xref: /linux/net/ipv4/tcp_minisocks.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32 
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34 
35 struct inet_timewait_death_row tcp_death_row = {
36 	.sysctl_max_tw_buckets = NR_FILE * 2,
37 	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38 	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39 	.hashinfo	= &tcp_hashinfo,
40 	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41 					    (unsigned long)&tcp_death_row),
42 	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43 					     inet_twdr_twkill_work),
44 /* Short-time timewait calendar */
45 
46 	.twcal_hand	= -1,
47 	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48 					    (unsigned long)&tcp_death_row),
49 };
50 EXPORT_SYMBOL_GPL(tcp_death_row);
51 
52 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53 {
54 	if (seq == s_win)
55 		return true;
56 	if (after(end_seq, s_win) && before(seq, e_win))
57 		return true;
58 	return seq == e_win && seq == end_seq;
59 }
60 
61 /*
62  * * Main purpose of TIME-WAIT state is to close connection gracefully,
63  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64  *   (and, probably, tail of data) and one or more our ACKs are lost.
65  * * What is TIME-WAIT timeout? It is associated with maximal packet
66  *   lifetime in the internet, which results in wrong conclusion, that
67  *   it is set to catch "old duplicate segments" wandering out of their path.
68  *   It is not quite correct. This timeout is calculated so that it exceeds
69  *   maximal retransmission timeout enough to allow to lose one (or more)
70  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71  * * When TIME-WAIT socket receives RST, it means that another end
72  *   finally closed and we are allowed to kill TIME-WAIT too.
73  * * Second purpose of TIME-WAIT is catching old duplicate segments.
74  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76  * * If we invented some more clever way to catch duplicates
77  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78  *
79  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81  * from the very beginning.
82  *
83  * NOTE. With recycling (and later with fin-wait-2) TW bucket
84  * is _not_ stateless. It means, that strictly speaking we must
85  * spinlock it. I do not want! Well, probability of misbehaviour
86  * is ridiculously low and, seems, we could use some mb() tricks
87  * to avoid misread sequence numbers, states etc.  --ANK
88  *
89  * We don't need to initialize tmp_out.sack_ok as we don't use the results
90  */
91 enum tcp_tw_status
92 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
93 			   const struct tcphdr *th)
94 {
95 	struct tcp_options_received tmp_opt;
96 	const u8 *hash_location;
97 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
98 	bool paws_reject = false;
99 
100 	tmp_opt.saw_tstamp = 0;
101 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
102 		tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
103 
104 		if (tmp_opt.saw_tstamp) {
105 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108 		}
109 	}
110 
111 	if (tw->tw_substate == TCP_FIN_WAIT2) {
112 		/* Just repeat all the checks of tcp_rcv_state_process() */
113 
114 		/* Out of window, send ACK */
115 		if (paws_reject ||
116 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117 				   tcptw->tw_rcv_nxt,
118 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119 			return TCP_TW_ACK;
120 
121 		if (th->rst)
122 			goto kill;
123 
124 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
125 			goto kill_with_rst;
126 
127 		/* Dup ACK? */
128 		if (!th->ack ||
129 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
130 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
131 			inet_twsk_put(tw);
132 			return TCP_TW_SUCCESS;
133 		}
134 
135 		/* New data or FIN. If new data arrive after half-duplex close,
136 		 * reset.
137 		 */
138 		if (!th->fin ||
139 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
140 kill_with_rst:
141 			inet_twsk_deschedule(tw, &tcp_death_row);
142 			inet_twsk_put(tw);
143 			return TCP_TW_RST;
144 		}
145 
146 		/* FIN arrived, enter true time-wait state. */
147 		tw->tw_substate	  = TCP_TIME_WAIT;
148 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
149 		if (tmp_opt.saw_tstamp) {
150 			tcptw->tw_ts_recent_stamp = get_seconds();
151 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
152 		}
153 
154 		if (tcp_death_row.sysctl_tw_recycle &&
155 		    tcptw->tw_ts_recent_stamp &&
156 		    tcp_tw_remember_stamp(tw))
157 			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
158 					   TCP_TIMEWAIT_LEN);
159 		else
160 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
161 					   TCP_TIMEWAIT_LEN);
162 		return TCP_TW_ACK;
163 	}
164 
165 	/*
166 	 *	Now real TIME-WAIT state.
167 	 *
168 	 *	RFC 1122:
169 	 *	"When a connection is [...] on TIME-WAIT state [...]
170 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171 	 *	reopen the connection directly, if it:
172 	 *
173 	 *	(1)  assigns its initial sequence number for the new
174 	 *	connection to be larger than the largest sequence
175 	 *	number it used on the previous connection incarnation,
176 	 *	and
177 	 *
178 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179 	 *	to be an old duplicate".
180 	 */
181 
182 	if (!paws_reject &&
183 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185 		/* In window segment, it may be only reset or bare ack. */
186 
187 		if (th->rst) {
188 			/* This is TIME_WAIT assassination, in two flavors.
189 			 * Oh well... nobody has a sufficient solution to this
190 			 * protocol bug yet.
191 			 */
192 			if (sysctl_tcp_rfc1337 == 0) {
193 kill:
194 				inet_twsk_deschedule(tw, &tcp_death_row);
195 				inet_twsk_put(tw);
196 				return TCP_TW_SUCCESS;
197 			}
198 		}
199 		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
200 				   TCP_TIMEWAIT_LEN);
201 
202 		if (tmp_opt.saw_tstamp) {
203 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
204 			tcptw->tw_ts_recent_stamp = get_seconds();
205 		}
206 
207 		inet_twsk_put(tw);
208 		return TCP_TW_SUCCESS;
209 	}
210 
211 	/* Out of window segment.
212 
213 	   All the segments are ACKed immediately.
214 
215 	   The only exception is new SYN. We accept it, if it is
216 	   not old duplicate and we are not in danger to be killed
217 	   by delayed old duplicates. RFC check is that it has
218 	   newer sequence number works at rates <40Mbit/sec.
219 	   However, if paws works, it is reliable AND even more,
220 	   we even may relax silly seq space cutoff.
221 
222 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
223 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
224 	   we must return socket to time-wait state. It is not good,
225 	   but not fatal yet.
226 	 */
227 
228 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
229 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
230 	     (tmp_opt.saw_tstamp &&
231 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
232 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
233 		if (isn == 0)
234 			isn++;
235 		TCP_SKB_CB(skb)->when = isn;
236 		return TCP_TW_SYN;
237 	}
238 
239 	if (paws_reject)
240 		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
241 
242 	if (!th->rst) {
243 		/* In this case we must reset the TIMEWAIT timer.
244 		 *
245 		 * If it is ACKless SYN it may be both old duplicate
246 		 * and new good SYN with random sequence number <rcv_nxt.
247 		 * Do not reschedule in the last case.
248 		 */
249 		if (paws_reject || th->ack)
250 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
251 					   TCP_TIMEWAIT_LEN);
252 
253 		/* Send ACK. Note, we do not put the bucket,
254 		 * it will be released by caller.
255 		 */
256 		return TCP_TW_ACK;
257 	}
258 	inet_twsk_put(tw);
259 	return TCP_TW_SUCCESS;
260 }
261 EXPORT_SYMBOL(tcp_timewait_state_process);
262 
263 /*
264  * Move a socket to time-wait or dead fin-wait-2 state.
265  */
266 void tcp_time_wait(struct sock *sk, int state, int timeo)
267 {
268 	struct inet_timewait_sock *tw = NULL;
269 	const struct inet_connection_sock *icsk = inet_csk(sk);
270 	const struct tcp_sock *tp = tcp_sk(sk);
271 	bool recycle_ok = false;
272 
273 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
274 		recycle_ok = tcp_remember_stamp(sk);
275 
276 	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
277 		tw = inet_twsk_alloc(sk, state);
278 
279 	if (tw != NULL) {
280 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282 		struct inet_sock *inet = inet_sk(sk);
283 
284 		tw->tw_transparent	= inet->transparent;
285 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
286 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
287 		tcptw->tw_snd_nxt	= tp->snd_nxt;
288 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
289 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
290 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291 
292 #if IS_ENABLED(CONFIG_IPV6)
293 		if (tw->tw_family == PF_INET6) {
294 			struct ipv6_pinfo *np = inet6_sk(sk);
295 			struct inet6_timewait_sock *tw6;
296 
297 			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
298 			tw6 = inet6_twsk((struct sock *)tw);
299 			tw6->tw_v6_daddr = np->daddr;
300 			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
301 			tw->tw_tclass = np->tclass;
302 			tw->tw_ipv6only = np->ipv6only;
303 		}
304 #endif
305 
306 #ifdef CONFIG_TCP_MD5SIG
307 		/*
308 		 * The timewait bucket does not have the key DB from the
309 		 * sock structure. We just make a quick copy of the
310 		 * md5 key being used (if indeed we are using one)
311 		 * so the timewait ack generating code has the key.
312 		 */
313 		do {
314 			struct tcp_md5sig_key *key;
315 			tcptw->tw_md5_key = NULL;
316 			key = tp->af_specific->md5_lookup(sk, sk);
317 			if (key != NULL) {
318 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
319 				if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
320 					BUG();
321 			}
322 		} while (0);
323 #endif
324 
325 		/* Linkage updates. */
326 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
327 
328 		/* Get the TIME_WAIT timeout firing. */
329 		if (timeo < rto)
330 			timeo = rto;
331 
332 		if (recycle_ok) {
333 			tw->tw_timeout = rto;
334 		} else {
335 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
336 			if (state == TCP_TIME_WAIT)
337 				timeo = TCP_TIMEWAIT_LEN;
338 		}
339 
340 		inet_twsk_schedule(tw, &tcp_death_row, timeo,
341 				   TCP_TIMEWAIT_LEN);
342 		inet_twsk_put(tw);
343 	} else {
344 		/* Sorry, if we're out of memory, just CLOSE this
345 		 * socket up.  We've got bigger problems than
346 		 * non-graceful socket closings.
347 		 */
348 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
349 	}
350 
351 	tcp_update_metrics(sk);
352 	tcp_done(sk);
353 }
354 
355 void tcp_twsk_destructor(struct sock *sk)
356 {
357 #ifdef CONFIG_TCP_MD5SIG
358 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
359 
360 	if (twsk->tw_md5_key) {
361 		tcp_free_md5sig_pool();
362 		kfree_rcu(twsk->tw_md5_key, rcu);
363 	}
364 #endif
365 }
366 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
367 
368 static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
369 					 struct request_sock *req)
370 {
371 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
372 }
373 
374 /* This is not only more efficient than what we used to do, it eliminates
375  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
376  *
377  * Actually, we could lots of memory writes here. tp of listening
378  * socket contains all necessary default parameters.
379  */
380 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
381 {
382 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
383 
384 	if (newsk != NULL) {
385 		const struct inet_request_sock *ireq = inet_rsk(req);
386 		struct tcp_request_sock *treq = tcp_rsk(req);
387 		struct inet_connection_sock *newicsk = inet_csk(newsk);
388 		struct tcp_sock *newtp = tcp_sk(newsk);
389 		struct tcp_sock *oldtp = tcp_sk(sk);
390 		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
391 
392 		/* TCP Cookie Transactions require space for the cookie pair,
393 		 * as it differs for each connection.  There is no need to
394 		 * copy any s_data_payload stored at the original socket.
395 		 * Failure will prevent resuming the connection.
396 		 *
397 		 * Presumed copied, in order of appearance:
398 		 *	cookie_in_always, cookie_out_never
399 		 */
400 		if (oldcvp != NULL) {
401 			struct tcp_cookie_values *newcvp =
402 				kzalloc(sizeof(*newtp->cookie_values),
403 					GFP_ATOMIC);
404 
405 			if (newcvp != NULL) {
406 				kref_init(&newcvp->kref);
407 				newcvp->cookie_desired =
408 						oldcvp->cookie_desired;
409 				newtp->cookie_values = newcvp;
410 			} else {
411 				/* Not Yet Implemented */
412 				newtp->cookie_values = NULL;
413 			}
414 		}
415 
416 		/* Now setup tcp_sock */
417 		newtp->pred_flags = 0;
418 
419 		newtp->rcv_wup = newtp->copied_seq =
420 		newtp->rcv_nxt = treq->rcv_isn + 1;
421 
422 		newtp->snd_sml = newtp->snd_una =
423 		newtp->snd_nxt = newtp->snd_up =
424 			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
425 
426 		tcp_prequeue_init(newtp);
427 		INIT_LIST_HEAD(&newtp->tsq_node);
428 
429 		tcp_init_wl(newtp, treq->rcv_isn);
430 
431 		newtp->srtt = 0;
432 		newtp->mdev = TCP_TIMEOUT_INIT;
433 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
434 
435 		newtp->packets_out = 0;
436 		newtp->retrans_out = 0;
437 		newtp->sacked_out = 0;
438 		newtp->fackets_out = 0;
439 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
440 		tcp_enable_early_retrans(newtp);
441 
442 		/* So many TCP implementations out there (incorrectly) count the
443 		 * initial SYN frame in their delayed-ACK and congestion control
444 		 * algorithms that we must have the following bandaid to talk
445 		 * efficiently to them.  -DaveM
446 		 */
447 		newtp->snd_cwnd = TCP_INIT_CWND;
448 		newtp->snd_cwnd_cnt = 0;
449 		newtp->bytes_acked = 0;
450 
451 		newtp->frto_counter = 0;
452 		newtp->frto_highmark = 0;
453 
454 		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
455 		    !try_module_get(newicsk->icsk_ca_ops->owner))
456 			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
457 
458 		tcp_set_ca_state(newsk, TCP_CA_Open);
459 		tcp_init_xmit_timers(newsk);
460 		skb_queue_head_init(&newtp->out_of_order_queue);
461 		newtp->write_seq = newtp->pushed_seq =
462 			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
463 
464 		newtp->rx_opt.saw_tstamp = 0;
465 
466 		newtp->rx_opt.dsack = 0;
467 		newtp->rx_opt.num_sacks = 0;
468 
469 		newtp->urg_data = 0;
470 
471 		if (sock_flag(newsk, SOCK_KEEPOPEN))
472 			inet_csk_reset_keepalive_timer(newsk,
473 						       keepalive_time_when(newtp));
474 
475 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
476 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
477 			if (sysctl_tcp_fack)
478 				tcp_enable_fack(newtp);
479 		}
480 		newtp->window_clamp = req->window_clamp;
481 		newtp->rcv_ssthresh = req->rcv_wnd;
482 		newtp->rcv_wnd = req->rcv_wnd;
483 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
484 		if (newtp->rx_opt.wscale_ok) {
485 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
486 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
487 		} else {
488 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
489 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
490 		}
491 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
492 				  newtp->rx_opt.snd_wscale);
493 		newtp->max_window = newtp->snd_wnd;
494 
495 		if (newtp->rx_opt.tstamp_ok) {
496 			newtp->rx_opt.ts_recent = req->ts_recent;
497 			newtp->rx_opt.ts_recent_stamp = get_seconds();
498 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
499 		} else {
500 			newtp->rx_opt.ts_recent_stamp = 0;
501 			newtp->tcp_header_len = sizeof(struct tcphdr);
502 		}
503 #ifdef CONFIG_TCP_MD5SIG
504 		newtp->md5sig_info = NULL;	/*XXX*/
505 		if (newtp->af_specific->md5_lookup(sk, newsk))
506 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
507 #endif
508 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
509 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
510 		newtp->rx_opt.mss_clamp = req->mss;
511 		TCP_ECN_openreq_child(newtp, req);
512 		newtp->fastopen_rsk = NULL;
513 		newtp->syn_data_acked = 0;
514 
515 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
516 	}
517 	return newsk;
518 }
519 EXPORT_SYMBOL(tcp_create_openreq_child);
520 
521 /*
522  * Process an incoming packet for SYN_RECV sockets represented as a
523  * request_sock. Normally sk is the listener socket but for TFO it
524  * points to the child socket.
525  *
526  * XXX (TFO) - The current impl contains a special check for ack
527  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
528  *
529  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
530  */
531 
532 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
533 			   struct request_sock *req,
534 			   struct request_sock **prev,
535 			   bool fastopen)
536 {
537 	struct tcp_options_received tmp_opt;
538 	const u8 *hash_location;
539 	struct sock *child;
540 	const struct tcphdr *th = tcp_hdr(skb);
541 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
542 	bool paws_reject = false;
543 
544 	BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
545 
546 	tmp_opt.saw_tstamp = 0;
547 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
548 		tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
549 
550 		if (tmp_opt.saw_tstamp) {
551 			tmp_opt.ts_recent = req->ts_recent;
552 			/* We do not store true stamp, but it is not required,
553 			 * it can be estimated (approximately)
554 			 * from another data.
555 			 */
556 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
557 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
558 		}
559 	}
560 
561 	/* Check for pure retransmitted SYN. */
562 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
563 	    flg == TCP_FLAG_SYN &&
564 	    !paws_reject) {
565 		/*
566 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
567 		 * this case on figure 6 and figure 8, but formal
568 		 * protocol description says NOTHING.
569 		 * To be more exact, it says that we should send ACK,
570 		 * because this segment (at least, if it has no data)
571 		 * is out of window.
572 		 *
573 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
574 		 *  describe SYN-RECV state. All the description
575 		 *  is wrong, we cannot believe to it and should
576 		 *  rely only on common sense and implementation
577 		 *  experience.
578 		 *
579 		 * Enforce "SYN-ACK" according to figure 8, figure 6
580 		 * of RFC793, fixed by RFC1122.
581 		 *
582 		 * Note that even if there is new data in the SYN packet
583 		 * they will be thrown away too.
584 		 */
585 		inet_rtx_syn_ack(sk, req);
586 		return NULL;
587 	}
588 
589 	/* Further reproduces section "SEGMENT ARRIVES"
590 	   for state SYN-RECEIVED of RFC793.
591 	   It is broken, however, it does not work only
592 	   when SYNs are crossed.
593 
594 	   You would think that SYN crossing is impossible here, since
595 	   we should have a SYN_SENT socket (from connect()) on our end,
596 	   but this is not true if the crossed SYNs were sent to both
597 	   ends by a malicious third party.  We must defend against this,
598 	   and to do that we first verify the ACK (as per RFC793, page
599 	   36) and reset if it is invalid.  Is this a true full defense?
600 	   To convince ourselves, let us consider a way in which the ACK
601 	   test can still pass in this 'malicious crossed SYNs' case.
602 	   Malicious sender sends identical SYNs (and thus identical sequence
603 	   numbers) to both A and B:
604 
605 		A: gets SYN, seq=7
606 		B: gets SYN, seq=7
607 
608 	   By our good fortune, both A and B select the same initial
609 	   send sequence number of seven :-)
610 
611 		A: sends SYN|ACK, seq=7, ack_seq=8
612 		B: sends SYN|ACK, seq=7, ack_seq=8
613 
614 	   So we are now A eating this SYN|ACK, ACK test passes.  So
615 	   does sequence test, SYN is truncated, and thus we consider
616 	   it a bare ACK.
617 
618 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
619 	   bare ACK.  Otherwise, we create an established connection.  Both
620 	   ends (listening sockets) accept the new incoming connection and try
621 	   to talk to each other. 8-)
622 
623 	   Note: This case is both harmless, and rare.  Possibility is about the
624 	   same as us discovering intelligent life on another plant tomorrow.
625 
626 	   But generally, we should (RFC lies!) to accept ACK
627 	   from SYNACK both here and in tcp_rcv_state_process().
628 	   tcp_rcv_state_process() does not, hence, we do not too.
629 
630 	   Note that the case is absolutely generic:
631 	   we cannot optimize anything here without
632 	   violating protocol. All the checks must be made
633 	   before attempt to create socket.
634 	 */
635 
636 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
637 	 *                  and the incoming segment acknowledges something not yet
638 	 *                  sent (the segment carries an unacceptable ACK) ...
639 	 *                  a reset is sent."
640 	 *
641 	 * Invalid ACK: reset will be sent by listening socket.
642 	 * Note that the ACK validity check for a Fast Open socket is done
643 	 * elsewhere and is checked directly against the child socket rather
644 	 * than req because user data may have been sent out.
645 	 */
646 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
647 	    (TCP_SKB_CB(skb)->ack_seq !=
648 	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
649 		return sk;
650 
651 	/* Also, it would be not so bad idea to check rcv_tsecr, which
652 	 * is essentially ACK extension and too early or too late values
653 	 * should cause reset in unsynchronized states.
654 	 */
655 
656 	/* RFC793: "first check sequence number". */
657 
658 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
659 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
660 		/* Out of window: send ACK and drop. */
661 		if (!(flg & TCP_FLAG_RST))
662 			req->rsk_ops->send_ack(sk, skb, req);
663 		if (paws_reject)
664 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
665 		return NULL;
666 	}
667 
668 	/* In sequence, PAWS is OK. */
669 
670 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
671 		req->ts_recent = tmp_opt.rcv_tsval;
672 
673 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
674 		/* Truncate SYN, it is out of window starting
675 		   at tcp_rsk(req)->rcv_isn + 1. */
676 		flg &= ~TCP_FLAG_SYN;
677 	}
678 
679 	/* RFC793: "second check the RST bit" and
680 	 *	   "fourth, check the SYN bit"
681 	 */
682 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
683 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
684 		goto embryonic_reset;
685 	}
686 
687 	/* ACK sequence verified above, just make sure ACK is
688 	 * set.  If ACK not set, just silently drop the packet.
689 	 *
690 	 * XXX (TFO) - if we ever allow "data after SYN", the
691 	 * following check needs to be removed.
692 	 */
693 	if (!(flg & TCP_FLAG_ACK))
694 		return NULL;
695 
696 	/* Got ACK for our SYNACK, so update baseline for SYNACK RTT sample. */
697 	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
698 		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
699 	else if (req->num_retrans) /* don't take RTT sample if retrans && ~TS */
700 		tcp_rsk(req)->snt_synack = 0;
701 
702 	/* For Fast Open no more processing is needed (sk is the
703 	 * child socket).
704 	 */
705 	if (fastopen)
706 		return sk;
707 
708 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
709 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
710 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
711 		inet_rsk(req)->acked = 1;
712 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
713 		return NULL;
714 	}
715 
716 	/* OK, ACK is valid, create big socket and
717 	 * feed this segment to it. It will repeat all
718 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
719 	 * ESTABLISHED STATE. If it will be dropped after
720 	 * socket is created, wait for troubles.
721 	 */
722 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
723 	if (child == NULL)
724 		goto listen_overflow;
725 
726 	inet_csk_reqsk_queue_unlink(sk, req, prev);
727 	inet_csk_reqsk_queue_removed(sk, req);
728 
729 	inet_csk_reqsk_queue_add(sk, req, child);
730 	return child;
731 
732 listen_overflow:
733 	if (!sysctl_tcp_abort_on_overflow) {
734 		inet_rsk(req)->acked = 1;
735 		return NULL;
736 	}
737 
738 embryonic_reset:
739 	if (!(flg & TCP_FLAG_RST)) {
740 		/* Received a bad SYN pkt - for TFO We try not to reset
741 		 * the local connection unless it's really necessary to
742 		 * avoid becoming vulnerable to outside attack aiming at
743 		 * resetting legit local connections.
744 		 */
745 		req->rsk_ops->send_reset(sk, skb);
746 	} else if (fastopen) { /* received a valid RST pkt */
747 		reqsk_fastopen_remove(sk, req, true);
748 		tcp_reset(sk);
749 	}
750 	if (!fastopen) {
751 		inet_csk_reqsk_queue_drop(sk, req, prev);
752 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
753 	}
754 	return NULL;
755 }
756 EXPORT_SYMBOL(tcp_check_req);
757 
758 /*
759  * Queue segment on the new socket if the new socket is active,
760  * otherwise we just shortcircuit this and continue with
761  * the new socket.
762  *
763  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
764  * when entering. But other states are possible due to a race condition
765  * where after __inet_lookup_established() fails but before the listener
766  * locked is obtained, other packets cause the same connection to
767  * be created.
768  */
769 
770 int tcp_child_process(struct sock *parent, struct sock *child,
771 		      struct sk_buff *skb)
772 {
773 	int ret = 0;
774 	int state = child->sk_state;
775 
776 	if (!sock_owned_by_user(child)) {
777 		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
778 					    skb->len);
779 		/* Wakeup parent, send SIGIO */
780 		if (state == TCP_SYN_RECV && child->sk_state != state)
781 			parent->sk_data_ready(parent, 0);
782 	} else {
783 		/* Alas, it is possible again, because we do lookup
784 		 * in main socket hash table and lock on listening
785 		 * socket does not protect us more.
786 		 */
787 		__sk_add_backlog(child, skb);
788 	}
789 
790 	bh_unlock_sock(child);
791 	sock_put(child);
792 	return ret;
793 }
794 EXPORT_SYMBOL(tcp_child_process);
795