xref: /linux/net/ipv4/tcp_minisocks.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32 
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34 
35 struct inet_timewait_death_row tcp_death_row = {
36 	.sysctl_max_tw_buckets = NR_FILE * 2,
37 	.hashinfo	= &tcp_hashinfo,
38 };
39 EXPORT_SYMBOL_GPL(tcp_death_row);
40 
41 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
42 {
43 	if (seq == s_win)
44 		return true;
45 	if (after(end_seq, s_win) && before(seq, e_win))
46 		return true;
47 	return seq == e_win && seq == end_seq;
48 }
49 
50 static enum tcp_tw_status
51 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
52 				  const struct sk_buff *skb, int mib_idx)
53 {
54 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
55 
56 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
57 				  &tcptw->tw_last_oow_ack_time)) {
58 		/* Send ACK. Note, we do not put the bucket,
59 		 * it will be released by caller.
60 		 */
61 		return TCP_TW_ACK;
62 	}
63 
64 	/* We are rate-limiting, so just release the tw sock and drop skb. */
65 	inet_twsk_put(tw);
66 	return TCP_TW_SUCCESS;
67 }
68 
69 /*
70  * * Main purpose of TIME-WAIT state is to close connection gracefully,
71  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
72  *   (and, probably, tail of data) and one or more our ACKs are lost.
73  * * What is TIME-WAIT timeout? It is associated with maximal packet
74  *   lifetime in the internet, which results in wrong conclusion, that
75  *   it is set to catch "old duplicate segments" wandering out of their path.
76  *   It is not quite correct. This timeout is calculated so that it exceeds
77  *   maximal retransmission timeout enough to allow to lose one (or more)
78  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
79  * * When TIME-WAIT socket receives RST, it means that another end
80  *   finally closed and we are allowed to kill TIME-WAIT too.
81  * * Second purpose of TIME-WAIT is catching old duplicate segments.
82  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
83  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
84  * * If we invented some more clever way to catch duplicates
85  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
86  *
87  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
88  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
89  * from the very beginning.
90  *
91  * NOTE. With recycling (and later with fin-wait-2) TW bucket
92  * is _not_ stateless. It means, that strictly speaking we must
93  * spinlock it. I do not want! Well, probability of misbehaviour
94  * is ridiculously low and, seems, we could use some mb() tricks
95  * to avoid misread sequence numbers, states etc.  --ANK
96  *
97  * We don't need to initialize tmp_out.sack_ok as we don't use the results
98  */
99 enum tcp_tw_status
100 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
101 			   const struct tcphdr *th)
102 {
103 	struct tcp_options_received tmp_opt;
104 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
105 	bool paws_reject = false;
106 
107 	tmp_opt.saw_tstamp = 0;
108 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
109 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
110 
111 		if (tmp_opt.saw_tstamp) {
112 			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
113 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
114 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
115 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
116 		}
117 	}
118 
119 	if (tw->tw_substate == TCP_FIN_WAIT2) {
120 		/* Just repeat all the checks of tcp_rcv_state_process() */
121 
122 		/* Out of window, send ACK */
123 		if (paws_reject ||
124 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
125 				   tcptw->tw_rcv_nxt,
126 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
127 			return tcp_timewait_check_oow_rate_limit(
128 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
129 
130 		if (th->rst)
131 			goto kill;
132 
133 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
134 			return TCP_TW_RST;
135 
136 		/* Dup ACK? */
137 		if (!th->ack ||
138 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
139 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
140 			inet_twsk_put(tw);
141 			return TCP_TW_SUCCESS;
142 		}
143 
144 		/* New data or FIN. If new data arrive after half-duplex close,
145 		 * reset.
146 		 */
147 		if (!th->fin ||
148 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
149 			return TCP_TW_RST;
150 
151 		/* FIN arrived, enter true time-wait state. */
152 		tw->tw_substate	  = TCP_TIME_WAIT;
153 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
154 		if (tmp_opt.saw_tstamp) {
155 			tcptw->tw_ts_recent_stamp = get_seconds();
156 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
157 		}
158 
159 		if (tcp_death_row.sysctl_tw_recycle &&
160 		    tcptw->tw_ts_recent_stamp &&
161 		    tcp_tw_remember_stamp(tw))
162 			inet_twsk_reschedule(tw, tw->tw_timeout);
163 		else
164 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
165 		return TCP_TW_ACK;
166 	}
167 
168 	/*
169 	 *	Now real TIME-WAIT state.
170 	 *
171 	 *	RFC 1122:
172 	 *	"When a connection is [...] on TIME-WAIT state [...]
173 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
174 	 *	reopen the connection directly, if it:
175 	 *
176 	 *	(1)  assigns its initial sequence number for the new
177 	 *	connection to be larger than the largest sequence
178 	 *	number it used on the previous connection incarnation,
179 	 *	and
180 	 *
181 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
182 	 *	to be an old duplicate".
183 	 */
184 
185 	if (!paws_reject &&
186 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
187 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
188 		/* In window segment, it may be only reset or bare ack. */
189 
190 		if (th->rst) {
191 			/* This is TIME_WAIT assassination, in two flavors.
192 			 * Oh well... nobody has a sufficient solution to this
193 			 * protocol bug yet.
194 			 */
195 			if (sysctl_tcp_rfc1337 == 0) {
196 kill:
197 				inet_twsk_deschedule_put(tw);
198 				return TCP_TW_SUCCESS;
199 			}
200 		}
201 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
202 
203 		if (tmp_opt.saw_tstamp) {
204 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
205 			tcptw->tw_ts_recent_stamp = get_seconds();
206 		}
207 
208 		inet_twsk_put(tw);
209 		return TCP_TW_SUCCESS;
210 	}
211 
212 	/* Out of window segment.
213 
214 	   All the segments are ACKed immediately.
215 
216 	   The only exception is new SYN. We accept it, if it is
217 	   not old duplicate and we are not in danger to be killed
218 	   by delayed old duplicates. RFC check is that it has
219 	   newer sequence number works at rates <40Mbit/sec.
220 	   However, if paws works, it is reliable AND even more,
221 	   we even may relax silly seq space cutoff.
222 
223 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
224 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
225 	   we must return socket to time-wait state. It is not good,
226 	   but not fatal yet.
227 	 */
228 
229 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
230 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
231 	     (tmp_opt.saw_tstamp &&
232 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
233 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
234 		if (isn == 0)
235 			isn++;
236 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
237 		return TCP_TW_SYN;
238 	}
239 
240 	if (paws_reject)
241 		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
242 
243 	if (!th->rst) {
244 		/* In this case we must reset the TIMEWAIT timer.
245 		 *
246 		 * If it is ACKless SYN it may be both old duplicate
247 		 * and new good SYN with random sequence number <rcv_nxt.
248 		 * Do not reschedule in the last case.
249 		 */
250 		if (paws_reject || th->ack)
251 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
252 
253 		return tcp_timewait_check_oow_rate_limit(
254 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
255 	}
256 	inet_twsk_put(tw);
257 	return TCP_TW_SUCCESS;
258 }
259 EXPORT_SYMBOL(tcp_timewait_state_process);
260 
261 /*
262  * Move a socket to time-wait or dead fin-wait-2 state.
263  */
264 void tcp_time_wait(struct sock *sk, int state, int timeo)
265 {
266 	const struct inet_connection_sock *icsk = inet_csk(sk);
267 	const struct tcp_sock *tp = tcp_sk(sk);
268 	struct inet_timewait_sock *tw;
269 	bool recycle_ok = false;
270 
271 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
272 		recycle_ok = tcp_remember_stamp(sk);
273 
274 	tw = inet_twsk_alloc(sk, &tcp_death_row, state);
275 
276 	if (tw) {
277 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
278 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
279 		struct inet_sock *inet = inet_sk(sk);
280 
281 		tw->tw_transparent	= inet->transparent;
282 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
283 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
284 		tcptw->tw_snd_nxt	= tp->snd_nxt;
285 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
286 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
287 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
288 		tcptw->tw_ts_offset	= tp->tsoffset;
289 		tcptw->tw_last_oow_ack_time = 0;
290 
291 #if IS_ENABLED(CONFIG_IPV6)
292 		if (tw->tw_family == PF_INET6) {
293 			struct ipv6_pinfo *np = inet6_sk(sk);
294 
295 			tw->tw_v6_daddr = sk->sk_v6_daddr;
296 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
297 			tw->tw_tclass = np->tclass;
298 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
299 			tw->tw_ipv6only = sk->sk_ipv6only;
300 		}
301 #endif
302 
303 #ifdef CONFIG_TCP_MD5SIG
304 		/*
305 		 * The timewait bucket does not have the key DB from the
306 		 * sock structure. We just make a quick copy of the
307 		 * md5 key being used (if indeed we are using one)
308 		 * so the timewait ack generating code has the key.
309 		 */
310 		do {
311 			struct tcp_md5sig_key *key;
312 			tcptw->tw_md5_key = NULL;
313 			key = tp->af_specific->md5_lookup(sk, sk);
314 			if (key) {
315 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
316 				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
317 					BUG();
318 			}
319 		} while (0);
320 #endif
321 
322 		/* Get the TIME_WAIT timeout firing. */
323 		if (timeo < rto)
324 			timeo = rto;
325 
326 		if (recycle_ok) {
327 			tw->tw_timeout = rto;
328 		} else {
329 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
330 			if (state == TCP_TIME_WAIT)
331 				timeo = TCP_TIMEWAIT_LEN;
332 		}
333 
334 		inet_twsk_schedule(tw, timeo);
335 		/* Linkage updates. */
336 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
337 		inet_twsk_put(tw);
338 	} else {
339 		/* Sorry, if we're out of memory, just CLOSE this
340 		 * socket up.  We've got bigger problems than
341 		 * non-graceful socket closings.
342 		 */
343 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
344 	}
345 
346 	tcp_update_metrics(sk);
347 	tcp_done(sk);
348 }
349 
350 void tcp_twsk_destructor(struct sock *sk)
351 {
352 #ifdef CONFIG_TCP_MD5SIG
353 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
354 
355 	if (twsk->tw_md5_key)
356 		kfree_rcu(twsk->tw_md5_key, rcu);
357 #endif
358 }
359 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
360 
361 /* Warning : This function is called without sk_listener being locked.
362  * Be sure to read socket fields once, as their value could change under us.
363  */
364 void tcp_openreq_init_rwin(struct request_sock *req,
365 			   const struct sock *sk_listener,
366 			   const struct dst_entry *dst)
367 {
368 	struct inet_request_sock *ireq = inet_rsk(req);
369 	const struct tcp_sock *tp = tcp_sk(sk_listener);
370 	u16 user_mss = READ_ONCE(tp->rx_opt.user_mss);
371 	int full_space = tcp_full_space(sk_listener);
372 	int mss = dst_metric_advmss(dst);
373 	u32 window_clamp;
374 	__u8 rcv_wscale;
375 
376 	if (user_mss && user_mss < mss)
377 		mss = user_mss;
378 
379 	window_clamp = READ_ONCE(tp->window_clamp);
380 	/* Set this up on the first call only */
381 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
382 
383 	/* limit the window selection if the user enforce a smaller rx buffer */
384 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
385 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
386 		req->rsk_window_clamp = full_space;
387 
388 	/* tcp_full_space because it is guaranteed to be the first packet */
389 	tcp_select_initial_window(full_space,
390 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
391 		&req->rsk_rcv_wnd,
392 		&req->rsk_window_clamp,
393 		ireq->wscale_ok,
394 		&rcv_wscale,
395 		dst_metric(dst, RTAX_INITRWND));
396 	ireq->rcv_wscale = rcv_wscale;
397 }
398 EXPORT_SYMBOL(tcp_openreq_init_rwin);
399 
400 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
401 				  const struct request_sock *req)
402 {
403 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
404 }
405 
406 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
407 {
408 	struct inet_connection_sock *icsk = inet_csk(sk);
409 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
410 	bool ca_got_dst = false;
411 
412 	if (ca_key != TCP_CA_UNSPEC) {
413 		const struct tcp_congestion_ops *ca;
414 
415 		rcu_read_lock();
416 		ca = tcp_ca_find_key(ca_key);
417 		if (likely(ca && try_module_get(ca->owner))) {
418 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
419 			icsk->icsk_ca_ops = ca;
420 			ca_got_dst = true;
421 		}
422 		rcu_read_unlock();
423 	}
424 
425 	/* If no valid choice made yet, assign current system default ca. */
426 	if (!ca_got_dst &&
427 	    (!icsk->icsk_ca_setsockopt ||
428 	     !try_module_get(icsk->icsk_ca_ops->owner)))
429 		tcp_assign_congestion_control(sk);
430 
431 	tcp_set_ca_state(sk, TCP_CA_Open);
432 }
433 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
434 
435 /* This is not only more efficient than what we used to do, it eliminates
436  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
437  *
438  * Actually, we could lots of memory writes here. tp of listening
439  * socket contains all necessary default parameters.
440  */
441 struct sock *tcp_create_openreq_child(const struct sock *sk,
442 				      struct request_sock *req,
443 				      struct sk_buff *skb)
444 {
445 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
446 
447 	if (newsk) {
448 		const struct inet_request_sock *ireq = inet_rsk(req);
449 		struct tcp_request_sock *treq = tcp_rsk(req);
450 		struct inet_connection_sock *newicsk = inet_csk(newsk);
451 		struct tcp_sock *newtp = tcp_sk(newsk);
452 
453 		/* Now setup tcp_sock */
454 		newtp->pred_flags = 0;
455 
456 		newtp->rcv_wup = newtp->copied_seq =
457 		newtp->rcv_nxt = treq->rcv_isn + 1;
458 		newtp->segs_in = 1;
459 
460 		newtp->snd_sml = newtp->snd_una =
461 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
462 
463 		tcp_prequeue_init(newtp);
464 		INIT_LIST_HEAD(&newtp->tsq_node);
465 
466 		tcp_init_wl(newtp, treq->rcv_isn);
467 
468 		newtp->srtt_us = 0;
469 		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
470 		newtp->rtt_min[0].rtt = ~0U;
471 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
472 
473 		newtp->packets_out = 0;
474 		newtp->retrans_out = 0;
475 		newtp->sacked_out = 0;
476 		newtp->fackets_out = 0;
477 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
478 		tcp_enable_early_retrans(newtp);
479 		newtp->tlp_high_seq = 0;
480 		newtp->lsndtime = treq->snt_synack.stamp_jiffies;
481 		newsk->sk_txhash = treq->txhash;
482 		newtp->last_oow_ack_time = 0;
483 		newtp->total_retrans = req->num_retrans;
484 
485 		/* So many TCP implementations out there (incorrectly) count the
486 		 * initial SYN frame in their delayed-ACK and congestion control
487 		 * algorithms that we must have the following bandaid to talk
488 		 * efficiently to them.  -DaveM
489 		 */
490 		newtp->snd_cwnd = TCP_INIT_CWND;
491 		newtp->snd_cwnd_cnt = 0;
492 
493 		tcp_init_xmit_timers(newsk);
494 		__skb_queue_head_init(&newtp->out_of_order_queue);
495 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
496 
497 		newtp->rx_opt.saw_tstamp = 0;
498 
499 		newtp->rx_opt.dsack = 0;
500 		newtp->rx_opt.num_sacks = 0;
501 
502 		newtp->urg_data = 0;
503 
504 		if (sock_flag(newsk, SOCK_KEEPOPEN))
505 			inet_csk_reset_keepalive_timer(newsk,
506 						       keepalive_time_when(newtp));
507 
508 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
509 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
510 			if (sysctl_tcp_fack)
511 				tcp_enable_fack(newtp);
512 		}
513 		newtp->window_clamp = req->rsk_window_clamp;
514 		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
515 		newtp->rcv_wnd = req->rsk_rcv_wnd;
516 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
517 		if (newtp->rx_opt.wscale_ok) {
518 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
519 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
520 		} else {
521 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
522 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
523 		}
524 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
525 				  newtp->rx_opt.snd_wscale);
526 		newtp->max_window = newtp->snd_wnd;
527 
528 		if (newtp->rx_opt.tstamp_ok) {
529 			newtp->rx_opt.ts_recent = req->ts_recent;
530 			newtp->rx_opt.ts_recent_stamp = get_seconds();
531 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
532 		} else {
533 			newtp->rx_opt.ts_recent_stamp = 0;
534 			newtp->tcp_header_len = sizeof(struct tcphdr);
535 		}
536 		newtp->tsoffset = 0;
537 #ifdef CONFIG_TCP_MD5SIG
538 		newtp->md5sig_info = NULL;	/*XXX*/
539 		if (newtp->af_specific->md5_lookup(sk, newsk))
540 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
541 #endif
542 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
543 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
544 		newtp->rx_opt.mss_clamp = req->mss;
545 		tcp_ecn_openreq_child(newtp, req);
546 		newtp->fastopen_rsk = NULL;
547 		newtp->syn_data_acked = 0;
548 		newtp->rack.mstamp.v64 = 0;
549 		newtp->rack.advanced = 0;
550 
551 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
552 	}
553 	return newsk;
554 }
555 EXPORT_SYMBOL(tcp_create_openreq_child);
556 
557 /*
558  * Process an incoming packet for SYN_RECV sockets represented as a
559  * request_sock. Normally sk is the listener socket but for TFO it
560  * points to the child socket.
561  *
562  * XXX (TFO) - The current impl contains a special check for ack
563  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
564  *
565  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
566  */
567 
568 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
569 			   struct request_sock *req,
570 			   bool fastopen)
571 {
572 	struct tcp_options_received tmp_opt;
573 	struct sock *child;
574 	const struct tcphdr *th = tcp_hdr(skb);
575 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
576 	bool paws_reject = false;
577 	bool own_req;
578 
579 	tmp_opt.saw_tstamp = 0;
580 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
581 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
582 
583 		if (tmp_opt.saw_tstamp) {
584 			tmp_opt.ts_recent = req->ts_recent;
585 			/* We do not store true stamp, but it is not required,
586 			 * it can be estimated (approximately)
587 			 * from another data.
588 			 */
589 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
590 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
591 		}
592 	}
593 
594 	/* Check for pure retransmitted SYN. */
595 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
596 	    flg == TCP_FLAG_SYN &&
597 	    !paws_reject) {
598 		/*
599 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
600 		 * this case on figure 6 and figure 8, but formal
601 		 * protocol description says NOTHING.
602 		 * To be more exact, it says that we should send ACK,
603 		 * because this segment (at least, if it has no data)
604 		 * is out of window.
605 		 *
606 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
607 		 *  describe SYN-RECV state. All the description
608 		 *  is wrong, we cannot believe to it and should
609 		 *  rely only on common sense and implementation
610 		 *  experience.
611 		 *
612 		 * Enforce "SYN-ACK" according to figure 8, figure 6
613 		 * of RFC793, fixed by RFC1122.
614 		 *
615 		 * Note that even if there is new data in the SYN packet
616 		 * they will be thrown away too.
617 		 *
618 		 * Reset timer after retransmitting SYNACK, similar to
619 		 * the idea of fast retransmit in recovery.
620 		 */
621 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
622 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
623 					  &tcp_rsk(req)->last_oow_ack_time) &&
624 
625 		    !inet_rtx_syn_ack(sk, req)) {
626 			unsigned long expires = jiffies;
627 
628 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
629 				       TCP_RTO_MAX);
630 			if (!fastopen)
631 				mod_timer_pending(&req->rsk_timer, expires);
632 			else
633 				req->rsk_timer.expires = expires;
634 		}
635 		return NULL;
636 	}
637 
638 	/* Further reproduces section "SEGMENT ARRIVES"
639 	   for state SYN-RECEIVED of RFC793.
640 	   It is broken, however, it does not work only
641 	   when SYNs are crossed.
642 
643 	   You would think that SYN crossing is impossible here, since
644 	   we should have a SYN_SENT socket (from connect()) on our end,
645 	   but this is not true if the crossed SYNs were sent to both
646 	   ends by a malicious third party.  We must defend against this,
647 	   and to do that we first verify the ACK (as per RFC793, page
648 	   36) and reset if it is invalid.  Is this a true full defense?
649 	   To convince ourselves, let us consider a way in which the ACK
650 	   test can still pass in this 'malicious crossed SYNs' case.
651 	   Malicious sender sends identical SYNs (and thus identical sequence
652 	   numbers) to both A and B:
653 
654 		A: gets SYN, seq=7
655 		B: gets SYN, seq=7
656 
657 	   By our good fortune, both A and B select the same initial
658 	   send sequence number of seven :-)
659 
660 		A: sends SYN|ACK, seq=7, ack_seq=8
661 		B: sends SYN|ACK, seq=7, ack_seq=8
662 
663 	   So we are now A eating this SYN|ACK, ACK test passes.  So
664 	   does sequence test, SYN is truncated, and thus we consider
665 	   it a bare ACK.
666 
667 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
668 	   bare ACK.  Otherwise, we create an established connection.  Both
669 	   ends (listening sockets) accept the new incoming connection and try
670 	   to talk to each other. 8-)
671 
672 	   Note: This case is both harmless, and rare.  Possibility is about the
673 	   same as us discovering intelligent life on another plant tomorrow.
674 
675 	   But generally, we should (RFC lies!) to accept ACK
676 	   from SYNACK both here and in tcp_rcv_state_process().
677 	   tcp_rcv_state_process() does not, hence, we do not too.
678 
679 	   Note that the case is absolutely generic:
680 	   we cannot optimize anything here without
681 	   violating protocol. All the checks must be made
682 	   before attempt to create socket.
683 	 */
684 
685 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
686 	 *                  and the incoming segment acknowledges something not yet
687 	 *                  sent (the segment carries an unacceptable ACK) ...
688 	 *                  a reset is sent."
689 	 *
690 	 * Invalid ACK: reset will be sent by listening socket.
691 	 * Note that the ACK validity check for a Fast Open socket is done
692 	 * elsewhere and is checked directly against the child socket rather
693 	 * than req because user data may have been sent out.
694 	 */
695 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
696 	    (TCP_SKB_CB(skb)->ack_seq !=
697 	     tcp_rsk(req)->snt_isn + 1))
698 		return sk;
699 
700 	/* Also, it would be not so bad idea to check rcv_tsecr, which
701 	 * is essentially ACK extension and too early or too late values
702 	 * should cause reset in unsynchronized states.
703 	 */
704 
705 	/* RFC793: "first check sequence number". */
706 
707 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
708 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
709 		/* Out of window: send ACK and drop. */
710 		if (!(flg & TCP_FLAG_RST))
711 			req->rsk_ops->send_ack(sk, skb, req);
712 		if (paws_reject)
713 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
714 		return NULL;
715 	}
716 
717 	/* In sequence, PAWS is OK. */
718 
719 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
720 		req->ts_recent = tmp_opt.rcv_tsval;
721 
722 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
723 		/* Truncate SYN, it is out of window starting
724 		   at tcp_rsk(req)->rcv_isn + 1. */
725 		flg &= ~TCP_FLAG_SYN;
726 	}
727 
728 	/* RFC793: "second check the RST bit" and
729 	 *	   "fourth, check the SYN bit"
730 	 */
731 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
732 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
733 		goto embryonic_reset;
734 	}
735 
736 	/* ACK sequence verified above, just make sure ACK is
737 	 * set.  If ACK not set, just silently drop the packet.
738 	 *
739 	 * XXX (TFO) - if we ever allow "data after SYN", the
740 	 * following check needs to be removed.
741 	 */
742 	if (!(flg & TCP_FLAG_ACK))
743 		return NULL;
744 
745 	/* For Fast Open no more processing is needed (sk is the
746 	 * child socket).
747 	 */
748 	if (fastopen)
749 		return sk;
750 
751 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
752 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
753 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
754 		inet_rsk(req)->acked = 1;
755 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
756 		return NULL;
757 	}
758 
759 	/* OK, ACK is valid, create big socket and
760 	 * feed this segment to it. It will repeat all
761 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
762 	 * ESTABLISHED STATE. If it will be dropped after
763 	 * socket is created, wait for troubles.
764 	 */
765 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
766 							 req, &own_req);
767 	if (!child)
768 		goto listen_overflow;
769 
770 	sock_rps_save_rxhash(child, skb);
771 	tcp_synack_rtt_meas(child, req);
772 	return inet_csk_complete_hashdance(sk, child, req, own_req);
773 
774 listen_overflow:
775 	if (!sysctl_tcp_abort_on_overflow) {
776 		inet_rsk(req)->acked = 1;
777 		return NULL;
778 	}
779 
780 embryonic_reset:
781 	if (!(flg & TCP_FLAG_RST)) {
782 		/* Received a bad SYN pkt - for TFO We try not to reset
783 		 * the local connection unless it's really necessary to
784 		 * avoid becoming vulnerable to outside attack aiming at
785 		 * resetting legit local connections.
786 		 */
787 		req->rsk_ops->send_reset(sk, skb);
788 	} else if (fastopen) { /* received a valid RST pkt */
789 		reqsk_fastopen_remove(sk, req, true);
790 		tcp_reset(sk);
791 	}
792 	if (!fastopen) {
793 		inet_csk_reqsk_queue_drop(sk, req);
794 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
795 	}
796 	return NULL;
797 }
798 EXPORT_SYMBOL(tcp_check_req);
799 
800 /*
801  * Queue segment on the new socket if the new socket is active,
802  * otherwise we just shortcircuit this and continue with
803  * the new socket.
804  *
805  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
806  * when entering. But other states are possible due to a race condition
807  * where after __inet_lookup_established() fails but before the listener
808  * locked is obtained, other packets cause the same connection to
809  * be created.
810  */
811 
812 int tcp_child_process(struct sock *parent, struct sock *child,
813 		      struct sk_buff *skb)
814 {
815 	int ret = 0;
816 	int state = child->sk_state;
817 
818 	tcp_sk(child)->segs_in += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
819 	if (!sock_owned_by_user(child)) {
820 		ret = tcp_rcv_state_process(child, skb);
821 		/* Wakeup parent, send SIGIO */
822 		if (state == TCP_SYN_RECV && child->sk_state != state)
823 			parent->sk_data_ready(parent);
824 	} else {
825 		/* Alas, it is possible again, because we do lookup
826 		 * in main socket hash table and lock on listening
827 		 * socket does not protect us more.
828 		 */
829 		__sk_add_backlog(child, skb);
830 	}
831 
832 	bh_unlock_sock(child);
833 	sock_put(child);
834 	return ret;
835 }
836 EXPORT_SYMBOL(tcp_child_process);
837