 1812 /* Push out any pending frames which were held back due to 1813 * TCP_CORK or attempt at coalescing tiny packets. 1814 * The socket must be locked by the caller. 1815 */ 1816 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 1817 int nonagle) 1818 { 1819 /* If we are closed, the bytes will have to remain here. 1820 * In time closedown will finish, we empty the write queue and 1821 * all will be happy. 1822 */ 1823 if (unlikely(sk->sk_state == TCP_CLOSE)) 1824 return; 1825 1826 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, GFP_ATOMIC)) 1827 tcp_check_probe_timer(sk); 1828 } 1829 1830 /* Send _single_ skb sitting at the send head. This function requires 1831 * true push pending frames to setup probe timer etc. 1832 */ 1833 void tcp_push_one(struct sock *sk, unsigned int mss_now) 1834 { 1835 struct sk_buff *skb = tcp_send_head(sk); 1836 1837 BUG_ON(!skb || skb->len < mss_now); 1838 1839 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 1840 } 1841 1842 /* This function returns the amount that we can raise the 1843 * usable window based on the following constraints 1844 * 1845 * 1. The window can never be shrunk once it is offered (RFC 793) 1846 * 2. We limit memory per socket 1847 * 1848 * RFC 1122: 1849 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 1850 * RECV.NEXT + RCV.WIN fixed until: 1851 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 1852 * 1853 * i.e. don't raise the right edge of the window until you can raise 1854 * it at least MSS bytes. 1855 * 1856 * Unfortunately, the recommended algorithm breaks header prediction, 1857 * since header prediction assumes th->window stays fixed. 1858 * 1859 * Strictly speaking, keeping th->window fixed violates the receiver 1860 * side SWS prevention criteria. The problem is that under this rule 1861 * a stream of single byte packets will cause the right side of the 1862 * window to always advance by a single byte. 1863 * 1864 * Of course, if the sender implements sender side SWS prevention 1865 * then this will not be a problem. 1866 * 1867 * BSD seems to make the following compromise: 1868 * 1869 * If the free space is less than the 1/4 of the maximum 1870 * space available and the free space is less than 1/2 mss, 1871 * then set the window to 0. 1872 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 1873 * Otherwise, just prevent the window from shrinking 1874 * and from being larger than the largest representable value. 1875 * 1876 * This prevents incremental opening of the window in the regime 1877 * where TCP is limited by the speed of the reader side taking 1878 * data out of the TCP receive queue. It does nothing about 1879 * those cases where the window is constrained on the sender side 1880 * because the pipeline is full. 1881 * 1882 * BSD also seems to "accidentally" limit itself to windows that are a 1883 * multiple of MSS, at least until the free space gets quite small. 1884 * This would appear to be a side effect of the mbuf implementation. 1885 * Combining these two algorithms results in the observed behavior 1886 * of having a fixed window size at almost all times. 1887 * 1888 * Below we obtain similar behavior by forcing the offered window to 1889 * a multiple of the mss when it is feasible to do so. 1890 * 1891 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 1892 * Regular options like TIMESTAMP are taken into account. 1893 */ 1894 u32 __tcp_select_window(struct sock *sk) 1895 { 1896 struct inet_connection_sock *icsk = inet_csk(sk); 1897 struct tcp_sock *tp = tcp_sk(sk); 1898 /* MSS for the peer's data. Previous versions used mss_clamp 1899 * here. I don't know if the value based on our guesses 1900 * of peer's MSS is better for the performance. It's more correct 1901 * but may be worse for the performance because of rcv_mss 1902 * fluctuations. --SAW 1998/11/1 1903 */ 1904 int mss = icsk->icsk_ack.rcv_mss; 1905 int free_space = tcp_space(sk); 1906 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 1907 int window; 1908 1909 if (mss > full_space) 1910 mss = full_space; 1911 1912 if (free_space < (full_space >> 1)) { 1913 icsk->icsk_ack.quick = 0; 1914 1915 if (tcp_memory_pressure) 1916 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 1917 4U * tp->advmss); 1918 1919 if (free_space < mss) 1920 return 0; 1921 } 1922 1923 if (free_space > tp->rcv_ssthresh) 1924 free_space = tp->rcv_ssthresh; 1925 1926 /* Don't do rounding if we are using window scaling, since the 1927 * scaled window will not line up with the MSS boundary anyway. 1928 */ 1929 window = tp->rcv_wnd; 1930 if (tp->rx_opt.rcv_wscale) { 1931 window = free_space; 1932 1933 /* Advertise enough space so that it won't get scaled away. 1934 * Import case: prevent zero window announcement if 1935 * 1<<rcv_wscale > mss. 1936 */ 1937 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 1938 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 1939 << tp->rx_opt.rcv_wscale); 1940 } else { 1941 /* Get the largest window that is a nice multiple of mss. 1942 * Window clamp already applied above. 1943 * If our current window offering is within 1 mss of the 1944 * free space we just keep it. This prevents the divide 1945 * and multiply from happening most of the time. 1946 * We also don't do any window rounding when the free space 1947 * is too small. 1948 */ 1949 if (window <= free_space - mss || window > free_space) 1950 window = (free_space / mss) * mss; 1951 else if (mss == full_space && 1952 free_space > window + (full_space >> 1)) 1953 window = free_space; 1954 } 1955 1956 return window; 1957 } 1958 1959 /* Collapses two adjacent SKB's during retransmission. */ 1960 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 1961 { 1962 struct tcp_sock *tp = tcp_sk(sk); 1963 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb); 1964 int skb_size, next_skb_size; 1965 1966 skb_size = skb->len; 1967 next_skb_size = next_skb->len; 1968 1969 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 1970 1971 tcp_highest_sack_combine(sk, next_skb, skb); 1972 1973 tcp_unlink_write_queue(next_skb, sk); 1974 1975 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size), 1976 next_skb_size); 1977 1978 if (next_skb->ip_summed == CHECKSUM_PARTIAL) 1979 skb->ip_summed = CHECKSUM_PARTIAL; 1980 1981 if (skb->ip_summed != CHECKSUM_PARTIAL) 1982 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 1983 1984 /* Update sequence range on original skb. */ 1985 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 1986 1987 /* Merge over control information. This moves PSH/FIN etc. over */ 1988 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(next_skb)->flags; 1989 1990 /* All done, get rid of second SKB and account for it so 1991 * packet counting does not break. 1992 */ 1993 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 1994 1995 /* changed transmit queue under us so clear hints */ 1996 tcp_clear_retrans_hints_partial(tp); 1997 if (next_skb == tp->retransmit_skb_hint) 1998 tp->retransmit_skb_hint = skb; 1999 2000 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 2001 2002 sk_wmem_free_skb(sk, next_skb); 2003 } 2004 2005 /* Check if coalescing SKBs is legal. */ 2006 static int tcp_can_collapse(struct sock *sk, struct sk_buff *skb) 2007 { 2008 if (tcp_skb_pcount(skb) > 1) 2009 return 0; 2010 /* TODO: SACK collapsing could be used to remove this condition */ 2011 if (skb_shinfo(skb)->nr_frags != 0) 2012 return 0; 2013 if (skb_cloned(skb)) 2014 return 0; 2015 if (skb == tcp_send_head(sk)) 2016 return 0; 2017 /* Some heurestics for collapsing over SACK'd could be invented */ 2018 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2019 return 0; 2020 2021 return 1; 2022 } 2023 2024 /* Collapse packets in the retransmit queue to make to create 2025 * less packets on the wire. This is only done on retransmission. 2026 */ 2027 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 2028 int space) 2029 { 2030 struct tcp_sock *tp = tcp_sk(sk); 2031 struct sk_buff *skb = to, *tmp; 2032 int first = 1; 2033 2034 if (!sysctl_tcp_retrans_collapse) 2035 return; 2036 if (TCP_SKB_CB(skb)->flags & TCPHDR_SYN) 2037 return; 2038 2039 tcp_for_write_queue_from_safe(skb, tmp, sk) { 2040 if (!tcp_can_collapse(sk, skb)) 2041 break; 2042 2043 space -= skb->len; 2044 2045 if (first) { 2046 first = 0; 2047 continue; 2048 } 2049 2050 if (space < 0) 2051 break; 2052 /* Punt if not enough space exists in the first SKB for 2053 * the data in the second 2054 */ 2055 if (skb->len > skb_tailroom(to)) 2056 break; 2057 2058 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 2059 break; 2060 2061 tcp_collapse_retrans(sk, to); 2062 } 2063 } 2064 2065 /* This retransmits one SKB. Policy decisions and retransmit queue 2066 * state updates are done by the caller. Returns non-zero if an 2067 * error occurred which prevented the send. 2068 */ 2069 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 2070 { 2071 struct tcp_sock *tp = tcp_sk(sk); 2072 struct inet_connection_sock *icsk = inet_csk(sk); 2073 unsigned int cur_mss; 2074 int err; 2075 2076 /* Inconslusive MTU probe */ 2077 if (icsk->icsk_mtup.probe_size) { 2078 icsk->icsk_mtup.probe_size = 0; 2079 } 2080 2081 /* Do not sent more than we queued. 1/4 is reserved for possible 2082 * copying overhead: fragmentation, tunneling, mangling etc. 2083 */ 2084 if (atomic_read(&sk->sk_wmem_alloc) > 2085 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 2086 return -EAGAIN; 2087 2088 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 2089 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 2090 BUG(); 2091 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2092 return -ENOMEM; 2093 } 2094 2095 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 2096 return -EHOSTUNREACH; /* Routing failure or similar. */ 2097 2098 cur_mss = tcp_current_mss(sk); 2099 2100 /* If receiver has shrunk his window, and skb is out of 2101 * new window, do not retransmit it. The exception is the 2102 * case, when window is shrunk to zero. In this case 2103 * our retransmit serves as a zero window probe. 2104 */ 2105 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) && 2106 TCP_SKB_CB(skb)->seq != tp->snd_una) 2107 return -EAGAIN; 2108 2109 if (skb->len > cur_mss) { 2110 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 2111 return -ENOMEM; /* We'll try again later. */ 2112 } else { 2113 int oldpcount = tcp_skb_pcount(skb); 2114 2115 if (unlikely(oldpcount > 1)) { 2116 tcp_init_tso_segs(sk, skb, cur_mss); 2117 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb)); 2118 } 2119 } 2120 2121 tcp_retrans_try_collapse(sk, skb, cur_mss); 2122 2123 /* Some Solaris stacks overoptimize and ignore the FIN on a 2124 * retransmit when old data is attached. So strip it off 2125 * since it is cheap to do so and saves bytes on the network. 2126 */ 2127 if (skb->len > 0 && 2128 (TCP_SKB_CB(skb)->flags & TCPHDR_FIN) && 2129 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 2130 if (!pskb_trim(skb, 0)) { 2131 /* Reuse, even though it does some unnecessary work */ 2132 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1, 2133 TCP_SKB_CB(skb)->flags); 2134 skb->ip_summed = CHECKSUM_NONE; 2135 } 2136 } 2137 2138 /* Make a copy, if the first transmission SKB clone we made 2139 * is still in somebody's hands, else make a clone. 2140 */ 2141 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2142 2143 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2144 2145 if (err == 0) { 2146 /* Update global TCP statistics. */ 2147 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 2148 2149 tp->total_retrans++; 2150 2151 #if FASTRETRANS_DEBUG > 0 2152 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2153 if (net_ratelimit()) 2154 printk(KERN_DEBUG "retrans_out leaked.\n"); 2155 } 2156 #endif 2157 if (!tp->retrans_out) 2158 tp->lost_retrans_low = tp->snd_nxt; 2159 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 2160 tp->retrans_out += tcp_skb_pcount(skb); 2161 2162 /* Save stamp of the first retransmit. */ 2163 if (!tp->retrans_stamp) 2164 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 2165 2166 tp->undo_retrans += tcp_skb_pcount(skb); 2167 2168 /* snd_nxt is stored to detect loss of retransmitted segment, 2169 * see tcp_input.c tcp_sacktag_write_queue(). 2170 */ 2171 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 2172 } 2173 return err; 2174 } 2175 2176 /* Check if we forward retransmits are possible in the current 2177 * window/congestion state. 2178 */ 2179 static int tcp_can_forward_retransmit(struct sock *sk) 2180 { 2181 const struct inet_connection_sock *icsk = inet_csk(sk); 2182 struct tcp_sock *tp = tcp_sk(sk); 2183 2184 /* Forward retransmissions are possible only during Recovery. */ 2185 if (icsk->icsk_ca_state != TCP_CA_Recovery) 2186 return 0; 2187 2188 /* No forward retransmissions in Reno are possible. */ 2189 if (tcp_is_reno(tp)) 2190 return 0; 2191 2192 /* Yeah, we have to make difficult choice between forward transmission 2193 * and retransmission... Both ways have their merits... 2194 * 2195 * For now we do not retransmit anything, while we have some new 2196 * segments to send. In the other cases, follow rule 3 for 2197 * NextSeg() specified in RFC3517. 2198 */ 2199 2200 if (tcp_may_send_now(sk)) 2201 return 0; 2202 2203 return 1; 2204 } 2205 2206 /* This gets called after a retransmit timeout, and the initially 2207 * retransmitted data is acknowledged. It tries to continue 2208 * resending the rest of the retransmit queue, until either 2209 * we've sent it all or the congestion window limit is reached. 2210 * If doing SACK, the first ACK which comes back for a timeout 2211 * based retransmit packet might feed us FACK information again. 2212 * If so, we use it to avoid unnecessarily retransmissions. 2213 */ 2214 void tcp_xmit_retransmit_queue(struct sock *sk) 2215 { 2216 const struct inet_connection_sock *icsk = inet_csk(sk); 2217 struct tcp_sock *tp = tcp_sk(sk); 2218 struct sk_buff *skb; 2219 struct sk_buff *hole = NULL; 2220 u32 last_lost; 2221 int mib_idx; 2222 int fwd_rexmitting = 0; 2223 2224 if (!tp->packets_out) 2225 return; 2226 2227 if (!tp->lost_out) 2228 tp->retransmit_high = tp->snd_una; 2229 2230 if (tp->retransmit_skb_hint) { 2231 skb = tp->retransmit_skb_hint; 2232 last_lost = TCP_SKB_CB(skb)->end_seq; 2233 if (after(last_lost, tp->retransmit_high)) 2234 last_lost = tp->retransmit_high; 2235 } else { 2236 skb = tcp_write_queue_head(sk); 2237 last_lost = tp->snd_una; 2238 } 2239 2240 tcp_for_write_queue_from(skb, sk) { 2241 __u8 sacked = TCP_SKB_CB(skb)->sacked; 2242 2243 if (skb == tcp_send_head(sk)) 2244 break; 2245 /* we could do better than to assign each time */ 2246 if (hole == NULL) 2247 tp->retransmit_skb_hint = skb; 2248 2249 /* Assume this retransmit will generate 2250 * only one packet for congestion window 2251 * calculation purposes. This works because 2252 * tcp_retransmit_skb() will chop up the 2253 * packet to be MSS sized and all the 2254 * packet counting works out. 2255 */ 2256 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 2257 return; 2258 2259 if (fwd_rexmitting) { 2260 begin_fwd: 2261 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 2262 break; 2263 mib_idx = LINUX_MIB_TCPFORWARDRETRANS; 2264 2265 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) { 2266 tp->retransmit_high = last_lost; 2267 if (!tcp_can_forward_retransmit(sk)) 2268 break; 2269 /* Backtrack if necessary to non-L'ed skb */ 2270 if (hole != NULL) { 2271 skb = hole; 2272 hole = NULL; 2273 } 2274 fwd_rexmitting = 1; 2275 goto begin_fwd; 2276 2277 } else if (!(sacked & TCPCB_LOST)) { 2278 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 2279 hole = skb; 2280 continue; 2281 2282 } else { 2283 last_lost = TCP_SKB_CB(skb)->end_seq; 2284 if (icsk->icsk_ca_state != TCP_CA_Loss) 2285 mib_idx = LINUX_MIB_TCPFASTRETRANS; 2286 else 2287 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 2288 } 2289 2290 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 2291 continue; 2292 2293 if (tcp_retransmit_skb(sk, skb)) 2294 return; 2295 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2296 2297 if (skb == tcp_write_queue_head(sk)) 2298 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2299 inet_csk(sk)->icsk_rto, 2300 TCP_RTO_MAX); 2301 } 2302 } 2303 2304 /* Send a fin. The caller locks the socket for us. This cannot be 2305 * allowed to fail queueing a FIN frame under any circumstances. 2306 */ 2307 void tcp_send_fin(struct sock *sk) 2308 { 2309 struct tcp_sock *tp = tcp_sk(sk); 2310 struct sk_buff *skb = tcp_write_queue_tail(sk); 2311 int mss_now; 2312 2313 /* Optimization, tack on the FIN if we have a queue of 2314 * unsent frames. But be careful about outgoing SACKS 2315 * and IP options. 2316 */ 2317 mss_now = tcp_current_mss(sk); 2318 2319 if (tcp_send_head(sk) != NULL) { 2320 TCP_SKB_CB(skb)->flags |= TCPHDR_FIN; 2321 TCP_SKB_CB(skb)->end_seq++; 2322 tp->write_seq++; 2323 } else { 2324 /* Socket is locked, keep trying until memory is available. */ 2325 for (;;) { 2326 skb = alloc_skb_fclone(MAX_TCP_HEADER, 2327 sk->sk_allocation); 2328 if (skb) 2329 break; 2330 yield(); 2331 } 2332 2333 /* Reserve space for headers and prepare control bits. */ 2334 skb_reserve(skb, MAX_TCP_HEADER); 2335 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 2336 tcp_init_nondata_skb(skb, tp->write_seq, 2337 TCPHDR_ACK | TCPHDR_FIN); 2338 tcp_queue_skb(sk, skb); 2339 } 2340 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF); 2341 } 2342 2343 /* We get here when a process closes a file descriptor (either due to 2344 * an explicit close() or as a byproduct of exit()'ing) and there 2345 * was unread data in the receive queue. This behavior is recommended 2346 * by RFC 2525, section 2.17. -DaveM 2347 */ 2348 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 2349 { 2350 struct sk_buff *skb; 2351 2352 /* NOTE: No TCP options attached and we never retransmit this. */ 2353 skb = alloc_skb(MAX_TCP_HEADER, priority); 2354 if (!skb) { 2355 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2356 return; 2357 } 2358 2359 /* Reserve space for headers and prepare control bits. */ 2360 skb_reserve(skb, MAX_TCP_HEADER); 2361 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 2362 TCPHDR_ACK | TCPHDR_RST); 2363 /* Send it off. */ 2364 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2365 if (tcp_transmit_skb(sk, skb, 0, priority)) 2366 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 2367 2368 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 2369 } 2370 2371 /* Send a crossed SYN-ACK during socket establishment. 2372 * WARNING: This routine must only be called when we have already sent 2373 * a SYN packet that crossed the incoming SYN that caused this routine 2374 * to get called. If this assumption fails then the initial rcv_wnd 2375 * and rcv_wscale values will not be correct. 2376 */ 2377 int tcp_send_synack(struct sock *sk) 2378 { 2379 struct sk_buff *skb; 2380 2381 skb = tcp_write_queue_head(sk); 2382 if (skb == NULL || !(TCP_SKB_CB(skb)->flags & TCPHDR_SYN)) { 2383 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); 2384 return -EFAULT; 2385 } 2386 if (!(TCP_SKB_CB(skb)->flags & TCPHDR_ACK)) { 2387 if (skb_cloned(skb)) { 2388 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 2389 if (nskb == NULL) 2390 return -ENOMEM; 2391 tcp_unlink_write_queue(skb, sk); 2392 skb_header_release(nskb); 2393 __tcp_add_write_queue_head(sk, nskb); 2394 sk_wmem_free_skb(sk, skb); 2395 sk->sk_wmem_queued += nskb->truesize; 2396 sk_mem_charge(sk, nskb->truesize); 2397 skb = nskb; 2398 } 2399 2400 TCP_SKB_CB(skb)->flags |= TCPHDR_ACK; 2401 TCP_ECN_send_synack(tcp_sk(sk), skb); 2402 } 2403 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2404 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2405 } 2406 2407 /* Prepare a SYN-ACK. */ 2408 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst, 2409 struct request_sock *req, 2410 struct request_values *rvp) 2411 { 2412 struct tcp_out_options opts; 2413 struct tcp_extend_values *xvp = tcp_xv(rvp); 2414 struct inet_request_sock *ireq = inet_rsk(req); 2415 struct tcp_sock *tp = tcp_sk(sk); 2416 const struct tcp_cookie_values *cvp = tp->cookie_values; 2417 struct tcphdr *th; 2418 struct sk_buff *skb; 2419 struct tcp_md5sig_key *md5; 2420 int tcp_header_size; 2421 int mss; 2422 int s_data_desired = 0; 2423 2424 if (cvp != NULL && cvp->s_data_constant && cvp->s_data_desired) 2425 s_data_desired = cvp->s_data_desired; 2426 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15 + s_data_desired, 1, GFP_ATOMIC); 2427 if (skb == NULL) 2428 return NULL; 2429 2430 /* Reserve space for headers. */ 2431 skb_reserve(skb, MAX_TCP_HEADER); 2432 2433 skb_dst_set(skb, dst_clone(dst)); 2434 2435 mss = dst_metric_advmss(dst); 2436 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss) 2437 mss = tp->rx_opt.user_mss; 2438 2439 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 2440 __u8 rcv_wscale; 2441 /* Set this up on the first call only */ 2442 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 2443 2444 /* limit the window selection if the user enforce a smaller rx buffer */ 2445 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2446 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0)) 2447 req->window_clamp = tcp_full_space(sk); 2448 2449 /* tcp_full_space because it is guaranteed to be the first packet */ 2450 tcp_select_initial_window(tcp_full_space(sk), 2451 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 2452 &req->rcv_wnd, 2453 &req->window_clamp, 2454 ireq->wscale_ok, 2455 &rcv_wscale, 2456 dst_metric(dst, RTAX_INITRWND)); 2457 ireq->rcv_wscale = rcv_wscale; 2458 } 2459 2460 memset(&opts, 0, sizeof(opts)); 2461 #ifdef CONFIG_SYN_COOKIES 2462 if (unlikely(req->cookie_ts)) 2463 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req); 2464 else 2465 #endif 2466 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2467 tcp_header_size = tcp_synack_options(sk, req, mss, 2468 skb, &opts, &md5, xvp) 2469 + sizeof(*th); 2470 2471 skb_push(skb, tcp_header_size); 2472 skb_reset_transport_header(skb); 2473 2474 th = tcp_hdr(skb); 2475 memset(th, 0, sizeof(struct tcphdr)); 2476 th->syn = 1; 2477 th->ack = 1; 2478 TCP_ECN_make_synack(req, th); 2479 th->source = ireq->loc_port; 2480 th->dest = ireq->rmt_port; 2481 /* Setting of flags are superfluous here for callers (and ECE is 2482 * not even correctly set) 2483 */ 2484 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn, 2485 TCPHDR_SYN | TCPHDR_ACK); 2486 2487 if (OPTION_COOKIE_EXTENSION & opts.options) { 2488 if (s_data_desired) { 2489 u8 *buf = skb_put(skb, s_data_desired); 2490 2491 /* copy data directly from the listening socket. */ 2492 memcpy(buf, cvp->s_data_payload, s_data_desired); 2493 TCP_SKB_CB(skb)->end_seq += s_data_desired; 2494 } 2495 2496 if (opts.hash_size > 0) { 2497 __u32 workspace[SHA_WORKSPACE_WORDS]; 2498 u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS]; 2499 u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1]; 2500 2501 /* Secret recipe depends on the Timestamp, (future) 2502 * Sequence and Acknowledgment Numbers, Initiator 2503 * Cookie, and others handled by IP variant caller. 2504 */ 2505 *tail-- ^= opts.tsval; 2506 *tail-- ^= tcp_rsk(req)->rcv_isn + 1; 2507 *tail-- ^= TCP_SKB_CB(skb)->seq + 1; 2508 2509 /* recommended */ 2510 *tail-- ^= (((__force u32)th->dest << 16) | (__force u32)th->source); 2511 *tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */ 2512 2513 sha_transform((__u32 *)&xvp->cookie_bakery[0], 2514 (char *)mess, 2515 &workspace[0]); 2516 opts.hash_location = 2517 (__u8 *)&xvp->cookie_bakery[0]; 2518 } 2519 } 2520 2521 th->seq = htonl(TCP_SKB_CB(skb)->seq); 2522 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); 2523 2524 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 2525 th->window = htons(min(req->rcv_wnd, 65535U)); 2526 tcp_options_write((__be32 *)(th + 1), tp, &opts); 2527 th->doff = (tcp_header_size >> 2); 2528 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb)); 2529 2530 #ifdef CONFIG_TCP_MD5SIG 2531 /* Okay, we have all we need - do the md5 hash if needed */ 2532 if (md5) { 2533 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 2534 md5, NULL, req, skb); 2535 } 2536 #endif 2537 2538 return skb; 2539 } 2540 EXPORT_SYMBOL(tcp_make_synack); 2541 2542 /* Do all connect socket setups that can be done AF independent. */ 2543 static void tcp_connect_init(struct sock *sk) 2544 { 2545 struct dst_entry *dst = __sk_dst_get(sk); 2546 struct tcp_sock *tp = tcp_sk(sk); 2547 __u8 rcv_wscale; 2548 2549 /* We'll fix this up when we get a response from the other end. 2550 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 2551 */ 2552 tp->tcp_header_len = sizeof(struct tcphdr) + 2553 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 2554 2555 #ifdef CONFIG_TCP_MD5SIG 2556 if (tp->af_specific->md5_lookup(sk, sk) != NULL) 2557 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; 2558 #endif 2559 2560 /* If user gave his TCP_MAXSEG, record it to clamp */ 2561 if (tp->rx_opt.user_mss) 2562 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 2563 tp->max_window = 0; 2564 tcp_mtup_init(sk); 2565 tcp_sync_mss(sk, dst_mtu(dst)); 2566 2567 if (!tp->window_clamp) 2568 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 2569 tp->advmss = dst_metric_advmss(dst); 2570 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss) 2571 tp->advmss = tp->rx_opt.user_mss; 2572 2573 tcp_initialize_rcv_mss(sk); 2574 2575 /* limit the window selection if the user enforce a smaller rx buffer */ 2576 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 2577 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 2578 tp->window_clamp = tcp_full_space(sk); 2579 2580 tcp_select_initial_window(tcp_full_space(sk), 2581 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 2582 &tp->rcv_wnd, 2583 &tp->window_clamp, 2584 sysctl_tcp_window_scaling, 2585 &rcv_wscale, 2586 dst_metric(dst, RTAX_INITRWND)); 2587 2588 tp->rx_opt.rcv_wscale = rcv_wscale; 2589 tp->rcv_ssthresh = tp->rcv_wnd; 2590 2591 sk->sk_err = 0; 2592 sock_reset_flag(sk, SOCK_DONE); 2593 tp->snd_wnd = 0; 2594 tcp_init_wl(tp, 0); 2595 tp->snd_una = tp->write_seq; 2596 tp->snd_sml = tp->write_seq; 2597 tp->snd_up = tp->write_seq; 2598 tp->rcv_nxt = 0; 2599 tp->rcv_wup = 0; 2600 tp->copied_seq = 0; 2601 2602 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 2603 inet_csk(sk)->icsk_retransmits = 0; 2604 tcp_clear_retrans(tp); 2605 } 2606 2607 /* Build a SYN and send it off. */ 2608 int tcp_connect(struct sock *sk) 2609 { 2610 struct tcp_sock *tp = tcp_sk(sk); 2611 struct sk_buff *buff; 2612 int err; 2613 2614 tcp_connect_init(sk); 2615 2616 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 2617 if (unlikely(buff == NULL)) 2618 return -ENOBUFS; 2619 2620 /* Reserve space for headers. */ 2621 skb_reserve(buff, MAX_TCP_HEADER); 2622 2623 tp->snd_nxt = tp->write_seq; 2624 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 2625 TCP_ECN_send_syn(sk, buff); 2626 2627 /* Send it off. */ 2628 TCP_SKB_CB(buff)->when = tcp_time_stamp; 2629 tp->retrans_stamp = TCP_SKB_CB(buff)->when; 2630 skb_header_release(buff); 2631 __tcp_add_write_queue_tail(sk, buff); 2632 sk->sk_wmem_queued += buff->truesize; 2633 sk_mem_charge(sk, buff->truesize); 2634 tp->packets_out += tcp_skb_pcount(buff); 2635 err = tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 2636 if (err == -ECONNREFUSED) 2637 return err; 2638 2639 /* We change tp->snd_nxt after the tcp_transmit_skb() call 2640 * in order to make this packet get counted in tcpOutSegs. 2641 */ 2642 tp->snd_nxt = tp->write_seq; 2643 tp->pushed_seq = tp->write_seq; 2644 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 2645 2646 /* Timer for repeating the SYN until an answer. */ 2647 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2648 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2649 return 0; 2650 } 2651 EXPORT_SYMBOL(tcp_connect); 2652 2653 /* Send out a delayed ack, the caller does the policy checking 2654 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 2655 * for details. 2656 */ 2657 void tcp_send_delayed_ack(struct sock *sk) 2658 { 2659 struct inet_connection_sock *icsk = inet_csk(sk); 2660 int ato = icsk->icsk_ack.ato; 2661 unsigned long timeout; 2662 2663 if (ato > TCP_DELACK_MIN) { 2664 const struct tcp_sock *tp = tcp_sk(sk); 2665 int max_ato = HZ / 2; 2666 2667 if (icsk->icsk_ack.pingpong || 2668 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 2669 max_ato = TCP_DELACK_MAX; 2670 2671 /* Slow path, intersegment interval is "high". */ 2672 2673 /* If some rtt estimate is known, use it to bound delayed ack. 2674 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 2675 * directly. 2676 */ 2677 if (tp->srtt) { 2678 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN); 2679 2680 if (rtt < max_ato) 2681 max_ato = rtt; 2682 } 2683 2684 ato = min(ato, max_ato); 2685 } 2686 2687 /* Stay within the limit we were given */ 2688 timeout = jiffies + ato; 2689 2690 /* Use new timeout only if there wasn't a older one earlier. */ 2691 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 2692 /* If delack timer was blocked or is about to expire, 2693 * send ACK now. 2694 */ 2695 if (icsk->icsk_ack.blocked || 2696 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 2697 tcp_send_ack(sk); 2698 return; 2699 } 2700 2701 if (!time_before(timeout, icsk->icsk_ack.timeout)) 2702 timeout = icsk->icsk_ack.timeout; 2703 } 2704 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 2705 icsk->icsk_ack.timeout = timeout; 2706 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 2707 } 2708 2709 /* This routine sends an ack and also updates the window. */ 2710 void tcp_send_ack(struct sock *sk) 2711 { 2712 struct sk_buff *buff; 2713 2714 /* If we have been reset, we may not send again. */ 2715 if (sk->sk_state == TCP_CLOSE) 2716 return; 2717 2718 /* We are not putting this on the write queue, so 2719 * tcp_transmit_skb() will set the ownership to this 2720 * sock. 2721 */ 2722 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2723 if (buff == NULL) { 2724 inet_csk_schedule_ack(sk); 2725 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 2726 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 2727 TCP_DELACK_MAX, TCP_RTO_MAX); 2728 return; 2729 } 2730 2731 /* Reserve space for headers and prepare control bits. */ 2732 skb_reserve(buff, MAX_TCP_HEADER); 2733 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 2734 2735 /* Send it off, this clears delayed acks for us. */ 2736 TCP_SKB_CB(buff)->when = tcp_time_stamp; 2737 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC); 2738 } 2739 2740 /* This routine sends a packet with an out of date sequence 2741 * number. It assumes the other end will try to ack it. 2742 * 2743 * Question: what should we make while urgent mode? 2744 * 4.4BSD forces sending single byte of data. We cannot send 2745 * out of window data, because we have SND.NXT==SND.MAX... 2746 * 2747 * Current solution: to send TWO zero-length segments in urgent mode: 2748 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 2749 * out-of-date with SND.UNA-1 to probe window. 2750 */ 2751 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 2752 { 2753 struct tcp_sock *tp = tcp_sk(sk); 2754 struct sk_buff *skb; 2755 2756 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 2757 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 2758 if (skb == NULL) 2759 return -1; 2760 2761 /* Reserve space for headers and set control bits. */ 2762 skb_reserve(skb, MAX_TCP_HEADER); 2763 /* Use a previous sequence. This should cause the other 2764 * end to send an ack. Don't queue or clone SKB, just 2765 * send it. 2766 */ 2767 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 2768 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2769 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); 2770 } 2771 2772 /* Initiate keepalive or window probe from timer. */ 2773 int tcp_write_wakeup(struct sock *sk) 2774 { 2775 struct tcp_sock *tp = tcp_sk(sk); 2776 struct sk_buff *skb; 2777 2778 if (sk->sk_state == TCP_CLOSE) 2779 return -1; 2780 2781 if ((skb = tcp_send_head(sk)) != NULL && 2782 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 2783 int err; 2784 unsigned int mss = tcp_current_mss(sk); 2785 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2786 2787 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 2788 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 2789 2790 /* We are probing the opening of a window 2791 * but the window size is != 0 2792 * must have been a result SWS avoidance ( sender ) 2793 */ 2794 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 2795 skb->len > mss) { 2796 seg_size = min(seg_size, mss); 2797 TCP_SKB_CB(skb)->flags |= TCPHDR_PSH; 2798 if (tcp_fragment(sk, skb, seg_size, mss)) 2799 return -1; 2800 } else if (!tcp_skb_pcount(skb)) 2801 tcp_set_skb_tso_segs(sk, skb, mss); 2802 2803 TCP_SKB_CB(skb)->flags |= TCPHDR_PSH; 2804 TCP_SKB_CB(skb)->when = tcp_time_stamp; 2805 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 2806 if (!err) 2807 tcp_event_new_data_sent(sk, skb); 2808 return err; 2809 } else { 2810 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 2811 tcp_xmit_probe_skb(sk, 1); 2812 return tcp_xmit_probe_skb(sk, 0); 2813 } 2814 } 2815 2816 /* A window probe timeout has occurred. If window is not closed send 2817 * a partial packet else a zero probe. 2818 */ 2819 void tcp_send_probe0(struct sock *sk) 2820 { 2821 struct inet_connection_sock *icsk = inet_csk(sk); 2822 struct tcp_sock *tp = tcp_sk(sk); 2823 int err; 2824 2825 err = tcp_write_wakeup(sk); 2826 2827 if (tp->packets_out || !tcp_send_head(sk)) { 2828 /* Cancel probe timer, if it is not required. */ 2829 icsk->icsk_probes_out = 0; 2830 icsk->icsk_backoff = 0; 2831 return; 2832 } 2833 2834 if (err <= 0) { 2835 if (icsk->icsk_backoff < sysctl_tcp_retries2) 2836 icsk->icsk_backoff++; 2837 icsk->icsk_probes_out++; 2838 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2839 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2840 TCP_RTO_MAX); 2841 } else { 2842 /* If packet was not sent due to local congestion, 2843 * do not backoff and do not remember icsk_probes_out. 2844 * Let local senders to fight for local resources. 2845 * 2846 * Use accumulated backoff yet. 2847 */ 2848 if (!icsk->icsk_probes_out) 2849 icsk->icsk_probes_out = 1; 2850 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2851 min(icsk->icsk_rto << icsk->icsk_backoff, 2852 TCP_RESOURCE_PROBE_INTERVAL), 2853 TCP_RTO_MAX); 2854 } 2855 } 2856