1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 #include <net/tcp.h> 23 #include <net/xfrm.h> 24 #include <net/busy_poll.h> 25 26 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win) 27 { 28 if (seq == s_win) 29 return true; 30 if (after(end_seq, s_win) && before(seq, e_win)) 31 return true; 32 return seq == e_win && seq == end_seq; 33 } 34 35 static enum tcp_tw_status 36 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw, 37 const struct sk_buff *skb, int mib_idx) 38 { 39 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); 40 41 if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx, 42 &tcptw->tw_last_oow_ack_time)) { 43 /* Send ACK. Note, we do not put the bucket, 44 * it will be released by caller. 45 */ 46 return TCP_TW_ACK; 47 } 48 49 /* We are rate-limiting, so just release the tw sock and drop skb. */ 50 inet_twsk_put(tw); 51 return TCP_TW_SUCCESS; 52 } 53 54 /* 55 * * Main purpose of TIME-WAIT state is to close connection gracefully, 56 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN 57 * (and, probably, tail of data) and one or more our ACKs are lost. 58 * * What is TIME-WAIT timeout? It is associated with maximal packet 59 * lifetime in the internet, which results in wrong conclusion, that 60 * it is set to catch "old duplicate segments" wandering out of their path. 61 * It is not quite correct. This timeout is calculated so that it exceeds 62 * maximal retransmission timeout enough to allow to lose one (or more) 63 * segments sent by peer and our ACKs. This time may be calculated from RTO. 64 * * When TIME-WAIT socket receives RST, it means that another end 65 * finally closed and we are allowed to kill TIME-WAIT too. 66 * * Second purpose of TIME-WAIT is catching old duplicate segments. 67 * Well, certainly it is pure paranoia, but if we load TIME-WAIT 68 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs. 69 * * If we invented some more clever way to catch duplicates 70 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs. 71 * 72 * The algorithm below is based on FORMAL INTERPRETATION of RFCs. 73 * When you compare it to RFCs, please, read section SEGMENT ARRIVES 74 * from the very beginning. 75 * 76 * NOTE. With recycling (and later with fin-wait-2) TW bucket 77 * is _not_ stateless. It means, that strictly speaking we must 78 * spinlock it. I do not want! Well, probability of misbehaviour 79 * is ridiculously low and, seems, we could use some mb() tricks 80 * to avoid misread sequence numbers, states etc. --ANK 81 * 82 * We don't need to initialize tmp_out.sack_ok as we don't use the results 83 */ 84 enum tcp_tw_status 85 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb, 86 const struct tcphdr *th) 87 { 88 struct tcp_options_received tmp_opt; 89 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); 90 bool paws_reject = false; 91 92 tmp_opt.saw_tstamp = 0; 93 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) { 94 tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL); 95 96 if (tmp_opt.saw_tstamp) { 97 if (tmp_opt.rcv_tsecr) 98 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset; 99 tmp_opt.ts_recent = tcptw->tw_ts_recent; 100 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 101 paws_reject = tcp_paws_reject(&tmp_opt, th->rst); 102 } 103 } 104 105 if (tw->tw_substate == TCP_FIN_WAIT2) { 106 /* Just repeat all the checks of tcp_rcv_state_process() */ 107 108 /* Out of window, send ACK */ 109 if (paws_reject || 110 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, 111 tcptw->tw_rcv_nxt, 112 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd)) 113 return tcp_timewait_check_oow_rate_limit( 114 tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2); 115 116 if (th->rst) 117 goto kill; 118 119 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt)) 120 return TCP_TW_RST; 121 122 /* Dup ACK? */ 123 if (!th->ack || 124 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) || 125 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) { 126 inet_twsk_put(tw); 127 return TCP_TW_SUCCESS; 128 } 129 130 /* New data or FIN. If new data arrive after half-duplex close, 131 * reset. 132 */ 133 if (!th->fin || 134 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) 135 return TCP_TW_RST; 136 137 /* FIN arrived, enter true time-wait state. */ 138 tw->tw_substate = TCP_TIME_WAIT; 139 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq; 140 if (tmp_opt.saw_tstamp) { 141 tcptw->tw_ts_recent_stamp = ktime_get_seconds(); 142 tcptw->tw_ts_recent = tmp_opt.rcv_tsval; 143 } 144 145 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN); 146 return TCP_TW_ACK; 147 } 148 149 /* 150 * Now real TIME-WAIT state. 151 * 152 * RFC 1122: 153 * "When a connection is [...] on TIME-WAIT state [...] 154 * [a TCP] MAY accept a new SYN from the remote TCP to 155 * reopen the connection directly, if it: 156 * 157 * (1) assigns its initial sequence number for the new 158 * connection to be larger than the largest sequence 159 * number it used on the previous connection incarnation, 160 * and 161 * 162 * (2) returns to TIME-WAIT state if the SYN turns out 163 * to be an old duplicate". 164 */ 165 166 if (!paws_reject && 167 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt && 168 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) { 169 /* In window segment, it may be only reset or bare ack. */ 170 171 if (th->rst) { 172 /* This is TIME_WAIT assassination, in two flavors. 173 * Oh well... nobody has a sufficient solution to this 174 * protocol bug yet. 175 */ 176 if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) { 177 kill: 178 inet_twsk_deschedule_put(tw); 179 return TCP_TW_SUCCESS; 180 } 181 } else { 182 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN); 183 } 184 185 if (tmp_opt.saw_tstamp) { 186 tcptw->tw_ts_recent = tmp_opt.rcv_tsval; 187 tcptw->tw_ts_recent_stamp = ktime_get_seconds(); 188 } 189 190 inet_twsk_put(tw); 191 return TCP_TW_SUCCESS; 192 } 193 194 /* Out of window segment. 195 196 All the segments are ACKed immediately. 197 198 The only exception is new SYN. We accept it, if it is 199 not old duplicate and we are not in danger to be killed 200 by delayed old duplicates. RFC check is that it has 201 newer sequence number works at rates <40Mbit/sec. 202 However, if paws works, it is reliable AND even more, 203 we even may relax silly seq space cutoff. 204 205 RED-PEN: we violate main RFC requirement, if this SYN will appear 206 old duplicate (i.e. we receive RST in reply to SYN-ACK), 207 we must return socket to time-wait state. It is not good, 208 but not fatal yet. 209 */ 210 211 if (th->syn && !th->rst && !th->ack && !paws_reject && 212 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) || 213 (tmp_opt.saw_tstamp && 214 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) { 215 u32 isn = tcptw->tw_snd_nxt + 65535 + 2; 216 if (isn == 0) 217 isn++; 218 TCP_SKB_CB(skb)->tcp_tw_isn = isn; 219 return TCP_TW_SYN; 220 } 221 222 if (paws_reject) 223 __NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED); 224 225 if (!th->rst) { 226 /* In this case we must reset the TIMEWAIT timer. 227 * 228 * If it is ACKless SYN it may be both old duplicate 229 * and new good SYN with random sequence number <rcv_nxt. 230 * Do not reschedule in the last case. 231 */ 232 if (paws_reject || th->ack) 233 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN); 234 235 return tcp_timewait_check_oow_rate_limit( 236 tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT); 237 } 238 inet_twsk_put(tw); 239 return TCP_TW_SUCCESS; 240 } 241 EXPORT_SYMBOL(tcp_timewait_state_process); 242 243 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw) 244 { 245 #ifdef CONFIG_TCP_MD5SIG 246 const struct tcp_sock *tp = tcp_sk(sk); 247 struct tcp_md5sig_key *key; 248 249 /* 250 * The timewait bucket does not have the key DB from the 251 * sock structure. We just make a quick copy of the 252 * md5 key being used (if indeed we are using one) 253 * so the timewait ack generating code has the key. 254 */ 255 tcptw->tw_md5_key = NULL; 256 if (!static_branch_unlikely(&tcp_md5_needed.key)) 257 return; 258 259 key = tp->af_specific->md5_lookup(sk, sk); 260 if (key) { 261 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC); 262 if (!tcptw->tw_md5_key) 263 return; 264 if (!tcp_alloc_md5sig_pool()) 265 goto out_free; 266 if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) 267 goto out_free; 268 } 269 return; 270 out_free: 271 WARN_ON_ONCE(1); 272 kfree(tcptw->tw_md5_key); 273 tcptw->tw_md5_key = NULL; 274 #endif 275 } 276 277 /* 278 * Move a socket to time-wait or dead fin-wait-2 state. 279 */ 280 void tcp_time_wait(struct sock *sk, int state, int timeo) 281 { 282 const struct inet_connection_sock *icsk = inet_csk(sk); 283 const struct tcp_sock *tp = tcp_sk(sk); 284 struct net *net = sock_net(sk); 285 struct inet_timewait_sock *tw; 286 287 tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state); 288 289 if (tw) { 290 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw); 291 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1); 292 293 tw->tw_transparent = inet_test_bit(TRANSPARENT, sk); 294 tw->tw_mark = sk->sk_mark; 295 tw->tw_priority = READ_ONCE(sk->sk_priority); 296 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale; 297 tcptw->tw_rcv_nxt = tp->rcv_nxt; 298 tcptw->tw_snd_nxt = tp->snd_nxt; 299 tcptw->tw_rcv_wnd = tcp_receive_window(tp); 300 tcptw->tw_ts_recent = tp->rx_opt.ts_recent; 301 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp; 302 tcptw->tw_ts_offset = tp->tsoffset; 303 tcptw->tw_last_oow_ack_time = 0; 304 tcptw->tw_tx_delay = tp->tcp_tx_delay; 305 tw->tw_txhash = sk->sk_txhash; 306 #if IS_ENABLED(CONFIG_IPV6) 307 if (tw->tw_family == PF_INET6) { 308 struct ipv6_pinfo *np = inet6_sk(sk); 309 310 tw->tw_v6_daddr = sk->sk_v6_daddr; 311 tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 312 tw->tw_tclass = np->tclass; 313 tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK); 314 tw->tw_ipv6only = sk->sk_ipv6only; 315 } 316 #endif 317 318 tcp_time_wait_init(sk, tcptw); 319 320 /* Get the TIME_WAIT timeout firing. */ 321 if (timeo < rto) 322 timeo = rto; 323 324 if (state == TCP_TIME_WAIT) 325 timeo = TCP_TIMEWAIT_LEN; 326 327 /* tw_timer is pinned, so we need to make sure BH are disabled 328 * in following section, otherwise timer handler could run before 329 * we complete the initialization. 330 */ 331 local_bh_disable(); 332 inet_twsk_schedule(tw, timeo); 333 /* Linkage updates. 334 * Note that access to tw after this point is illegal. 335 */ 336 inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo); 337 local_bh_enable(); 338 } else { 339 /* Sorry, if we're out of memory, just CLOSE this 340 * socket up. We've got bigger problems than 341 * non-graceful socket closings. 342 */ 343 NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW); 344 } 345 346 tcp_update_metrics(sk); 347 tcp_done(sk); 348 } 349 EXPORT_SYMBOL(tcp_time_wait); 350 351 void tcp_twsk_destructor(struct sock *sk) 352 { 353 #ifdef CONFIG_TCP_MD5SIG 354 if (static_branch_unlikely(&tcp_md5_needed.key)) { 355 struct tcp_timewait_sock *twsk = tcp_twsk(sk); 356 357 if (twsk->tw_md5_key) { 358 kfree_rcu(twsk->tw_md5_key, rcu); 359 static_branch_slow_dec_deferred(&tcp_md5_needed); 360 } 361 } 362 #endif 363 } 364 EXPORT_SYMBOL_GPL(tcp_twsk_destructor); 365 366 void tcp_twsk_purge(struct list_head *net_exit_list, int family) 367 { 368 bool purged_once = false; 369 struct net *net; 370 371 list_for_each_entry(net, net_exit_list, exit_list) { 372 if (net->ipv4.tcp_death_row.hashinfo->pernet) { 373 /* Even if tw_refcount == 1, we must clean up kernel reqsk */ 374 inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family); 375 } else if (!purged_once) { 376 /* The last refcount is decremented in tcp_sk_exit_batch() */ 377 if (refcount_read(&net->ipv4.tcp_death_row.tw_refcount) == 1) 378 continue; 379 380 inet_twsk_purge(&tcp_hashinfo, family); 381 purged_once = true; 382 } 383 } 384 } 385 EXPORT_SYMBOL_GPL(tcp_twsk_purge); 386 387 /* Warning : This function is called without sk_listener being locked. 388 * Be sure to read socket fields once, as their value could change under us. 389 */ 390 void tcp_openreq_init_rwin(struct request_sock *req, 391 const struct sock *sk_listener, 392 const struct dst_entry *dst) 393 { 394 struct inet_request_sock *ireq = inet_rsk(req); 395 const struct tcp_sock *tp = tcp_sk(sk_listener); 396 int full_space = tcp_full_space(sk_listener); 397 u32 window_clamp; 398 __u8 rcv_wscale; 399 u32 rcv_wnd; 400 int mss; 401 402 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); 403 window_clamp = READ_ONCE(tp->window_clamp); 404 /* Set this up on the first call only */ 405 req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW); 406 407 /* limit the window selection if the user enforce a smaller rx buffer */ 408 if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK && 409 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0)) 410 req->rsk_window_clamp = full_space; 411 412 rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req); 413 if (rcv_wnd == 0) 414 rcv_wnd = dst_metric(dst, RTAX_INITRWND); 415 else if (full_space < rcv_wnd * mss) 416 full_space = rcv_wnd * mss; 417 418 /* tcp_full_space because it is guaranteed to be the first packet */ 419 tcp_select_initial_window(sk_listener, full_space, 420 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 421 &req->rsk_rcv_wnd, 422 &req->rsk_window_clamp, 423 ireq->wscale_ok, 424 &rcv_wscale, 425 rcv_wnd); 426 ireq->rcv_wscale = rcv_wscale; 427 } 428 EXPORT_SYMBOL(tcp_openreq_init_rwin); 429 430 static void tcp_ecn_openreq_child(struct tcp_sock *tp, 431 const struct request_sock *req) 432 { 433 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0; 434 } 435 436 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst) 437 { 438 struct inet_connection_sock *icsk = inet_csk(sk); 439 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); 440 bool ca_got_dst = false; 441 442 if (ca_key != TCP_CA_UNSPEC) { 443 const struct tcp_congestion_ops *ca; 444 445 rcu_read_lock(); 446 ca = tcp_ca_find_key(ca_key); 447 if (likely(ca && bpf_try_module_get(ca, ca->owner))) { 448 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); 449 icsk->icsk_ca_ops = ca; 450 ca_got_dst = true; 451 } 452 rcu_read_unlock(); 453 } 454 455 /* If no valid choice made yet, assign current system default ca. */ 456 if (!ca_got_dst && 457 (!icsk->icsk_ca_setsockopt || 458 !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner))) 459 tcp_assign_congestion_control(sk); 460 461 tcp_set_ca_state(sk, TCP_CA_Open); 462 } 463 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child); 464 465 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp, 466 struct request_sock *req, 467 struct tcp_sock *newtp) 468 { 469 #if IS_ENABLED(CONFIG_SMC) 470 struct inet_request_sock *ireq; 471 472 if (static_branch_unlikely(&tcp_have_smc)) { 473 ireq = inet_rsk(req); 474 if (oldtp->syn_smc && !ireq->smc_ok) 475 newtp->syn_smc = 0; 476 } 477 #endif 478 } 479 480 /* This is not only more efficient than what we used to do, it eliminates 481 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM 482 * 483 * Actually, we could lots of memory writes here. tp of listening 484 * socket contains all necessary default parameters. 485 */ 486 struct sock *tcp_create_openreq_child(const struct sock *sk, 487 struct request_sock *req, 488 struct sk_buff *skb) 489 { 490 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC); 491 const struct inet_request_sock *ireq = inet_rsk(req); 492 struct tcp_request_sock *treq = tcp_rsk(req); 493 struct inet_connection_sock *newicsk; 494 const struct tcp_sock *oldtp; 495 struct tcp_sock *newtp; 496 u32 seq; 497 498 if (!newsk) 499 return NULL; 500 501 newicsk = inet_csk(newsk); 502 newtp = tcp_sk(newsk); 503 oldtp = tcp_sk(sk); 504 505 smc_check_reset_syn_req(oldtp, req, newtp); 506 507 /* Now setup tcp_sock */ 508 newtp->pred_flags = 0; 509 510 seq = treq->rcv_isn + 1; 511 newtp->rcv_wup = seq; 512 WRITE_ONCE(newtp->copied_seq, seq); 513 WRITE_ONCE(newtp->rcv_nxt, seq); 514 newtp->segs_in = 1; 515 516 seq = treq->snt_isn + 1; 517 newtp->snd_sml = newtp->snd_una = seq; 518 WRITE_ONCE(newtp->snd_nxt, seq); 519 newtp->snd_up = seq; 520 521 INIT_LIST_HEAD(&newtp->tsq_node); 522 INIT_LIST_HEAD(&newtp->tsorted_sent_queue); 523 524 tcp_init_wl(newtp, treq->rcv_isn); 525 526 minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U); 527 newicsk->icsk_ack.lrcvtime = tcp_jiffies32; 528 529 newtp->lsndtime = tcp_jiffies32; 530 newsk->sk_txhash = READ_ONCE(treq->txhash); 531 newtp->total_retrans = req->num_retrans; 532 533 tcp_init_xmit_timers(newsk); 534 WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1); 535 536 if (sock_flag(newsk, SOCK_KEEPOPEN)) 537 inet_csk_reset_keepalive_timer(newsk, 538 keepalive_time_when(newtp)); 539 540 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok; 541 newtp->rx_opt.sack_ok = ireq->sack_ok; 542 newtp->window_clamp = req->rsk_window_clamp; 543 newtp->rcv_ssthresh = req->rsk_rcv_wnd; 544 newtp->rcv_wnd = req->rsk_rcv_wnd; 545 newtp->rx_opt.wscale_ok = ireq->wscale_ok; 546 if (newtp->rx_opt.wscale_ok) { 547 newtp->rx_opt.snd_wscale = ireq->snd_wscale; 548 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale; 549 } else { 550 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; 551 newtp->window_clamp = min(newtp->window_clamp, 65535U); 552 } 553 newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale; 554 newtp->max_window = newtp->snd_wnd; 555 556 if (newtp->rx_opt.tstamp_ok) { 557 newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent); 558 newtp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 559 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 560 } else { 561 newtp->rx_opt.ts_recent_stamp = 0; 562 newtp->tcp_header_len = sizeof(struct tcphdr); 563 } 564 if (req->num_timeout) { 565 newtp->undo_marker = treq->snt_isn; 566 newtp->retrans_stamp = div_u64(treq->snt_synack, 567 USEC_PER_SEC / TCP_TS_HZ); 568 newtp->total_rto = req->num_timeout; 569 newtp->total_rto_recoveries = 1; 570 newtp->total_rto_time = tcp_time_stamp_raw() - 571 newtp->retrans_stamp; 572 } 573 newtp->tsoffset = treq->ts_off; 574 #ifdef CONFIG_TCP_MD5SIG 575 newtp->md5sig_info = NULL; /*XXX*/ 576 #endif 577 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len) 578 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len; 579 newtp->rx_opt.mss_clamp = req->mss; 580 tcp_ecn_openreq_child(newtp, req); 581 newtp->fastopen_req = NULL; 582 RCU_INIT_POINTER(newtp->fastopen_rsk, NULL); 583 584 newtp->bpf_chg_cc_inprogress = 0; 585 tcp_bpf_clone(sk, newsk); 586 587 __TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS); 588 589 return newsk; 590 } 591 EXPORT_SYMBOL(tcp_create_openreq_child); 592 593 /* 594 * Process an incoming packet for SYN_RECV sockets represented as a 595 * request_sock. Normally sk is the listener socket but for TFO it 596 * points to the child socket. 597 * 598 * XXX (TFO) - The current impl contains a special check for ack 599 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better? 600 * 601 * We don't need to initialize tmp_opt.sack_ok as we don't use the results 602 * 603 * Note: If @fastopen is true, this can be called from process context. 604 * Otherwise, this is from BH context. 605 */ 606 607 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 608 struct request_sock *req, 609 bool fastopen, bool *req_stolen) 610 { 611 struct tcp_options_received tmp_opt; 612 struct sock *child; 613 const struct tcphdr *th = tcp_hdr(skb); 614 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK); 615 bool paws_reject = false; 616 bool own_req; 617 618 tmp_opt.saw_tstamp = 0; 619 if (th->doff > (sizeof(struct tcphdr)>>2)) { 620 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL); 621 622 if (tmp_opt.saw_tstamp) { 623 tmp_opt.ts_recent = READ_ONCE(req->ts_recent); 624 if (tmp_opt.rcv_tsecr) 625 tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off; 626 /* We do not store true stamp, but it is not required, 627 * it can be estimated (approximately) 628 * from another data. 629 */ 630 tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ; 631 paws_reject = tcp_paws_reject(&tmp_opt, th->rst); 632 } 633 } 634 635 /* Check for pure retransmitted SYN. */ 636 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn && 637 flg == TCP_FLAG_SYN && 638 !paws_reject) { 639 /* 640 * RFC793 draws (Incorrectly! It was fixed in RFC1122) 641 * this case on figure 6 and figure 8, but formal 642 * protocol description says NOTHING. 643 * To be more exact, it says that we should send ACK, 644 * because this segment (at least, if it has no data) 645 * is out of window. 646 * 647 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT 648 * describe SYN-RECV state. All the description 649 * is wrong, we cannot believe to it and should 650 * rely only on common sense and implementation 651 * experience. 652 * 653 * Enforce "SYN-ACK" according to figure 8, figure 6 654 * of RFC793, fixed by RFC1122. 655 * 656 * Note that even if there is new data in the SYN packet 657 * they will be thrown away too. 658 * 659 * Reset timer after retransmitting SYNACK, similar to 660 * the idea of fast retransmit in recovery. 661 */ 662 if (!tcp_oow_rate_limited(sock_net(sk), skb, 663 LINUX_MIB_TCPACKSKIPPEDSYNRECV, 664 &tcp_rsk(req)->last_oow_ack_time) && 665 666 !inet_rtx_syn_ack(sk, req)) { 667 unsigned long expires = jiffies; 668 669 expires += reqsk_timeout(req, TCP_RTO_MAX); 670 if (!fastopen) 671 mod_timer_pending(&req->rsk_timer, expires); 672 else 673 req->rsk_timer.expires = expires; 674 } 675 return NULL; 676 } 677 678 /* Further reproduces section "SEGMENT ARRIVES" 679 for state SYN-RECEIVED of RFC793. 680 It is broken, however, it does not work only 681 when SYNs are crossed. 682 683 You would think that SYN crossing is impossible here, since 684 we should have a SYN_SENT socket (from connect()) on our end, 685 but this is not true if the crossed SYNs were sent to both 686 ends by a malicious third party. We must defend against this, 687 and to do that we first verify the ACK (as per RFC793, page 688 36) and reset if it is invalid. Is this a true full defense? 689 To convince ourselves, let us consider a way in which the ACK 690 test can still pass in this 'malicious crossed SYNs' case. 691 Malicious sender sends identical SYNs (and thus identical sequence 692 numbers) to both A and B: 693 694 A: gets SYN, seq=7 695 B: gets SYN, seq=7 696 697 By our good fortune, both A and B select the same initial 698 send sequence number of seven :-) 699 700 A: sends SYN|ACK, seq=7, ack_seq=8 701 B: sends SYN|ACK, seq=7, ack_seq=8 702 703 So we are now A eating this SYN|ACK, ACK test passes. So 704 does sequence test, SYN is truncated, and thus we consider 705 it a bare ACK. 706 707 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this 708 bare ACK. Otherwise, we create an established connection. Both 709 ends (listening sockets) accept the new incoming connection and try 710 to talk to each other. 8-) 711 712 Note: This case is both harmless, and rare. Possibility is about the 713 same as us discovering intelligent life on another plant tomorrow. 714 715 But generally, we should (RFC lies!) to accept ACK 716 from SYNACK both here and in tcp_rcv_state_process(). 717 tcp_rcv_state_process() does not, hence, we do not too. 718 719 Note that the case is absolutely generic: 720 we cannot optimize anything here without 721 violating protocol. All the checks must be made 722 before attempt to create socket. 723 */ 724 725 /* RFC793 page 36: "If the connection is in any non-synchronized state ... 726 * and the incoming segment acknowledges something not yet 727 * sent (the segment carries an unacceptable ACK) ... 728 * a reset is sent." 729 * 730 * Invalid ACK: reset will be sent by listening socket. 731 * Note that the ACK validity check for a Fast Open socket is done 732 * elsewhere and is checked directly against the child socket rather 733 * than req because user data may have been sent out. 734 */ 735 if ((flg & TCP_FLAG_ACK) && !fastopen && 736 (TCP_SKB_CB(skb)->ack_seq != 737 tcp_rsk(req)->snt_isn + 1)) 738 return sk; 739 740 /* Also, it would be not so bad idea to check rcv_tsecr, which 741 * is essentially ACK extension and too early or too late values 742 * should cause reset in unsynchronized states. 743 */ 744 745 /* RFC793: "first check sequence number". */ 746 747 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, 748 tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) { 749 /* Out of window: send ACK and drop. */ 750 if (!(flg & TCP_FLAG_RST) && 751 !tcp_oow_rate_limited(sock_net(sk), skb, 752 LINUX_MIB_TCPACKSKIPPEDSYNRECV, 753 &tcp_rsk(req)->last_oow_ack_time)) 754 req->rsk_ops->send_ack(sk, skb, req); 755 if (paws_reject) 756 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 757 return NULL; 758 } 759 760 /* In sequence, PAWS is OK. */ 761 762 /* TODO: We probably should defer ts_recent change once 763 * we take ownership of @req. 764 */ 765 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt)) 766 WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval); 767 768 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) { 769 /* Truncate SYN, it is out of window starting 770 at tcp_rsk(req)->rcv_isn + 1. */ 771 flg &= ~TCP_FLAG_SYN; 772 } 773 774 /* RFC793: "second check the RST bit" and 775 * "fourth, check the SYN bit" 776 */ 777 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) { 778 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 779 goto embryonic_reset; 780 } 781 782 /* ACK sequence verified above, just make sure ACK is 783 * set. If ACK not set, just silently drop the packet. 784 * 785 * XXX (TFO) - if we ever allow "data after SYN", the 786 * following check needs to be removed. 787 */ 788 if (!(flg & TCP_FLAG_ACK)) 789 return NULL; 790 791 /* For Fast Open no more processing is needed (sk is the 792 * child socket). 793 */ 794 if (fastopen) 795 return sk; 796 797 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */ 798 if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) && 799 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) { 800 inet_rsk(req)->acked = 1; 801 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP); 802 return NULL; 803 } 804 805 /* OK, ACK is valid, create big socket and 806 * feed this segment to it. It will repeat all 807 * the tests. THIS SEGMENT MUST MOVE SOCKET TO 808 * ESTABLISHED STATE. If it will be dropped after 809 * socket is created, wait for troubles. 810 */ 811 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, 812 req, &own_req); 813 if (!child) 814 goto listen_overflow; 815 816 if (own_req && rsk_drop_req(req)) { 817 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req); 818 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req); 819 return child; 820 } 821 822 sock_rps_save_rxhash(child, skb); 823 tcp_synack_rtt_meas(child, req); 824 *req_stolen = !own_req; 825 return inet_csk_complete_hashdance(sk, child, req, own_req); 826 827 listen_overflow: 828 if (sk != req->rsk_listener) 829 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 830 831 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) { 832 inet_rsk(req)->acked = 1; 833 return NULL; 834 } 835 836 embryonic_reset: 837 if (!(flg & TCP_FLAG_RST)) { 838 /* Received a bad SYN pkt - for TFO We try not to reset 839 * the local connection unless it's really necessary to 840 * avoid becoming vulnerable to outside attack aiming at 841 * resetting legit local connections. 842 */ 843 req->rsk_ops->send_reset(sk, skb); 844 } else if (fastopen) { /* received a valid RST pkt */ 845 reqsk_fastopen_remove(sk, req, true); 846 tcp_reset(sk, skb); 847 } 848 if (!fastopen) { 849 bool unlinked = inet_csk_reqsk_queue_drop(sk, req); 850 851 if (unlinked) 852 __NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS); 853 *req_stolen = !unlinked; 854 } 855 return NULL; 856 } 857 EXPORT_SYMBOL(tcp_check_req); 858 859 /* 860 * Queue segment on the new socket if the new socket is active, 861 * otherwise we just shortcircuit this and continue with 862 * the new socket. 863 * 864 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV 865 * when entering. But other states are possible due to a race condition 866 * where after __inet_lookup_established() fails but before the listener 867 * locked is obtained, other packets cause the same connection to 868 * be created. 869 */ 870 871 int tcp_child_process(struct sock *parent, struct sock *child, 872 struct sk_buff *skb) 873 __releases(&((child)->sk_lock.slock)) 874 { 875 int ret = 0; 876 int state = child->sk_state; 877 878 /* record sk_napi_id and sk_rx_queue_mapping of child. */ 879 sk_mark_napi_id_set(child, skb); 880 881 tcp_segs_in(tcp_sk(child), skb); 882 if (!sock_owned_by_user(child)) { 883 ret = tcp_rcv_state_process(child, skb); 884 /* Wakeup parent, send SIGIO */ 885 if (state == TCP_SYN_RECV && child->sk_state != state) 886 parent->sk_data_ready(parent); 887 } else { 888 /* Alas, it is possible again, because we do lookup 889 * in main socket hash table and lock on listening 890 * socket does not protect us more. 891 */ 892 __sk_add_backlog(child, skb); 893 } 894 895 bh_unlock_sock(child); 896 sock_put(child); 897 return ret; 898 } 899 EXPORT_SYMBOL(tcp_child_process); 900