xref: /linux/net/ipv4/tcp_output.c (revision 0773e3a851c8afd46cefb0cbf8d0977d454d899e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tcp_snd_cwnd(tp);
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, enter pingpong mode.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_enter_pingpong_mode(sk);
177 }
178 
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
181 				      u32 rcv_nxt)
182 {
183 	struct tcp_sock *tp = tcp_sk(sk);
184 
185 	if (unlikely(tp->compressed_ack)) {
186 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
187 			      tp->compressed_ack);
188 		tp->compressed_ack = 0;
189 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
190 			__sock_put(sk);
191 	}
192 
193 	if (unlikely(rcv_nxt != tp->rcv_nxt))
194 		return;  /* Special ACK sent by DCTCP to reflect ECN */
195 	tcp_dec_quickack_mode(sk, pkts);
196 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 
213 	/* If no clamp set the clamp to the max possible scaled window */
214 	if (*window_clamp == 0)
215 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
216 	space = min(*window_clamp, space);
217 
218 	/* Quantize space offering to a multiple of mss if possible. */
219 	if (space > mss)
220 		space = rounddown(space, mss);
221 
222 	/* NOTE: offering an initial window larger than 32767
223 	 * will break some buggy TCP stacks. If the admin tells us
224 	 * it is likely we could be speaking with such a buggy stack
225 	 * we will truncate our initial window offering to 32K-1
226 	 * unless the remote has sent us a window scaling option,
227 	 * which we interpret as a sign the remote TCP is not
228 	 * misinterpreting the window field as a signed quantity.
229 	 */
230 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
231 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 	else
233 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
234 
235 	if (init_rcv_wnd)
236 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
237 
238 	*rcv_wscale = 0;
239 	if (wscale_ok) {
240 		/* Set window scaling on max possible window */
241 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
242 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
243 		space = min_t(u32, space, *window_clamp);
244 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
245 				      0, TCP_MAX_WSCALE);
246 	}
247 	/* Set the clamp no higher than max representable value */
248 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
249 }
250 EXPORT_SYMBOL(tcp_select_initial_window);
251 
252 /* Chose a new window to advertise, update state in tcp_sock for the
253  * socket, and return result with RFC1323 scaling applied.  The return
254  * value can be stuffed directly into th->window for an outgoing
255  * frame.
256  */
257 static u16 tcp_select_window(struct sock *sk)
258 {
259 	struct tcp_sock *tp = tcp_sk(sk);
260 	u32 old_win = tp->rcv_wnd;
261 	u32 cur_win = tcp_receive_window(tp);
262 	u32 new_win = __tcp_select_window(sk);
263 
264 	/* Never shrink the offered window */
265 	if (new_win < cur_win) {
266 		/* Danger Will Robinson!
267 		 * Don't update rcv_wup/rcv_wnd here or else
268 		 * we will not be able to advertise a zero
269 		 * window in time.  --DaveM
270 		 *
271 		 * Relax Will Robinson.
272 		 */
273 		if (new_win == 0)
274 			NET_INC_STATS(sock_net(sk),
275 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
276 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
277 	}
278 	tp->rcv_wnd = new_win;
279 	tp->rcv_wup = tp->rcv_nxt;
280 
281 	/* Make sure we do not exceed the maximum possible
282 	 * scaled window.
283 	 */
284 	if (!tp->rx_opt.rcv_wscale &&
285 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
286 		new_win = min(new_win, MAX_TCP_WINDOW);
287 	else
288 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
289 
290 	/* RFC1323 scaling applied */
291 	new_win >>= tp->rx_opt.rcv_wscale;
292 
293 	/* If we advertise zero window, disable fast path. */
294 	if (new_win == 0) {
295 		tp->pred_flags = 0;
296 		if (old_win)
297 			NET_INC_STATS(sock_net(sk),
298 				      LINUX_MIB_TCPTOZEROWINDOWADV);
299 	} else if (old_win == 0) {
300 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
301 	}
302 
303 	return new_win;
304 }
305 
306 /* Packet ECN state for a SYN-ACK */
307 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
308 {
309 	const struct tcp_sock *tp = tcp_sk(sk);
310 
311 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
312 	if (!(tp->ecn_flags & TCP_ECN_OK))
313 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
314 	else if (tcp_ca_needs_ecn(sk) ||
315 		 tcp_bpf_ca_needs_ecn(sk))
316 		INET_ECN_xmit(sk);
317 }
318 
319 /* Packet ECN state for a SYN.  */
320 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
321 {
322 	struct tcp_sock *tp = tcp_sk(sk);
323 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
324 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
325 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
326 
327 	if (!use_ecn) {
328 		const struct dst_entry *dst = __sk_dst_get(sk);
329 
330 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
331 			use_ecn = true;
332 	}
333 
334 	tp->ecn_flags = 0;
335 
336 	if (use_ecn) {
337 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
338 		tp->ecn_flags = TCP_ECN_OK;
339 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
340 			INET_ECN_xmit(sk);
341 	}
342 }
343 
344 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
345 {
346 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
347 		/* tp->ecn_flags are cleared at a later point in time when
348 		 * SYN ACK is ultimatively being received.
349 		 */
350 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
351 }
352 
353 static void
354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
355 {
356 	if (inet_rsk(req)->ecn_ok)
357 		th->ece = 1;
358 }
359 
360 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
361  * be sent.
362  */
363 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
364 			 struct tcphdr *th, int tcp_header_len)
365 {
366 	struct tcp_sock *tp = tcp_sk(sk);
367 
368 	if (tp->ecn_flags & TCP_ECN_OK) {
369 		/* Not-retransmitted data segment: set ECT and inject CWR. */
370 		if (skb->len != tcp_header_len &&
371 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
372 			INET_ECN_xmit(sk);
373 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
374 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
375 				th->cwr = 1;
376 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
377 			}
378 		} else if (!tcp_ca_needs_ecn(sk)) {
379 			/* ACK or retransmitted segment: clear ECT|CE */
380 			INET_ECN_dontxmit(sk);
381 		}
382 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
383 			th->ece = 1;
384 	}
385 }
386 
387 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
388  * auto increment end seqno.
389  */
390 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
391 {
392 	skb->ip_summed = CHECKSUM_PARTIAL;
393 
394 	TCP_SKB_CB(skb)->tcp_flags = flags;
395 
396 	tcp_skb_pcount_set(skb, 1);
397 
398 	TCP_SKB_CB(skb)->seq = seq;
399 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
400 		seq++;
401 	TCP_SKB_CB(skb)->end_seq = seq;
402 }
403 
404 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
405 {
406 	return tp->snd_una != tp->snd_up;
407 }
408 
409 #define OPTION_SACK_ADVERTISE	BIT(0)
410 #define OPTION_TS		BIT(1)
411 #define OPTION_MD5		BIT(2)
412 #define OPTION_WSCALE		BIT(3)
413 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
414 #define OPTION_SMC		BIT(9)
415 #define OPTION_MPTCP		BIT(10)
416 
417 static void smc_options_write(__be32 *ptr, u16 *options)
418 {
419 #if IS_ENABLED(CONFIG_SMC)
420 	if (static_branch_unlikely(&tcp_have_smc)) {
421 		if (unlikely(OPTION_SMC & *options)) {
422 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
423 				       (TCPOPT_NOP  << 16) |
424 				       (TCPOPT_EXP <<  8) |
425 				       (TCPOLEN_EXP_SMC_BASE));
426 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
427 		}
428 	}
429 #endif
430 }
431 
432 struct tcp_out_options {
433 	u16 options;		/* bit field of OPTION_* */
434 	u16 mss;		/* 0 to disable */
435 	u8 ws;			/* window scale, 0 to disable */
436 	u8 num_sack_blocks;	/* number of SACK blocks to include */
437 	u8 hash_size;		/* bytes in hash_location */
438 	u8 bpf_opt_len;		/* length of BPF hdr option */
439 	__u8 *hash_location;	/* temporary pointer, overloaded */
440 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
441 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
442 	struct mptcp_out_options mptcp;
443 };
444 
445 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
446 				struct tcp_sock *tp,
447 				struct tcp_out_options *opts)
448 {
449 #if IS_ENABLED(CONFIG_MPTCP)
450 	if (unlikely(OPTION_MPTCP & opts->options))
451 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
452 #endif
453 }
454 
455 #ifdef CONFIG_CGROUP_BPF
456 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
457 					enum tcp_synack_type synack_type)
458 {
459 	if (unlikely(!skb))
460 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
461 
462 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
463 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
464 
465 	return 0;
466 }
467 
468 /* req, syn_skb and synack_type are used when writing synack */
469 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
470 				  struct request_sock *req,
471 				  struct sk_buff *syn_skb,
472 				  enum tcp_synack_type synack_type,
473 				  struct tcp_out_options *opts,
474 				  unsigned int *remaining)
475 {
476 	struct bpf_sock_ops_kern sock_ops;
477 	int err;
478 
479 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
480 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
481 	    !*remaining)
482 		return;
483 
484 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
485 
486 	/* init sock_ops */
487 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
488 
489 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
490 
491 	if (req) {
492 		/* The listen "sk" cannot be passed here because
493 		 * it is not locked.  It would not make too much
494 		 * sense to do bpf_setsockopt(listen_sk) based
495 		 * on individual connection request also.
496 		 *
497 		 * Thus, "req" is passed here and the cgroup-bpf-progs
498 		 * of the listen "sk" will be run.
499 		 *
500 		 * "req" is also used here for fastopen even the "sk" here is
501 		 * a fullsock "child" sk.  It is to keep the behavior
502 		 * consistent between fastopen and non-fastopen on
503 		 * the bpf programming side.
504 		 */
505 		sock_ops.sk = (struct sock *)req;
506 		sock_ops.syn_skb = syn_skb;
507 	} else {
508 		sock_owned_by_me(sk);
509 
510 		sock_ops.is_fullsock = 1;
511 		sock_ops.sk = sk;
512 	}
513 
514 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
515 	sock_ops.remaining_opt_len = *remaining;
516 	/* tcp_current_mss() does not pass a skb */
517 	if (skb)
518 		bpf_skops_init_skb(&sock_ops, skb, 0);
519 
520 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
521 
522 	if (err || sock_ops.remaining_opt_len == *remaining)
523 		return;
524 
525 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
526 	/* round up to 4 bytes */
527 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
528 
529 	*remaining -= opts->bpf_opt_len;
530 }
531 
532 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
533 				    struct request_sock *req,
534 				    struct sk_buff *syn_skb,
535 				    enum tcp_synack_type synack_type,
536 				    struct tcp_out_options *opts)
537 {
538 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
539 	struct bpf_sock_ops_kern sock_ops;
540 	int err;
541 
542 	if (likely(!max_opt_len))
543 		return;
544 
545 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
546 
547 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
548 
549 	if (req) {
550 		sock_ops.sk = (struct sock *)req;
551 		sock_ops.syn_skb = syn_skb;
552 	} else {
553 		sock_owned_by_me(sk);
554 
555 		sock_ops.is_fullsock = 1;
556 		sock_ops.sk = sk;
557 	}
558 
559 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
560 	sock_ops.remaining_opt_len = max_opt_len;
561 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
562 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
563 
564 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
565 
566 	if (err)
567 		nr_written = 0;
568 	else
569 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
570 
571 	if (nr_written < max_opt_len)
572 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
573 		       max_opt_len - nr_written);
574 }
575 #else
576 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
577 				  struct request_sock *req,
578 				  struct sk_buff *syn_skb,
579 				  enum tcp_synack_type synack_type,
580 				  struct tcp_out_options *opts,
581 				  unsigned int *remaining)
582 {
583 }
584 
585 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
586 				    struct request_sock *req,
587 				    struct sk_buff *syn_skb,
588 				    enum tcp_synack_type synack_type,
589 				    struct tcp_out_options *opts)
590 {
591 }
592 #endif
593 
594 /* Write previously computed TCP options to the packet.
595  *
596  * Beware: Something in the Internet is very sensitive to the ordering of
597  * TCP options, we learned this through the hard way, so be careful here.
598  * Luckily we can at least blame others for their non-compliance but from
599  * inter-operability perspective it seems that we're somewhat stuck with
600  * the ordering which we have been using if we want to keep working with
601  * those broken things (not that it currently hurts anybody as there isn't
602  * particular reason why the ordering would need to be changed).
603  *
604  * At least SACK_PERM as the first option is known to lead to a disaster
605  * (but it may well be that other scenarios fail similarly).
606  */
607 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
608 			      struct tcp_out_options *opts)
609 {
610 	__be32 *ptr = (__be32 *)(th + 1);
611 	u16 options = opts->options;	/* mungable copy */
612 
613 	if (unlikely(OPTION_MD5 & options)) {
614 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
615 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
616 		/* overload cookie hash location */
617 		opts->hash_location = (__u8 *)ptr;
618 		ptr += 4;
619 	}
620 
621 	if (unlikely(opts->mss)) {
622 		*ptr++ = htonl((TCPOPT_MSS << 24) |
623 			       (TCPOLEN_MSS << 16) |
624 			       opts->mss);
625 	}
626 
627 	if (likely(OPTION_TS & options)) {
628 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
629 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
630 				       (TCPOLEN_SACK_PERM << 16) |
631 				       (TCPOPT_TIMESTAMP << 8) |
632 				       TCPOLEN_TIMESTAMP);
633 			options &= ~OPTION_SACK_ADVERTISE;
634 		} else {
635 			*ptr++ = htonl((TCPOPT_NOP << 24) |
636 				       (TCPOPT_NOP << 16) |
637 				       (TCPOPT_TIMESTAMP << 8) |
638 				       TCPOLEN_TIMESTAMP);
639 		}
640 		*ptr++ = htonl(opts->tsval);
641 		*ptr++ = htonl(opts->tsecr);
642 	}
643 
644 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
645 		*ptr++ = htonl((TCPOPT_NOP << 24) |
646 			       (TCPOPT_NOP << 16) |
647 			       (TCPOPT_SACK_PERM << 8) |
648 			       TCPOLEN_SACK_PERM);
649 	}
650 
651 	if (unlikely(OPTION_WSCALE & options)) {
652 		*ptr++ = htonl((TCPOPT_NOP << 24) |
653 			       (TCPOPT_WINDOW << 16) |
654 			       (TCPOLEN_WINDOW << 8) |
655 			       opts->ws);
656 	}
657 
658 	if (unlikely(opts->num_sack_blocks)) {
659 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
660 			tp->duplicate_sack : tp->selective_acks;
661 		int this_sack;
662 
663 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
664 			       (TCPOPT_NOP  << 16) |
665 			       (TCPOPT_SACK <<  8) |
666 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
667 						     TCPOLEN_SACK_PERBLOCK)));
668 
669 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
670 		     ++this_sack) {
671 			*ptr++ = htonl(sp[this_sack].start_seq);
672 			*ptr++ = htonl(sp[this_sack].end_seq);
673 		}
674 
675 		tp->rx_opt.dsack = 0;
676 	}
677 
678 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
679 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
680 		u8 *p = (u8 *)ptr;
681 		u32 len; /* Fast Open option length */
682 
683 		if (foc->exp) {
684 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
685 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
686 				     TCPOPT_FASTOPEN_MAGIC);
687 			p += TCPOLEN_EXP_FASTOPEN_BASE;
688 		} else {
689 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
690 			*p++ = TCPOPT_FASTOPEN;
691 			*p++ = len;
692 		}
693 
694 		memcpy(p, foc->val, foc->len);
695 		if ((len & 3) == 2) {
696 			p[foc->len] = TCPOPT_NOP;
697 			p[foc->len + 1] = TCPOPT_NOP;
698 		}
699 		ptr += (len + 3) >> 2;
700 	}
701 
702 	smc_options_write(ptr, &options);
703 
704 	mptcp_options_write(th, ptr, tp, opts);
705 }
706 
707 static void smc_set_option(const struct tcp_sock *tp,
708 			   struct tcp_out_options *opts,
709 			   unsigned int *remaining)
710 {
711 #if IS_ENABLED(CONFIG_SMC)
712 	if (static_branch_unlikely(&tcp_have_smc)) {
713 		if (tp->syn_smc) {
714 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
715 				opts->options |= OPTION_SMC;
716 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
717 			}
718 		}
719 	}
720 #endif
721 }
722 
723 static void smc_set_option_cond(const struct tcp_sock *tp,
724 				const struct inet_request_sock *ireq,
725 				struct tcp_out_options *opts,
726 				unsigned int *remaining)
727 {
728 #if IS_ENABLED(CONFIG_SMC)
729 	if (static_branch_unlikely(&tcp_have_smc)) {
730 		if (tp->syn_smc && ireq->smc_ok) {
731 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
732 				opts->options |= OPTION_SMC;
733 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
734 			}
735 		}
736 	}
737 #endif
738 }
739 
740 static void mptcp_set_option_cond(const struct request_sock *req,
741 				  struct tcp_out_options *opts,
742 				  unsigned int *remaining)
743 {
744 	if (rsk_is_mptcp(req)) {
745 		unsigned int size;
746 
747 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
748 			if (*remaining >= size) {
749 				opts->options |= OPTION_MPTCP;
750 				*remaining -= size;
751 			}
752 		}
753 	}
754 }
755 
756 /* Compute TCP options for SYN packets. This is not the final
757  * network wire format yet.
758  */
759 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
760 				struct tcp_out_options *opts,
761 				struct tcp_md5sig_key **md5)
762 {
763 	struct tcp_sock *tp = tcp_sk(sk);
764 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
765 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
766 
767 	*md5 = NULL;
768 #ifdef CONFIG_TCP_MD5SIG
769 	if (static_branch_unlikely(&tcp_md5_needed) &&
770 	    rcu_access_pointer(tp->md5sig_info)) {
771 		*md5 = tp->af_specific->md5_lookup(sk, sk);
772 		if (*md5) {
773 			opts->options |= OPTION_MD5;
774 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
775 		}
776 	}
777 #endif
778 
779 	/* We always get an MSS option.  The option bytes which will be seen in
780 	 * normal data packets should timestamps be used, must be in the MSS
781 	 * advertised.  But we subtract them from tp->mss_cache so that
782 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
783 	 * fact here if necessary.  If we don't do this correctly, as a
784 	 * receiver we won't recognize data packets as being full sized when we
785 	 * should, and thus we won't abide by the delayed ACK rules correctly.
786 	 * SACKs don't matter, we never delay an ACK when we have any of those
787 	 * going out.  */
788 	opts->mss = tcp_advertise_mss(sk);
789 	remaining -= TCPOLEN_MSS_ALIGNED;
790 
791 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
792 		opts->options |= OPTION_TS;
793 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
794 		opts->tsecr = tp->rx_opt.ts_recent;
795 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
796 	}
797 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
798 		opts->ws = tp->rx_opt.rcv_wscale;
799 		opts->options |= OPTION_WSCALE;
800 		remaining -= TCPOLEN_WSCALE_ALIGNED;
801 	}
802 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
803 		opts->options |= OPTION_SACK_ADVERTISE;
804 		if (unlikely(!(OPTION_TS & opts->options)))
805 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
806 	}
807 
808 	if (fastopen && fastopen->cookie.len >= 0) {
809 		u32 need = fastopen->cookie.len;
810 
811 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
812 					       TCPOLEN_FASTOPEN_BASE;
813 		need = (need + 3) & ~3U;  /* Align to 32 bits */
814 		if (remaining >= need) {
815 			opts->options |= OPTION_FAST_OPEN_COOKIE;
816 			opts->fastopen_cookie = &fastopen->cookie;
817 			remaining -= need;
818 			tp->syn_fastopen = 1;
819 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
820 		}
821 	}
822 
823 	smc_set_option(tp, opts, &remaining);
824 
825 	if (sk_is_mptcp(sk)) {
826 		unsigned int size;
827 
828 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
829 			opts->options |= OPTION_MPTCP;
830 			remaining -= size;
831 		}
832 	}
833 
834 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
835 
836 	return MAX_TCP_OPTION_SPACE - remaining;
837 }
838 
839 /* Set up TCP options for SYN-ACKs. */
840 static unsigned int tcp_synack_options(const struct sock *sk,
841 				       struct request_sock *req,
842 				       unsigned int mss, struct sk_buff *skb,
843 				       struct tcp_out_options *opts,
844 				       const struct tcp_md5sig_key *md5,
845 				       struct tcp_fastopen_cookie *foc,
846 				       enum tcp_synack_type synack_type,
847 				       struct sk_buff *syn_skb)
848 {
849 	struct inet_request_sock *ireq = inet_rsk(req);
850 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
851 
852 #ifdef CONFIG_TCP_MD5SIG
853 	if (md5) {
854 		opts->options |= OPTION_MD5;
855 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
856 
857 		/* We can't fit any SACK blocks in a packet with MD5 + TS
858 		 * options. There was discussion about disabling SACK
859 		 * rather than TS in order to fit in better with old,
860 		 * buggy kernels, but that was deemed to be unnecessary.
861 		 */
862 		if (synack_type != TCP_SYNACK_COOKIE)
863 			ireq->tstamp_ok &= !ireq->sack_ok;
864 	}
865 #endif
866 
867 	/* We always send an MSS option. */
868 	opts->mss = mss;
869 	remaining -= TCPOLEN_MSS_ALIGNED;
870 
871 	if (likely(ireq->wscale_ok)) {
872 		opts->ws = ireq->rcv_wscale;
873 		opts->options |= OPTION_WSCALE;
874 		remaining -= TCPOLEN_WSCALE_ALIGNED;
875 	}
876 	if (likely(ireq->tstamp_ok)) {
877 		opts->options |= OPTION_TS;
878 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
879 		opts->tsecr = req->ts_recent;
880 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
881 	}
882 	if (likely(ireq->sack_ok)) {
883 		opts->options |= OPTION_SACK_ADVERTISE;
884 		if (unlikely(!ireq->tstamp_ok))
885 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
886 	}
887 	if (foc != NULL && foc->len >= 0) {
888 		u32 need = foc->len;
889 
890 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
891 				   TCPOLEN_FASTOPEN_BASE;
892 		need = (need + 3) & ~3U;  /* Align to 32 bits */
893 		if (remaining >= need) {
894 			opts->options |= OPTION_FAST_OPEN_COOKIE;
895 			opts->fastopen_cookie = foc;
896 			remaining -= need;
897 		}
898 	}
899 
900 	mptcp_set_option_cond(req, opts, &remaining);
901 
902 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
903 
904 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
905 			      synack_type, opts, &remaining);
906 
907 	return MAX_TCP_OPTION_SPACE - remaining;
908 }
909 
910 /* Compute TCP options for ESTABLISHED sockets. This is not the
911  * final wire format yet.
912  */
913 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
914 					struct tcp_out_options *opts,
915 					struct tcp_md5sig_key **md5)
916 {
917 	struct tcp_sock *tp = tcp_sk(sk);
918 	unsigned int size = 0;
919 	unsigned int eff_sacks;
920 
921 	opts->options = 0;
922 
923 	*md5 = NULL;
924 #ifdef CONFIG_TCP_MD5SIG
925 	if (static_branch_unlikely(&tcp_md5_needed) &&
926 	    rcu_access_pointer(tp->md5sig_info)) {
927 		*md5 = tp->af_specific->md5_lookup(sk, sk);
928 		if (*md5) {
929 			opts->options |= OPTION_MD5;
930 			size += TCPOLEN_MD5SIG_ALIGNED;
931 		}
932 	}
933 #endif
934 
935 	if (likely(tp->rx_opt.tstamp_ok)) {
936 		opts->options |= OPTION_TS;
937 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
938 		opts->tsecr = tp->rx_opt.ts_recent;
939 		size += TCPOLEN_TSTAMP_ALIGNED;
940 	}
941 
942 	/* MPTCP options have precedence over SACK for the limited TCP
943 	 * option space because a MPTCP connection would be forced to
944 	 * fall back to regular TCP if a required multipath option is
945 	 * missing. SACK still gets a chance to use whatever space is
946 	 * left.
947 	 */
948 	if (sk_is_mptcp(sk)) {
949 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
950 		unsigned int opt_size = 0;
951 
952 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
953 					      &opts->mptcp)) {
954 			opts->options |= OPTION_MPTCP;
955 			size += opt_size;
956 		}
957 	}
958 
959 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
960 	if (unlikely(eff_sacks)) {
961 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
962 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
963 					 TCPOLEN_SACK_PERBLOCK))
964 			return size;
965 
966 		opts->num_sack_blocks =
967 			min_t(unsigned int, eff_sacks,
968 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
969 			      TCPOLEN_SACK_PERBLOCK);
970 
971 		size += TCPOLEN_SACK_BASE_ALIGNED +
972 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
973 	}
974 
975 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
976 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
977 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
978 
979 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
980 
981 		size = MAX_TCP_OPTION_SPACE - remaining;
982 	}
983 
984 	return size;
985 }
986 
987 
988 /* TCP SMALL QUEUES (TSQ)
989  *
990  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
991  * to reduce RTT and bufferbloat.
992  * We do this using a special skb destructor (tcp_wfree).
993  *
994  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
995  * needs to be reallocated in a driver.
996  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
997  *
998  * Since transmit from skb destructor is forbidden, we use a tasklet
999  * to process all sockets that eventually need to send more skbs.
1000  * We use one tasklet per cpu, with its own queue of sockets.
1001  */
1002 struct tsq_tasklet {
1003 	struct tasklet_struct	tasklet;
1004 	struct list_head	head; /* queue of tcp sockets */
1005 };
1006 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1007 
1008 static void tcp_tsq_write(struct sock *sk)
1009 {
1010 	if ((1 << sk->sk_state) &
1011 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1012 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1013 		struct tcp_sock *tp = tcp_sk(sk);
1014 
1015 		if (tp->lost_out > tp->retrans_out &&
1016 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1017 			tcp_mstamp_refresh(tp);
1018 			tcp_xmit_retransmit_queue(sk);
1019 		}
1020 
1021 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1022 			       0, GFP_ATOMIC);
1023 	}
1024 }
1025 
1026 static void tcp_tsq_handler(struct sock *sk)
1027 {
1028 	bh_lock_sock(sk);
1029 	if (!sock_owned_by_user(sk))
1030 		tcp_tsq_write(sk);
1031 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1032 		sock_hold(sk);
1033 	bh_unlock_sock(sk);
1034 }
1035 /*
1036  * One tasklet per cpu tries to send more skbs.
1037  * We run in tasklet context but need to disable irqs when
1038  * transferring tsq->head because tcp_wfree() might
1039  * interrupt us (non NAPI drivers)
1040  */
1041 static void tcp_tasklet_func(struct tasklet_struct *t)
1042 {
1043 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1044 	LIST_HEAD(list);
1045 	unsigned long flags;
1046 	struct list_head *q, *n;
1047 	struct tcp_sock *tp;
1048 	struct sock *sk;
1049 
1050 	local_irq_save(flags);
1051 	list_splice_init(&tsq->head, &list);
1052 	local_irq_restore(flags);
1053 
1054 	list_for_each_safe(q, n, &list) {
1055 		tp = list_entry(q, struct tcp_sock, tsq_node);
1056 		list_del(&tp->tsq_node);
1057 
1058 		sk = (struct sock *)tp;
1059 		smp_mb__before_atomic();
1060 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1061 
1062 		tcp_tsq_handler(sk);
1063 		sk_free(sk);
1064 	}
1065 }
1066 
1067 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1068 			  TCPF_WRITE_TIMER_DEFERRED |	\
1069 			  TCPF_DELACK_TIMER_DEFERRED |	\
1070 			  TCPF_MTU_REDUCED_DEFERRED)
1071 /**
1072  * tcp_release_cb - tcp release_sock() callback
1073  * @sk: socket
1074  *
1075  * called from release_sock() to perform protocol dependent
1076  * actions before socket release.
1077  */
1078 void tcp_release_cb(struct sock *sk)
1079 {
1080 	unsigned long flags, nflags;
1081 
1082 	/* perform an atomic operation only if at least one flag is set */
1083 	do {
1084 		flags = sk->sk_tsq_flags;
1085 		if (!(flags & TCP_DEFERRED_ALL))
1086 			return;
1087 		nflags = flags & ~TCP_DEFERRED_ALL;
1088 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1089 
1090 	if (flags & TCPF_TSQ_DEFERRED) {
1091 		tcp_tsq_write(sk);
1092 		__sock_put(sk);
1093 	}
1094 	/* Here begins the tricky part :
1095 	 * We are called from release_sock() with :
1096 	 * 1) BH disabled
1097 	 * 2) sk_lock.slock spinlock held
1098 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1099 	 *
1100 	 * But following code is meant to be called from BH handlers,
1101 	 * so we should keep BH disabled, but early release socket ownership
1102 	 */
1103 	sock_release_ownership(sk);
1104 
1105 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1106 		tcp_write_timer_handler(sk);
1107 		__sock_put(sk);
1108 	}
1109 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1110 		tcp_delack_timer_handler(sk);
1111 		__sock_put(sk);
1112 	}
1113 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1114 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1115 		__sock_put(sk);
1116 	}
1117 }
1118 EXPORT_SYMBOL(tcp_release_cb);
1119 
1120 void __init tcp_tasklet_init(void)
1121 {
1122 	int i;
1123 
1124 	for_each_possible_cpu(i) {
1125 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1126 
1127 		INIT_LIST_HEAD(&tsq->head);
1128 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1129 	}
1130 }
1131 
1132 /*
1133  * Write buffer destructor automatically called from kfree_skb.
1134  * We can't xmit new skbs from this context, as we might already
1135  * hold qdisc lock.
1136  */
1137 void tcp_wfree(struct sk_buff *skb)
1138 {
1139 	struct sock *sk = skb->sk;
1140 	struct tcp_sock *tp = tcp_sk(sk);
1141 	unsigned long flags, nval, oval;
1142 
1143 	/* Keep one reference on sk_wmem_alloc.
1144 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1145 	 */
1146 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1147 
1148 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1149 	 * Wait until our queues (qdisc + devices) are drained.
1150 	 * This gives :
1151 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1152 	 * - chance for incoming ACK (processed by another cpu maybe)
1153 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1154 	 */
1155 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1156 		goto out;
1157 
1158 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1159 		struct tsq_tasklet *tsq;
1160 		bool empty;
1161 
1162 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1163 			goto out;
1164 
1165 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1166 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1167 		if (nval != oval)
1168 			continue;
1169 
1170 		/* queue this socket to tasklet queue */
1171 		local_irq_save(flags);
1172 		tsq = this_cpu_ptr(&tsq_tasklet);
1173 		empty = list_empty(&tsq->head);
1174 		list_add(&tp->tsq_node, &tsq->head);
1175 		if (empty)
1176 			tasklet_schedule(&tsq->tasklet);
1177 		local_irq_restore(flags);
1178 		return;
1179 	}
1180 out:
1181 	sk_free(sk);
1182 }
1183 
1184 /* Note: Called under soft irq.
1185  * We can call TCP stack right away, unless socket is owned by user.
1186  */
1187 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1188 {
1189 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1190 	struct sock *sk = (struct sock *)tp;
1191 
1192 	tcp_tsq_handler(sk);
1193 	sock_put(sk);
1194 
1195 	return HRTIMER_NORESTART;
1196 }
1197 
1198 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1199 				      u64 prior_wstamp)
1200 {
1201 	struct tcp_sock *tp = tcp_sk(sk);
1202 
1203 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1204 		unsigned long rate = sk->sk_pacing_rate;
1205 
1206 		/* Original sch_fq does not pace first 10 MSS
1207 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1208 		 * this is a minor annoyance.
1209 		 */
1210 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1211 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1212 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1213 
1214 			/* take into account OS jitter */
1215 			len_ns -= min_t(u64, len_ns / 2, credit);
1216 			tp->tcp_wstamp_ns += len_ns;
1217 		}
1218 	}
1219 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1220 }
1221 
1222 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1223 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1224 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1225 
1226 /* This routine actually transmits TCP packets queued in by
1227  * tcp_do_sendmsg().  This is used by both the initial
1228  * transmission and possible later retransmissions.
1229  * All SKB's seen here are completely headerless.  It is our
1230  * job to build the TCP header, and pass the packet down to
1231  * IP so it can do the same plus pass the packet off to the
1232  * device.
1233  *
1234  * We are working here with either a clone of the original
1235  * SKB, or a fresh unique copy made by the retransmit engine.
1236  */
1237 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1238 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1239 {
1240 	const struct inet_connection_sock *icsk = inet_csk(sk);
1241 	struct inet_sock *inet;
1242 	struct tcp_sock *tp;
1243 	struct tcp_skb_cb *tcb;
1244 	struct tcp_out_options opts;
1245 	unsigned int tcp_options_size, tcp_header_size;
1246 	struct sk_buff *oskb = NULL;
1247 	struct tcp_md5sig_key *md5;
1248 	struct tcphdr *th;
1249 	u64 prior_wstamp;
1250 	int err;
1251 
1252 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1253 	tp = tcp_sk(sk);
1254 	prior_wstamp = tp->tcp_wstamp_ns;
1255 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1256 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1257 	if (clone_it) {
1258 		oskb = skb;
1259 
1260 		tcp_skb_tsorted_save(oskb) {
1261 			if (unlikely(skb_cloned(oskb)))
1262 				skb = pskb_copy(oskb, gfp_mask);
1263 			else
1264 				skb = skb_clone(oskb, gfp_mask);
1265 		} tcp_skb_tsorted_restore(oskb);
1266 
1267 		if (unlikely(!skb))
1268 			return -ENOBUFS;
1269 		/* retransmit skbs might have a non zero value in skb->dev
1270 		 * because skb->dev is aliased with skb->rbnode.rb_left
1271 		 */
1272 		skb->dev = NULL;
1273 	}
1274 
1275 	inet = inet_sk(sk);
1276 	tcb = TCP_SKB_CB(skb);
1277 	memset(&opts, 0, sizeof(opts));
1278 
1279 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1280 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1281 	} else {
1282 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1283 							   &md5);
1284 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1285 		 * at receiver : This slightly improve GRO performance.
1286 		 * Note that we do not force the PSH flag for non GSO packets,
1287 		 * because they might be sent under high congestion events,
1288 		 * and in this case it is better to delay the delivery of 1-MSS
1289 		 * packets and thus the corresponding ACK packet that would
1290 		 * release the following packet.
1291 		 */
1292 		if (tcp_skb_pcount(skb) > 1)
1293 			tcb->tcp_flags |= TCPHDR_PSH;
1294 	}
1295 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1296 
1297 	/* if no packet is in qdisc/device queue, then allow XPS to select
1298 	 * another queue. We can be called from tcp_tsq_handler()
1299 	 * which holds one reference to sk.
1300 	 *
1301 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1302 	 * One way to get this would be to set skb->truesize = 2 on them.
1303 	 */
1304 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1305 
1306 	/* If we had to use memory reserve to allocate this skb,
1307 	 * this might cause drops if packet is looped back :
1308 	 * Other socket might not have SOCK_MEMALLOC.
1309 	 * Packets not looped back do not care about pfmemalloc.
1310 	 */
1311 	skb->pfmemalloc = 0;
1312 
1313 	skb_push(skb, tcp_header_size);
1314 	skb_reset_transport_header(skb);
1315 
1316 	skb_orphan(skb);
1317 	skb->sk = sk;
1318 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1319 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1320 
1321 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1322 
1323 	/* Build TCP header and checksum it. */
1324 	th = (struct tcphdr *)skb->data;
1325 	th->source		= inet->inet_sport;
1326 	th->dest		= inet->inet_dport;
1327 	th->seq			= htonl(tcb->seq);
1328 	th->ack_seq		= htonl(rcv_nxt);
1329 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1330 					tcb->tcp_flags);
1331 
1332 	th->check		= 0;
1333 	th->urg_ptr		= 0;
1334 
1335 	/* The urg_mode check is necessary during a below snd_una win probe */
1336 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1337 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1338 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1339 			th->urg = 1;
1340 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1341 			th->urg_ptr = htons(0xFFFF);
1342 			th->urg = 1;
1343 		}
1344 	}
1345 
1346 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1347 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1348 		th->window      = htons(tcp_select_window(sk));
1349 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1350 	} else {
1351 		/* RFC1323: The window in SYN & SYN/ACK segments
1352 		 * is never scaled.
1353 		 */
1354 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1355 	}
1356 
1357 	tcp_options_write(th, tp, &opts);
1358 
1359 #ifdef CONFIG_TCP_MD5SIG
1360 	/* Calculate the MD5 hash, as we have all we need now */
1361 	if (md5) {
1362 		sk_gso_disable(sk);
1363 		tp->af_specific->calc_md5_hash(opts.hash_location,
1364 					       md5, sk, skb);
1365 	}
1366 #endif
1367 
1368 	/* BPF prog is the last one writing header option */
1369 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1370 
1371 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1372 			   tcp_v6_send_check, tcp_v4_send_check,
1373 			   sk, skb);
1374 
1375 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1376 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1377 
1378 	if (skb->len != tcp_header_size) {
1379 		tcp_event_data_sent(tp, sk);
1380 		tp->data_segs_out += tcp_skb_pcount(skb);
1381 		tp->bytes_sent += skb->len - tcp_header_size;
1382 	}
1383 
1384 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1385 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1386 			      tcp_skb_pcount(skb));
1387 
1388 	tp->segs_out += tcp_skb_pcount(skb);
1389 	skb_set_hash_from_sk(skb, sk);
1390 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1391 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1392 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1393 
1394 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1395 
1396 	/* Cleanup our debris for IP stacks */
1397 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1398 			       sizeof(struct inet6_skb_parm)));
1399 
1400 	tcp_add_tx_delay(skb, tp);
1401 
1402 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1403 				 inet6_csk_xmit, ip_queue_xmit,
1404 				 sk, skb, &inet->cork.fl);
1405 
1406 	if (unlikely(err > 0)) {
1407 		tcp_enter_cwr(sk);
1408 		err = net_xmit_eval(err);
1409 	}
1410 	if (!err && oskb) {
1411 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1412 		tcp_rate_skb_sent(sk, oskb);
1413 	}
1414 	return err;
1415 }
1416 
1417 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1418 			    gfp_t gfp_mask)
1419 {
1420 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1421 				  tcp_sk(sk)->rcv_nxt);
1422 }
1423 
1424 /* This routine just queues the buffer for sending.
1425  *
1426  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1427  * otherwise socket can stall.
1428  */
1429 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1430 {
1431 	struct tcp_sock *tp = tcp_sk(sk);
1432 
1433 	/* Advance write_seq and place onto the write_queue. */
1434 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1435 	__skb_header_release(skb);
1436 	tcp_add_write_queue_tail(sk, skb);
1437 	sk_wmem_queued_add(sk, skb->truesize);
1438 	sk_mem_charge(sk, skb->truesize);
1439 }
1440 
1441 /* Initialize TSO segments for a packet. */
1442 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1443 {
1444 	if (skb->len <= mss_now) {
1445 		/* Avoid the costly divide in the normal
1446 		 * non-TSO case.
1447 		 */
1448 		tcp_skb_pcount_set(skb, 1);
1449 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1450 	} else {
1451 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1452 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1453 	}
1454 }
1455 
1456 /* Pcount in the middle of the write queue got changed, we need to do various
1457  * tweaks to fix counters
1458  */
1459 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1460 {
1461 	struct tcp_sock *tp = tcp_sk(sk);
1462 
1463 	tp->packets_out -= decr;
1464 
1465 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1466 		tp->sacked_out -= decr;
1467 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1468 		tp->retrans_out -= decr;
1469 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1470 		tp->lost_out -= decr;
1471 
1472 	/* Reno case is special. Sigh... */
1473 	if (tcp_is_reno(tp) && decr > 0)
1474 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1475 
1476 	if (tp->lost_skb_hint &&
1477 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1478 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1479 		tp->lost_cnt_hint -= decr;
1480 
1481 	tcp_verify_left_out(tp);
1482 }
1483 
1484 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1485 {
1486 	return TCP_SKB_CB(skb)->txstamp_ack ||
1487 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1488 }
1489 
1490 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1491 {
1492 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1493 
1494 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1495 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1496 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1497 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1498 
1499 		shinfo->tx_flags &= ~tsflags;
1500 		shinfo2->tx_flags |= tsflags;
1501 		swap(shinfo->tskey, shinfo2->tskey);
1502 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1503 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1504 	}
1505 }
1506 
1507 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1508 {
1509 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1510 	TCP_SKB_CB(skb)->eor = 0;
1511 }
1512 
1513 /* Insert buff after skb on the write or rtx queue of sk.  */
1514 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1515 					 struct sk_buff *buff,
1516 					 struct sock *sk,
1517 					 enum tcp_queue tcp_queue)
1518 {
1519 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1520 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1521 	else
1522 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1523 }
1524 
1525 /* Function to create two new TCP segments.  Shrinks the given segment
1526  * to the specified size and appends a new segment with the rest of the
1527  * packet to the list.  This won't be called frequently, I hope.
1528  * Remember, these are still headerless SKBs at this point.
1529  */
1530 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1531 		 struct sk_buff *skb, u32 len,
1532 		 unsigned int mss_now, gfp_t gfp)
1533 {
1534 	struct tcp_sock *tp = tcp_sk(sk);
1535 	struct sk_buff *buff;
1536 	int nsize, old_factor;
1537 	long limit;
1538 	int nlen;
1539 	u8 flags;
1540 
1541 	if (WARN_ON(len > skb->len))
1542 		return -EINVAL;
1543 
1544 	nsize = skb_headlen(skb) - len;
1545 	if (nsize < 0)
1546 		nsize = 0;
1547 
1548 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1549 	 * We need some allowance to not penalize applications setting small
1550 	 * SO_SNDBUF values.
1551 	 * Also allow first and last skb in retransmit queue to be split.
1552 	 */
1553 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1554 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1555 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1556 		     skb != tcp_rtx_queue_head(sk) &&
1557 		     skb != tcp_rtx_queue_tail(sk))) {
1558 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1559 		return -ENOMEM;
1560 	}
1561 
1562 	if (skb_unclone_keeptruesize(skb, gfp))
1563 		return -ENOMEM;
1564 
1565 	/* Get a new skb... force flag on. */
1566 	buff = tcp_stream_alloc_skb(sk, nsize, gfp, true);
1567 	if (!buff)
1568 		return -ENOMEM; /* We'll just try again later. */
1569 	skb_copy_decrypted(buff, skb);
1570 	mptcp_skb_ext_copy(buff, skb);
1571 
1572 	sk_wmem_queued_add(sk, buff->truesize);
1573 	sk_mem_charge(sk, buff->truesize);
1574 	nlen = skb->len - len - nsize;
1575 	buff->truesize += nlen;
1576 	skb->truesize -= nlen;
1577 
1578 	/* Correct the sequence numbers. */
1579 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1580 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1581 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1582 
1583 	/* PSH and FIN should only be set in the second packet. */
1584 	flags = TCP_SKB_CB(skb)->tcp_flags;
1585 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1586 	TCP_SKB_CB(buff)->tcp_flags = flags;
1587 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1588 	tcp_skb_fragment_eor(skb, buff);
1589 
1590 	skb_split(skb, buff, len);
1591 
1592 	skb_set_delivery_time(buff, skb->tstamp, true);
1593 	tcp_fragment_tstamp(skb, buff);
1594 
1595 	old_factor = tcp_skb_pcount(skb);
1596 
1597 	/* Fix up tso_factor for both original and new SKB.  */
1598 	tcp_set_skb_tso_segs(skb, mss_now);
1599 	tcp_set_skb_tso_segs(buff, mss_now);
1600 
1601 	/* Update delivered info for the new segment */
1602 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1603 
1604 	/* If this packet has been sent out already, we must
1605 	 * adjust the various packet counters.
1606 	 */
1607 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1608 		int diff = old_factor - tcp_skb_pcount(skb) -
1609 			tcp_skb_pcount(buff);
1610 
1611 		if (diff)
1612 			tcp_adjust_pcount(sk, skb, diff);
1613 	}
1614 
1615 	/* Link BUFF into the send queue. */
1616 	__skb_header_release(buff);
1617 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1618 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1619 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1620 
1621 	return 0;
1622 }
1623 
1624 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1625  * data is not copied, but immediately discarded.
1626  */
1627 static int __pskb_trim_head(struct sk_buff *skb, int len)
1628 {
1629 	struct skb_shared_info *shinfo;
1630 	int i, k, eat;
1631 
1632 	eat = min_t(int, len, skb_headlen(skb));
1633 	if (eat) {
1634 		__skb_pull(skb, eat);
1635 		len -= eat;
1636 		if (!len)
1637 			return 0;
1638 	}
1639 	eat = len;
1640 	k = 0;
1641 	shinfo = skb_shinfo(skb);
1642 	for (i = 0; i < shinfo->nr_frags; i++) {
1643 		int size = skb_frag_size(&shinfo->frags[i]);
1644 
1645 		if (size <= eat) {
1646 			skb_frag_unref(skb, i);
1647 			eat -= size;
1648 		} else {
1649 			shinfo->frags[k] = shinfo->frags[i];
1650 			if (eat) {
1651 				skb_frag_off_add(&shinfo->frags[k], eat);
1652 				skb_frag_size_sub(&shinfo->frags[k], eat);
1653 				eat = 0;
1654 			}
1655 			k++;
1656 		}
1657 	}
1658 	shinfo->nr_frags = k;
1659 
1660 	skb->data_len -= len;
1661 	skb->len = skb->data_len;
1662 	return len;
1663 }
1664 
1665 /* Remove acked data from a packet in the transmit queue. */
1666 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1667 {
1668 	u32 delta_truesize;
1669 
1670 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1671 		return -ENOMEM;
1672 
1673 	delta_truesize = __pskb_trim_head(skb, len);
1674 
1675 	TCP_SKB_CB(skb)->seq += len;
1676 
1677 	if (delta_truesize) {
1678 		skb->truesize	   -= delta_truesize;
1679 		sk_wmem_queued_add(sk, -delta_truesize);
1680 		if (!skb_zcopy_pure(skb))
1681 			sk_mem_uncharge(sk, delta_truesize);
1682 	}
1683 
1684 	/* Any change of skb->len requires recalculation of tso factor. */
1685 	if (tcp_skb_pcount(skb) > 1)
1686 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1687 
1688 	return 0;
1689 }
1690 
1691 /* Calculate MSS not accounting any TCP options.  */
1692 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1693 {
1694 	const struct tcp_sock *tp = tcp_sk(sk);
1695 	const struct inet_connection_sock *icsk = inet_csk(sk);
1696 	int mss_now;
1697 
1698 	/* Calculate base mss without TCP options:
1699 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1700 	 */
1701 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1702 
1703 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1704 	if (icsk->icsk_af_ops->net_frag_header_len) {
1705 		const struct dst_entry *dst = __sk_dst_get(sk);
1706 
1707 		if (dst && dst_allfrag(dst))
1708 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1709 	}
1710 
1711 	/* Clamp it (mss_clamp does not include tcp options) */
1712 	if (mss_now > tp->rx_opt.mss_clamp)
1713 		mss_now = tp->rx_opt.mss_clamp;
1714 
1715 	/* Now subtract optional transport overhead */
1716 	mss_now -= icsk->icsk_ext_hdr_len;
1717 
1718 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1719 	mss_now = max(mss_now,
1720 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1721 	return mss_now;
1722 }
1723 
1724 /* Calculate MSS. Not accounting for SACKs here.  */
1725 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1726 {
1727 	/* Subtract TCP options size, not including SACKs */
1728 	return __tcp_mtu_to_mss(sk, pmtu) -
1729 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1730 }
1731 EXPORT_SYMBOL(tcp_mtu_to_mss);
1732 
1733 /* Inverse of above */
1734 int tcp_mss_to_mtu(struct sock *sk, int mss)
1735 {
1736 	const struct tcp_sock *tp = tcp_sk(sk);
1737 	const struct inet_connection_sock *icsk = inet_csk(sk);
1738 	int mtu;
1739 
1740 	mtu = mss +
1741 	      tp->tcp_header_len +
1742 	      icsk->icsk_ext_hdr_len +
1743 	      icsk->icsk_af_ops->net_header_len;
1744 
1745 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1746 	if (icsk->icsk_af_ops->net_frag_header_len) {
1747 		const struct dst_entry *dst = __sk_dst_get(sk);
1748 
1749 		if (dst && dst_allfrag(dst))
1750 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1751 	}
1752 	return mtu;
1753 }
1754 EXPORT_SYMBOL(tcp_mss_to_mtu);
1755 
1756 /* MTU probing init per socket */
1757 void tcp_mtup_init(struct sock *sk)
1758 {
1759 	struct tcp_sock *tp = tcp_sk(sk);
1760 	struct inet_connection_sock *icsk = inet_csk(sk);
1761 	struct net *net = sock_net(sk);
1762 
1763 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1764 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1765 			       icsk->icsk_af_ops->net_header_len;
1766 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1767 	icsk->icsk_mtup.probe_size = 0;
1768 	if (icsk->icsk_mtup.enabled)
1769 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1770 }
1771 EXPORT_SYMBOL(tcp_mtup_init);
1772 
1773 /* This function synchronize snd mss to current pmtu/exthdr set.
1774 
1775    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1776    for TCP options, but includes only bare TCP header.
1777 
1778    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1779    It is minimum of user_mss and mss received with SYN.
1780    It also does not include TCP options.
1781 
1782    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1783 
1784    tp->mss_cache is current effective sending mss, including
1785    all tcp options except for SACKs. It is evaluated,
1786    taking into account current pmtu, but never exceeds
1787    tp->rx_opt.mss_clamp.
1788 
1789    NOTE1. rfc1122 clearly states that advertised MSS
1790    DOES NOT include either tcp or ip options.
1791 
1792    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1793    are READ ONLY outside this function.		--ANK (980731)
1794  */
1795 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1796 {
1797 	struct tcp_sock *tp = tcp_sk(sk);
1798 	struct inet_connection_sock *icsk = inet_csk(sk);
1799 	int mss_now;
1800 
1801 	if (icsk->icsk_mtup.search_high > pmtu)
1802 		icsk->icsk_mtup.search_high = pmtu;
1803 
1804 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1805 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1806 
1807 	/* And store cached results */
1808 	icsk->icsk_pmtu_cookie = pmtu;
1809 	if (icsk->icsk_mtup.enabled)
1810 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1811 	tp->mss_cache = mss_now;
1812 
1813 	return mss_now;
1814 }
1815 EXPORT_SYMBOL(tcp_sync_mss);
1816 
1817 /* Compute the current effective MSS, taking SACKs and IP options,
1818  * and even PMTU discovery events into account.
1819  */
1820 unsigned int tcp_current_mss(struct sock *sk)
1821 {
1822 	const struct tcp_sock *tp = tcp_sk(sk);
1823 	const struct dst_entry *dst = __sk_dst_get(sk);
1824 	u32 mss_now;
1825 	unsigned int header_len;
1826 	struct tcp_out_options opts;
1827 	struct tcp_md5sig_key *md5;
1828 
1829 	mss_now = tp->mss_cache;
1830 
1831 	if (dst) {
1832 		u32 mtu = dst_mtu(dst);
1833 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1834 			mss_now = tcp_sync_mss(sk, mtu);
1835 	}
1836 
1837 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1838 		     sizeof(struct tcphdr);
1839 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1840 	 * some common options. If this is an odd packet (because we have SACK
1841 	 * blocks etc) then our calculated header_len will be different, and
1842 	 * we have to adjust mss_now correspondingly */
1843 	if (header_len != tp->tcp_header_len) {
1844 		int delta = (int) header_len - tp->tcp_header_len;
1845 		mss_now -= delta;
1846 	}
1847 
1848 	return mss_now;
1849 }
1850 
1851 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1852  * As additional protections, we do not touch cwnd in retransmission phases,
1853  * and if application hit its sndbuf limit recently.
1854  */
1855 static void tcp_cwnd_application_limited(struct sock *sk)
1856 {
1857 	struct tcp_sock *tp = tcp_sk(sk);
1858 
1859 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1860 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1861 		/* Limited by application or receiver window. */
1862 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1863 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1864 		if (win_used < tcp_snd_cwnd(tp)) {
1865 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1866 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1867 		}
1868 		tp->snd_cwnd_used = 0;
1869 	}
1870 	tp->snd_cwnd_stamp = tcp_jiffies32;
1871 }
1872 
1873 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1874 {
1875 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1876 	struct tcp_sock *tp = tcp_sk(sk);
1877 
1878 	/* Track the maximum number of outstanding packets in each
1879 	 * window, and remember whether we were cwnd-limited then.
1880 	 */
1881 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1882 	    tp->packets_out > tp->max_packets_out ||
1883 	    is_cwnd_limited) {
1884 		tp->max_packets_out = tp->packets_out;
1885 		tp->max_packets_seq = tp->snd_nxt;
1886 		tp->is_cwnd_limited = is_cwnd_limited;
1887 	}
1888 
1889 	if (tcp_is_cwnd_limited(sk)) {
1890 		/* Network is feed fully. */
1891 		tp->snd_cwnd_used = 0;
1892 		tp->snd_cwnd_stamp = tcp_jiffies32;
1893 	} else {
1894 		/* Network starves. */
1895 		if (tp->packets_out > tp->snd_cwnd_used)
1896 			tp->snd_cwnd_used = tp->packets_out;
1897 
1898 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1899 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1900 		    !ca_ops->cong_control)
1901 			tcp_cwnd_application_limited(sk);
1902 
1903 		/* The following conditions together indicate the starvation
1904 		 * is caused by insufficient sender buffer:
1905 		 * 1) just sent some data (see tcp_write_xmit)
1906 		 * 2) not cwnd limited (this else condition)
1907 		 * 3) no more data to send (tcp_write_queue_empty())
1908 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1909 		 */
1910 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1911 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1912 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1913 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1914 	}
1915 }
1916 
1917 /* Minshall's variant of the Nagle send check. */
1918 static bool tcp_minshall_check(const struct tcp_sock *tp)
1919 {
1920 	return after(tp->snd_sml, tp->snd_una) &&
1921 		!after(tp->snd_sml, tp->snd_nxt);
1922 }
1923 
1924 /* Update snd_sml if this skb is under mss
1925  * Note that a TSO packet might end with a sub-mss segment
1926  * The test is really :
1927  * if ((skb->len % mss) != 0)
1928  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1929  * But we can avoid doing the divide again given we already have
1930  *  skb_pcount = skb->len / mss_now
1931  */
1932 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1933 				const struct sk_buff *skb)
1934 {
1935 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1936 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1937 }
1938 
1939 /* Return false, if packet can be sent now without violation Nagle's rules:
1940  * 1. It is full sized. (provided by caller in %partial bool)
1941  * 2. Or it contains FIN. (already checked by caller)
1942  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1943  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1944  *    With Minshall's modification: all sent small packets are ACKed.
1945  */
1946 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1947 			    int nonagle)
1948 {
1949 	return partial &&
1950 		((nonagle & TCP_NAGLE_CORK) ||
1951 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1952 }
1953 
1954 /* Return how many segs we'd like on a TSO packet,
1955  * depending on current pacing rate, and how close the peer is.
1956  *
1957  * Rationale is:
1958  * - For close peers, we rather send bigger packets to reduce
1959  *   cpu costs, because occasional losses will be repaired fast.
1960  * - For long distance/rtt flows, we would like to get ACK clocking
1961  *   with 1 ACK per ms.
1962  *
1963  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1964  * in bigger TSO bursts. We we cut the RTT-based allowance in half
1965  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1966  * is below 1500 bytes after 6 * ~500 usec = 3ms.
1967  */
1968 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1969 			    int min_tso_segs)
1970 {
1971 	unsigned long bytes;
1972 	u32 r;
1973 
1974 	bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1975 
1976 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1977 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1978 		bytes += sk->sk_gso_max_size >> r;
1979 
1980 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1981 
1982 	return max_t(u32, bytes / mss_now, min_tso_segs);
1983 }
1984 
1985 /* Return the number of segments we want in the skb we are transmitting.
1986  * See if congestion control module wants to decide; otherwise, autosize.
1987  */
1988 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1989 {
1990 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1991 	u32 min_tso, tso_segs;
1992 
1993 	min_tso = ca_ops->min_tso_segs ?
1994 			ca_ops->min_tso_segs(sk) :
1995 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1996 
1997 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1998 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1999 }
2000 
2001 /* Returns the portion of skb which can be sent right away */
2002 static unsigned int tcp_mss_split_point(const struct sock *sk,
2003 					const struct sk_buff *skb,
2004 					unsigned int mss_now,
2005 					unsigned int max_segs,
2006 					int nonagle)
2007 {
2008 	const struct tcp_sock *tp = tcp_sk(sk);
2009 	u32 partial, needed, window, max_len;
2010 
2011 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2012 	max_len = mss_now * max_segs;
2013 
2014 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2015 		return max_len;
2016 
2017 	needed = min(skb->len, window);
2018 
2019 	if (max_len <= needed)
2020 		return max_len;
2021 
2022 	partial = needed % mss_now;
2023 	/* If last segment is not a full MSS, check if Nagle rules allow us
2024 	 * to include this last segment in this skb.
2025 	 * Otherwise, we'll split the skb at last MSS boundary
2026 	 */
2027 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2028 		return needed - partial;
2029 
2030 	return needed;
2031 }
2032 
2033 /* Can at least one segment of SKB be sent right now, according to the
2034  * congestion window rules?  If so, return how many segments are allowed.
2035  */
2036 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2037 					 const struct sk_buff *skb)
2038 {
2039 	u32 in_flight, cwnd, halfcwnd;
2040 
2041 	/* Don't be strict about the congestion window for the final FIN.  */
2042 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2043 	    tcp_skb_pcount(skb) == 1)
2044 		return 1;
2045 
2046 	in_flight = tcp_packets_in_flight(tp);
2047 	cwnd = tcp_snd_cwnd(tp);
2048 	if (in_flight >= cwnd)
2049 		return 0;
2050 
2051 	/* For better scheduling, ensure we have at least
2052 	 * 2 GSO packets in flight.
2053 	 */
2054 	halfcwnd = max(cwnd >> 1, 1U);
2055 	return min(halfcwnd, cwnd - in_flight);
2056 }
2057 
2058 /* Initialize TSO state of a skb.
2059  * This must be invoked the first time we consider transmitting
2060  * SKB onto the wire.
2061  */
2062 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2063 {
2064 	int tso_segs = tcp_skb_pcount(skb);
2065 
2066 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2067 		tcp_set_skb_tso_segs(skb, mss_now);
2068 		tso_segs = tcp_skb_pcount(skb);
2069 	}
2070 	return tso_segs;
2071 }
2072 
2073 
2074 /* Return true if the Nagle test allows this packet to be
2075  * sent now.
2076  */
2077 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2078 				  unsigned int cur_mss, int nonagle)
2079 {
2080 	/* Nagle rule does not apply to frames, which sit in the middle of the
2081 	 * write_queue (they have no chances to get new data).
2082 	 *
2083 	 * This is implemented in the callers, where they modify the 'nonagle'
2084 	 * argument based upon the location of SKB in the send queue.
2085 	 */
2086 	if (nonagle & TCP_NAGLE_PUSH)
2087 		return true;
2088 
2089 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2090 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2091 		return true;
2092 
2093 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2094 		return true;
2095 
2096 	return false;
2097 }
2098 
2099 /* Does at least the first segment of SKB fit into the send window? */
2100 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2101 			     const struct sk_buff *skb,
2102 			     unsigned int cur_mss)
2103 {
2104 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2105 
2106 	if (skb->len > cur_mss)
2107 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2108 
2109 	return !after(end_seq, tcp_wnd_end(tp));
2110 }
2111 
2112 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2113  * which is put after SKB on the list.  It is very much like
2114  * tcp_fragment() except that it may make several kinds of assumptions
2115  * in order to speed up the splitting operation.  In particular, we
2116  * know that all the data is in scatter-gather pages, and that the
2117  * packet has never been sent out before (and thus is not cloned).
2118  */
2119 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2120 			unsigned int mss_now, gfp_t gfp)
2121 {
2122 	int nlen = skb->len - len;
2123 	struct sk_buff *buff;
2124 	u8 flags;
2125 
2126 	/* All of a TSO frame must be composed of paged data.  */
2127 	if (skb->len != skb->data_len)
2128 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2129 				    skb, len, mss_now, gfp);
2130 
2131 	buff = tcp_stream_alloc_skb(sk, 0, gfp, true);
2132 	if (unlikely(!buff))
2133 		return -ENOMEM;
2134 	skb_copy_decrypted(buff, skb);
2135 	mptcp_skb_ext_copy(buff, skb);
2136 
2137 	sk_wmem_queued_add(sk, buff->truesize);
2138 	sk_mem_charge(sk, buff->truesize);
2139 	buff->truesize += nlen;
2140 	skb->truesize -= nlen;
2141 
2142 	/* Correct the sequence numbers. */
2143 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2144 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2145 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2146 
2147 	/* PSH and FIN should only be set in the second packet. */
2148 	flags = TCP_SKB_CB(skb)->tcp_flags;
2149 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2150 	TCP_SKB_CB(buff)->tcp_flags = flags;
2151 
2152 	tcp_skb_fragment_eor(skb, buff);
2153 
2154 	skb_split(skb, buff, len);
2155 	tcp_fragment_tstamp(skb, buff);
2156 
2157 	/* Fix up tso_factor for both original and new SKB.  */
2158 	tcp_set_skb_tso_segs(skb, mss_now);
2159 	tcp_set_skb_tso_segs(buff, mss_now);
2160 
2161 	/* Link BUFF into the send queue. */
2162 	__skb_header_release(buff);
2163 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2164 
2165 	return 0;
2166 }
2167 
2168 /* Try to defer sending, if possible, in order to minimize the amount
2169  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2170  *
2171  * This algorithm is from John Heffner.
2172  */
2173 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2174 				 bool *is_cwnd_limited,
2175 				 bool *is_rwnd_limited,
2176 				 u32 max_segs)
2177 {
2178 	const struct inet_connection_sock *icsk = inet_csk(sk);
2179 	u32 send_win, cong_win, limit, in_flight;
2180 	struct tcp_sock *tp = tcp_sk(sk);
2181 	struct sk_buff *head;
2182 	int win_divisor;
2183 	s64 delta;
2184 
2185 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2186 		goto send_now;
2187 
2188 	/* Avoid bursty behavior by allowing defer
2189 	 * only if the last write was recent (1 ms).
2190 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2191 	 * packets waiting in a qdisc or device for EDT delivery.
2192 	 */
2193 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2194 	if (delta > 0)
2195 		goto send_now;
2196 
2197 	in_flight = tcp_packets_in_flight(tp);
2198 
2199 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2200 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2201 
2202 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2203 
2204 	/* From in_flight test above, we know that cwnd > in_flight.  */
2205 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2206 
2207 	limit = min(send_win, cong_win);
2208 
2209 	/* If a full-sized TSO skb can be sent, do it. */
2210 	if (limit >= max_segs * tp->mss_cache)
2211 		goto send_now;
2212 
2213 	/* Middle in queue won't get any more data, full sendable already? */
2214 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2215 		goto send_now;
2216 
2217 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2218 	if (win_divisor) {
2219 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2220 
2221 		/* If at least some fraction of a window is available,
2222 		 * just use it.
2223 		 */
2224 		chunk /= win_divisor;
2225 		if (limit >= chunk)
2226 			goto send_now;
2227 	} else {
2228 		/* Different approach, try not to defer past a single
2229 		 * ACK.  Receiver should ACK every other full sized
2230 		 * frame, so if we have space for more than 3 frames
2231 		 * then send now.
2232 		 */
2233 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2234 			goto send_now;
2235 	}
2236 
2237 	/* TODO : use tsorted_sent_queue ? */
2238 	head = tcp_rtx_queue_head(sk);
2239 	if (!head)
2240 		goto send_now;
2241 	delta = tp->tcp_clock_cache - head->tstamp;
2242 	/* If next ACK is likely to come too late (half srtt), do not defer */
2243 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2244 		goto send_now;
2245 
2246 	/* Ok, it looks like it is advisable to defer.
2247 	 * Three cases are tracked :
2248 	 * 1) We are cwnd-limited
2249 	 * 2) We are rwnd-limited
2250 	 * 3) We are application limited.
2251 	 */
2252 	if (cong_win < send_win) {
2253 		if (cong_win <= skb->len) {
2254 			*is_cwnd_limited = true;
2255 			return true;
2256 		}
2257 	} else {
2258 		if (send_win <= skb->len) {
2259 			*is_rwnd_limited = true;
2260 			return true;
2261 		}
2262 	}
2263 
2264 	/* If this packet won't get more data, do not wait. */
2265 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2266 	    TCP_SKB_CB(skb)->eor)
2267 		goto send_now;
2268 
2269 	return true;
2270 
2271 send_now:
2272 	return false;
2273 }
2274 
2275 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2276 {
2277 	struct inet_connection_sock *icsk = inet_csk(sk);
2278 	struct tcp_sock *tp = tcp_sk(sk);
2279 	struct net *net = sock_net(sk);
2280 	u32 interval;
2281 	s32 delta;
2282 
2283 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2284 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2285 	if (unlikely(delta >= interval * HZ)) {
2286 		int mss = tcp_current_mss(sk);
2287 
2288 		/* Update current search range */
2289 		icsk->icsk_mtup.probe_size = 0;
2290 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2291 			sizeof(struct tcphdr) +
2292 			icsk->icsk_af_ops->net_header_len;
2293 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2294 
2295 		/* Update probe time stamp */
2296 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2297 	}
2298 }
2299 
2300 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2301 {
2302 	struct sk_buff *skb, *next;
2303 
2304 	skb = tcp_send_head(sk);
2305 	tcp_for_write_queue_from_safe(skb, next, sk) {
2306 		if (len <= skb->len)
2307 			break;
2308 
2309 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2310 		    tcp_has_tx_tstamp(skb) ||
2311 		    !skb_pure_zcopy_same(skb, next))
2312 			return false;
2313 
2314 		len -= skb->len;
2315 	}
2316 
2317 	return true;
2318 }
2319 
2320 /* Create a new MTU probe if we are ready.
2321  * MTU probe is regularly attempting to increase the path MTU by
2322  * deliberately sending larger packets.  This discovers routing
2323  * changes resulting in larger path MTUs.
2324  *
2325  * Returns 0 if we should wait to probe (no cwnd available),
2326  *         1 if a probe was sent,
2327  *         -1 otherwise
2328  */
2329 static int tcp_mtu_probe(struct sock *sk)
2330 {
2331 	struct inet_connection_sock *icsk = inet_csk(sk);
2332 	struct tcp_sock *tp = tcp_sk(sk);
2333 	struct sk_buff *skb, *nskb, *next;
2334 	struct net *net = sock_net(sk);
2335 	int probe_size;
2336 	int size_needed;
2337 	int copy, len;
2338 	int mss_now;
2339 	int interval;
2340 
2341 	/* Not currently probing/verifying,
2342 	 * not in recovery,
2343 	 * have enough cwnd, and
2344 	 * not SACKing (the variable headers throw things off)
2345 	 */
2346 	if (likely(!icsk->icsk_mtup.enabled ||
2347 		   icsk->icsk_mtup.probe_size ||
2348 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2349 		   tcp_snd_cwnd(tp) < 11 ||
2350 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2351 		return -1;
2352 
2353 	/* Use binary search for probe_size between tcp_mss_base,
2354 	 * and current mss_clamp. if (search_high - search_low)
2355 	 * smaller than a threshold, backoff from probing.
2356 	 */
2357 	mss_now = tcp_current_mss(sk);
2358 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2359 				    icsk->icsk_mtup.search_low) >> 1);
2360 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2361 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2362 	/* When misfortune happens, we are reprobing actively,
2363 	 * and then reprobe timer has expired. We stick with current
2364 	 * probing process by not resetting search range to its orignal.
2365 	 */
2366 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2367 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2368 		/* Check whether enough time has elaplased for
2369 		 * another round of probing.
2370 		 */
2371 		tcp_mtu_check_reprobe(sk);
2372 		return -1;
2373 	}
2374 
2375 	/* Have enough data in the send queue to probe? */
2376 	if (tp->write_seq - tp->snd_nxt < size_needed)
2377 		return -1;
2378 
2379 	if (tp->snd_wnd < size_needed)
2380 		return -1;
2381 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2382 		return 0;
2383 
2384 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2385 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2386 		if (!tcp_packets_in_flight(tp))
2387 			return -1;
2388 		else
2389 			return 0;
2390 	}
2391 
2392 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2393 		return -1;
2394 
2395 	/* We're allowed to probe.  Build it now. */
2396 	nskb = tcp_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2397 	if (!nskb)
2398 		return -1;
2399 	sk_wmem_queued_add(sk, nskb->truesize);
2400 	sk_mem_charge(sk, nskb->truesize);
2401 
2402 	skb = tcp_send_head(sk);
2403 	skb_copy_decrypted(nskb, skb);
2404 	mptcp_skb_ext_copy(nskb, skb);
2405 
2406 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2407 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2408 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2409 
2410 	tcp_insert_write_queue_before(nskb, skb, sk);
2411 	tcp_highest_sack_replace(sk, skb, nskb);
2412 
2413 	len = 0;
2414 	tcp_for_write_queue_from_safe(skb, next, sk) {
2415 		copy = min_t(int, skb->len, probe_size - len);
2416 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2417 
2418 		if (skb->len <= copy) {
2419 			/* We've eaten all the data from this skb.
2420 			 * Throw it away. */
2421 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2422 			/* If this is the last SKB we copy and eor is set
2423 			 * we need to propagate it to the new skb.
2424 			 */
2425 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2426 			tcp_skb_collapse_tstamp(nskb, skb);
2427 			tcp_unlink_write_queue(skb, sk);
2428 			tcp_wmem_free_skb(sk, skb);
2429 		} else {
2430 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2431 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2432 			if (!skb_shinfo(skb)->nr_frags) {
2433 				skb_pull(skb, copy);
2434 			} else {
2435 				__pskb_trim_head(skb, copy);
2436 				tcp_set_skb_tso_segs(skb, mss_now);
2437 			}
2438 			TCP_SKB_CB(skb)->seq += copy;
2439 		}
2440 
2441 		len += copy;
2442 
2443 		if (len >= probe_size)
2444 			break;
2445 	}
2446 	tcp_init_tso_segs(nskb, nskb->len);
2447 
2448 	/* We're ready to send.  If this fails, the probe will
2449 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2450 	 */
2451 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2452 		/* Decrement cwnd here because we are sending
2453 		 * effectively two packets. */
2454 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2455 		tcp_event_new_data_sent(sk, nskb);
2456 
2457 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2458 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2459 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2460 
2461 		return 1;
2462 	}
2463 
2464 	return -1;
2465 }
2466 
2467 static bool tcp_pacing_check(struct sock *sk)
2468 {
2469 	struct tcp_sock *tp = tcp_sk(sk);
2470 
2471 	if (!tcp_needs_internal_pacing(sk))
2472 		return false;
2473 
2474 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2475 		return false;
2476 
2477 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2478 		hrtimer_start(&tp->pacing_timer,
2479 			      ns_to_ktime(tp->tcp_wstamp_ns),
2480 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2481 		sock_hold(sk);
2482 	}
2483 	return true;
2484 }
2485 
2486 /* TCP Small Queues :
2487  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2488  * (These limits are doubled for retransmits)
2489  * This allows for :
2490  *  - better RTT estimation and ACK scheduling
2491  *  - faster recovery
2492  *  - high rates
2493  * Alas, some drivers / subsystems require a fair amount
2494  * of queued bytes to ensure line rate.
2495  * One example is wifi aggregation (802.11 AMPDU)
2496  */
2497 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2498 				  unsigned int factor)
2499 {
2500 	unsigned long limit;
2501 
2502 	limit = max_t(unsigned long,
2503 		      2 * skb->truesize,
2504 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2505 	if (sk->sk_pacing_status == SK_PACING_NONE)
2506 		limit = min_t(unsigned long, limit,
2507 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2508 	limit <<= factor;
2509 
2510 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2511 	    tcp_sk(sk)->tcp_tx_delay) {
2512 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2513 
2514 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2515 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2516 		 * USEC_PER_SEC is approximated by 2^20.
2517 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2518 		 */
2519 		extra_bytes >>= (20 - 1);
2520 		limit += extra_bytes;
2521 	}
2522 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2523 		/* Always send skb if rtx queue is empty.
2524 		 * No need to wait for TX completion to call us back,
2525 		 * after softirq/tasklet schedule.
2526 		 * This helps when TX completions are delayed too much.
2527 		 */
2528 		if (tcp_rtx_queue_empty(sk))
2529 			return false;
2530 
2531 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2532 		/* It is possible TX completion already happened
2533 		 * before we set TSQ_THROTTLED, so we must
2534 		 * test again the condition.
2535 		 */
2536 		smp_mb__after_atomic();
2537 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2538 			return true;
2539 	}
2540 	return false;
2541 }
2542 
2543 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2544 {
2545 	const u32 now = tcp_jiffies32;
2546 	enum tcp_chrono old = tp->chrono_type;
2547 
2548 	if (old > TCP_CHRONO_UNSPEC)
2549 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2550 	tp->chrono_start = now;
2551 	tp->chrono_type = new;
2552 }
2553 
2554 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2555 {
2556 	struct tcp_sock *tp = tcp_sk(sk);
2557 
2558 	/* If there are multiple conditions worthy of tracking in a
2559 	 * chronograph then the highest priority enum takes precedence
2560 	 * over the other conditions. So that if something "more interesting"
2561 	 * starts happening, stop the previous chrono and start a new one.
2562 	 */
2563 	if (type > tp->chrono_type)
2564 		tcp_chrono_set(tp, type);
2565 }
2566 
2567 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2568 {
2569 	struct tcp_sock *tp = tcp_sk(sk);
2570 
2571 
2572 	/* There are multiple conditions worthy of tracking in a
2573 	 * chronograph, so that the highest priority enum takes
2574 	 * precedence over the other conditions (see tcp_chrono_start).
2575 	 * If a condition stops, we only stop chrono tracking if
2576 	 * it's the "most interesting" or current chrono we are
2577 	 * tracking and starts busy chrono if we have pending data.
2578 	 */
2579 	if (tcp_rtx_and_write_queues_empty(sk))
2580 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2581 	else if (type == tp->chrono_type)
2582 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2583 }
2584 
2585 /* This routine writes packets to the network.  It advances the
2586  * send_head.  This happens as incoming acks open up the remote
2587  * window for us.
2588  *
2589  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2590  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2591  * account rare use of URG, this is not a big flaw.
2592  *
2593  * Send at most one packet when push_one > 0. Temporarily ignore
2594  * cwnd limit to force at most one packet out when push_one == 2.
2595 
2596  * Returns true, if no segments are in flight and we have queued segments,
2597  * but cannot send anything now because of SWS or another problem.
2598  */
2599 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2600 			   int push_one, gfp_t gfp)
2601 {
2602 	struct tcp_sock *tp = tcp_sk(sk);
2603 	struct sk_buff *skb;
2604 	unsigned int tso_segs, sent_pkts;
2605 	int cwnd_quota;
2606 	int result;
2607 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2608 	u32 max_segs;
2609 
2610 	sent_pkts = 0;
2611 
2612 	tcp_mstamp_refresh(tp);
2613 	if (!push_one) {
2614 		/* Do MTU probing. */
2615 		result = tcp_mtu_probe(sk);
2616 		if (!result) {
2617 			return false;
2618 		} else if (result > 0) {
2619 			sent_pkts = 1;
2620 		}
2621 	}
2622 
2623 	max_segs = tcp_tso_segs(sk, mss_now);
2624 	while ((skb = tcp_send_head(sk))) {
2625 		unsigned int limit;
2626 
2627 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2628 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2629 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2630 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2631 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2632 			tcp_init_tso_segs(skb, mss_now);
2633 			goto repair; /* Skip network transmission */
2634 		}
2635 
2636 		if (tcp_pacing_check(sk))
2637 			break;
2638 
2639 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2640 		BUG_ON(!tso_segs);
2641 
2642 		cwnd_quota = tcp_cwnd_test(tp, skb);
2643 		if (!cwnd_quota) {
2644 			if (push_one == 2)
2645 				/* Force out a loss probe pkt. */
2646 				cwnd_quota = 1;
2647 			else
2648 				break;
2649 		}
2650 
2651 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2652 			is_rwnd_limited = true;
2653 			break;
2654 		}
2655 
2656 		if (tso_segs == 1) {
2657 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2658 						     (tcp_skb_is_last(sk, skb) ?
2659 						      nonagle : TCP_NAGLE_PUSH))))
2660 				break;
2661 		} else {
2662 			if (!push_one &&
2663 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2664 						 &is_rwnd_limited, max_segs))
2665 				break;
2666 		}
2667 
2668 		limit = mss_now;
2669 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2670 			limit = tcp_mss_split_point(sk, skb, mss_now,
2671 						    min_t(unsigned int,
2672 							  cwnd_quota,
2673 							  max_segs),
2674 						    nonagle);
2675 
2676 		if (skb->len > limit &&
2677 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2678 			break;
2679 
2680 		if (tcp_small_queue_check(sk, skb, 0))
2681 			break;
2682 
2683 		/* Argh, we hit an empty skb(), presumably a thread
2684 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2685 		 * We do not want to send a pure-ack packet and have
2686 		 * a strange looking rtx queue with empty packet(s).
2687 		 */
2688 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2689 			break;
2690 
2691 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2692 			break;
2693 
2694 repair:
2695 		/* Advance the send_head.  This one is sent out.
2696 		 * This call will increment packets_out.
2697 		 */
2698 		tcp_event_new_data_sent(sk, skb);
2699 
2700 		tcp_minshall_update(tp, mss_now, skb);
2701 		sent_pkts += tcp_skb_pcount(skb);
2702 
2703 		if (push_one)
2704 			break;
2705 	}
2706 
2707 	if (is_rwnd_limited)
2708 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2709 	else
2710 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2711 
2712 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2713 	if (likely(sent_pkts || is_cwnd_limited))
2714 		tcp_cwnd_validate(sk, is_cwnd_limited);
2715 
2716 	if (likely(sent_pkts)) {
2717 		if (tcp_in_cwnd_reduction(sk))
2718 			tp->prr_out += sent_pkts;
2719 
2720 		/* Send one loss probe per tail loss episode. */
2721 		if (push_one != 2)
2722 			tcp_schedule_loss_probe(sk, false);
2723 		return false;
2724 	}
2725 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2726 }
2727 
2728 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2729 {
2730 	struct inet_connection_sock *icsk = inet_csk(sk);
2731 	struct tcp_sock *tp = tcp_sk(sk);
2732 	u32 timeout, rto_delta_us;
2733 	int early_retrans;
2734 
2735 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2736 	 * finishes.
2737 	 */
2738 	if (rcu_access_pointer(tp->fastopen_rsk))
2739 		return false;
2740 
2741 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2742 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2743 	 * not in loss recovery, that are either limited by cwnd or application.
2744 	 */
2745 	if ((early_retrans != 3 && early_retrans != 4) ||
2746 	    !tp->packets_out || !tcp_is_sack(tp) ||
2747 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2748 	     icsk->icsk_ca_state != TCP_CA_CWR))
2749 		return false;
2750 
2751 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2752 	 * for delayed ack when there's one outstanding packet. If no RTT
2753 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2754 	 */
2755 	if (tp->srtt_us) {
2756 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2757 		if (tp->packets_out == 1)
2758 			timeout += TCP_RTO_MIN;
2759 		else
2760 			timeout += TCP_TIMEOUT_MIN;
2761 	} else {
2762 		timeout = TCP_TIMEOUT_INIT;
2763 	}
2764 
2765 	/* If the RTO formula yields an earlier time, then use that time. */
2766 	rto_delta_us = advancing_rto ?
2767 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2768 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2769 	if (rto_delta_us > 0)
2770 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2771 
2772 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2773 	return true;
2774 }
2775 
2776 /* Thanks to skb fast clones, we can detect if a prior transmit of
2777  * a packet is still in a qdisc or driver queue.
2778  * In this case, there is very little point doing a retransmit !
2779  */
2780 static bool skb_still_in_host_queue(struct sock *sk,
2781 				    const struct sk_buff *skb)
2782 {
2783 	if (unlikely(skb_fclone_busy(sk, skb))) {
2784 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2785 		smp_mb__after_atomic();
2786 		if (skb_fclone_busy(sk, skb)) {
2787 			NET_INC_STATS(sock_net(sk),
2788 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2789 			return true;
2790 		}
2791 	}
2792 	return false;
2793 }
2794 
2795 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2796  * retransmit the last segment.
2797  */
2798 void tcp_send_loss_probe(struct sock *sk)
2799 {
2800 	struct tcp_sock *tp = tcp_sk(sk);
2801 	struct sk_buff *skb;
2802 	int pcount;
2803 	int mss = tcp_current_mss(sk);
2804 
2805 	/* At most one outstanding TLP */
2806 	if (tp->tlp_high_seq)
2807 		goto rearm_timer;
2808 
2809 	tp->tlp_retrans = 0;
2810 	skb = tcp_send_head(sk);
2811 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2812 		pcount = tp->packets_out;
2813 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2814 		if (tp->packets_out > pcount)
2815 			goto probe_sent;
2816 		goto rearm_timer;
2817 	}
2818 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2819 	if (unlikely(!skb)) {
2820 		WARN_ONCE(tp->packets_out,
2821 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2822 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2823 		inet_csk(sk)->icsk_pending = 0;
2824 		return;
2825 	}
2826 
2827 	if (skb_still_in_host_queue(sk, skb))
2828 		goto rearm_timer;
2829 
2830 	pcount = tcp_skb_pcount(skb);
2831 	if (WARN_ON(!pcount))
2832 		goto rearm_timer;
2833 
2834 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2835 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2836 					  (pcount - 1) * mss, mss,
2837 					  GFP_ATOMIC)))
2838 			goto rearm_timer;
2839 		skb = skb_rb_next(skb);
2840 	}
2841 
2842 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2843 		goto rearm_timer;
2844 
2845 	if (__tcp_retransmit_skb(sk, skb, 1))
2846 		goto rearm_timer;
2847 
2848 	tp->tlp_retrans = 1;
2849 
2850 probe_sent:
2851 	/* Record snd_nxt for loss detection. */
2852 	tp->tlp_high_seq = tp->snd_nxt;
2853 
2854 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2855 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2856 	inet_csk(sk)->icsk_pending = 0;
2857 rearm_timer:
2858 	tcp_rearm_rto(sk);
2859 }
2860 
2861 /* Push out any pending frames which were held back due to
2862  * TCP_CORK or attempt at coalescing tiny packets.
2863  * The socket must be locked by the caller.
2864  */
2865 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2866 			       int nonagle)
2867 {
2868 	/* If we are closed, the bytes will have to remain here.
2869 	 * In time closedown will finish, we empty the write queue and
2870 	 * all will be happy.
2871 	 */
2872 	if (unlikely(sk->sk_state == TCP_CLOSE))
2873 		return;
2874 
2875 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2876 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2877 		tcp_check_probe_timer(sk);
2878 }
2879 
2880 /* Send _single_ skb sitting at the send head. This function requires
2881  * true push pending frames to setup probe timer etc.
2882  */
2883 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2884 {
2885 	struct sk_buff *skb = tcp_send_head(sk);
2886 
2887 	BUG_ON(!skb || skb->len < mss_now);
2888 
2889 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2890 }
2891 
2892 /* This function returns the amount that we can raise the
2893  * usable window based on the following constraints
2894  *
2895  * 1. The window can never be shrunk once it is offered (RFC 793)
2896  * 2. We limit memory per socket
2897  *
2898  * RFC 1122:
2899  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2900  *  RECV.NEXT + RCV.WIN fixed until:
2901  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2902  *
2903  * i.e. don't raise the right edge of the window until you can raise
2904  * it at least MSS bytes.
2905  *
2906  * Unfortunately, the recommended algorithm breaks header prediction,
2907  * since header prediction assumes th->window stays fixed.
2908  *
2909  * Strictly speaking, keeping th->window fixed violates the receiver
2910  * side SWS prevention criteria. The problem is that under this rule
2911  * a stream of single byte packets will cause the right side of the
2912  * window to always advance by a single byte.
2913  *
2914  * Of course, if the sender implements sender side SWS prevention
2915  * then this will not be a problem.
2916  *
2917  * BSD seems to make the following compromise:
2918  *
2919  *	If the free space is less than the 1/4 of the maximum
2920  *	space available and the free space is less than 1/2 mss,
2921  *	then set the window to 0.
2922  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2923  *	Otherwise, just prevent the window from shrinking
2924  *	and from being larger than the largest representable value.
2925  *
2926  * This prevents incremental opening of the window in the regime
2927  * where TCP is limited by the speed of the reader side taking
2928  * data out of the TCP receive queue. It does nothing about
2929  * those cases where the window is constrained on the sender side
2930  * because the pipeline is full.
2931  *
2932  * BSD also seems to "accidentally" limit itself to windows that are a
2933  * multiple of MSS, at least until the free space gets quite small.
2934  * This would appear to be a side effect of the mbuf implementation.
2935  * Combining these two algorithms results in the observed behavior
2936  * of having a fixed window size at almost all times.
2937  *
2938  * Below we obtain similar behavior by forcing the offered window to
2939  * a multiple of the mss when it is feasible to do so.
2940  *
2941  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2942  * Regular options like TIMESTAMP are taken into account.
2943  */
2944 u32 __tcp_select_window(struct sock *sk)
2945 {
2946 	struct inet_connection_sock *icsk = inet_csk(sk);
2947 	struct tcp_sock *tp = tcp_sk(sk);
2948 	/* MSS for the peer's data.  Previous versions used mss_clamp
2949 	 * here.  I don't know if the value based on our guesses
2950 	 * of peer's MSS is better for the performance.  It's more correct
2951 	 * but may be worse for the performance because of rcv_mss
2952 	 * fluctuations.  --SAW  1998/11/1
2953 	 */
2954 	int mss = icsk->icsk_ack.rcv_mss;
2955 	int free_space = tcp_space(sk);
2956 	int allowed_space = tcp_full_space(sk);
2957 	int full_space, window;
2958 
2959 	if (sk_is_mptcp(sk))
2960 		mptcp_space(sk, &free_space, &allowed_space);
2961 
2962 	full_space = min_t(int, tp->window_clamp, allowed_space);
2963 
2964 	if (unlikely(mss > full_space)) {
2965 		mss = full_space;
2966 		if (mss <= 0)
2967 			return 0;
2968 	}
2969 	if (free_space < (full_space >> 1)) {
2970 		icsk->icsk_ack.quick = 0;
2971 
2972 		if (tcp_under_memory_pressure(sk))
2973 			tcp_adjust_rcv_ssthresh(sk);
2974 
2975 		/* free_space might become our new window, make sure we don't
2976 		 * increase it due to wscale.
2977 		 */
2978 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2979 
2980 		/* if free space is less than mss estimate, or is below 1/16th
2981 		 * of the maximum allowed, try to move to zero-window, else
2982 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2983 		 * new incoming data is dropped due to memory limits.
2984 		 * With large window, mss test triggers way too late in order
2985 		 * to announce zero window in time before rmem limit kicks in.
2986 		 */
2987 		if (free_space < (allowed_space >> 4) || free_space < mss)
2988 			return 0;
2989 	}
2990 
2991 	if (free_space > tp->rcv_ssthresh)
2992 		free_space = tp->rcv_ssthresh;
2993 
2994 	/* Don't do rounding if we are using window scaling, since the
2995 	 * scaled window will not line up with the MSS boundary anyway.
2996 	 */
2997 	if (tp->rx_opt.rcv_wscale) {
2998 		window = free_space;
2999 
3000 		/* Advertise enough space so that it won't get scaled away.
3001 		 * Import case: prevent zero window announcement if
3002 		 * 1<<rcv_wscale > mss.
3003 		 */
3004 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3005 	} else {
3006 		window = tp->rcv_wnd;
3007 		/* Get the largest window that is a nice multiple of mss.
3008 		 * Window clamp already applied above.
3009 		 * If our current window offering is within 1 mss of the
3010 		 * free space we just keep it. This prevents the divide
3011 		 * and multiply from happening most of the time.
3012 		 * We also don't do any window rounding when the free space
3013 		 * is too small.
3014 		 */
3015 		if (window <= free_space - mss || window > free_space)
3016 			window = rounddown(free_space, mss);
3017 		else if (mss == full_space &&
3018 			 free_space > window + (full_space >> 1))
3019 			window = free_space;
3020 	}
3021 
3022 	return window;
3023 }
3024 
3025 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3026 			     const struct sk_buff *next_skb)
3027 {
3028 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3029 		const struct skb_shared_info *next_shinfo =
3030 			skb_shinfo(next_skb);
3031 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3032 
3033 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3034 		shinfo->tskey = next_shinfo->tskey;
3035 		TCP_SKB_CB(skb)->txstamp_ack |=
3036 			TCP_SKB_CB(next_skb)->txstamp_ack;
3037 	}
3038 }
3039 
3040 /* Collapses two adjacent SKB's during retransmission. */
3041 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3042 {
3043 	struct tcp_sock *tp = tcp_sk(sk);
3044 	struct sk_buff *next_skb = skb_rb_next(skb);
3045 	int next_skb_size;
3046 
3047 	next_skb_size = next_skb->len;
3048 
3049 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3050 
3051 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3052 		return false;
3053 
3054 	tcp_highest_sack_replace(sk, next_skb, skb);
3055 
3056 	/* Update sequence range on original skb. */
3057 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3058 
3059 	/* Merge over control information. This moves PSH/FIN etc. over */
3060 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3061 
3062 	/* All done, get rid of second SKB and account for it so
3063 	 * packet counting does not break.
3064 	 */
3065 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3066 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3067 
3068 	/* changed transmit queue under us so clear hints */
3069 	tcp_clear_retrans_hints_partial(tp);
3070 	if (next_skb == tp->retransmit_skb_hint)
3071 		tp->retransmit_skb_hint = skb;
3072 
3073 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3074 
3075 	tcp_skb_collapse_tstamp(skb, next_skb);
3076 
3077 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3078 	return true;
3079 }
3080 
3081 /* Check if coalescing SKBs is legal. */
3082 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3083 {
3084 	if (tcp_skb_pcount(skb) > 1)
3085 		return false;
3086 	if (skb_cloned(skb))
3087 		return false;
3088 	/* Some heuristics for collapsing over SACK'd could be invented */
3089 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3090 		return false;
3091 
3092 	return true;
3093 }
3094 
3095 /* Collapse packets in the retransmit queue to make to create
3096  * less packets on the wire. This is only done on retransmission.
3097  */
3098 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3099 				     int space)
3100 {
3101 	struct tcp_sock *tp = tcp_sk(sk);
3102 	struct sk_buff *skb = to, *tmp;
3103 	bool first = true;
3104 
3105 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3106 		return;
3107 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3108 		return;
3109 
3110 	skb_rbtree_walk_from_safe(skb, tmp) {
3111 		if (!tcp_can_collapse(sk, skb))
3112 			break;
3113 
3114 		if (!tcp_skb_can_collapse(to, skb))
3115 			break;
3116 
3117 		space -= skb->len;
3118 
3119 		if (first) {
3120 			first = false;
3121 			continue;
3122 		}
3123 
3124 		if (space < 0)
3125 			break;
3126 
3127 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3128 			break;
3129 
3130 		if (!tcp_collapse_retrans(sk, to))
3131 			break;
3132 	}
3133 }
3134 
3135 /* This retransmits one SKB.  Policy decisions and retransmit queue
3136  * state updates are done by the caller.  Returns non-zero if an
3137  * error occurred which prevented the send.
3138  */
3139 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3140 {
3141 	struct inet_connection_sock *icsk = inet_csk(sk);
3142 	struct tcp_sock *tp = tcp_sk(sk);
3143 	unsigned int cur_mss;
3144 	int diff, len, err;
3145 	int avail_wnd;
3146 
3147 	/* Inconclusive MTU probe */
3148 	if (icsk->icsk_mtup.probe_size)
3149 		icsk->icsk_mtup.probe_size = 0;
3150 
3151 	if (skb_still_in_host_queue(sk, skb))
3152 		return -EBUSY;
3153 
3154 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3155 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3156 			WARN_ON_ONCE(1);
3157 			return -EINVAL;
3158 		}
3159 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3160 			return -ENOMEM;
3161 	}
3162 
3163 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3164 		return -EHOSTUNREACH; /* Routing failure or similar. */
3165 
3166 	cur_mss = tcp_current_mss(sk);
3167 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3168 
3169 	/* If receiver has shrunk his window, and skb is out of
3170 	 * new window, do not retransmit it. The exception is the
3171 	 * case, when window is shrunk to zero. In this case
3172 	 * our retransmit of one segment serves as a zero window probe.
3173 	 */
3174 	if (avail_wnd <= 0) {
3175 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3176 			return -EAGAIN;
3177 		avail_wnd = cur_mss;
3178 	}
3179 
3180 	len = cur_mss * segs;
3181 	if (len > avail_wnd) {
3182 		len = rounddown(avail_wnd, cur_mss);
3183 		if (!len)
3184 			len = avail_wnd;
3185 	}
3186 	if (skb->len > len) {
3187 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3188 				 cur_mss, GFP_ATOMIC))
3189 			return -ENOMEM; /* We'll try again later. */
3190 	} else {
3191 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3192 			return -ENOMEM;
3193 
3194 		diff = tcp_skb_pcount(skb);
3195 		tcp_set_skb_tso_segs(skb, cur_mss);
3196 		diff -= tcp_skb_pcount(skb);
3197 		if (diff)
3198 			tcp_adjust_pcount(sk, skb, diff);
3199 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3200 		if (skb->len < avail_wnd)
3201 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3202 	}
3203 
3204 	/* RFC3168, section 6.1.1.1. ECN fallback */
3205 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3206 		tcp_ecn_clear_syn(sk, skb);
3207 
3208 	/* Update global and local TCP statistics. */
3209 	segs = tcp_skb_pcount(skb);
3210 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3211 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3212 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3213 	tp->total_retrans += segs;
3214 	tp->bytes_retrans += skb->len;
3215 
3216 	/* make sure skb->data is aligned on arches that require it
3217 	 * and check if ack-trimming & collapsing extended the headroom
3218 	 * beyond what csum_start can cover.
3219 	 */
3220 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3221 		     skb_headroom(skb) >= 0xFFFF)) {
3222 		struct sk_buff *nskb;
3223 
3224 		tcp_skb_tsorted_save(skb) {
3225 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3226 			if (nskb) {
3227 				nskb->dev = NULL;
3228 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3229 			} else {
3230 				err = -ENOBUFS;
3231 			}
3232 		} tcp_skb_tsorted_restore(skb);
3233 
3234 		if (!err) {
3235 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3236 			tcp_rate_skb_sent(sk, skb);
3237 		}
3238 	} else {
3239 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3240 	}
3241 
3242 	/* To avoid taking spuriously low RTT samples based on a timestamp
3243 	 * for a transmit that never happened, always mark EVER_RETRANS
3244 	 */
3245 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3246 
3247 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3248 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3249 				  TCP_SKB_CB(skb)->seq, segs, err);
3250 
3251 	if (likely(!err)) {
3252 		trace_tcp_retransmit_skb(sk, skb);
3253 	} else if (err != -EBUSY) {
3254 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3255 	}
3256 	return err;
3257 }
3258 
3259 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3260 {
3261 	struct tcp_sock *tp = tcp_sk(sk);
3262 	int err = __tcp_retransmit_skb(sk, skb, segs);
3263 
3264 	if (err == 0) {
3265 #if FASTRETRANS_DEBUG > 0
3266 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3267 			net_dbg_ratelimited("retrans_out leaked\n");
3268 		}
3269 #endif
3270 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3271 		tp->retrans_out += tcp_skb_pcount(skb);
3272 	}
3273 
3274 	/* Save stamp of the first (attempted) retransmit. */
3275 	if (!tp->retrans_stamp)
3276 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3277 
3278 	if (tp->undo_retrans < 0)
3279 		tp->undo_retrans = 0;
3280 	tp->undo_retrans += tcp_skb_pcount(skb);
3281 	return err;
3282 }
3283 
3284 /* This gets called after a retransmit timeout, and the initially
3285  * retransmitted data is acknowledged.  It tries to continue
3286  * resending the rest of the retransmit queue, until either
3287  * we've sent it all or the congestion window limit is reached.
3288  */
3289 void tcp_xmit_retransmit_queue(struct sock *sk)
3290 {
3291 	const struct inet_connection_sock *icsk = inet_csk(sk);
3292 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3293 	struct tcp_sock *tp = tcp_sk(sk);
3294 	bool rearm_timer = false;
3295 	u32 max_segs;
3296 	int mib_idx;
3297 
3298 	if (!tp->packets_out)
3299 		return;
3300 
3301 	rtx_head = tcp_rtx_queue_head(sk);
3302 	skb = tp->retransmit_skb_hint ?: rtx_head;
3303 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3304 	skb_rbtree_walk_from(skb) {
3305 		__u8 sacked;
3306 		int segs;
3307 
3308 		if (tcp_pacing_check(sk))
3309 			break;
3310 
3311 		/* we could do better than to assign each time */
3312 		if (!hole)
3313 			tp->retransmit_skb_hint = skb;
3314 
3315 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3316 		if (segs <= 0)
3317 			break;
3318 		sacked = TCP_SKB_CB(skb)->sacked;
3319 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3320 		 * we need to make sure not sending too bigs TSO packets
3321 		 */
3322 		segs = min_t(int, segs, max_segs);
3323 
3324 		if (tp->retrans_out >= tp->lost_out) {
3325 			break;
3326 		} else if (!(sacked & TCPCB_LOST)) {
3327 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3328 				hole = skb;
3329 			continue;
3330 
3331 		} else {
3332 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3333 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3334 			else
3335 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3336 		}
3337 
3338 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3339 			continue;
3340 
3341 		if (tcp_small_queue_check(sk, skb, 1))
3342 			break;
3343 
3344 		if (tcp_retransmit_skb(sk, skb, segs))
3345 			break;
3346 
3347 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3348 
3349 		if (tcp_in_cwnd_reduction(sk))
3350 			tp->prr_out += tcp_skb_pcount(skb);
3351 
3352 		if (skb == rtx_head &&
3353 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3354 			rearm_timer = true;
3355 
3356 	}
3357 	if (rearm_timer)
3358 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3359 				     inet_csk(sk)->icsk_rto,
3360 				     TCP_RTO_MAX);
3361 }
3362 
3363 /* We allow to exceed memory limits for FIN packets to expedite
3364  * connection tear down and (memory) recovery.
3365  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3366  * or even be forced to close flow without any FIN.
3367  * In general, we want to allow one skb per socket to avoid hangs
3368  * with edge trigger epoll()
3369  */
3370 void sk_forced_mem_schedule(struct sock *sk, int size)
3371 {
3372 	int delta, amt;
3373 
3374 	delta = size - sk->sk_forward_alloc;
3375 	if (delta <= 0)
3376 		return;
3377 	amt = sk_mem_pages(delta);
3378 	sk->sk_forward_alloc += amt << PAGE_SHIFT;
3379 	sk_memory_allocated_add(sk, amt);
3380 
3381 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3382 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3383 					gfp_memcg_charge() | __GFP_NOFAIL);
3384 }
3385 
3386 /* Send a FIN. The caller locks the socket for us.
3387  * We should try to send a FIN packet really hard, but eventually give up.
3388  */
3389 void tcp_send_fin(struct sock *sk)
3390 {
3391 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3392 	struct tcp_sock *tp = tcp_sk(sk);
3393 
3394 	/* Optimization, tack on the FIN if we have one skb in write queue and
3395 	 * this skb was not yet sent, or we are under memory pressure.
3396 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3397 	 * as TCP stack thinks it has already been transmitted.
3398 	 */
3399 	tskb = tail;
3400 	if (!tskb && tcp_under_memory_pressure(sk))
3401 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3402 
3403 	if (tskb) {
3404 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3405 		TCP_SKB_CB(tskb)->end_seq++;
3406 		tp->write_seq++;
3407 		if (!tail) {
3408 			/* This means tskb was already sent.
3409 			 * Pretend we included the FIN on previous transmit.
3410 			 * We need to set tp->snd_nxt to the value it would have
3411 			 * if FIN had been sent. This is because retransmit path
3412 			 * does not change tp->snd_nxt.
3413 			 */
3414 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3415 			return;
3416 		}
3417 	} else {
3418 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3419 		if (unlikely(!skb))
3420 			return;
3421 
3422 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3423 		skb_reserve(skb, MAX_TCP_HEADER);
3424 		sk_forced_mem_schedule(sk, skb->truesize);
3425 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3426 		tcp_init_nondata_skb(skb, tp->write_seq,
3427 				     TCPHDR_ACK | TCPHDR_FIN);
3428 		tcp_queue_skb(sk, skb);
3429 	}
3430 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3431 }
3432 
3433 /* We get here when a process closes a file descriptor (either due to
3434  * an explicit close() or as a byproduct of exit()'ing) and there
3435  * was unread data in the receive queue.  This behavior is recommended
3436  * by RFC 2525, section 2.17.  -DaveM
3437  */
3438 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3439 {
3440 	struct sk_buff *skb;
3441 
3442 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3443 
3444 	/* NOTE: No TCP options attached and we never retransmit this. */
3445 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3446 	if (!skb) {
3447 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3448 		return;
3449 	}
3450 
3451 	/* Reserve space for headers and prepare control bits. */
3452 	skb_reserve(skb, MAX_TCP_HEADER);
3453 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3454 			     TCPHDR_ACK | TCPHDR_RST);
3455 	tcp_mstamp_refresh(tcp_sk(sk));
3456 	/* Send it off. */
3457 	if (tcp_transmit_skb(sk, skb, 0, priority))
3458 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3459 
3460 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3461 	 * skb here is different to the troublesome skb, so use NULL
3462 	 */
3463 	trace_tcp_send_reset(sk, NULL);
3464 }
3465 
3466 /* Send a crossed SYN-ACK during socket establishment.
3467  * WARNING: This routine must only be called when we have already sent
3468  * a SYN packet that crossed the incoming SYN that caused this routine
3469  * to get called. If this assumption fails then the initial rcv_wnd
3470  * and rcv_wscale values will not be correct.
3471  */
3472 int tcp_send_synack(struct sock *sk)
3473 {
3474 	struct sk_buff *skb;
3475 
3476 	skb = tcp_rtx_queue_head(sk);
3477 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3478 		pr_err("%s: wrong queue state\n", __func__);
3479 		return -EFAULT;
3480 	}
3481 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3482 		if (skb_cloned(skb)) {
3483 			struct sk_buff *nskb;
3484 
3485 			tcp_skb_tsorted_save(skb) {
3486 				nskb = skb_copy(skb, GFP_ATOMIC);
3487 			} tcp_skb_tsorted_restore(skb);
3488 			if (!nskb)
3489 				return -ENOMEM;
3490 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3491 			tcp_highest_sack_replace(sk, skb, nskb);
3492 			tcp_rtx_queue_unlink_and_free(skb, sk);
3493 			__skb_header_release(nskb);
3494 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3495 			sk_wmem_queued_add(sk, nskb->truesize);
3496 			sk_mem_charge(sk, nskb->truesize);
3497 			skb = nskb;
3498 		}
3499 
3500 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3501 		tcp_ecn_send_synack(sk, skb);
3502 	}
3503 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3504 }
3505 
3506 /**
3507  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3508  * @sk: listener socket
3509  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3510  *       should not use it again.
3511  * @req: request_sock pointer
3512  * @foc: cookie for tcp fast open
3513  * @synack_type: Type of synack to prepare
3514  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3515  */
3516 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3517 				struct request_sock *req,
3518 				struct tcp_fastopen_cookie *foc,
3519 				enum tcp_synack_type synack_type,
3520 				struct sk_buff *syn_skb)
3521 {
3522 	struct inet_request_sock *ireq = inet_rsk(req);
3523 	const struct tcp_sock *tp = tcp_sk(sk);
3524 	struct tcp_md5sig_key *md5 = NULL;
3525 	struct tcp_out_options opts;
3526 	struct sk_buff *skb;
3527 	int tcp_header_size;
3528 	struct tcphdr *th;
3529 	int mss;
3530 	u64 now;
3531 
3532 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3533 	if (unlikely(!skb)) {
3534 		dst_release(dst);
3535 		return NULL;
3536 	}
3537 	/* Reserve space for headers. */
3538 	skb_reserve(skb, MAX_TCP_HEADER);
3539 
3540 	switch (synack_type) {
3541 	case TCP_SYNACK_NORMAL:
3542 		skb_set_owner_w(skb, req_to_sk(req));
3543 		break;
3544 	case TCP_SYNACK_COOKIE:
3545 		/* Under synflood, we do not attach skb to a socket,
3546 		 * to avoid false sharing.
3547 		 */
3548 		break;
3549 	case TCP_SYNACK_FASTOPEN:
3550 		/* sk is a const pointer, because we want to express multiple
3551 		 * cpu might call us concurrently.
3552 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3553 		 */
3554 		skb_set_owner_w(skb, (struct sock *)sk);
3555 		break;
3556 	}
3557 	skb_dst_set(skb, dst);
3558 
3559 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3560 
3561 	memset(&opts, 0, sizeof(opts));
3562 	now = tcp_clock_ns();
3563 #ifdef CONFIG_SYN_COOKIES
3564 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3565 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3566 				      true);
3567 	else
3568 #endif
3569 	{
3570 		skb_set_delivery_time(skb, now, true);
3571 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3572 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3573 	}
3574 
3575 #ifdef CONFIG_TCP_MD5SIG
3576 	rcu_read_lock();
3577 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3578 #endif
3579 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3580 	/* bpf program will be interested in the tcp_flags */
3581 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3582 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3583 					     foc, synack_type,
3584 					     syn_skb) + sizeof(*th);
3585 
3586 	skb_push(skb, tcp_header_size);
3587 	skb_reset_transport_header(skb);
3588 
3589 	th = (struct tcphdr *)skb->data;
3590 	memset(th, 0, sizeof(struct tcphdr));
3591 	th->syn = 1;
3592 	th->ack = 1;
3593 	tcp_ecn_make_synack(req, th);
3594 	th->source = htons(ireq->ir_num);
3595 	th->dest = ireq->ir_rmt_port;
3596 	skb->mark = ireq->ir_mark;
3597 	skb->ip_summed = CHECKSUM_PARTIAL;
3598 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3599 	/* XXX data is queued and acked as is. No buffer/window check */
3600 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3601 
3602 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3603 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3604 	tcp_options_write(th, NULL, &opts);
3605 	th->doff = (tcp_header_size >> 2);
3606 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3607 
3608 #ifdef CONFIG_TCP_MD5SIG
3609 	/* Okay, we have all we need - do the md5 hash if needed */
3610 	if (md5)
3611 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3612 					       md5, req_to_sk(req), skb);
3613 	rcu_read_unlock();
3614 #endif
3615 
3616 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3617 				synack_type, &opts);
3618 
3619 	skb_set_delivery_time(skb, now, true);
3620 	tcp_add_tx_delay(skb, tp);
3621 
3622 	return skb;
3623 }
3624 EXPORT_SYMBOL(tcp_make_synack);
3625 
3626 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3627 {
3628 	struct inet_connection_sock *icsk = inet_csk(sk);
3629 	const struct tcp_congestion_ops *ca;
3630 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3631 
3632 	if (ca_key == TCP_CA_UNSPEC)
3633 		return;
3634 
3635 	rcu_read_lock();
3636 	ca = tcp_ca_find_key(ca_key);
3637 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3638 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3639 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3640 		icsk->icsk_ca_ops = ca;
3641 	}
3642 	rcu_read_unlock();
3643 }
3644 
3645 /* Do all connect socket setups that can be done AF independent. */
3646 static void tcp_connect_init(struct sock *sk)
3647 {
3648 	const struct dst_entry *dst = __sk_dst_get(sk);
3649 	struct tcp_sock *tp = tcp_sk(sk);
3650 	__u8 rcv_wscale;
3651 	u32 rcv_wnd;
3652 
3653 	/* We'll fix this up when we get a response from the other end.
3654 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3655 	 */
3656 	tp->tcp_header_len = sizeof(struct tcphdr);
3657 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3658 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3659 
3660 #ifdef CONFIG_TCP_MD5SIG
3661 	if (tp->af_specific->md5_lookup(sk, sk))
3662 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3663 #endif
3664 
3665 	/* If user gave his TCP_MAXSEG, record it to clamp */
3666 	if (tp->rx_opt.user_mss)
3667 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3668 	tp->max_window = 0;
3669 	tcp_mtup_init(sk);
3670 	tcp_sync_mss(sk, dst_mtu(dst));
3671 
3672 	tcp_ca_dst_init(sk, dst);
3673 
3674 	if (!tp->window_clamp)
3675 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3676 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3677 
3678 	tcp_initialize_rcv_mss(sk);
3679 
3680 	/* limit the window selection if the user enforce a smaller rx buffer */
3681 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3682 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3683 		tp->window_clamp = tcp_full_space(sk);
3684 
3685 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3686 	if (rcv_wnd == 0)
3687 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3688 
3689 	tcp_select_initial_window(sk, tcp_full_space(sk),
3690 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3691 				  &tp->rcv_wnd,
3692 				  &tp->window_clamp,
3693 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3694 				  &rcv_wscale,
3695 				  rcv_wnd);
3696 
3697 	tp->rx_opt.rcv_wscale = rcv_wscale;
3698 	tp->rcv_ssthresh = tp->rcv_wnd;
3699 
3700 	sk->sk_err = 0;
3701 	sock_reset_flag(sk, SOCK_DONE);
3702 	tp->snd_wnd = 0;
3703 	tcp_init_wl(tp, 0);
3704 	tcp_write_queue_purge(sk);
3705 	tp->snd_una = tp->write_seq;
3706 	tp->snd_sml = tp->write_seq;
3707 	tp->snd_up = tp->write_seq;
3708 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3709 
3710 	if (likely(!tp->repair))
3711 		tp->rcv_nxt = 0;
3712 	else
3713 		tp->rcv_tstamp = tcp_jiffies32;
3714 	tp->rcv_wup = tp->rcv_nxt;
3715 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3716 
3717 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3718 	inet_csk(sk)->icsk_retransmits = 0;
3719 	tcp_clear_retrans(tp);
3720 }
3721 
3722 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3723 {
3724 	struct tcp_sock *tp = tcp_sk(sk);
3725 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3726 
3727 	tcb->end_seq += skb->len;
3728 	__skb_header_release(skb);
3729 	sk_wmem_queued_add(sk, skb->truesize);
3730 	sk_mem_charge(sk, skb->truesize);
3731 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3732 	tp->packets_out += tcp_skb_pcount(skb);
3733 }
3734 
3735 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3736  * queue a data-only packet after the regular SYN, such that regular SYNs
3737  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3738  * only the SYN sequence, the data are retransmitted in the first ACK.
3739  * If cookie is not cached or other error occurs, falls back to send a
3740  * regular SYN with Fast Open cookie request option.
3741  */
3742 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3743 {
3744 	struct inet_connection_sock *icsk = inet_csk(sk);
3745 	struct tcp_sock *tp = tcp_sk(sk);
3746 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3747 	int space, err = 0;
3748 	struct sk_buff *syn_data;
3749 
3750 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3751 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3752 		goto fallback;
3753 
3754 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3755 	 * user-MSS. Reserve maximum option space for middleboxes that add
3756 	 * private TCP options. The cost is reduced data space in SYN :(
3757 	 */
3758 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3759 	/* Sync mss_cache after updating the mss_clamp */
3760 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3761 
3762 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3763 		MAX_TCP_OPTION_SPACE;
3764 
3765 	space = min_t(size_t, space, fo->size);
3766 
3767 	/* limit to order-0 allocations */
3768 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3769 
3770 	syn_data = tcp_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3771 	if (!syn_data)
3772 		goto fallback;
3773 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3774 	if (space) {
3775 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3776 					    &fo->data->msg_iter);
3777 		if (unlikely(!copied)) {
3778 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3779 			kfree_skb(syn_data);
3780 			goto fallback;
3781 		}
3782 		if (copied != space) {
3783 			skb_trim(syn_data, copied);
3784 			space = copied;
3785 		}
3786 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3787 	}
3788 	/* No more data pending in inet_wait_for_connect() */
3789 	if (space == fo->size)
3790 		fo->data = NULL;
3791 	fo->copied = space;
3792 
3793 	tcp_connect_queue_skb(sk, syn_data);
3794 	if (syn_data->len)
3795 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3796 
3797 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3798 
3799 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3800 
3801 	/* Now full SYN+DATA was cloned and sent (or not),
3802 	 * remove the SYN from the original skb (syn_data)
3803 	 * we keep in write queue in case of a retransmit, as we
3804 	 * also have the SYN packet (with no data) in the same queue.
3805 	 */
3806 	TCP_SKB_CB(syn_data)->seq++;
3807 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3808 	if (!err) {
3809 		tp->syn_data = (fo->copied > 0);
3810 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3811 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3812 		goto done;
3813 	}
3814 
3815 	/* data was not sent, put it in write_queue */
3816 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3817 	tp->packets_out -= tcp_skb_pcount(syn_data);
3818 
3819 fallback:
3820 	/* Send a regular SYN with Fast Open cookie request option */
3821 	if (fo->cookie.len > 0)
3822 		fo->cookie.len = 0;
3823 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3824 	if (err)
3825 		tp->syn_fastopen = 0;
3826 done:
3827 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3828 	return err;
3829 }
3830 
3831 /* Build a SYN and send it off. */
3832 int tcp_connect(struct sock *sk)
3833 {
3834 	struct tcp_sock *tp = tcp_sk(sk);
3835 	struct sk_buff *buff;
3836 	int err;
3837 
3838 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3839 
3840 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3841 		return -EHOSTUNREACH; /* Routing failure or similar. */
3842 
3843 	tcp_connect_init(sk);
3844 
3845 	if (unlikely(tp->repair)) {
3846 		tcp_finish_connect(sk, NULL);
3847 		return 0;
3848 	}
3849 
3850 	buff = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3851 	if (unlikely(!buff))
3852 		return -ENOBUFS;
3853 
3854 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3855 	tcp_mstamp_refresh(tp);
3856 	tp->retrans_stamp = tcp_time_stamp(tp);
3857 	tcp_connect_queue_skb(sk, buff);
3858 	tcp_ecn_send_syn(sk, buff);
3859 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3860 
3861 	/* Send off SYN; include data in Fast Open. */
3862 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3863 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3864 	if (err == -ECONNREFUSED)
3865 		return err;
3866 
3867 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3868 	 * in order to make this packet get counted in tcpOutSegs.
3869 	 */
3870 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3871 	tp->pushed_seq = tp->write_seq;
3872 	buff = tcp_send_head(sk);
3873 	if (unlikely(buff)) {
3874 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3875 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3876 	}
3877 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3878 
3879 	/* Timer for repeating the SYN until an answer. */
3880 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3881 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3882 	return 0;
3883 }
3884 EXPORT_SYMBOL(tcp_connect);
3885 
3886 /* Send out a delayed ack, the caller does the policy checking
3887  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3888  * for details.
3889  */
3890 void tcp_send_delayed_ack(struct sock *sk)
3891 {
3892 	struct inet_connection_sock *icsk = inet_csk(sk);
3893 	int ato = icsk->icsk_ack.ato;
3894 	unsigned long timeout;
3895 
3896 	if (ato > TCP_DELACK_MIN) {
3897 		const struct tcp_sock *tp = tcp_sk(sk);
3898 		int max_ato = HZ / 2;
3899 
3900 		if (inet_csk_in_pingpong_mode(sk) ||
3901 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3902 			max_ato = TCP_DELACK_MAX;
3903 
3904 		/* Slow path, intersegment interval is "high". */
3905 
3906 		/* If some rtt estimate is known, use it to bound delayed ack.
3907 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3908 		 * directly.
3909 		 */
3910 		if (tp->srtt_us) {
3911 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3912 					TCP_DELACK_MIN);
3913 
3914 			if (rtt < max_ato)
3915 				max_ato = rtt;
3916 		}
3917 
3918 		ato = min(ato, max_ato);
3919 	}
3920 
3921 	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3922 
3923 	/* Stay within the limit we were given */
3924 	timeout = jiffies + ato;
3925 
3926 	/* Use new timeout only if there wasn't a older one earlier. */
3927 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3928 		/* If delack timer is about to expire, send ACK now. */
3929 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3930 			tcp_send_ack(sk);
3931 			return;
3932 		}
3933 
3934 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3935 			timeout = icsk->icsk_ack.timeout;
3936 	}
3937 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3938 	icsk->icsk_ack.timeout = timeout;
3939 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3940 }
3941 
3942 /* This routine sends an ack and also updates the window. */
3943 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3944 {
3945 	struct sk_buff *buff;
3946 
3947 	/* If we have been reset, we may not send again. */
3948 	if (sk->sk_state == TCP_CLOSE)
3949 		return;
3950 
3951 	/* We are not putting this on the write queue, so
3952 	 * tcp_transmit_skb() will set the ownership to this
3953 	 * sock.
3954 	 */
3955 	buff = alloc_skb(MAX_TCP_HEADER,
3956 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3957 	if (unlikely(!buff)) {
3958 		struct inet_connection_sock *icsk = inet_csk(sk);
3959 		unsigned long delay;
3960 
3961 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3962 		if (delay < TCP_RTO_MAX)
3963 			icsk->icsk_ack.retry++;
3964 		inet_csk_schedule_ack(sk);
3965 		icsk->icsk_ack.ato = TCP_ATO_MIN;
3966 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3967 		return;
3968 	}
3969 
3970 	/* Reserve space for headers and prepare control bits. */
3971 	skb_reserve(buff, MAX_TCP_HEADER);
3972 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3973 
3974 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3975 	 * too much.
3976 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3977 	 */
3978 	skb_set_tcp_pure_ack(buff);
3979 
3980 	/* Send it off, this clears delayed acks for us. */
3981 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3982 }
3983 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3984 
3985 void tcp_send_ack(struct sock *sk)
3986 {
3987 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3988 }
3989 
3990 /* This routine sends a packet with an out of date sequence
3991  * number. It assumes the other end will try to ack it.
3992  *
3993  * Question: what should we make while urgent mode?
3994  * 4.4BSD forces sending single byte of data. We cannot send
3995  * out of window data, because we have SND.NXT==SND.MAX...
3996  *
3997  * Current solution: to send TWO zero-length segments in urgent mode:
3998  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3999  * out-of-date with SND.UNA-1 to probe window.
4000  */
4001 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4002 {
4003 	struct tcp_sock *tp = tcp_sk(sk);
4004 	struct sk_buff *skb;
4005 
4006 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4007 	skb = alloc_skb(MAX_TCP_HEADER,
4008 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4009 	if (!skb)
4010 		return -1;
4011 
4012 	/* Reserve space for headers and set control bits. */
4013 	skb_reserve(skb, MAX_TCP_HEADER);
4014 	/* Use a previous sequence.  This should cause the other
4015 	 * end to send an ack.  Don't queue or clone SKB, just
4016 	 * send it.
4017 	 */
4018 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4019 	NET_INC_STATS(sock_net(sk), mib);
4020 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4021 }
4022 
4023 /* Called from setsockopt( ... TCP_REPAIR ) */
4024 void tcp_send_window_probe(struct sock *sk)
4025 {
4026 	if (sk->sk_state == TCP_ESTABLISHED) {
4027 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4028 		tcp_mstamp_refresh(tcp_sk(sk));
4029 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4030 	}
4031 }
4032 
4033 /* Initiate keepalive or window probe from timer. */
4034 int tcp_write_wakeup(struct sock *sk, int mib)
4035 {
4036 	struct tcp_sock *tp = tcp_sk(sk);
4037 	struct sk_buff *skb;
4038 
4039 	if (sk->sk_state == TCP_CLOSE)
4040 		return -1;
4041 
4042 	skb = tcp_send_head(sk);
4043 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4044 		int err;
4045 		unsigned int mss = tcp_current_mss(sk);
4046 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4047 
4048 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4049 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4050 
4051 		/* We are probing the opening of a window
4052 		 * but the window size is != 0
4053 		 * must have been a result SWS avoidance ( sender )
4054 		 */
4055 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4056 		    skb->len > mss) {
4057 			seg_size = min(seg_size, mss);
4058 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4059 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4060 					 skb, seg_size, mss, GFP_ATOMIC))
4061 				return -1;
4062 		} else if (!tcp_skb_pcount(skb))
4063 			tcp_set_skb_tso_segs(skb, mss);
4064 
4065 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4066 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4067 		if (!err)
4068 			tcp_event_new_data_sent(sk, skb);
4069 		return err;
4070 	} else {
4071 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4072 			tcp_xmit_probe_skb(sk, 1, mib);
4073 		return tcp_xmit_probe_skb(sk, 0, mib);
4074 	}
4075 }
4076 
4077 /* A window probe timeout has occurred.  If window is not closed send
4078  * a partial packet else a zero probe.
4079  */
4080 void tcp_send_probe0(struct sock *sk)
4081 {
4082 	struct inet_connection_sock *icsk = inet_csk(sk);
4083 	struct tcp_sock *tp = tcp_sk(sk);
4084 	struct net *net = sock_net(sk);
4085 	unsigned long timeout;
4086 	int err;
4087 
4088 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4089 
4090 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4091 		/* Cancel probe timer, if it is not required. */
4092 		icsk->icsk_probes_out = 0;
4093 		icsk->icsk_backoff = 0;
4094 		icsk->icsk_probes_tstamp = 0;
4095 		return;
4096 	}
4097 
4098 	icsk->icsk_probes_out++;
4099 	if (err <= 0) {
4100 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4101 			icsk->icsk_backoff++;
4102 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4103 	} else {
4104 		/* If packet was not sent due to local congestion,
4105 		 * Let senders fight for local resources conservatively.
4106 		 */
4107 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4108 	}
4109 
4110 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4111 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4112 }
4113 
4114 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4115 {
4116 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4117 	struct flowi fl;
4118 	int res;
4119 
4120 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4121 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4122 		tcp_rsk(req)->txhash = net_tx_rndhash();
4123 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4124 				  NULL);
4125 	if (!res) {
4126 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4127 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4128 		if (unlikely(tcp_passive_fastopen(sk)))
4129 			tcp_sk(sk)->total_retrans++;
4130 		trace_tcp_retransmit_synack(sk, req);
4131 	}
4132 	return res;
4133 }
4134 EXPORT_SYMBOL(tcp_rtx_synack);
4135