xref: /linux/net/ipv4/tcp_output.c (revision 04317b129e4eb5c6f4a58bb899b2019c1545320b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tcp_snd_cwnd(tp);
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, enter pingpong mode.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_enter_pingpong_mode(sk);
177 }
178 
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181 {
182 	struct tcp_sock *tp = tcp_sk(sk);
183 
184 	if (unlikely(tp->compressed_ack)) {
185 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 			      tp->compressed_ack);
187 		tp->compressed_ack = 0;
188 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189 			__sock_put(sk);
190 	}
191 
192 	if (unlikely(rcv_nxt != tp->rcv_nxt))
193 		return;  /* Special ACK sent by DCTCP to reflect ECN */
194 	tcp_dec_quickack_mode(sk);
195 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 
212 	/* If no clamp set the clamp to the max possible scaled window */
213 	if (*window_clamp == 0)
214 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
215 	space = min(*window_clamp, space);
216 
217 	/* Quantize space offering to a multiple of mss if possible. */
218 	if (space > mss)
219 		space = rounddown(space, mss);
220 
221 	/* NOTE: offering an initial window larger than 32767
222 	 * will break some buggy TCP stacks. If the admin tells us
223 	 * it is likely we could be speaking with such a buggy stack
224 	 * we will truncate our initial window offering to 32K-1
225 	 * unless the remote has sent us a window scaling option,
226 	 * which we interpret as a sign the remote TCP is not
227 	 * misinterpreting the window field as a signed quantity.
228 	 */
229 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
230 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 	else
232 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
233 
234 	if (init_rcv_wnd)
235 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236 
237 	*rcv_wscale = 0;
238 	if (wscale_ok) {
239 		/* Set window scaling on max possible window */
240 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
241 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
242 		space = min_t(u32, space, *window_clamp);
243 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
244 				      0, TCP_MAX_WSCALE);
245 	}
246 	/* Set the clamp no higher than max representable value */
247 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
248 }
249 EXPORT_SYMBOL(tcp_select_initial_window);
250 
251 /* Chose a new window to advertise, update state in tcp_sock for the
252  * socket, and return result with RFC1323 scaling applied.  The return
253  * value can be stuffed directly into th->window for an outgoing
254  * frame.
255  */
256 static u16 tcp_select_window(struct sock *sk)
257 {
258 	struct tcp_sock *tp = tcp_sk(sk);
259 	struct net *net = sock_net(sk);
260 	u32 old_win = tp->rcv_wnd;
261 	u32 cur_win, new_win;
262 
263 	/* Make the window 0 if we failed to queue the data because we
264 	 * are out of memory. The window is temporary, so we don't store
265 	 * it on the socket.
266 	 */
267 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
268 		return 0;
269 
270 	cur_win = tcp_receive_window(tp);
271 	new_win = __tcp_select_window(sk);
272 	if (new_win < cur_win) {
273 		/* Danger Will Robinson!
274 		 * Don't update rcv_wup/rcv_wnd here or else
275 		 * we will not be able to advertise a zero
276 		 * window in time.  --DaveM
277 		 *
278 		 * Relax Will Robinson.
279 		 */
280 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
281 			/* Never shrink the offered window */
282 			if (new_win == 0)
283 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
284 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
285 		}
286 	}
287 
288 	tp->rcv_wnd = new_win;
289 	tp->rcv_wup = tp->rcv_nxt;
290 
291 	/* Make sure we do not exceed the maximum possible
292 	 * scaled window.
293 	 */
294 	if (!tp->rx_opt.rcv_wscale &&
295 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
296 		new_win = min(new_win, MAX_TCP_WINDOW);
297 	else
298 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
299 
300 	/* RFC1323 scaling applied */
301 	new_win >>= tp->rx_opt.rcv_wscale;
302 
303 	/* If we advertise zero window, disable fast path. */
304 	if (new_win == 0) {
305 		tp->pred_flags = 0;
306 		if (old_win)
307 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
308 	} else if (old_win == 0) {
309 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
310 	}
311 
312 	return new_win;
313 }
314 
315 /* Packet ECN state for a SYN-ACK */
316 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
317 {
318 	const struct tcp_sock *tp = tcp_sk(sk);
319 
320 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
321 	if (!(tp->ecn_flags & TCP_ECN_OK))
322 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
323 	else if (tcp_ca_needs_ecn(sk) ||
324 		 tcp_bpf_ca_needs_ecn(sk))
325 		INET_ECN_xmit(sk);
326 }
327 
328 /* Packet ECN state for a SYN.  */
329 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
330 {
331 	struct tcp_sock *tp = tcp_sk(sk);
332 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
333 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
334 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
335 
336 	if (!use_ecn) {
337 		const struct dst_entry *dst = __sk_dst_get(sk);
338 
339 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 			use_ecn = true;
341 	}
342 
343 	tp->ecn_flags = 0;
344 
345 	if (use_ecn) {
346 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347 		tp->ecn_flags = TCP_ECN_OK;
348 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
349 			INET_ECN_xmit(sk);
350 	}
351 }
352 
353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
354 {
355 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
356 		/* tp->ecn_flags are cleared at a later point in time when
357 		 * SYN ACK is ultimatively being received.
358 		 */
359 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
360 }
361 
362 static void
363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
364 {
365 	if (inet_rsk(req)->ecn_ok)
366 		th->ece = 1;
367 }
368 
369 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
370  * be sent.
371  */
372 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
373 			 struct tcphdr *th, int tcp_header_len)
374 {
375 	struct tcp_sock *tp = tcp_sk(sk);
376 
377 	if (tp->ecn_flags & TCP_ECN_OK) {
378 		/* Not-retransmitted data segment: set ECT and inject CWR. */
379 		if (skb->len != tcp_header_len &&
380 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
381 			INET_ECN_xmit(sk);
382 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
383 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
384 				th->cwr = 1;
385 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
386 			}
387 		} else if (!tcp_ca_needs_ecn(sk)) {
388 			/* ACK or retransmitted segment: clear ECT|CE */
389 			INET_ECN_dontxmit(sk);
390 		}
391 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
392 			th->ece = 1;
393 	}
394 }
395 
396 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
397  * auto increment end seqno.
398  */
399 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
400 {
401 	skb->ip_summed = CHECKSUM_PARTIAL;
402 
403 	TCP_SKB_CB(skb)->tcp_flags = flags;
404 
405 	tcp_skb_pcount_set(skb, 1);
406 
407 	TCP_SKB_CB(skb)->seq = seq;
408 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
409 		seq++;
410 	TCP_SKB_CB(skb)->end_seq = seq;
411 }
412 
413 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
414 {
415 	return tp->snd_una != tp->snd_up;
416 }
417 
418 #define OPTION_SACK_ADVERTISE	BIT(0)
419 #define OPTION_TS		BIT(1)
420 #define OPTION_MD5		BIT(2)
421 #define OPTION_WSCALE		BIT(3)
422 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
423 #define OPTION_SMC		BIT(9)
424 #define OPTION_MPTCP		BIT(10)
425 
426 static void smc_options_write(__be32 *ptr, u16 *options)
427 {
428 #if IS_ENABLED(CONFIG_SMC)
429 	if (static_branch_unlikely(&tcp_have_smc)) {
430 		if (unlikely(OPTION_SMC & *options)) {
431 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
432 				       (TCPOPT_NOP  << 16) |
433 				       (TCPOPT_EXP <<  8) |
434 				       (TCPOLEN_EXP_SMC_BASE));
435 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
436 		}
437 	}
438 #endif
439 }
440 
441 struct tcp_out_options {
442 	u16 options;		/* bit field of OPTION_* */
443 	u16 mss;		/* 0 to disable */
444 	u8 ws;			/* window scale, 0 to disable */
445 	u8 num_sack_blocks;	/* number of SACK blocks to include */
446 	u8 hash_size;		/* bytes in hash_location */
447 	u8 bpf_opt_len;		/* length of BPF hdr option */
448 	__u8 *hash_location;	/* temporary pointer, overloaded */
449 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
450 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
451 	struct mptcp_out_options mptcp;
452 };
453 
454 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
455 				struct tcp_sock *tp,
456 				struct tcp_out_options *opts)
457 {
458 #if IS_ENABLED(CONFIG_MPTCP)
459 	if (unlikely(OPTION_MPTCP & opts->options))
460 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
461 #endif
462 }
463 
464 #ifdef CONFIG_CGROUP_BPF
465 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
466 					enum tcp_synack_type synack_type)
467 {
468 	if (unlikely(!skb))
469 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
470 
471 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
472 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
473 
474 	return 0;
475 }
476 
477 /* req, syn_skb and synack_type are used when writing synack */
478 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
479 				  struct request_sock *req,
480 				  struct sk_buff *syn_skb,
481 				  enum tcp_synack_type synack_type,
482 				  struct tcp_out_options *opts,
483 				  unsigned int *remaining)
484 {
485 	struct bpf_sock_ops_kern sock_ops;
486 	int err;
487 
488 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
489 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
490 	    !*remaining)
491 		return;
492 
493 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
494 
495 	/* init sock_ops */
496 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
497 
498 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
499 
500 	if (req) {
501 		/* The listen "sk" cannot be passed here because
502 		 * it is not locked.  It would not make too much
503 		 * sense to do bpf_setsockopt(listen_sk) based
504 		 * on individual connection request also.
505 		 *
506 		 * Thus, "req" is passed here and the cgroup-bpf-progs
507 		 * of the listen "sk" will be run.
508 		 *
509 		 * "req" is also used here for fastopen even the "sk" here is
510 		 * a fullsock "child" sk.  It is to keep the behavior
511 		 * consistent between fastopen and non-fastopen on
512 		 * the bpf programming side.
513 		 */
514 		sock_ops.sk = (struct sock *)req;
515 		sock_ops.syn_skb = syn_skb;
516 	} else {
517 		sock_owned_by_me(sk);
518 
519 		sock_ops.is_fullsock = 1;
520 		sock_ops.sk = sk;
521 	}
522 
523 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
524 	sock_ops.remaining_opt_len = *remaining;
525 	/* tcp_current_mss() does not pass a skb */
526 	if (skb)
527 		bpf_skops_init_skb(&sock_ops, skb, 0);
528 
529 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
530 
531 	if (err || sock_ops.remaining_opt_len == *remaining)
532 		return;
533 
534 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
535 	/* round up to 4 bytes */
536 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
537 
538 	*remaining -= opts->bpf_opt_len;
539 }
540 
541 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
542 				    struct request_sock *req,
543 				    struct sk_buff *syn_skb,
544 				    enum tcp_synack_type synack_type,
545 				    struct tcp_out_options *opts)
546 {
547 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
548 	struct bpf_sock_ops_kern sock_ops;
549 	int err;
550 
551 	if (likely(!max_opt_len))
552 		return;
553 
554 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
555 
556 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
557 
558 	if (req) {
559 		sock_ops.sk = (struct sock *)req;
560 		sock_ops.syn_skb = syn_skb;
561 	} else {
562 		sock_owned_by_me(sk);
563 
564 		sock_ops.is_fullsock = 1;
565 		sock_ops.sk = sk;
566 	}
567 
568 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
569 	sock_ops.remaining_opt_len = max_opt_len;
570 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
571 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
572 
573 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
574 
575 	if (err)
576 		nr_written = 0;
577 	else
578 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
579 
580 	if (nr_written < max_opt_len)
581 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
582 		       max_opt_len - nr_written);
583 }
584 #else
585 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
586 				  struct request_sock *req,
587 				  struct sk_buff *syn_skb,
588 				  enum tcp_synack_type synack_type,
589 				  struct tcp_out_options *opts,
590 				  unsigned int *remaining)
591 {
592 }
593 
594 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
595 				    struct request_sock *req,
596 				    struct sk_buff *syn_skb,
597 				    enum tcp_synack_type synack_type,
598 				    struct tcp_out_options *opts)
599 {
600 }
601 #endif
602 
603 /* Write previously computed TCP options to the packet.
604  *
605  * Beware: Something in the Internet is very sensitive to the ordering of
606  * TCP options, we learned this through the hard way, so be careful here.
607  * Luckily we can at least blame others for their non-compliance but from
608  * inter-operability perspective it seems that we're somewhat stuck with
609  * the ordering which we have been using if we want to keep working with
610  * those broken things (not that it currently hurts anybody as there isn't
611  * particular reason why the ordering would need to be changed).
612  *
613  * At least SACK_PERM as the first option is known to lead to a disaster
614  * (but it may well be that other scenarios fail similarly).
615  */
616 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
617 			      struct tcp_out_options *opts)
618 {
619 	__be32 *ptr = (__be32 *)(th + 1);
620 	u16 options = opts->options;	/* mungable copy */
621 
622 	if (unlikely(OPTION_MD5 & options)) {
623 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
624 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
625 		/* overload cookie hash location */
626 		opts->hash_location = (__u8 *)ptr;
627 		ptr += 4;
628 	}
629 
630 	if (unlikely(opts->mss)) {
631 		*ptr++ = htonl((TCPOPT_MSS << 24) |
632 			       (TCPOLEN_MSS << 16) |
633 			       opts->mss);
634 	}
635 
636 	if (likely(OPTION_TS & options)) {
637 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
638 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
639 				       (TCPOLEN_SACK_PERM << 16) |
640 				       (TCPOPT_TIMESTAMP << 8) |
641 				       TCPOLEN_TIMESTAMP);
642 			options &= ~OPTION_SACK_ADVERTISE;
643 		} else {
644 			*ptr++ = htonl((TCPOPT_NOP << 24) |
645 				       (TCPOPT_NOP << 16) |
646 				       (TCPOPT_TIMESTAMP << 8) |
647 				       TCPOLEN_TIMESTAMP);
648 		}
649 		*ptr++ = htonl(opts->tsval);
650 		*ptr++ = htonl(opts->tsecr);
651 	}
652 
653 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
654 		*ptr++ = htonl((TCPOPT_NOP << 24) |
655 			       (TCPOPT_NOP << 16) |
656 			       (TCPOPT_SACK_PERM << 8) |
657 			       TCPOLEN_SACK_PERM);
658 	}
659 
660 	if (unlikely(OPTION_WSCALE & options)) {
661 		*ptr++ = htonl((TCPOPT_NOP << 24) |
662 			       (TCPOPT_WINDOW << 16) |
663 			       (TCPOLEN_WINDOW << 8) |
664 			       opts->ws);
665 	}
666 
667 	if (unlikely(opts->num_sack_blocks)) {
668 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
669 			tp->duplicate_sack : tp->selective_acks;
670 		int this_sack;
671 
672 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
673 			       (TCPOPT_NOP  << 16) |
674 			       (TCPOPT_SACK <<  8) |
675 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
676 						     TCPOLEN_SACK_PERBLOCK)));
677 
678 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
679 		     ++this_sack) {
680 			*ptr++ = htonl(sp[this_sack].start_seq);
681 			*ptr++ = htonl(sp[this_sack].end_seq);
682 		}
683 
684 		tp->rx_opt.dsack = 0;
685 	}
686 
687 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
688 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
689 		u8 *p = (u8 *)ptr;
690 		u32 len; /* Fast Open option length */
691 
692 		if (foc->exp) {
693 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
694 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
695 				     TCPOPT_FASTOPEN_MAGIC);
696 			p += TCPOLEN_EXP_FASTOPEN_BASE;
697 		} else {
698 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
699 			*p++ = TCPOPT_FASTOPEN;
700 			*p++ = len;
701 		}
702 
703 		memcpy(p, foc->val, foc->len);
704 		if ((len & 3) == 2) {
705 			p[foc->len] = TCPOPT_NOP;
706 			p[foc->len + 1] = TCPOPT_NOP;
707 		}
708 		ptr += (len + 3) >> 2;
709 	}
710 
711 	smc_options_write(ptr, &options);
712 
713 	mptcp_options_write(th, ptr, tp, opts);
714 }
715 
716 static void smc_set_option(const struct tcp_sock *tp,
717 			   struct tcp_out_options *opts,
718 			   unsigned int *remaining)
719 {
720 #if IS_ENABLED(CONFIG_SMC)
721 	if (static_branch_unlikely(&tcp_have_smc)) {
722 		if (tp->syn_smc) {
723 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
724 				opts->options |= OPTION_SMC;
725 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
726 			}
727 		}
728 	}
729 #endif
730 }
731 
732 static void smc_set_option_cond(const struct tcp_sock *tp,
733 				const struct inet_request_sock *ireq,
734 				struct tcp_out_options *opts,
735 				unsigned int *remaining)
736 {
737 #if IS_ENABLED(CONFIG_SMC)
738 	if (static_branch_unlikely(&tcp_have_smc)) {
739 		if (tp->syn_smc && ireq->smc_ok) {
740 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
741 				opts->options |= OPTION_SMC;
742 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
743 			}
744 		}
745 	}
746 #endif
747 }
748 
749 static void mptcp_set_option_cond(const struct request_sock *req,
750 				  struct tcp_out_options *opts,
751 				  unsigned int *remaining)
752 {
753 	if (rsk_is_mptcp(req)) {
754 		unsigned int size;
755 
756 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
757 			if (*remaining >= size) {
758 				opts->options |= OPTION_MPTCP;
759 				*remaining -= size;
760 			}
761 		}
762 	}
763 }
764 
765 /* Compute TCP options for SYN packets. This is not the final
766  * network wire format yet.
767  */
768 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
769 				struct tcp_out_options *opts,
770 				struct tcp_md5sig_key **md5)
771 {
772 	struct tcp_sock *tp = tcp_sk(sk);
773 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
774 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
775 
776 	*md5 = NULL;
777 #ifdef CONFIG_TCP_MD5SIG
778 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
779 	    rcu_access_pointer(tp->md5sig_info)) {
780 		*md5 = tp->af_specific->md5_lookup(sk, sk);
781 		if (*md5) {
782 			opts->options |= OPTION_MD5;
783 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
784 		}
785 	}
786 #endif
787 
788 	/* We always get an MSS option.  The option bytes which will be seen in
789 	 * normal data packets should timestamps be used, must be in the MSS
790 	 * advertised.  But we subtract them from tp->mss_cache so that
791 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
792 	 * fact here if necessary.  If we don't do this correctly, as a
793 	 * receiver we won't recognize data packets as being full sized when we
794 	 * should, and thus we won't abide by the delayed ACK rules correctly.
795 	 * SACKs don't matter, we never delay an ACK when we have any of those
796 	 * going out.  */
797 	opts->mss = tcp_advertise_mss(sk);
798 	remaining -= TCPOLEN_MSS_ALIGNED;
799 
800 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
801 		opts->options |= OPTION_TS;
802 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
803 		opts->tsecr = tp->rx_opt.ts_recent;
804 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
805 	}
806 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
807 		opts->ws = tp->rx_opt.rcv_wscale;
808 		opts->options |= OPTION_WSCALE;
809 		remaining -= TCPOLEN_WSCALE_ALIGNED;
810 	}
811 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
812 		opts->options |= OPTION_SACK_ADVERTISE;
813 		if (unlikely(!(OPTION_TS & opts->options)))
814 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
815 	}
816 
817 	if (fastopen && fastopen->cookie.len >= 0) {
818 		u32 need = fastopen->cookie.len;
819 
820 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
821 					       TCPOLEN_FASTOPEN_BASE;
822 		need = (need + 3) & ~3U;  /* Align to 32 bits */
823 		if (remaining >= need) {
824 			opts->options |= OPTION_FAST_OPEN_COOKIE;
825 			opts->fastopen_cookie = &fastopen->cookie;
826 			remaining -= need;
827 			tp->syn_fastopen = 1;
828 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
829 		}
830 	}
831 
832 	smc_set_option(tp, opts, &remaining);
833 
834 	if (sk_is_mptcp(sk)) {
835 		unsigned int size;
836 
837 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
838 			opts->options |= OPTION_MPTCP;
839 			remaining -= size;
840 		}
841 	}
842 
843 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
844 
845 	return MAX_TCP_OPTION_SPACE - remaining;
846 }
847 
848 /* Set up TCP options for SYN-ACKs. */
849 static unsigned int tcp_synack_options(const struct sock *sk,
850 				       struct request_sock *req,
851 				       unsigned int mss, struct sk_buff *skb,
852 				       struct tcp_out_options *opts,
853 				       const struct tcp_md5sig_key *md5,
854 				       struct tcp_fastopen_cookie *foc,
855 				       enum tcp_synack_type synack_type,
856 				       struct sk_buff *syn_skb)
857 {
858 	struct inet_request_sock *ireq = inet_rsk(req);
859 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
860 
861 #ifdef CONFIG_TCP_MD5SIG
862 	if (md5) {
863 		opts->options |= OPTION_MD5;
864 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
865 
866 		/* We can't fit any SACK blocks in a packet with MD5 + TS
867 		 * options. There was discussion about disabling SACK
868 		 * rather than TS in order to fit in better with old,
869 		 * buggy kernels, but that was deemed to be unnecessary.
870 		 */
871 		if (synack_type != TCP_SYNACK_COOKIE)
872 			ireq->tstamp_ok &= !ireq->sack_ok;
873 	}
874 #endif
875 
876 	/* We always send an MSS option. */
877 	opts->mss = mss;
878 	remaining -= TCPOLEN_MSS_ALIGNED;
879 
880 	if (likely(ireq->wscale_ok)) {
881 		opts->ws = ireq->rcv_wscale;
882 		opts->options |= OPTION_WSCALE;
883 		remaining -= TCPOLEN_WSCALE_ALIGNED;
884 	}
885 	if (likely(ireq->tstamp_ok)) {
886 		opts->options |= OPTION_TS;
887 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
888 		opts->tsecr = READ_ONCE(req->ts_recent);
889 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
890 	}
891 	if (likely(ireq->sack_ok)) {
892 		opts->options |= OPTION_SACK_ADVERTISE;
893 		if (unlikely(!ireq->tstamp_ok))
894 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
895 	}
896 	if (foc != NULL && foc->len >= 0) {
897 		u32 need = foc->len;
898 
899 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
900 				   TCPOLEN_FASTOPEN_BASE;
901 		need = (need + 3) & ~3U;  /* Align to 32 bits */
902 		if (remaining >= need) {
903 			opts->options |= OPTION_FAST_OPEN_COOKIE;
904 			opts->fastopen_cookie = foc;
905 			remaining -= need;
906 		}
907 	}
908 
909 	mptcp_set_option_cond(req, opts, &remaining);
910 
911 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
912 
913 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
914 			      synack_type, opts, &remaining);
915 
916 	return MAX_TCP_OPTION_SPACE - remaining;
917 }
918 
919 /* Compute TCP options for ESTABLISHED sockets. This is not the
920  * final wire format yet.
921  */
922 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
923 					struct tcp_out_options *opts,
924 					struct tcp_md5sig_key **md5)
925 {
926 	struct tcp_sock *tp = tcp_sk(sk);
927 	unsigned int size = 0;
928 	unsigned int eff_sacks;
929 
930 	opts->options = 0;
931 
932 	*md5 = NULL;
933 #ifdef CONFIG_TCP_MD5SIG
934 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
935 	    rcu_access_pointer(tp->md5sig_info)) {
936 		*md5 = tp->af_specific->md5_lookup(sk, sk);
937 		if (*md5) {
938 			opts->options |= OPTION_MD5;
939 			size += TCPOLEN_MD5SIG_ALIGNED;
940 		}
941 	}
942 #endif
943 
944 	if (likely(tp->rx_opt.tstamp_ok)) {
945 		opts->options |= OPTION_TS;
946 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
947 		opts->tsecr = tp->rx_opt.ts_recent;
948 		size += TCPOLEN_TSTAMP_ALIGNED;
949 	}
950 
951 	/* MPTCP options have precedence over SACK for the limited TCP
952 	 * option space because a MPTCP connection would be forced to
953 	 * fall back to regular TCP if a required multipath option is
954 	 * missing. SACK still gets a chance to use whatever space is
955 	 * left.
956 	 */
957 	if (sk_is_mptcp(sk)) {
958 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
959 		unsigned int opt_size = 0;
960 
961 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
962 					      &opts->mptcp)) {
963 			opts->options |= OPTION_MPTCP;
964 			size += opt_size;
965 		}
966 	}
967 
968 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
969 	if (unlikely(eff_sacks)) {
970 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
971 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
972 					 TCPOLEN_SACK_PERBLOCK))
973 			return size;
974 
975 		opts->num_sack_blocks =
976 			min_t(unsigned int, eff_sacks,
977 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
978 			      TCPOLEN_SACK_PERBLOCK);
979 
980 		size += TCPOLEN_SACK_BASE_ALIGNED +
981 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
982 	}
983 
984 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
985 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
986 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
987 
988 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
989 
990 		size = MAX_TCP_OPTION_SPACE - remaining;
991 	}
992 
993 	return size;
994 }
995 
996 
997 /* TCP SMALL QUEUES (TSQ)
998  *
999  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1000  * to reduce RTT and bufferbloat.
1001  * We do this using a special skb destructor (tcp_wfree).
1002  *
1003  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1004  * needs to be reallocated in a driver.
1005  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1006  *
1007  * Since transmit from skb destructor is forbidden, we use a tasklet
1008  * to process all sockets that eventually need to send more skbs.
1009  * We use one tasklet per cpu, with its own queue of sockets.
1010  */
1011 struct tsq_tasklet {
1012 	struct tasklet_struct	tasklet;
1013 	struct list_head	head; /* queue of tcp sockets */
1014 };
1015 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1016 
1017 static void tcp_tsq_write(struct sock *sk)
1018 {
1019 	if ((1 << sk->sk_state) &
1020 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1021 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1022 		struct tcp_sock *tp = tcp_sk(sk);
1023 
1024 		if (tp->lost_out > tp->retrans_out &&
1025 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1026 			tcp_mstamp_refresh(tp);
1027 			tcp_xmit_retransmit_queue(sk);
1028 		}
1029 
1030 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1031 			       0, GFP_ATOMIC);
1032 	}
1033 }
1034 
1035 static void tcp_tsq_handler(struct sock *sk)
1036 {
1037 	bh_lock_sock(sk);
1038 	if (!sock_owned_by_user(sk))
1039 		tcp_tsq_write(sk);
1040 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1041 		sock_hold(sk);
1042 	bh_unlock_sock(sk);
1043 }
1044 /*
1045  * One tasklet per cpu tries to send more skbs.
1046  * We run in tasklet context but need to disable irqs when
1047  * transferring tsq->head because tcp_wfree() might
1048  * interrupt us (non NAPI drivers)
1049  */
1050 static void tcp_tasklet_func(struct tasklet_struct *t)
1051 {
1052 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1053 	LIST_HEAD(list);
1054 	unsigned long flags;
1055 	struct list_head *q, *n;
1056 	struct tcp_sock *tp;
1057 	struct sock *sk;
1058 
1059 	local_irq_save(flags);
1060 	list_splice_init(&tsq->head, &list);
1061 	local_irq_restore(flags);
1062 
1063 	list_for_each_safe(q, n, &list) {
1064 		tp = list_entry(q, struct tcp_sock, tsq_node);
1065 		list_del(&tp->tsq_node);
1066 
1067 		sk = (struct sock *)tp;
1068 		smp_mb__before_atomic();
1069 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1070 
1071 		tcp_tsq_handler(sk);
1072 		sk_free(sk);
1073 	}
1074 }
1075 
1076 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1077 			  TCPF_WRITE_TIMER_DEFERRED |	\
1078 			  TCPF_DELACK_TIMER_DEFERRED |	\
1079 			  TCPF_MTU_REDUCED_DEFERRED |	\
1080 			  TCPF_ACK_DEFERRED)
1081 /**
1082  * tcp_release_cb - tcp release_sock() callback
1083  * @sk: socket
1084  *
1085  * called from release_sock() to perform protocol dependent
1086  * actions before socket release.
1087  */
1088 void tcp_release_cb(struct sock *sk)
1089 {
1090 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1091 	unsigned long nflags;
1092 
1093 	/* perform an atomic operation only if at least one flag is set */
1094 	do {
1095 		if (!(flags & TCP_DEFERRED_ALL))
1096 			return;
1097 		nflags = flags & ~TCP_DEFERRED_ALL;
1098 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1099 
1100 	if (flags & TCPF_TSQ_DEFERRED) {
1101 		tcp_tsq_write(sk);
1102 		__sock_put(sk);
1103 	}
1104 
1105 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1106 		tcp_write_timer_handler(sk);
1107 		__sock_put(sk);
1108 	}
1109 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1110 		tcp_delack_timer_handler(sk);
1111 		__sock_put(sk);
1112 	}
1113 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1114 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1115 		__sock_put(sk);
1116 	}
1117 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1118 		tcp_send_ack(sk);
1119 }
1120 EXPORT_SYMBOL(tcp_release_cb);
1121 
1122 void __init tcp_tasklet_init(void)
1123 {
1124 	int i;
1125 
1126 	for_each_possible_cpu(i) {
1127 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1128 
1129 		INIT_LIST_HEAD(&tsq->head);
1130 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1131 	}
1132 }
1133 
1134 /*
1135  * Write buffer destructor automatically called from kfree_skb.
1136  * We can't xmit new skbs from this context, as we might already
1137  * hold qdisc lock.
1138  */
1139 void tcp_wfree(struct sk_buff *skb)
1140 {
1141 	struct sock *sk = skb->sk;
1142 	struct tcp_sock *tp = tcp_sk(sk);
1143 	unsigned long flags, nval, oval;
1144 	struct tsq_tasklet *tsq;
1145 	bool empty;
1146 
1147 	/* Keep one reference on sk_wmem_alloc.
1148 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1149 	 */
1150 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1151 
1152 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1153 	 * Wait until our queues (qdisc + devices) are drained.
1154 	 * This gives :
1155 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1156 	 * - chance for incoming ACK (processed by another cpu maybe)
1157 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1158 	 */
1159 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1160 		goto out;
1161 
1162 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1163 	do {
1164 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1165 			goto out;
1166 
1167 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1168 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1169 
1170 	/* queue this socket to tasklet queue */
1171 	local_irq_save(flags);
1172 	tsq = this_cpu_ptr(&tsq_tasklet);
1173 	empty = list_empty(&tsq->head);
1174 	list_add(&tp->tsq_node, &tsq->head);
1175 	if (empty)
1176 		tasklet_schedule(&tsq->tasklet);
1177 	local_irq_restore(flags);
1178 	return;
1179 out:
1180 	sk_free(sk);
1181 }
1182 
1183 /* Note: Called under soft irq.
1184  * We can call TCP stack right away, unless socket is owned by user.
1185  */
1186 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1187 {
1188 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1189 	struct sock *sk = (struct sock *)tp;
1190 
1191 	tcp_tsq_handler(sk);
1192 	sock_put(sk);
1193 
1194 	return HRTIMER_NORESTART;
1195 }
1196 
1197 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1198 				      u64 prior_wstamp)
1199 {
1200 	struct tcp_sock *tp = tcp_sk(sk);
1201 
1202 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1203 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1204 
1205 		/* Original sch_fq does not pace first 10 MSS
1206 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1207 		 * this is a minor annoyance.
1208 		 */
1209 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1210 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1211 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1212 
1213 			/* take into account OS jitter */
1214 			len_ns -= min_t(u64, len_ns / 2, credit);
1215 			tp->tcp_wstamp_ns += len_ns;
1216 		}
1217 	}
1218 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1219 }
1220 
1221 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1222 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1223 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1224 
1225 /* This routine actually transmits TCP packets queued in by
1226  * tcp_do_sendmsg().  This is used by both the initial
1227  * transmission and possible later retransmissions.
1228  * All SKB's seen here are completely headerless.  It is our
1229  * job to build the TCP header, and pass the packet down to
1230  * IP so it can do the same plus pass the packet off to the
1231  * device.
1232  *
1233  * We are working here with either a clone of the original
1234  * SKB, or a fresh unique copy made by the retransmit engine.
1235  */
1236 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1237 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1238 {
1239 	const struct inet_connection_sock *icsk = inet_csk(sk);
1240 	struct inet_sock *inet;
1241 	struct tcp_sock *tp;
1242 	struct tcp_skb_cb *tcb;
1243 	struct tcp_out_options opts;
1244 	unsigned int tcp_options_size, tcp_header_size;
1245 	struct sk_buff *oskb = NULL;
1246 	struct tcp_md5sig_key *md5;
1247 	struct tcphdr *th;
1248 	u64 prior_wstamp;
1249 	int err;
1250 
1251 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1252 	tp = tcp_sk(sk);
1253 	prior_wstamp = tp->tcp_wstamp_ns;
1254 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1255 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1256 	if (clone_it) {
1257 		oskb = skb;
1258 
1259 		tcp_skb_tsorted_save(oskb) {
1260 			if (unlikely(skb_cloned(oskb)))
1261 				skb = pskb_copy(oskb, gfp_mask);
1262 			else
1263 				skb = skb_clone(oskb, gfp_mask);
1264 		} tcp_skb_tsorted_restore(oskb);
1265 
1266 		if (unlikely(!skb))
1267 			return -ENOBUFS;
1268 		/* retransmit skbs might have a non zero value in skb->dev
1269 		 * because skb->dev is aliased with skb->rbnode.rb_left
1270 		 */
1271 		skb->dev = NULL;
1272 	}
1273 
1274 	inet = inet_sk(sk);
1275 	tcb = TCP_SKB_CB(skb);
1276 	memset(&opts, 0, sizeof(opts));
1277 
1278 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1279 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1280 	} else {
1281 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1282 							   &md5);
1283 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1284 		 * at receiver : This slightly improve GRO performance.
1285 		 * Note that we do not force the PSH flag for non GSO packets,
1286 		 * because they might be sent under high congestion events,
1287 		 * and in this case it is better to delay the delivery of 1-MSS
1288 		 * packets and thus the corresponding ACK packet that would
1289 		 * release the following packet.
1290 		 */
1291 		if (tcp_skb_pcount(skb) > 1)
1292 			tcb->tcp_flags |= TCPHDR_PSH;
1293 	}
1294 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1295 
1296 	/* We set skb->ooo_okay to one if this packet can select
1297 	 * a different TX queue than prior packets of this flow,
1298 	 * to avoid self inflicted reorders.
1299 	 * The 'other' queue decision is based on current cpu number
1300 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1301 	 * We can switch to another (and better) queue if:
1302 	 * 1) No packet with payload is in qdisc/device queues.
1303 	 *    Delays in TX completion can defeat the test
1304 	 *    even if packets were already sent.
1305 	 * 2) Or rtx queue is empty.
1306 	 *    This mitigates above case if ACK packets for
1307 	 *    all prior packets were already processed.
1308 	 */
1309 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1310 			tcp_rtx_queue_empty(sk);
1311 
1312 	/* If we had to use memory reserve to allocate this skb,
1313 	 * this might cause drops if packet is looped back :
1314 	 * Other socket might not have SOCK_MEMALLOC.
1315 	 * Packets not looped back do not care about pfmemalloc.
1316 	 */
1317 	skb->pfmemalloc = 0;
1318 
1319 	skb_push(skb, tcp_header_size);
1320 	skb_reset_transport_header(skb);
1321 
1322 	skb_orphan(skb);
1323 	skb->sk = sk;
1324 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1325 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1326 
1327 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1328 
1329 	/* Build TCP header and checksum it. */
1330 	th = (struct tcphdr *)skb->data;
1331 	th->source		= inet->inet_sport;
1332 	th->dest		= inet->inet_dport;
1333 	th->seq			= htonl(tcb->seq);
1334 	th->ack_seq		= htonl(rcv_nxt);
1335 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1336 					tcb->tcp_flags);
1337 
1338 	th->check		= 0;
1339 	th->urg_ptr		= 0;
1340 
1341 	/* The urg_mode check is necessary during a below snd_una win probe */
1342 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1343 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1344 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1345 			th->urg = 1;
1346 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1347 			th->urg_ptr = htons(0xFFFF);
1348 			th->urg = 1;
1349 		}
1350 	}
1351 
1352 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1353 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1354 		th->window      = htons(tcp_select_window(sk));
1355 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1356 	} else {
1357 		/* RFC1323: The window in SYN & SYN/ACK segments
1358 		 * is never scaled.
1359 		 */
1360 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1361 	}
1362 
1363 	tcp_options_write(th, tp, &opts);
1364 
1365 #ifdef CONFIG_TCP_MD5SIG
1366 	/* Calculate the MD5 hash, as we have all we need now */
1367 	if (md5) {
1368 		sk_gso_disable(sk);
1369 		tp->af_specific->calc_md5_hash(opts.hash_location,
1370 					       md5, sk, skb);
1371 	}
1372 #endif
1373 
1374 	/* BPF prog is the last one writing header option */
1375 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1376 
1377 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1378 			   tcp_v6_send_check, tcp_v4_send_check,
1379 			   sk, skb);
1380 
1381 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1382 		tcp_event_ack_sent(sk, rcv_nxt);
1383 
1384 	if (skb->len != tcp_header_size) {
1385 		tcp_event_data_sent(tp, sk);
1386 		tp->data_segs_out += tcp_skb_pcount(skb);
1387 		tp->bytes_sent += skb->len - tcp_header_size;
1388 	}
1389 
1390 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1391 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1392 			      tcp_skb_pcount(skb));
1393 
1394 	tp->segs_out += tcp_skb_pcount(skb);
1395 	skb_set_hash_from_sk(skb, sk);
1396 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1397 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1398 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1399 
1400 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1401 
1402 	/* Cleanup our debris for IP stacks */
1403 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1404 			       sizeof(struct inet6_skb_parm)));
1405 
1406 	tcp_add_tx_delay(skb, tp);
1407 
1408 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1409 				 inet6_csk_xmit, ip_queue_xmit,
1410 				 sk, skb, &inet->cork.fl);
1411 
1412 	if (unlikely(err > 0)) {
1413 		tcp_enter_cwr(sk);
1414 		err = net_xmit_eval(err);
1415 	}
1416 	if (!err && oskb) {
1417 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1418 		tcp_rate_skb_sent(sk, oskb);
1419 	}
1420 	return err;
1421 }
1422 
1423 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1424 			    gfp_t gfp_mask)
1425 {
1426 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1427 				  tcp_sk(sk)->rcv_nxt);
1428 }
1429 
1430 /* This routine just queues the buffer for sending.
1431  *
1432  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1433  * otherwise socket can stall.
1434  */
1435 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1436 {
1437 	struct tcp_sock *tp = tcp_sk(sk);
1438 
1439 	/* Advance write_seq and place onto the write_queue. */
1440 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1441 	__skb_header_release(skb);
1442 	tcp_add_write_queue_tail(sk, skb);
1443 	sk_wmem_queued_add(sk, skb->truesize);
1444 	sk_mem_charge(sk, skb->truesize);
1445 }
1446 
1447 /* Initialize TSO segments for a packet. */
1448 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1449 {
1450 	if (skb->len <= mss_now) {
1451 		/* Avoid the costly divide in the normal
1452 		 * non-TSO case.
1453 		 */
1454 		tcp_skb_pcount_set(skb, 1);
1455 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1456 	} else {
1457 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1458 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1459 	}
1460 }
1461 
1462 /* Pcount in the middle of the write queue got changed, we need to do various
1463  * tweaks to fix counters
1464  */
1465 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1466 {
1467 	struct tcp_sock *tp = tcp_sk(sk);
1468 
1469 	tp->packets_out -= decr;
1470 
1471 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1472 		tp->sacked_out -= decr;
1473 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1474 		tp->retrans_out -= decr;
1475 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1476 		tp->lost_out -= decr;
1477 
1478 	/* Reno case is special. Sigh... */
1479 	if (tcp_is_reno(tp) && decr > 0)
1480 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1481 
1482 	if (tp->lost_skb_hint &&
1483 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1484 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1485 		tp->lost_cnt_hint -= decr;
1486 
1487 	tcp_verify_left_out(tp);
1488 }
1489 
1490 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1491 {
1492 	return TCP_SKB_CB(skb)->txstamp_ack ||
1493 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1494 }
1495 
1496 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1497 {
1498 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1499 
1500 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1501 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1502 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1503 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1504 
1505 		shinfo->tx_flags &= ~tsflags;
1506 		shinfo2->tx_flags |= tsflags;
1507 		swap(shinfo->tskey, shinfo2->tskey);
1508 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1509 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1510 	}
1511 }
1512 
1513 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1514 {
1515 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1516 	TCP_SKB_CB(skb)->eor = 0;
1517 }
1518 
1519 /* Insert buff after skb on the write or rtx queue of sk.  */
1520 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1521 					 struct sk_buff *buff,
1522 					 struct sock *sk,
1523 					 enum tcp_queue tcp_queue)
1524 {
1525 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1526 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1527 	else
1528 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1529 }
1530 
1531 /* Function to create two new TCP segments.  Shrinks the given segment
1532  * to the specified size and appends a new segment with the rest of the
1533  * packet to the list.  This won't be called frequently, I hope.
1534  * Remember, these are still headerless SKBs at this point.
1535  */
1536 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1537 		 struct sk_buff *skb, u32 len,
1538 		 unsigned int mss_now, gfp_t gfp)
1539 {
1540 	struct tcp_sock *tp = tcp_sk(sk);
1541 	struct sk_buff *buff;
1542 	int old_factor;
1543 	long limit;
1544 	int nlen;
1545 	u8 flags;
1546 
1547 	if (WARN_ON(len > skb->len))
1548 		return -EINVAL;
1549 
1550 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1551 
1552 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1553 	 * We need some allowance to not penalize applications setting small
1554 	 * SO_SNDBUF values.
1555 	 * Also allow first and last skb in retransmit queue to be split.
1556 	 */
1557 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1558 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1559 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1560 		     skb != tcp_rtx_queue_head(sk) &&
1561 		     skb != tcp_rtx_queue_tail(sk))) {
1562 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1563 		return -ENOMEM;
1564 	}
1565 
1566 	if (skb_unclone_keeptruesize(skb, gfp))
1567 		return -ENOMEM;
1568 
1569 	/* Get a new skb... force flag on. */
1570 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1571 	if (!buff)
1572 		return -ENOMEM; /* We'll just try again later. */
1573 	skb_copy_decrypted(buff, skb);
1574 	mptcp_skb_ext_copy(buff, skb);
1575 
1576 	sk_wmem_queued_add(sk, buff->truesize);
1577 	sk_mem_charge(sk, buff->truesize);
1578 	nlen = skb->len - len;
1579 	buff->truesize += nlen;
1580 	skb->truesize -= nlen;
1581 
1582 	/* Correct the sequence numbers. */
1583 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1584 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1585 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1586 
1587 	/* PSH and FIN should only be set in the second packet. */
1588 	flags = TCP_SKB_CB(skb)->tcp_flags;
1589 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1590 	TCP_SKB_CB(buff)->tcp_flags = flags;
1591 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1592 	tcp_skb_fragment_eor(skb, buff);
1593 
1594 	skb_split(skb, buff, len);
1595 
1596 	skb_set_delivery_time(buff, skb->tstamp, true);
1597 	tcp_fragment_tstamp(skb, buff);
1598 
1599 	old_factor = tcp_skb_pcount(skb);
1600 
1601 	/* Fix up tso_factor for both original and new SKB.  */
1602 	tcp_set_skb_tso_segs(skb, mss_now);
1603 	tcp_set_skb_tso_segs(buff, mss_now);
1604 
1605 	/* Update delivered info for the new segment */
1606 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1607 
1608 	/* If this packet has been sent out already, we must
1609 	 * adjust the various packet counters.
1610 	 */
1611 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1612 		int diff = old_factor - tcp_skb_pcount(skb) -
1613 			tcp_skb_pcount(buff);
1614 
1615 		if (diff)
1616 			tcp_adjust_pcount(sk, skb, diff);
1617 	}
1618 
1619 	/* Link BUFF into the send queue. */
1620 	__skb_header_release(buff);
1621 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1622 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1623 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1624 
1625 	return 0;
1626 }
1627 
1628 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1629  * data is not copied, but immediately discarded.
1630  */
1631 static int __pskb_trim_head(struct sk_buff *skb, int len)
1632 {
1633 	struct skb_shared_info *shinfo;
1634 	int i, k, eat;
1635 
1636 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1637 	eat = len;
1638 	k = 0;
1639 	shinfo = skb_shinfo(skb);
1640 	for (i = 0; i < shinfo->nr_frags; i++) {
1641 		int size = skb_frag_size(&shinfo->frags[i]);
1642 
1643 		if (size <= eat) {
1644 			skb_frag_unref(skb, i);
1645 			eat -= size;
1646 		} else {
1647 			shinfo->frags[k] = shinfo->frags[i];
1648 			if (eat) {
1649 				skb_frag_off_add(&shinfo->frags[k], eat);
1650 				skb_frag_size_sub(&shinfo->frags[k], eat);
1651 				eat = 0;
1652 			}
1653 			k++;
1654 		}
1655 	}
1656 	shinfo->nr_frags = k;
1657 
1658 	skb->data_len -= len;
1659 	skb->len = skb->data_len;
1660 	return len;
1661 }
1662 
1663 /* Remove acked data from a packet in the transmit queue. */
1664 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1665 {
1666 	u32 delta_truesize;
1667 
1668 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1669 		return -ENOMEM;
1670 
1671 	delta_truesize = __pskb_trim_head(skb, len);
1672 
1673 	TCP_SKB_CB(skb)->seq += len;
1674 
1675 	skb->truesize	   -= delta_truesize;
1676 	sk_wmem_queued_add(sk, -delta_truesize);
1677 	if (!skb_zcopy_pure(skb))
1678 		sk_mem_uncharge(sk, delta_truesize);
1679 
1680 	/* Any change of skb->len requires recalculation of tso factor. */
1681 	if (tcp_skb_pcount(skb) > 1)
1682 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1683 
1684 	return 0;
1685 }
1686 
1687 /* Calculate MSS not accounting any TCP options.  */
1688 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1689 {
1690 	const struct tcp_sock *tp = tcp_sk(sk);
1691 	const struct inet_connection_sock *icsk = inet_csk(sk);
1692 	int mss_now;
1693 
1694 	/* Calculate base mss without TCP options:
1695 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1696 	 */
1697 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1698 
1699 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1700 	if (icsk->icsk_af_ops->net_frag_header_len) {
1701 		const struct dst_entry *dst = __sk_dst_get(sk);
1702 
1703 		if (dst && dst_allfrag(dst))
1704 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1705 	}
1706 
1707 	/* Clamp it (mss_clamp does not include tcp options) */
1708 	if (mss_now > tp->rx_opt.mss_clamp)
1709 		mss_now = tp->rx_opt.mss_clamp;
1710 
1711 	/* Now subtract optional transport overhead */
1712 	mss_now -= icsk->icsk_ext_hdr_len;
1713 
1714 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1715 	mss_now = max(mss_now,
1716 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1717 	return mss_now;
1718 }
1719 
1720 /* Calculate MSS. Not accounting for SACKs here.  */
1721 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1722 {
1723 	/* Subtract TCP options size, not including SACKs */
1724 	return __tcp_mtu_to_mss(sk, pmtu) -
1725 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1726 }
1727 EXPORT_SYMBOL(tcp_mtu_to_mss);
1728 
1729 /* Inverse of above */
1730 int tcp_mss_to_mtu(struct sock *sk, int mss)
1731 {
1732 	const struct tcp_sock *tp = tcp_sk(sk);
1733 	const struct inet_connection_sock *icsk = inet_csk(sk);
1734 	int mtu;
1735 
1736 	mtu = mss +
1737 	      tp->tcp_header_len +
1738 	      icsk->icsk_ext_hdr_len +
1739 	      icsk->icsk_af_ops->net_header_len;
1740 
1741 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1742 	if (icsk->icsk_af_ops->net_frag_header_len) {
1743 		const struct dst_entry *dst = __sk_dst_get(sk);
1744 
1745 		if (dst && dst_allfrag(dst))
1746 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1747 	}
1748 	return mtu;
1749 }
1750 EXPORT_SYMBOL(tcp_mss_to_mtu);
1751 
1752 /* MTU probing init per socket */
1753 void tcp_mtup_init(struct sock *sk)
1754 {
1755 	struct tcp_sock *tp = tcp_sk(sk);
1756 	struct inet_connection_sock *icsk = inet_csk(sk);
1757 	struct net *net = sock_net(sk);
1758 
1759 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1760 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1761 			       icsk->icsk_af_ops->net_header_len;
1762 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1763 	icsk->icsk_mtup.probe_size = 0;
1764 	if (icsk->icsk_mtup.enabled)
1765 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1766 }
1767 EXPORT_SYMBOL(tcp_mtup_init);
1768 
1769 /* This function synchronize snd mss to current pmtu/exthdr set.
1770 
1771    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1772    for TCP options, but includes only bare TCP header.
1773 
1774    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1775    It is minimum of user_mss and mss received with SYN.
1776    It also does not include TCP options.
1777 
1778    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1779 
1780    tp->mss_cache is current effective sending mss, including
1781    all tcp options except for SACKs. It is evaluated,
1782    taking into account current pmtu, but never exceeds
1783    tp->rx_opt.mss_clamp.
1784 
1785    NOTE1. rfc1122 clearly states that advertised MSS
1786    DOES NOT include either tcp or ip options.
1787 
1788    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1789    are READ ONLY outside this function.		--ANK (980731)
1790  */
1791 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1792 {
1793 	struct tcp_sock *tp = tcp_sk(sk);
1794 	struct inet_connection_sock *icsk = inet_csk(sk);
1795 	int mss_now;
1796 
1797 	if (icsk->icsk_mtup.search_high > pmtu)
1798 		icsk->icsk_mtup.search_high = pmtu;
1799 
1800 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1801 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1802 
1803 	/* And store cached results */
1804 	icsk->icsk_pmtu_cookie = pmtu;
1805 	if (icsk->icsk_mtup.enabled)
1806 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1807 	tp->mss_cache = mss_now;
1808 
1809 	return mss_now;
1810 }
1811 EXPORT_SYMBOL(tcp_sync_mss);
1812 
1813 /* Compute the current effective MSS, taking SACKs and IP options,
1814  * and even PMTU discovery events into account.
1815  */
1816 unsigned int tcp_current_mss(struct sock *sk)
1817 {
1818 	const struct tcp_sock *tp = tcp_sk(sk);
1819 	const struct dst_entry *dst = __sk_dst_get(sk);
1820 	u32 mss_now;
1821 	unsigned int header_len;
1822 	struct tcp_out_options opts;
1823 	struct tcp_md5sig_key *md5;
1824 
1825 	mss_now = tp->mss_cache;
1826 
1827 	if (dst) {
1828 		u32 mtu = dst_mtu(dst);
1829 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1830 			mss_now = tcp_sync_mss(sk, mtu);
1831 	}
1832 
1833 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1834 		     sizeof(struct tcphdr);
1835 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1836 	 * some common options. If this is an odd packet (because we have SACK
1837 	 * blocks etc) then our calculated header_len will be different, and
1838 	 * we have to adjust mss_now correspondingly */
1839 	if (header_len != tp->tcp_header_len) {
1840 		int delta = (int) header_len - tp->tcp_header_len;
1841 		mss_now -= delta;
1842 	}
1843 
1844 	return mss_now;
1845 }
1846 
1847 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1848  * As additional protections, we do not touch cwnd in retransmission phases,
1849  * and if application hit its sndbuf limit recently.
1850  */
1851 static void tcp_cwnd_application_limited(struct sock *sk)
1852 {
1853 	struct tcp_sock *tp = tcp_sk(sk);
1854 
1855 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1856 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1857 		/* Limited by application or receiver window. */
1858 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1859 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1860 		if (win_used < tcp_snd_cwnd(tp)) {
1861 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1862 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1863 		}
1864 		tp->snd_cwnd_used = 0;
1865 	}
1866 	tp->snd_cwnd_stamp = tcp_jiffies32;
1867 }
1868 
1869 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1870 {
1871 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1872 	struct tcp_sock *tp = tcp_sk(sk);
1873 
1874 	/* Track the strongest available signal of the degree to which the cwnd
1875 	 * is fully utilized. If cwnd-limited then remember that fact for the
1876 	 * current window. If not cwnd-limited then track the maximum number of
1877 	 * outstanding packets in the current window. (If cwnd-limited then we
1878 	 * chose to not update tp->max_packets_out to avoid an extra else
1879 	 * clause with no functional impact.)
1880 	 */
1881 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1882 	    is_cwnd_limited ||
1883 	    (!tp->is_cwnd_limited &&
1884 	     tp->packets_out > tp->max_packets_out)) {
1885 		tp->is_cwnd_limited = is_cwnd_limited;
1886 		tp->max_packets_out = tp->packets_out;
1887 		tp->cwnd_usage_seq = tp->snd_nxt;
1888 	}
1889 
1890 	if (tcp_is_cwnd_limited(sk)) {
1891 		/* Network is feed fully. */
1892 		tp->snd_cwnd_used = 0;
1893 		tp->snd_cwnd_stamp = tcp_jiffies32;
1894 	} else {
1895 		/* Network starves. */
1896 		if (tp->packets_out > tp->snd_cwnd_used)
1897 			tp->snd_cwnd_used = tp->packets_out;
1898 
1899 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1900 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1901 		    !ca_ops->cong_control)
1902 			tcp_cwnd_application_limited(sk);
1903 
1904 		/* The following conditions together indicate the starvation
1905 		 * is caused by insufficient sender buffer:
1906 		 * 1) just sent some data (see tcp_write_xmit)
1907 		 * 2) not cwnd limited (this else condition)
1908 		 * 3) no more data to send (tcp_write_queue_empty())
1909 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1910 		 */
1911 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1912 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1913 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1914 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1915 	}
1916 }
1917 
1918 /* Minshall's variant of the Nagle send check. */
1919 static bool tcp_minshall_check(const struct tcp_sock *tp)
1920 {
1921 	return after(tp->snd_sml, tp->snd_una) &&
1922 		!after(tp->snd_sml, tp->snd_nxt);
1923 }
1924 
1925 /* Update snd_sml if this skb is under mss
1926  * Note that a TSO packet might end with a sub-mss segment
1927  * The test is really :
1928  * if ((skb->len % mss) != 0)
1929  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1930  * But we can avoid doing the divide again given we already have
1931  *  skb_pcount = skb->len / mss_now
1932  */
1933 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1934 				const struct sk_buff *skb)
1935 {
1936 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1937 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1938 }
1939 
1940 /* Return false, if packet can be sent now without violation Nagle's rules:
1941  * 1. It is full sized. (provided by caller in %partial bool)
1942  * 2. Or it contains FIN. (already checked by caller)
1943  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1944  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1945  *    With Minshall's modification: all sent small packets are ACKed.
1946  */
1947 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1948 			    int nonagle)
1949 {
1950 	return partial &&
1951 		((nonagle & TCP_NAGLE_CORK) ||
1952 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1953 }
1954 
1955 /* Return how many segs we'd like on a TSO packet,
1956  * depending on current pacing rate, and how close the peer is.
1957  *
1958  * Rationale is:
1959  * - For close peers, we rather send bigger packets to reduce
1960  *   cpu costs, because occasional losses will be repaired fast.
1961  * - For long distance/rtt flows, we would like to get ACK clocking
1962  *   with 1 ACK per ms.
1963  *
1964  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1965  * in bigger TSO bursts. We we cut the RTT-based allowance in half
1966  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1967  * is below 1500 bytes after 6 * ~500 usec = 3ms.
1968  */
1969 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1970 			    int min_tso_segs)
1971 {
1972 	unsigned long bytes;
1973 	u32 r;
1974 
1975 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
1976 
1977 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1978 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1979 		bytes += sk->sk_gso_max_size >> r;
1980 
1981 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1982 
1983 	return max_t(u32, bytes / mss_now, min_tso_segs);
1984 }
1985 
1986 /* Return the number of segments we want in the skb we are transmitting.
1987  * See if congestion control module wants to decide; otherwise, autosize.
1988  */
1989 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1990 {
1991 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1992 	u32 min_tso, tso_segs;
1993 
1994 	min_tso = ca_ops->min_tso_segs ?
1995 			ca_ops->min_tso_segs(sk) :
1996 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1997 
1998 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1999 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2000 }
2001 
2002 /* Returns the portion of skb which can be sent right away */
2003 static unsigned int tcp_mss_split_point(const struct sock *sk,
2004 					const struct sk_buff *skb,
2005 					unsigned int mss_now,
2006 					unsigned int max_segs,
2007 					int nonagle)
2008 {
2009 	const struct tcp_sock *tp = tcp_sk(sk);
2010 	u32 partial, needed, window, max_len;
2011 
2012 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2013 	max_len = mss_now * max_segs;
2014 
2015 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2016 		return max_len;
2017 
2018 	needed = min(skb->len, window);
2019 
2020 	if (max_len <= needed)
2021 		return max_len;
2022 
2023 	partial = needed % mss_now;
2024 	/* If last segment is not a full MSS, check if Nagle rules allow us
2025 	 * to include this last segment in this skb.
2026 	 * Otherwise, we'll split the skb at last MSS boundary
2027 	 */
2028 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2029 		return needed - partial;
2030 
2031 	return needed;
2032 }
2033 
2034 /* Can at least one segment of SKB be sent right now, according to the
2035  * congestion window rules?  If so, return how many segments are allowed.
2036  */
2037 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2038 					 const struct sk_buff *skb)
2039 {
2040 	u32 in_flight, cwnd, halfcwnd;
2041 
2042 	/* Don't be strict about the congestion window for the final FIN.  */
2043 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2044 	    tcp_skb_pcount(skb) == 1)
2045 		return 1;
2046 
2047 	in_flight = tcp_packets_in_flight(tp);
2048 	cwnd = tcp_snd_cwnd(tp);
2049 	if (in_flight >= cwnd)
2050 		return 0;
2051 
2052 	/* For better scheduling, ensure we have at least
2053 	 * 2 GSO packets in flight.
2054 	 */
2055 	halfcwnd = max(cwnd >> 1, 1U);
2056 	return min(halfcwnd, cwnd - in_flight);
2057 }
2058 
2059 /* Initialize TSO state of a skb.
2060  * This must be invoked the first time we consider transmitting
2061  * SKB onto the wire.
2062  */
2063 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2064 {
2065 	int tso_segs = tcp_skb_pcount(skb);
2066 
2067 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2068 		tcp_set_skb_tso_segs(skb, mss_now);
2069 		tso_segs = tcp_skb_pcount(skb);
2070 	}
2071 	return tso_segs;
2072 }
2073 
2074 
2075 /* Return true if the Nagle test allows this packet to be
2076  * sent now.
2077  */
2078 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2079 				  unsigned int cur_mss, int nonagle)
2080 {
2081 	/* Nagle rule does not apply to frames, which sit in the middle of the
2082 	 * write_queue (they have no chances to get new data).
2083 	 *
2084 	 * This is implemented in the callers, where they modify the 'nonagle'
2085 	 * argument based upon the location of SKB in the send queue.
2086 	 */
2087 	if (nonagle & TCP_NAGLE_PUSH)
2088 		return true;
2089 
2090 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2091 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2092 		return true;
2093 
2094 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2095 		return true;
2096 
2097 	return false;
2098 }
2099 
2100 /* Does at least the first segment of SKB fit into the send window? */
2101 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2102 			     const struct sk_buff *skb,
2103 			     unsigned int cur_mss)
2104 {
2105 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2106 
2107 	if (skb->len > cur_mss)
2108 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2109 
2110 	return !after(end_seq, tcp_wnd_end(tp));
2111 }
2112 
2113 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2114  * which is put after SKB on the list.  It is very much like
2115  * tcp_fragment() except that it may make several kinds of assumptions
2116  * in order to speed up the splitting operation.  In particular, we
2117  * know that all the data is in scatter-gather pages, and that the
2118  * packet has never been sent out before (and thus is not cloned).
2119  */
2120 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2121 			unsigned int mss_now, gfp_t gfp)
2122 {
2123 	int nlen = skb->len - len;
2124 	struct sk_buff *buff;
2125 	u8 flags;
2126 
2127 	/* All of a TSO frame must be composed of paged data.  */
2128 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2129 
2130 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2131 	if (unlikely(!buff))
2132 		return -ENOMEM;
2133 	skb_copy_decrypted(buff, skb);
2134 	mptcp_skb_ext_copy(buff, skb);
2135 
2136 	sk_wmem_queued_add(sk, buff->truesize);
2137 	sk_mem_charge(sk, buff->truesize);
2138 	buff->truesize += nlen;
2139 	skb->truesize -= nlen;
2140 
2141 	/* Correct the sequence numbers. */
2142 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2143 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2144 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2145 
2146 	/* PSH and FIN should only be set in the second packet. */
2147 	flags = TCP_SKB_CB(skb)->tcp_flags;
2148 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2149 	TCP_SKB_CB(buff)->tcp_flags = flags;
2150 
2151 	tcp_skb_fragment_eor(skb, buff);
2152 
2153 	skb_split(skb, buff, len);
2154 	tcp_fragment_tstamp(skb, buff);
2155 
2156 	/* Fix up tso_factor for both original and new SKB.  */
2157 	tcp_set_skb_tso_segs(skb, mss_now);
2158 	tcp_set_skb_tso_segs(buff, mss_now);
2159 
2160 	/* Link BUFF into the send queue. */
2161 	__skb_header_release(buff);
2162 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2163 
2164 	return 0;
2165 }
2166 
2167 /* Try to defer sending, if possible, in order to minimize the amount
2168  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2169  *
2170  * This algorithm is from John Heffner.
2171  */
2172 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2173 				 bool *is_cwnd_limited,
2174 				 bool *is_rwnd_limited,
2175 				 u32 max_segs)
2176 {
2177 	const struct inet_connection_sock *icsk = inet_csk(sk);
2178 	u32 send_win, cong_win, limit, in_flight;
2179 	struct tcp_sock *tp = tcp_sk(sk);
2180 	struct sk_buff *head;
2181 	int win_divisor;
2182 	s64 delta;
2183 
2184 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2185 		goto send_now;
2186 
2187 	/* Avoid bursty behavior by allowing defer
2188 	 * only if the last write was recent (1 ms).
2189 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2190 	 * packets waiting in a qdisc or device for EDT delivery.
2191 	 */
2192 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2193 	if (delta > 0)
2194 		goto send_now;
2195 
2196 	in_flight = tcp_packets_in_flight(tp);
2197 
2198 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2199 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2200 
2201 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2202 
2203 	/* From in_flight test above, we know that cwnd > in_flight.  */
2204 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2205 
2206 	limit = min(send_win, cong_win);
2207 
2208 	/* If a full-sized TSO skb can be sent, do it. */
2209 	if (limit >= max_segs * tp->mss_cache)
2210 		goto send_now;
2211 
2212 	/* Middle in queue won't get any more data, full sendable already? */
2213 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2214 		goto send_now;
2215 
2216 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2217 	if (win_divisor) {
2218 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2219 
2220 		/* If at least some fraction of a window is available,
2221 		 * just use it.
2222 		 */
2223 		chunk /= win_divisor;
2224 		if (limit >= chunk)
2225 			goto send_now;
2226 	} else {
2227 		/* Different approach, try not to defer past a single
2228 		 * ACK.  Receiver should ACK every other full sized
2229 		 * frame, so if we have space for more than 3 frames
2230 		 * then send now.
2231 		 */
2232 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2233 			goto send_now;
2234 	}
2235 
2236 	/* TODO : use tsorted_sent_queue ? */
2237 	head = tcp_rtx_queue_head(sk);
2238 	if (!head)
2239 		goto send_now;
2240 	delta = tp->tcp_clock_cache - head->tstamp;
2241 	/* If next ACK is likely to come too late (half srtt), do not defer */
2242 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2243 		goto send_now;
2244 
2245 	/* Ok, it looks like it is advisable to defer.
2246 	 * Three cases are tracked :
2247 	 * 1) We are cwnd-limited
2248 	 * 2) We are rwnd-limited
2249 	 * 3) We are application limited.
2250 	 */
2251 	if (cong_win < send_win) {
2252 		if (cong_win <= skb->len) {
2253 			*is_cwnd_limited = true;
2254 			return true;
2255 		}
2256 	} else {
2257 		if (send_win <= skb->len) {
2258 			*is_rwnd_limited = true;
2259 			return true;
2260 		}
2261 	}
2262 
2263 	/* If this packet won't get more data, do not wait. */
2264 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2265 	    TCP_SKB_CB(skb)->eor)
2266 		goto send_now;
2267 
2268 	return true;
2269 
2270 send_now:
2271 	return false;
2272 }
2273 
2274 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2275 {
2276 	struct inet_connection_sock *icsk = inet_csk(sk);
2277 	struct tcp_sock *tp = tcp_sk(sk);
2278 	struct net *net = sock_net(sk);
2279 	u32 interval;
2280 	s32 delta;
2281 
2282 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2283 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2284 	if (unlikely(delta >= interval * HZ)) {
2285 		int mss = tcp_current_mss(sk);
2286 
2287 		/* Update current search range */
2288 		icsk->icsk_mtup.probe_size = 0;
2289 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2290 			sizeof(struct tcphdr) +
2291 			icsk->icsk_af_ops->net_header_len;
2292 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2293 
2294 		/* Update probe time stamp */
2295 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2296 	}
2297 }
2298 
2299 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2300 {
2301 	struct sk_buff *skb, *next;
2302 
2303 	skb = tcp_send_head(sk);
2304 	tcp_for_write_queue_from_safe(skb, next, sk) {
2305 		if (len <= skb->len)
2306 			break;
2307 
2308 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2309 		    tcp_has_tx_tstamp(skb) ||
2310 		    !skb_pure_zcopy_same(skb, next))
2311 			return false;
2312 
2313 		len -= skb->len;
2314 	}
2315 
2316 	return true;
2317 }
2318 
2319 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2320 			     int probe_size)
2321 {
2322 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2323 	int i, todo, len = 0, nr_frags = 0;
2324 	const struct sk_buff *skb;
2325 
2326 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2327 		return -ENOMEM;
2328 
2329 	skb_queue_walk(&sk->sk_write_queue, skb) {
2330 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2331 
2332 		if (skb_headlen(skb))
2333 			return -EINVAL;
2334 
2335 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2336 			if (len >= probe_size)
2337 				goto commit;
2338 			todo = min_t(int, skb_frag_size(fragfrom),
2339 				     probe_size - len);
2340 			len += todo;
2341 			if (lastfrag &&
2342 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2343 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2344 						      skb_frag_size(lastfrag)) {
2345 				skb_frag_size_add(lastfrag, todo);
2346 				continue;
2347 			}
2348 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2349 				return -E2BIG;
2350 			skb_frag_page_copy(fragto, fragfrom);
2351 			skb_frag_off_copy(fragto, fragfrom);
2352 			skb_frag_size_set(fragto, todo);
2353 			nr_frags++;
2354 			lastfrag = fragto++;
2355 		}
2356 	}
2357 commit:
2358 	WARN_ON_ONCE(len != probe_size);
2359 	for (i = 0; i < nr_frags; i++)
2360 		skb_frag_ref(to, i);
2361 
2362 	skb_shinfo(to)->nr_frags = nr_frags;
2363 	to->truesize += probe_size;
2364 	to->len += probe_size;
2365 	to->data_len += probe_size;
2366 	__skb_header_release(to);
2367 	return 0;
2368 }
2369 
2370 /* Create a new MTU probe if we are ready.
2371  * MTU probe is regularly attempting to increase the path MTU by
2372  * deliberately sending larger packets.  This discovers routing
2373  * changes resulting in larger path MTUs.
2374  *
2375  * Returns 0 if we should wait to probe (no cwnd available),
2376  *         1 if a probe was sent,
2377  *         -1 otherwise
2378  */
2379 static int tcp_mtu_probe(struct sock *sk)
2380 {
2381 	struct inet_connection_sock *icsk = inet_csk(sk);
2382 	struct tcp_sock *tp = tcp_sk(sk);
2383 	struct sk_buff *skb, *nskb, *next;
2384 	struct net *net = sock_net(sk);
2385 	int probe_size;
2386 	int size_needed;
2387 	int copy, len;
2388 	int mss_now;
2389 	int interval;
2390 
2391 	/* Not currently probing/verifying,
2392 	 * not in recovery,
2393 	 * have enough cwnd, and
2394 	 * not SACKing (the variable headers throw things off)
2395 	 */
2396 	if (likely(!icsk->icsk_mtup.enabled ||
2397 		   icsk->icsk_mtup.probe_size ||
2398 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2399 		   tcp_snd_cwnd(tp) < 11 ||
2400 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2401 		return -1;
2402 
2403 	/* Use binary search for probe_size between tcp_mss_base,
2404 	 * and current mss_clamp. if (search_high - search_low)
2405 	 * smaller than a threshold, backoff from probing.
2406 	 */
2407 	mss_now = tcp_current_mss(sk);
2408 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2409 				    icsk->icsk_mtup.search_low) >> 1);
2410 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2411 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2412 	/* When misfortune happens, we are reprobing actively,
2413 	 * and then reprobe timer has expired. We stick with current
2414 	 * probing process by not resetting search range to its orignal.
2415 	 */
2416 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2417 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2418 		/* Check whether enough time has elaplased for
2419 		 * another round of probing.
2420 		 */
2421 		tcp_mtu_check_reprobe(sk);
2422 		return -1;
2423 	}
2424 
2425 	/* Have enough data in the send queue to probe? */
2426 	if (tp->write_seq - tp->snd_nxt < size_needed)
2427 		return -1;
2428 
2429 	if (tp->snd_wnd < size_needed)
2430 		return -1;
2431 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2432 		return 0;
2433 
2434 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2435 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2436 		if (!tcp_packets_in_flight(tp))
2437 			return -1;
2438 		else
2439 			return 0;
2440 	}
2441 
2442 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2443 		return -1;
2444 
2445 	/* We're allowed to probe.  Build it now. */
2446 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2447 	if (!nskb)
2448 		return -1;
2449 
2450 	/* build the payload, and be prepared to abort if this fails. */
2451 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2452 		consume_skb(nskb);
2453 		return -1;
2454 	}
2455 	sk_wmem_queued_add(sk, nskb->truesize);
2456 	sk_mem_charge(sk, nskb->truesize);
2457 
2458 	skb = tcp_send_head(sk);
2459 	skb_copy_decrypted(nskb, skb);
2460 	mptcp_skb_ext_copy(nskb, skb);
2461 
2462 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2463 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2464 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2465 
2466 	tcp_insert_write_queue_before(nskb, skb, sk);
2467 	tcp_highest_sack_replace(sk, skb, nskb);
2468 
2469 	len = 0;
2470 	tcp_for_write_queue_from_safe(skb, next, sk) {
2471 		copy = min_t(int, skb->len, probe_size - len);
2472 
2473 		if (skb->len <= copy) {
2474 			/* We've eaten all the data from this skb.
2475 			 * Throw it away. */
2476 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2477 			/* If this is the last SKB we copy and eor is set
2478 			 * we need to propagate it to the new skb.
2479 			 */
2480 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2481 			tcp_skb_collapse_tstamp(nskb, skb);
2482 			tcp_unlink_write_queue(skb, sk);
2483 			tcp_wmem_free_skb(sk, skb);
2484 		} else {
2485 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2486 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2487 			__pskb_trim_head(skb, copy);
2488 			tcp_set_skb_tso_segs(skb, mss_now);
2489 			TCP_SKB_CB(skb)->seq += copy;
2490 		}
2491 
2492 		len += copy;
2493 
2494 		if (len >= probe_size)
2495 			break;
2496 	}
2497 	tcp_init_tso_segs(nskb, nskb->len);
2498 
2499 	/* We're ready to send.  If this fails, the probe will
2500 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2501 	 */
2502 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2503 		/* Decrement cwnd here because we are sending
2504 		 * effectively two packets. */
2505 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2506 		tcp_event_new_data_sent(sk, nskb);
2507 
2508 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2509 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2510 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2511 
2512 		return 1;
2513 	}
2514 
2515 	return -1;
2516 }
2517 
2518 static bool tcp_pacing_check(struct sock *sk)
2519 {
2520 	struct tcp_sock *tp = tcp_sk(sk);
2521 
2522 	if (!tcp_needs_internal_pacing(sk))
2523 		return false;
2524 
2525 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2526 		return false;
2527 
2528 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2529 		hrtimer_start(&tp->pacing_timer,
2530 			      ns_to_ktime(tp->tcp_wstamp_ns),
2531 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2532 		sock_hold(sk);
2533 	}
2534 	return true;
2535 }
2536 
2537 /* TCP Small Queues :
2538  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2539  * (These limits are doubled for retransmits)
2540  * This allows for :
2541  *  - better RTT estimation and ACK scheduling
2542  *  - faster recovery
2543  *  - high rates
2544  * Alas, some drivers / subsystems require a fair amount
2545  * of queued bytes to ensure line rate.
2546  * One example is wifi aggregation (802.11 AMPDU)
2547  */
2548 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2549 				  unsigned int factor)
2550 {
2551 	unsigned long limit;
2552 
2553 	limit = max_t(unsigned long,
2554 		      2 * skb->truesize,
2555 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2556 	if (sk->sk_pacing_status == SK_PACING_NONE)
2557 		limit = min_t(unsigned long, limit,
2558 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2559 	limit <<= factor;
2560 
2561 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2562 	    tcp_sk(sk)->tcp_tx_delay) {
2563 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2564 				  tcp_sk(sk)->tcp_tx_delay;
2565 
2566 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2567 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2568 		 * USEC_PER_SEC is approximated by 2^20.
2569 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2570 		 */
2571 		extra_bytes >>= (20 - 1);
2572 		limit += extra_bytes;
2573 	}
2574 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2575 		/* Always send skb if rtx queue is empty.
2576 		 * No need to wait for TX completion to call us back,
2577 		 * after softirq/tasklet schedule.
2578 		 * This helps when TX completions are delayed too much.
2579 		 */
2580 		if (tcp_rtx_queue_empty(sk))
2581 			return false;
2582 
2583 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2584 		/* It is possible TX completion already happened
2585 		 * before we set TSQ_THROTTLED, so we must
2586 		 * test again the condition.
2587 		 */
2588 		smp_mb__after_atomic();
2589 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2590 			return true;
2591 	}
2592 	return false;
2593 }
2594 
2595 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2596 {
2597 	const u32 now = tcp_jiffies32;
2598 	enum tcp_chrono old = tp->chrono_type;
2599 
2600 	if (old > TCP_CHRONO_UNSPEC)
2601 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2602 	tp->chrono_start = now;
2603 	tp->chrono_type = new;
2604 }
2605 
2606 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2607 {
2608 	struct tcp_sock *tp = tcp_sk(sk);
2609 
2610 	/* If there are multiple conditions worthy of tracking in a
2611 	 * chronograph then the highest priority enum takes precedence
2612 	 * over the other conditions. So that if something "more interesting"
2613 	 * starts happening, stop the previous chrono and start a new one.
2614 	 */
2615 	if (type > tp->chrono_type)
2616 		tcp_chrono_set(tp, type);
2617 }
2618 
2619 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2620 {
2621 	struct tcp_sock *tp = tcp_sk(sk);
2622 
2623 
2624 	/* There are multiple conditions worthy of tracking in a
2625 	 * chronograph, so that the highest priority enum takes
2626 	 * precedence over the other conditions (see tcp_chrono_start).
2627 	 * If a condition stops, we only stop chrono tracking if
2628 	 * it's the "most interesting" or current chrono we are
2629 	 * tracking and starts busy chrono if we have pending data.
2630 	 */
2631 	if (tcp_rtx_and_write_queues_empty(sk))
2632 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2633 	else if (type == tp->chrono_type)
2634 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2635 }
2636 
2637 /* This routine writes packets to the network.  It advances the
2638  * send_head.  This happens as incoming acks open up the remote
2639  * window for us.
2640  *
2641  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2642  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2643  * account rare use of URG, this is not a big flaw.
2644  *
2645  * Send at most one packet when push_one > 0. Temporarily ignore
2646  * cwnd limit to force at most one packet out when push_one == 2.
2647 
2648  * Returns true, if no segments are in flight and we have queued segments,
2649  * but cannot send anything now because of SWS or another problem.
2650  */
2651 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2652 			   int push_one, gfp_t gfp)
2653 {
2654 	struct tcp_sock *tp = tcp_sk(sk);
2655 	struct sk_buff *skb;
2656 	unsigned int tso_segs, sent_pkts;
2657 	int cwnd_quota;
2658 	int result;
2659 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2660 	u32 max_segs;
2661 
2662 	sent_pkts = 0;
2663 
2664 	tcp_mstamp_refresh(tp);
2665 	if (!push_one) {
2666 		/* Do MTU probing. */
2667 		result = tcp_mtu_probe(sk);
2668 		if (!result) {
2669 			return false;
2670 		} else if (result > 0) {
2671 			sent_pkts = 1;
2672 		}
2673 	}
2674 
2675 	max_segs = tcp_tso_segs(sk, mss_now);
2676 	while ((skb = tcp_send_head(sk))) {
2677 		unsigned int limit;
2678 
2679 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2680 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2681 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2682 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2683 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2684 			tcp_init_tso_segs(skb, mss_now);
2685 			goto repair; /* Skip network transmission */
2686 		}
2687 
2688 		if (tcp_pacing_check(sk))
2689 			break;
2690 
2691 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2692 		BUG_ON(!tso_segs);
2693 
2694 		cwnd_quota = tcp_cwnd_test(tp, skb);
2695 		if (!cwnd_quota) {
2696 			if (push_one == 2)
2697 				/* Force out a loss probe pkt. */
2698 				cwnd_quota = 1;
2699 			else
2700 				break;
2701 		}
2702 
2703 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2704 			is_rwnd_limited = true;
2705 			break;
2706 		}
2707 
2708 		if (tso_segs == 1) {
2709 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2710 						     (tcp_skb_is_last(sk, skb) ?
2711 						      nonagle : TCP_NAGLE_PUSH))))
2712 				break;
2713 		} else {
2714 			if (!push_one &&
2715 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2716 						 &is_rwnd_limited, max_segs))
2717 				break;
2718 		}
2719 
2720 		limit = mss_now;
2721 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2722 			limit = tcp_mss_split_point(sk, skb, mss_now,
2723 						    min_t(unsigned int,
2724 							  cwnd_quota,
2725 							  max_segs),
2726 						    nonagle);
2727 
2728 		if (skb->len > limit &&
2729 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2730 			break;
2731 
2732 		if (tcp_small_queue_check(sk, skb, 0))
2733 			break;
2734 
2735 		/* Argh, we hit an empty skb(), presumably a thread
2736 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2737 		 * We do not want to send a pure-ack packet and have
2738 		 * a strange looking rtx queue with empty packet(s).
2739 		 */
2740 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2741 			break;
2742 
2743 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2744 			break;
2745 
2746 repair:
2747 		/* Advance the send_head.  This one is sent out.
2748 		 * This call will increment packets_out.
2749 		 */
2750 		tcp_event_new_data_sent(sk, skb);
2751 
2752 		tcp_minshall_update(tp, mss_now, skb);
2753 		sent_pkts += tcp_skb_pcount(skb);
2754 
2755 		if (push_one)
2756 			break;
2757 	}
2758 
2759 	if (is_rwnd_limited)
2760 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2761 	else
2762 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2763 
2764 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2765 	if (likely(sent_pkts || is_cwnd_limited))
2766 		tcp_cwnd_validate(sk, is_cwnd_limited);
2767 
2768 	if (likely(sent_pkts)) {
2769 		if (tcp_in_cwnd_reduction(sk))
2770 			tp->prr_out += sent_pkts;
2771 
2772 		/* Send one loss probe per tail loss episode. */
2773 		if (push_one != 2)
2774 			tcp_schedule_loss_probe(sk, false);
2775 		return false;
2776 	}
2777 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2778 }
2779 
2780 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2781 {
2782 	struct inet_connection_sock *icsk = inet_csk(sk);
2783 	struct tcp_sock *tp = tcp_sk(sk);
2784 	u32 timeout, rto_delta_us;
2785 	int early_retrans;
2786 
2787 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2788 	 * finishes.
2789 	 */
2790 	if (rcu_access_pointer(tp->fastopen_rsk))
2791 		return false;
2792 
2793 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2794 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2795 	 * not in loss recovery, that are either limited by cwnd or application.
2796 	 */
2797 	if ((early_retrans != 3 && early_retrans != 4) ||
2798 	    !tp->packets_out || !tcp_is_sack(tp) ||
2799 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2800 	     icsk->icsk_ca_state != TCP_CA_CWR))
2801 		return false;
2802 
2803 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2804 	 * for delayed ack when there's one outstanding packet. If no RTT
2805 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2806 	 */
2807 	if (tp->srtt_us) {
2808 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2809 		if (tp->packets_out == 1)
2810 			timeout += TCP_RTO_MIN;
2811 		else
2812 			timeout += TCP_TIMEOUT_MIN;
2813 	} else {
2814 		timeout = TCP_TIMEOUT_INIT;
2815 	}
2816 
2817 	/* If the RTO formula yields an earlier time, then use that time. */
2818 	rto_delta_us = advancing_rto ?
2819 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2820 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2821 	if (rto_delta_us > 0)
2822 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2823 
2824 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2825 	return true;
2826 }
2827 
2828 /* Thanks to skb fast clones, we can detect if a prior transmit of
2829  * a packet is still in a qdisc or driver queue.
2830  * In this case, there is very little point doing a retransmit !
2831  */
2832 static bool skb_still_in_host_queue(struct sock *sk,
2833 				    const struct sk_buff *skb)
2834 {
2835 	if (unlikely(skb_fclone_busy(sk, skb))) {
2836 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2837 		smp_mb__after_atomic();
2838 		if (skb_fclone_busy(sk, skb)) {
2839 			NET_INC_STATS(sock_net(sk),
2840 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2841 			return true;
2842 		}
2843 	}
2844 	return false;
2845 }
2846 
2847 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2848  * retransmit the last segment.
2849  */
2850 void tcp_send_loss_probe(struct sock *sk)
2851 {
2852 	struct tcp_sock *tp = tcp_sk(sk);
2853 	struct sk_buff *skb;
2854 	int pcount;
2855 	int mss = tcp_current_mss(sk);
2856 
2857 	/* At most one outstanding TLP */
2858 	if (tp->tlp_high_seq)
2859 		goto rearm_timer;
2860 
2861 	tp->tlp_retrans = 0;
2862 	skb = tcp_send_head(sk);
2863 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2864 		pcount = tp->packets_out;
2865 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2866 		if (tp->packets_out > pcount)
2867 			goto probe_sent;
2868 		goto rearm_timer;
2869 	}
2870 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2871 	if (unlikely(!skb)) {
2872 		WARN_ONCE(tp->packets_out,
2873 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2874 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2875 		inet_csk(sk)->icsk_pending = 0;
2876 		return;
2877 	}
2878 
2879 	if (skb_still_in_host_queue(sk, skb))
2880 		goto rearm_timer;
2881 
2882 	pcount = tcp_skb_pcount(skb);
2883 	if (WARN_ON(!pcount))
2884 		goto rearm_timer;
2885 
2886 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2887 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2888 					  (pcount - 1) * mss, mss,
2889 					  GFP_ATOMIC)))
2890 			goto rearm_timer;
2891 		skb = skb_rb_next(skb);
2892 	}
2893 
2894 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2895 		goto rearm_timer;
2896 
2897 	if (__tcp_retransmit_skb(sk, skb, 1))
2898 		goto rearm_timer;
2899 
2900 	tp->tlp_retrans = 1;
2901 
2902 probe_sent:
2903 	/* Record snd_nxt for loss detection. */
2904 	tp->tlp_high_seq = tp->snd_nxt;
2905 
2906 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2907 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2908 	inet_csk(sk)->icsk_pending = 0;
2909 rearm_timer:
2910 	tcp_rearm_rto(sk);
2911 }
2912 
2913 /* Push out any pending frames which were held back due to
2914  * TCP_CORK or attempt at coalescing tiny packets.
2915  * The socket must be locked by the caller.
2916  */
2917 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2918 			       int nonagle)
2919 {
2920 	/* If we are closed, the bytes will have to remain here.
2921 	 * In time closedown will finish, we empty the write queue and
2922 	 * all will be happy.
2923 	 */
2924 	if (unlikely(sk->sk_state == TCP_CLOSE))
2925 		return;
2926 
2927 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2928 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2929 		tcp_check_probe_timer(sk);
2930 }
2931 
2932 /* Send _single_ skb sitting at the send head. This function requires
2933  * true push pending frames to setup probe timer etc.
2934  */
2935 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2936 {
2937 	struct sk_buff *skb = tcp_send_head(sk);
2938 
2939 	BUG_ON(!skb || skb->len < mss_now);
2940 
2941 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2942 }
2943 
2944 /* This function returns the amount that we can raise the
2945  * usable window based on the following constraints
2946  *
2947  * 1. The window can never be shrunk once it is offered (RFC 793)
2948  * 2. We limit memory per socket
2949  *
2950  * RFC 1122:
2951  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2952  *  RECV.NEXT + RCV.WIN fixed until:
2953  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2954  *
2955  * i.e. don't raise the right edge of the window until you can raise
2956  * it at least MSS bytes.
2957  *
2958  * Unfortunately, the recommended algorithm breaks header prediction,
2959  * since header prediction assumes th->window stays fixed.
2960  *
2961  * Strictly speaking, keeping th->window fixed violates the receiver
2962  * side SWS prevention criteria. The problem is that under this rule
2963  * a stream of single byte packets will cause the right side of the
2964  * window to always advance by a single byte.
2965  *
2966  * Of course, if the sender implements sender side SWS prevention
2967  * then this will not be a problem.
2968  *
2969  * BSD seems to make the following compromise:
2970  *
2971  *	If the free space is less than the 1/4 of the maximum
2972  *	space available and the free space is less than 1/2 mss,
2973  *	then set the window to 0.
2974  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2975  *	Otherwise, just prevent the window from shrinking
2976  *	and from being larger than the largest representable value.
2977  *
2978  * This prevents incremental opening of the window in the regime
2979  * where TCP is limited by the speed of the reader side taking
2980  * data out of the TCP receive queue. It does nothing about
2981  * those cases where the window is constrained on the sender side
2982  * because the pipeline is full.
2983  *
2984  * BSD also seems to "accidentally" limit itself to windows that are a
2985  * multiple of MSS, at least until the free space gets quite small.
2986  * This would appear to be a side effect of the mbuf implementation.
2987  * Combining these two algorithms results in the observed behavior
2988  * of having a fixed window size at almost all times.
2989  *
2990  * Below we obtain similar behavior by forcing the offered window to
2991  * a multiple of the mss when it is feasible to do so.
2992  *
2993  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2994  * Regular options like TIMESTAMP are taken into account.
2995  */
2996 u32 __tcp_select_window(struct sock *sk)
2997 {
2998 	struct inet_connection_sock *icsk = inet_csk(sk);
2999 	struct tcp_sock *tp = tcp_sk(sk);
3000 	struct net *net = sock_net(sk);
3001 	/* MSS for the peer's data.  Previous versions used mss_clamp
3002 	 * here.  I don't know if the value based on our guesses
3003 	 * of peer's MSS is better for the performance.  It's more correct
3004 	 * but may be worse for the performance because of rcv_mss
3005 	 * fluctuations.  --SAW  1998/11/1
3006 	 */
3007 	int mss = icsk->icsk_ack.rcv_mss;
3008 	int free_space = tcp_space(sk);
3009 	int allowed_space = tcp_full_space(sk);
3010 	int full_space, window;
3011 
3012 	if (sk_is_mptcp(sk))
3013 		mptcp_space(sk, &free_space, &allowed_space);
3014 
3015 	full_space = min_t(int, tp->window_clamp, allowed_space);
3016 
3017 	if (unlikely(mss > full_space)) {
3018 		mss = full_space;
3019 		if (mss <= 0)
3020 			return 0;
3021 	}
3022 
3023 	/* Only allow window shrink if the sysctl is enabled and we have
3024 	 * a non-zero scaling factor in effect.
3025 	 */
3026 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3027 		goto shrink_window_allowed;
3028 
3029 	/* do not allow window to shrink */
3030 
3031 	if (free_space < (full_space >> 1)) {
3032 		icsk->icsk_ack.quick = 0;
3033 
3034 		if (tcp_under_memory_pressure(sk))
3035 			tcp_adjust_rcv_ssthresh(sk);
3036 
3037 		/* free_space might become our new window, make sure we don't
3038 		 * increase it due to wscale.
3039 		 */
3040 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3041 
3042 		/* if free space is less than mss estimate, or is below 1/16th
3043 		 * of the maximum allowed, try to move to zero-window, else
3044 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3045 		 * new incoming data is dropped due to memory limits.
3046 		 * With large window, mss test triggers way too late in order
3047 		 * to announce zero window in time before rmem limit kicks in.
3048 		 */
3049 		if (free_space < (allowed_space >> 4) || free_space < mss)
3050 			return 0;
3051 	}
3052 
3053 	if (free_space > tp->rcv_ssthresh)
3054 		free_space = tp->rcv_ssthresh;
3055 
3056 	/* Don't do rounding if we are using window scaling, since the
3057 	 * scaled window will not line up with the MSS boundary anyway.
3058 	 */
3059 	if (tp->rx_opt.rcv_wscale) {
3060 		window = free_space;
3061 
3062 		/* Advertise enough space so that it won't get scaled away.
3063 		 * Import case: prevent zero window announcement if
3064 		 * 1<<rcv_wscale > mss.
3065 		 */
3066 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3067 	} else {
3068 		window = tp->rcv_wnd;
3069 		/* Get the largest window that is a nice multiple of mss.
3070 		 * Window clamp already applied above.
3071 		 * If our current window offering is within 1 mss of the
3072 		 * free space we just keep it. This prevents the divide
3073 		 * and multiply from happening most of the time.
3074 		 * We also don't do any window rounding when the free space
3075 		 * is too small.
3076 		 */
3077 		if (window <= free_space - mss || window > free_space)
3078 			window = rounddown(free_space, mss);
3079 		else if (mss == full_space &&
3080 			 free_space > window + (full_space >> 1))
3081 			window = free_space;
3082 	}
3083 
3084 	return window;
3085 
3086 shrink_window_allowed:
3087 	/* new window should always be an exact multiple of scaling factor */
3088 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3089 
3090 	if (free_space < (full_space >> 1)) {
3091 		icsk->icsk_ack.quick = 0;
3092 
3093 		if (tcp_under_memory_pressure(sk))
3094 			tcp_adjust_rcv_ssthresh(sk);
3095 
3096 		/* if free space is too low, return a zero window */
3097 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3098 			free_space < (1 << tp->rx_opt.rcv_wscale))
3099 			return 0;
3100 	}
3101 
3102 	if (free_space > tp->rcv_ssthresh) {
3103 		free_space = tp->rcv_ssthresh;
3104 		/* new window should always be an exact multiple of scaling factor
3105 		 *
3106 		 * For this case, we ALIGN "up" (increase free_space) because
3107 		 * we know free_space is not zero here, it has been reduced from
3108 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3109 		 * (unlike sk_rcvbuf).
3110 		 */
3111 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3112 	}
3113 
3114 	return free_space;
3115 }
3116 
3117 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3118 			     const struct sk_buff *next_skb)
3119 {
3120 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3121 		const struct skb_shared_info *next_shinfo =
3122 			skb_shinfo(next_skb);
3123 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3124 
3125 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3126 		shinfo->tskey = next_shinfo->tskey;
3127 		TCP_SKB_CB(skb)->txstamp_ack |=
3128 			TCP_SKB_CB(next_skb)->txstamp_ack;
3129 	}
3130 }
3131 
3132 /* Collapses two adjacent SKB's during retransmission. */
3133 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3134 {
3135 	struct tcp_sock *tp = tcp_sk(sk);
3136 	struct sk_buff *next_skb = skb_rb_next(skb);
3137 	int next_skb_size;
3138 
3139 	next_skb_size = next_skb->len;
3140 
3141 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3142 
3143 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3144 		return false;
3145 
3146 	tcp_highest_sack_replace(sk, next_skb, skb);
3147 
3148 	/* Update sequence range on original skb. */
3149 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3150 
3151 	/* Merge over control information. This moves PSH/FIN etc. over */
3152 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3153 
3154 	/* All done, get rid of second SKB and account for it so
3155 	 * packet counting does not break.
3156 	 */
3157 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3158 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3159 
3160 	/* changed transmit queue under us so clear hints */
3161 	tcp_clear_retrans_hints_partial(tp);
3162 	if (next_skb == tp->retransmit_skb_hint)
3163 		tp->retransmit_skb_hint = skb;
3164 
3165 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3166 
3167 	tcp_skb_collapse_tstamp(skb, next_skb);
3168 
3169 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3170 	return true;
3171 }
3172 
3173 /* Check if coalescing SKBs is legal. */
3174 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3175 {
3176 	if (tcp_skb_pcount(skb) > 1)
3177 		return false;
3178 	if (skb_cloned(skb))
3179 		return false;
3180 	/* Some heuristics for collapsing over SACK'd could be invented */
3181 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3182 		return false;
3183 
3184 	return true;
3185 }
3186 
3187 /* Collapse packets in the retransmit queue to make to create
3188  * less packets on the wire. This is only done on retransmission.
3189  */
3190 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3191 				     int space)
3192 {
3193 	struct tcp_sock *tp = tcp_sk(sk);
3194 	struct sk_buff *skb = to, *tmp;
3195 	bool first = true;
3196 
3197 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3198 		return;
3199 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3200 		return;
3201 
3202 	skb_rbtree_walk_from_safe(skb, tmp) {
3203 		if (!tcp_can_collapse(sk, skb))
3204 			break;
3205 
3206 		if (!tcp_skb_can_collapse(to, skb))
3207 			break;
3208 
3209 		space -= skb->len;
3210 
3211 		if (first) {
3212 			first = false;
3213 			continue;
3214 		}
3215 
3216 		if (space < 0)
3217 			break;
3218 
3219 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3220 			break;
3221 
3222 		if (!tcp_collapse_retrans(sk, to))
3223 			break;
3224 	}
3225 }
3226 
3227 /* This retransmits one SKB.  Policy decisions and retransmit queue
3228  * state updates are done by the caller.  Returns non-zero if an
3229  * error occurred which prevented the send.
3230  */
3231 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3232 {
3233 	struct inet_connection_sock *icsk = inet_csk(sk);
3234 	struct tcp_sock *tp = tcp_sk(sk);
3235 	unsigned int cur_mss;
3236 	int diff, len, err;
3237 	int avail_wnd;
3238 
3239 	/* Inconclusive MTU probe */
3240 	if (icsk->icsk_mtup.probe_size)
3241 		icsk->icsk_mtup.probe_size = 0;
3242 
3243 	if (skb_still_in_host_queue(sk, skb))
3244 		return -EBUSY;
3245 
3246 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3247 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3248 			WARN_ON_ONCE(1);
3249 			return -EINVAL;
3250 		}
3251 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3252 			return -ENOMEM;
3253 	}
3254 
3255 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3256 		return -EHOSTUNREACH; /* Routing failure or similar. */
3257 
3258 	cur_mss = tcp_current_mss(sk);
3259 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3260 
3261 	/* If receiver has shrunk his window, and skb is out of
3262 	 * new window, do not retransmit it. The exception is the
3263 	 * case, when window is shrunk to zero. In this case
3264 	 * our retransmit of one segment serves as a zero window probe.
3265 	 */
3266 	if (avail_wnd <= 0) {
3267 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3268 			return -EAGAIN;
3269 		avail_wnd = cur_mss;
3270 	}
3271 
3272 	len = cur_mss * segs;
3273 	if (len > avail_wnd) {
3274 		len = rounddown(avail_wnd, cur_mss);
3275 		if (!len)
3276 			len = avail_wnd;
3277 	}
3278 	if (skb->len > len) {
3279 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3280 				 cur_mss, GFP_ATOMIC))
3281 			return -ENOMEM; /* We'll try again later. */
3282 	} else {
3283 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3284 			return -ENOMEM;
3285 
3286 		diff = tcp_skb_pcount(skb);
3287 		tcp_set_skb_tso_segs(skb, cur_mss);
3288 		diff -= tcp_skb_pcount(skb);
3289 		if (diff)
3290 			tcp_adjust_pcount(sk, skb, diff);
3291 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3292 		if (skb->len < avail_wnd)
3293 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3294 	}
3295 
3296 	/* RFC3168, section 6.1.1.1. ECN fallback */
3297 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3298 		tcp_ecn_clear_syn(sk, skb);
3299 
3300 	/* Update global and local TCP statistics. */
3301 	segs = tcp_skb_pcount(skb);
3302 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3303 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3304 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3305 	tp->total_retrans += segs;
3306 	tp->bytes_retrans += skb->len;
3307 
3308 	/* make sure skb->data is aligned on arches that require it
3309 	 * and check if ack-trimming & collapsing extended the headroom
3310 	 * beyond what csum_start can cover.
3311 	 */
3312 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3313 		     skb_headroom(skb) >= 0xFFFF)) {
3314 		struct sk_buff *nskb;
3315 
3316 		tcp_skb_tsorted_save(skb) {
3317 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3318 			if (nskb) {
3319 				nskb->dev = NULL;
3320 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3321 			} else {
3322 				err = -ENOBUFS;
3323 			}
3324 		} tcp_skb_tsorted_restore(skb);
3325 
3326 		if (!err) {
3327 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3328 			tcp_rate_skb_sent(sk, skb);
3329 		}
3330 	} else {
3331 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3332 	}
3333 
3334 	/* To avoid taking spuriously low RTT samples based on a timestamp
3335 	 * for a transmit that never happened, always mark EVER_RETRANS
3336 	 */
3337 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3338 
3339 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3340 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3341 				  TCP_SKB_CB(skb)->seq, segs, err);
3342 
3343 	if (likely(!err)) {
3344 		trace_tcp_retransmit_skb(sk, skb);
3345 	} else if (err != -EBUSY) {
3346 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3347 	}
3348 	return err;
3349 }
3350 
3351 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3352 {
3353 	struct tcp_sock *tp = tcp_sk(sk);
3354 	int err = __tcp_retransmit_skb(sk, skb, segs);
3355 
3356 	if (err == 0) {
3357 #if FASTRETRANS_DEBUG > 0
3358 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3359 			net_dbg_ratelimited("retrans_out leaked\n");
3360 		}
3361 #endif
3362 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3363 		tp->retrans_out += tcp_skb_pcount(skb);
3364 	}
3365 
3366 	/* Save stamp of the first (attempted) retransmit. */
3367 	if (!tp->retrans_stamp)
3368 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3369 
3370 	if (tp->undo_retrans < 0)
3371 		tp->undo_retrans = 0;
3372 	tp->undo_retrans += tcp_skb_pcount(skb);
3373 	return err;
3374 }
3375 
3376 /* This gets called after a retransmit timeout, and the initially
3377  * retransmitted data is acknowledged.  It tries to continue
3378  * resending the rest of the retransmit queue, until either
3379  * we've sent it all or the congestion window limit is reached.
3380  */
3381 void tcp_xmit_retransmit_queue(struct sock *sk)
3382 {
3383 	const struct inet_connection_sock *icsk = inet_csk(sk);
3384 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3385 	struct tcp_sock *tp = tcp_sk(sk);
3386 	bool rearm_timer = false;
3387 	u32 max_segs;
3388 	int mib_idx;
3389 
3390 	if (!tp->packets_out)
3391 		return;
3392 
3393 	rtx_head = tcp_rtx_queue_head(sk);
3394 	skb = tp->retransmit_skb_hint ?: rtx_head;
3395 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3396 	skb_rbtree_walk_from(skb) {
3397 		__u8 sacked;
3398 		int segs;
3399 
3400 		if (tcp_pacing_check(sk))
3401 			break;
3402 
3403 		/* we could do better than to assign each time */
3404 		if (!hole)
3405 			tp->retransmit_skb_hint = skb;
3406 
3407 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3408 		if (segs <= 0)
3409 			break;
3410 		sacked = TCP_SKB_CB(skb)->sacked;
3411 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3412 		 * we need to make sure not sending too bigs TSO packets
3413 		 */
3414 		segs = min_t(int, segs, max_segs);
3415 
3416 		if (tp->retrans_out >= tp->lost_out) {
3417 			break;
3418 		} else if (!(sacked & TCPCB_LOST)) {
3419 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3420 				hole = skb;
3421 			continue;
3422 
3423 		} else {
3424 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3425 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3426 			else
3427 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3428 		}
3429 
3430 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3431 			continue;
3432 
3433 		if (tcp_small_queue_check(sk, skb, 1))
3434 			break;
3435 
3436 		if (tcp_retransmit_skb(sk, skb, segs))
3437 			break;
3438 
3439 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3440 
3441 		if (tcp_in_cwnd_reduction(sk))
3442 			tp->prr_out += tcp_skb_pcount(skb);
3443 
3444 		if (skb == rtx_head &&
3445 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3446 			rearm_timer = true;
3447 
3448 	}
3449 	if (rearm_timer)
3450 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3451 				     inet_csk(sk)->icsk_rto,
3452 				     TCP_RTO_MAX);
3453 }
3454 
3455 /* We allow to exceed memory limits for FIN packets to expedite
3456  * connection tear down and (memory) recovery.
3457  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3458  * or even be forced to close flow without any FIN.
3459  * In general, we want to allow one skb per socket to avoid hangs
3460  * with edge trigger epoll()
3461  */
3462 void sk_forced_mem_schedule(struct sock *sk, int size)
3463 {
3464 	int delta, amt;
3465 
3466 	delta = size - sk->sk_forward_alloc;
3467 	if (delta <= 0)
3468 		return;
3469 	amt = sk_mem_pages(delta);
3470 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3471 	sk_memory_allocated_add(sk, amt);
3472 
3473 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3474 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3475 					gfp_memcg_charge() | __GFP_NOFAIL);
3476 }
3477 
3478 /* Send a FIN. The caller locks the socket for us.
3479  * We should try to send a FIN packet really hard, but eventually give up.
3480  */
3481 void tcp_send_fin(struct sock *sk)
3482 {
3483 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3484 	struct tcp_sock *tp = tcp_sk(sk);
3485 
3486 	/* Optimization, tack on the FIN if we have one skb in write queue and
3487 	 * this skb was not yet sent, or we are under memory pressure.
3488 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3489 	 * as TCP stack thinks it has already been transmitted.
3490 	 */
3491 	tskb = tail;
3492 	if (!tskb && tcp_under_memory_pressure(sk))
3493 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3494 
3495 	if (tskb) {
3496 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3497 		TCP_SKB_CB(tskb)->end_seq++;
3498 		tp->write_seq++;
3499 		if (!tail) {
3500 			/* This means tskb was already sent.
3501 			 * Pretend we included the FIN on previous transmit.
3502 			 * We need to set tp->snd_nxt to the value it would have
3503 			 * if FIN had been sent. This is because retransmit path
3504 			 * does not change tp->snd_nxt.
3505 			 */
3506 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3507 			return;
3508 		}
3509 	} else {
3510 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3511 		if (unlikely(!skb))
3512 			return;
3513 
3514 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3515 		skb_reserve(skb, MAX_TCP_HEADER);
3516 		sk_forced_mem_schedule(sk, skb->truesize);
3517 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3518 		tcp_init_nondata_skb(skb, tp->write_seq,
3519 				     TCPHDR_ACK | TCPHDR_FIN);
3520 		tcp_queue_skb(sk, skb);
3521 	}
3522 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3523 }
3524 
3525 /* We get here when a process closes a file descriptor (either due to
3526  * an explicit close() or as a byproduct of exit()'ing) and there
3527  * was unread data in the receive queue.  This behavior is recommended
3528  * by RFC 2525, section 2.17.  -DaveM
3529  */
3530 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3531 {
3532 	struct sk_buff *skb;
3533 
3534 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3535 
3536 	/* NOTE: No TCP options attached and we never retransmit this. */
3537 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3538 	if (!skb) {
3539 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3540 		return;
3541 	}
3542 
3543 	/* Reserve space for headers and prepare control bits. */
3544 	skb_reserve(skb, MAX_TCP_HEADER);
3545 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3546 			     TCPHDR_ACK | TCPHDR_RST);
3547 	tcp_mstamp_refresh(tcp_sk(sk));
3548 	/* Send it off. */
3549 	if (tcp_transmit_skb(sk, skb, 0, priority))
3550 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3551 
3552 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3553 	 * skb here is different to the troublesome skb, so use NULL
3554 	 */
3555 	trace_tcp_send_reset(sk, NULL);
3556 }
3557 
3558 /* Send a crossed SYN-ACK during socket establishment.
3559  * WARNING: This routine must only be called when we have already sent
3560  * a SYN packet that crossed the incoming SYN that caused this routine
3561  * to get called. If this assumption fails then the initial rcv_wnd
3562  * and rcv_wscale values will not be correct.
3563  */
3564 int tcp_send_synack(struct sock *sk)
3565 {
3566 	struct sk_buff *skb;
3567 
3568 	skb = tcp_rtx_queue_head(sk);
3569 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3570 		pr_err("%s: wrong queue state\n", __func__);
3571 		return -EFAULT;
3572 	}
3573 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3574 		if (skb_cloned(skb)) {
3575 			struct sk_buff *nskb;
3576 
3577 			tcp_skb_tsorted_save(skb) {
3578 				nskb = skb_copy(skb, GFP_ATOMIC);
3579 			} tcp_skb_tsorted_restore(skb);
3580 			if (!nskb)
3581 				return -ENOMEM;
3582 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3583 			tcp_highest_sack_replace(sk, skb, nskb);
3584 			tcp_rtx_queue_unlink_and_free(skb, sk);
3585 			__skb_header_release(nskb);
3586 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3587 			sk_wmem_queued_add(sk, nskb->truesize);
3588 			sk_mem_charge(sk, nskb->truesize);
3589 			skb = nskb;
3590 		}
3591 
3592 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3593 		tcp_ecn_send_synack(sk, skb);
3594 	}
3595 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3596 }
3597 
3598 /**
3599  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3600  * @sk: listener socket
3601  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3602  *       should not use it again.
3603  * @req: request_sock pointer
3604  * @foc: cookie for tcp fast open
3605  * @synack_type: Type of synack to prepare
3606  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3607  */
3608 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3609 				struct request_sock *req,
3610 				struct tcp_fastopen_cookie *foc,
3611 				enum tcp_synack_type synack_type,
3612 				struct sk_buff *syn_skb)
3613 {
3614 	struct inet_request_sock *ireq = inet_rsk(req);
3615 	const struct tcp_sock *tp = tcp_sk(sk);
3616 	struct tcp_md5sig_key *md5 = NULL;
3617 	struct tcp_out_options opts;
3618 	struct sk_buff *skb;
3619 	int tcp_header_size;
3620 	struct tcphdr *th;
3621 	int mss;
3622 	u64 now;
3623 
3624 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3625 	if (unlikely(!skb)) {
3626 		dst_release(dst);
3627 		return NULL;
3628 	}
3629 	/* Reserve space for headers. */
3630 	skb_reserve(skb, MAX_TCP_HEADER);
3631 
3632 	switch (synack_type) {
3633 	case TCP_SYNACK_NORMAL:
3634 		skb_set_owner_w(skb, req_to_sk(req));
3635 		break;
3636 	case TCP_SYNACK_COOKIE:
3637 		/* Under synflood, we do not attach skb to a socket,
3638 		 * to avoid false sharing.
3639 		 */
3640 		break;
3641 	case TCP_SYNACK_FASTOPEN:
3642 		/* sk is a const pointer, because we want to express multiple
3643 		 * cpu might call us concurrently.
3644 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3645 		 */
3646 		skb_set_owner_w(skb, (struct sock *)sk);
3647 		break;
3648 	}
3649 	skb_dst_set(skb, dst);
3650 
3651 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3652 
3653 	memset(&opts, 0, sizeof(opts));
3654 	now = tcp_clock_ns();
3655 #ifdef CONFIG_SYN_COOKIES
3656 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3657 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3658 				      true);
3659 	else
3660 #endif
3661 	{
3662 		skb_set_delivery_time(skb, now, true);
3663 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3664 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3665 	}
3666 
3667 #ifdef CONFIG_TCP_MD5SIG
3668 	rcu_read_lock();
3669 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3670 #endif
3671 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3672 	/* bpf program will be interested in the tcp_flags */
3673 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3674 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3675 					     foc, synack_type,
3676 					     syn_skb) + sizeof(*th);
3677 
3678 	skb_push(skb, tcp_header_size);
3679 	skb_reset_transport_header(skb);
3680 
3681 	th = (struct tcphdr *)skb->data;
3682 	memset(th, 0, sizeof(struct tcphdr));
3683 	th->syn = 1;
3684 	th->ack = 1;
3685 	tcp_ecn_make_synack(req, th);
3686 	th->source = htons(ireq->ir_num);
3687 	th->dest = ireq->ir_rmt_port;
3688 	skb->mark = ireq->ir_mark;
3689 	skb->ip_summed = CHECKSUM_PARTIAL;
3690 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3691 	/* XXX data is queued and acked as is. No buffer/window check */
3692 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3693 
3694 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3695 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3696 	tcp_options_write(th, NULL, &opts);
3697 	th->doff = (tcp_header_size >> 2);
3698 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3699 
3700 #ifdef CONFIG_TCP_MD5SIG
3701 	/* Okay, we have all we need - do the md5 hash if needed */
3702 	if (md5)
3703 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3704 					       md5, req_to_sk(req), skb);
3705 	rcu_read_unlock();
3706 #endif
3707 
3708 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3709 				synack_type, &opts);
3710 
3711 	skb_set_delivery_time(skb, now, true);
3712 	tcp_add_tx_delay(skb, tp);
3713 
3714 	return skb;
3715 }
3716 EXPORT_SYMBOL(tcp_make_synack);
3717 
3718 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3719 {
3720 	struct inet_connection_sock *icsk = inet_csk(sk);
3721 	const struct tcp_congestion_ops *ca;
3722 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3723 
3724 	if (ca_key == TCP_CA_UNSPEC)
3725 		return;
3726 
3727 	rcu_read_lock();
3728 	ca = tcp_ca_find_key(ca_key);
3729 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3730 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3731 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3732 		icsk->icsk_ca_ops = ca;
3733 	}
3734 	rcu_read_unlock();
3735 }
3736 
3737 /* Do all connect socket setups that can be done AF independent. */
3738 static void tcp_connect_init(struct sock *sk)
3739 {
3740 	const struct dst_entry *dst = __sk_dst_get(sk);
3741 	struct tcp_sock *tp = tcp_sk(sk);
3742 	__u8 rcv_wscale;
3743 	u32 rcv_wnd;
3744 
3745 	/* We'll fix this up when we get a response from the other end.
3746 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3747 	 */
3748 	tp->tcp_header_len = sizeof(struct tcphdr);
3749 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3750 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3751 
3752 	/* If user gave his TCP_MAXSEG, record it to clamp */
3753 	if (tp->rx_opt.user_mss)
3754 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3755 	tp->max_window = 0;
3756 	tcp_mtup_init(sk);
3757 	tcp_sync_mss(sk, dst_mtu(dst));
3758 
3759 	tcp_ca_dst_init(sk, dst);
3760 
3761 	if (!tp->window_clamp)
3762 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3763 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3764 
3765 	tcp_initialize_rcv_mss(sk);
3766 
3767 	/* limit the window selection if the user enforce a smaller rx buffer */
3768 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3769 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3770 		tp->window_clamp = tcp_full_space(sk);
3771 
3772 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3773 	if (rcv_wnd == 0)
3774 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3775 
3776 	tcp_select_initial_window(sk, tcp_full_space(sk),
3777 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3778 				  &tp->rcv_wnd,
3779 				  &tp->window_clamp,
3780 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3781 				  &rcv_wscale,
3782 				  rcv_wnd);
3783 
3784 	tp->rx_opt.rcv_wscale = rcv_wscale;
3785 	tp->rcv_ssthresh = tp->rcv_wnd;
3786 
3787 	WRITE_ONCE(sk->sk_err, 0);
3788 	sock_reset_flag(sk, SOCK_DONE);
3789 	tp->snd_wnd = 0;
3790 	tcp_init_wl(tp, 0);
3791 	tcp_write_queue_purge(sk);
3792 	tp->snd_una = tp->write_seq;
3793 	tp->snd_sml = tp->write_seq;
3794 	tp->snd_up = tp->write_seq;
3795 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3796 
3797 	if (likely(!tp->repair))
3798 		tp->rcv_nxt = 0;
3799 	else
3800 		tp->rcv_tstamp = tcp_jiffies32;
3801 	tp->rcv_wup = tp->rcv_nxt;
3802 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3803 
3804 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3805 	inet_csk(sk)->icsk_retransmits = 0;
3806 	tcp_clear_retrans(tp);
3807 }
3808 
3809 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3810 {
3811 	struct tcp_sock *tp = tcp_sk(sk);
3812 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3813 
3814 	tcb->end_seq += skb->len;
3815 	__skb_header_release(skb);
3816 	sk_wmem_queued_add(sk, skb->truesize);
3817 	sk_mem_charge(sk, skb->truesize);
3818 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3819 	tp->packets_out += tcp_skb_pcount(skb);
3820 }
3821 
3822 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3823  * queue a data-only packet after the regular SYN, such that regular SYNs
3824  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3825  * only the SYN sequence, the data are retransmitted in the first ACK.
3826  * If cookie is not cached or other error occurs, falls back to send a
3827  * regular SYN with Fast Open cookie request option.
3828  */
3829 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3830 {
3831 	struct inet_connection_sock *icsk = inet_csk(sk);
3832 	struct tcp_sock *tp = tcp_sk(sk);
3833 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3834 	struct page_frag *pfrag = sk_page_frag(sk);
3835 	struct sk_buff *syn_data;
3836 	int space, err = 0;
3837 
3838 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3839 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3840 		goto fallback;
3841 
3842 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3843 	 * user-MSS. Reserve maximum option space for middleboxes that add
3844 	 * private TCP options. The cost is reduced data space in SYN :(
3845 	 */
3846 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3847 	/* Sync mss_cache after updating the mss_clamp */
3848 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3849 
3850 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3851 		MAX_TCP_OPTION_SPACE;
3852 
3853 	space = min_t(size_t, space, fo->size);
3854 
3855 	if (space &&
3856 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3857 				  pfrag, sk->sk_allocation))
3858 		goto fallback;
3859 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3860 	if (!syn_data)
3861 		goto fallback;
3862 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3863 	if (space) {
3864 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3865 		space = tcp_wmem_schedule(sk, space);
3866 	}
3867 	if (space) {
3868 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3869 					    space, &fo->data->msg_iter);
3870 		if (unlikely(!space)) {
3871 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3872 			kfree_skb(syn_data);
3873 			goto fallback;
3874 		}
3875 		skb_fill_page_desc(syn_data, 0, pfrag->page,
3876 				   pfrag->offset, space);
3877 		page_ref_inc(pfrag->page);
3878 		pfrag->offset += space;
3879 		skb_len_add(syn_data, space);
3880 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3881 	}
3882 	/* No more data pending in inet_wait_for_connect() */
3883 	if (space == fo->size)
3884 		fo->data = NULL;
3885 	fo->copied = space;
3886 
3887 	tcp_connect_queue_skb(sk, syn_data);
3888 	if (syn_data->len)
3889 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3890 
3891 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3892 
3893 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3894 
3895 	/* Now full SYN+DATA was cloned and sent (or not),
3896 	 * remove the SYN from the original skb (syn_data)
3897 	 * we keep in write queue in case of a retransmit, as we
3898 	 * also have the SYN packet (with no data) in the same queue.
3899 	 */
3900 	TCP_SKB_CB(syn_data)->seq++;
3901 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3902 	if (!err) {
3903 		tp->syn_data = (fo->copied > 0);
3904 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3905 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3906 		goto done;
3907 	}
3908 
3909 	/* data was not sent, put it in write_queue */
3910 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3911 	tp->packets_out -= tcp_skb_pcount(syn_data);
3912 
3913 fallback:
3914 	/* Send a regular SYN with Fast Open cookie request option */
3915 	if (fo->cookie.len > 0)
3916 		fo->cookie.len = 0;
3917 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3918 	if (err)
3919 		tp->syn_fastopen = 0;
3920 done:
3921 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3922 	return err;
3923 }
3924 
3925 /* Build a SYN and send it off. */
3926 int tcp_connect(struct sock *sk)
3927 {
3928 	struct tcp_sock *tp = tcp_sk(sk);
3929 	struct sk_buff *buff;
3930 	int err;
3931 
3932 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3933 
3934 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3935 		return -EHOSTUNREACH; /* Routing failure or similar. */
3936 
3937 	tcp_connect_init(sk);
3938 
3939 	if (unlikely(tp->repair)) {
3940 		tcp_finish_connect(sk, NULL);
3941 		return 0;
3942 	}
3943 
3944 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
3945 	if (unlikely(!buff))
3946 		return -ENOBUFS;
3947 
3948 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3949 	tcp_mstamp_refresh(tp);
3950 	tp->retrans_stamp = tcp_time_stamp(tp);
3951 	tcp_connect_queue_skb(sk, buff);
3952 	tcp_ecn_send_syn(sk, buff);
3953 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3954 
3955 	/* Send off SYN; include data in Fast Open. */
3956 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3957 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3958 	if (err == -ECONNREFUSED)
3959 		return err;
3960 
3961 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3962 	 * in order to make this packet get counted in tcpOutSegs.
3963 	 */
3964 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3965 	tp->pushed_seq = tp->write_seq;
3966 	buff = tcp_send_head(sk);
3967 	if (unlikely(buff)) {
3968 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3969 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3970 	}
3971 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3972 
3973 	/* Timer for repeating the SYN until an answer. */
3974 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3975 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3976 	return 0;
3977 }
3978 EXPORT_SYMBOL(tcp_connect);
3979 
3980 u32 tcp_delack_max(const struct sock *sk)
3981 {
3982 	const struct dst_entry *dst = __sk_dst_get(sk);
3983 	u32 delack_max = inet_csk(sk)->icsk_delack_max;
3984 
3985 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
3986 		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
3987 		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
3988 
3989 		delack_max = min_t(u32, delack_max, delack_from_rto_min);
3990 	}
3991 	return delack_max;
3992 }
3993 
3994 /* Send out a delayed ack, the caller does the policy checking
3995  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3996  * for details.
3997  */
3998 void tcp_send_delayed_ack(struct sock *sk)
3999 {
4000 	struct inet_connection_sock *icsk = inet_csk(sk);
4001 	int ato = icsk->icsk_ack.ato;
4002 	unsigned long timeout;
4003 
4004 	if (ato > TCP_DELACK_MIN) {
4005 		const struct tcp_sock *tp = tcp_sk(sk);
4006 		int max_ato = HZ / 2;
4007 
4008 		if (inet_csk_in_pingpong_mode(sk) ||
4009 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4010 			max_ato = TCP_DELACK_MAX;
4011 
4012 		/* Slow path, intersegment interval is "high". */
4013 
4014 		/* If some rtt estimate is known, use it to bound delayed ack.
4015 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4016 		 * directly.
4017 		 */
4018 		if (tp->srtt_us) {
4019 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4020 					TCP_DELACK_MIN);
4021 
4022 			if (rtt < max_ato)
4023 				max_ato = rtt;
4024 		}
4025 
4026 		ato = min(ato, max_ato);
4027 	}
4028 
4029 	ato = min_t(u32, ato, tcp_delack_max(sk));
4030 
4031 	/* Stay within the limit we were given */
4032 	timeout = jiffies + ato;
4033 
4034 	/* Use new timeout only if there wasn't a older one earlier. */
4035 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4036 		/* If delack timer is about to expire, send ACK now. */
4037 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4038 			tcp_send_ack(sk);
4039 			return;
4040 		}
4041 
4042 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4043 			timeout = icsk->icsk_ack.timeout;
4044 	}
4045 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4046 	icsk->icsk_ack.timeout = timeout;
4047 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4048 }
4049 
4050 /* This routine sends an ack and also updates the window. */
4051 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4052 {
4053 	struct sk_buff *buff;
4054 
4055 	/* If we have been reset, we may not send again. */
4056 	if (sk->sk_state == TCP_CLOSE)
4057 		return;
4058 
4059 	/* We are not putting this on the write queue, so
4060 	 * tcp_transmit_skb() will set the ownership to this
4061 	 * sock.
4062 	 */
4063 	buff = alloc_skb(MAX_TCP_HEADER,
4064 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4065 	if (unlikely(!buff)) {
4066 		struct inet_connection_sock *icsk = inet_csk(sk);
4067 		unsigned long delay;
4068 
4069 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4070 		if (delay < TCP_RTO_MAX)
4071 			icsk->icsk_ack.retry++;
4072 		inet_csk_schedule_ack(sk);
4073 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4074 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4075 		return;
4076 	}
4077 
4078 	/* Reserve space for headers and prepare control bits. */
4079 	skb_reserve(buff, MAX_TCP_HEADER);
4080 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4081 
4082 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4083 	 * too much.
4084 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4085 	 */
4086 	skb_set_tcp_pure_ack(buff);
4087 
4088 	/* Send it off, this clears delayed acks for us. */
4089 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4090 }
4091 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4092 
4093 void tcp_send_ack(struct sock *sk)
4094 {
4095 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4096 }
4097 
4098 /* This routine sends a packet with an out of date sequence
4099  * number. It assumes the other end will try to ack it.
4100  *
4101  * Question: what should we make while urgent mode?
4102  * 4.4BSD forces sending single byte of data. We cannot send
4103  * out of window data, because we have SND.NXT==SND.MAX...
4104  *
4105  * Current solution: to send TWO zero-length segments in urgent mode:
4106  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4107  * out-of-date with SND.UNA-1 to probe window.
4108  */
4109 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4110 {
4111 	struct tcp_sock *tp = tcp_sk(sk);
4112 	struct sk_buff *skb;
4113 
4114 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4115 	skb = alloc_skb(MAX_TCP_HEADER,
4116 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4117 	if (!skb)
4118 		return -1;
4119 
4120 	/* Reserve space for headers and set control bits. */
4121 	skb_reserve(skb, MAX_TCP_HEADER);
4122 	/* Use a previous sequence.  This should cause the other
4123 	 * end to send an ack.  Don't queue or clone SKB, just
4124 	 * send it.
4125 	 */
4126 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4127 	NET_INC_STATS(sock_net(sk), mib);
4128 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4129 }
4130 
4131 /* Called from setsockopt( ... TCP_REPAIR ) */
4132 void tcp_send_window_probe(struct sock *sk)
4133 {
4134 	if (sk->sk_state == TCP_ESTABLISHED) {
4135 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4136 		tcp_mstamp_refresh(tcp_sk(sk));
4137 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4138 	}
4139 }
4140 
4141 /* Initiate keepalive or window probe from timer. */
4142 int tcp_write_wakeup(struct sock *sk, int mib)
4143 {
4144 	struct tcp_sock *tp = tcp_sk(sk);
4145 	struct sk_buff *skb;
4146 
4147 	if (sk->sk_state == TCP_CLOSE)
4148 		return -1;
4149 
4150 	skb = tcp_send_head(sk);
4151 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4152 		int err;
4153 		unsigned int mss = tcp_current_mss(sk);
4154 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4155 
4156 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4157 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4158 
4159 		/* We are probing the opening of a window
4160 		 * but the window size is != 0
4161 		 * must have been a result SWS avoidance ( sender )
4162 		 */
4163 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4164 		    skb->len > mss) {
4165 			seg_size = min(seg_size, mss);
4166 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4167 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4168 					 skb, seg_size, mss, GFP_ATOMIC))
4169 				return -1;
4170 		} else if (!tcp_skb_pcount(skb))
4171 			tcp_set_skb_tso_segs(skb, mss);
4172 
4173 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4174 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4175 		if (!err)
4176 			tcp_event_new_data_sent(sk, skb);
4177 		return err;
4178 	} else {
4179 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4180 			tcp_xmit_probe_skb(sk, 1, mib);
4181 		return tcp_xmit_probe_skb(sk, 0, mib);
4182 	}
4183 }
4184 
4185 /* A window probe timeout has occurred.  If window is not closed send
4186  * a partial packet else a zero probe.
4187  */
4188 void tcp_send_probe0(struct sock *sk)
4189 {
4190 	struct inet_connection_sock *icsk = inet_csk(sk);
4191 	struct tcp_sock *tp = tcp_sk(sk);
4192 	struct net *net = sock_net(sk);
4193 	unsigned long timeout;
4194 	int err;
4195 
4196 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4197 
4198 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4199 		/* Cancel probe timer, if it is not required. */
4200 		icsk->icsk_probes_out = 0;
4201 		icsk->icsk_backoff = 0;
4202 		icsk->icsk_probes_tstamp = 0;
4203 		return;
4204 	}
4205 
4206 	icsk->icsk_probes_out++;
4207 	if (err <= 0) {
4208 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4209 			icsk->icsk_backoff++;
4210 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4211 	} else {
4212 		/* If packet was not sent due to local congestion,
4213 		 * Let senders fight for local resources conservatively.
4214 		 */
4215 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4216 	}
4217 
4218 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4219 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4220 }
4221 
4222 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4223 {
4224 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4225 	struct flowi fl;
4226 	int res;
4227 
4228 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4229 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4230 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4231 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4232 				  NULL);
4233 	if (!res) {
4234 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4235 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4236 		if (unlikely(tcp_passive_fastopen(sk))) {
4237 			/* sk has const attribute because listeners are lockless.
4238 			 * However in this case, we are dealing with a passive fastopen
4239 			 * socket thus we can change total_retrans value.
4240 			 */
4241 			tcp_sk_rw(sk)->total_retrans++;
4242 		}
4243 		trace_tcp_retransmit_synack(sk, req);
4244 	}
4245 	return res;
4246 }
4247 EXPORT_SYMBOL(tcp_rtx_synack);
4248