xref: /linux/net/ipv4/tcp_output.c (revision 00c94ca2b99e6610e483f92e531b319eeaed94aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/tcp_ecn.h>
42 #include <net/mptcp.h>
43 #include <net/proto_memory.h>
44 
45 #include <linux/compiler.h>
46 #include <linux/gfp.h>
47 #include <linux/module.h>
48 #include <linux/static_key.h>
49 #include <linux/skbuff_ref.h>
50 
51 #include <trace/events/tcp.h>
52 
53 /* Refresh clocks of a TCP socket,
54  * ensuring monotically increasing values.
55  */
56 void tcp_mstamp_refresh(struct tcp_sock *tp)
57 {
58 	u64 val = tcp_clock_ns();
59 
60 	tp->tcp_clock_cache = val;
61 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
62 }
63 
64 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
65 			   int push_one, gfp_t gfp);
66 
67 /* Account for new data that has been sent to the network. */
68 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
69 {
70 	struct inet_connection_sock *icsk = inet_csk(sk);
71 	struct tcp_sock *tp = tcp_sk(sk);
72 	unsigned int prior_packets = tp->packets_out;
73 
74 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
75 
76 	__skb_unlink(skb, &sk->sk_write_queue);
77 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
78 
79 	if (tp->highest_sack == NULL)
80 		tp->highest_sack = skb;
81 
82 	tp->packets_out += tcp_skb_pcount(skb);
83 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
84 		tcp_rearm_rto(sk);
85 
86 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
87 		      tcp_skb_pcount(skb));
88 	tcp_check_space(sk);
89 }
90 
91 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
92  * window scaling factor due to loss of precision.
93  * If window has been shrunk, what should we make? It is not clear at all.
94  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
95  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
96  * invalid. OK, let's make this for now:
97  */
98 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
99 {
100 	const struct tcp_sock *tp = tcp_sk(sk);
101 
102 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
103 	    (tp->rx_opt.wscale_ok &&
104 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
105 		return tp->snd_nxt;
106 	else
107 		return tcp_wnd_end(tp);
108 }
109 
110 /* Calculate mss to advertise in SYN segment.
111  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112  *
113  * 1. It is independent of path mtu.
114  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116  *    attached devices, because some buggy hosts are confused by
117  *    large MSS.
118  * 4. We do not make 3, we advertise MSS, calculated from first
119  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
120  *    This may be overridden via information stored in routing table.
121  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122  *    probably even Jumbo".
123  */
124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 	struct tcp_sock *tp = tcp_sk(sk);
127 	const struct dst_entry *dst = __sk_dst_get(sk);
128 	int mss = tp->advmss;
129 
130 	if (dst) {
131 		unsigned int metric = dst_metric_advmss(dst);
132 
133 		if (metric < mss) {
134 			mss = metric;
135 			tp->advmss = mss;
136 		}
137 	}
138 
139 	return (__u16)mss;
140 }
141 
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143  * This is the first part of cwnd validation mechanism.
144  */
145 void tcp_cwnd_restart(struct sock *sk, s32 delta)
146 {
147 	struct tcp_sock *tp = tcp_sk(sk);
148 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
149 	u32 cwnd = tcp_snd_cwnd(tp);
150 
151 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152 
153 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 	restart_cwnd = min(restart_cwnd, cwnd);
155 
156 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 		cwnd >>= 1;
158 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
159 	tp->snd_cwnd_stamp = tcp_jiffies32;
160 	tp->snd_cwnd_used = 0;
161 }
162 
163 /* Congestion state accounting after a packet has been sent. */
164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 				struct sock *sk)
166 {
167 	struct inet_connection_sock *icsk = inet_csk(sk);
168 	const u32 now = tcp_jiffies32;
169 
170 	if (tcp_packets_in_flight(tp) == 0)
171 		tcp_ca_event(sk, CA_EVENT_TX_START);
172 
173 	tp->lsndtime = now;
174 
175 	/* If it is a reply for ato after last received
176 	 * packet, increase pingpong count.
177 	 */
178 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
179 		inet_csk_inc_pingpong_cnt(sk);
180 }
181 
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
184 {
185 	struct tcp_sock *tp = tcp_sk(sk);
186 
187 	if (unlikely(tp->compressed_ack)) {
188 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
189 			      tp->compressed_ack);
190 		tp->compressed_ack = 0;
191 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
192 			__sock_put(sk);
193 	}
194 
195 	if (unlikely(rcv_nxt != tp->rcv_nxt))
196 		return;  /* Special ACK sent by DCTCP to reflect ECN */
197 	tcp_dec_quickack_mode(sk);
198 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
199 }
200 
201 /* Determine a window scaling and initial window to offer.
202  * Based on the assumption that the given amount of space
203  * will be offered. Store the results in the tp structure.
204  * NOTE: for smooth operation initial space offering should
205  * be a multiple of mss if possible. We assume here that mss >= 1.
206  * This MUST be enforced by all callers.
207  */
208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209 			       __u32 *rcv_wnd, __u32 *__window_clamp,
210 			       int wscale_ok, __u8 *rcv_wscale,
211 			       __u32 init_rcv_wnd)
212 {
213 	unsigned int space = (__space < 0 ? 0 : __space);
214 	u32 window_clamp = READ_ONCE(*__window_clamp);
215 
216 	/* If no clamp set the clamp to the max possible scaled window */
217 	if (window_clamp == 0)
218 		window_clamp = (U16_MAX << TCP_MAX_WSCALE);
219 	space = min(window_clamp, space);
220 
221 	/* Quantize space offering to a multiple of mss if possible. */
222 	if (space > mss)
223 		space = rounddown(space, mss);
224 
225 	/* NOTE: offering an initial window larger than 32767
226 	 * will break some buggy TCP stacks. If the admin tells us
227 	 * it is likely we could be speaking with such a buggy stack
228 	 * we will truncate our initial window offering to 32K-1
229 	 * unless the remote has sent us a window scaling option,
230 	 * which we interpret as a sign the remote TCP is not
231 	 * misinterpreting the window field as a signed quantity.
232 	 */
233 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
234 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
235 	else
236 		(*rcv_wnd) = space;
237 
238 	if (init_rcv_wnd)
239 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
240 
241 	*rcv_wscale = 0;
242 	if (wscale_ok) {
243 		/* Set window scaling on max possible window */
244 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
245 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
246 		space = min_t(u32, space, window_clamp);
247 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
248 				      0, TCP_MAX_WSCALE);
249 	}
250 	/* Set the clamp no higher than max representable value */
251 	WRITE_ONCE(*__window_clamp,
252 		   min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
253 }
254 EXPORT_IPV6_MOD(tcp_select_initial_window);
255 
256 /* Chose a new window to advertise, update state in tcp_sock for the
257  * socket, and return result with RFC1323 scaling applied.  The return
258  * value can be stuffed directly into th->window for an outgoing
259  * frame.
260  */
261 static u16 tcp_select_window(struct sock *sk)
262 {
263 	struct tcp_sock *tp = tcp_sk(sk);
264 	struct net *net = sock_net(sk);
265 	u32 old_win = tp->rcv_wnd;
266 	u32 cur_win, new_win;
267 
268 	/* Make the window 0 if we failed to queue the data because we
269 	 * are out of memory.
270 	 */
271 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) {
272 		tp->pred_flags = 0;
273 		tp->rcv_wnd = 0;
274 		tp->rcv_wup = tp->rcv_nxt;
275 		return 0;
276 	}
277 
278 	cur_win = tcp_receive_window(tp);
279 	new_win = __tcp_select_window(sk);
280 	if (new_win < cur_win) {
281 		/* Danger Will Robinson!
282 		 * Don't update rcv_wup/rcv_wnd here or else
283 		 * we will not be able to advertise a zero
284 		 * window in time.  --DaveM
285 		 *
286 		 * Relax Will Robinson.
287 		 */
288 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
289 			/* Never shrink the offered window */
290 			if (new_win == 0)
291 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
292 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
293 		}
294 	}
295 
296 	tp->rcv_wnd = new_win;
297 	tp->rcv_wup = tp->rcv_nxt;
298 
299 	/* Make sure we do not exceed the maximum possible
300 	 * scaled window.
301 	 */
302 	if (!tp->rx_opt.rcv_wscale &&
303 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
304 		new_win = min(new_win, MAX_TCP_WINDOW);
305 	else
306 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
307 
308 	/* RFC1323 scaling applied */
309 	new_win >>= tp->rx_opt.rcv_wscale;
310 
311 	/* If we advertise zero window, disable fast path. */
312 	if (new_win == 0) {
313 		tp->pred_flags = 0;
314 		if (old_win)
315 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
316 	} else if (old_win == 0) {
317 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
318 	}
319 
320 	return new_win;
321 }
322 
323 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
324  * be sent.
325  */
326 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
327 			 struct tcphdr *th, int tcp_header_len)
328 {
329 	struct tcp_sock *tp = tcp_sk(sk);
330 
331 	if (!tcp_ecn_mode_any(tp))
332 		return;
333 
334 	if (tcp_ecn_mode_accecn(tp)) {
335 		if (!tcp_accecn_ace_fail_recv(tp))
336 			INET_ECN_xmit(sk);
337 		tcp_accecn_set_ace(tp, skb, th);
338 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ACCECN;
339 	} else {
340 		/* Not-retransmitted data segment: set ECT and inject CWR. */
341 		if (skb->len != tcp_header_len &&
342 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
343 			INET_ECN_xmit(sk);
344 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
345 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
346 				th->cwr = 1;
347 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
348 			}
349 		} else if (!tcp_ca_needs_ecn(sk)) {
350 			/* ACK or retransmitted segment: clear ECT|CE */
351 			INET_ECN_dontxmit(sk);
352 		}
353 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
354 			th->ece = 1;
355 	}
356 }
357 
358 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
359  * auto increment end seqno.
360  */
361 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u16 flags)
362 {
363 	skb->ip_summed = CHECKSUM_PARTIAL;
364 
365 	TCP_SKB_CB(skb)->tcp_flags = flags;
366 
367 	tcp_skb_pcount_set(skb, 1);
368 
369 	TCP_SKB_CB(skb)->seq = seq;
370 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
371 		seq++;
372 	TCP_SKB_CB(skb)->end_seq = seq;
373 }
374 
375 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
376 {
377 	return tp->snd_una != tp->snd_up;
378 }
379 
380 #define OPTION_SACK_ADVERTISE	BIT(0)
381 #define OPTION_TS		BIT(1)
382 #define OPTION_MD5		BIT(2)
383 #define OPTION_WSCALE		BIT(3)
384 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
385 #define OPTION_SMC		BIT(9)
386 #define OPTION_MPTCP		BIT(10)
387 #define OPTION_AO		BIT(11)
388 #define OPTION_ACCECN		BIT(12)
389 
390 static void smc_options_write(__be32 *ptr, u16 *options)
391 {
392 #if IS_ENABLED(CONFIG_SMC)
393 	if (static_branch_unlikely(&tcp_have_smc)) {
394 		if (unlikely(OPTION_SMC & *options)) {
395 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
396 				       (TCPOPT_NOP  << 16) |
397 				       (TCPOPT_EXP <<  8) |
398 				       (TCPOLEN_EXP_SMC_BASE));
399 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
400 		}
401 	}
402 #endif
403 }
404 
405 struct tcp_out_options {
406 	u16 options;		/* bit field of OPTION_* */
407 	u16 mss;		/* 0 to disable */
408 	u8 ws;			/* window scale, 0 to disable */
409 	u8 num_sack_blocks;	/* number of SACK blocks to include */
410 	u8 num_accecn_fields:7,	/* number of AccECN fields needed */
411 	   use_synack_ecn_bytes:1; /* Use synack_ecn_bytes or not */
412 	u8 hash_size;		/* bytes in hash_location */
413 	u8 bpf_opt_len;		/* length of BPF hdr option */
414 	__u8 *hash_location;	/* temporary pointer, overloaded */
415 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
416 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
417 	struct mptcp_out_options mptcp;
418 };
419 
420 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
421 				struct tcp_sock *tp,
422 				struct tcp_out_options *opts)
423 {
424 #if IS_ENABLED(CONFIG_MPTCP)
425 	if (unlikely(OPTION_MPTCP & opts->options))
426 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
427 #endif
428 }
429 
430 #ifdef CONFIG_CGROUP_BPF
431 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
432 					enum tcp_synack_type synack_type)
433 {
434 	if (unlikely(!skb))
435 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
436 
437 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
438 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
439 
440 	return 0;
441 }
442 
443 /* req, syn_skb and synack_type are used when writing synack */
444 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
445 				  struct request_sock *req,
446 				  struct sk_buff *syn_skb,
447 				  enum tcp_synack_type synack_type,
448 				  struct tcp_out_options *opts,
449 				  unsigned int *remaining)
450 {
451 	struct bpf_sock_ops_kern sock_ops;
452 	int err;
453 
454 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
455 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
456 	    !*remaining)
457 		return;
458 
459 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
460 
461 	/* init sock_ops */
462 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
463 
464 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
465 
466 	if (req) {
467 		/* The listen "sk" cannot be passed here because
468 		 * it is not locked.  It would not make too much
469 		 * sense to do bpf_setsockopt(listen_sk) based
470 		 * on individual connection request also.
471 		 *
472 		 * Thus, "req" is passed here and the cgroup-bpf-progs
473 		 * of the listen "sk" will be run.
474 		 *
475 		 * "req" is also used here for fastopen even the "sk" here is
476 		 * a fullsock "child" sk.  It is to keep the behavior
477 		 * consistent between fastopen and non-fastopen on
478 		 * the bpf programming side.
479 		 */
480 		sock_ops.sk = (struct sock *)req;
481 		sock_ops.syn_skb = syn_skb;
482 	} else {
483 		sock_owned_by_me(sk);
484 
485 		sock_ops.is_fullsock = 1;
486 		sock_ops.is_locked_tcp_sock = 1;
487 		sock_ops.sk = sk;
488 	}
489 
490 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
491 	sock_ops.remaining_opt_len = *remaining;
492 	/* tcp_current_mss() does not pass a skb */
493 	if (skb)
494 		bpf_skops_init_skb(&sock_ops, skb, 0);
495 
496 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
497 
498 	if (err || sock_ops.remaining_opt_len == *remaining)
499 		return;
500 
501 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
502 	/* round up to 4 bytes */
503 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
504 
505 	*remaining -= opts->bpf_opt_len;
506 }
507 
508 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
509 				    struct request_sock *req,
510 				    struct sk_buff *syn_skb,
511 				    enum tcp_synack_type synack_type,
512 				    struct tcp_out_options *opts)
513 {
514 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
515 	struct bpf_sock_ops_kern sock_ops;
516 	int err;
517 
518 	if (likely(!max_opt_len))
519 		return;
520 
521 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
522 
523 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
524 
525 	if (req) {
526 		sock_ops.sk = (struct sock *)req;
527 		sock_ops.syn_skb = syn_skb;
528 	} else {
529 		sock_owned_by_me(sk);
530 
531 		sock_ops.is_fullsock = 1;
532 		sock_ops.is_locked_tcp_sock = 1;
533 		sock_ops.sk = sk;
534 	}
535 
536 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
537 	sock_ops.remaining_opt_len = max_opt_len;
538 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
539 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
540 
541 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
542 
543 	if (err)
544 		nr_written = 0;
545 	else
546 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
547 
548 	if (nr_written < max_opt_len)
549 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
550 		       max_opt_len - nr_written);
551 }
552 #else
553 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
554 				  struct request_sock *req,
555 				  struct sk_buff *syn_skb,
556 				  enum tcp_synack_type synack_type,
557 				  struct tcp_out_options *opts,
558 				  unsigned int *remaining)
559 {
560 }
561 
562 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
563 				    struct request_sock *req,
564 				    struct sk_buff *syn_skb,
565 				    enum tcp_synack_type synack_type,
566 				    struct tcp_out_options *opts)
567 {
568 }
569 #endif
570 
571 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
572 				      const struct tcp_request_sock *tcprsk,
573 				      struct tcp_out_options *opts,
574 				      struct tcp_key *key, __be32 *ptr)
575 {
576 #ifdef CONFIG_TCP_AO
577 	u8 maclen = tcp_ao_maclen(key->ao_key);
578 
579 	if (tcprsk) {
580 		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
581 
582 		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
583 			       (tcprsk->ao_keyid << 8) |
584 			       (tcprsk->ao_rcv_next));
585 	} else {
586 		struct tcp_ao_key *rnext_key;
587 		struct tcp_ao_info *ao_info;
588 
589 		ao_info = rcu_dereference_check(tp->ao_info,
590 			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
591 		rnext_key = READ_ONCE(ao_info->rnext_key);
592 		if (WARN_ON_ONCE(!rnext_key))
593 			return ptr;
594 		*ptr++ = htonl((TCPOPT_AO << 24) |
595 			       (tcp_ao_len(key->ao_key) << 16) |
596 			       (key->ao_key->sndid << 8) |
597 			       (rnext_key->rcvid));
598 	}
599 	opts->hash_location = (__u8 *)ptr;
600 	ptr += maclen / sizeof(*ptr);
601 	if (unlikely(maclen % sizeof(*ptr))) {
602 		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
603 		ptr++;
604 	}
605 #endif
606 	return ptr;
607 }
608 
609 /* Initial values for AccECN option, ordered is based on ECN field bits
610  * similar to received_ecn_bytes. Used for SYN/ACK AccECN option.
611  */
612 static const u32 synack_ecn_bytes[3] = { 0, 0, 0 };
613 
614 /* Write previously computed TCP options to the packet.
615  *
616  * Beware: Something in the Internet is very sensitive to the ordering of
617  * TCP options, we learned this through the hard way, so be careful here.
618  * Luckily we can at least blame others for their non-compliance but from
619  * inter-operability perspective it seems that we're somewhat stuck with
620  * the ordering which we have been using if we want to keep working with
621  * those broken things (not that it currently hurts anybody as there isn't
622  * particular reason why the ordering would need to be changed).
623  *
624  * At least SACK_PERM as the first option is known to lead to a disaster
625  * (but it may well be that other scenarios fail similarly).
626  */
627 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
628 			      const struct tcp_request_sock *tcprsk,
629 			      struct tcp_out_options *opts,
630 			      struct tcp_key *key)
631 {
632 	u8 leftover_highbyte = TCPOPT_NOP; /* replace 1st NOP if avail */
633 	u8 leftover_lowbyte = TCPOPT_NOP;  /* replace 2nd NOP in succession */
634 	__be32 *ptr = (__be32 *)(th + 1);
635 	u16 options = opts->options;	/* mungable copy */
636 
637 	if (tcp_key_is_md5(key)) {
638 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
639 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
640 		/* overload cookie hash location */
641 		opts->hash_location = (__u8 *)ptr;
642 		ptr += 4;
643 	} else if (tcp_key_is_ao(key)) {
644 		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
645 	}
646 	if (unlikely(opts->mss)) {
647 		*ptr++ = htonl((TCPOPT_MSS << 24) |
648 			       (TCPOLEN_MSS << 16) |
649 			       opts->mss);
650 	}
651 
652 	if (likely(OPTION_TS & options)) {
653 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
654 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
655 				       (TCPOLEN_SACK_PERM << 16) |
656 				       (TCPOPT_TIMESTAMP << 8) |
657 				       TCPOLEN_TIMESTAMP);
658 			options &= ~OPTION_SACK_ADVERTISE;
659 		} else {
660 			*ptr++ = htonl((TCPOPT_NOP << 24) |
661 				       (TCPOPT_NOP << 16) |
662 				       (TCPOPT_TIMESTAMP << 8) |
663 				       TCPOLEN_TIMESTAMP);
664 		}
665 		*ptr++ = htonl(opts->tsval);
666 		*ptr++ = htonl(opts->tsecr);
667 	}
668 
669 	if (OPTION_ACCECN & options) {
670 		const u32 *ecn_bytes = opts->use_synack_ecn_bytes ?
671 				       synack_ecn_bytes :
672 				       tp->received_ecn_bytes;
673 		const u8 ect0_idx = INET_ECN_ECT_0 - 1;
674 		const u8 ect1_idx = INET_ECN_ECT_1 - 1;
675 		const u8 ce_idx = INET_ECN_CE - 1;
676 		u32 e0b;
677 		u32 e1b;
678 		u32 ceb;
679 		u8 len;
680 
681 		e0b = ecn_bytes[ect0_idx] + TCP_ACCECN_E0B_INIT_OFFSET;
682 		e1b = ecn_bytes[ect1_idx] + TCP_ACCECN_E1B_INIT_OFFSET;
683 		ceb = ecn_bytes[ce_idx] + TCP_ACCECN_CEB_INIT_OFFSET;
684 		len = TCPOLEN_ACCECN_BASE +
685 		      opts->num_accecn_fields * TCPOLEN_ACCECN_PERFIELD;
686 
687 		if (opts->num_accecn_fields == 2) {
688 			*ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) |
689 				       ((e1b >> 8) & 0xffff));
690 			*ptr++ = htonl(((e1b & 0xff) << 24) |
691 				       (ceb & 0xffffff));
692 		} else if (opts->num_accecn_fields == 1) {
693 			*ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) |
694 				       ((e1b >> 8) & 0xffff));
695 			leftover_highbyte = e1b & 0xff;
696 			leftover_lowbyte = TCPOPT_NOP;
697 		} else if (opts->num_accecn_fields == 0) {
698 			leftover_highbyte = TCPOPT_ACCECN1;
699 			leftover_lowbyte = len;
700 		} else if (opts->num_accecn_fields == 3) {
701 			*ptr++ = htonl((TCPOPT_ACCECN1 << 24) | (len << 16) |
702 				       ((e1b >> 8) & 0xffff));
703 			*ptr++ = htonl(((e1b & 0xff) << 24) |
704 				       (ceb & 0xffffff));
705 			*ptr++ = htonl(((e0b & 0xffffff) << 8) |
706 				       TCPOPT_NOP);
707 		}
708 		if (tp) {
709 			tp->accecn_minlen = 0;
710 			tp->accecn_opt_tstamp = tp->tcp_mstamp;
711 			if (tp->accecn_opt_demand)
712 				tp->accecn_opt_demand--;
713 		}
714 	}
715 
716 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
717 		*ptr++ = htonl((leftover_highbyte << 24) |
718 			       (leftover_lowbyte << 16) |
719 			       (TCPOPT_SACK_PERM << 8) |
720 			       TCPOLEN_SACK_PERM);
721 		leftover_highbyte = TCPOPT_NOP;
722 		leftover_lowbyte = TCPOPT_NOP;
723 	}
724 
725 	if (unlikely(OPTION_WSCALE & options)) {
726 		u8 highbyte = TCPOPT_NOP;
727 
728 		/* Do not split the leftover 2-byte to fit into a single
729 		 * NOP, i.e., replace this NOP only when 1 byte is leftover
730 		 * within leftover_highbyte.
731 		 */
732 		if (unlikely(leftover_highbyte != TCPOPT_NOP &&
733 			     leftover_lowbyte == TCPOPT_NOP)) {
734 			highbyte = leftover_highbyte;
735 			leftover_highbyte = TCPOPT_NOP;
736 		}
737 		*ptr++ = htonl((highbyte << 24) |
738 			       (TCPOPT_WINDOW << 16) |
739 			       (TCPOLEN_WINDOW << 8) |
740 			       opts->ws);
741 	}
742 
743 	if (unlikely(opts->num_sack_blocks)) {
744 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
745 			tp->duplicate_sack : tp->selective_acks;
746 		int this_sack;
747 
748 		*ptr++ = htonl((leftover_highbyte << 24) |
749 			       (leftover_lowbyte << 16) |
750 			       (TCPOPT_SACK <<  8) |
751 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
752 						     TCPOLEN_SACK_PERBLOCK)));
753 		leftover_highbyte = TCPOPT_NOP;
754 		leftover_lowbyte = TCPOPT_NOP;
755 
756 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
757 		     ++this_sack) {
758 			*ptr++ = htonl(sp[this_sack].start_seq);
759 			*ptr++ = htonl(sp[this_sack].end_seq);
760 		}
761 
762 		tp->rx_opt.dsack = 0;
763 	} else if (unlikely(leftover_highbyte != TCPOPT_NOP ||
764 			    leftover_lowbyte != TCPOPT_NOP)) {
765 		*ptr++ = htonl((leftover_highbyte << 24) |
766 			       (leftover_lowbyte << 16) |
767 			       (TCPOPT_NOP << 8) |
768 			       TCPOPT_NOP);
769 		leftover_highbyte = TCPOPT_NOP;
770 		leftover_lowbyte = TCPOPT_NOP;
771 	}
772 
773 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
774 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
775 		u8 *p = (u8 *)ptr;
776 		u32 len; /* Fast Open option length */
777 
778 		if (foc->exp) {
779 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
780 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
781 				     TCPOPT_FASTOPEN_MAGIC);
782 			p += TCPOLEN_EXP_FASTOPEN_BASE;
783 		} else {
784 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
785 			*p++ = TCPOPT_FASTOPEN;
786 			*p++ = len;
787 		}
788 
789 		memcpy(p, foc->val, foc->len);
790 		if ((len & 3) == 2) {
791 			p[foc->len] = TCPOPT_NOP;
792 			p[foc->len + 1] = TCPOPT_NOP;
793 		}
794 		ptr += (len + 3) >> 2;
795 	}
796 
797 	smc_options_write(ptr, &options);
798 
799 	mptcp_options_write(th, ptr, tp, opts);
800 }
801 
802 static void smc_set_option(const struct tcp_sock *tp,
803 			   struct tcp_out_options *opts,
804 			   unsigned int *remaining)
805 {
806 #if IS_ENABLED(CONFIG_SMC)
807 	if (static_branch_unlikely(&tcp_have_smc)) {
808 		if (tp->syn_smc) {
809 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
810 				opts->options |= OPTION_SMC;
811 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
812 			}
813 		}
814 	}
815 #endif
816 }
817 
818 static void smc_set_option_cond(const struct tcp_sock *tp,
819 				const struct inet_request_sock *ireq,
820 				struct tcp_out_options *opts,
821 				unsigned int *remaining)
822 {
823 #if IS_ENABLED(CONFIG_SMC)
824 	if (static_branch_unlikely(&tcp_have_smc)) {
825 		if (tp->syn_smc && ireq->smc_ok) {
826 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
827 				opts->options |= OPTION_SMC;
828 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
829 			}
830 		}
831 	}
832 #endif
833 }
834 
835 static void mptcp_set_option_cond(const struct request_sock *req,
836 				  struct tcp_out_options *opts,
837 				  unsigned int *remaining)
838 {
839 	if (rsk_is_mptcp(req)) {
840 		unsigned int size;
841 
842 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
843 			if (*remaining >= size) {
844 				opts->options |= OPTION_MPTCP;
845 				*remaining -= size;
846 			}
847 		}
848 	}
849 }
850 
851 static u32 tcp_synack_options_combine_saving(struct tcp_out_options *opts)
852 {
853 	/* How much there's room for combining with the alignment padding? */
854 	if ((opts->options & (OPTION_SACK_ADVERTISE | OPTION_TS)) ==
855 	    OPTION_SACK_ADVERTISE)
856 		return 2;
857 	else if (opts->options & OPTION_WSCALE)
858 		return 1;
859 	return 0;
860 }
861 
862 /* Calculates how long AccECN option will fit to @remaining option space.
863  *
864  * AccECN option can sometimes replace NOPs used for alignment of other
865  * TCP options (up to @max_combine_saving available).
866  *
867  * Only solutions with at least @required AccECN fields are accepted.
868  *
869  * Returns: The size of the AccECN option excluding space repurposed from
870  * the alignment of the other options.
871  */
872 static int tcp_options_fit_accecn(struct tcp_out_options *opts, int required,
873 				  int remaining)
874 {
875 	int size = TCP_ACCECN_MAXSIZE;
876 	int sack_blocks_reduce = 0;
877 	int max_combine_saving;
878 	int rem = remaining;
879 	int align_size;
880 
881 	if (opts->use_synack_ecn_bytes)
882 		max_combine_saving = tcp_synack_options_combine_saving(opts);
883 	else
884 		max_combine_saving = opts->num_sack_blocks > 0 ? 2 : 0;
885 	opts->num_accecn_fields = TCP_ACCECN_NUMFIELDS;
886 	while (opts->num_accecn_fields >= required) {
887 		/* Pad to dword if cannot combine */
888 		if ((size & 0x3) > max_combine_saving)
889 			align_size = ALIGN(size, 4);
890 		else
891 			align_size = ALIGN_DOWN(size, 4);
892 
893 		if (rem >= align_size) {
894 			size = align_size;
895 			break;
896 		} else if (opts->num_accecn_fields == required &&
897 			   opts->num_sack_blocks > 2 &&
898 			   required > 0) {
899 			/* Try to fit the option by removing one SACK block */
900 			opts->num_sack_blocks--;
901 			sack_blocks_reduce++;
902 			rem = rem + TCPOLEN_SACK_PERBLOCK;
903 
904 			opts->num_accecn_fields = TCP_ACCECN_NUMFIELDS;
905 			size = TCP_ACCECN_MAXSIZE;
906 			continue;
907 		}
908 
909 		opts->num_accecn_fields--;
910 		size -= TCPOLEN_ACCECN_PERFIELD;
911 	}
912 	if (sack_blocks_reduce > 0) {
913 		if (opts->num_accecn_fields >= required)
914 			size -= sack_blocks_reduce * TCPOLEN_SACK_PERBLOCK;
915 		else
916 			opts->num_sack_blocks += sack_blocks_reduce;
917 	}
918 	if (opts->num_accecn_fields < required)
919 		return 0;
920 
921 	opts->options |= OPTION_ACCECN;
922 	return size;
923 }
924 
925 /* Compute TCP options for SYN packets. This is not the final
926  * network wire format yet.
927  */
928 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
929 				struct tcp_out_options *opts,
930 				struct tcp_key *key)
931 {
932 	struct tcp_sock *tp = tcp_sk(sk);
933 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
934 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
935 	bool timestamps;
936 
937 	/* Better than switch (key.type) as it has static branches */
938 	if (tcp_key_is_md5(key)) {
939 		timestamps = false;
940 		opts->options |= OPTION_MD5;
941 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
942 	} else {
943 		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
944 		if (tcp_key_is_ao(key)) {
945 			opts->options |= OPTION_AO;
946 			remaining -= tcp_ao_len_aligned(key->ao_key);
947 		}
948 	}
949 
950 	/* We always get an MSS option.  The option bytes which will be seen in
951 	 * normal data packets should timestamps be used, must be in the MSS
952 	 * advertised.  But we subtract them from tp->mss_cache so that
953 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
954 	 * fact here if necessary.  If we don't do this correctly, as a
955 	 * receiver we won't recognize data packets as being full sized when we
956 	 * should, and thus we won't abide by the delayed ACK rules correctly.
957 	 * SACKs don't matter, we never delay an ACK when we have any of those
958 	 * going out.  */
959 	opts->mss = tcp_advertise_mss(sk);
960 	remaining -= TCPOLEN_MSS_ALIGNED;
961 
962 	if (likely(timestamps)) {
963 		opts->options |= OPTION_TS;
964 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
965 		opts->tsecr = tp->rx_opt.ts_recent;
966 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
967 	}
968 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
969 		opts->ws = tp->rx_opt.rcv_wscale;
970 		opts->options |= OPTION_WSCALE;
971 		remaining -= TCPOLEN_WSCALE_ALIGNED;
972 	}
973 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
974 		opts->options |= OPTION_SACK_ADVERTISE;
975 		if (unlikely(!(OPTION_TS & opts->options)))
976 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
977 	}
978 
979 	if (fastopen && fastopen->cookie.len >= 0) {
980 		u32 need = fastopen->cookie.len;
981 
982 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
983 					       TCPOLEN_FASTOPEN_BASE;
984 		need = (need + 3) & ~3U;  /* Align to 32 bits */
985 		if (remaining >= need) {
986 			opts->options |= OPTION_FAST_OPEN_COOKIE;
987 			opts->fastopen_cookie = &fastopen->cookie;
988 			remaining -= need;
989 			tp->syn_fastopen = 1;
990 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
991 		}
992 	}
993 
994 	smc_set_option(tp, opts, &remaining);
995 
996 	if (sk_is_mptcp(sk)) {
997 		unsigned int size;
998 
999 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
1000 			if (remaining >= size) {
1001 				opts->options |= OPTION_MPTCP;
1002 				remaining -= size;
1003 			}
1004 		}
1005 	}
1006 
1007 	/* Simultaneous open SYN/ACK needs AccECN option but not SYN.
1008 	 * It is attempted to negotiate the use of AccECN also on the first
1009 	 * retransmitted SYN, as mentioned in "3.1.4.1. Retransmitted SYNs"
1010 	 * of AccECN draft.
1011 	 */
1012 	if (unlikely((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK) &&
1013 		     tcp_ecn_mode_accecn(tp) &&
1014 		     inet_csk(sk)->icsk_retransmits < 2 &&
1015 		     READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option) &&
1016 		     remaining >= TCPOLEN_ACCECN_BASE)) {
1017 		opts->use_synack_ecn_bytes = 1;
1018 		remaining -= tcp_options_fit_accecn(opts, 0, remaining);
1019 	}
1020 
1021 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1022 
1023 	return MAX_TCP_OPTION_SPACE - remaining;
1024 }
1025 
1026 /* Set up TCP options for SYN-ACKs. */
1027 static unsigned int tcp_synack_options(const struct sock *sk,
1028 				       struct request_sock *req,
1029 				       unsigned int mss, struct sk_buff *skb,
1030 				       struct tcp_out_options *opts,
1031 				       const struct tcp_key *key,
1032 				       struct tcp_fastopen_cookie *foc,
1033 				       enum tcp_synack_type synack_type,
1034 				       struct sk_buff *syn_skb)
1035 {
1036 	struct inet_request_sock *ireq = inet_rsk(req);
1037 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
1038 	struct tcp_request_sock *treq = tcp_rsk(req);
1039 
1040 	if (tcp_key_is_md5(key)) {
1041 		opts->options |= OPTION_MD5;
1042 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
1043 
1044 		/* We can't fit any SACK blocks in a packet with MD5 + TS
1045 		 * options. There was discussion about disabling SACK
1046 		 * rather than TS in order to fit in better with old,
1047 		 * buggy kernels, but that was deemed to be unnecessary.
1048 		 */
1049 		if (synack_type != TCP_SYNACK_COOKIE)
1050 			ireq->tstamp_ok &= !ireq->sack_ok;
1051 	} else if (tcp_key_is_ao(key)) {
1052 		opts->options |= OPTION_AO;
1053 		remaining -= tcp_ao_len_aligned(key->ao_key);
1054 		ireq->tstamp_ok &= !ireq->sack_ok;
1055 	}
1056 
1057 	/* We always send an MSS option. */
1058 	opts->mss = mss;
1059 	remaining -= TCPOLEN_MSS_ALIGNED;
1060 
1061 	if (likely(ireq->wscale_ok)) {
1062 		opts->ws = ireq->rcv_wscale;
1063 		opts->options |= OPTION_WSCALE;
1064 		remaining -= TCPOLEN_WSCALE_ALIGNED;
1065 	}
1066 	if (likely(ireq->tstamp_ok)) {
1067 		opts->options |= OPTION_TS;
1068 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
1069 			      tcp_rsk(req)->ts_off;
1070 		if (!tcp_rsk(req)->snt_tsval_first) {
1071 			if (!opts->tsval)
1072 				opts->tsval = ~0U;
1073 			tcp_rsk(req)->snt_tsval_first = opts->tsval;
1074 		}
1075 		WRITE_ONCE(tcp_rsk(req)->snt_tsval_last, opts->tsval);
1076 		opts->tsecr = req->ts_recent;
1077 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
1078 	}
1079 	if (likely(ireq->sack_ok)) {
1080 		opts->options |= OPTION_SACK_ADVERTISE;
1081 		if (unlikely(!ireq->tstamp_ok))
1082 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
1083 	}
1084 	if (foc != NULL && foc->len >= 0) {
1085 		u32 need = foc->len;
1086 
1087 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
1088 				   TCPOLEN_FASTOPEN_BASE;
1089 		need = (need + 3) & ~3U;  /* Align to 32 bits */
1090 		if (remaining >= need) {
1091 			opts->options |= OPTION_FAST_OPEN_COOKIE;
1092 			opts->fastopen_cookie = foc;
1093 			remaining -= need;
1094 		}
1095 	}
1096 
1097 	mptcp_set_option_cond(req, opts, &remaining);
1098 
1099 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
1100 
1101 	if (treq->accecn_ok &&
1102 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option) &&
1103 	    req->num_timeout < 1 && remaining >= TCPOLEN_ACCECN_BASE) {
1104 		opts->use_synack_ecn_bytes = 1;
1105 		remaining -= tcp_options_fit_accecn(opts, 0, remaining);
1106 	}
1107 
1108 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
1109 			      synack_type, opts, &remaining);
1110 
1111 	return MAX_TCP_OPTION_SPACE - remaining;
1112 }
1113 
1114 /* Compute TCP options for ESTABLISHED sockets. This is not the
1115  * final wire format yet.
1116  */
1117 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
1118 					struct tcp_out_options *opts,
1119 					struct tcp_key *key)
1120 {
1121 	struct tcp_sock *tp = tcp_sk(sk);
1122 	unsigned int size = 0;
1123 	unsigned int eff_sacks;
1124 
1125 	opts->options = 0;
1126 
1127 	/* Better than switch (key.type) as it has static branches */
1128 	if (tcp_key_is_md5(key)) {
1129 		opts->options |= OPTION_MD5;
1130 		size += TCPOLEN_MD5SIG_ALIGNED;
1131 	} else if (tcp_key_is_ao(key)) {
1132 		opts->options |= OPTION_AO;
1133 		size += tcp_ao_len_aligned(key->ao_key);
1134 	}
1135 
1136 	if (likely(tp->rx_opt.tstamp_ok)) {
1137 		opts->options |= OPTION_TS;
1138 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
1139 				tp->tsoffset : 0;
1140 		opts->tsecr = tp->rx_opt.ts_recent;
1141 		size += TCPOLEN_TSTAMP_ALIGNED;
1142 	}
1143 
1144 	/* MPTCP options have precedence over SACK for the limited TCP
1145 	 * option space because a MPTCP connection would be forced to
1146 	 * fall back to regular TCP if a required multipath option is
1147 	 * missing. SACK still gets a chance to use whatever space is
1148 	 * left.
1149 	 */
1150 	if (sk_is_mptcp(sk)) {
1151 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1152 		unsigned int opt_size = 0;
1153 
1154 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1155 					      &opts->mptcp)) {
1156 			opts->options |= OPTION_MPTCP;
1157 			size += opt_size;
1158 		}
1159 	}
1160 
1161 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1162 	if (unlikely(eff_sacks)) {
1163 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1164 		if (likely(remaining >= TCPOLEN_SACK_BASE_ALIGNED +
1165 					TCPOLEN_SACK_PERBLOCK)) {
1166 			opts->num_sack_blocks =
1167 				min_t(unsigned int, eff_sacks,
1168 				      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1169 				      TCPOLEN_SACK_PERBLOCK);
1170 
1171 			size += TCPOLEN_SACK_BASE_ALIGNED +
1172 				opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1173 		} else {
1174 			opts->num_sack_blocks = 0;
1175 		}
1176 	} else {
1177 		opts->num_sack_blocks = 0;
1178 	}
1179 
1180 	if (tcp_ecn_mode_accecn(tp)) {
1181 		int ecn_opt = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_option);
1182 
1183 		if (ecn_opt && tp->saw_accecn_opt && !tcp_accecn_opt_fail_send(tp) &&
1184 		    (ecn_opt >= TCP_ACCECN_OPTION_FULL || tp->accecn_opt_demand ||
1185 		     tcp_accecn_option_beacon_check(sk))) {
1186 			opts->use_synack_ecn_bytes = 0;
1187 			size += tcp_options_fit_accecn(opts, tp->accecn_minlen,
1188 						       MAX_TCP_OPTION_SPACE - size);
1189 		}
1190 	}
1191 
1192 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1193 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1194 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1195 
1196 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1197 
1198 		size = MAX_TCP_OPTION_SPACE - remaining;
1199 	}
1200 
1201 	return size;
1202 }
1203 
1204 
1205 /* TCP SMALL QUEUES (TSQ)
1206  *
1207  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1208  * to reduce RTT and bufferbloat.
1209  * We do this using a special skb destructor (tcp_wfree).
1210  *
1211  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1212  * needs to be reallocated in a driver.
1213  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1214  *
1215  * Since transmit from skb destructor is forbidden, we use a BH work item
1216  * to process all sockets that eventually need to send more skbs.
1217  * We use one work item per cpu, with its own queue of sockets.
1218  */
1219 struct tsq_work {
1220 	struct work_struct	work;
1221 	struct list_head	head; /* queue of tcp sockets */
1222 };
1223 static DEFINE_PER_CPU(struct tsq_work, tsq_work);
1224 
1225 static void tcp_tsq_write(struct sock *sk)
1226 {
1227 	if ((1 << sk->sk_state) &
1228 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1229 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1230 		struct tcp_sock *tp = tcp_sk(sk);
1231 
1232 		if (tp->lost_out > tp->retrans_out &&
1233 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1234 			tcp_mstamp_refresh(tp);
1235 			tcp_xmit_retransmit_queue(sk);
1236 		}
1237 
1238 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1239 			       0, GFP_ATOMIC);
1240 	}
1241 }
1242 
1243 static void tcp_tsq_handler(struct sock *sk)
1244 {
1245 	bh_lock_sock(sk);
1246 	if (!sock_owned_by_user(sk))
1247 		tcp_tsq_write(sk);
1248 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1249 		sock_hold(sk);
1250 	bh_unlock_sock(sk);
1251 }
1252 /*
1253  * One work item per cpu tries to send more skbs.
1254  * We run in BH context but need to disable irqs when
1255  * transferring tsq->head because tcp_wfree() might
1256  * interrupt us (non NAPI drivers)
1257  */
1258 static void tcp_tsq_workfn(struct work_struct *work)
1259 {
1260 	struct tsq_work *tsq = container_of(work, struct tsq_work, work);
1261 	LIST_HEAD(list);
1262 	unsigned long flags;
1263 	struct list_head *q, *n;
1264 	struct tcp_sock *tp;
1265 	struct sock *sk;
1266 
1267 	local_irq_save(flags);
1268 	list_splice_init(&tsq->head, &list);
1269 	local_irq_restore(flags);
1270 
1271 	list_for_each_safe(q, n, &list) {
1272 		tp = list_entry(q, struct tcp_sock, tsq_node);
1273 		list_del(&tp->tsq_node);
1274 
1275 		sk = (struct sock *)tp;
1276 		smp_mb__before_atomic();
1277 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1278 
1279 		tcp_tsq_handler(sk);
1280 		sk_free(sk);
1281 	}
1282 }
1283 
1284 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1285 			  TCPF_WRITE_TIMER_DEFERRED |	\
1286 			  TCPF_DELACK_TIMER_DEFERRED |	\
1287 			  TCPF_MTU_REDUCED_DEFERRED |	\
1288 			  TCPF_ACK_DEFERRED)
1289 /**
1290  * tcp_release_cb - tcp release_sock() callback
1291  * @sk: socket
1292  *
1293  * called from release_sock() to perform protocol dependent
1294  * actions before socket release.
1295  */
1296 void tcp_release_cb(struct sock *sk)
1297 {
1298 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1299 	unsigned long nflags;
1300 
1301 	/* perform an atomic operation only if at least one flag is set */
1302 	do {
1303 		if (!(flags & TCP_DEFERRED_ALL))
1304 			return;
1305 		nflags = flags & ~TCP_DEFERRED_ALL;
1306 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1307 
1308 	if (flags & TCPF_TSQ_DEFERRED) {
1309 		tcp_tsq_write(sk);
1310 		__sock_put(sk);
1311 	}
1312 
1313 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1314 		tcp_write_timer_handler(sk);
1315 		__sock_put(sk);
1316 	}
1317 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1318 		tcp_delack_timer_handler(sk);
1319 		__sock_put(sk);
1320 	}
1321 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1322 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1323 		__sock_put(sk);
1324 	}
1325 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1326 		tcp_send_ack(sk);
1327 }
1328 EXPORT_IPV6_MOD(tcp_release_cb);
1329 
1330 void __init tcp_tsq_work_init(void)
1331 {
1332 	int i;
1333 
1334 	for_each_possible_cpu(i) {
1335 		struct tsq_work *tsq = &per_cpu(tsq_work, i);
1336 
1337 		INIT_LIST_HEAD(&tsq->head);
1338 		INIT_WORK(&tsq->work, tcp_tsq_workfn);
1339 	}
1340 }
1341 
1342 /*
1343  * Write buffer destructor automatically called from kfree_skb.
1344  * We can't xmit new skbs from this context, as we might already
1345  * hold qdisc lock.
1346  */
1347 void tcp_wfree(struct sk_buff *skb)
1348 {
1349 	struct sock *sk = skb->sk;
1350 	struct tcp_sock *tp = tcp_sk(sk);
1351 	unsigned long flags, nval, oval;
1352 	struct tsq_work *tsq;
1353 	bool empty;
1354 
1355 	/* Keep one reference on sk_wmem_alloc.
1356 	 * Will be released by sk_free() from here or tcp_tsq_workfn()
1357 	 */
1358 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1359 
1360 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1361 	 * Wait until our queues (qdisc + devices) are drained.
1362 	 * This gives :
1363 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1364 	 * - chance for incoming ACK (processed by another cpu maybe)
1365 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1366 	 */
1367 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1368 		goto out;
1369 
1370 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1371 	do {
1372 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1373 			goto out;
1374 
1375 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1376 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1377 
1378 	/* queue this socket to BH workqueue */
1379 	local_irq_save(flags);
1380 	tsq = this_cpu_ptr(&tsq_work);
1381 	empty = list_empty(&tsq->head);
1382 	list_add(&tp->tsq_node, &tsq->head);
1383 	if (empty)
1384 		queue_work(system_bh_wq, &tsq->work);
1385 	local_irq_restore(flags);
1386 	return;
1387 out:
1388 	sk_free(sk);
1389 }
1390 
1391 /* Note: Called under soft irq.
1392  * We can call TCP stack right away, unless socket is owned by user.
1393  */
1394 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1395 {
1396 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1397 	struct sock *sk = (struct sock *)tp;
1398 
1399 	tcp_tsq_handler(sk);
1400 	sock_put(sk);
1401 
1402 	return HRTIMER_NORESTART;
1403 }
1404 
1405 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1406 				      u64 prior_wstamp)
1407 {
1408 	struct tcp_sock *tp = tcp_sk(sk);
1409 
1410 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1411 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1412 
1413 		/* Original sch_fq does not pace first 10 MSS
1414 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1415 		 * this is a minor annoyance.
1416 		 */
1417 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1418 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1419 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1420 
1421 			/* take into account OS jitter */
1422 			len_ns -= min_t(u64, len_ns / 2, credit);
1423 			tp->tcp_wstamp_ns += len_ns;
1424 		}
1425 	}
1426 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1427 }
1428 
1429 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1430 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1431 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1432 
1433 /* This routine actually transmits TCP packets queued in by
1434  * tcp_do_sendmsg().  This is used by both the initial
1435  * transmission and possible later retransmissions.
1436  * All SKB's seen here are completely headerless.  It is our
1437  * job to build the TCP header, and pass the packet down to
1438  * IP so it can do the same plus pass the packet off to the
1439  * device.
1440  *
1441  * We are working here with either a clone of the original
1442  * SKB, or a fresh unique copy made by the retransmit engine.
1443  */
1444 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1445 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1446 {
1447 	const struct inet_connection_sock *icsk = inet_csk(sk);
1448 	struct inet_sock *inet;
1449 	struct tcp_sock *tp;
1450 	struct tcp_skb_cb *tcb;
1451 	struct tcp_out_options opts;
1452 	unsigned int tcp_options_size, tcp_header_size;
1453 	struct sk_buff *oskb = NULL;
1454 	struct tcp_key key;
1455 	struct tcphdr *th;
1456 	u64 prior_wstamp;
1457 	int err;
1458 
1459 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1460 	tp = tcp_sk(sk);
1461 	prior_wstamp = tp->tcp_wstamp_ns;
1462 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1463 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
1464 	if (clone_it) {
1465 		oskb = skb;
1466 
1467 		tcp_skb_tsorted_save(oskb) {
1468 			if (unlikely(skb_cloned(oskb)))
1469 				skb = pskb_copy(oskb, gfp_mask);
1470 			else
1471 				skb = skb_clone(oskb, gfp_mask);
1472 		} tcp_skb_tsorted_restore(oskb);
1473 
1474 		if (unlikely(!skb))
1475 			return -ENOBUFS;
1476 		/* retransmit skbs might have a non zero value in skb->dev
1477 		 * because skb->dev is aliased with skb->rbnode.rb_left
1478 		 */
1479 		skb->dev = NULL;
1480 	}
1481 
1482 	inet = inet_sk(sk);
1483 	tcb = TCP_SKB_CB(skb);
1484 	memset(&opts, 0, sizeof(opts));
1485 
1486 	tcp_get_current_key(sk, &key);
1487 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1488 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1489 	} else {
1490 		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1491 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1492 		 * at receiver : This slightly improve GRO performance.
1493 		 * Note that we do not force the PSH flag for non GSO packets,
1494 		 * because they might be sent under high congestion events,
1495 		 * and in this case it is better to delay the delivery of 1-MSS
1496 		 * packets and thus the corresponding ACK packet that would
1497 		 * release the following packet.
1498 		 */
1499 		if (tcp_skb_pcount(skb) > 1)
1500 			tcb->tcp_flags |= TCPHDR_PSH;
1501 	}
1502 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1503 
1504 	/* We set skb->ooo_okay to one if this packet can select
1505 	 * a different TX queue than prior packets of this flow,
1506 	 * to avoid self inflicted reorders.
1507 	 * The 'other' queue decision is based on current cpu number
1508 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1509 	 * We can switch to another (and better) queue if:
1510 	 * 1) No packet with payload is in qdisc/device queues.
1511 	 *    Delays in TX completion can defeat the test
1512 	 *    even if packets were already sent.
1513 	 * 2) Or rtx queue is empty.
1514 	 *    This mitigates above case if ACK packets for
1515 	 *    all prior packets were already processed.
1516 	 */
1517 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1518 			tcp_rtx_queue_empty(sk);
1519 
1520 	/* If we had to use memory reserve to allocate this skb,
1521 	 * this might cause drops if packet is looped back :
1522 	 * Other socket might not have SOCK_MEMALLOC.
1523 	 * Packets not looped back do not care about pfmemalloc.
1524 	 */
1525 	skb->pfmemalloc = 0;
1526 
1527 	skb_push(skb, tcp_header_size);
1528 	skb_reset_transport_header(skb);
1529 
1530 	skb_orphan(skb);
1531 	skb->sk = sk;
1532 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1533 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1534 
1535 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1536 
1537 	/* Build TCP header and checksum it. */
1538 	th = (struct tcphdr *)skb->data;
1539 	th->source		= inet->inet_sport;
1540 	th->dest		= inet->inet_dport;
1541 	th->seq			= htonl(tcb->seq);
1542 	th->ack_seq		= htonl(rcv_nxt);
1543 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1544 					(tcb->tcp_flags & TCPHDR_FLAGS_MASK));
1545 
1546 	th->check		= 0;
1547 	th->urg_ptr		= 0;
1548 
1549 	/* The urg_mode check is necessary during a below snd_una win probe */
1550 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1551 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1552 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1553 			th->urg = 1;
1554 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1555 			th->urg_ptr = htons(0xFFFF);
1556 			th->urg = 1;
1557 		}
1558 	}
1559 
1560 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1561 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1562 		th->window      = htons(tcp_select_window(sk));
1563 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1564 	} else {
1565 		/* RFC1323: The window in SYN & SYN/ACK segments
1566 		 * is never scaled.
1567 		 */
1568 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1569 	}
1570 
1571 	tcp_options_write(th, tp, NULL, &opts, &key);
1572 
1573 	if (tcp_key_is_md5(&key)) {
1574 #ifdef CONFIG_TCP_MD5SIG
1575 		/* Calculate the MD5 hash, as we have all we need now */
1576 		sk_gso_disable(sk);
1577 		tp->af_specific->calc_md5_hash(opts.hash_location,
1578 					       key.md5_key, sk, skb);
1579 #endif
1580 	} else if (tcp_key_is_ao(&key)) {
1581 		int err;
1582 
1583 		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1584 					  opts.hash_location);
1585 		if (err) {
1586 			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1587 			return -ENOMEM;
1588 		}
1589 	}
1590 
1591 	/* BPF prog is the last one writing header option */
1592 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1593 
1594 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1595 			   tcp_v6_send_check, tcp_v4_send_check,
1596 			   sk, skb);
1597 
1598 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1599 		tcp_event_ack_sent(sk, rcv_nxt);
1600 
1601 	if (skb->len != tcp_header_size) {
1602 		tcp_event_data_sent(tp, sk);
1603 		tp->data_segs_out += tcp_skb_pcount(skb);
1604 		tp->bytes_sent += skb->len - tcp_header_size;
1605 	}
1606 
1607 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1608 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1609 			      tcp_skb_pcount(skb));
1610 
1611 	tp->segs_out += tcp_skb_pcount(skb);
1612 	skb_set_hash_from_sk(skb, sk);
1613 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1614 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1615 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1616 
1617 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1618 
1619 	/* Cleanup our debris for IP stacks */
1620 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1621 			       sizeof(struct inet6_skb_parm)));
1622 
1623 	tcp_add_tx_delay(skb, tp);
1624 
1625 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1626 				 inet6_csk_xmit, ip_queue_xmit,
1627 				 sk, skb, &inet->cork.fl);
1628 
1629 	if (unlikely(err > 0)) {
1630 		tcp_enter_cwr(sk);
1631 		err = net_xmit_eval(err);
1632 	}
1633 	if (!err && oskb) {
1634 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1635 		tcp_rate_skb_sent(sk, oskb);
1636 	}
1637 	return err;
1638 }
1639 
1640 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1641 			    gfp_t gfp_mask)
1642 {
1643 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1644 				  tcp_sk(sk)->rcv_nxt);
1645 }
1646 
1647 /* This routine just queues the buffer for sending.
1648  *
1649  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1650  * otherwise socket can stall.
1651  */
1652 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1653 {
1654 	struct tcp_sock *tp = tcp_sk(sk);
1655 
1656 	/* Advance write_seq and place onto the write_queue. */
1657 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1658 	__skb_header_release(skb);
1659 	tcp_add_write_queue_tail(sk, skb);
1660 	sk_wmem_queued_add(sk, skb->truesize);
1661 	sk_mem_charge(sk, skb->truesize);
1662 }
1663 
1664 /* Initialize TSO segments for a packet. */
1665 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1666 {
1667 	int tso_segs;
1668 
1669 	if (skb->len <= mss_now) {
1670 		/* Avoid the costly divide in the normal
1671 		 * non-TSO case.
1672 		 */
1673 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1674 		tcp_skb_pcount_set(skb, 1);
1675 		return 1;
1676 	}
1677 	TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1678 	tso_segs = DIV_ROUND_UP(skb->len, mss_now);
1679 	tcp_skb_pcount_set(skb, tso_segs);
1680 	return tso_segs;
1681 }
1682 
1683 /* Pcount in the middle of the write queue got changed, we need to do various
1684  * tweaks to fix counters
1685  */
1686 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1687 {
1688 	struct tcp_sock *tp = tcp_sk(sk);
1689 
1690 	tp->packets_out -= decr;
1691 
1692 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1693 		tp->sacked_out -= decr;
1694 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1695 		tp->retrans_out -= decr;
1696 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1697 		tp->lost_out -= decr;
1698 
1699 	/* Reno case is special. Sigh... */
1700 	if (tcp_is_reno(tp) && decr > 0)
1701 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1702 
1703 	tcp_verify_left_out(tp);
1704 }
1705 
1706 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1707 {
1708 	return TCP_SKB_CB(skb)->txstamp_ack ||
1709 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1710 }
1711 
1712 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1713 {
1714 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1715 
1716 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1717 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1718 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1719 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1720 
1721 		shinfo->tx_flags &= ~tsflags;
1722 		shinfo2->tx_flags |= tsflags;
1723 		swap(shinfo->tskey, shinfo2->tskey);
1724 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1725 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1726 	}
1727 }
1728 
1729 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1730 {
1731 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1732 	TCP_SKB_CB(skb)->eor = 0;
1733 }
1734 
1735 /* Insert buff after skb on the write or rtx queue of sk.  */
1736 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1737 					 struct sk_buff *buff,
1738 					 struct sock *sk,
1739 					 enum tcp_queue tcp_queue)
1740 {
1741 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1742 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1743 	else
1744 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1745 }
1746 
1747 /* Function to create two new TCP segments.  Shrinks the given segment
1748  * to the specified size and appends a new segment with the rest of the
1749  * packet to the list.  This won't be called frequently, I hope.
1750  * Remember, these are still headerless SKBs at this point.
1751  */
1752 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1753 		 struct sk_buff *skb, u32 len,
1754 		 unsigned int mss_now, gfp_t gfp)
1755 {
1756 	struct tcp_sock *tp = tcp_sk(sk);
1757 	struct sk_buff *buff;
1758 	int old_factor;
1759 	long limit;
1760 	u16 flags;
1761 	int nlen;
1762 
1763 	if (WARN_ON(len > skb->len))
1764 		return -EINVAL;
1765 
1766 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1767 
1768 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1769 	 * We need some allowance to not penalize applications setting small
1770 	 * SO_SNDBUF values.
1771 	 * Also allow first and last skb in retransmit queue to be split.
1772 	 */
1773 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1774 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1775 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1776 		     skb != tcp_rtx_queue_head(sk) &&
1777 		     skb != tcp_rtx_queue_tail(sk))) {
1778 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1779 		return -ENOMEM;
1780 	}
1781 
1782 	if (skb_unclone_keeptruesize(skb, gfp))
1783 		return -ENOMEM;
1784 
1785 	/* Get a new skb... force flag on. */
1786 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1787 	if (!buff)
1788 		return -ENOMEM; /* We'll just try again later. */
1789 	skb_copy_decrypted(buff, skb);
1790 	mptcp_skb_ext_copy(buff, skb);
1791 
1792 	sk_wmem_queued_add(sk, buff->truesize);
1793 	sk_mem_charge(sk, buff->truesize);
1794 	nlen = skb->len - len;
1795 	buff->truesize += nlen;
1796 	skb->truesize -= nlen;
1797 
1798 	/* Correct the sequence numbers. */
1799 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1800 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1801 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1802 
1803 	/* PSH and FIN should only be set in the second packet. */
1804 	flags = TCP_SKB_CB(skb)->tcp_flags;
1805 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1806 	TCP_SKB_CB(buff)->tcp_flags = flags;
1807 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1808 	tcp_skb_fragment_eor(skb, buff);
1809 
1810 	skb_split(skb, buff, len);
1811 
1812 	skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC);
1813 	tcp_fragment_tstamp(skb, buff);
1814 
1815 	old_factor = tcp_skb_pcount(skb);
1816 
1817 	/* Fix up tso_factor for both original and new SKB.  */
1818 	tcp_set_skb_tso_segs(skb, mss_now);
1819 	tcp_set_skb_tso_segs(buff, mss_now);
1820 
1821 	/* Update delivered info for the new segment */
1822 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1823 
1824 	/* If this packet has been sent out already, we must
1825 	 * adjust the various packet counters.
1826 	 */
1827 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1828 		int diff = old_factor - tcp_skb_pcount(skb) -
1829 			tcp_skb_pcount(buff);
1830 
1831 		if (diff)
1832 			tcp_adjust_pcount(sk, skb, diff);
1833 	}
1834 
1835 	/* Link BUFF into the send queue. */
1836 	__skb_header_release(buff);
1837 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1838 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1839 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1840 
1841 	return 0;
1842 }
1843 
1844 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1845  * data is not copied, but immediately discarded.
1846  */
1847 static int __pskb_trim_head(struct sk_buff *skb, int len)
1848 {
1849 	struct skb_shared_info *shinfo;
1850 	int i, k, eat;
1851 
1852 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1853 	eat = len;
1854 	k = 0;
1855 	shinfo = skb_shinfo(skb);
1856 	for (i = 0; i < shinfo->nr_frags; i++) {
1857 		int size = skb_frag_size(&shinfo->frags[i]);
1858 
1859 		if (size <= eat) {
1860 			skb_frag_unref(skb, i);
1861 			eat -= size;
1862 		} else {
1863 			shinfo->frags[k] = shinfo->frags[i];
1864 			if (eat) {
1865 				skb_frag_off_add(&shinfo->frags[k], eat);
1866 				skb_frag_size_sub(&shinfo->frags[k], eat);
1867 				eat = 0;
1868 			}
1869 			k++;
1870 		}
1871 	}
1872 	shinfo->nr_frags = k;
1873 
1874 	skb->data_len -= len;
1875 	skb->len = skb->data_len;
1876 	return len;
1877 }
1878 
1879 /* Remove acked data from a packet in the transmit queue. */
1880 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1881 {
1882 	u32 delta_truesize;
1883 
1884 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1885 		return -ENOMEM;
1886 
1887 	delta_truesize = __pskb_trim_head(skb, len);
1888 
1889 	TCP_SKB_CB(skb)->seq += len;
1890 
1891 	skb->truesize	   -= delta_truesize;
1892 	sk_wmem_queued_add(sk, -delta_truesize);
1893 	if (!skb_zcopy_pure(skb))
1894 		sk_mem_uncharge(sk, delta_truesize);
1895 
1896 	/* Any change of skb->len requires recalculation of tso factor. */
1897 	if (tcp_skb_pcount(skb) > 1)
1898 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1899 
1900 	return 0;
1901 }
1902 
1903 /* Calculate MSS not accounting any TCP options.  */
1904 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1905 {
1906 	const struct tcp_sock *tp = tcp_sk(sk);
1907 	const struct inet_connection_sock *icsk = inet_csk(sk);
1908 	int mss_now;
1909 
1910 	/* Calculate base mss without TCP options:
1911 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1912 	 */
1913 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1914 
1915 	/* Clamp it (mss_clamp does not include tcp options) */
1916 	if (mss_now > tp->rx_opt.mss_clamp)
1917 		mss_now = tp->rx_opt.mss_clamp;
1918 
1919 	/* Now subtract optional transport overhead */
1920 	mss_now -= icsk->icsk_ext_hdr_len;
1921 
1922 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1923 	mss_now = max(mss_now,
1924 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1925 	return mss_now;
1926 }
1927 
1928 /* Calculate MSS. Not accounting for SACKs here.  */
1929 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1930 {
1931 	/* Subtract TCP options size, not including SACKs */
1932 	return __tcp_mtu_to_mss(sk, pmtu) -
1933 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1934 }
1935 EXPORT_IPV6_MOD(tcp_mtu_to_mss);
1936 
1937 /* Inverse of above */
1938 int tcp_mss_to_mtu(struct sock *sk, int mss)
1939 {
1940 	const struct tcp_sock *tp = tcp_sk(sk);
1941 	const struct inet_connection_sock *icsk = inet_csk(sk);
1942 
1943 	return mss +
1944 	      tp->tcp_header_len +
1945 	      icsk->icsk_ext_hdr_len +
1946 	      icsk->icsk_af_ops->net_header_len;
1947 }
1948 EXPORT_SYMBOL(tcp_mss_to_mtu);
1949 
1950 /* MTU probing init per socket */
1951 void tcp_mtup_init(struct sock *sk)
1952 {
1953 	struct tcp_sock *tp = tcp_sk(sk);
1954 	struct inet_connection_sock *icsk = inet_csk(sk);
1955 	struct net *net = sock_net(sk);
1956 
1957 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1958 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1959 			       icsk->icsk_af_ops->net_header_len;
1960 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1961 	icsk->icsk_mtup.probe_size = 0;
1962 	if (icsk->icsk_mtup.enabled)
1963 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1964 }
1965 
1966 /* This function synchronize snd mss to current pmtu/exthdr set.
1967 
1968    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1969    for TCP options, but includes only bare TCP header.
1970 
1971    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1972    It is minimum of user_mss and mss received with SYN.
1973    It also does not include TCP options.
1974 
1975    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1976 
1977    tp->mss_cache is current effective sending mss, including
1978    all tcp options except for SACKs. It is evaluated,
1979    taking into account current pmtu, but never exceeds
1980    tp->rx_opt.mss_clamp.
1981 
1982    NOTE1. rfc1122 clearly states that advertised MSS
1983    DOES NOT include either tcp or ip options.
1984 
1985    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1986    are READ ONLY outside this function.		--ANK (980731)
1987  */
1988 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1989 {
1990 	struct tcp_sock *tp = tcp_sk(sk);
1991 	struct inet_connection_sock *icsk = inet_csk(sk);
1992 	int mss_now;
1993 
1994 	if (icsk->icsk_mtup.search_high > pmtu)
1995 		icsk->icsk_mtup.search_high = pmtu;
1996 
1997 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1998 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1999 
2000 	/* And store cached results */
2001 	icsk->icsk_pmtu_cookie = pmtu;
2002 	if (icsk->icsk_mtup.enabled)
2003 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
2004 	tp->mss_cache = mss_now;
2005 
2006 	return mss_now;
2007 }
2008 EXPORT_IPV6_MOD(tcp_sync_mss);
2009 
2010 /* Compute the current effective MSS, taking SACKs and IP options,
2011  * and even PMTU discovery events into account.
2012  */
2013 unsigned int tcp_current_mss(struct sock *sk)
2014 {
2015 	const struct tcp_sock *tp = tcp_sk(sk);
2016 	const struct dst_entry *dst = __sk_dst_get(sk);
2017 	u32 mss_now;
2018 	unsigned int header_len;
2019 	struct tcp_out_options opts;
2020 	struct tcp_key key;
2021 
2022 	mss_now = tp->mss_cache;
2023 
2024 	if (dst) {
2025 		u32 mtu = dst_mtu(dst);
2026 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
2027 			mss_now = tcp_sync_mss(sk, mtu);
2028 	}
2029 	tcp_get_current_key(sk, &key);
2030 	header_len = tcp_established_options(sk, NULL, &opts, &key) +
2031 		     sizeof(struct tcphdr);
2032 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
2033 	 * some common options. If this is an odd packet (because we have SACK
2034 	 * blocks etc) then our calculated header_len will be different, and
2035 	 * we have to adjust mss_now correspondingly */
2036 	if (header_len != tp->tcp_header_len) {
2037 		int delta = (int) header_len - tp->tcp_header_len;
2038 		mss_now -= delta;
2039 	}
2040 
2041 	return mss_now;
2042 }
2043 
2044 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
2045  * As additional protections, we do not touch cwnd in retransmission phases,
2046  * and if application hit its sndbuf limit recently.
2047  */
2048 static void tcp_cwnd_application_limited(struct sock *sk)
2049 {
2050 	struct tcp_sock *tp = tcp_sk(sk);
2051 
2052 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
2053 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
2054 		/* Limited by application or receiver window. */
2055 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
2056 		u32 win_used = max(tp->snd_cwnd_used, init_win);
2057 		if (win_used < tcp_snd_cwnd(tp)) {
2058 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
2059 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
2060 		}
2061 		tp->snd_cwnd_used = 0;
2062 	}
2063 	tp->snd_cwnd_stamp = tcp_jiffies32;
2064 }
2065 
2066 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
2067 {
2068 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2069 	struct tcp_sock *tp = tcp_sk(sk);
2070 
2071 	/* Track the strongest available signal of the degree to which the cwnd
2072 	 * is fully utilized. If cwnd-limited then remember that fact for the
2073 	 * current window. If not cwnd-limited then track the maximum number of
2074 	 * outstanding packets in the current window. (If cwnd-limited then we
2075 	 * chose to not update tp->max_packets_out to avoid an extra else
2076 	 * clause with no functional impact.)
2077 	 */
2078 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
2079 	    is_cwnd_limited ||
2080 	    (!tp->is_cwnd_limited &&
2081 	     tp->packets_out > tp->max_packets_out)) {
2082 		tp->is_cwnd_limited = is_cwnd_limited;
2083 		tp->max_packets_out = tp->packets_out;
2084 		tp->cwnd_usage_seq = tp->snd_nxt;
2085 	}
2086 
2087 	if (tcp_is_cwnd_limited(sk)) {
2088 		/* Network is feed fully. */
2089 		tp->snd_cwnd_used = 0;
2090 		tp->snd_cwnd_stamp = tcp_jiffies32;
2091 	} else {
2092 		/* Network starves. */
2093 		if (tp->packets_out > tp->snd_cwnd_used)
2094 			tp->snd_cwnd_used = tp->packets_out;
2095 
2096 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
2097 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
2098 		    !ca_ops->cong_control)
2099 			tcp_cwnd_application_limited(sk);
2100 
2101 		/* The following conditions together indicate the starvation
2102 		 * is caused by insufficient sender buffer:
2103 		 * 1) just sent some data (see tcp_write_xmit)
2104 		 * 2) not cwnd limited (this else condition)
2105 		 * 3) no more data to send (tcp_write_queue_empty())
2106 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
2107 		 */
2108 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
2109 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
2110 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
2111 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
2112 	}
2113 }
2114 
2115 /* Minshall's variant of the Nagle send check. */
2116 static bool tcp_minshall_check(const struct tcp_sock *tp)
2117 {
2118 	return after(tp->snd_sml, tp->snd_una) &&
2119 		!after(tp->snd_sml, tp->snd_nxt);
2120 }
2121 
2122 /* Update snd_sml if this skb is under mss
2123  * Note that a TSO packet might end with a sub-mss segment
2124  * The test is really :
2125  * if ((skb->len % mss) != 0)
2126  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
2127  * But we can avoid doing the divide again given we already have
2128  *  skb_pcount = skb->len / mss_now
2129  */
2130 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
2131 				const struct sk_buff *skb)
2132 {
2133 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
2134 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
2135 }
2136 
2137 /* Return false, if packet can be sent now without violation Nagle's rules:
2138  * 1. It is full sized. (provided by caller in %partial bool)
2139  * 2. Or it contains FIN. (already checked by caller)
2140  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
2141  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
2142  *    With Minshall's modification: all sent small packets are ACKed.
2143  */
2144 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
2145 			    int nonagle)
2146 {
2147 	return partial &&
2148 		((nonagle & TCP_NAGLE_CORK) ||
2149 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
2150 }
2151 
2152 /* Return how many segs we'd like on a TSO packet,
2153  * depending on current pacing rate, and how close the peer is.
2154  *
2155  * Rationale is:
2156  * - For close peers, we rather send bigger packets to reduce
2157  *   cpu costs, because occasional losses will be repaired fast.
2158  * - For long distance/rtt flows, we would like to get ACK clocking
2159  *   with 1 ACK per ms.
2160  *
2161  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2162  * in bigger TSO bursts. We we cut the RTT-based allowance in half
2163  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2164  * is below 1500 bytes after 6 * ~500 usec = 3ms.
2165  */
2166 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2167 			    int min_tso_segs)
2168 {
2169 	unsigned long bytes;
2170 	u32 r;
2171 
2172 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2173 
2174 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2175 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2176 		bytes += sk->sk_gso_max_size >> r;
2177 
2178 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2179 
2180 	return max_t(u32, bytes / mss_now, min_tso_segs);
2181 }
2182 
2183 /* Return the number of segments we want in the skb we are transmitting.
2184  * See if congestion control module wants to decide; otherwise, autosize.
2185  */
2186 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2187 {
2188 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2189 	u32 min_tso, tso_segs;
2190 
2191 	min_tso = ca_ops->min_tso_segs ?
2192 			ca_ops->min_tso_segs(sk) :
2193 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2194 
2195 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2196 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2197 }
2198 
2199 /* Returns the portion of skb which can be sent right away */
2200 static unsigned int tcp_mss_split_point(const struct sock *sk,
2201 					const struct sk_buff *skb,
2202 					unsigned int mss_now,
2203 					unsigned int max_segs,
2204 					int nonagle)
2205 {
2206 	const struct tcp_sock *tp = tcp_sk(sk);
2207 	u32 partial, needed, window, max_len;
2208 
2209 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2210 	max_len = mss_now * max_segs;
2211 
2212 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2213 		return max_len;
2214 
2215 	needed = min(skb->len, window);
2216 
2217 	if (max_len <= needed)
2218 		return max_len;
2219 
2220 	partial = needed % mss_now;
2221 	/* If last segment is not a full MSS, check if Nagle rules allow us
2222 	 * to include this last segment in this skb.
2223 	 * Otherwise, we'll split the skb at last MSS boundary
2224 	 */
2225 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2226 		return needed - partial;
2227 
2228 	return needed;
2229 }
2230 
2231 /* Can at least one segment of SKB be sent right now, according to the
2232  * congestion window rules?  If so, return how many segments are allowed.
2233  */
2234 static u32 tcp_cwnd_test(const struct tcp_sock *tp)
2235 {
2236 	u32 in_flight, cwnd, halfcwnd;
2237 
2238 	in_flight = tcp_packets_in_flight(tp);
2239 	cwnd = tcp_snd_cwnd(tp);
2240 	if (in_flight >= cwnd)
2241 		return 0;
2242 
2243 	/* For better scheduling, ensure we have at least
2244 	 * 2 GSO packets in flight.
2245 	 */
2246 	halfcwnd = max(cwnd >> 1, 1U);
2247 	return min(halfcwnd, cwnd - in_flight);
2248 }
2249 
2250 /* Initialize TSO state of a skb.
2251  * This must be invoked the first time we consider transmitting
2252  * SKB onto the wire.
2253  */
2254 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2255 {
2256 	int tso_segs = tcp_skb_pcount(skb);
2257 
2258 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now))
2259 		return tcp_set_skb_tso_segs(skb, mss_now);
2260 
2261 	return tso_segs;
2262 }
2263 
2264 
2265 /* Return true if the Nagle test allows this packet to be
2266  * sent now.
2267  */
2268 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2269 				  unsigned int cur_mss, int nonagle)
2270 {
2271 	/* Nagle rule does not apply to frames, which sit in the middle of the
2272 	 * write_queue (they have no chances to get new data).
2273 	 *
2274 	 * This is implemented in the callers, where they modify the 'nonagle'
2275 	 * argument based upon the location of SKB in the send queue.
2276 	 */
2277 	if (nonagle & TCP_NAGLE_PUSH)
2278 		return true;
2279 
2280 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2281 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2282 		return true;
2283 
2284 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2285 		return true;
2286 
2287 	return false;
2288 }
2289 
2290 /* Does at least the first segment of SKB fit into the send window? */
2291 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2292 			     const struct sk_buff *skb,
2293 			     unsigned int cur_mss)
2294 {
2295 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2296 
2297 	if (skb->len > cur_mss)
2298 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2299 
2300 	return !after(end_seq, tcp_wnd_end(tp));
2301 }
2302 
2303 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2304  * which is put after SKB on the list.  It is very much like
2305  * tcp_fragment() except that it may make several kinds of assumptions
2306  * in order to speed up the splitting operation.  In particular, we
2307  * know that all the data is in scatter-gather pages, and that the
2308  * packet has never been sent out before (and thus is not cloned).
2309  */
2310 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2311 			unsigned int mss_now, gfp_t gfp)
2312 {
2313 	int nlen = skb->len - len;
2314 	struct sk_buff *buff;
2315 	u16 flags;
2316 
2317 	/* All of a TSO frame must be composed of paged data.  */
2318 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2319 
2320 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2321 	if (unlikely(!buff))
2322 		return -ENOMEM;
2323 	skb_copy_decrypted(buff, skb);
2324 	mptcp_skb_ext_copy(buff, skb);
2325 
2326 	sk_wmem_queued_add(sk, buff->truesize);
2327 	sk_mem_charge(sk, buff->truesize);
2328 	buff->truesize += nlen;
2329 	skb->truesize -= nlen;
2330 
2331 	/* Correct the sequence numbers. */
2332 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2333 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2334 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2335 
2336 	/* PSH and FIN should only be set in the second packet. */
2337 	flags = TCP_SKB_CB(skb)->tcp_flags;
2338 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2339 	TCP_SKB_CB(buff)->tcp_flags = flags;
2340 
2341 	tcp_skb_fragment_eor(skb, buff);
2342 
2343 	skb_split(skb, buff, len);
2344 	tcp_fragment_tstamp(skb, buff);
2345 
2346 	/* Fix up tso_factor for both original and new SKB.  */
2347 	tcp_set_skb_tso_segs(skb, mss_now);
2348 	tcp_set_skb_tso_segs(buff, mss_now);
2349 
2350 	/* Link BUFF into the send queue. */
2351 	__skb_header_release(buff);
2352 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2353 
2354 	return 0;
2355 }
2356 
2357 /* Try to defer sending, if possible, in order to minimize the amount
2358  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2359  *
2360  * This algorithm is from John Heffner.
2361  */
2362 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2363 				 bool *is_cwnd_limited,
2364 				 bool *is_rwnd_limited,
2365 				 u32 max_segs)
2366 {
2367 	const struct inet_connection_sock *icsk = inet_csk(sk);
2368 	u32 send_win, cong_win, limit, in_flight;
2369 	struct tcp_sock *tp = tcp_sk(sk);
2370 	struct sk_buff *head;
2371 	int win_divisor;
2372 	s64 delta;
2373 
2374 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2375 		goto send_now;
2376 
2377 	/* Avoid bursty behavior by allowing defer
2378 	 * only if the last write was recent (1 ms).
2379 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2380 	 * packets waiting in a qdisc or device for EDT delivery.
2381 	 */
2382 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2383 	if (delta > 0)
2384 		goto send_now;
2385 
2386 	in_flight = tcp_packets_in_flight(tp);
2387 
2388 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2389 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2390 
2391 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2392 
2393 	/* From in_flight test above, we know that cwnd > in_flight.  */
2394 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2395 
2396 	limit = min(send_win, cong_win);
2397 
2398 	/* If a full-sized TSO skb can be sent, do it. */
2399 	if (limit >= max_segs * tp->mss_cache)
2400 		goto send_now;
2401 
2402 	/* Middle in queue won't get any more data, full sendable already? */
2403 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2404 		goto send_now;
2405 
2406 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2407 	if (win_divisor) {
2408 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2409 
2410 		/* If at least some fraction of a window is available,
2411 		 * just use it.
2412 		 */
2413 		chunk /= win_divisor;
2414 		if (limit >= chunk)
2415 			goto send_now;
2416 	} else {
2417 		/* Different approach, try not to defer past a single
2418 		 * ACK.  Receiver should ACK every other full sized
2419 		 * frame, so if we have space for more than 3 frames
2420 		 * then send now.
2421 		 */
2422 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2423 			goto send_now;
2424 	}
2425 
2426 	/* TODO : use tsorted_sent_queue ? */
2427 	head = tcp_rtx_queue_head(sk);
2428 	if (!head)
2429 		goto send_now;
2430 	delta = tp->tcp_clock_cache - head->tstamp;
2431 	/* If next ACK is likely to come too late (half srtt), do not defer */
2432 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2433 		goto send_now;
2434 
2435 	/* Ok, it looks like it is advisable to defer.
2436 	 * Three cases are tracked :
2437 	 * 1) We are cwnd-limited
2438 	 * 2) We are rwnd-limited
2439 	 * 3) We are application limited.
2440 	 */
2441 	if (cong_win < send_win) {
2442 		if (cong_win <= skb->len) {
2443 			*is_cwnd_limited = true;
2444 			return true;
2445 		}
2446 	} else {
2447 		if (send_win <= skb->len) {
2448 			*is_rwnd_limited = true;
2449 			return true;
2450 		}
2451 	}
2452 
2453 	/* If this packet won't get more data, do not wait. */
2454 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2455 	    TCP_SKB_CB(skb)->eor)
2456 		goto send_now;
2457 
2458 	return true;
2459 
2460 send_now:
2461 	return false;
2462 }
2463 
2464 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2465 {
2466 	struct inet_connection_sock *icsk = inet_csk(sk);
2467 	struct tcp_sock *tp = tcp_sk(sk);
2468 	struct net *net = sock_net(sk);
2469 	u32 interval;
2470 	s32 delta;
2471 
2472 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2473 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2474 	if (unlikely(delta >= interval * HZ)) {
2475 		int mss = tcp_current_mss(sk);
2476 
2477 		/* Update current search range */
2478 		icsk->icsk_mtup.probe_size = 0;
2479 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2480 			sizeof(struct tcphdr) +
2481 			icsk->icsk_af_ops->net_header_len;
2482 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2483 
2484 		/* Update probe time stamp */
2485 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2486 	}
2487 }
2488 
2489 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2490 {
2491 	struct sk_buff *skb, *next;
2492 
2493 	skb = tcp_send_head(sk);
2494 	tcp_for_write_queue_from_safe(skb, next, sk) {
2495 		if (len <= skb->len)
2496 			break;
2497 
2498 		if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2499 			return false;
2500 
2501 		len -= skb->len;
2502 	}
2503 
2504 	return true;
2505 }
2506 
2507 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2508 			     int probe_size)
2509 {
2510 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2511 	int i, todo, len = 0, nr_frags = 0;
2512 	const struct sk_buff *skb;
2513 
2514 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2515 		return -ENOMEM;
2516 
2517 	skb_queue_walk(&sk->sk_write_queue, skb) {
2518 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2519 
2520 		if (skb_headlen(skb))
2521 			return -EINVAL;
2522 
2523 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2524 			if (len >= probe_size)
2525 				goto commit;
2526 			todo = min_t(int, skb_frag_size(fragfrom),
2527 				     probe_size - len);
2528 			len += todo;
2529 			if (lastfrag &&
2530 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2531 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2532 						      skb_frag_size(lastfrag)) {
2533 				skb_frag_size_add(lastfrag, todo);
2534 				continue;
2535 			}
2536 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2537 				return -E2BIG;
2538 			skb_frag_page_copy(fragto, fragfrom);
2539 			skb_frag_off_copy(fragto, fragfrom);
2540 			skb_frag_size_set(fragto, todo);
2541 			nr_frags++;
2542 			lastfrag = fragto++;
2543 		}
2544 	}
2545 commit:
2546 	WARN_ON_ONCE(len != probe_size);
2547 	for (i = 0; i < nr_frags; i++)
2548 		skb_frag_ref(to, i);
2549 
2550 	skb_shinfo(to)->nr_frags = nr_frags;
2551 	to->truesize += probe_size;
2552 	to->len += probe_size;
2553 	to->data_len += probe_size;
2554 	__skb_header_release(to);
2555 	return 0;
2556 }
2557 
2558 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if
2559  * all its payload was moved to another one (dst).
2560  * Make sure to transfer tcp_flags, eor, and tstamp.
2561  */
2562 static void tcp_eat_one_skb(struct sock *sk,
2563 			    struct sk_buff *dst,
2564 			    struct sk_buff *src)
2565 {
2566 	TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags;
2567 	TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor;
2568 	tcp_skb_collapse_tstamp(dst, src);
2569 	tcp_unlink_write_queue(src, sk);
2570 	tcp_wmem_free_skb(sk, src);
2571 }
2572 
2573 /* Create a new MTU probe if we are ready.
2574  * MTU probe is regularly attempting to increase the path MTU by
2575  * deliberately sending larger packets.  This discovers routing
2576  * changes resulting in larger path MTUs.
2577  *
2578  * Returns 0 if we should wait to probe (no cwnd available),
2579  *         1 if a probe was sent,
2580  *         -1 otherwise
2581  */
2582 static int tcp_mtu_probe(struct sock *sk)
2583 {
2584 	struct inet_connection_sock *icsk = inet_csk(sk);
2585 	struct tcp_sock *tp = tcp_sk(sk);
2586 	struct sk_buff *skb, *nskb, *next;
2587 	struct net *net = sock_net(sk);
2588 	int probe_size;
2589 	int size_needed;
2590 	int copy, len;
2591 	int mss_now;
2592 	int interval;
2593 
2594 	/* Not currently probing/verifying,
2595 	 * not in recovery,
2596 	 * have enough cwnd, and
2597 	 * not SACKing (the variable headers throw things off)
2598 	 */
2599 	if (likely(!icsk->icsk_mtup.enabled ||
2600 		   icsk->icsk_mtup.probe_size ||
2601 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2602 		   tcp_snd_cwnd(tp) < 11 ||
2603 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2604 		return -1;
2605 
2606 	/* Use binary search for probe_size between tcp_mss_base,
2607 	 * and current mss_clamp. if (search_high - search_low)
2608 	 * smaller than a threshold, backoff from probing.
2609 	 */
2610 	mss_now = tcp_current_mss(sk);
2611 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2612 				    icsk->icsk_mtup.search_low) >> 1);
2613 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2614 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2615 	/* When misfortune happens, we are reprobing actively,
2616 	 * and then reprobe timer has expired. We stick with current
2617 	 * probing process by not resetting search range to its orignal.
2618 	 */
2619 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2620 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2621 		/* Check whether enough time has elaplased for
2622 		 * another round of probing.
2623 		 */
2624 		tcp_mtu_check_reprobe(sk);
2625 		return -1;
2626 	}
2627 
2628 	/* Have enough data in the send queue to probe? */
2629 	if (tp->write_seq - tp->snd_nxt < size_needed)
2630 		return -1;
2631 
2632 	if (tp->snd_wnd < size_needed)
2633 		return -1;
2634 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2635 		return 0;
2636 
2637 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2638 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2639 		if (!tcp_packets_in_flight(tp))
2640 			return -1;
2641 		else
2642 			return 0;
2643 	}
2644 
2645 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2646 		return -1;
2647 
2648 	/* We're allowed to probe.  Build it now. */
2649 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2650 	if (!nskb)
2651 		return -1;
2652 
2653 	/* build the payload, and be prepared to abort if this fails. */
2654 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2655 		tcp_skb_tsorted_anchor_cleanup(nskb);
2656 		consume_skb(nskb);
2657 		return -1;
2658 	}
2659 	sk_wmem_queued_add(sk, nskb->truesize);
2660 	sk_mem_charge(sk, nskb->truesize);
2661 
2662 	skb = tcp_send_head(sk);
2663 	skb_copy_decrypted(nskb, skb);
2664 	mptcp_skb_ext_copy(nskb, skb);
2665 
2666 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2667 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2668 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2669 
2670 	tcp_insert_write_queue_before(nskb, skb, sk);
2671 	tcp_highest_sack_replace(sk, skb, nskb);
2672 
2673 	len = 0;
2674 	tcp_for_write_queue_from_safe(skb, next, sk) {
2675 		copy = min_t(int, skb->len, probe_size - len);
2676 
2677 		if (skb->len <= copy) {
2678 			tcp_eat_one_skb(sk, nskb, skb);
2679 		} else {
2680 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2681 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2682 			__pskb_trim_head(skb, copy);
2683 			tcp_set_skb_tso_segs(skb, mss_now);
2684 			TCP_SKB_CB(skb)->seq += copy;
2685 		}
2686 
2687 		len += copy;
2688 
2689 		if (len >= probe_size)
2690 			break;
2691 	}
2692 	tcp_init_tso_segs(nskb, nskb->len);
2693 
2694 	/* We're ready to send.  If this fails, the probe will
2695 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2696 	 */
2697 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2698 		/* Decrement cwnd here because we are sending
2699 		 * effectively two packets. */
2700 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2701 		tcp_event_new_data_sent(sk, nskb);
2702 
2703 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2704 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2705 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2706 
2707 		return 1;
2708 	}
2709 
2710 	return -1;
2711 }
2712 
2713 static bool tcp_pacing_check(struct sock *sk)
2714 {
2715 	struct tcp_sock *tp = tcp_sk(sk);
2716 
2717 	if (!tcp_needs_internal_pacing(sk))
2718 		return false;
2719 
2720 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2721 		return false;
2722 
2723 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2724 		hrtimer_start(&tp->pacing_timer,
2725 			      ns_to_ktime(tp->tcp_wstamp_ns),
2726 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2727 		sock_hold(sk);
2728 	}
2729 	return true;
2730 }
2731 
2732 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2733 {
2734 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2735 
2736 	/* No skb in the rtx queue. */
2737 	if (!node)
2738 		return true;
2739 
2740 	/* Only one skb in rtx queue. */
2741 	return !node->rb_left && !node->rb_right;
2742 }
2743 
2744 /* TCP Small Queues :
2745  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2746  * (These limits are doubled for retransmits)
2747  * This allows for :
2748  *  - better RTT estimation and ACK scheduling
2749  *  - faster recovery
2750  *  - high rates
2751  * Alas, some drivers / subsystems require a fair amount
2752  * of queued bytes to ensure line rate.
2753  * One example is wifi aggregation (802.11 AMPDU)
2754  */
2755 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2756 				  unsigned int factor)
2757 {
2758 	unsigned long limit;
2759 
2760 	limit = max_t(unsigned long,
2761 		      2 * skb->truesize,
2762 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2763 	limit = min_t(unsigned long, limit,
2764 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2765 	limit <<= factor;
2766 
2767 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2768 	    tcp_sk(sk)->tcp_tx_delay) {
2769 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2770 				  tcp_sk(sk)->tcp_tx_delay;
2771 
2772 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2773 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2774 		 * USEC_PER_SEC is approximated by 2^20.
2775 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2776 		 */
2777 		extra_bytes >>= (20 - 1);
2778 		limit += extra_bytes;
2779 	}
2780 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2781 		/* Always send skb if rtx queue is empty or has one skb.
2782 		 * No need to wait for TX completion to call us back,
2783 		 * after softirq schedule.
2784 		 * This helps when TX completions are delayed too much.
2785 		 */
2786 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2787 			return false;
2788 
2789 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2790 		/* It is possible TX completion already happened
2791 		 * before we set TSQ_THROTTLED, so we must
2792 		 * test again the condition.
2793 		 */
2794 		smp_mb__after_atomic();
2795 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2796 			return true;
2797 	}
2798 	return false;
2799 }
2800 
2801 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2802 {
2803 	const u32 now = tcp_jiffies32;
2804 	enum tcp_chrono old = tp->chrono_type;
2805 
2806 	if (old > TCP_CHRONO_UNSPEC)
2807 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2808 	tp->chrono_start = now;
2809 	tp->chrono_type = new;
2810 }
2811 
2812 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2813 {
2814 	struct tcp_sock *tp = tcp_sk(sk);
2815 
2816 	/* If there are multiple conditions worthy of tracking in a
2817 	 * chronograph then the highest priority enum takes precedence
2818 	 * over the other conditions. So that if something "more interesting"
2819 	 * starts happening, stop the previous chrono and start a new one.
2820 	 */
2821 	if (type > tp->chrono_type)
2822 		tcp_chrono_set(tp, type);
2823 }
2824 
2825 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2826 {
2827 	struct tcp_sock *tp = tcp_sk(sk);
2828 
2829 
2830 	/* There are multiple conditions worthy of tracking in a
2831 	 * chronograph, so that the highest priority enum takes
2832 	 * precedence over the other conditions (see tcp_chrono_start).
2833 	 * If a condition stops, we only stop chrono tracking if
2834 	 * it's the "most interesting" or current chrono we are
2835 	 * tracking and starts busy chrono if we have pending data.
2836 	 */
2837 	if (tcp_rtx_and_write_queues_empty(sk))
2838 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2839 	else if (type == tp->chrono_type)
2840 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2841 }
2842 
2843 /* First skb in the write queue is smaller than ideal packet size.
2844  * Check if we can move payload from the second skb in the queue.
2845  */
2846 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount)
2847 {
2848 	struct sk_buff *next_skb = skb->next;
2849 	unsigned int nlen;
2850 
2851 	if (tcp_skb_is_last(sk, skb))
2852 		return;
2853 
2854 	if (!tcp_skb_can_collapse(skb, next_skb))
2855 		return;
2856 
2857 	nlen = min_t(u32, amount, next_skb->len);
2858 	if (!nlen || !skb_shift(skb, next_skb, nlen))
2859 		return;
2860 
2861 	TCP_SKB_CB(skb)->end_seq += nlen;
2862 	TCP_SKB_CB(next_skb)->seq += nlen;
2863 
2864 	if (!next_skb->len) {
2865 		/* In case FIN is set, we need to update end_seq */
2866 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2867 
2868 		tcp_eat_one_skb(sk, skb, next_skb);
2869 	}
2870 }
2871 
2872 /* This routine writes packets to the network.  It advances the
2873  * send_head.  This happens as incoming acks open up the remote
2874  * window for us.
2875  *
2876  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2877  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2878  * account rare use of URG, this is not a big flaw.
2879  *
2880  * Send at most one packet when push_one > 0. Temporarily ignore
2881  * cwnd limit to force at most one packet out when push_one == 2.
2882 
2883  * Returns true, if no segments are in flight and we have queued segments,
2884  * but cannot send anything now because of SWS or another problem.
2885  */
2886 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2887 			   int push_one, gfp_t gfp)
2888 {
2889 	struct tcp_sock *tp = tcp_sk(sk);
2890 	struct sk_buff *skb;
2891 	unsigned int tso_segs, sent_pkts;
2892 	u32 cwnd_quota, max_segs;
2893 	int result;
2894 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2895 
2896 	sent_pkts = 0;
2897 
2898 	tcp_mstamp_refresh(tp);
2899 
2900 	/* AccECN option beacon depends on mstamp, it may change mss */
2901 	if (tcp_ecn_mode_accecn(tp) && tcp_accecn_option_beacon_check(sk))
2902 		mss_now = tcp_current_mss(sk);
2903 
2904 	if (!push_one) {
2905 		/* Do MTU probing. */
2906 		result = tcp_mtu_probe(sk);
2907 		if (!result) {
2908 			return false;
2909 		} else if (result > 0) {
2910 			sent_pkts = 1;
2911 		}
2912 	}
2913 
2914 	max_segs = tcp_tso_segs(sk, mss_now);
2915 	while ((skb = tcp_send_head(sk))) {
2916 		unsigned int limit;
2917 		int missing_bytes;
2918 
2919 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2920 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2921 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2922 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
2923 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2924 			tcp_init_tso_segs(skb, mss_now);
2925 			goto repair; /* Skip network transmission */
2926 		}
2927 
2928 		if (tcp_pacing_check(sk))
2929 			break;
2930 
2931 		cwnd_quota = tcp_cwnd_test(tp);
2932 		if (!cwnd_quota) {
2933 			if (push_one == 2)
2934 				/* Force out a loss probe pkt. */
2935 				cwnd_quota = 1;
2936 			else
2937 				break;
2938 		}
2939 		cwnd_quota = min(cwnd_quota, max_segs);
2940 		missing_bytes = cwnd_quota * mss_now - skb->len;
2941 		if (missing_bytes > 0)
2942 			tcp_grow_skb(sk, skb, missing_bytes);
2943 
2944 		tso_segs = tcp_set_skb_tso_segs(skb, mss_now);
2945 
2946 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2947 			is_rwnd_limited = true;
2948 			break;
2949 		}
2950 
2951 		if (tso_segs == 1) {
2952 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2953 						     (tcp_skb_is_last(sk, skb) ?
2954 						      nonagle : TCP_NAGLE_PUSH))))
2955 				break;
2956 		} else {
2957 			if (!push_one &&
2958 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2959 						 &is_rwnd_limited, max_segs))
2960 				break;
2961 		}
2962 
2963 		limit = mss_now;
2964 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2965 			limit = tcp_mss_split_point(sk, skb, mss_now,
2966 						    cwnd_quota,
2967 						    nonagle);
2968 
2969 		if (skb->len > limit &&
2970 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2971 			break;
2972 
2973 		if (tcp_small_queue_check(sk, skb, 0))
2974 			break;
2975 
2976 		/* Argh, we hit an empty skb(), presumably a thread
2977 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2978 		 * We do not want to send a pure-ack packet and have
2979 		 * a strange looking rtx queue with empty packet(s).
2980 		 */
2981 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2982 			break;
2983 
2984 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2985 			break;
2986 
2987 repair:
2988 		/* Advance the send_head.  This one is sent out.
2989 		 * This call will increment packets_out.
2990 		 */
2991 		tcp_event_new_data_sent(sk, skb);
2992 
2993 		tcp_minshall_update(tp, mss_now, skb);
2994 		sent_pkts += tcp_skb_pcount(skb);
2995 
2996 		if (push_one)
2997 			break;
2998 	}
2999 
3000 	if (is_rwnd_limited)
3001 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
3002 	else
3003 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
3004 
3005 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
3006 	if (likely(sent_pkts || is_cwnd_limited))
3007 		tcp_cwnd_validate(sk, is_cwnd_limited);
3008 
3009 	if (likely(sent_pkts)) {
3010 		if (tcp_in_cwnd_reduction(sk))
3011 			tp->prr_out += sent_pkts;
3012 
3013 		/* Send one loss probe per tail loss episode. */
3014 		if (push_one != 2)
3015 			tcp_schedule_loss_probe(sk, false);
3016 		return false;
3017 	}
3018 	return !tp->packets_out && !tcp_write_queue_empty(sk);
3019 }
3020 
3021 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
3022 {
3023 	struct inet_connection_sock *icsk = inet_csk(sk);
3024 	struct tcp_sock *tp = tcp_sk(sk);
3025 	u32 timeout, timeout_us, rto_delta_us;
3026 	int early_retrans;
3027 
3028 	/* Don't do any loss probe on a Fast Open connection before 3WHS
3029 	 * finishes.
3030 	 */
3031 	if (rcu_access_pointer(tp->fastopen_rsk))
3032 		return false;
3033 
3034 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
3035 	/* Schedule a loss probe in 2*RTT for SACK capable connections
3036 	 * not in loss recovery, that are either limited by cwnd or application.
3037 	 */
3038 	if ((early_retrans != 3 && early_retrans != 4) ||
3039 	    !tp->packets_out || !tcp_is_sack(tp) ||
3040 	    (icsk->icsk_ca_state != TCP_CA_Open &&
3041 	     icsk->icsk_ca_state != TCP_CA_CWR))
3042 		return false;
3043 
3044 	/* Probe timeout is 2*rtt. Add minimum RTO to account
3045 	 * for delayed ack when there's one outstanding packet. If no RTT
3046 	 * sample is available then probe after TCP_TIMEOUT_INIT.
3047 	 */
3048 	if (tp->srtt_us) {
3049 		timeout_us = tp->srtt_us >> 2;
3050 		if (tp->packets_out == 1)
3051 			timeout_us += tcp_rto_min_us(sk);
3052 		else
3053 			timeout_us += TCP_TIMEOUT_MIN_US;
3054 		timeout = usecs_to_jiffies(timeout_us);
3055 	} else {
3056 		timeout = TCP_TIMEOUT_INIT;
3057 	}
3058 
3059 	/* If the RTO formula yields an earlier time, then use that time. */
3060 	rto_delta_us = advancing_rto ?
3061 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
3062 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
3063 	if (rto_delta_us > 0)
3064 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
3065 
3066 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, true);
3067 	return true;
3068 }
3069 
3070 /* Thanks to skb fast clones, we can detect if a prior transmit of
3071  * a packet is still in a qdisc or driver queue.
3072  * In this case, there is very little point doing a retransmit !
3073  */
3074 static bool skb_still_in_host_queue(struct sock *sk,
3075 				    const struct sk_buff *skb)
3076 {
3077 	if (unlikely(skb_fclone_busy(sk, skb))) {
3078 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
3079 		smp_mb__after_atomic();
3080 		if (skb_fclone_busy(sk, skb)) {
3081 			NET_INC_STATS(sock_net(sk),
3082 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
3083 			return true;
3084 		}
3085 	}
3086 	return false;
3087 }
3088 
3089 /* When probe timeout (PTO) fires, try send a new segment if possible, else
3090  * retransmit the last segment.
3091  */
3092 void tcp_send_loss_probe(struct sock *sk)
3093 {
3094 	struct tcp_sock *tp = tcp_sk(sk);
3095 	struct sk_buff *skb;
3096 	int pcount;
3097 	int mss = tcp_current_mss(sk);
3098 
3099 	/* At most one outstanding TLP */
3100 	if (tp->tlp_high_seq)
3101 		goto rearm_timer;
3102 
3103 	tp->tlp_retrans = 0;
3104 	skb = tcp_send_head(sk);
3105 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
3106 		pcount = tp->packets_out;
3107 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
3108 		if (tp->packets_out > pcount)
3109 			goto probe_sent;
3110 		goto rearm_timer;
3111 	}
3112 	skb = skb_rb_last(&sk->tcp_rtx_queue);
3113 	if (unlikely(!skb)) {
3114 		tcp_warn_once(sk, tp->packets_out, "invalid inflight: ");
3115 		smp_store_release(&inet_csk(sk)->icsk_pending, 0);
3116 		return;
3117 	}
3118 
3119 	if (skb_still_in_host_queue(sk, skb))
3120 		goto rearm_timer;
3121 
3122 	pcount = tcp_skb_pcount(skb);
3123 	if (WARN_ON(!pcount))
3124 		goto rearm_timer;
3125 
3126 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
3127 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
3128 					  (pcount - 1) * mss, mss,
3129 					  GFP_ATOMIC)))
3130 			goto rearm_timer;
3131 		skb = skb_rb_next(skb);
3132 	}
3133 
3134 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
3135 		goto rearm_timer;
3136 
3137 	if (__tcp_retransmit_skb(sk, skb, 1))
3138 		goto rearm_timer;
3139 
3140 	tp->tlp_retrans = 1;
3141 
3142 probe_sent:
3143 	/* Record snd_nxt for loss detection. */
3144 	tp->tlp_high_seq = tp->snd_nxt;
3145 
3146 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
3147 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
3148 	smp_store_release(&inet_csk(sk)->icsk_pending, 0);
3149 rearm_timer:
3150 	tcp_rearm_rto(sk);
3151 }
3152 
3153 /* Push out any pending frames which were held back due to
3154  * TCP_CORK or attempt at coalescing tiny packets.
3155  * The socket must be locked by the caller.
3156  */
3157 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
3158 			       int nonagle)
3159 {
3160 	/* If we are closed, the bytes will have to remain here.
3161 	 * In time closedown will finish, we empty the write queue and
3162 	 * all will be happy.
3163 	 */
3164 	if (unlikely(sk->sk_state == TCP_CLOSE))
3165 		return;
3166 
3167 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
3168 			   sk_gfp_mask(sk, GFP_ATOMIC)))
3169 		tcp_check_probe_timer(sk);
3170 }
3171 
3172 /* Send _single_ skb sitting at the send head. This function requires
3173  * true push pending frames to setup probe timer etc.
3174  */
3175 void tcp_push_one(struct sock *sk, unsigned int mss_now)
3176 {
3177 	struct sk_buff *skb = tcp_send_head(sk);
3178 
3179 	BUG_ON(!skb || skb->len < mss_now);
3180 
3181 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
3182 }
3183 
3184 /* This function returns the amount that we can raise the
3185  * usable window based on the following constraints
3186  *
3187  * 1. The window can never be shrunk once it is offered (RFC 793)
3188  * 2. We limit memory per socket
3189  *
3190  * RFC 1122:
3191  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3192  *  RECV.NEXT + RCV.WIN fixed until:
3193  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3194  *
3195  * i.e. don't raise the right edge of the window until you can raise
3196  * it at least MSS bytes.
3197  *
3198  * Unfortunately, the recommended algorithm breaks header prediction,
3199  * since header prediction assumes th->window stays fixed.
3200  *
3201  * Strictly speaking, keeping th->window fixed violates the receiver
3202  * side SWS prevention criteria. The problem is that under this rule
3203  * a stream of single byte packets will cause the right side of the
3204  * window to always advance by a single byte.
3205  *
3206  * Of course, if the sender implements sender side SWS prevention
3207  * then this will not be a problem.
3208  *
3209  * BSD seems to make the following compromise:
3210  *
3211  *	If the free space is less than the 1/4 of the maximum
3212  *	space available and the free space is less than 1/2 mss,
3213  *	then set the window to 0.
3214  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3215  *	Otherwise, just prevent the window from shrinking
3216  *	and from being larger than the largest representable value.
3217  *
3218  * This prevents incremental opening of the window in the regime
3219  * where TCP is limited by the speed of the reader side taking
3220  * data out of the TCP receive queue. It does nothing about
3221  * those cases where the window is constrained on the sender side
3222  * because the pipeline is full.
3223  *
3224  * BSD also seems to "accidentally" limit itself to windows that are a
3225  * multiple of MSS, at least until the free space gets quite small.
3226  * This would appear to be a side effect of the mbuf implementation.
3227  * Combining these two algorithms results in the observed behavior
3228  * of having a fixed window size at almost all times.
3229  *
3230  * Below we obtain similar behavior by forcing the offered window to
3231  * a multiple of the mss when it is feasible to do so.
3232  *
3233  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3234  * Regular options like TIMESTAMP are taken into account.
3235  */
3236 u32 __tcp_select_window(struct sock *sk)
3237 {
3238 	struct inet_connection_sock *icsk = inet_csk(sk);
3239 	struct tcp_sock *tp = tcp_sk(sk);
3240 	struct net *net = sock_net(sk);
3241 	/* MSS for the peer's data.  Previous versions used mss_clamp
3242 	 * here.  I don't know if the value based on our guesses
3243 	 * of peer's MSS is better for the performance.  It's more correct
3244 	 * but may be worse for the performance because of rcv_mss
3245 	 * fluctuations.  --SAW  1998/11/1
3246 	 */
3247 	int mss = icsk->icsk_ack.rcv_mss;
3248 	int free_space = tcp_space(sk);
3249 	int allowed_space = tcp_full_space(sk);
3250 	int full_space, window;
3251 
3252 	if (sk_is_mptcp(sk))
3253 		mptcp_space(sk, &free_space, &allowed_space);
3254 
3255 	full_space = min_t(int, tp->window_clamp, allowed_space);
3256 
3257 	if (unlikely(mss > full_space)) {
3258 		mss = full_space;
3259 		if (mss <= 0)
3260 			return 0;
3261 	}
3262 
3263 	/* Only allow window shrink if the sysctl is enabled and we have
3264 	 * a non-zero scaling factor in effect.
3265 	 */
3266 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3267 		goto shrink_window_allowed;
3268 
3269 	/* do not allow window to shrink */
3270 
3271 	if (free_space < (full_space >> 1)) {
3272 		icsk->icsk_ack.quick = 0;
3273 
3274 		if (tcp_under_memory_pressure(sk))
3275 			tcp_adjust_rcv_ssthresh(sk);
3276 
3277 		/* free_space might become our new window, make sure we don't
3278 		 * increase it due to wscale.
3279 		 */
3280 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3281 
3282 		/* if free space is less than mss estimate, or is below 1/16th
3283 		 * of the maximum allowed, try to move to zero-window, else
3284 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3285 		 * new incoming data is dropped due to memory limits.
3286 		 * With large window, mss test triggers way too late in order
3287 		 * to announce zero window in time before rmem limit kicks in.
3288 		 */
3289 		if (free_space < (allowed_space >> 4) || free_space < mss)
3290 			return 0;
3291 	}
3292 
3293 	if (free_space > tp->rcv_ssthresh)
3294 		free_space = tp->rcv_ssthresh;
3295 
3296 	/* Don't do rounding if we are using window scaling, since the
3297 	 * scaled window will not line up with the MSS boundary anyway.
3298 	 */
3299 	if (tp->rx_opt.rcv_wscale) {
3300 		window = free_space;
3301 
3302 		/* Advertise enough space so that it won't get scaled away.
3303 		 * Import case: prevent zero window announcement if
3304 		 * 1<<rcv_wscale > mss.
3305 		 */
3306 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3307 	} else {
3308 		window = tp->rcv_wnd;
3309 		/* Get the largest window that is a nice multiple of mss.
3310 		 * Window clamp already applied above.
3311 		 * If our current window offering is within 1 mss of the
3312 		 * free space we just keep it. This prevents the divide
3313 		 * and multiply from happening most of the time.
3314 		 * We also don't do any window rounding when the free space
3315 		 * is too small.
3316 		 */
3317 		if (window <= free_space - mss || window > free_space)
3318 			window = rounddown(free_space, mss);
3319 		else if (mss == full_space &&
3320 			 free_space > window + (full_space >> 1))
3321 			window = free_space;
3322 	}
3323 
3324 	return window;
3325 
3326 shrink_window_allowed:
3327 	/* new window should always be an exact multiple of scaling factor */
3328 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3329 
3330 	if (free_space < (full_space >> 1)) {
3331 		icsk->icsk_ack.quick = 0;
3332 
3333 		if (tcp_under_memory_pressure(sk))
3334 			tcp_adjust_rcv_ssthresh(sk);
3335 
3336 		/* if free space is too low, return a zero window */
3337 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3338 			free_space < (1 << tp->rx_opt.rcv_wscale))
3339 			return 0;
3340 	}
3341 
3342 	if (free_space > tp->rcv_ssthresh) {
3343 		free_space = tp->rcv_ssthresh;
3344 		/* new window should always be an exact multiple of scaling factor
3345 		 *
3346 		 * For this case, we ALIGN "up" (increase free_space) because
3347 		 * we know free_space is not zero here, it has been reduced from
3348 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3349 		 * (unlike sk_rcvbuf).
3350 		 */
3351 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3352 	}
3353 
3354 	return free_space;
3355 }
3356 
3357 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3358 			     const struct sk_buff *next_skb)
3359 {
3360 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3361 		const struct skb_shared_info *next_shinfo =
3362 			skb_shinfo(next_skb);
3363 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3364 
3365 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3366 		shinfo->tskey = next_shinfo->tskey;
3367 		TCP_SKB_CB(skb)->txstamp_ack |=
3368 			TCP_SKB_CB(next_skb)->txstamp_ack;
3369 	}
3370 }
3371 
3372 /* Collapses two adjacent SKB's during retransmission. */
3373 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3374 {
3375 	struct tcp_sock *tp = tcp_sk(sk);
3376 	struct sk_buff *next_skb = skb_rb_next(skb);
3377 	int next_skb_size;
3378 
3379 	next_skb_size = next_skb->len;
3380 
3381 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3382 
3383 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3384 		return false;
3385 
3386 	tcp_highest_sack_replace(sk, next_skb, skb);
3387 
3388 	/* Update sequence range on original skb. */
3389 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3390 
3391 	/* Merge over control information. This moves PSH/FIN etc. over */
3392 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3393 
3394 	/* All done, get rid of second SKB and account for it so
3395 	 * packet counting does not break.
3396 	 */
3397 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3398 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3399 
3400 	/* changed transmit queue under us so clear hints */
3401 	if (next_skb == tp->retransmit_skb_hint)
3402 		tp->retransmit_skb_hint = skb;
3403 
3404 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3405 
3406 	tcp_skb_collapse_tstamp(skb, next_skb);
3407 
3408 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3409 	return true;
3410 }
3411 
3412 /* Check if coalescing SKBs is legal. */
3413 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3414 {
3415 	if (tcp_skb_pcount(skb) > 1)
3416 		return false;
3417 	if (skb_cloned(skb))
3418 		return false;
3419 	if (!skb_frags_readable(skb))
3420 		return false;
3421 	/* Some heuristics for collapsing over SACK'd could be invented */
3422 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3423 		return false;
3424 
3425 	return true;
3426 }
3427 
3428 /* Collapse packets in the retransmit queue to make to create
3429  * less packets on the wire. This is only done on retransmission.
3430  */
3431 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3432 				     int space)
3433 {
3434 	struct tcp_sock *tp = tcp_sk(sk);
3435 	struct sk_buff *skb = to, *tmp;
3436 	bool first = true;
3437 
3438 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3439 		return;
3440 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3441 		return;
3442 
3443 	skb_rbtree_walk_from_safe(skb, tmp) {
3444 		if (!tcp_can_collapse(sk, skb))
3445 			break;
3446 
3447 		if (!tcp_skb_can_collapse(to, skb))
3448 			break;
3449 
3450 		space -= skb->len;
3451 
3452 		if (first) {
3453 			first = false;
3454 			continue;
3455 		}
3456 
3457 		if (space < 0)
3458 			break;
3459 
3460 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3461 			break;
3462 
3463 		if (!tcp_collapse_retrans(sk, to))
3464 			break;
3465 	}
3466 }
3467 
3468 /* This retransmits one SKB.  Policy decisions and retransmit queue
3469  * state updates are done by the caller.  Returns non-zero if an
3470  * error occurred which prevented the send.
3471  */
3472 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3473 {
3474 	struct inet_connection_sock *icsk = inet_csk(sk);
3475 	struct tcp_sock *tp = tcp_sk(sk);
3476 	unsigned int cur_mss;
3477 	int diff, len, err;
3478 	int avail_wnd;
3479 
3480 	/* Inconclusive MTU probe */
3481 	if (icsk->icsk_mtup.probe_size)
3482 		icsk->icsk_mtup.probe_size = 0;
3483 
3484 	if (skb_still_in_host_queue(sk, skb)) {
3485 		err = -EBUSY;
3486 		goto out;
3487 	}
3488 
3489 start:
3490 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3491 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3492 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3493 			TCP_SKB_CB(skb)->seq++;
3494 			goto start;
3495 		}
3496 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3497 			WARN_ON_ONCE(1);
3498 			err = -EINVAL;
3499 			goto out;
3500 		}
3501 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) {
3502 			err = -ENOMEM;
3503 			goto out;
3504 		}
3505 	}
3506 
3507 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) {
3508 		err = -EHOSTUNREACH; /* Routing failure or similar. */
3509 		goto out;
3510 	}
3511 
3512 	cur_mss = tcp_current_mss(sk);
3513 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3514 
3515 	/* If receiver has shrunk his window, and skb is out of
3516 	 * new window, do not retransmit it. The exception is the
3517 	 * case, when window is shrunk to zero. In this case
3518 	 * our retransmit of one segment serves as a zero window probe.
3519 	 */
3520 	if (avail_wnd <= 0) {
3521 		if (TCP_SKB_CB(skb)->seq != tp->snd_una) {
3522 			err = -EAGAIN;
3523 			goto out;
3524 		}
3525 		avail_wnd = cur_mss;
3526 	}
3527 
3528 	len = cur_mss * segs;
3529 	if (len > avail_wnd) {
3530 		len = rounddown(avail_wnd, cur_mss);
3531 		if (!len)
3532 			len = avail_wnd;
3533 	}
3534 	if (skb->len > len) {
3535 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3536 				 cur_mss, GFP_ATOMIC)) {
3537 			err = -ENOMEM;  /* We'll try again later. */
3538 			goto out;
3539 		}
3540 	} else {
3541 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) {
3542 			err = -ENOMEM;
3543 			goto out;
3544 		}
3545 
3546 		diff = tcp_skb_pcount(skb);
3547 		tcp_set_skb_tso_segs(skb, cur_mss);
3548 		diff -= tcp_skb_pcount(skb);
3549 		if (diff)
3550 			tcp_adjust_pcount(sk, skb, diff);
3551 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3552 		if (skb->len < avail_wnd)
3553 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3554 	}
3555 
3556 	/* RFC3168, section 6.1.1.1. ECN fallback
3557 	 * As AccECN uses the same SYN flags (+ AE), this check covers both
3558 	 * cases.
3559 	 */
3560 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3561 		tcp_ecn_clear_syn(sk, skb);
3562 
3563 	/* Update global and local TCP statistics. */
3564 	segs = tcp_skb_pcount(skb);
3565 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3566 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3567 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3568 	tp->total_retrans += segs;
3569 	tp->bytes_retrans += skb->len;
3570 
3571 	/* make sure skb->data is aligned on arches that require it
3572 	 * and check if ack-trimming & collapsing extended the headroom
3573 	 * beyond what csum_start can cover.
3574 	 */
3575 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3576 		     skb_headroom(skb) >= 0xFFFF)) {
3577 		struct sk_buff *nskb;
3578 
3579 		tcp_skb_tsorted_save(skb) {
3580 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3581 			if (nskb) {
3582 				nskb->dev = NULL;
3583 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3584 			} else {
3585 				err = -ENOBUFS;
3586 			}
3587 		} tcp_skb_tsorted_restore(skb);
3588 
3589 		if (!err) {
3590 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3591 			tcp_rate_skb_sent(sk, skb);
3592 		}
3593 	} else {
3594 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3595 	}
3596 
3597 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3598 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3599 				  TCP_SKB_CB(skb)->seq, segs, err);
3600 
3601 	if (unlikely(err) && err != -EBUSY)
3602 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3603 
3604 	/* To avoid taking spuriously low RTT samples based on a timestamp
3605 	 * for a transmit that never happened, always mark EVER_RETRANS
3606 	 */
3607 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3608 
3609 out:
3610 	trace_tcp_retransmit_skb(sk, skb, err);
3611 	return err;
3612 }
3613 
3614 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3615 {
3616 	struct tcp_sock *tp = tcp_sk(sk);
3617 	int err = __tcp_retransmit_skb(sk, skb, segs);
3618 
3619 	if (err == 0) {
3620 #if FASTRETRANS_DEBUG > 0
3621 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3622 			net_dbg_ratelimited("retrans_out leaked\n");
3623 		}
3624 #endif
3625 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3626 		tp->retrans_out += tcp_skb_pcount(skb);
3627 	}
3628 
3629 	/* Save stamp of the first (attempted) retransmit. */
3630 	if (!tp->retrans_stamp)
3631 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3632 
3633 	if (tp->undo_retrans < 0)
3634 		tp->undo_retrans = 0;
3635 	tp->undo_retrans += tcp_skb_pcount(skb);
3636 	return err;
3637 }
3638 
3639 /* This gets called after a retransmit timeout, and the initially
3640  * retransmitted data is acknowledged.  It tries to continue
3641  * resending the rest of the retransmit queue, until either
3642  * we've sent it all or the congestion window limit is reached.
3643  */
3644 void tcp_xmit_retransmit_queue(struct sock *sk)
3645 {
3646 	const struct inet_connection_sock *icsk = inet_csk(sk);
3647 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3648 	struct tcp_sock *tp = tcp_sk(sk);
3649 	bool rearm_timer = false;
3650 	u32 max_segs;
3651 	int mib_idx;
3652 
3653 	if (!tp->packets_out)
3654 		return;
3655 
3656 	rtx_head = tcp_rtx_queue_head(sk);
3657 	skb = tp->retransmit_skb_hint ?: rtx_head;
3658 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3659 	skb_rbtree_walk_from(skb) {
3660 		__u8 sacked;
3661 		int segs;
3662 
3663 		if (tcp_pacing_check(sk))
3664 			break;
3665 
3666 		/* we could do better than to assign each time */
3667 		if (!hole)
3668 			tp->retransmit_skb_hint = skb;
3669 
3670 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3671 		if (segs <= 0)
3672 			break;
3673 		sacked = TCP_SKB_CB(skb)->sacked;
3674 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3675 		 * we need to make sure not sending too bigs TSO packets
3676 		 */
3677 		segs = min_t(int, segs, max_segs);
3678 
3679 		if (tp->retrans_out >= tp->lost_out) {
3680 			break;
3681 		} else if (!(sacked & TCPCB_LOST)) {
3682 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3683 				hole = skb;
3684 			continue;
3685 
3686 		} else {
3687 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3688 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3689 			else
3690 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3691 		}
3692 
3693 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3694 			continue;
3695 
3696 		if (tcp_small_queue_check(sk, skb, 1))
3697 			break;
3698 
3699 		if (tcp_retransmit_skb(sk, skb, segs))
3700 			break;
3701 
3702 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3703 
3704 		if (tcp_in_cwnd_reduction(sk))
3705 			tp->prr_out += tcp_skb_pcount(skb);
3706 
3707 		if (skb == rtx_head &&
3708 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3709 			rearm_timer = true;
3710 
3711 	}
3712 	if (rearm_timer)
3713 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3714 				     inet_csk(sk)->icsk_rto, true);
3715 }
3716 
3717 /* We allow to exceed memory limits for FIN packets to expedite
3718  * connection tear down and (memory) recovery.
3719  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3720  * or even be forced to close flow without any FIN.
3721  * In general, we want to allow one skb per socket to avoid hangs
3722  * with edge trigger epoll()
3723  */
3724 void sk_forced_mem_schedule(struct sock *sk, int size)
3725 {
3726 	int delta, amt;
3727 
3728 	delta = size - sk->sk_forward_alloc;
3729 	if (delta <= 0)
3730 		return;
3731 	amt = sk_mem_pages(delta);
3732 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3733 	sk_memory_allocated_add(sk, amt);
3734 
3735 	if (mem_cgroup_sk_enabled(sk))
3736 		mem_cgroup_sk_charge(sk, amt, gfp_memcg_charge() | __GFP_NOFAIL);
3737 }
3738 
3739 /* Send a FIN. The caller locks the socket for us.
3740  * We should try to send a FIN packet really hard, but eventually give up.
3741  */
3742 void tcp_send_fin(struct sock *sk)
3743 {
3744 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3745 	struct tcp_sock *tp = tcp_sk(sk);
3746 
3747 	/* Optimization, tack on the FIN if we have one skb in write queue and
3748 	 * this skb was not yet sent, or we are under memory pressure.
3749 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3750 	 * as TCP stack thinks it has already been transmitted.
3751 	 */
3752 	tskb = tail;
3753 	if (!tskb && tcp_under_memory_pressure(sk))
3754 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3755 
3756 	if (tskb) {
3757 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3758 		TCP_SKB_CB(tskb)->end_seq++;
3759 		tp->write_seq++;
3760 		if (!tail) {
3761 			/* This means tskb was already sent.
3762 			 * Pretend we included the FIN on previous transmit.
3763 			 * We need to set tp->snd_nxt to the value it would have
3764 			 * if FIN had been sent. This is because retransmit path
3765 			 * does not change tp->snd_nxt.
3766 			 */
3767 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3768 			return;
3769 		}
3770 	} else {
3771 		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3772 				       sk_gfp_mask(sk, GFP_ATOMIC |
3773 						       __GFP_NOWARN));
3774 		if (unlikely(!skb))
3775 			return;
3776 
3777 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3778 		skb_reserve(skb, MAX_TCP_HEADER);
3779 		sk_forced_mem_schedule(sk, skb->truesize);
3780 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3781 		tcp_init_nondata_skb(skb, tp->write_seq,
3782 				     TCPHDR_ACK | TCPHDR_FIN);
3783 		tcp_queue_skb(sk, skb);
3784 	}
3785 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3786 }
3787 
3788 /* We get here when a process closes a file descriptor (either due to
3789  * an explicit close() or as a byproduct of exit()'ing) and there
3790  * was unread data in the receive queue.  This behavior is recommended
3791  * by RFC 2525, section 2.17.  -DaveM
3792  */
3793 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
3794 			   enum sk_rst_reason reason)
3795 {
3796 	struct sk_buff *skb;
3797 
3798 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3799 
3800 	/* NOTE: No TCP options attached and we never retransmit this. */
3801 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3802 	if (!skb) {
3803 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3804 		return;
3805 	}
3806 
3807 	/* Reserve space for headers and prepare control bits. */
3808 	skb_reserve(skb, MAX_TCP_HEADER);
3809 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3810 			     TCPHDR_ACK | TCPHDR_RST);
3811 	tcp_mstamp_refresh(tcp_sk(sk));
3812 	/* Send it off. */
3813 	if (tcp_transmit_skb(sk, skb, 0, priority))
3814 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3815 
3816 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3817 	 * skb here is different to the troublesome skb, so use NULL
3818 	 */
3819 	trace_tcp_send_reset(sk, NULL, reason);
3820 }
3821 
3822 /* Send a crossed SYN-ACK during socket establishment.
3823  * WARNING: This routine must only be called when we have already sent
3824  * a SYN packet that crossed the incoming SYN that caused this routine
3825  * to get called. If this assumption fails then the initial rcv_wnd
3826  * and rcv_wscale values will not be correct.
3827  */
3828 int tcp_send_synack(struct sock *sk)
3829 {
3830 	struct sk_buff *skb;
3831 
3832 	skb = tcp_rtx_queue_head(sk);
3833 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3834 		pr_err("%s: wrong queue state\n", __func__);
3835 		return -EFAULT;
3836 	}
3837 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3838 		if (skb_cloned(skb)) {
3839 			struct sk_buff *nskb;
3840 
3841 			tcp_skb_tsorted_save(skb) {
3842 				nskb = skb_copy(skb, GFP_ATOMIC);
3843 			} tcp_skb_tsorted_restore(skb);
3844 			if (!nskb)
3845 				return -ENOMEM;
3846 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3847 			tcp_highest_sack_replace(sk, skb, nskb);
3848 			tcp_rtx_queue_unlink_and_free(skb, sk);
3849 			__skb_header_release(nskb);
3850 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3851 			sk_wmem_queued_add(sk, nskb->truesize);
3852 			sk_mem_charge(sk, nskb->truesize);
3853 			skb = nskb;
3854 		}
3855 
3856 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3857 		tcp_ecn_send_synack(sk, skb);
3858 	}
3859 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3860 }
3861 
3862 /**
3863  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3864  * @sk: listener socket
3865  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3866  *       should not use it again.
3867  * @req: request_sock pointer
3868  * @foc: cookie for tcp fast open
3869  * @synack_type: Type of synack to prepare
3870  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3871  */
3872 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3873 				struct request_sock *req,
3874 				struct tcp_fastopen_cookie *foc,
3875 				enum tcp_synack_type synack_type,
3876 				struct sk_buff *syn_skb)
3877 {
3878 	struct inet_request_sock *ireq = inet_rsk(req);
3879 	const struct tcp_sock *tp = tcp_sk(sk);
3880 	struct tcp_out_options opts;
3881 	struct tcp_key key = {};
3882 	struct sk_buff *skb;
3883 	int tcp_header_size;
3884 	struct tcphdr *th;
3885 	int mss;
3886 	u64 now;
3887 
3888 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3889 	if (unlikely(!skb)) {
3890 		dst_release(dst);
3891 		return NULL;
3892 	}
3893 	/* Reserve space for headers. */
3894 	skb_reserve(skb, MAX_TCP_HEADER);
3895 
3896 	switch (synack_type) {
3897 	case TCP_SYNACK_NORMAL:
3898 		skb_set_owner_edemux(skb, req_to_sk(req));
3899 		break;
3900 	case TCP_SYNACK_COOKIE:
3901 		/* Under synflood, we do not attach skb to a socket,
3902 		 * to avoid false sharing.
3903 		 */
3904 		break;
3905 	case TCP_SYNACK_FASTOPEN:
3906 		/* sk is a const pointer, because we want to express multiple
3907 		 * cpu might call us concurrently.
3908 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3909 		 */
3910 		skb_set_owner_w(skb, (struct sock *)sk);
3911 		break;
3912 	}
3913 	skb_dst_set(skb, dst);
3914 
3915 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3916 
3917 	memset(&opts, 0, sizeof(opts));
3918 	now = tcp_clock_ns();
3919 #ifdef CONFIG_SYN_COOKIES
3920 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3921 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3922 				      SKB_CLOCK_MONOTONIC);
3923 	else
3924 #endif
3925 	{
3926 		skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3927 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3928 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3929 	}
3930 
3931 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3932 	rcu_read_lock();
3933 #endif
3934 	if (tcp_rsk_used_ao(req)) {
3935 #ifdef CONFIG_TCP_AO
3936 		struct tcp_ao_key *ao_key = NULL;
3937 		u8 keyid = tcp_rsk(req)->ao_keyid;
3938 		u8 rnext = tcp_rsk(req)->ao_rcv_next;
3939 
3940 		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3941 							    keyid, -1);
3942 		/* If there is no matching key - avoid sending anything,
3943 		 * especially usigned segments. It could try harder and lookup
3944 		 * for another peer-matching key, but the peer has requested
3945 		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3946 		 */
3947 		if (unlikely(!ao_key)) {
3948 			trace_tcp_ao_synack_no_key(sk, keyid, rnext);
3949 			rcu_read_unlock();
3950 			kfree_skb(skb);
3951 			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3952 					     keyid);
3953 			return NULL;
3954 		}
3955 		key.ao_key = ao_key;
3956 		key.type = TCP_KEY_AO;
3957 #endif
3958 	} else {
3959 #ifdef CONFIG_TCP_MD5SIG
3960 		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3961 					req_to_sk(req));
3962 		if (key.md5_key)
3963 			key.type = TCP_KEY_MD5;
3964 #endif
3965 	}
3966 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3967 	/* bpf program will be interested in the tcp_flags */
3968 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3969 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3970 					     &key, foc, synack_type, syn_skb)
3971 					+ sizeof(*th);
3972 
3973 	skb_push(skb, tcp_header_size);
3974 	skb_reset_transport_header(skb);
3975 
3976 	th = (struct tcphdr *)skb->data;
3977 	memset(th, 0, sizeof(struct tcphdr));
3978 	th->syn = 1;
3979 	th->ack = 1;
3980 	tcp_ecn_make_synack(req, th);
3981 	th->source = htons(ireq->ir_num);
3982 	th->dest = ireq->ir_rmt_port;
3983 	skb->mark = ireq->ir_mark;
3984 	skb->ip_summed = CHECKSUM_PARTIAL;
3985 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3986 	/* XXX data is queued and acked as is. No buffer/window check */
3987 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3988 
3989 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3990 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3991 	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3992 	th->doff = (tcp_header_size >> 2);
3993 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3994 
3995 	/* Okay, we have all we need - do the md5 hash if needed */
3996 	if (tcp_key_is_md5(&key)) {
3997 #ifdef CONFIG_TCP_MD5SIG
3998 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3999 					key.md5_key, req_to_sk(req), skb);
4000 #endif
4001 	} else if (tcp_key_is_ao(&key)) {
4002 #ifdef CONFIG_TCP_AO
4003 		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
4004 					key.ao_key, req, skb,
4005 					opts.hash_location - (u8 *)th, 0);
4006 #endif
4007 	}
4008 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4009 	rcu_read_unlock();
4010 #endif
4011 
4012 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
4013 				synack_type, &opts);
4014 
4015 	skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
4016 	tcp_add_tx_delay(skb, tp);
4017 
4018 	return skb;
4019 }
4020 EXPORT_IPV6_MOD(tcp_make_synack);
4021 
4022 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
4023 {
4024 	struct inet_connection_sock *icsk = inet_csk(sk);
4025 	const struct tcp_congestion_ops *ca;
4026 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
4027 
4028 	if (ca_key == TCP_CA_UNSPEC)
4029 		return;
4030 
4031 	rcu_read_lock();
4032 	ca = tcp_ca_find_key(ca_key);
4033 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
4034 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
4035 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
4036 		icsk->icsk_ca_ops = ca;
4037 	}
4038 	rcu_read_unlock();
4039 }
4040 
4041 /* Do all connect socket setups that can be done AF independent. */
4042 static void tcp_connect_init(struct sock *sk)
4043 {
4044 	const struct dst_entry *dst = __sk_dst_get(sk);
4045 	struct tcp_sock *tp = tcp_sk(sk);
4046 	__u8 rcv_wscale;
4047 	u16 user_mss;
4048 	u32 rcv_wnd;
4049 
4050 	/* We'll fix this up when we get a response from the other end.
4051 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
4052 	 */
4053 	tp->tcp_header_len = sizeof(struct tcphdr);
4054 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
4055 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
4056 
4057 	tcp_ao_connect_init(sk);
4058 
4059 	/* If user gave his TCP_MAXSEG, record it to clamp */
4060 	user_mss = READ_ONCE(tp->rx_opt.user_mss);
4061 	if (user_mss)
4062 		tp->rx_opt.mss_clamp = user_mss;
4063 	tp->max_window = 0;
4064 	tcp_mtup_init(sk);
4065 	tcp_sync_mss(sk, dst_mtu(dst));
4066 
4067 	tcp_ca_dst_init(sk, dst);
4068 
4069 	if (!tp->window_clamp)
4070 		WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
4071 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
4072 
4073 	tcp_initialize_rcv_mss(sk);
4074 
4075 	/* limit the window selection if the user enforce a smaller rx buffer */
4076 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
4077 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
4078 		WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
4079 
4080 	rcv_wnd = tcp_rwnd_init_bpf(sk);
4081 	if (rcv_wnd == 0)
4082 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
4083 
4084 	tcp_select_initial_window(sk, tcp_full_space(sk),
4085 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
4086 				  &tp->rcv_wnd,
4087 				  &tp->window_clamp,
4088 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
4089 				  &rcv_wscale,
4090 				  rcv_wnd);
4091 
4092 	tp->rx_opt.rcv_wscale = rcv_wscale;
4093 	tp->rcv_ssthresh = tp->rcv_wnd;
4094 
4095 	WRITE_ONCE(sk->sk_err, 0);
4096 	sock_reset_flag(sk, SOCK_DONE);
4097 	tp->snd_wnd = 0;
4098 	tcp_init_wl(tp, 0);
4099 	tcp_write_queue_purge(sk);
4100 	tp->snd_una = tp->write_seq;
4101 	tp->snd_sml = tp->write_seq;
4102 	tp->snd_up = tp->write_seq;
4103 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4104 
4105 	if (likely(!tp->repair))
4106 		tp->rcv_nxt = 0;
4107 	else
4108 		tp->rcv_tstamp = tcp_jiffies32;
4109 	tp->rcv_wup = tp->rcv_nxt;
4110 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
4111 
4112 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
4113 	WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0);
4114 	tcp_clear_retrans(tp);
4115 }
4116 
4117 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
4118 {
4119 	struct tcp_sock *tp = tcp_sk(sk);
4120 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
4121 
4122 	tcb->end_seq += skb->len;
4123 	__skb_header_release(skb);
4124 	sk_wmem_queued_add(sk, skb->truesize);
4125 	sk_mem_charge(sk, skb->truesize);
4126 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
4127 	tp->packets_out += tcp_skb_pcount(skb);
4128 }
4129 
4130 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
4131  * queue a data-only packet after the regular SYN, such that regular SYNs
4132  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
4133  * only the SYN sequence, the data are retransmitted in the first ACK.
4134  * If cookie is not cached or other error occurs, falls back to send a
4135  * regular SYN with Fast Open cookie request option.
4136  */
4137 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
4138 {
4139 	struct inet_connection_sock *icsk = inet_csk(sk);
4140 	struct tcp_sock *tp = tcp_sk(sk);
4141 	struct tcp_fastopen_request *fo = tp->fastopen_req;
4142 	struct page_frag *pfrag = sk_page_frag(sk);
4143 	struct sk_buff *syn_data;
4144 	int space, err = 0;
4145 
4146 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
4147 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
4148 		goto fallback;
4149 
4150 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
4151 	 * user-MSS. Reserve maximum option space for middleboxes that add
4152 	 * private TCP options. The cost is reduced data space in SYN :(
4153 	 */
4154 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
4155 	/* Sync mss_cache after updating the mss_clamp */
4156 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4157 
4158 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
4159 		MAX_TCP_OPTION_SPACE;
4160 
4161 	space = min_t(size_t, space, fo->size);
4162 
4163 	if (space &&
4164 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
4165 				  pfrag, sk->sk_allocation))
4166 		goto fallback;
4167 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
4168 	if (!syn_data)
4169 		goto fallback;
4170 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
4171 	if (space) {
4172 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
4173 		space = tcp_wmem_schedule(sk, space);
4174 	}
4175 	if (space) {
4176 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
4177 					    space, &fo->data->msg_iter);
4178 		if (unlikely(!space)) {
4179 			tcp_skb_tsorted_anchor_cleanup(syn_data);
4180 			kfree_skb(syn_data);
4181 			goto fallback;
4182 		}
4183 		skb_fill_page_desc(syn_data, 0, pfrag->page,
4184 				   pfrag->offset, space);
4185 		page_ref_inc(pfrag->page);
4186 		pfrag->offset += space;
4187 		skb_len_add(syn_data, space);
4188 		skb_zcopy_set(syn_data, fo->uarg, NULL);
4189 	}
4190 	/* No more data pending in inet_wait_for_connect() */
4191 	if (space == fo->size)
4192 		fo->data = NULL;
4193 	fo->copied = space;
4194 
4195 	tcp_connect_queue_skb(sk, syn_data);
4196 	if (syn_data->len)
4197 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
4198 
4199 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
4200 
4201 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC);
4202 
4203 	/* Now full SYN+DATA was cloned and sent (or not),
4204 	 * remove the SYN from the original skb (syn_data)
4205 	 * we keep in write queue in case of a retransmit, as we
4206 	 * also have the SYN packet (with no data) in the same queue.
4207 	 */
4208 	TCP_SKB_CB(syn_data)->seq++;
4209 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4210 	if (!err) {
4211 		tp->syn_data = (fo->copied > 0);
4212 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4213 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4214 		goto done;
4215 	}
4216 
4217 	/* data was not sent, put it in write_queue */
4218 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4219 	tp->packets_out -= tcp_skb_pcount(syn_data);
4220 
4221 fallback:
4222 	/* Send a regular SYN with Fast Open cookie request option */
4223 	if (fo->cookie.len > 0)
4224 		fo->cookie.len = 0;
4225 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4226 	if (err)
4227 		tp->syn_fastopen = 0;
4228 done:
4229 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4230 	return err;
4231 }
4232 
4233 /* Build a SYN and send it off. */
4234 int tcp_connect(struct sock *sk)
4235 {
4236 	struct tcp_sock *tp = tcp_sk(sk);
4237 	struct sk_buff *buff;
4238 	int err;
4239 
4240 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4241 
4242 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4243 	/* Has to be checked late, after setting daddr/saddr/ops.
4244 	 * Return error if the peer has both a md5 and a tcp-ao key
4245 	 * configured as this is ambiguous.
4246 	 */
4247 	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4248 					       lockdep_sock_is_held(sk)))) {
4249 		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4250 		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4251 		struct tcp_ao_info *ao_info;
4252 
4253 		ao_info = rcu_dereference_check(tp->ao_info,
4254 						lockdep_sock_is_held(sk));
4255 		if (ao_info) {
4256 			/* This is an extra check: tcp_ao_required() in
4257 			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4258 			 * md5 keys on ao_required socket.
4259 			 */
4260 			needs_ao |= ao_info->ao_required;
4261 			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4262 		}
4263 		if (needs_md5 && needs_ao)
4264 			return -EKEYREJECTED;
4265 
4266 		/* If we have a matching md5 key and no matching tcp-ao key
4267 		 * then free up ao_info if allocated.
4268 		 */
4269 		if (needs_md5) {
4270 			tcp_ao_destroy_sock(sk, false);
4271 		} else if (needs_ao) {
4272 			tcp_clear_md5_list(sk);
4273 			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4274 						  lockdep_sock_is_held(sk)));
4275 		}
4276 	}
4277 #endif
4278 #ifdef CONFIG_TCP_AO
4279 	if (unlikely(rcu_dereference_protected(tp->ao_info,
4280 					       lockdep_sock_is_held(sk)))) {
4281 		/* Don't allow connecting if ao is configured but no
4282 		 * matching key is found.
4283 		 */
4284 		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4285 			return -EKEYREJECTED;
4286 	}
4287 #endif
4288 
4289 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4290 		return -EHOSTUNREACH; /* Routing failure or similar. */
4291 
4292 	tcp_connect_init(sk);
4293 
4294 	if (unlikely(tp->repair)) {
4295 		tcp_finish_connect(sk, NULL);
4296 		return 0;
4297 	}
4298 
4299 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4300 	if (unlikely(!buff))
4301 		return -ENOBUFS;
4302 
4303 	/* SYN eats a sequence byte, write_seq updated by
4304 	 * tcp_connect_queue_skb().
4305 	 */
4306 	tcp_init_nondata_skb(buff, tp->write_seq, TCPHDR_SYN);
4307 	tcp_mstamp_refresh(tp);
4308 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4309 	tcp_connect_queue_skb(sk, buff);
4310 	tcp_ecn_send_syn(sk, buff);
4311 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4312 
4313 	/* Send off SYN; include data in Fast Open. */
4314 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4315 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4316 	if (err == -ECONNREFUSED)
4317 		return err;
4318 
4319 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4320 	 * in order to make this packet get counted in tcpOutSegs.
4321 	 */
4322 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4323 	tp->pushed_seq = tp->write_seq;
4324 	buff = tcp_send_head(sk);
4325 	if (unlikely(buff)) {
4326 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4327 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4328 	}
4329 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4330 
4331 	/* Timer for repeating the SYN until an answer. */
4332 	tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4333 			     inet_csk(sk)->icsk_rto, false);
4334 	return 0;
4335 }
4336 EXPORT_SYMBOL(tcp_connect);
4337 
4338 u32 tcp_delack_max(const struct sock *sk)
4339 {
4340 	u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1;
4341 
4342 	return min(READ_ONCE(inet_csk(sk)->icsk_delack_max), delack_from_rto_min);
4343 }
4344 
4345 /* Send out a delayed ack, the caller does the policy checking
4346  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4347  * for details.
4348  */
4349 void tcp_send_delayed_ack(struct sock *sk)
4350 {
4351 	struct inet_connection_sock *icsk = inet_csk(sk);
4352 	int ato = icsk->icsk_ack.ato;
4353 	unsigned long timeout;
4354 
4355 	if (ato > TCP_DELACK_MIN) {
4356 		const struct tcp_sock *tp = tcp_sk(sk);
4357 		int max_ato = HZ / 2;
4358 
4359 		if (inet_csk_in_pingpong_mode(sk) ||
4360 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4361 			max_ato = TCP_DELACK_MAX;
4362 
4363 		/* Slow path, intersegment interval is "high". */
4364 
4365 		/* If some rtt estimate is known, use it to bound delayed ack.
4366 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4367 		 * directly.
4368 		 */
4369 		if (tp->srtt_us) {
4370 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4371 					TCP_DELACK_MIN);
4372 
4373 			if (rtt < max_ato)
4374 				max_ato = rtt;
4375 		}
4376 
4377 		ato = min(ato, max_ato);
4378 	}
4379 
4380 	ato = min_t(u32, ato, tcp_delack_max(sk));
4381 
4382 	/* Stay within the limit we were given */
4383 	timeout = jiffies + ato;
4384 
4385 	/* Use new timeout only if there wasn't a older one earlier. */
4386 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4387 		/* If delack timer is about to expire, send ACK now. */
4388 		if (time_before_eq(icsk_delack_timeout(icsk), jiffies + (ato >> 2))) {
4389 			tcp_send_ack(sk);
4390 			return;
4391 		}
4392 
4393 		if (!time_before(timeout, icsk_delack_timeout(icsk)))
4394 			timeout = icsk_delack_timeout(icsk);
4395 	}
4396 	smp_store_release(&icsk->icsk_ack.pending,
4397 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
4398 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4399 }
4400 
4401 /* This routine sends an ack and also updates the window. */
4402 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags)
4403 {
4404 	struct sk_buff *buff;
4405 
4406 	/* If we have been reset, we may not send again. */
4407 	if (sk->sk_state == TCP_CLOSE)
4408 		return;
4409 
4410 	/* We are not putting this on the write queue, so
4411 	 * tcp_transmit_skb() will set the ownership to this
4412 	 * sock.
4413 	 */
4414 	buff = alloc_skb(MAX_TCP_HEADER,
4415 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4416 	if (unlikely(!buff)) {
4417 		struct inet_connection_sock *icsk = inet_csk(sk);
4418 		unsigned long delay;
4419 
4420 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4421 		if (delay < tcp_rto_max(sk))
4422 			icsk->icsk_ack.retry++;
4423 		inet_csk_schedule_ack(sk);
4424 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4425 		tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, false);
4426 		return;
4427 	}
4428 
4429 	/* Reserve space for headers and prepare control bits. */
4430 	skb_reserve(buff, MAX_TCP_HEADER);
4431 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK | flags);
4432 
4433 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4434 	 * too much.
4435 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4436 	 */
4437 	skb_set_tcp_pure_ack(buff);
4438 
4439 	/* Send it off, this clears delayed acks for us. */
4440 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4441 }
4442 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4443 
4444 void tcp_send_ack(struct sock *sk)
4445 {
4446 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt, 0);
4447 }
4448 
4449 /* This routine sends a packet with an out of date sequence
4450  * number. It assumes the other end will try to ack it.
4451  *
4452  * Question: what should we make while urgent mode?
4453  * 4.4BSD forces sending single byte of data. We cannot send
4454  * out of window data, because we have SND.NXT==SND.MAX...
4455  *
4456  * Current solution: to send TWO zero-length segments in urgent mode:
4457  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4458  * out-of-date with SND.UNA-1 to probe window.
4459  */
4460 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4461 {
4462 	struct tcp_sock *tp = tcp_sk(sk);
4463 	struct sk_buff *skb;
4464 
4465 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4466 	skb = alloc_skb(MAX_TCP_HEADER,
4467 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4468 	if (!skb)
4469 		return -1;
4470 
4471 	/* Reserve space for headers and set control bits. */
4472 	skb_reserve(skb, MAX_TCP_HEADER);
4473 	/* Use a previous sequence.  This should cause the other
4474 	 * end to send an ack.  Don't queue or clone SKB, just
4475 	 * send it.
4476 	 */
4477 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4478 	NET_INC_STATS(sock_net(sk), mib);
4479 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4480 }
4481 
4482 /* Called from setsockopt( ... TCP_REPAIR ) */
4483 void tcp_send_window_probe(struct sock *sk)
4484 {
4485 	if (sk->sk_state == TCP_ESTABLISHED) {
4486 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4487 		tcp_mstamp_refresh(tcp_sk(sk));
4488 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4489 	}
4490 }
4491 
4492 /* Initiate keepalive or window probe from timer. */
4493 int tcp_write_wakeup(struct sock *sk, int mib)
4494 {
4495 	struct tcp_sock *tp = tcp_sk(sk);
4496 	struct sk_buff *skb;
4497 
4498 	if (sk->sk_state == TCP_CLOSE)
4499 		return -1;
4500 
4501 	skb = tcp_send_head(sk);
4502 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4503 		int err;
4504 		unsigned int mss = tcp_current_mss(sk);
4505 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4506 
4507 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4508 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4509 
4510 		/* We are probing the opening of a window
4511 		 * but the window size is != 0
4512 		 * must have been a result SWS avoidance ( sender )
4513 		 */
4514 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4515 		    skb->len > mss) {
4516 			seg_size = min(seg_size, mss);
4517 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4518 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4519 					 skb, seg_size, mss, GFP_ATOMIC))
4520 				return -1;
4521 		} else if (!tcp_skb_pcount(skb))
4522 			tcp_set_skb_tso_segs(skb, mss);
4523 
4524 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4525 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4526 		if (!err)
4527 			tcp_event_new_data_sent(sk, skb);
4528 		return err;
4529 	} else {
4530 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4531 			tcp_xmit_probe_skb(sk, 1, mib);
4532 		return tcp_xmit_probe_skb(sk, 0, mib);
4533 	}
4534 }
4535 
4536 /* A window probe timeout has occurred.  If window is not closed send
4537  * a partial packet else a zero probe.
4538  */
4539 void tcp_send_probe0(struct sock *sk)
4540 {
4541 	struct inet_connection_sock *icsk = inet_csk(sk);
4542 	struct tcp_sock *tp = tcp_sk(sk);
4543 	struct net *net = sock_net(sk);
4544 	unsigned long timeout;
4545 	int err;
4546 
4547 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4548 
4549 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4550 		/* Cancel probe timer, if it is not required. */
4551 		WRITE_ONCE(icsk->icsk_probes_out, 0);
4552 		icsk->icsk_backoff = 0;
4553 		icsk->icsk_probes_tstamp = 0;
4554 		return;
4555 	}
4556 
4557 	WRITE_ONCE(icsk->icsk_probes_out, icsk->icsk_probes_out + 1);
4558 	if (err <= 0) {
4559 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4560 			icsk->icsk_backoff++;
4561 		timeout = tcp_probe0_when(sk, tcp_rto_max(sk));
4562 	} else {
4563 		/* If packet was not sent due to local congestion,
4564 		 * Let senders fight for local resources conservatively.
4565 		 */
4566 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4567 	}
4568 
4569 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4570 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, true);
4571 }
4572 
4573 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4574 {
4575 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4576 	struct flowi fl;
4577 	int res;
4578 
4579 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4580 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4581 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4582 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4583 				  NULL);
4584 	if (!res) {
4585 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4586 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4587 		if (unlikely(tcp_passive_fastopen(sk))) {
4588 			/* sk has const attribute because listeners are lockless.
4589 			 * However in this case, we are dealing with a passive fastopen
4590 			 * socket thus we can change total_retrans value.
4591 			 */
4592 			tcp_sk_rw(sk)->total_retrans++;
4593 		}
4594 		trace_tcp_retransmit_synack(sk, req);
4595 		WRITE_ONCE(req->num_retrans, req->num_retrans + 1);
4596 	}
4597 	return res;
4598 }
4599 EXPORT_IPV6_MOD(tcp_rtx_synack);
4600