1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: Pedro Roque : Retransmit queue handled by TCP. 24 * : Fragmentation on mtu decrease 25 * : Segment collapse on retransmit 26 * : AF independence 27 * 28 * Linus Torvalds : send_delayed_ack 29 * David S. Miller : Charge memory using the right skb 30 * during syn/ack processing. 31 * David S. Miller : Output engine completely rewritten. 32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 33 * Cacophonix Gaul : draft-minshall-nagle-01 34 * J Hadi Salim : ECN support 35 * 36 */ 37 38 #define pr_fmt(fmt) "TCP: " fmt 39 40 #include <net/tcp.h> 41 #include <net/mptcp.h> 42 43 #include <linux/compiler.h> 44 #include <linux/gfp.h> 45 #include <linux/module.h> 46 #include <linux/static_key.h> 47 48 #include <trace/events/tcp.h> 49 50 /* Refresh clocks of a TCP socket, 51 * ensuring monotically increasing values. 52 */ 53 void tcp_mstamp_refresh(struct tcp_sock *tp) 54 { 55 u64 val = tcp_clock_ns(); 56 57 tp->tcp_clock_cache = val; 58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); 59 } 60 61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 62 int push_one, gfp_t gfp); 63 64 /* Account for new data that has been sent to the network. */ 65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) 66 { 67 struct inet_connection_sock *icsk = inet_csk(sk); 68 struct tcp_sock *tp = tcp_sk(sk); 69 unsigned int prior_packets = tp->packets_out; 70 71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); 72 73 __skb_unlink(skb, &sk->sk_write_queue); 74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); 75 76 if (tp->highest_sack == NULL) 77 tp->highest_sack = skb; 78 79 tp->packets_out += tcp_skb_pcount(skb); 80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 81 tcp_rearm_rto(sk); 82 83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, 84 tcp_skb_pcount(skb)); 85 tcp_check_space(sk); 86 } 87 88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one 89 * window scaling factor due to loss of precision. 90 * If window has been shrunk, what should we make? It is not clear at all. 91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 93 * invalid. OK, let's make this for now: 94 */ 95 static inline __u32 tcp_acceptable_seq(const struct sock *sk) 96 { 97 const struct tcp_sock *tp = tcp_sk(sk); 98 99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) || 100 (tp->rx_opt.wscale_ok && 101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) 102 return tp->snd_nxt; 103 else 104 return tcp_wnd_end(tp); 105 } 106 107 /* Calculate mss to advertise in SYN segment. 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 109 * 110 * 1. It is independent of path mtu. 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 113 * attached devices, because some buggy hosts are confused by 114 * large MSS. 115 * 4. We do not make 3, we advertise MSS, calculated from first 116 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 117 * This may be overridden via information stored in routing table. 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 119 * probably even Jumbo". 120 */ 121 static __u16 tcp_advertise_mss(struct sock *sk) 122 { 123 struct tcp_sock *tp = tcp_sk(sk); 124 const struct dst_entry *dst = __sk_dst_get(sk); 125 int mss = tp->advmss; 126 127 if (dst) { 128 unsigned int metric = dst_metric_advmss(dst); 129 130 if (metric < mss) { 131 mss = metric; 132 tp->advmss = mss; 133 } 134 } 135 136 return (__u16)mss; 137 } 138 139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 140 * This is the first part of cwnd validation mechanism. 141 */ 142 void tcp_cwnd_restart(struct sock *sk, s32 delta) 143 { 144 struct tcp_sock *tp = tcp_sk(sk); 145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 146 u32 cwnd = tcp_snd_cwnd(tp); 147 148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 149 150 tp->snd_ssthresh = tcp_current_ssthresh(sk); 151 restart_cwnd = min(restart_cwnd, cwnd); 152 153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 154 cwnd >>= 1; 155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); 156 tp->snd_cwnd_stamp = tcp_jiffies32; 157 tp->snd_cwnd_used = 0; 158 } 159 160 /* Congestion state accounting after a packet has been sent. */ 161 static void tcp_event_data_sent(struct tcp_sock *tp, 162 struct sock *sk) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const u32 now = tcp_jiffies32; 166 167 if (tcp_packets_in_flight(tp) == 0) 168 tcp_ca_event(sk, CA_EVENT_TX_START); 169 170 tp->lsndtime = now; 171 172 /* If it is a reply for ato after last received 173 * packet, enter pingpong mode. 174 */ 175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 176 inet_csk_enter_pingpong_mode(sk); 177 } 178 179 /* Account for an ACK we sent. */ 180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt) 181 { 182 struct tcp_sock *tp = tcp_sk(sk); 183 184 if (unlikely(tp->compressed_ack)) { 185 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 186 tp->compressed_ack); 187 tp->compressed_ack = 0; 188 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 189 __sock_put(sk); 190 } 191 192 if (unlikely(rcv_nxt != tp->rcv_nxt)) 193 return; /* Special ACK sent by DCTCP to reflect ECN */ 194 tcp_dec_quickack_mode(sk); 195 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 196 } 197 198 /* Determine a window scaling and initial window to offer. 199 * Based on the assumption that the given amount of space 200 * will be offered. Store the results in the tp structure. 201 * NOTE: for smooth operation initial space offering should 202 * be a multiple of mss if possible. We assume here that mss >= 1. 203 * This MUST be enforced by all callers. 204 */ 205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, 206 __u32 *rcv_wnd, __u32 *window_clamp, 207 int wscale_ok, __u8 *rcv_wscale, 208 __u32 init_rcv_wnd) 209 { 210 unsigned int space = (__space < 0 ? 0 : __space); 211 212 /* If no clamp set the clamp to the max possible scaled window */ 213 if (*window_clamp == 0) 214 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); 215 space = min(*window_clamp, space); 216 217 /* Quantize space offering to a multiple of mss if possible. */ 218 if (space > mss) 219 space = rounddown(space, mss); 220 221 /* NOTE: offering an initial window larger than 32767 222 * will break some buggy TCP stacks. If the admin tells us 223 * it is likely we could be speaking with such a buggy stack 224 * we will truncate our initial window offering to 32K-1 225 * unless the remote has sent us a window scaling option, 226 * which we interpret as a sign the remote TCP is not 227 * misinterpreting the window field as a signed quantity. 228 */ 229 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) 230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 231 else 232 (*rcv_wnd) = min_t(u32, space, U16_MAX); 233 234 if (init_rcv_wnd) 235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); 236 237 *rcv_wscale = 0; 238 if (wscale_ok) { 239 /* Set window scaling on max possible window */ 240 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 241 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); 242 space = min_t(u32, space, *window_clamp); 243 *rcv_wscale = clamp_t(int, ilog2(space) - 15, 244 0, TCP_MAX_WSCALE); 245 } 246 /* Set the clamp no higher than max representable value */ 247 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); 248 } 249 EXPORT_SYMBOL(tcp_select_initial_window); 250 251 /* Chose a new window to advertise, update state in tcp_sock for the 252 * socket, and return result with RFC1323 scaling applied. The return 253 * value can be stuffed directly into th->window for an outgoing 254 * frame. 255 */ 256 static u16 tcp_select_window(struct sock *sk) 257 { 258 struct tcp_sock *tp = tcp_sk(sk); 259 struct net *net = sock_net(sk); 260 u32 old_win = tp->rcv_wnd; 261 u32 cur_win, new_win; 262 263 /* Make the window 0 if we failed to queue the data because we 264 * are out of memory. The window is temporary, so we don't store 265 * it on the socket. 266 */ 267 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) 268 return 0; 269 270 cur_win = tcp_receive_window(tp); 271 new_win = __tcp_select_window(sk); 272 if (new_win < cur_win) { 273 /* Danger Will Robinson! 274 * Don't update rcv_wup/rcv_wnd here or else 275 * we will not be able to advertise a zero 276 * window in time. --DaveM 277 * 278 * Relax Will Robinson. 279 */ 280 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) { 281 /* Never shrink the offered window */ 282 if (new_win == 0) 283 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV); 284 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); 285 } 286 } 287 288 tp->rcv_wnd = new_win; 289 tp->rcv_wup = tp->rcv_nxt; 290 291 /* Make sure we do not exceed the maximum possible 292 * scaled window. 293 */ 294 if (!tp->rx_opt.rcv_wscale && 295 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows)) 296 new_win = min(new_win, MAX_TCP_WINDOW); 297 else 298 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 299 300 /* RFC1323 scaling applied */ 301 new_win >>= tp->rx_opt.rcv_wscale; 302 303 /* If we advertise zero window, disable fast path. */ 304 if (new_win == 0) { 305 tp->pred_flags = 0; 306 if (old_win) 307 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV); 308 } else if (old_win == 0) { 309 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV); 310 } 311 312 return new_win; 313 } 314 315 /* Packet ECN state for a SYN-ACK */ 316 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) 317 { 318 const struct tcp_sock *tp = tcp_sk(sk); 319 320 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; 321 if (!(tp->ecn_flags & TCP_ECN_OK)) 322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; 323 else if (tcp_ca_needs_ecn(sk) || 324 tcp_bpf_ca_needs_ecn(sk)) 325 INET_ECN_xmit(sk); 326 } 327 328 /* Packet ECN state for a SYN. */ 329 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) 330 { 331 struct tcp_sock *tp = tcp_sk(sk); 332 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); 333 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || 334 tcp_ca_needs_ecn(sk) || bpf_needs_ecn; 335 336 if (!use_ecn) { 337 const struct dst_entry *dst = __sk_dst_get(sk); 338 339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) 340 use_ecn = true; 341 } 342 343 tp->ecn_flags = 0; 344 345 if (use_ecn) { 346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; 347 tp->ecn_flags = TCP_ECN_OK; 348 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) 349 INET_ECN_xmit(sk); 350 } 351 } 352 353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) 354 { 355 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) 356 /* tp->ecn_flags are cleared at a later point in time when 357 * SYN ACK is ultimatively being received. 358 */ 359 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); 360 } 361 362 static void 363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) 364 { 365 if (inet_rsk(req)->ecn_ok) 366 th->ece = 1; 367 } 368 369 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to 370 * be sent. 371 */ 372 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, 373 struct tcphdr *th, int tcp_header_len) 374 { 375 struct tcp_sock *tp = tcp_sk(sk); 376 377 if (tp->ecn_flags & TCP_ECN_OK) { 378 /* Not-retransmitted data segment: set ECT and inject CWR. */ 379 if (skb->len != tcp_header_len && 380 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { 381 INET_ECN_xmit(sk); 382 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { 383 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 384 th->cwr = 1; 385 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 386 } 387 } else if (!tcp_ca_needs_ecn(sk)) { 388 /* ACK or retransmitted segment: clear ECT|CE */ 389 INET_ECN_dontxmit(sk); 390 } 391 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) 392 th->ece = 1; 393 } 394 } 395 396 /* Constructs common control bits of non-data skb. If SYN/FIN is present, 397 * auto increment end seqno. 398 */ 399 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) 400 { 401 skb->ip_summed = CHECKSUM_PARTIAL; 402 403 TCP_SKB_CB(skb)->tcp_flags = flags; 404 405 tcp_skb_pcount_set(skb, 1); 406 407 TCP_SKB_CB(skb)->seq = seq; 408 if (flags & (TCPHDR_SYN | TCPHDR_FIN)) 409 seq++; 410 TCP_SKB_CB(skb)->end_seq = seq; 411 } 412 413 static inline bool tcp_urg_mode(const struct tcp_sock *tp) 414 { 415 return tp->snd_una != tp->snd_up; 416 } 417 418 #define OPTION_SACK_ADVERTISE BIT(0) 419 #define OPTION_TS BIT(1) 420 #define OPTION_MD5 BIT(2) 421 #define OPTION_WSCALE BIT(3) 422 #define OPTION_FAST_OPEN_COOKIE BIT(8) 423 #define OPTION_SMC BIT(9) 424 #define OPTION_MPTCP BIT(10) 425 426 static void smc_options_write(__be32 *ptr, u16 *options) 427 { 428 #if IS_ENABLED(CONFIG_SMC) 429 if (static_branch_unlikely(&tcp_have_smc)) { 430 if (unlikely(OPTION_SMC & *options)) { 431 *ptr++ = htonl((TCPOPT_NOP << 24) | 432 (TCPOPT_NOP << 16) | 433 (TCPOPT_EXP << 8) | 434 (TCPOLEN_EXP_SMC_BASE)); 435 *ptr++ = htonl(TCPOPT_SMC_MAGIC); 436 } 437 } 438 #endif 439 } 440 441 struct tcp_out_options { 442 u16 options; /* bit field of OPTION_* */ 443 u16 mss; /* 0 to disable */ 444 u8 ws; /* window scale, 0 to disable */ 445 u8 num_sack_blocks; /* number of SACK blocks to include */ 446 u8 hash_size; /* bytes in hash_location */ 447 u8 bpf_opt_len; /* length of BPF hdr option */ 448 __u8 *hash_location; /* temporary pointer, overloaded */ 449 __u32 tsval, tsecr; /* need to include OPTION_TS */ 450 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ 451 struct mptcp_out_options mptcp; 452 }; 453 454 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, 455 struct tcp_sock *tp, 456 struct tcp_out_options *opts) 457 { 458 #if IS_ENABLED(CONFIG_MPTCP) 459 if (unlikely(OPTION_MPTCP & opts->options)) 460 mptcp_write_options(th, ptr, tp, &opts->mptcp); 461 #endif 462 } 463 464 #ifdef CONFIG_CGROUP_BPF 465 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, 466 enum tcp_synack_type synack_type) 467 { 468 if (unlikely(!skb)) 469 return BPF_WRITE_HDR_TCP_CURRENT_MSS; 470 471 if (unlikely(synack_type == TCP_SYNACK_COOKIE)) 472 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; 473 474 return 0; 475 } 476 477 /* req, syn_skb and synack_type are used when writing synack */ 478 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 479 struct request_sock *req, 480 struct sk_buff *syn_skb, 481 enum tcp_synack_type synack_type, 482 struct tcp_out_options *opts, 483 unsigned int *remaining) 484 { 485 struct bpf_sock_ops_kern sock_ops; 486 int err; 487 488 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 489 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || 490 !*remaining) 491 return; 492 493 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ 494 495 /* init sock_ops */ 496 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 497 498 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; 499 500 if (req) { 501 /* The listen "sk" cannot be passed here because 502 * it is not locked. It would not make too much 503 * sense to do bpf_setsockopt(listen_sk) based 504 * on individual connection request also. 505 * 506 * Thus, "req" is passed here and the cgroup-bpf-progs 507 * of the listen "sk" will be run. 508 * 509 * "req" is also used here for fastopen even the "sk" here is 510 * a fullsock "child" sk. It is to keep the behavior 511 * consistent between fastopen and non-fastopen on 512 * the bpf programming side. 513 */ 514 sock_ops.sk = (struct sock *)req; 515 sock_ops.syn_skb = syn_skb; 516 } else { 517 sock_owned_by_me(sk); 518 519 sock_ops.is_fullsock = 1; 520 sock_ops.sk = sk; 521 } 522 523 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 524 sock_ops.remaining_opt_len = *remaining; 525 /* tcp_current_mss() does not pass a skb */ 526 if (skb) 527 bpf_skops_init_skb(&sock_ops, skb, 0); 528 529 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 530 531 if (err || sock_ops.remaining_opt_len == *remaining) 532 return; 533 534 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; 535 /* round up to 4 bytes */ 536 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; 537 538 *remaining -= opts->bpf_opt_len; 539 } 540 541 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 542 struct request_sock *req, 543 struct sk_buff *syn_skb, 544 enum tcp_synack_type synack_type, 545 struct tcp_out_options *opts) 546 { 547 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; 548 struct bpf_sock_ops_kern sock_ops; 549 int err; 550 551 if (likely(!max_opt_len)) 552 return; 553 554 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 555 556 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; 557 558 if (req) { 559 sock_ops.sk = (struct sock *)req; 560 sock_ops.syn_skb = syn_skb; 561 } else { 562 sock_owned_by_me(sk); 563 564 sock_ops.is_fullsock = 1; 565 sock_ops.sk = sk; 566 } 567 568 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); 569 sock_ops.remaining_opt_len = max_opt_len; 570 first_opt_off = tcp_hdrlen(skb) - max_opt_len; 571 bpf_skops_init_skb(&sock_ops, skb, first_opt_off); 572 573 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); 574 575 if (err) 576 nr_written = 0; 577 else 578 nr_written = max_opt_len - sock_ops.remaining_opt_len; 579 580 if (nr_written < max_opt_len) 581 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, 582 max_opt_len - nr_written); 583 } 584 #else 585 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, 586 struct request_sock *req, 587 struct sk_buff *syn_skb, 588 enum tcp_synack_type synack_type, 589 struct tcp_out_options *opts, 590 unsigned int *remaining) 591 { 592 } 593 594 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, 595 struct request_sock *req, 596 struct sk_buff *syn_skb, 597 enum tcp_synack_type synack_type, 598 struct tcp_out_options *opts) 599 { 600 } 601 #endif 602 603 /* Write previously computed TCP options to the packet. 604 * 605 * Beware: Something in the Internet is very sensitive to the ordering of 606 * TCP options, we learned this through the hard way, so be careful here. 607 * Luckily we can at least blame others for their non-compliance but from 608 * inter-operability perspective it seems that we're somewhat stuck with 609 * the ordering which we have been using if we want to keep working with 610 * those broken things (not that it currently hurts anybody as there isn't 611 * particular reason why the ordering would need to be changed). 612 * 613 * At least SACK_PERM as the first option is known to lead to a disaster 614 * (but it may well be that other scenarios fail similarly). 615 */ 616 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, 617 struct tcp_out_options *opts) 618 { 619 __be32 *ptr = (__be32 *)(th + 1); 620 u16 options = opts->options; /* mungable copy */ 621 622 if (unlikely(OPTION_MD5 & options)) { 623 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 624 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); 625 /* overload cookie hash location */ 626 opts->hash_location = (__u8 *)ptr; 627 ptr += 4; 628 } 629 630 if (unlikely(opts->mss)) { 631 *ptr++ = htonl((TCPOPT_MSS << 24) | 632 (TCPOLEN_MSS << 16) | 633 opts->mss); 634 } 635 636 if (likely(OPTION_TS & options)) { 637 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 638 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | 639 (TCPOLEN_SACK_PERM << 16) | 640 (TCPOPT_TIMESTAMP << 8) | 641 TCPOLEN_TIMESTAMP); 642 options &= ~OPTION_SACK_ADVERTISE; 643 } else { 644 *ptr++ = htonl((TCPOPT_NOP << 24) | 645 (TCPOPT_NOP << 16) | 646 (TCPOPT_TIMESTAMP << 8) | 647 TCPOLEN_TIMESTAMP); 648 } 649 *ptr++ = htonl(opts->tsval); 650 *ptr++ = htonl(opts->tsecr); 651 } 652 653 if (unlikely(OPTION_SACK_ADVERTISE & options)) { 654 *ptr++ = htonl((TCPOPT_NOP << 24) | 655 (TCPOPT_NOP << 16) | 656 (TCPOPT_SACK_PERM << 8) | 657 TCPOLEN_SACK_PERM); 658 } 659 660 if (unlikely(OPTION_WSCALE & options)) { 661 *ptr++ = htonl((TCPOPT_NOP << 24) | 662 (TCPOPT_WINDOW << 16) | 663 (TCPOLEN_WINDOW << 8) | 664 opts->ws); 665 } 666 667 if (unlikely(opts->num_sack_blocks)) { 668 struct tcp_sack_block *sp = tp->rx_opt.dsack ? 669 tp->duplicate_sack : tp->selective_acks; 670 int this_sack; 671 672 *ptr++ = htonl((TCPOPT_NOP << 24) | 673 (TCPOPT_NOP << 16) | 674 (TCPOPT_SACK << 8) | 675 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * 676 TCPOLEN_SACK_PERBLOCK))); 677 678 for (this_sack = 0; this_sack < opts->num_sack_blocks; 679 ++this_sack) { 680 *ptr++ = htonl(sp[this_sack].start_seq); 681 *ptr++ = htonl(sp[this_sack].end_seq); 682 } 683 684 tp->rx_opt.dsack = 0; 685 } 686 687 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { 688 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; 689 u8 *p = (u8 *)ptr; 690 u32 len; /* Fast Open option length */ 691 692 if (foc->exp) { 693 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; 694 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | 695 TCPOPT_FASTOPEN_MAGIC); 696 p += TCPOLEN_EXP_FASTOPEN_BASE; 697 } else { 698 len = TCPOLEN_FASTOPEN_BASE + foc->len; 699 *p++ = TCPOPT_FASTOPEN; 700 *p++ = len; 701 } 702 703 memcpy(p, foc->val, foc->len); 704 if ((len & 3) == 2) { 705 p[foc->len] = TCPOPT_NOP; 706 p[foc->len + 1] = TCPOPT_NOP; 707 } 708 ptr += (len + 3) >> 2; 709 } 710 711 smc_options_write(ptr, &options); 712 713 mptcp_options_write(th, ptr, tp, opts); 714 } 715 716 static void smc_set_option(const struct tcp_sock *tp, 717 struct tcp_out_options *opts, 718 unsigned int *remaining) 719 { 720 #if IS_ENABLED(CONFIG_SMC) 721 if (static_branch_unlikely(&tcp_have_smc)) { 722 if (tp->syn_smc) { 723 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 724 opts->options |= OPTION_SMC; 725 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 726 } 727 } 728 } 729 #endif 730 } 731 732 static void smc_set_option_cond(const struct tcp_sock *tp, 733 const struct inet_request_sock *ireq, 734 struct tcp_out_options *opts, 735 unsigned int *remaining) 736 { 737 #if IS_ENABLED(CONFIG_SMC) 738 if (static_branch_unlikely(&tcp_have_smc)) { 739 if (tp->syn_smc && ireq->smc_ok) { 740 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { 741 opts->options |= OPTION_SMC; 742 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; 743 } 744 } 745 } 746 #endif 747 } 748 749 static void mptcp_set_option_cond(const struct request_sock *req, 750 struct tcp_out_options *opts, 751 unsigned int *remaining) 752 { 753 if (rsk_is_mptcp(req)) { 754 unsigned int size; 755 756 if (mptcp_synack_options(req, &size, &opts->mptcp)) { 757 if (*remaining >= size) { 758 opts->options |= OPTION_MPTCP; 759 *remaining -= size; 760 } 761 } 762 } 763 } 764 765 /* Compute TCP options for SYN packets. This is not the final 766 * network wire format yet. 767 */ 768 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, 769 struct tcp_out_options *opts, 770 struct tcp_md5sig_key **md5) 771 { 772 struct tcp_sock *tp = tcp_sk(sk); 773 unsigned int remaining = MAX_TCP_OPTION_SPACE; 774 struct tcp_fastopen_request *fastopen = tp->fastopen_req; 775 776 *md5 = NULL; 777 #ifdef CONFIG_TCP_MD5SIG 778 if (static_branch_unlikely(&tcp_md5_needed.key) && 779 rcu_access_pointer(tp->md5sig_info)) { 780 *md5 = tp->af_specific->md5_lookup(sk, sk); 781 if (*md5) { 782 opts->options |= OPTION_MD5; 783 remaining -= TCPOLEN_MD5SIG_ALIGNED; 784 } 785 } 786 #endif 787 788 /* We always get an MSS option. The option bytes which will be seen in 789 * normal data packets should timestamps be used, must be in the MSS 790 * advertised. But we subtract them from tp->mss_cache so that 791 * calculations in tcp_sendmsg are simpler etc. So account for this 792 * fact here if necessary. If we don't do this correctly, as a 793 * receiver we won't recognize data packets as being full sized when we 794 * should, and thus we won't abide by the delayed ACK rules correctly. 795 * SACKs don't matter, we never delay an ACK when we have any of those 796 * going out. */ 797 opts->mss = tcp_advertise_mss(sk); 798 remaining -= TCPOLEN_MSS_ALIGNED; 799 800 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) { 801 opts->options |= OPTION_TS; 802 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; 803 opts->tsecr = tp->rx_opt.ts_recent; 804 remaining -= TCPOLEN_TSTAMP_ALIGNED; 805 } 806 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { 807 opts->ws = tp->rx_opt.rcv_wscale; 808 opts->options |= OPTION_WSCALE; 809 remaining -= TCPOLEN_WSCALE_ALIGNED; 810 } 811 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { 812 opts->options |= OPTION_SACK_ADVERTISE; 813 if (unlikely(!(OPTION_TS & opts->options))) 814 remaining -= TCPOLEN_SACKPERM_ALIGNED; 815 } 816 817 if (fastopen && fastopen->cookie.len >= 0) { 818 u32 need = fastopen->cookie.len; 819 820 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : 821 TCPOLEN_FASTOPEN_BASE; 822 need = (need + 3) & ~3U; /* Align to 32 bits */ 823 if (remaining >= need) { 824 opts->options |= OPTION_FAST_OPEN_COOKIE; 825 opts->fastopen_cookie = &fastopen->cookie; 826 remaining -= need; 827 tp->syn_fastopen = 1; 828 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; 829 } 830 } 831 832 smc_set_option(tp, opts, &remaining); 833 834 if (sk_is_mptcp(sk)) { 835 unsigned int size; 836 837 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { 838 opts->options |= OPTION_MPTCP; 839 remaining -= size; 840 } 841 } 842 843 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 844 845 return MAX_TCP_OPTION_SPACE - remaining; 846 } 847 848 /* Set up TCP options for SYN-ACKs. */ 849 static unsigned int tcp_synack_options(const struct sock *sk, 850 struct request_sock *req, 851 unsigned int mss, struct sk_buff *skb, 852 struct tcp_out_options *opts, 853 const struct tcp_md5sig_key *md5, 854 struct tcp_fastopen_cookie *foc, 855 enum tcp_synack_type synack_type, 856 struct sk_buff *syn_skb) 857 { 858 struct inet_request_sock *ireq = inet_rsk(req); 859 unsigned int remaining = MAX_TCP_OPTION_SPACE; 860 861 #ifdef CONFIG_TCP_MD5SIG 862 if (md5) { 863 opts->options |= OPTION_MD5; 864 remaining -= TCPOLEN_MD5SIG_ALIGNED; 865 866 /* We can't fit any SACK blocks in a packet with MD5 + TS 867 * options. There was discussion about disabling SACK 868 * rather than TS in order to fit in better with old, 869 * buggy kernels, but that was deemed to be unnecessary. 870 */ 871 if (synack_type != TCP_SYNACK_COOKIE) 872 ireq->tstamp_ok &= !ireq->sack_ok; 873 } 874 #endif 875 876 /* We always send an MSS option. */ 877 opts->mss = mss; 878 remaining -= TCPOLEN_MSS_ALIGNED; 879 880 if (likely(ireq->wscale_ok)) { 881 opts->ws = ireq->rcv_wscale; 882 opts->options |= OPTION_WSCALE; 883 remaining -= TCPOLEN_WSCALE_ALIGNED; 884 } 885 if (likely(ireq->tstamp_ok)) { 886 opts->options |= OPTION_TS; 887 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; 888 opts->tsecr = READ_ONCE(req->ts_recent); 889 remaining -= TCPOLEN_TSTAMP_ALIGNED; 890 } 891 if (likely(ireq->sack_ok)) { 892 opts->options |= OPTION_SACK_ADVERTISE; 893 if (unlikely(!ireq->tstamp_ok)) 894 remaining -= TCPOLEN_SACKPERM_ALIGNED; 895 } 896 if (foc != NULL && foc->len >= 0) { 897 u32 need = foc->len; 898 899 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : 900 TCPOLEN_FASTOPEN_BASE; 901 need = (need + 3) & ~3U; /* Align to 32 bits */ 902 if (remaining >= need) { 903 opts->options |= OPTION_FAST_OPEN_COOKIE; 904 opts->fastopen_cookie = foc; 905 remaining -= need; 906 } 907 } 908 909 mptcp_set_option_cond(req, opts, &remaining); 910 911 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); 912 913 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, 914 synack_type, opts, &remaining); 915 916 return MAX_TCP_OPTION_SPACE - remaining; 917 } 918 919 /* Compute TCP options for ESTABLISHED sockets. This is not the 920 * final wire format yet. 921 */ 922 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, 923 struct tcp_out_options *opts, 924 struct tcp_md5sig_key **md5) 925 { 926 struct tcp_sock *tp = tcp_sk(sk); 927 unsigned int size = 0; 928 unsigned int eff_sacks; 929 930 opts->options = 0; 931 932 *md5 = NULL; 933 #ifdef CONFIG_TCP_MD5SIG 934 if (static_branch_unlikely(&tcp_md5_needed.key) && 935 rcu_access_pointer(tp->md5sig_info)) { 936 *md5 = tp->af_specific->md5_lookup(sk, sk); 937 if (*md5) { 938 opts->options |= OPTION_MD5; 939 size += TCPOLEN_MD5SIG_ALIGNED; 940 } 941 } 942 #endif 943 944 if (likely(tp->rx_opt.tstamp_ok)) { 945 opts->options |= OPTION_TS; 946 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; 947 opts->tsecr = tp->rx_opt.ts_recent; 948 size += TCPOLEN_TSTAMP_ALIGNED; 949 } 950 951 /* MPTCP options have precedence over SACK for the limited TCP 952 * option space because a MPTCP connection would be forced to 953 * fall back to regular TCP if a required multipath option is 954 * missing. SACK still gets a chance to use whatever space is 955 * left. 956 */ 957 if (sk_is_mptcp(sk)) { 958 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 959 unsigned int opt_size = 0; 960 961 if (mptcp_established_options(sk, skb, &opt_size, remaining, 962 &opts->mptcp)) { 963 opts->options |= OPTION_MPTCP; 964 size += opt_size; 965 } 966 } 967 968 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; 969 if (unlikely(eff_sacks)) { 970 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 971 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + 972 TCPOLEN_SACK_PERBLOCK)) 973 return size; 974 975 opts->num_sack_blocks = 976 min_t(unsigned int, eff_sacks, 977 (remaining - TCPOLEN_SACK_BASE_ALIGNED) / 978 TCPOLEN_SACK_PERBLOCK); 979 980 size += TCPOLEN_SACK_BASE_ALIGNED + 981 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; 982 } 983 984 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, 985 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { 986 unsigned int remaining = MAX_TCP_OPTION_SPACE - size; 987 988 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); 989 990 size = MAX_TCP_OPTION_SPACE - remaining; 991 } 992 993 return size; 994 } 995 996 997 /* TCP SMALL QUEUES (TSQ) 998 * 999 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) 1000 * to reduce RTT and bufferbloat. 1001 * We do this using a special skb destructor (tcp_wfree). 1002 * 1003 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb 1004 * needs to be reallocated in a driver. 1005 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc 1006 * 1007 * Since transmit from skb destructor is forbidden, we use a tasklet 1008 * to process all sockets that eventually need to send more skbs. 1009 * We use one tasklet per cpu, with its own queue of sockets. 1010 */ 1011 struct tsq_tasklet { 1012 struct tasklet_struct tasklet; 1013 struct list_head head; /* queue of tcp sockets */ 1014 }; 1015 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); 1016 1017 static void tcp_tsq_write(struct sock *sk) 1018 { 1019 if ((1 << sk->sk_state) & 1020 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | 1021 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { 1022 struct tcp_sock *tp = tcp_sk(sk); 1023 1024 if (tp->lost_out > tp->retrans_out && 1025 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { 1026 tcp_mstamp_refresh(tp); 1027 tcp_xmit_retransmit_queue(sk); 1028 } 1029 1030 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 1031 0, GFP_ATOMIC); 1032 } 1033 } 1034 1035 static void tcp_tsq_handler(struct sock *sk) 1036 { 1037 bh_lock_sock(sk); 1038 if (!sock_owned_by_user(sk)) 1039 tcp_tsq_write(sk); 1040 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) 1041 sock_hold(sk); 1042 bh_unlock_sock(sk); 1043 } 1044 /* 1045 * One tasklet per cpu tries to send more skbs. 1046 * We run in tasklet context but need to disable irqs when 1047 * transferring tsq->head because tcp_wfree() might 1048 * interrupt us (non NAPI drivers) 1049 */ 1050 static void tcp_tasklet_func(struct tasklet_struct *t) 1051 { 1052 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); 1053 LIST_HEAD(list); 1054 unsigned long flags; 1055 struct list_head *q, *n; 1056 struct tcp_sock *tp; 1057 struct sock *sk; 1058 1059 local_irq_save(flags); 1060 list_splice_init(&tsq->head, &list); 1061 local_irq_restore(flags); 1062 1063 list_for_each_safe(q, n, &list) { 1064 tp = list_entry(q, struct tcp_sock, tsq_node); 1065 list_del(&tp->tsq_node); 1066 1067 sk = (struct sock *)tp; 1068 smp_mb__before_atomic(); 1069 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); 1070 1071 tcp_tsq_handler(sk); 1072 sk_free(sk); 1073 } 1074 } 1075 1076 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ 1077 TCPF_WRITE_TIMER_DEFERRED | \ 1078 TCPF_DELACK_TIMER_DEFERRED | \ 1079 TCPF_MTU_REDUCED_DEFERRED | \ 1080 TCPF_ACK_DEFERRED) 1081 /** 1082 * tcp_release_cb - tcp release_sock() callback 1083 * @sk: socket 1084 * 1085 * called from release_sock() to perform protocol dependent 1086 * actions before socket release. 1087 */ 1088 void tcp_release_cb(struct sock *sk) 1089 { 1090 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags); 1091 unsigned long nflags; 1092 1093 /* perform an atomic operation only if at least one flag is set */ 1094 do { 1095 if (!(flags & TCP_DEFERRED_ALL)) 1096 return; 1097 nflags = flags & ~TCP_DEFERRED_ALL; 1098 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags)); 1099 1100 if (flags & TCPF_TSQ_DEFERRED) { 1101 tcp_tsq_write(sk); 1102 __sock_put(sk); 1103 } 1104 1105 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 1106 tcp_write_timer_handler(sk); 1107 __sock_put(sk); 1108 } 1109 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 1110 tcp_delack_timer_handler(sk); 1111 __sock_put(sk); 1112 } 1113 if (flags & TCPF_MTU_REDUCED_DEFERRED) { 1114 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); 1115 __sock_put(sk); 1116 } 1117 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk)) 1118 tcp_send_ack(sk); 1119 } 1120 EXPORT_SYMBOL(tcp_release_cb); 1121 1122 void __init tcp_tasklet_init(void) 1123 { 1124 int i; 1125 1126 for_each_possible_cpu(i) { 1127 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); 1128 1129 INIT_LIST_HEAD(&tsq->head); 1130 tasklet_setup(&tsq->tasklet, tcp_tasklet_func); 1131 } 1132 } 1133 1134 /* 1135 * Write buffer destructor automatically called from kfree_skb. 1136 * We can't xmit new skbs from this context, as we might already 1137 * hold qdisc lock. 1138 */ 1139 void tcp_wfree(struct sk_buff *skb) 1140 { 1141 struct sock *sk = skb->sk; 1142 struct tcp_sock *tp = tcp_sk(sk); 1143 unsigned long flags, nval, oval; 1144 struct tsq_tasklet *tsq; 1145 bool empty; 1146 1147 /* Keep one reference on sk_wmem_alloc. 1148 * Will be released by sk_free() from here or tcp_tasklet_func() 1149 */ 1150 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); 1151 1152 /* If this softirq is serviced by ksoftirqd, we are likely under stress. 1153 * Wait until our queues (qdisc + devices) are drained. 1154 * This gives : 1155 * - less callbacks to tcp_write_xmit(), reducing stress (batches) 1156 * - chance for incoming ACK (processed by another cpu maybe) 1157 * to migrate this flow (skb->ooo_okay will be eventually set) 1158 */ 1159 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) 1160 goto out; 1161 1162 oval = smp_load_acquire(&sk->sk_tsq_flags); 1163 do { 1164 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) 1165 goto out; 1166 1167 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; 1168 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval)); 1169 1170 /* queue this socket to tasklet queue */ 1171 local_irq_save(flags); 1172 tsq = this_cpu_ptr(&tsq_tasklet); 1173 empty = list_empty(&tsq->head); 1174 list_add(&tp->tsq_node, &tsq->head); 1175 if (empty) 1176 tasklet_schedule(&tsq->tasklet); 1177 local_irq_restore(flags); 1178 return; 1179 out: 1180 sk_free(sk); 1181 } 1182 1183 /* Note: Called under soft irq. 1184 * We can call TCP stack right away, unless socket is owned by user. 1185 */ 1186 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) 1187 { 1188 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); 1189 struct sock *sk = (struct sock *)tp; 1190 1191 tcp_tsq_handler(sk); 1192 sock_put(sk); 1193 1194 return HRTIMER_NORESTART; 1195 } 1196 1197 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, 1198 u64 prior_wstamp) 1199 { 1200 struct tcp_sock *tp = tcp_sk(sk); 1201 1202 if (sk->sk_pacing_status != SK_PACING_NONE) { 1203 unsigned long rate = READ_ONCE(sk->sk_pacing_rate); 1204 1205 /* Original sch_fq does not pace first 10 MSS 1206 * Note that tp->data_segs_out overflows after 2^32 packets, 1207 * this is a minor annoyance. 1208 */ 1209 if (rate != ~0UL && rate && tp->data_segs_out >= 10) { 1210 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); 1211 u64 credit = tp->tcp_wstamp_ns - prior_wstamp; 1212 1213 /* take into account OS jitter */ 1214 len_ns -= min_t(u64, len_ns / 2, credit); 1215 tp->tcp_wstamp_ns += len_ns; 1216 } 1217 } 1218 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 1219 } 1220 1221 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1222 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); 1223 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); 1224 1225 /* This routine actually transmits TCP packets queued in by 1226 * tcp_do_sendmsg(). This is used by both the initial 1227 * transmission and possible later retransmissions. 1228 * All SKB's seen here are completely headerless. It is our 1229 * job to build the TCP header, and pass the packet down to 1230 * IP so it can do the same plus pass the packet off to the 1231 * device. 1232 * 1233 * We are working here with either a clone of the original 1234 * SKB, or a fresh unique copy made by the retransmit engine. 1235 */ 1236 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, 1237 int clone_it, gfp_t gfp_mask, u32 rcv_nxt) 1238 { 1239 const struct inet_connection_sock *icsk = inet_csk(sk); 1240 struct inet_sock *inet; 1241 struct tcp_sock *tp; 1242 struct tcp_skb_cb *tcb; 1243 struct tcp_out_options opts; 1244 unsigned int tcp_options_size, tcp_header_size; 1245 struct sk_buff *oskb = NULL; 1246 struct tcp_md5sig_key *md5; 1247 struct tcphdr *th; 1248 u64 prior_wstamp; 1249 int err; 1250 1251 BUG_ON(!skb || !tcp_skb_pcount(skb)); 1252 tp = tcp_sk(sk); 1253 prior_wstamp = tp->tcp_wstamp_ns; 1254 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); 1255 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 1256 if (clone_it) { 1257 oskb = skb; 1258 1259 tcp_skb_tsorted_save(oskb) { 1260 if (unlikely(skb_cloned(oskb))) 1261 skb = pskb_copy(oskb, gfp_mask); 1262 else 1263 skb = skb_clone(oskb, gfp_mask); 1264 } tcp_skb_tsorted_restore(oskb); 1265 1266 if (unlikely(!skb)) 1267 return -ENOBUFS; 1268 /* retransmit skbs might have a non zero value in skb->dev 1269 * because skb->dev is aliased with skb->rbnode.rb_left 1270 */ 1271 skb->dev = NULL; 1272 } 1273 1274 inet = inet_sk(sk); 1275 tcb = TCP_SKB_CB(skb); 1276 memset(&opts, 0, sizeof(opts)); 1277 1278 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { 1279 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); 1280 } else { 1281 tcp_options_size = tcp_established_options(sk, skb, &opts, 1282 &md5); 1283 /* Force a PSH flag on all (GSO) packets to expedite GRO flush 1284 * at receiver : This slightly improve GRO performance. 1285 * Note that we do not force the PSH flag for non GSO packets, 1286 * because they might be sent under high congestion events, 1287 * and in this case it is better to delay the delivery of 1-MSS 1288 * packets and thus the corresponding ACK packet that would 1289 * release the following packet. 1290 */ 1291 if (tcp_skb_pcount(skb) > 1) 1292 tcb->tcp_flags |= TCPHDR_PSH; 1293 } 1294 tcp_header_size = tcp_options_size + sizeof(struct tcphdr); 1295 1296 /* We set skb->ooo_okay to one if this packet can select 1297 * a different TX queue than prior packets of this flow, 1298 * to avoid self inflicted reorders. 1299 * The 'other' queue decision is based on current cpu number 1300 * if XPS is enabled, or sk->sk_txhash otherwise. 1301 * We can switch to another (and better) queue if: 1302 * 1) No packet with payload is in qdisc/device queues. 1303 * Delays in TX completion can defeat the test 1304 * even if packets were already sent. 1305 * 2) Or rtx queue is empty. 1306 * This mitigates above case if ACK packets for 1307 * all prior packets were already processed. 1308 */ 1309 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) || 1310 tcp_rtx_queue_empty(sk); 1311 1312 /* If we had to use memory reserve to allocate this skb, 1313 * this might cause drops if packet is looped back : 1314 * Other socket might not have SOCK_MEMALLOC. 1315 * Packets not looped back do not care about pfmemalloc. 1316 */ 1317 skb->pfmemalloc = 0; 1318 1319 skb_push(skb, tcp_header_size); 1320 skb_reset_transport_header(skb); 1321 1322 skb_orphan(skb); 1323 skb->sk = sk; 1324 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; 1325 refcount_add(skb->truesize, &sk->sk_wmem_alloc); 1326 1327 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm)); 1328 1329 /* Build TCP header and checksum it. */ 1330 th = (struct tcphdr *)skb->data; 1331 th->source = inet->inet_sport; 1332 th->dest = inet->inet_dport; 1333 th->seq = htonl(tcb->seq); 1334 th->ack_seq = htonl(rcv_nxt); 1335 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | 1336 tcb->tcp_flags); 1337 1338 th->check = 0; 1339 th->urg_ptr = 0; 1340 1341 /* The urg_mode check is necessary during a below snd_una win probe */ 1342 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { 1343 if (before(tp->snd_up, tcb->seq + 0x10000)) { 1344 th->urg_ptr = htons(tp->snd_up - tcb->seq); 1345 th->urg = 1; 1346 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { 1347 th->urg_ptr = htons(0xFFFF); 1348 th->urg = 1; 1349 } 1350 } 1351 1352 skb_shinfo(skb)->gso_type = sk->sk_gso_type; 1353 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { 1354 th->window = htons(tcp_select_window(sk)); 1355 tcp_ecn_send(sk, skb, th, tcp_header_size); 1356 } else { 1357 /* RFC1323: The window in SYN & SYN/ACK segments 1358 * is never scaled. 1359 */ 1360 th->window = htons(min(tp->rcv_wnd, 65535U)); 1361 } 1362 1363 tcp_options_write(th, tp, &opts); 1364 1365 #ifdef CONFIG_TCP_MD5SIG 1366 /* Calculate the MD5 hash, as we have all we need now */ 1367 if (md5) { 1368 sk_gso_disable(sk); 1369 tp->af_specific->calc_md5_hash(opts.hash_location, 1370 md5, sk, skb); 1371 } 1372 #endif 1373 1374 /* BPF prog is the last one writing header option */ 1375 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); 1376 1377 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, 1378 tcp_v6_send_check, tcp_v4_send_check, 1379 sk, skb); 1380 1381 if (likely(tcb->tcp_flags & TCPHDR_ACK)) 1382 tcp_event_ack_sent(sk, rcv_nxt); 1383 1384 if (skb->len != tcp_header_size) { 1385 tcp_event_data_sent(tp, sk); 1386 tp->data_segs_out += tcp_skb_pcount(skb); 1387 tp->bytes_sent += skb->len - tcp_header_size; 1388 } 1389 1390 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) 1391 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, 1392 tcp_skb_pcount(skb)); 1393 1394 tp->segs_out += tcp_skb_pcount(skb); 1395 skb_set_hash_from_sk(skb, sk); 1396 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ 1397 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); 1398 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); 1399 1400 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ 1401 1402 /* Cleanup our debris for IP stacks */ 1403 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), 1404 sizeof(struct inet6_skb_parm))); 1405 1406 tcp_add_tx_delay(skb, tp); 1407 1408 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, 1409 inet6_csk_xmit, ip_queue_xmit, 1410 sk, skb, &inet->cork.fl); 1411 1412 if (unlikely(err > 0)) { 1413 tcp_enter_cwr(sk); 1414 err = net_xmit_eval(err); 1415 } 1416 if (!err && oskb) { 1417 tcp_update_skb_after_send(sk, oskb, prior_wstamp); 1418 tcp_rate_skb_sent(sk, oskb); 1419 } 1420 return err; 1421 } 1422 1423 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, 1424 gfp_t gfp_mask) 1425 { 1426 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, 1427 tcp_sk(sk)->rcv_nxt); 1428 } 1429 1430 /* This routine just queues the buffer for sending. 1431 * 1432 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 1433 * otherwise socket can stall. 1434 */ 1435 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 1436 { 1437 struct tcp_sock *tp = tcp_sk(sk); 1438 1439 /* Advance write_seq and place onto the write_queue. */ 1440 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); 1441 __skb_header_release(skb); 1442 tcp_add_write_queue_tail(sk, skb); 1443 sk_wmem_queued_add(sk, skb->truesize); 1444 sk_mem_charge(sk, skb->truesize); 1445 } 1446 1447 /* Initialize TSO segments for a packet. */ 1448 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) 1449 { 1450 if (skb->len <= mss_now) { 1451 /* Avoid the costly divide in the normal 1452 * non-TSO case. 1453 */ 1454 tcp_skb_pcount_set(skb, 1); 1455 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1456 } else { 1457 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); 1458 TCP_SKB_CB(skb)->tcp_gso_size = mss_now; 1459 } 1460 } 1461 1462 /* Pcount in the middle of the write queue got changed, we need to do various 1463 * tweaks to fix counters 1464 */ 1465 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) 1466 { 1467 struct tcp_sock *tp = tcp_sk(sk); 1468 1469 tp->packets_out -= decr; 1470 1471 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1472 tp->sacked_out -= decr; 1473 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1474 tp->retrans_out -= decr; 1475 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) 1476 tp->lost_out -= decr; 1477 1478 /* Reno case is special. Sigh... */ 1479 if (tcp_is_reno(tp) && decr > 0) 1480 tp->sacked_out -= min_t(u32, tp->sacked_out, decr); 1481 1482 if (tp->lost_skb_hint && 1483 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && 1484 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1485 tp->lost_cnt_hint -= decr; 1486 1487 tcp_verify_left_out(tp); 1488 } 1489 1490 static bool tcp_has_tx_tstamp(const struct sk_buff *skb) 1491 { 1492 return TCP_SKB_CB(skb)->txstamp_ack || 1493 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); 1494 } 1495 1496 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) 1497 { 1498 struct skb_shared_info *shinfo = skb_shinfo(skb); 1499 1500 if (unlikely(tcp_has_tx_tstamp(skb)) && 1501 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { 1502 struct skb_shared_info *shinfo2 = skb_shinfo(skb2); 1503 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; 1504 1505 shinfo->tx_flags &= ~tsflags; 1506 shinfo2->tx_flags |= tsflags; 1507 swap(shinfo->tskey, shinfo2->tskey); 1508 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; 1509 TCP_SKB_CB(skb)->txstamp_ack = 0; 1510 } 1511 } 1512 1513 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) 1514 { 1515 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; 1516 TCP_SKB_CB(skb)->eor = 0; 1517 } 1518 1519 /* Insert buff after skb on the write or rtx queue of sk. */ 1520 static void tcp_insert_write_queue_after(struct sk_buff *skb, 1521 struct sk_buff *buff, 1522 struct sock *sk, 1523 enum tcp_queue tcp_queue) 1524 { 1525 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) 1526 __skb_queue_after(&sk->sk_write_queue, skb, buff); 1527 else 1528 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 1529 } 1530 1531 /* Function to create two new TCP segments. Shrinks the given segment 1532 * to the specified size and appends a new segment with the rest of the 1533 * packet to the list. This won't be called frequently, I hope. 1534 * Remember, these are still headerless SKBs at this point. 1535 */ 1536 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 1537 struct sk_buff *skb, u32 len, 1538 unsigned int mss_now, gfp_t gfp) 1539 { 1540 struct tcp_sock *tp = tcp_sk(sk); 1541 struct sk_buff *buff; 1542 int old_factor; 1543 long limit; 1544 int nlen; 1545 u8 flags; 1546 1547 if (WARN_ON(len > skb->len)) 1548 return -EINVAL; 1549 1550 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1551 1552 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. 1553 * We need some allowance to not penalize applications setting small 1554 * SO_SNDBUF values. 1555 * Also allow first and last skb in retransmit queue to be split. 1556 */ 1557 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); 1558 if (unlikely((sk->sk_wmem_queued >> 1) > limit && 1559 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && 1560 skb != tcp_rtx_queue_head(sk) && 1561 skb != tcp_rtx_queue_tail(sk))) { 1562 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); 1563 return -ENOMEM; 1564 } 1565 1566 if (skb_unclone_keeptruesize(skb, gfp)) 1567 return -ENOMEM; 1568 1569 /* Get a new skb... force flag on. */ 1570 buff = tcp_stream_alloc_skb(sk, gfp, true); 1571 if (!buff) 1572 return -ENOMEM; /* We'll just try again later. */ 1573 skb_copy_decrypted(buff, skb); 1574 mptcp_skb_ext_copy(buff, skb); 1575 1576 sk_wmem_queued_add(sk, buff->truesize); 1577 sk_mem_charge(sk, buff->truesize); 1578 nlen = skb->len - len; 1579 buff->truesize += nlen; 1580 skb->truesize -= nlen; 1581 1582 /* Correct the sequence numbers. */ 1583 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 1584 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 1585 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 1586 1587 /* PSH and FIN should only be set in the second packet. */ 1588 flags = TCP_SKB_CB(skb)->tcp_flags; 1589 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 1590 TCP_SKB_CB(buff)->tcp_flags = flags; 1591 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; 1592 tcp_skb_fragment_eor(skb, buff); 1593 1594 skb_split(skb, buff, len); 1595 1596 skb_set_delivery_time(buff, skb->tstamp, true); 1597 tcp_fragment_tstamp(skb, buff); 1598 1599 old_factor = tcp_skb_pcount(skb); 1600 1601 /* Fix up tso_factor for both original and new SKB. */ 1602 tcp_set_skb_tso_segs(skb, mss_now); 1603 tcp_set_skb_tso_segs(buff, mss_now); 1604 1605 /* Update delivered info for the new segment */ 1606 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; 1607 1608 /* If this packet has been sent out already, we must 1609 * adjust the various packet counters. 1610 */ 1611 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 1612 int diff = old_factor - tcp_skb_pcount(skb) - 1613 tcp_skb_pcount(buff); 1614 1615 if (diff) 1616 tcp_adjust_pcount(sk, skb, diff); 1617 } 1618 1619 /* Link BUFF into the send queue. */ 1620 __skb_header_release(buff); 1621 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); 1622 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) 1623 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); 1624 1625 return 0; 1626 } 1627 1628 /* This is similar to __pskb_pull_tail(). The difference is that pulled 1629 * data is not copied, but immediately discarded. 1630 */ 1631 static int __pskb_trim_head(struct sk_buff *skb, int len) 1632 { 1633 struct skb_shared_info *shinfo; 1634 int i, k, eat; 1635 1636 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb)); 1637 eat = len; 1638 k = 0; 1639 shinfo = skb_shinfo(skb); 1640 for (i = 0; i < shinfo->nr_frags; i++) { 1641 int size = skb_frag_size(&shinfo->frags[i]); 1642 1643 if (size <= eat) { 1644 skb_frag_unref(skb, i); 1645 eat -= size; 1646 } else { 1647 shinfo->frags[k] = shinfo->frags[i]; 1648 if (eat) { 1649 skb_frag_off_add(&shinfo->frags[k], eat); 1650 skb_frag_size_sub(&shinfo->frags[k], eat); 1651 eat = 0; 1652 } 1653 k++; 1654 } 1655 } 1656 shinfo->nr_frags = k; 1657 1658 skb->data_len -= len; 1659 skb->len = skb->data_len; 1660 return len; 1661 } 1662 1663 /* Remove acked data from a packet in the transmit queue. */ 1664 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 1665 { 1666 u32 delta_truesize; 1667 1668 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 1669 return -ENOMEM; 1670 1671 delta_truesize = __pskb_trim_head(skb, len); 1672 1673 TCP_SKB_CB(skb)->seq += len; 1674 1675 skb->truesize -= delta_truesize; 1676 sk_wmem_queued_add(sk, -delta_truesize); 1677 if (!skb_zcopy_pure(skb)) 1678 sk_mem_uncharge(sk, delta_truesize); 1679 1680 /* Any change of skb->len requires recalculation of tso factor. */ 1681 if (tcp_skb_pcount(skb) > 1) 1682 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); 1683 1684 return 0; 1685 } 1686 1687 /* Calculate MSS not accounting any TCP options. */ 1688 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) 1689 { 1690 const struct tcp_sock *tp = tcp_sk(sk); 1691 const struct inet_connection_sock *icsk = inet_csk(sk); 1692 int mss_now; 1693 1694 /* Calculate base mss without TCP options: 1695 It is MMS_S - sizeof(tcphdr) of rfc1122 1696 */ 1697 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); 1698 1699 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1700 if (icsk->icsk_af_ops->net_frag_header_len) { 1701 const struct dst_entry *dst = __sk_dst_get(sk); 1702 1703 if (dst && dst_allfrag(dst)) 1704 mss_now -= icsk->icsk_af_ops->net_frag_header_len; 1705 } 1706 1707 /* Clamp it (mss_clamp does not include tcp options) */ 1708 if (mss_now > tp->rx_opt.mss_clamp) 1709 mss_now = tp->rx_opt.mss_clamp; 1710 1711 /* Now subtract optional transport overhead */ 1712 mss_now -= icsk->icsk_ext_hdr_len; 1713 1714 /* Then reserve room for full set of TCP options and 8 bytes of data */ 1715 mss_now = max(mss_now, 1716 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); 1717 return mss_now; 1718 } 1719 1720 /* Calculate MSS. Not accounting for SACKs here. */ 1721 int tcp_mtu_to_mss(struct sock *sk, int pmtu) 1722 { 1723 /* Subtract TCP options size, not including SACKs */ 1724 return __tcp_mtu_to_mss(sk, pmtu) - 1725 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); 1726 } 1727 EXPORT_SYMBOL(tcp_mtu_to_mss); 1728 1729 /* Inverse of above */ 1730 int tcp_mss_to_mtu(struct sock *sk, int mss) 1731 { 1732 const struct tcp_sock *tp = tcp_sk(sk); 1733 const struct inet_connection_sock *icsk = inet_csk(sk); 1734 int mtu; 1735 1736 mtu = mss + 1737 tp->tcp_header_len + 1738 icsk->icsk_ext_hdr_len + 1739 icsk->icsk_af_ops->net_header_len; 1740 1741 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ 1742 if (icsk->icsk_af_ops->net_frag_header_len) { 1743 const struct dst_entry *dst = __sk_dst_get(sk); 1744 1745 if (dst && dst_allfrag(dst)) 1746 mtu += icsk->icsk_af_ops->net_frag_header_len; 1747 } 1748 return mtu; 1749 } 1750 EXPORT_SYMBOL(tcp_mss_to_mtu); 1751 1752 /* MTU probing init per socket */ 1753 void tcp_mtup_init(struct sock *sk) 1754 { 1755 struct tcp_sock *tp = tcp_sk(sk); 1756 struct inet_connection_sock *icsk = inet_csk(sk); 1757 struct net *net = sock_net(sk); 1758 1759 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; 1760 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + 1761 icsk->icsk_af_ops->net_header_len; 1762 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); 1763 icsk->icsk_mtup.probe_size = 0; 1764 if (icsk->icsk_mtup.enabled) 1765 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 1766 } 1767 EXPORT_SYMBOL(tcp_mtup_init); 1768 1769 /* This function synchronize snd mss to current pmtu/exthdr set. 1770 1771 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 1772 for TCP options, but includes only bare TCP header. 1773 1774 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 1775 It is minimum of user_mss and mss received with SYN. 1776 It also does not include TCP options. 1777 1778 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. 1779 1780 tp->mss_cache is current effective sending mss, including 1781 all tcp options except for SACKs. It is evaluated, 1782 taking into account current pmtu, but never exceeds 1783 tp->rx_opt.mss_clamp. 1784 1785 NOTE1. rfc1122 clearly states that advertised MSS 1786 DOES NOT include either tcp or ip options. 1787 1788 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache 1789 are READ ONLY outside this function. --ANK (980731) 1790 */ 1791 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 1792 { 1793 struct tcp_sock *tp = tcp_sk(sk); 1794 struct inet_connection_sock *icsk = inet_csk(sk); 1795 int mss_now; 1796 1797 if (icsk->icsk_mtup.search_high > pmtu) 1798 icsk->icsk_mtup.search_high = pmtu; 1799 1800 mss_now = tcp_mtu_to_mss(sk, pmtu); 1801 mss_now = tcp_bound_to_half_wnd(tp, mss_now); 1802 1803 /* And store cached results */ 1804 icsk->icsk_pmtu_cookie = pmtu; 1805 if (icsk->icsk_mtup.enabled) 1806 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); 1807 tp->mss_cache = mss_now; 1808 1809 return mss_now; 1810 } 1811 EXPORT_SYMBOL(tcp_sync_mss); 1812 1813 /* Compute the current effective MSS, taking SACKs and IP options, 1814 * and even PMTU discovery events into account. 1815 */ 1816 unsigned int tcp_current_mss(struct sock *sk) 1817 { 1818 const struct tcp_sock *tp = tcp_sk(sk); 1819 const struct dst_entry *dst = __sk_dst_get(sk); 1820 u32 mss_now; 1821 unsigned int header_len; 1822 struct tcp_out_options opts; 1823 struct tcp_md5sig_key *md5; 1824 1825 mss_now = tp->mss_cache; 1826 1827 if (dst) { 1828 u32 mtu = dst_mtu(dst); 1829 if (mtu != inet_csk(sk)->icsk_pmtu_cookie) 1830 mss_now = tcp_sync_mss(sk, mtu); 1831 } 1832 1833 header_len = tcp_established_options(sk, NULL, &opts, &md5) + 1834 sizeof(struct tcphdr); 1835 /* The mss_cache is sized based on tp->tcp_header_len, which assumes 1836 * some common options. If this is an odd packet (because we have SACK 1837 * blocks etc) then our calculated header_len will be different, and 1838 * we have to adjust mss_now correspondingly */ 1839 if (header_len != tp->tcp_header_len) { 1840 int delta = (int) header_len - tp->tcp_header_len; 1841 mss_now -= delta; 1842 } 1843 1844 return mss_now; 1845 } 1846 1847 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 1848 * As additional protections, we do not touch cwnd in retransmission phases, 1849 * and if application hit its sndbuf limit recently. 1850 */ 1851 static void tcp_cwnd_application_limited(struct sock *sk) 1852 { 1853 struct tcp_sock *tp = tcp_sk(sk); 1854 1855 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 1856 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1857 /* Limited by application or receiver window. */ 1858 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 1859 u32 win_used = max(tp->snd_cwnd_used, init_win); 1860 if (win_used < tcp_snd_cwnd(tp)) { 1861 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1862 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); 1863 } 1864 tp->snd_cwnd_used = 0; 1865 } 1866 tp->snd_cwnd_stamp = tcp_jiffies32; 1867 } 1868 1869 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) 1870 { 1871 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1872 struct tcp_sock *tp = tcp_sk(sk); 1873 1874 /* Track the strongest available signal of the degree to which the cwnd 1875 * is fully utilized. If cwnd-limited then remember that fact for the 1876 * current window. If not cwnd-limited then track the maximum number of 1877 * outstanding packets in the current window. (If cwnd-limited then we 1878 * chose to not update tp->max_packets_out to avoid an extra else 1879 * clause with no functional impact.) 1880 */ 1881 if (!before(tp->snd_una, tp->cwnd_usage_seq) || 1882 is_cwnd_limited || 1883 (!tp->is_cwnd_limited && 1884 tp->packets_out > tp->max_packets_out)) { 1885 tp->is_cwnd_limited = is_cwnd_limited; 1886 tp->max_packets_out = tp->packets_out; 1887 tp->cwnd_usage_seq = tp->snd_nxt; 1888 } 1889 1890 if (tcp_is_cwnd_limited(sk)) { 1891 /* Network is feed fully. */ 1892 tp->snd_cwnd_used = 0; 1893 tp->snd_cwnd_stamp = tcp_jiffies32; 1894 } else { 1895 /* Network starves. */ 1896 if (tp->packets_out > tp->snd_cwnd_used) 1897 tp->snd_cwnd_used = tp->packets_out; 1898 1899 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && 1900 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && 1901 !ca_ops->cong_control) 1902 tcp_cwnd_application_limited(sk); 1903 1904 /* The following conditions together indicate the starvation 1905 * is caused by insufficient sender buffer: 1906 * 1) just sent some data (see tcp_write_xmit) 1907 * 2) not cwnd limited (this else condition) 1908 * 3) no more data to send (tcp_write_queue_empty()) 1909 * 4) application is hitting buffer limit (SOCK_NOSPACE) 1910 */ 1911 if (tcp_write_queue_empty(sk) && sk->sk_socket && 1912 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && 1913 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1914 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); 1915 } 1916 } 1917 1918 /* Minshall's variant of the Nagle send check. */ 1919 static bool tcp_minshall_check(const struct tcp_sock *tp) 1920 { 1921 return after(tp->snd_sml, tp->snd_una) && 1922 !after(tp->snd_sml, tp->snd_nxt); 1923 } 1924 1925 /* Update snd_sml if this skb is under mss 1926 * Note that a TSO packet might end with a sub-mss segment 1927 * The test is really : 1928 * if ((skb->len % mss) != 0) 1929 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1930 * But we can avoid doing the divide again given we already have 1931 * skb_pcount = skb->len / mss_now 1932 */ 1933 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, 1934 const struct sk_buff *skb) 1935 { 1936 if (skb->len < tcp_skb_pcount(skb) * mss_now) 1937 tp->snd_sml = TCP_SKB_CB(skb)->end_seq; 1938 } 1939 1940 /* Return false, if packet can be sent now without violation Nagle's rules: 1941 * 1. It is full sized. (provided by caller in %partial bool) 1942 * 2. Or it contains FIN. (already checked by caller) 1943 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. 1944 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 1945 * With Minshall's modification: all sent small packets are ACKed. 1946 */ 1947 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, 1948 int nonagle) 1949 { 1950 return partial && 1951 ((nonagle & TCP_NAGLE_CORK) || 1952 (!nonagle && tp->packets_out && tcp_minshall_check(tp))); 1953 } 1954 1955 /* Return how many segs we'd like on a TSO packet, 1956 * depending on current pacing rate, and how close the peer is. 1957 * 1958 * Rationale is: 1959 * - For close peers, we rather send bigger packets to reduce 1960 * cpu costs, because occasional losses will be repaired fast. 1961 * - For long distance/rtt flows, we would like to get ACK clocking 1962 * with 1 ACK per ms. 1963 * 1964 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting 1965 * in bigger TSO bursts. We we cut the RTT-based allowance in half 1966 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance 1967 * is below 1500 bytes after 6 * ~500 usec = 3ms. 1968 */ 1969 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, 1970 int min_tso_segs) 1971 { 1972 unsigned long bytes; 1973 u32 r; 1974 1975 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift); 1976 1977 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); 1978 if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) 1979 bytes += sk->sk_gso_max_size >> r; 1980 1981 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); 1982 1983 return max_t(u32, bytes / mss_now, min_tso_segs); 1984 } 1985 1986 /* Return the number of segments we want in the skb we are transmitting. 1987 * See if congestion control module wants to decide; otherwise, autosize. 1988 */ 1989 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) 1990 { 1991 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1992 u32 min_tso, tso_segs; 1993 1994 min_tso = ca_ops->min_tso_segs ? 1995 ca_ops->min_tso_segs(sk) : 1996 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); 1997 1998 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); 1999 return min_t(u32, tso_segs, sk->sk_gso_max_segs); 2000 } 2001 2002 /* Returns the portion of skb which can be sent right away */ 2003 static unsigned int tcp_mss_split_point(const struct sock *sk, 2004 const struct sk_buff *skb, 2005 unsigned int mss_now, 2006 unsigned int max_segs, 2007 int nonagle) 2008 { 2009 const struct tcp_sock *tp = tcp_sk(sk); 2010 u32 partial, needed, window, max_len; 2011 2012 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2013 max_len = mss_now * max_segs; 2014 2015 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) 2016 return max_len; 2017 2018 needed = min(skb->len, window); 2019 2020 if (max_len <= needed) 2021 return max_len; 2022 2023 partial = needed % mss_now; 2024 /* If last segment is not a full MSS, check if Nagle rules allow us 2025 * to include this last segment in this skb. 2026 * Otherwise, we'll split the skb at last MSS boundary 2027 */ 2028 if (tcp_nagle_check(partial != 0, tp, nonagle)) 2029 return needed - partial; 2030 2031 return needed; 2032 } 2033 2034 /* Can at least one segment of SKB be sent right now, according to the 2035 * congestion window rules? If so, return how many segments are allowed. 2036 */ 2037 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, 2038 const struct sk_buff *skb) 2039 { 2040 u32 in_flight, cwnd, halfcwnd; 2041 2042 /* Don't be strict about the congestion window for the final FIN. */ 2043 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && 2044 tcp_skb_pcount(skb) == 1) 2045 return 1; 2046 2047 in_flight = tcp_packets_in_flight(tp); 2048 cwnd = tcp_snd_cwnd(tp); 2049 if (in_flight >= cwnd) 2050 return 0; 2051 2052 /* For better scheduling, ensure we have at least 2053 * 2 GSO packets in flight. 2054 */ 2055 halfcwnd = max(cwnd >> 1, 1U); 2056 return min(halfcwnd, cwnd - in_flight); 2057 } 2058 2059 /* Initialize TSO state of a skb. 2060 * This must be invoked the first time we consider transmitting 2061 * SKB onto the wire. 2062 */ 2063 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) 2064 { 2065 int tso_segs = tcp_skb_pcount(skb); 2066 2067 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { 2068 tcp_set_skb_tso_segs(skb, mss_now); 2069 tso_segs = tcp_skb_pcount(skb); 2070 } 2071 return tso_segs; 2072 } 2073 2074 2075 /* Return true if the Nagle test allows this packet to be 2076 * sent now. 2077 */ 2078 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, 2079 unsigned int cur_mss, int nonagle) 2080 { 2081 /* Nagle rule does not apply to frames, which sit in the middle of the 2082 * write_queue (they have no chances to get new data). 2083 * 2084 * This is implemented in the callers, where they modify the 'nonagle' 2085 * argument based upon the location of SKB in the send queue. 2086 */ 2087 if (nonagle & TCP_NAGLE_PUSH) 2088 return true; 2089 2090 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 2091 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 2092 return true; 2093 2094 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) 2095 return true; 2096 2097 return false; 2098 } 2099 2100 /* Does at least the first segment of SKB fit into the send window? */ 2101 static bool tcp_snd_wnd_test(const struct tcp_sock *tp, 2102 const struct sk_buff *skb, 2103 unsigned int cur_mss) 2104 { 2105 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2106 2107 if (skb->len > cur_mss) 2108 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 2109 2110 return !after(end_seq, tcp_wnd_end(tp)); 2111 } 2112 2113 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 2114 * which is put after SKB on the list. It is very much like 2115 * tcp_fragment() except that it may make several kinds of assumptions 2116 * in order to speed up the splitting operation. In particular, we 2117 * know that all the data is in scatter-gather pages, and that the 2118 * packet has never been sent out before (and thus is not cloned). 2119 */ 2120 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, 2121 unsigned int mss_now, gfp_t gfp) 2122 { 2123 int nlen = skb->len - len; 2124 struct sk_buff *buff; 2125 u8 flags; 2126 2127 /* All of a TSO frame must be composed of paged data. */ 2128 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len); 2129 2130 buff = tcp_stream_alloc_skb(sk, gfp, true); 2131 if (unlikely(!buff)) 2132 return -ENOMEM; 2133 skb_copy_decrypted(buff, skb); 2134 mptcp_skb_ext_copy(buff, skb); 2135 2136 sk_wmem_queued_add(sk, buff->truesize); 2137 sk_mem_charge(sk, buff->truesize); 2138 buff->truesize += nlen; 2139 skb->truesize -= nlen; 2140 2141 /* Correct the sequence numbers. */ 2142 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 2143 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 2144 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 2145 2146 /* PSH and FIN should only be set in the second packet. */ 2147 flags = TCP_SKB_CB(skb)->tcp_flags; 2148 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); 2149 TCP_SKB_CB(buff)->tcp_flags = flags; 2150 2151 tcp_skb_fragment_eor(skb, buff); 2152 2153 skb_split(skb, buff, len); 2154 tcp_fragment_tstamp(skb, buff); 2155 2156 /* Fix up tso_factor for both original and new SKB. */ 2157 tcp_set_skb_tso_segs(skb, mss_now); 2158 tcp_set_skb_tso_segs(buff, mss_now); 2159 2160 /* Link BUFF into the send queue. */ 2161 __skb_header_release(buff); 2162 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); 2163 2164 return 0; 2165 } 2166 2167 /* Try to defer sending, if possible, in order to minimize the amount 2168 * of TSO splitting we do. View it as a kind of TSO Nagle test. 2169 * 2170 * This algorithm is from John Heffner. 2171 */ 2172 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, 2173 bool *is_cwnd_limited, 2174 bool *is_rwnd_limited, 2175 u32 max_segs) 2176 { 2177 const struct inet_connection_sock *icsk = inet_csk(sk); 2178 u32 send_win, cong_win, limit, in_flight; 2179 struct tcp_sock *tp = tcp_sk(sk); 2180 struct sk_buff *head; 2181 int win_divisor; 2182 s64 delta; 2183 2184 if (icsk->icsk_ca_state >= TCP_CA_Recovery) 2185 goto send_now; 2186 2187 /* Avoid bursty behavior by allowing defer 2188 * only if the last write was recent (1 ms). 2189 * Note that tp->tcp_wstamp_ns can be in the future if we have 2190 * packets waiting in a qdisc or device for EDT delivery. 2191 */ 2192 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; 2193 if (delta > 0) 2194 goto send_now; 2195 2196 in_flight = tcp_packets_in_flight(tp); 2197 2198 BUG_ON(tcp_skb_pcount(skb) <= 1); 2199 BUG_ON(tcp_snd_cwnd(tp) <= in_flight); 2200 2201 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 2202 2203 /* From in_flight test above, we know that cwnd > in_flight. */ 2204 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; 2205 2206 limit = min(send_win, cong_win); 2207 2208 /* If a full-sized TSO skb can be sent, do it. */ 2209 if (limit >= max_segs * tp->mss_cache) 2210 goto send_now; 2211 2212 /* Middle in queue won't get any more data, full sendable already? */ 2213 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) 2214 goto send_now; 2215 2216 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); 2217 if (win_divisor) { 2218 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); 2219 2220 /* If at least some fraction of a window is available, 2221 * just use it. 2222 */ 2223 chunk /= win_divisor; 2224 if (limit >= chunk) 2225 goto send_now; 2226 } else { 2227 /* Different approach, try not to defer past a single 2228 * ACK. Receiver should ACK every other full sized 2229 * frame, so if we have space for more than 3 frames 2230 * then send now. 2231 */ 2232 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) 2233 goto send_now; 2234 } 2235 2236 /* TODO : use tsorted_sent_queue ? */ 2237 head = tcp_rtx_queue_head(sk); 2238 if (!head) 2239 goto send_now; 2240 delta = tp->tcp_clock_cache - head->tstamp; 2241 /* If next ACK is likely to come too late (half srtt), do not defer */ 2242 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) 2243 goto send_now; 2244 2245 /* Ok, it looks like it is advisable to defer. 2246 * Three cases are tracked : 2247 * 1) We are cwnd-limited 2248 * 2) We are rwnd-limited 2249 * 3) We are application limited. 2250 */ 2251 if (cong_win < send_win) { 2252 if (cong_win <= skb->len) { 2253 *is_cwnd_limited = true; 2254 return true; 2255 } 2256 } else { 2257 if (send_win <= skb->len) { 2258 *is_rwnd_limited = true; 2259 return true; 2260 } 2261 } 2262 2263 /* If this packet won't get more data, do not wait. */ 2264 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || 2265 TCP_SKB_CB(skb)->eor) 2266 goto send_now; 2267 2268 return true; 2269 2270 send_now: 2271 return false; 2272 } 2273 2274 static inline void tcp_mtu_check_reprobe(struct sock *sk) 2275 { 2276 struct inet_connection_sock *icsk = inet_csk(sk); 2277 struct tcp_sock *tp = tcp_sk(sk); 2278 struct net *net = sock_net(sk); 2279 u32 interval; 2280 s32 delta; 2281 2282 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); 2283 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; 2284 if (unlikely(delta >= interval * HZ)) { 2285 int mss = tcp_current_mss(sk); 2286 2287 /* Update current search range */ 2288 icsk->icsk_mtup.probe_size = 0; 2289 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + 2290 sizeof(struct tcphdr) + 2291 icsk->icsk_af_ops->net_header_len; 2292 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); 2293 2294 /* Update probe time stamp */ 2295 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; 2296 } 2297 } 2298 2299 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) 2300 { 2301 struct sk_buff *skb, *next; 2302 2303 skb = tcp_send_head(sk); 2304 tcp_for_write_queue_from_safe(skb, next, sk) { 2305 if (len <= skb->len) 2306 break; 2307 2308 if (unlikely(TCP_SKB_CB(skb)->eor) || 2309 tcp_has_tx_tstamp(skb) || 2310 !skb_pure_zcopy_same(skb, next)) 2311 return false; 2312 2313 len -= skb->len; 2314 } 2315 2316 return true; 2317 } 2318 2319 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to, 2320 int probe_size) 2321 { 2322 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags; 2323 int i, todo, len = 0, nr_frags = 0; 2324 const struct sk_buff *skb; 2325 2326 if (!sk_wmem_schedule(sk, to->truesize + probe_size)) 2327 return -ENOMEM; 2328 2329 skb_queue_walk(&sk->sk_write_queue, skb) { 2330 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags; 2331 2332 if (skb_headlen(skb)) 2333 return -EINVAL; 2334 2335 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) { 2336 if (len >= probe_size) 2337 goto commit; 2338 todo = min_t(int, skb_frag_size(fragfrom), 2339 probe_size - len); 2340 len += todo; 2341 if (lastfrag && 2342 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) && 2343 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) + 2344 skb_frag_size(lastfrag)) { 2345 skb_frag_size_add(lastfrag, todo); 2346 continue; 2347 } 2348 if (unlikely(nr_frags == MAX_SKB_FRAGS)) 2349 return -E2BIG; 2350 skb_frag_page_copy(fragto, fragfrom); 2351 skb_frag_off_copy(fragto, fragfrom); 2352 skb_frag_size_set(fragto, todo); 2353 nr_frags++; 2354 lastfrag = fragto++; 2355 } 2356 } 2357 commit: 2358 WARN_ON_ONCE(len != probe_size); 2359 for (i = 0; i < nr_frags; i++) 2360 skb_frag_ref(to, i); 2361 2362 skb_shinfo(to)->nr_frags = nr_frags; 2363 to->truesize += probe_size; 2364 to->len += probe_size; 2365 to->data_len += probe_size; 2366 __skb_header_release(to); 2367 return 0; 2368 } 2369 2370 /* Create a new MTU probe if we are ready. 2371 * MTU probe is regularly attempting to increase the path MTU by 2372 * deliberately sending larger packets. This discovers routing 2373 * changes resulting in larger path MTUs. 2374 * 2375 * Returns 0 if we should wait to probe (no cwnd available), 2376 * 1 if a probe was sent, 2377 * -1 otherwise 2378 */ 2379 static int tcp_mtu_probe(struct sock *sk) 2380 { 2381 struct inet_connection_sock *icsk = inet_csk(sk); 2382 struct tcp_sock *tp = tcp_sk(sk); 2383 struct sk_buff *skb, *nskb, *next; 2384 struct net *net = sock_net(sk); 2385 int probe_size; 2386 int size_needed; 2387 int copy, len; 2388 int mss_now; 2389 int interval; 2390 2391 /* Not currently probing/verifying, 2392 * not in recovery, 2393 * have enough cwnd, and 2394 * not SACKing (the variable headers throw things off) 2395 */ 2396 if (likely(!icsk->icsk_mtup.enabled || 2397 icsk->icsk_mtup.probe_size || 2398 inet_csk(sk)->icsk_ca_state != TCP_CA_Open || 2399 tcp_snd_cwnd(tp) < 11 || 2400 tp->rx_opt.num_sacks || tp->rx_opt.dsack)) 2401 return -1; 2402 2403 /* Use binary search for probe_size between tcp_mss_base, 2404 * and current mss_clamp. if (search_high - search_low) 2405 * smaller than a threshold, backoff from probing. 2406 */ 2407 mss_now = tcp_current_mss(sk); 2408 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + 2409 icsk->icsk_mtup.search_low) >> 1); 2410 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; 2411 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; 2412 /* When misfortune happens, we are reprobing actively, 2413 * and then reprobe timer has expired. We stick with current 2414 * probing process by not resetting search range to its orignal. 2415 */ 2416 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || 2417 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { 2418 /* Check whether enough time has elaplased for 2419 * another round of probing. 2420 */ 2421 tcp_mtu_check_reprobe(sk); 2422 return -1; 2423 } 2424 2425 /* Have enough data in the send queue to probe? */ 2426 if (tp->write_seq - tp->snd_nxt < size_needed) 2427 return -1; 2428 2429 if (tp->snd_wnd < size_needed) 2430 return -1; 2431 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) 2432 return 0; 2433 2434 /* Do we need to wait to drain cwnd? With none in flight, don't stall */ 2435 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { 2436 if (!tcp_packets_in_flight(tp)) 2437 return -1; 2438 else 2439 return 0; 2440 } 2441 2442 if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) 2443 return -1; 2444 2445 /* We're allowed to probe. Build it now. */ 2446 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false); 2447 if (!nskb) 2448 return -1; 2449 2450 /* build the payload, and be prepared to abort if this fails. */ 2451 if (tcp_clone_payload(sk, nskb, probe_size)) { 2452 consume_skb(nskb); 2453 return -1; 2454 } 2455 sk_wmem_queued_add(sk, nskb->truesize); 2456 sk_mem_charge(sk, nskb->truesize); 2457 2458 skb = tcp_send_head(sk); 2459 skb_copy_decrypted(nskb, skb); 2460 mptcp_skb_ext_copy(nskb, skb); 2461 2462 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; 2463 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; 2464 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; 2465 2466 tcp_insert_write_queue_before(nskb, skb, sk); 2467 tcp_highest_sack_replace(sk, skb, nskb); 2468 2469 len = 0; 2470 tcp_for_write_queue_from_safe(skb, next, sk) { 2471 copy = min_t(int, skb->len, probe_size - len); 2472 2473 if (skb->len <= copy) { 2474 /* We've eaten all the data from this skb. 2475 * Throw it away. */ 2476 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2477 /* If this is the last SKB we copy and eor is set 2478 * we need to propagate it to the new skb. 2479 */ 2480 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; 2481 tcp_skb_collapse_tstamp(nskb, skb); 2482 tcp_unlink_write_queue(skb, sk); 2483 tcp_wmem_free_skb(sk, skb); 2484 } else { 2485 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & 2486 ~(TCPHDR_FIN|TCPHDR_PSH); 2487 __pskb_trim_head(skb, copy); 2488 tcp_set_skb_tso_segs(skb, mss_now); 2489 TCP_SKB_CB(skb)->seq += copy; 2490 } 2491 2492 len += copy; 2493 2494 if (len >= probe_size) 2495 break; 2496 } 2497 tcp_init_tso_segs(nskb, nskb->len); 2498 2499 /* We're ready to send. If this fails, the probe will 2500 * be resegmented into mss-sized pieces by tcp_write_xmit(). 2501 */ 2502 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { 2503 /* Decrement cwnd here because we are sending 2504 * effectively two packets. */ 2505 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); 2506 tcp_event_new_data_sent(sk, nskb); 2507 2508 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); 2509 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; 2510 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; 2511 2512 return 1; 2513 } 2514 2515 return -1; 2516 } 2517 2518 static bool tcp_pacing_check(struct sock *sk) 2519 { 2520 struct tcp_sock *tp = tcp_sk(sk); 2521 2522 if (!tcp_needs_internal_pacing(sk)) 2523 return false; 2524 2525 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) 2526 return false; 2527 2528 if (!hrtimer_is_queued(&tp->pacing_timer)) { 2529 hrtimer_start(&tp->pacing_timer, 2530 ns_to_ktime(tp->tcp_wstamp_ns), 2531 HRTIMER_MODE_ABS_PINNED_SOFT); 2532 sock_hold(sk); 2533 } 2534 return true; 2535 } 2536 2537 /* TCP Small Queues : 2538 * Control number of packets in qdisc/devices to two packets / or ~1 ms. 2539 * (These limits are doubled for retransmits) 2540 * This allows for : 2541 * - better RTT estimation and ACK scheduling 2542 * - faster recovery 2543 * - high rates 2544 * Alas, some drivers / subsystems require a fair amount 2545 * of queued bytes to ensure line rate. 2546 * One example is wifi aggregation (802.11 AMPDU) 2547 */ 2548 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, 2549 unsigned int factor) 2550 { 2551 unsigned long limit; 2552 2553 limit = max_t(unsigned long, 2554 2 * skb->truesize, 2555 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift)); 2556 if (sk->sk_pacing_status == SK_PACING_NONE) 2557 limit = min_t(unsigned long, limit, 2558 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); 2559 limit <<= factor; 2560 2561 if (static_branch_unlikely(&tcp_tx_delay_enabled) && 2562 tcp_sk(sk)->tcp_tx_delay) { 2563 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) * 2564 tcp_sk(sk)->tcp_tx_delay; 2565 2566 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we 2567 * approximate our needs assuming an ~100% skb->truesize overhead. 2568 * USEC_PER_SEC is approximated by 2^20. 2569 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. 2570 */ 2571 extra_bytes >>= (20 - 1); 2572 limit += extra_bytes; 2573 } 2574 if (refcount_read(&sk->sk_wmem_alloc) > limit) { 2575 /* Always send skb if rtx queue is empty. 2576 * No need to wait for TX completion to call us back, 2577 * after softirq/tasklet schedule. 2578 * This helps when TX completions are delayed too much. 2579 */ 2580 if (tcp_rtx_queue_empty(sk)) 2581 return false; 2582 2583 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2584 /* It is possible TX completion already happened 2585 * before we set TSQ_THROTTLED, so we must 2586 * test again the condition. 2587 */ 2588 smp_mb__after_atomic(); 2589 if (refcount_read(&sk->sk_wmem_alloc) > limit) 2590 return true; 2591 } 2592 return false; 2593 } 2594 2595 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) 2596 { 2597 const u32 now = tcp_jiffies32; 2598 enum tcp_chrono old = tp->chrono_type; 2599 2600 if (old > TCP_CHRONO_UNSPEC) 2601 tp->chrono_stat[old - 1] += now - tp->chrono_start; 2602 tp->chrono_start = now; 2603 tp->chrono_type = new; 2604 } 2605 2606 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) 2607 { 2608 struct tcp_sock *tp = tcp_sk(sk); 2609 2610 /* If there are multiple conditions worthy of tracking in a 2611 * chronograph then the highest priority enum takes precedence 2612 * over the other conditions. So that if something "more interesting" 2613 * starts happening, stop the previous chrono and start a new one. 2614 */ 2615 if (type > tp->chrono_type) 2616 tcp_chrono_set(tp, type); 2617 } 2618 2619 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) 2620 { 2621 struct tcp_sock *tp = tcp_sk(sk); 2622 2623 2624 /* There are multiple conditions worthy of tracking in a 2625 * chronograph, so that the highest priority enum takes 2626 * precedence over the other conditions (see tcp_chrono_start). 2627 * If a condition stops, we only stop chrono tracking if 2628 * it's the "most interesting" or current chrono we are 2629 * tracking and starts busy chrono if we have pending data. 2630 */ 2631 if (tcp_rtx_and_write_queues_empty(sk)) 2632 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); 2633 else if (type == tp->chrono_type) 2634 tcp_chrono_set(tp, TCP_CHRONO_BUSY); 2635 } 2636 2637 /* This routine writes packets to the network. It advances the 2638 * send_head. This happens as incoming acks open up the remote 2639 * window for us. 2640 * 2641 * LARGESEND note: !tcp_urg_mode is overkill, only frames between 2642 * snd_up-64k-mss .. snd_up cannot be large. However, taking into 2643 * account rare use of URG, this is not a big flaw. 2644 * 2645 * Send at most one packet when push_one > 0. Temporarily ignore 2646 * cwnd limit to force at most one packet out when push_one == 2. 2647 2648 * Returns true, if no segments are in flight and we have queued segments, 2649 * but cannot send anything now because of SWS or another problem. 2650 */ 2651 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, 2652 int push_one, gfp_t gfp) 2653 { 2654 struct tcp_sock *tp = tcp_sk(sk); 2655 struct sk_buff *skb; 2656 unsigned int tso_segs, sent_pkts; 2657 int cwnd_quota; 2658 int result; 2659 bool is_cwnd_limited = false, is_rwnd_limited = false; 2660 u32 max_segs; 2661 2662 sent_pkts = 0; 2663 2664 tcp_mstamp_refresh(tp); 2665 if (!push_one) { 2666 /* Do MTU probing. */ 2667 result = tcp_mtu_probe(sk); 2668 if (!result) { 2669 return false; 2670 } else if (result > 0) { 2671 sent_pkts = 1; 2672 } 2673 } 2674 2675 max_segs = tcp_tso_segs(sk, mss_now); 2676 while ((skb = tcp_send_head(sk))) { 2677 unsigned int limit; 2678 2679 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { 2680 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ 2681 tp->tcp_wstamp_ns = tp->tcp_clock_cache; 2682 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); 2683 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); 2684 tcp_init_tso_segs(skb, mss_now); 2685 goto repair; /* Skip network transmission */ 2686 } 2687 2688 if (tcp_pacing_check(sk)) 2689 break; 2690 2691 tso_segs = tcp_init_tso_segs(skb, mss_now); 2692 BUG_ON(!tso_segs); 2693 2694 cwnd_quota = tcp_cwnd_test(tp, skb); 2695 if (!cwnd_quota) { 2696 if (push_one == 2) 2697 /* Force out a loss probe pkt. */ 2698 cwnd_quota = 1; 2699 else 2700 break; 2701 } 2702 2703 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { 2704 is_rwnd_limited = true; 2705 break; 2706 } 2707 2708 if (tso_segs == 1) { 2709 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 2710 (tcp_skb_is_last(sk, skb) ? 2711 nonagle : TCP_NAGLE_PUSH)))) 2712 break; 2713 } else { 2714 if (!push_one && 2715 tcp_tso_should_defer(sk, skb, &is_cwnd_limited, 2716 &is_rwnd_limited, max_segs)) 2717 break; 2718 } 2719 2720 limit = mss_now; 2721 if (tso_segs > 1 && !tcp_urg_mode(tp)) 2722 limit = tcp_mss_split_point(sk, skb, mss_now, 2723 min_t(unsigned int, 2724 cwnd_quota, 2725 max_segs), 2726 nonagle); 2727 2728 if (skb->len > limit && 2729 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) 2730 break; 2731 2732 if (tcp_small_queue_check(sk, skb, 0)) 2733 break; 2734 2735 /* Argh, we hit an empty skb(), presumably a thread 2736 * is sleeping in sendmsg()/sk_stream_wait_memory(). 2737 * We do not want to send a pure-ack packet and have 2738 * a strange looking rtx queue with empty packet(s). 2739 */ 2740 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) 2741 break; 2742 2743 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) 2744 break; 2745 2746 repair: 2747 /* Advance the send_head. This one is sent out. 2748 * This call will increment packets_out. 2749 */ 2750 tcp_event_new_data_sent(sk, skb); 2751 2752 tcp_minshall_update(tp, mss_now, skb); 2753 sent_pkts += tcp_skb_pcount(skb); 2754 2755 if (push_one) 2756 break; 2757 } 2758 2759 if (is_rwnd_limited) 2760 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); 2761 else 2762 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); 2763 2764 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); 2765 if (likely(sent_pkts || is_cwnd_limited)) 2766 tcp_cwnd_validate(sk, is_cwnd_limited); 2767 2768 if (likely(sent_pkts)) { 2769 if (tcp_in_cwnd_reduction(sk)) 2770 tp->prr_out += sent_pkts; 2771 2772 /* Send one loss probe per tail loss episode. */ 2773 if (push_one != 2) 2774 tcp_schedule_loss_probe(sk, false); 2775 return false; 2776 } 2777 return !tp->packets_out && !tcp_write_queue_empty(sk); 2778 } 2779 2780 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) 2781 { 2782 struct inet_connection_sock *icsk = inet_csk(sk); 2783 struct tcp_sock *tp = tcp_sk(sk); 2784 u32 timeout, rto_delta_us; 2785 int early_retrans; 2786 2787 /* Don't do any loss probe on a Fast Open connection before 3WHS 2788 * finishes. 2789 */ 2790 if (rcu_access_pointer(tp->fastopen_rsk)) 2791 return false; 2792 2793 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); 2794 /* Schedule a loss probe in 2*RTT for SACK capable connections 2795 * not in loss recovery, that are either limited by cwnd or application. 2796 */ 2797 if ((early_retrans != 3 && early_retrans != 4) || 2798 !tp->packets_out || !tcp_is_sack(tp) || 2799 (icsk->icsk_ca_state != TCP_CA_Open && 2800 icsk->icsk_ca_state != TCP_CA_CWR)) 2801 return false; 2802 2803 /* Probe timeout is 2*rtt. Add minimum RTO to account 2804 * for delayed ack when there's one outstanding packet. If no RTT 2805 * sample is available then probe after TCP_TIMEOUT_INIT. 2806 */ 2807 if (tp->srtt_us) { 2808 timeout = usecs_to_jiffies(tp->srtt_us >> 2); 2809 if (tp->packets_out == 1) 2810 timeout += TCP_RTO_MIN; 2811 else 2812 timeout += TCP_TIMEOUT_MIN; 2813 } else { 2814 timeout = TCP_TIMEOUT_INIT; 2815 } 2816 2817 /* If the RTO formula yields an earlier time, then use that time. */ 2818 rto_delta_us = advancing_rto ? 2819 jiffies_to_usecs(inet_csk(sk)->icsk_rto) : 2820 tcp_rto_delta_us(sk); /* How far in future is RTO? */ 2821 if (rto_delta_us > 0) 2822 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); 2823 2824 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); 2825 return true; 2826 } 2827 2828 /* Thanks to skb fast clones, we can detect if a prior transmit of 2829 * a packet is still in a qdisc or driver queue. 2830 * In this case, there is very little point doing a retransmit ! 2831 */ 2832 static bool skb_still_in_host_queue(struct sock *sk, 2833 const struct sk_buff *skb) 2834 { 2835 if (unlikely(skb_fclone_busy(sk, skb))) { 2836 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 2837 smp_mb__after_atomic(); 2838 if (skb_fclone_busy(sk, skb)) { 2839 NET_INC_STATS(sock_net(sk), 2840 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); 2841 return true; 2842 } 2843 } 2844 return false; 2845 } 2846 2847 /* When probe timeout (PTO) fires, try send a new segment if possible, else 2848 * retransmit the last segment. 2849 */ 2850 void tcp_send_loss_probe(struct sock *sk) 2851 { 2852 struct tcp_sock *tp = tcp_sk(sk); 2853 struct sk_buff *skb; 2854 int pcount; 2855 int mss = tcp_current_mss(sk); 2856 2857 /* At most one outstanding TLP */ 2858 if (tp->tlp_high_seq) 2859 goto rearm_timer; 2860 2861 tp->tlp_retrans = 0; 2862 skb = tcp_send_head(sk); 2863 if (skb && tcp_snd_wnd_test(tp, skb, mss)) { 2864 pcount = tp->packets_out; 2865 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); 2866 if (tp->packets_out > pcount) 2867 goto probe_sent; 2868 goto rearm_timer; 2869 } 2870 skb = skb_rb_last(&sk->tcp_rtx_queue); 2871 if (unlikely(!skb)) { 2872 WARN_ONCE(tp->packets_out, 2873 "invalid inflight: %u state %u cwnd %u mss %d\n", 2874 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss); 2875 inet_csk(sk)->icsk_pending = 0; 2876 return; 2877 } 2878 2879 if (skb_still_in_host_queue(sk, skb)) 2880 goto rearm_timer; 2881 2882 pcount = tcp_skb_pcount(skb); 2883 if (WARN_ON(!pcount)) 2884 goto rearm_timer; 2885 2886 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { 2887 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2888 (pcount - 1) * mss, mss, 2889 GFP_ATOMIC))) 2890 goto rearm_timer; 2891 skb = skb_rb_next(skb); 2892 } 2893 2894 if (WARN_ON(!skb || !tcp_skb_pcount(skb))) 2895 goto rearm_timer; 2896 2897 if (__tcp_retransmit_skb(sk, skb, 1)) 2898 goto rearm_timer; 2899 2900 tp->tlp_retrans = 1; 2901 2902 probe_sent: 2903 /* Record snd_nxt for loss detection. */ 2904 tp->tlp_high_seq = tp->snd_nxt; 2905 2906 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); 2907 /* Reset s.t. tcp_rearm_rto will restart timer from now */ 2908 inet_csk(sk)->icsk_pending = 0; 2909 rearm_timer: 2910 tcp_rearm_rto(sk); 2911 } 2912 2913 /* Push out any pending frames which were held back due to 2914 * TCP_CORK or attempt at coalescing tiny packets. 2915 * The socket must be locked by the caller. 2916 */ 2917 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 2918 int nonagle) 2919 { 2920 /* If we are closed, the bytes will have to remain here. 2921 * In time closedown will finish, we empty the write queue and 2922 * all will be happy. 2923 */ 2924 if (unlikely(sk->sk_state == TCP_CLOSE)) 2925 return; 2926 2927 if (tcp_write_xmit(sk, cur_mss, nonagle, 0, 2928 sk_gfp_mask(sk, GFP_ATOMIC))) 2929 tcp_check_probe_timer(sk); 2930 } 2931 2932 /* Send _single_ skb sitting at the send head. This function requires 2933 * true push pending frames to setup probe timer etc. 2934 */ 2935 void tcp_push_one(struct sock *sk, unsigned int mss_now) 2936 { 2937 struct sk_buff *skb = tcp_send_head(sk); 2938 2939 BUG_ON(!skb || skb->len < mss_now); 2940 2941 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); 2942 } 2943 2944 /* This function returns the amount that we can raise the 2945 * usable window based on the following constraints 2946 * 2947 * 1. The window can never be shrunk once it is offered (RFC 793) 2948 * 2. We limit memory per socket 2949 * 2950 * RFC 1122: 2951 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 2952 * RECV.NEXT + RCV.WIN fixed until: 2953 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 2954 * 2955 * i.e. don't raise the right edge of the window until you can raise 2956 * it at least MSS bytes. 2957 * 2958 * Unfortunately, the recommended algorithm breaks header prediction, 2959 * since header prediction assumes th->window stays fixed. 2960 * 2961 * Strictly speaking, keeping th->window fixed violates the receiver 2962 * side SWS prevention criteria. The problem is that under this rule 2963 * a stream of single byte packets will cause the right side of the 2964 * window to always advance by a single byte. 2965 * 2966 * Of course, if the sender implements sender side SWS prevention 2967 * then this will not be a problem. 2968 * 2969 * BSD seems to make the following compromise: 2970 * 2971 * If the free space is less than the 1/4 of the maximum 2972 * space available and the free space is less than 1/2 mss, 2973 * then set the window to 0. 2974 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 2975 * Otherwise, just prevent the window from shrinking 2976 * and from being larger than the largest representable value. 2977 * 2978 * This prevents incremental opening of the window in the regime 2979 * where TCP is limited by the speed of the reader side taking 2980 * data out of the TCP receive queue. It does nothing about 2981 * those cases where the window is constrained on the sender side 2982 * because the pipeline is full. 2983 * 2984 * BSD also seems to "accidentally" limit itself to windows that are a 2985 * multiple of MSS, at least until the free space gets quite small. 2986 * This would appear to be a side effect of the mbuf implementation. 2987 * Combining these two algorithms results in the observed behavior 2988 * of having a fixed window size at almost all times. 2989 * 2990 * Below we obtain similar behavior by forcing the offered window to 2991 * a multiple of the mss when it is feasible to do so. 2992 * 2993 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 2994 * Regular options like TIMESTAMP are taken into account. 2995 */ 2996 u32 __tcp_select_window(struct sock *sk) 2997 { 2998 struct inet_connection_sock *icsk = inet_csk(sk); 2999 struct tcp_sock *tp = tcp_sk(sk); 3000 struct net *net = sock_net(sk); 3001 /* MSS for the peer's data. Previous versions used mss_clamp 3002 * here. I don't know if the value based on our guesses 3003 * of peer's MSS is better for the performance. It's more correct 3004 * but may be worse for the performance because of rcv_mss 3005 * fluctuations. --SAW 1998/11/1 3006 */ 3007 int mss = icsk->icsk_ack.rcv_mss; 3008 int free_space = tcp_space(sk); 3009 int allowed_space = tcp_full_space(sk); 3010 int full_space, window; 3011 3012 if (sk_is_mptcp(sk)) 3013 mptcp_space(sk, &free_space, &allowed_space); 3014 3015 full_space = min_t(int, tp->window_clamp, allowed_space); 3016 3017 if (unlikely(mss > full_space)) { 3018 mss = full_space; 3019 if (mss <= 0) 3020 return 0; 3021 } 3022 3023 /* Only allow window shrink if the sysctl is enabled and we have 3024 * a non-zero scaling factor in effect. 3025 */ 3026 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale) 3027 goto shrink_window_allowed; 3028 3029 /* do not allow window to shrink */ 3030 3031 if (free_space < (full_space >> 1)) { 3032 icsk->icsk_ack.quick = 0; 3033 3034 if (tcp_under_memory_pressure(sk)) 3035 tcp_adjust_rcv_ssthresh(sk); 3036 3037 /* free_space might become our new window, make sure we don't 3038 * increase it due to wscale. 3039 */ 3040 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3041 3042 /* if free space is less than mss estimate, or is below 1/16th 3043 * of the maximum allowed, try to move to zero-window, else 3044 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and 3045 * new incoming data is dropped due to memory limits. 3046 * With large window, mss test triggers way too late in order 3047 * to announce zero window in time before rmem limit kicks in. 3048 */ 3049 if (free_space < (allowed_space >> 4) || free_space < mss) 3050 return 0; 3051 } 3052 3053 if (free_space > tp->rcv_ssthresh) 3054 free_space = tp->rcv_ssthresh; 3055 3056 /* Don't do rounding if we are using window scaling, since the 3057 * scaled window will not line up with the MSS boundary anyway. 3058 */ 3059 if (tp->rx_opt.rcv_wscale) { 3060 window = free_space; 3061 3062 /* Advertise enough space so that it won't get scaled away. 3063 * Import case: prevent zero window announcement if 3064 * 1<<rcv_wscale > mss. 3065 */ 3066 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); 3067 } else { 3068 window = tp->rcv_wnd; 3069 /* Get the largest window that is a nice multiple of mss. 3070 * Window clamp already applied above. 3071 * If our current window offering is within 1 mss of the 3072 * free space we just keep it. This prevents the divide 3073 * and multiply from happening most of the time. 3074 * We also don't do any window rounding when the free space 3075 * is too small. 3076 */ 3077 if (window <= free_space - mss || window > free_space) 3078 window = rounddown(free_space, mss); 3079 else if (mss == full_space && 3080 free_space > window + (full_space >> 1)) 3081 window = free_space; 3082 } 3083 3084 return window; 3085 3086 shrink_window_allowed: 3087 /* new window should always be an exact multiple of scaling factor */ 3088 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); 3089 3090 if (free_space < (full_space >> 1)) { 3091 icsk->icsk_ack.quick = 0; 3092 3093 if (tcp_under_memory_pressure(sk)) 3094 tcp_adjust_rcv_ssthresh(sk); 3095 3096 /* if free space is too low, return a zero window */ 3097 if (free_space < (allowed_space >> 4) || free_space < mss || 3098 free_space < (1 << tp->rx_opt.rcv_wscale)) 3099 return 0; 3100 } 3101 3102 if (free_space > tp->rcv_ssthresh) { 3103 free_space = tp->rcv_ssthresh; 3104 /* new window should always be an exact multiple of scaling factor 3105 * 3106 * For this case, we ALIGN "up" (increase free_space) because 3107 * we know free_space is not zero here, it has been reduced from 3108 * the memory-based limit, and rcv_ssthresh is not a hard limit 3109 * (unlike sk_rcvbuf). 3110 */ 3111 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale)); 3112 } 3113 3114 return free_space; 3115 } 3116 3117 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 3118 const struct sk_buff *next_skb) 3119 { 3120 if (unlikely(tcp_has_tx_tstamp(next_skb))) { 3121 const struct skb_shared_info *next_shinfo = 3122 skb_shinfo(next_skb); 3123 struct skb_shared_info *shinfo = skb_shinfo(skb); 3124 3125 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; 3126 shinfo->tskey = next_shinfo->tskey; 3127 TCP_SKB_CB(skb)->txstamp_ack |= 3128 TCP_SKB_CB(next_skb)->txstamp_ack; 3129 } 3130 } 3131 3132 /* Collapses two adjacent SKB's during retransmission. */ 3133 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) 3134 { 3135 struct tcp_sock *tp = tcp_sk(sk); 3136 struct sk_buff *next_skb = skb_rb_next(skb); 3137 int next_skb_size; 3138 3139 next_skb_size = next_skb->len; 3140 3141 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); 3142 3143 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) 3144 return false; 3145 3146 tcp_highest_sack_replace(sk, next_skb, skb); 3147 3148 /* Update sequence range on original skb. */ 3149 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 3150 3151 /* Merge over control information. This moves PSH/FIN etc. over */ 3152 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; 3153 3154 /* All done, get rid of second SKB and account for it so 3155 * packet counting does not break. 3156 */ 3157 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; 3158 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; 3159 3160 /* changed transmit queue under us so clear hints */ 3161 tcp_clear_retrans_hints_partial(tp); 3162 if (next_skb == tp->retransmit_skb_hint) 3163 tp->retransmit_skb_hint = skb; 3164 3165 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); 3166 3167 tcp_skb_collapse_tstamp(skb, next_skb); 3168 3169 tcp_rtx_queue_unlink_and_free(next_skb, sk); 3170 return true; 3171 } 3172 3173 /* Check if coalescing SKBs is legal. */ 3174 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) 3175 { 3176 if (tcp_skb_pcount(skb) > 1) 3177 return false; 3178 if (skb_cloned(skb)) 3179 return false; 3180 /* Some heuristics for collapsing over SACK'd could be invented */ 3181 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3182 return false; 3183 3184 return true; 3185 } 3186 3187 /* Collapse packets in the retransmit queue to make to create 3188 * less packets on the wire. This is only done on retransmission. 3189 */ 3190 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, 3191 int space) 3192 { 3193 struct tcp_sock *tp = tcp_sk(sk); 3194 struct sk_buff *skb = to, *tmp; 3195 bool first = true; 3196 3197 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) 3198 return; 3199 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3200 return; 3201 3202 skb_rbtree_walk_from_safe(skb, tmp) { 3203 if (!tcp_can_collapse(sk, skb)) 3204 break; 3205 3206 if (!tcp_skb_can_collapse(to, skb)) 3207 break; 3208 3209 space -= skb->len; 3210 3211 if (first) { 3212 first = false; 3213 continue; 3214 } 3215 3216 if (space < 0) 3217 break; 3218 3219 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) 3220 break; 3221 3222 if (!tcp_collapse_retrans(sk, to)) 3223 break; 3224 } 3225 } 3226 3227 /* This retransmits one SKB. Policy decisions and retransmit queue 3228 * state updates are done by the caller. Returns non-zero if an 3229 * error occurred which prevented the send. 3230 */ 3231 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3232 { 3233 struct inet_connection_sock *icsk = inet_csk(sk); 3234 struct tcp_sock *tp = tcp_sk(sk); 3235 unsigned int cur_mss; 3236 int diff, len, err; 3237 int avail_wnd; 3238 3239 /* Inconclusive MTU probe */ 3240 if (icsk->icsk_mtup.probe_size) 3241 icsk->icsk_mtup.probe_size = 0; 3242 3243 if (skb_still_in_host_queue(sk, skb)) 3244 return -EBUSY; 3245 3246 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 3247 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { 3248 WARN_ON_ONCE(1); 3249 return -EINVAL; 3250 } 3251 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3252 return -ENOMEM; 3253 } 3254 3255 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3256 return -EHOSTUNREACH; /* Routing failure or similar. */ 3257 3258 cur_mss = tcp_current_mss(sk); 3259 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 3260 3261 /* If receiver has shrunk his window, and skb is out of 3262 * new window, do not retransmit it. The exception is the 3263 * case, when window is shrunk to zero. In this case 3264 * our retransmit of one segment serves as a zero window probe. 3265 */ 3266 if (avail_wnd <= 0) { 3267 if (TCP_SKB_CB(skb)->seq != tp->snd_una) 3268 return -EAGAIN; 3269 avail_wnd = cur_mss; 3270 } 3271 3272 len = cur_mss * segs; 3273 if (len > avail_wnd) { 3274 len = rounddown(avail_wnd, cur_mss); 3275 if (!len) 3276 len = avail_wnd; 3277 } 3278 if (skb->len > len) { 3279 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, 3280 cur_mss, GFP_ATOMIC)) 3281 return -ENOMEM; /* We'll try again later. */ 3282 } else { 3283 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) 3284 return -ENOMEM; 3285 3286 diff = tcp_skb_pcount(skb); 3287 tcp_set_skb_tso_segs(skb, cur_mss); 3288 diff -= tcp_skb_pcount(skb); 3289 if (diff) 3290 tcp_adjust_pcount(sk, skb, diff); 3291 avail_wnd = min_t(int, avail_wnd, cur_mss); 3292 if (skb->len < avail_wnd) 3293 tcp_retrans_try_collapse(sk, skb, avail_wnd); 3294 } 3295 3296 /* RFC3168, section 6.1.1.1. ECN fallback */ 3297 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) 3298 tcp_ecn_clear_syn(sk, skb); 3299 3300 /* Update global and local TCP statistics. */ 3301 segs = tcp_skb_pcount(skb); 3302 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); 3303 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) 3304 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 3305 tp->total_retrans += segs; 3306 tp->bytes_retrans += skb->len; 3307 3308 /* make sure skb->data is aligned on arches that require it 3309 * and check if ack-trimming & collapsing extended the headroom 3310 * beyond what csum_start can cover. 3311 */ 3312 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || 3313 skb_headroom(skb) >= 0xFFFF)) { 3314 struct sk_buff *nskb; 3315 3316 tcp_skb_tsorted_save(skb) { 3317 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); 3318 if (nskb) { 3319 nskb->dev = NULL; 3320 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); 3321 } else { 3322 err = -ENOBUFS; 3323 } 3324 } tcp_skb_tsorted_restore(skb); 3325 3326 if (!err) { 3327 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); 3328 tcp_rate_skb_sent(sk, skb); 3329 } 3330 } else { 3331 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3332 } 3333 3334 /* To avoid taking spuriously low RTT samples based on a timestamp 3335 * for a transmit that never happened, always mark EVER_RETRANS 3336 */ 3337 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; 3338 3339 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) 3340 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, 3341 TCP_SKB_CB(skb)->seq, segs, err); 3342 3343 if (likely(!err)) { 3344 trace_tcp_retransmit_skb(sk, skb); 3345 } else if (err != -EBUSY) { 3346 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); 3347 } 3348 return err; 3349 } 3350 3351 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) 3352 { 3353 struct tcp_sock *tp = tcp_sk(sk); 3354 int err = __tcp_retransmit_skb(sk, skb, segs); 3355 3356 if (err == 0) { 3357 #if FASTRETRANS_DEBUG > 0 3358 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 3359 net_dbg_ratelimited("retrans_out leaked\n"); 3360 } 3361 #endif 3362 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 3363 tp->retrans_out += tcp_skb_pcount(skb); 3364 } 3365 3366 /* Save stamp of the first (attempted) retransmit. */ 3367 if (!tp->retrans_stamp) 3368 tp->retrans_stamp = tcp_skb_timestamp(skb); 3369 3370 if (tp->undo_retrans < 0) 3371 tp->undo_retrans = 0; 3372 tp->undo_retrans += tcp_skb_pcount(skb); 3373 return err; 3374 } 3375 3376 /* This gets called after a retransmit timeout, and the initially 3377 * retransmitted data is acknowledged. It tries to continue 3378 * resending the rest of the retransmit queue, until either 3379 * we've sent it all or the congestion window limit is reached. 3380 */ 3381 void tcp_xmit_retransmit_queue(struct sock *sk) 3382 { 3383 const struct inet_connection_sock *icsk = inet_csk(sk); 3384 struct sk_buff *skb, *rtx_head, *hole = NULL; 3385 struct tcp_sock *tp = tcp_sk(sk); 3386 bool rearm_timer = false; 3387 u32 max_segs; 3388 int mib_idx; 3389 3390 if (!tp->packets_out) 3391 return; 3392 3393 rtx_head = tcp_rtx_queue_head(sk); 3394 skb = tp->retransmit_skb_hint ?: rtx_head; 3395 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); 3396 skb_rbtree_walk_from(skb) { 3397 __u8 sacked; 3398 int segs; 3399 3400 if (tcp_pacing_check(sk)) 3401 break; 3402 3403 /* we could do better than to assign each time */ 3404 if (!hole) 3405 tp->retransmit_skb_hint = skb; 3406 3407 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); 3408 if (segs <= 0) 3409 break; 3410 sacked = TCP_SKB_CB(skb)->sacked; 3411 /* In case tcp_shift_skb_data() have aggregated large skbs, 3412 * we need to make sure not sending too bigs TSO packets 3413 */ 3414 segs = min_t(int, segs, max_segs); 3415 3416 if (tp->retrans_out >= tp->lost_out) { 3417 break; 3418 } else if (!(sacked & TCPCB_LOST)) { 3419 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) 3420 hole = skb; 3421 continue; 3422 3423 } else { 3424 if (icsk->icsk_ca_state != TCP_CA_Loss) 3425 mib_idx = LINUX_MIB_TCPFASTRETRANS; 3426 else 3427 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; 3428 } 3429 3430 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) 3431 continue; 3432 3433 if (tcp_small_queue_check(sk, skb, 1)) 3434 break; 3435 3436 if (tcp_retransmit_skb(sk, skb, segs)) 3437 break; 3438 3439 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); 3440 3441 if (tcp_in_cwnd_reduction(sk)) 3442 tp->prr_out += tcp_skb_pcount(skb); 3443 3444 if (skb == rtx_head && 3445 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) 3446 rearm_timer = true; 3447 3448 } 3449 if (rearm_timer) 3450 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3451 inet_csk(sk)->icsk_rto, 3452 TCP_RTO_MAX); 3453 } 3454 3455 /* We allow to exceed memory limits for FIN packets to expedite 3456 * connection tear down and (memory) recovery. 3457 * Otherwise tcp_send_fin() could be tempted to either delay FIN 3458 * or even be forced to close flow without any FIN. 3459 * In general, we want to allow one skb per socket to avoid hangs 3460 * with edge trigger epoll() 3461 */ 3462 void sk_forced_mem_schedule(struct sock *sk, int size) 3463 { 3464 int delta, amt; 3465 3466 delta = size - sk->sk_forward_alloc; 3467 if (delta <= 0) 3468 return; 3469 amt = sk_mem_pages(delta); 3470 sk_forward_alloc_add(sk, amt << PAGE_SHIFT); 3471 sk_memory_allocated_add(sk, amt); 3472 3473 if (mem_cgroup_sockets_enabled && sk->sk_memcg) 3474 mem_cgroup_charge_skmem(sk->sk_memcg, amt, 3475 gfp_memcg_charge() | __GFP_NOFAIL); 3476 } 3477 3478 /* Send a FIN. The caller locks the socket for us. 3479 * We should try to send a FIN packet really hard, but eventually give up. 3480 */ 3481 void tcp_send_fin(struct sock *sk) 3482 { 3483 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); 3484 struct tcp_sock *tp = tcp_sk(sk); 3485 3486 /* Optimization, tack on the FIN if we have one skb in write queue and 3487 * this skb was not yet sent, or we are under memory pressure. 3488 * Note: in the latter case, FIN packet will be sent after a timeout, 3489 * as TCP stack thinks it has already been transmitted. 3490 */ 3491 tskb = tail; 3492 if (!tskb && tcp_under_memory_pressure(sk)) 3493 tskb = skb_rb_last(&sk->tcp_rtx_queue); 3494 3495 if (tskb) { 3496 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; 3497 TCP_SKB_CB(tskb)->end_seq++; 3498 tp->write_seq++; 3499 if (!tail) { 3500 /* This means tskb was already sent. 3501 * Pretend we included the FIN on previous transmit. 3502 * We need to set tp->snd_nxt to the value it would have 3503 * if FIN had been sent. This is because retransmit path 3504 * does not change tp->snd_nxt. 3505 */ 3506 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); 3507 return; 3508 } 3509 } else { 3510 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); 3511 if (unlikely(!skb)) 3512 return; 3513 3514 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 3515 skb_reserve(skb, MAX_TCP_HEADER); 3516 sk_forced_mem_schedule(sk, skb->truesize); 3517 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 3518 tcp_init_nondata_skb(skb, tp->write_seq, 3519 TCPHDR_ACK | TCPHDR_FIN); 3520 tcp_queue_skb(sk, skb); 3521 } 3522 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); 3523 } 3524 3525 /* We get here when a process closes a file descriptor (either due to 3526 * an explicit close() or as a byproduct of exit()'ing) and there 3527 * was unread data in the receive queue. This behavior is recommended 3528 * by RFC 2525, section 2.17. -DaveM 3529 */ 3530 void tcp_send_active_reset(struct sock *sk, gfp_t priority) 3531 { 3532 struct sk_buff *skb; 3533 3534 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); 3535 3536 /* NOTE: No TCP options attached and we never retransmit this. */ 3537 skb = alloc_skb(MAX_TCP_HEADER, priority); 3538 if (!skb) { 3539 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3540 return; 3541 } 3542 3543 /* Reserve space for headers and prepare control bits. */ 3544 skb_reserve(skb, MAX_TCP_HEADER); 3545 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), 3546 TCPHDR_ACK | TCPHDR_RST); 3547 tcp_mstamp_refresh(tcp_sk(sk)); 3548 /* Send it off. */ 3549 if (tcp_transmit_skb(sk, skb, 0, priority)) 3550 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); 3551 3552 /* skb of trace_tcp_send_reset() keeps the skb that caused RST, 3553 * skb here is different to the troublesome skb, so use NULL 3554 */ 3555 trace_tcp_send_reset(sk, NULL); 3556 } 3557 3558 /* Send a crossed SYN-ACK during socket establishment. 3559 * WARNING: This routine must only be called when we have already sent 3560 * a SYN packet that crossed the incoming SYN that caused this routine 3561 * to get called. If this assumption fails then the initial rcv_wnd 3562 * and rcv_wscale values will not be correct. 3563 */ 3564 int tcp_send_synack(struct sock *sk) 3565 { 3566 struct sk_buff *skb; 3567 3568 skb = tcp_rtx_queue_head(sk); 3569 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 3570 pr_err("%s: wrong queue state\n", __func__); 3571 return -EFAULT; 3572 } 3573 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { 3574 if (skb_cloned(skb)) { 3575 struct sk_buff *nskb; 3576 3577 tcp_skb_tsorted_save(skb) { 3578 nskb = skb_copy(skb, GFP_ATOMIC); 3579 } tcp_skb_tsorted_restore(skb); 3580 if (!nskb) 3581 return -ENOMEM; 3582 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); 3583 tcp_highest_sack_replace(sk, skb, nskb); 3584 tcp_rtx_queue_unlink_and_free(skb, sk); 3585 __skb_header_release(nskb); 3586 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); 3587 sk_wmem_queued_add(sk, nskb->truesize); 3588 sk_mem_charge(sk, nskb->truesize); 3589 skb = nskb; 3590 } 3591 3592 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; 3593 tcp_ecn_send_synack(sk, skb); 3594 } 3595 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 3596 } 3597 3598 /** 3599 * tcp_make_synack - Allocate one skb and build a SYNACK packet. 3600 * @sk: listener socket 3601 * @dst: dst entry attached to the SYNACK. It is consumed and caller 3602 * should not use it again. 3603 * @req: request_sock pointer 3604 * @foc: cookie for tcp fast open 3605 * @synack_type: Type of synack to prepare 3606 * @syn_skb: SYN packet just received. It could be NULL for rtx case. 3607 */ 3608 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 3609 struct request_sock *req, 3610 struct tcp_fastopen_cookie *foc, 3611 enum tcp_synack_type synack_type, 3612 struct sk_buff *syn_skb) 3613 { 3614 struct inet_request_sock *ireq = inet_rsk(req); 3615 const struct tcp_sock *tp = tcp_sk(sk); 3616 struct tcp_md5sig_key *md5 = NULL; 3617 struct tcp_out_options opts; 3618 struct sk_buff *skb; 3619 int tcp_header_size; 3620 struct tcphdr *th; 3621 int mss; 3622 u64 now; 3623 3624 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 3625 if (unlikely(!skb)) { 3626 dst_release(dst); 3627 return NULL; 3628 } 3629 /* Reserve space for headers. */ 3630 skb_reserve(skb, MAX_TCP_HEADER); 3631 3632 switch (synack_type) { 3633 case TCP_SYNACK_NORMAL: 3634 skb_set_owner_w(skb, req_to_sk(req)); 3635 break; 3636 case TCP_SYNACK_COOKIE: 3637 /* Under synflood, we do not attach skb to a socket, 3638 * to avoid false sharing. 3639 */ 3640 break; 3641 case TCP_SYNACK_FASTOPEN: 3642 /* sk is a const pointer, because we want to express multiple 3643 * cpu might call us concurrently. 3644 * sk->sk_wmem_alloc in an atomic, we can promote to rw. 3645 */ 3646 skb_set_owner_w(skb, (struct sock *)sk); 3647 break; 3648 } 3649 skb_dst_set(skb, dst); 3650 3651 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3652 3653 memset(&opts, 0, sizeof(opts)); 3654 now = tcp_clock_ns(); 3655 #ifdef CONFIG_SYN_COOKIES 3656 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) 3657 skb_set_delivery_time(skb, cookie_init_timestamp(req, now), 3658 true); 3659 else 3660 #endif 3661 { 3662 skb_set_delivery_time(skb, now, true); 3663 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ 3664 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); 3665 } 3666 3667 #ifdef CONFIG_TCP_MD5SIG 3668 rcu_read_lock(); 3669 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); 3670 #endif 3671 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); 3672 /* bpf program will be interested in the tcp_flags */ 3673 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; 3674 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, 3675 foc, synack_type, 3676 syn_skb) + sizeof(*th); 3677 3678 skb_push(skb, tcp_header_size); 3679 skb_reset_transport_header(skb); 3680 3681 th = (struct tcphdr *)skb->data; 3682 memset(th, 0, sizeof(struct tcphdr)); 3683 th->syn = 1; 3684 th->ack = 1; 3685 tcp_ecn_make_synack(req, th); 3686 th->source = htons(ireq->ir_num); 3687 th->dest = ireq->ir_rmt_port; 3688 skb->mark = ireq->ir_mark; 3689 skb->ip_summed = CHECKSUM_PARTIAL; 3690 th->seq = htonl(tcp_rsk(req)->snt_isn); 3691 /* XXX data is queued and acked as is. No buffer/window check */ 3692 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); 3693 3694 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 3695 th->window = htons(min(req->rsk_rcv_wnd, 65535U)); 3696 tcp_options_write(th, NULL, &opts); 3697 th->doff = (tcp_header_size >> 2); 3698 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); 3699 3700 #ifdef CONFIG_TCP_MD5SIG 3701 /* Okay, we have all we need - do the md5 hash if needed */ 3702 if (md5) 3703 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, 3704 md5, req_to_sk(req), skb); 3705 rcu_read_unlock(); 3706 #endif 3707 3708 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, 3709 synack_type, &opts); 3710 3711 skb_set_delivery_time(skb, now, true); 3712 tcp_add_tx_delay(skb, tp); 3713 3714 return skb; 3715 } 3716 EXPORT_SYMBOL(tcp_make_synack); 3717 3718 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) 3719 { 3720 struct inet_connection_sock *icsk = inet_csk(sk); 3721 const struct tcp_congestion_ops *ca; 3722 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 3723 3724 if (ca_key == TCP_CA_UNSPEC) 3725 return; 3726 3727 rcu_read_lock(); 3728 ca = tcp_ca_find_key(ca_key); 3729 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 3730 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); 3731 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 3732 icsk->icsk_ca_ops = ca; 3733 } 3734 rcu_read_unlock(); 3735 } 3736 3737 /* Do all connect socket setups that can be done AF independent. */ 3738 static void tcp_connect_init(struct sock *sk) 3739 { 3740 const struct dst_entry *dst = __sk_dst_get(sk); 3741 struct tcp_sock *tp = tcp_sk(sk); 3742 __u8 rcv_wscale; 3743 u32 rcv_wnd; 3744 3745 /* We'll fix this up when we get a response from the other end. 3746 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 3747 */ 3748 tp->tcp_header_len = sizeof(struct tcphdr); 3749 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) 3750 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; 3751 3752 /* If user gave his TCP_MAXSEG, record it to clamp */ 3753 if (tp->rx_opt.user_mss) 3754 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 3755 tp->max_window = 0; 3756 tcp_mtup_init(sk); 3757 tcp_sync_mss(sk, dst_mtu(dst)); 3758 3759 tcp_ca_dst_init(sk, dst); 3760 3761 if (!tp->window_clamp) 3762 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 3763 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 3764 3765 tcp_initialize_rcv_mss(sk); 3766 3767 /* limit the window selection if the user enforce a smaller rx buffer */ 3768 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && 3769 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) 3770 tp->window_clamp = tcp_full_space(sk); 3771 3772 rcv_wnd = tcp_rwnd_init_bpf(sk); 3773 if (rcv_wnd == 0) 3774 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 3775 3776 tcp_select_initial_window(sk, tcp_full_space(sk), 3777 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 3778 &tp->rcv_wnd, 3779 &tp->window_clamp, 3780 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), 3781 &rcv_wscale, 3782 rcv_wnd); 3783 3784 tp->rx_opt.rcv_wscale = rcv_wscale; 3785 tp->rcv_ssthresh = tp->rcv_wnd; 3786 3787 WRITE_ONCE(sk->sk_err, 0); 3788 sock_reset_flag(sk, SOCK_DONE); 3789 tp->snd_wnd = 0; 3790 tcp_init_wl(tp, 0); 3791 tcp_write_queue_purge(sk); 3792 tp->snd_una = tp->write_seq; 3793 tp->snd_sml = tp->write_seq; 3794 tp->snd_up = tp->write_seq; 3795 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3796 3797 if (likely(!tp->repair)) 3798 tp->rcv_nxt = 0; 3799 else 3800 tp->rcv_tstamp = tcp_jiffies32; 3801 tp->rcv_wup = tp->rcv_nxt; 3802 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3803 3804 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); 3805 inet_csk(sk)->icsk_retransmits = 0; 3806 tcp_clear_retrans(tp); 3807 } 3808 3809 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) 3810 { 3811 struct tcp_sock *tp = tcp_sk(sk); 3812 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 3813 3814 tcb->end_seq += skb->len; 3815 __skb_header_release(skb); 3816 sk_wmem_queued_add(sk, skb->truesize); 3817 sk_mem_charge(sk, skb->truesize); 3818 WRITE_ONCE(tp->write_seq, tcb->end_seq); 3819 tp->packets_out += tcp_skb_pcount(skb); 3820 } 3821 3822 /* Build and send a SYN with data and (cached) Fast Open cookie. However, 3823 * queue a data-only packet after the regular SYN, such that regular SYNs 3824 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges 3825 * only the SYN sequence, the data are retransmitted in the first ACK. 3826 * If cookie is not cached or other error occurs, falls back to send a 3827 * regular SYN with Fast Open cookie request option. 3828 */ 3829 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) 3830 { 3831 struct inet_connection_sock *icsk = inet_csk(sk); 3832 struct tcp_sock *tp = tcp_sk(sk); 3833 struct tcp_fastopen_request *fo = tp->fastopen_req; 3834 struct page_frag *pfrag = sk_page_frag(sk); 3835 struct sk_buff *syn_data; 3836 int space, err = 0; 3837 3838 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ 3839 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) 3840 goto fallback; 3841 3842 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and 3843 * user-MSS. Reserve maximum option space for middleboxes that add 3844 * private TCP options. The cost is reduced data space in SYN :( 3845 */ 3846 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); 3847 /* Sync mss_cache after updating the mss_clamp */ 3848 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 3849 3850 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - 3851 MAX_TCP_OPTION_SPACE; 3852 3853 space = min_t(size_t, space, fo->size); 3854 3855 if (space && 3856 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE), 3857 pfrag, sk->sk_allocation)) 3858 goto fallback; 3859 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false); 3860 if (!syn_data) 3861 goto fallback; 3862 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); 3863 if (space) { 3864 space = min_t(size_t, space, pfrag->size - pfrag->offset); 3865 space = tcp_wmem_schedule(sk, space); 3866 } 3867 if (space) { 3868 space = copy_page_from_iter(pfrag->page, pfrag->offset, 3869 space, &fo->data->msg_iter); 3870 if (unlikely(!space)) { 3871 tcp_skb_tsorted_anchor_cleanup(syn_data); 3872 kfree_skb(syn_data); 3873 goto fallback; 3874 } 3875 skb_fill_page_desc(syn_data, 0, pfrag->page, 3876 pfrag->offset, space); 3877 page_ref_inc(pfrag->page); 3878 pfrag->offset += space; 3879 skb_len_add(syn_data, space); 3880 skb_zcopy_set(syn_data, fo->uarg, NULL); 3881 } 3882 /* No more data pending in inet_wait_for_connect() */ 3883 if (space == fo->size) 3884 fo->data = NULL; 3885 fo->copied = space; 3886 3887 tcp_connect_queue_skb(sk, syn_data); 3888 if (syn_data->len) 3889 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 3890 3891 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); 3892 3893 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true); 3894 3895 /* Now full SYN+DATA was cloned and sent (or not), 3896 * remove the SYN from the original skb (syn_data) 3897 * we keep in write queue in case of a retransmit, as we 3898 * also have the SYN packet (with no data) in the same queue. 3899 */ 3900 TCP_SKB_CB(syn_data)->seq++; 3901 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; 3902 if (!err) { 3903 tp->syn_data = (fo->copied > 0); 3904 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); 3905 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); 3906 goto done; 3907 } 3908 3909 /* data was not sent, put it in write_queue */ 3910 __skb_queue_tail(&sk->sk_write_queue, syn_data); 3911 tp->packets_out -= tcp_skb_pcount(syn_data); 3912 3913 fallback: 3914 /* Send a regular SYN with Fast Open cookie request option */ 3915 if (fo->cookie.len > 0) 3916 fo->cookie.len = 0; 3917 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); 3918 if (err) 3919 tp->syn_fastopen = 0; 3920 done: 3921 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ 3922 return err; 3923 } 3924 3925 /* Build a SYN and send it off. */ 3926 int tcp_connect(struct sock *sk) 3927 { 3928 struct tcp_sock *tp = tcp_sk(sk); 3929 struct sk_buff *buff; 3930 int err; 3931 3932 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); 3933 3934 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) 3935 return -EHOSTUNREACH; /* Routing failure or similar. */ 3936 3937 tcp_connect_init(sk); 3938 3939 if (unlikely(tp->repair)) { 3940 tcp_finish_connect(sk, NULL); 3941 return 0; 3942 } 3943 3944 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true); 3945 if (unlikely(!buff)) 3946 return -ENOBUFS; 3947 3948 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); 3949 tcp_mstamp_refresh(tp); 3950 tp->retrans_stamp = tcp_time_stamp(tp); 3951 tcp_connect_queue_skb(sk, buff); 3952 tcp_ecn_send_syn(sk, buff); 3953 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); 3954 3955 /* Send off SYN; include data in Fast Open. */ 3956 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : 3957 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); 3958 if (err == -ECONNREFUSED) 3959 return err; 3960 3961 /* We change tp->snd_nxt after the tcp_transmit_skb() call 3962 * in order to make this packet get counted in tcpOutSegs. 3963 */ 3964 WRITE_ONCE(tp->snd_nxt, tp->write_seq); 3965 tp->pushed_seq = tp->write_seq; 3966 buff = tcp_send_head(sk); 3967 if (unlikely(buff)) { 3968 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); 3969 tp->pushed_seq = TCP_SKB_CB(buff)->seq; 3970 } 3971 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); 3972 3973 /* Timer for repeating the SYN until an answer. */ 3974 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3975 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3976 return 0; 3977 } 3978 EXPORT_SYMBOL(tcp_connect); 3979 3980 u32 tcp_delack_max(const struct sock *sk) 3981 { 3982 const struct dst_entry *dst = __sk_dst_get(sk); 3983 u32 delack_max = inet_csk(sk)->icsk_delack_max; 3984 3985 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) { 3986 u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 3987 u32 delack_from_rto_min = max_t(int, 1, rto_min - 1); 3988 3989 delack_max = min_t(u32, delack_max, delack_from_rto_min); 3990 } 3991 return delack_max; 3992 } 3993 3994 /* Send out a delayed ack, the caller does the policy checking 3995 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 3996 * for details. 3997 */ 3998 void tcp_send_delayed_ack(struct sock *sk) 3999 { 4000 struct inet_connection_sock *icsk = inet_csk(sk); 4001 int ato = icsk->icsk_ack.ato; 4002 unsigned long timeout; 4003 4004 if (ato > TCP_DELACK_MIN) { 4005 const struct tcp_sock *tp = tcp_sk(sk); 4006 int max_ato = HZ / 2; 4007 4008 if (inet_csk_in_pingpong_mode(sk) || 4009 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 4010 max_ato = TCP_DELACK_MAX; 4011 4012 /* Slow path, intersegment interval is "high". */ 4013 4014 /* If some rtt estimate is known, use it to bound delayed ack. 4015 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 4016 * directly. 4017 */ 4018 if (tp->srtt_us) { 4019 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), 4020 TCP_DELACK_MIN); 4021 4022 if (rtt < max_ato) 4023 max_ato = rtt; 4024 } 4025 4026 ato = min(ato, max_ato); 4027 } 4028 4029 ato = min_t(u32, ato, tcp_delack_max(sk)); 4030 4031 /* Stay within the limit we were given */ 4032 timeout = jiffies + ato; 4033 4034 /* Use new timeout only if there wasn't a older one earlier. */ 4035 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 4036 /* If delack timer is about to expire, send ACK now. */ 4037 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 4038 tcp_send_ack(sk); 4039 return; 4040 } 4041 4042 if (!time_before(timeout, icsk->icsk_ack.timeout)) 4043 timeout = icsk->icsk_ack.timeout; 4044 } 4045 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 4046 icsk->icsk_ack.timeout = timeout; 4047 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 4048 } 4049 4050 /* This routine sends an ack and also updates the window. */ 4051 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) 4052 { 4053 struct sk_buff *buff; 4054 4055 /* If we have been reset, we may not send again. */ 4056 if (sk->sk_state == TCP_CLOSE) 4057 return; 4058 4059 /* We are not putting this on the write queue, so 4060 * tcp_transmit_skb() will set the ownership to this 4061 * sock. 4062 */ 4063 buff = alloc_skb(MAX_TCP_HEADER, 4064 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4065 if (unlikely(!buff)) { 4066 struct inet_connection_sock *icsk = inet_csk(sk); 4067 unsigned long delay; 4068 4069 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; 4070 if (delay < TCP_RTO_MAX) 4071 icsk->icsk_ack.retry++; 4072 inet_csk_schedule_ack(sk); 4073 icsk->icsk_ack.ato = TCP_ATO_MIN; 4074 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); 4075 return; 4076 } 4077 4078 /* Reserve space for headers and prepare control bits. */ 4079 skb_reserve(buff, MAX_TCP_HEADER); 4080 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); 4081 4082 /* We do not want pure acks influencing TCP Small Queues or fq/pacing 4083 * too much. 4084 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 4085 */ 4086 skb_set_tcp_pure_ack(buff); 4087 4088 /* Send it off, this clears delayed acks for us. */ 4089 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); 4090 } 4091 EXPORT_SYMBOL_GPL(__tcp_send_ack); 4092 4093 void tcp_send_ack(struct sock *sk) 4094 { 4095 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); 4096 } 4097 4098 /* This routine sends a packet with an out of date sequence 4099 * number. It assumes the other end will try to ack it. 4100 * 4101 * Question: what should we make while urgent mode? 4102 * 4.4BSD forces sending single byte of data. We cannot send 4103 * out of window data, because we have SND.NXT==SND.MAX... 4104 * 4105 * Current solution: to send TWO zero-length segments in urgent mode: 4106 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 4107 * out-of-date with SND.UNA-1 to probe window. 4108 */ 4109 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) 4110 { 4111 struct tcp_sock *tp = tcp_sk(sk); 4112 struct sk_buff *skb; 4113 4114 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 4115 skb = alloc_skb(MAX_TCP_HEADER, 4116 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); 4117 if (!skb) 4118 return -1; 4119 4120 /* Reserve space for headers and set control bits. */ 4121 skb_reserve(skb, MAX_TCP_HEADER); 4122 /* Use a previous sequence. This should cause the other 4123 * end to send an ack. Don't queue or clone SKB, just 4124 * send it. 4125 */ 4126 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); 4127 NET_INC_STATS(sock_net(sk), mib); 4128 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); 4129 } 4130 4131 /* Called from setsockopt( ... TCP_REPAIR ) */ 4132 void tcp_send_window_probe(struct sock *sk) 4133 { 4134 if (sk->sk_state == TCP_ESTABLISHED) { 4135 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; 4136 tcp_mstamp_refresh(tcp_sk(sk)); 4137 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); 4138 } 4139 } 4140 4141 /* Initiate keepalive or window probe from timer. */ 4142 int tcp_write_wakeup(struct sock *sk, int mib) 4143 { 4144 struct tcp_sock *tp = tcp_sk(sk); 4145 struct sk_buff *skb; 4146 4147 if (sk->sk_state == TCP_CLOSE) 4148 return -1; 4149 4150 skb = tcp_send_head(sk); 4151 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { 4152 int err; 4153 unsigned int mss = tcp_current_mss(sk); 4154 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; 4155 4156 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 4157 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 4158 4159 /* We are probing the opening of a window 4160 * but the window size is != 0 4161 * must have been a result SWS avoidance ( sender ) 4162 */ 4163 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 4164 skb->len > mss) { 4165 seg_size = min(seg_size, mss); 4166 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4167 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, 4168 skb, seg_size, mss, GFP_ATOMIC)) 4169 return -1; 4170 } else if (!tcp_skb_pcount(skb)) 4171 tcp_set_skb_tso_segs(skb, mss); 4172 4173 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 4174 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); 4175 if (!err) 4176 tcp_event_new_data_sent(sk, skb); 4177 return err; 4178 } else { 4179 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) 4180 tcp_xmit_probe_skb(sk, 1, mib); 4181 return tcp_xmit_probe_skb(sk, 0, mib); 4182 } 4183 } 4184 4185 /* A window probe timeout has occurred. If window is not closed send 4186 * a partial packet else a zero probe. 4187 */ 4188 void tcp_send_probe0(struct sock *sk) 4189 { 4190 struct inet_connection_sock *icsk = inet_csk(sk); 4191 struct tcp_sock *tp = tcp_sk(sk); 4192 struct net *net = sock_net(sk); 4193 unsigned long timeout; 4194 int err; 4195 4196 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); 4197 4198 if (tp->packets_out || tcp_write_queue_empty(sk)) { 4199 /* Cancel probe timer, if it is not required. */ 4200 icsk->icsk_probes_out = 0; 4201 icsk->icsk_backoff = 0; 4202 icsk->icsk_probes_tstamp = 0; 4203 return; 4204 } 4205 4206 icsk->icsk_probes_out++; 4207 if (err <= 0) { 4208 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) 4209 icsk->icsk_backoff++; 4210 timeout = tcp_probe0_when(sk, TCP_RTO_MAX); 4211 } else { 4212 /* If packet was not sent due to local congestion, 4213 * Let senders fight for local resources conservatively. 4214 */ 4215 timeout = TCP_RESOURCE_PROBE_INTERVAL; 4216 } 4217 4218 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); 4219 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); 4220 } 4221 4222 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) 4223 { 4224 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; 4225 struct flowi fl; 4226 int res; 4227 4228 /* Paired with WRITE_ONCE() in sock_setsockopt() */ 4229 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) 4230 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); 4231 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, 4232 NULL); 4233 if (!res) { 4234 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); 4235 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); 4236 if (unlikely(tcp_passive_fastopen(sk))) { 4237 /* sk has const attribute because listeners are lockless. 4238 * However in this case, we are dealing with a passive fastopen 4239 * socket thus we can change total_retrans value. 4240 */ 4241 tcp_sk_rw(sk)->total_retrans++; 4242 } 4243 trace_tcp_retransmit_synack(sk, req); 4244 } 4245 return res; 4246 } 4247 EXPORT_SYMBOL(tcp_rtx_synack); 4248