xref: /linux/net/ipv4/tcp_minisocks.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32 
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34 
35 struct inet_timewait_death_row tcp_death_row = {
36 	.sysctl_max_tw_buckets = NR_FILE * 2,
37 	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38 	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39 	.hashinfo	= &tcp_hashinfo,
40 	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41 					    (unsigned long)&tcp_death_row),
42 	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43 					     inet_twdr_twkill_work),
44 /* Short-time timewait calendar */
45 
46 	.twcal_hand	= -1,
47 	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48 					    (unsigned long)&tcp_death_row),
49 };
50 EXPORT_SYMBOL_GPL(tcp_death_row);
51 
52 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53 {
54 	if (seq == s_win)
55 		return true;
56 	if (after(end_seq, s_win) && before(seq, e_win))
57 		return true;
58 	return seq == e_win && seq == end_seq;
59 }
60 
61 /*
62  * * Main purpose of TIME-WAIT state is to close connection gracefully,
63  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64  *   (and, probably, tail of data) and one or more our ACKs are lost.
65  * * What is TIME-WAIT timeout? It is associated with maximal packet
66  *   lifetime in the internet, which results in wrong conclusion, that
67  *   it is set to catch "old duplicate segments" wandering out of their path.
68  *   It is not quite correct. This timeout is calculated so that it exceeds
69  *   maximal retransmission timeout enough to allow to lose one (or more)
70  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71  * * When TIME-WAIT socket receives RST, it means that another end
72  *   finally closed and we are allowed to kill TIME-WAIT too.
73  * * Second purpose of TIME-WAIT is catching old duplicate segments.
74  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76  * * If we invented some more clever way to catch duplicates
77  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78  *
79  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81  * from the very beginning.
82  *
83  * NOTE. With recycling (and later with fin-wait-2) TW bucket
84  * is _not_ stateless. It means, that strictly speaking we must
85  * spinlock it. I do not want! Well, probability of misbehaviour
86  * is ridiculously low and, seems, we could use some mb() tricks
87  * to avoid misread sequence numbers, states etc.  --ANK
88  *
89  * We don't need to initialize tmp_out.sack_ok as we don't use the results
90  */
91 enum tcp_tw_status
92 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
93 			   const struct tcphdr *th)
94 {
95 	struct tcp_options_received tmp_opt;
96 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
97 	bool paws_reject = false;
98 
99 	tmp_opt.saw_tstamp = 0;
100 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
102 
103 		if (tmp_opt.saw_tstamp) {
104 			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
105 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108 		}
109 	}
110 
111 	if (tw->tw_substate == TCP_FIN_WAIT2) {
112 		/* Just repeat all the checks of tcp_rcv_state_process() */
113 
114 		/* Out of window, send ACK */
115 		if (paws_reject ||
116 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117 				   tcptw->tw_rcv_nxt,
118 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119 			return TCP_TW_ACK;
120 
121 		if (th->rst)
122 			goto kill;
123 
124 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
125 			goto kill_with_rst;
126 
127 		/* Dup ACK? */
128 		if (!th->ack ||
129 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
130 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
131 			inet_twsk_put(tw);
132 			return TCP_TW_SUCCESS;
133 		}
134 
135 		/* New data or FIN. If new data arrive after half-duplex close,
136 		 * reset.
137 		 */
138 		if (!th->fin ||
139 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
140 kill_with_rst:
141 			inet_twsk_deschedule(tw, &tcp_death_row);
142 			inet_twsk_put(tw);
143 			return TCP_TW_RST;
144 		}
145 
146 		/* FIN arrived, enter true time-wait state. */
147 		tw->tw_substate	  = TCP_TIME_WAIT;
148 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
149 		if (tmp_opt.saw_tstamp) {
150 			tcptw->tw_ts_recent_stamp = get_seconds();
151 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
152 		}
153 
154 		if (tcp_death_row.sysctl_tw_recycle &&
155 		    tcptw->tw_ts_recent_stamp &&
156 		    tcp_tw_remember_stamp(tw))
157 			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
158 					   TCP_TIMEWAIT_LEN);
159 		else
160 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
161 					   TCP_TIMEWAIT_LEN);
162 		return TCP_TW_ACK;
163 	}
164 
165 	/*
166 	 *	Now real TIME-WAIT state.
167 	 *
168 	 *	RFC 1122:
169 	 *	"When a connection is [...] on TIME-WAIT state [...]
170 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171 	 *	reopen the connection directly, if it:
172 	 *
173 	 *	(1)  assigns its initial sequence number for the new
174 	 *	connection to be larger than the largest sequence
175 	 *	number it used on the previous connection incarnation,
176 	 *	and
177 	 *
178 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179 	 *	to be an old duplicate".
180 	 */
181 
182 	if (!paws_reject &&
183 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185 		/* In window segment, it may be only reset or bare ack. */
186 
187 		if (th->rst) {
188 			/* This is TIME_WAIT assassination, in two flavors.
189 			 * Oh well... nobody has a sufficient solution to this
190 			 * protocol bug yet.
191 			 */
192 			if (sysctl_tcp_rfc1337 == 0) {
193 kill:
194 				inet_twsk_deschedule(tw, &tcp_death_row);
195 				inet_twsk_put(tw);
196 				return TCP_TW_SUCCESS;
197 			}
198 		}
199 		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
200 				   TCP_TIMEWAIT_LEN);
201 
202 		if (tmp_opt.saw_tstamp) {
203 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
204 			tcptw->tw_ts_recent_stamp = get_seconds();
205 		}
206 
207 		inet_twsk_put(tw);
208 		return TCP_TW_SUCCESS;
209 	}
210 
211 	/* Out of window segment.
212 
213 	   All the segments are ACKed immediately.
214 
215 	   The only exception is new SYN. We accept it, if it is
216 	   not old duplicate and we are not in danger to be killed
217 	   by delayed old duplicates. RFC check is that it has
218 	   newer sequence number works at rates <40Mbit/sec.
219 	   However, if paws works, it is reliable AND even more,
220 	   we even may relax silly seq space cutoff.
221 
222 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
223 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
224 	   we must return socket to time-wait state. It is not good,
225 	   but not fatal yet.
226 	 */
227 
228 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
229 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
230 	     (tmp_opt.saw_tstamp &&
231 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
232 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
233 		if (isn == 0)
234 			isn++;
235 		TCP_SKB_CB(skb)->when = isn;
236 		return TCP_TW_SYN;
237 	}
238 
239 	if (paws_reject)
240 		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
241 
242 	if (!th->rst) {
243 		/* In this case we must reset the TIMEWAIT timer.
244 		 *
245 		 * If it is ACKless SYN it may be both old duplicate
246 		 * and new good SYN with random sequence number <rcv_nxt.
247 		 * Do not reschedule in the last case.
248 		 */
249 		if (paws_reject || th->ack)
250 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
251 					   TCP_TIMEWAIT_LEN);
252 
253 		/* Send ACK. Note, we do not put the bucket,
254 		 * it will be released by caller.
255 		 */
256 		return TCP_TW_ACK;
257 	}
258 	inet_twsk_put(tw);
259 	return TCP_TW_SUCCESS;
260 }
261 EXPORT_SYMBOL(tcp_timewait_state_process);
262 
263 /*
264  * Move a socket to time-wait or dead fin-wait-2 state.
265  */
266 void tcp_time_wait(struct sock *sk, int state, int timeo)
267 {
268 	struct inet_timewait_sock *tw = NULL;
269 	const struct inet_connection_sock *icsk = inet_csk(sk);
270 	const struct tcp_sock *tp = tcp_sk(sk);
271 	bool recycle_ok = false;
272 
273 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
274 		recycle_ok = tcp_remember_stamp(sk);
275 
276 	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
277 		tw = inet_twsk_alloc(sk, state);
278 
279 	if (tw != NULL) {
280 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282 		struct inet_sock *inet = inet_sk(sk);
283 
284 		tw->tw_transparent	= inet->transparent;
285 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
286 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
287 		tcptw->tw_snd_nxt	= tp->snd_nxt;
288 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
289 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
290 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291 		tcptw->tw_ts_offset	= tp->tsoffset;
292 
293 #if IS_ENABLED(CONFIG_IPV6)
294 		if (tw->tw_family == PF_INET6) {
295 			struct ipv6_pinfo *np = inet6_sk(sk);
296 			struct inet6_timewait_sock *tw6;
297 
298 			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
299 			tw6 = inet6_twsk((struct sock *)tw);
300 			tw6->tw_v6_daddr = np->daddr;
301 			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
302 			tw->tw_tclass = np->tclass;
303 			tw->tw_ipv6only = np->ipv6only;
304 		}
305 #endif
306 
307 #ifdef CONFIG_TCP_MD5SIG
308 		/*
309 		 * The timewait bucket does not have the key DB from the
310 		 * sock structure. We just make a quick copy of the
311 		 * md5 key being used (if indeed we are using one)
312 		 * so the timewait ack generating code has the key.
313 		 */
314 		do {
315 			struct tcp_md5sig_key *key;
316 			tcptw->tw_md5_key = NULL;
317 			key = tp->af_specific->md5_lookup(sk, sk);
318 			if (key != NULL) {
319 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
320 				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
321 					BUG();
322 			}
323 		} while (0);
324 #endif
325 
326 		/* Linkage updates. */
327 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
328 
329 		/* Get the TIME_WAIT timeout firing. */
330 		if (timeo < rto)
331 			timeo = rto;
332 
333 		if (recycle_ok) {
334 			tw->tw_timeout = rto;
335 		} else {
336 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
337 			if (state == TCP_TIME_WAIT)
338 				timeo = TCP_TIMEWAIT_LEN;
339 		}
340 
341 		inet_twsk_schedule(tw, &tcp_death_row, timeo,
342 				   TCP_TIMEWAIT_LEN);
343 		inet_twsk_put(tw);
344 	} else {
345 		/* Sorry, if we're out of memory, just CLOSE this
346 		 * socket up.  We've got bigger problems than
347 		 * non-graceful socket closings.
348 		 */
349 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
350 	}
351 
352 	tcp_update_metrics(sk);
353 	tcp_done(sk);
354 }
355 
356 void tcp_twsk_destructor(struct sock *sk)
357 {
358 #ifdef CONFIG_TCP_MD5SIG
359 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
360 
361 	if (twsk->tw_md5_key)
362 		kfree_rcu(twsk->tw_md5_key, rcu);
363 #endif
364 }
365 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
366 
367 static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
368 					 struct request_sock *req)
369 {
370 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
371 }
372 
373 /* This is not only more efficient than what we used to do, it eliminates
374  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
375  *
376  * Actually, we could lots of memory writes here. tp of listening
377  * socket contains all necessary default parameters.
378  */
379 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
380 {
381 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
382 
383 	if (newsk != NULL) {
384 		const struct inet_request_sock *ireq = inet_rsk(req);
385 		struct tcp_request_sock *treq = tcp_rsk(req);
386 		struct inet_connection_sock *newicsk = inet_csk(newsk);
387 		struct tcp_sock *newtp = tcp_sk(newsk);
388 
389 		/* Now setup tcp_sock */
390 		newtp->pred_flags = 0;
391 
392 		newtp->rcv_wup = newtp->copied_seq =
393 		newtp->rcv_nxt = treq->rcv_isn + 1;
394 
395 		newtp->snd_sml = newtp->snd_una =
396 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
397 
398 		tcp_prequeue_init(newtp);
399 		INIT_LIST_HEAD(&newtp->tsq_node);
400 
401 		tcp_init_wl(newtp, treq->rcv_isn);
402 
403 		newtp->srtt = 0;
404 		newtp->mdev = TCP_TIMEOUT_INIT;
405 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
406 
407 		newtp->packets_out = 0;
408 		newtp->retrans_out = 0;
409 		newtp->sacked_out = 0;
410 		newtp->fackets_out = 0;
411 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
412 		tcp_enable_early_retrans(newtp);
413 		newtp->tlp_high_seq = 0;
414 
415 		/* So many TCP implementations out there (incorrectly) count the
416 		 * initial SYN frame in their delayed-ACK and congestion control
417 		 * algorithms that we must have the following bandaid to talk
418 		 * efficiently to them.  -DaveM
419 		 */
420 		newtp->snd_cwnd = TCP_INIT_CWND;
421 		newtp->snd_cwnd_cnt = 0;
422 
423 		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
424 		    !try_module_get(newicsk->icsk_ca_ops->owner))
425 			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
426 
427 		tcp_set_ca_state(newsk, TCP_CA_Open);
428 		tcp_init_xmit_timers(newsk);
429 		skb_queue_head_init(&newtp->out_of_order_queue);
430 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
431 
432 		newtp->rx_opt.saw_tstamp = 0;
433 
434 		newtp->rx_opt.dsack = 0;
435 		newtp->rx_opt.num_sacks = 0;
436 
437 		newtp->urg_data = 0;
438 
439 		if (sock_flag(newsk, SOCK_KEEPOPEN))
440 			inet_csk_reset_keepalive_timer(newsk,
441 						       keepalive_time_when(newtp));
442 
443 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
444 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
445 			if (sysctl_tcp_fack)
446 				tcp_enable_fack(newtp);
447 		}
448 		newtp->window_clamp = req->window_clamp;
449 		newtp->rcv_ssthresh = req->rcv_wnd;
450 		newtp->rcv_wnd = req->rcv_wnd;
451 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
452 		if (newtp->rx_opt.wscale_ok) {
453 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
454 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
455 		} else {
456 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
457 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
458 		}
459 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
460 				  newtp->rx_opt.snd_wscale);
461 		newtp->max_window = newtp->snd_wnd;
462 
463 		if (newtp->rx_opt.tstamp_ok) {
464 			newtp->rx_opt.ts_recent = req->ts_recent;
465 			newtp->rx_opt.ts_recent_stamp = get_seconds();
466 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
467 		} else {
468 			newtp->rx_opt.ts_recent_stamp = 0;
469 			newtp->tcp_header_len = sizeof(struct tcphdr);
470 		}
471 		newtp->tsoffset = 0;
472 #ifdef CONFIG_TCP_MD5SIG
473 		newtp->md5sig_info = NULL;	/*XXX*/
474 		if (newtp->af_specific->md5_lookup(sk, newsk))
475 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
476 #endif
477 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
478 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
479 		newtp->rx_opt.mss_clamp = req->mss;
480 		TCP_ECN_openreq_child(newtp, req);
481 		newtp->fastopen_rsk = NULL;
482 		newtp->syn_data_acked = 0;
483 
484 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
485 	}
486 	return newsk;
487 }
488 EXPORT_SYMBOL(tcp_create_openreq_child);
489 
490 /*
491  * Process an incoming packet for SYN_RECV sockets represented as a
492  * request_sock. Normally sk is the listener socket but for TFO it
493  * points to the child socket.
494  *
495  * XXX (TFO) - The current impl contains a special check for ack
496  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
497  *
498  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
499  */
500 
501 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
502 			   struct request_sock *req,
503 			   struct request_sock **prev,
504 			   bool fastopen)
505 {
506 	struct tcp_options_received tmp_opt;
507 	struct sock *child;
508 	const struct tcphdr *th = tcp_hdr(skb);
509 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
510 	bool paws_reject = false;
511 
512 	BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
513 
514 	tmp_opt.saw_tstamp = 0;
515 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
516 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
517 
518 		if (tmp_opt.saw_tstamp) {
519 			tmp_opt.ts_recent = req->ts_recent;
520 			/* We do not store true stamp, but it is not required,
521 			 * it can be estimated (approximately)
522 			 * from another data.
523 			 */
524 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
525 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
526 		}
527 	}
528 
529 	/* Check for pure retransmitted SYN. */
530 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
531 	    flg == TCP_FLAG_SYN &&
532 	    !paws_reject) {
533 		/*
534 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
535 		 * this case on figure 6 and figure 8, but formal
536 		 * protocol description says NOTHING.
537 		 * To be more exact, it says that we should send ACK,
538 		 * because this segment (at least, if it has no data)
539 		 * is out of window.
540 		 *
541 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
542 		 *  describe SYN-RECV state. All the description
543 		 *  is wrong, we cannot believe to it and should
544 		 *  rely only on common sense and implementation
545 		 *  experience.
546 		 *
547 		 * Enforce "SYN-ACK" according to figure 8, figure 6
548 		 * of RFC793, fixed by RFC1122.
549 		 *
550 		 * Note that even if there is new data in the SYN packet
551 		 * they will be thrown away too.
552 		 *
553 		 * Reset timer after retransmitting SYNACK, similar to
554 		 * the idea of fast retransmit in recovery.
555 		 */
556 		if (!inet_rtx_syn_ack(sk, req))
557 			req->expires = min(TCP_TIMEOUT_INIT << req->num_timeout,
558 					   TCP_RTO_MAX) + jiffies;
559 		return NULL;
560 	}
561 
562 	/* Further reproduces section "SEGMENT ARRIVES"
563 	   for state SYN-RECEIVED of RFC793.
564 	   It is broken, however, it does not work only
565 	   when SYNs are crossed.
566 
567 	   You would think that SYN crossing is impossible here, since
568 	   we should have a SYN_SENT socket (from connect()) on our end,
569 	   but this is not true if the crossed SYNs were sent to both
570 	   ends by a malicious third party.  We must defend against this,
571 	   and to do that we first verify the ACK (as per RFC793, page
572 	   36) and reset if it is invalid.  Is this a true full defense?
573 	   To convince ourselves, let us consider a way in which the ACK
574 	   test can still pass in this 'malicious crossed SYNs' case.
575 	   Malicious sender sends identical SYNs (and thus identical sequence
576 	   numbers) to both A and B:
577 
578 		A: gets SYN, seq=7
579 		B: gets SYN, seq=7
580 
581 	   By our good fortune, both A and B select the same initial
582 	   send sequence number of seven :-)
583 
584 		A: sends SYN|ACK, seq=7, ack_seq=8
585 		B: sends SYN|ACK, seq=7, ack_seq=8
586 
587 	   So we are now A eating this SYN|ACK, ACK test passes.  So
588 	   does sequence test, SYN is truncated, and thus we consider
589 	   it a bare ACK.
590 
591 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
592 	   bare ACK.  Otherwise, we create an established connection.  Both
593 	   ends (listening sockets) accept the new incoming connection and try
594 	   to talk to each other. 8-)
595 
596 	   Note: This case is both harmless, and rare.  Possibility is about the
597 	   same as us discovering intelligent life on another plant tomorrow.
598 
599 	   But generally, we should (RFC lies!) to accept ACK
600 	   from SYNACK both here and in tcp_rcv_state_process().
601 	   tcp_rcv_state_process() does not, hence, we do not too.
602 
603 	   Note that the case is absolutely generic:
604 	   we cannot optimize anything here without
605 	   violating protocol. All the checks must be made
606 	   before attempt to create socket.
607 	 */
608 
609 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
610 	 *                  and the incoming segment acknowledges something not yet
611 	 *                  sent (the segment carries an unacceptable ACK) ...
612 	 *                  a reset is sent."
613 	 *
614 	 * Invalid ACK: reset will be sent by listening socket.
615 	 * Note that the ACK validity check for a Fast Open socket is done
616 	 * elsewhere and is checked directly against the child socket rather
617 	 * than req because user data may have been sent out.
618 	 */
619 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
620 	    (TCP_SKB_CB(skb)->ack_seq !=
621 	     tcp_rsk(req)->snt_isn + 1))
622 		return sk;
623 
624 	/* Also, it would be not so bad idea to check rcv_tsecr, which
625 	 * is essentially ACK extension and too early or too late values
626 	 * should cause reset in unsynchronized states.
627 	 */
628 
629 	/* RFC793: "first check sequence number". */
630 
631 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
632 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
633 		/* Out of window: send ACK and drop. */
634 		if (!(flg & TCP_FLAG_RST))
635 			req->rsk_ops->send_ack(sk, skb, req);
636 		if (paws_reject)
637 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
638 		return NULL;
639 	}
640 
641 	/* In sequence, PAWS is OK. */
642 
643 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
644 		req->ts_recent = tmp_opt.rcv_tsval;
645 
646 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
647 		/* Truncate SYN, it is out of window starting
648 		   at tcp_rsk(req)->rcv_isn + 1. */
649 		flg &= ~TCP_FLAG_SYN;
650 	}
651 
652 	/* RFC793: "second check the RST bit" and
653 	 *	   "fourth, check the SYN bit"
654 	 */
655 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
656 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
657 		goto embryonic_reset;
658 	}
659 
660 	/* ACK sequence verified above, just make sure ACK is
661 	 * set.  If ACK not set, just silently drop the packet.
662 	 *
663 	 * XXX (TFO) - if we ever allow "data after SYN", the
664 	 * following check needs to be removed.
665 	 */
666 	if (!(flg & TCP_FLAG_ACK))
667 		return NULL;
668 
669 	/* Got ACK for our SYNACK, so update baseline for SYNACK RTT sample. */
670 	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
671 		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
672 	else if (req->num_retrans) /* don't take RTT sample if retrans && ~TS */
673 		tcp_rsk(req)->snt_synack = 0;
674 
675 	/* For Fast Open no more processing is needed (sk is the
676 	 * child socket).
677 	 */
678 	if (fastopen)
679 		return sk;
680 
681 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
682 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
683 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
684 		inet_rsk(req)->acked = 1;
685 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
686 		return NULL;
687 	}
688 
689 	/* OK, ACK is valid, create big socket and
690 	 * feed this segment to it. It will repeat all
691 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
692 	 * ESTABLISHED STATE. If it will be dropped after
693 	 * socket is created, wait for troubles.
694 	 */
695 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
696 	if (child == NULL)
697 		goto listen_overflow;
698 
699 	inet_csk_reqsk_queue_unlink(sk, req, prev);
700 	inet_csk_reqsk_queue_removed(sk, req);
701 
702 	inet_csk_reqsk_queue_add(sk, req, child);
703 	return child;
704 
705 listen_overflow:
706 	if (!sysctl_tcp_abort_on_overflow) {
707 		inet_rsk(req)->acked = 1;
708 		return NULL;
709 	}
710 
711 embryonic_reset:
712 	if (!(flg & TCP_FLAG_RST)) {
713 		/* Received a bad SYN pkt - for TFO We try not to reset
714 		 * the local connection unless it's really necessary to
715 		 * avoid becoming vulnerable to outside attack aiming at
716 		 * resetting legit local connections.
717 		 */
718 		req->rsk_ops->send_reset(sk, skb);
719 	} else if (fastopen) { /* received a valid RST pkt */
720 		reqsk_fastopen_remove(sk, req, true);
721 		tcp_reset(sk);
722 	}
723 	if (!fastopen) {
724 		inet_csk_reqsk_queue_drop(sk, req, prev);
725 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
726 	}
727 	return NULL;
728 }
729 EXPORT_SYMBOL(tcp_check_req);
730 
731 /*
732  * Queue segment on the new socket if the new socket is active,
733  * otherwise we just shortcircuit this and continue with
734  * the new socket.
735  *
736  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
737  * when entering. But other states are possible due to a race condition
738  * where after __inet_lookup_established() fails but before the listener
739  * locked is obtained, other packets cause the same connection to
740  * be created.
741  */
742 
743 int tcp_child_process(struct sock *parent, struct sock *child,
744 		      struct sk_buff *skb)
745 {
746 	int ret = 0;
747 	int state = child->sk_state;
748 
749 	if (!sock_owned_by_user(child)) {
750 		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
751 					    skb->len);
752 		/* Wakeup parent, send SIGIO */
753 		if (state == TCP_SYN_RECV && child->sk_state != state)
754 			parent->sk_data_ready(parent, 0);
755 	} else {
756 		/* Alas, it is possible again, because we do lookup
757 		 * in main socket hash table and lock on listening
758 		 * socket does not protect us more.
759 		 */
760 		__sk_add_backlog(child, skb);
761 	}
762 
763 	bh_unlock_sock(child);
764 	sock_put(child);
765 	return ret;
766 }
767 EXPORT_SYMBOL(tcp_child_process);
768