xref: /linux/net/ipv4/tcp_minisocks.c (revision b86406d42ae3c41ae0ce332ea24350829b88af51)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <net/tcp.h>
23 #include <net/xfrm.h>
24 #include <net/busy_poll.h>
25 
26 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
27 {
28 	if (seq == s_win)
29 		return true;
30 	if (after(end_seq, s_win) && before(seq, e_win))
31 		return true;
32 	return seq == e_win && seq == end_seq;
33 }
34 
35 static enum tcp_tw_status
36 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
37 				  const struct sk_buff *skb, int mib_idx)
38 {
39 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
40 
41 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
42 				  &tcptw->tw_last_oow_ack_time)) {
43 		/* Send ACK. Note, we do not put the bucket,
44 		 * it will be released by caller.
45 		 */
46 		return TCP_TW_ACK;
47 	}
48 
49 	/* We are rate-limiting, so just release the tw sock and drop skb. */
50 	inet_twsk_put(tw);
51 	return TCP_TW_SUCCESS;
52 }
53 
54 /*
55  * * Main purpose of TIME-WAIT state is to close connection gracefully,
56  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
57  *   (and, probably, tail of data) and one or more our ACKs are lost.
58  * * What is TIME-WAIT timeout? It is associated with maximal packet
59  *   lifetime in the internet, which results in wrong conclusion, that
60  *   it is set to catch "old duplicate segments" wandering out of their path.
61  *   It is not quite correct. This timeout is calculated so that it exceeds
62  *   maximal retransmission timeout enough to allow to lose one (or more)
63  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
64  * * When TIME-WAIT socket receives RST, it means that another end
65  *   finally closed and we are allowed to kill TIME-WAIT too.
66  * * Second purpose of TIME-WAIT is catching old duplicate segments.
67  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
68  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
69  * * If we invented some more clever way to catch duplicates
70  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
71  *
72  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
73  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
74  * from the very beginning.
75  *
76  * NOTE. With recycling (and later with fin-wait-2) TW bucket
77  * is _not_ stateless. It means, that strictly speaking we must
78  * spinlock it. I do not want! Well, probability of misbehaviour
79  * is ridiculously low and, seems, we could use some mb() tricks
80  * to avoid misread sequence numbers, states etc.  --ANK
81  *
82  * We don't need to initialize tmp_out.sack_ok as we don't use the results
83  */
84 enum tcp_tw_status
85 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
86 			   const struct tcphdr *th)
87 {
88 	struct tcp_options_received tmp_opt;
89 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
90 	bool paws_reject = false;
91 
92 	tmp_opt.saw_tstamp = 0;
93 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
94 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
95 
96 		if (tmp_opt.saw_tstamp) {
97 			if (tmp_opt.rcv_tsecr)
98 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
99 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
100 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
101 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
102 		}
103 	}
104 
105 	if (tw->tw_substate == TCP_FIN_WAIT2) {
106 		/* Just repeat all the checks of tcp_rcv_state_process() */
107 
108 		/* Out of window, send ACK */
109 		if (paws_reject ||
110 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
111 				   tcptw->tw_rcv_nxt,
112 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
113 			return tcp_timewait_check_oow_rate_limit(
114 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
115 
116 		if (th->rst)
117 			goto kill;
118 
119 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
120 			return TCP_TW_RST;
121 
122 		/* Dup ACK? */
123 		if (!th->ack ||
124 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
125 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
126 			inet_twsk_put(tw);
127 			return TCP_TW_SUCCESS;
128 		}
129 
130 		/* New data or FIN. If new data arrive after half-duplex close,
131 		 * reset.
132 		 */
133 		if (!th->fin ||
134 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
135 			return TCP_TW_RST;
136 
137 		/* FIN arrived, enter true time-wait state. */
138 		tw->tw_substate	  = TCP_TIME_WAIT;
139 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
140 		if (tmp_opt.saw_tstamp) {
141 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
142 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
143 		}
144 
145 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
146 		return TCP_TW_ACK;
147 	}
148 
149 	/*
150 	 *	Now real TIME-WAIT state.
151 	 *
152 	 *	RFC 1122:
153 	 *	"When a connection is [...] on TIME-WAIT state [...]
154 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
155 	 *	reopen the connection directly, if it:
156 	 *
157 	 *	(1)  assigns its initial sequence number for the new
158 	 *	connection to be larger than the largest sequence
159 	 *	number it used on the previous connection incarnation,
160 	 *	and
161 	 *
162 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
163 	 *	to be an old duplicate".
164 	 */
165 
166 	if (!paws_reject &&
167 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
168 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
169 		/* In window segment, it may be only reset or bare ack. */
170 
171 		if (th->rst) {
172 			/* This is TIME_WAIT assassination, in two flavors.
173 			 * Oh well... nobody has a sufficient solution to this
174 			 * protocol bug yet.
175 			 */
176 			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
177 kill:
178 				inet_twsk_deschedule_put(tw);
179 				return TCP_TW_SUCCESS;
180 			}
181 		} else {
182 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
183 		}
184 
185 		if (tmp_opt.saw_tstamp) {
186 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
187 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
188 		}
189 
190 		inet_twsk_put(tw);
191 		return TCP_TW_SUCCESS;
192 	}
193 
194 	/* Out of window segment.
195 
196 	   All the segments are ACKed immediately.
197 
198 	   The only exception is new SYN. We accept it, if it is
199 	   not old duplicate and we are not in danger to be killed
200 	   by delayed old duplicates. RFC check is that it has
201 	   newer sequence number works at rates <40Mbit/sec.
202 	   However, if paws works, it is reliable AND even more,
203 	   we even may relax silly seq space cutoff.
204 
205 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
206 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
207 	   we must return socket to time-wait state. It is not good,
208 	   but not fatal yet.
209 	 */
210 
211 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
212 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
213 	     (tmp_opt.saw_tstamp &&
214 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
215 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
216 		if (isn == 0)
217 			isn++;
218 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
219 		return TCP_TW_SYN;
220 	}
221 
222 	if (paws_reject)
223 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
224 
225 	if (!th->rst) {
226 		/* In this case we must reset the TIMEWAIT timer.
227 		 *
228 		 * If it is ACKless SYN it may be both old duplicate
229 		 * and new good SYN with random sequence number <rcv_nxt.
230 		 * Do not reschedule in the last case.
231 		 */
232 		if (paws_reject || th->ack)
233 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
234 
235 		return tcp_timewait_check_oow_rate_limit(
236 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
237 	}
238 	inet_twsk_put(tw);
239 	return TCP_TW_SUCCESS;
240 }
241 EXPORT_SYMBOL(tcp_timewait_state_process);
242 
243 /*
244  * Move a socket to time-wait or dead fin-wait-2 state.
245  */
246 void tcp_time_wait(struct sock *sk, int state, int timeo)
247 {
248 	const struct inet_connection_sock *icsk = inet_csk(sk);
249 	const struct tcp_sock *tp = tcp_sk(sk);
250 	struct net *net = sock_net(sk);
251 	struct inet_timewait_sock *tw;
252 
253 	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
254 
255 	if (tw) {
256 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
257 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
258 		struct inet_sock *inet = inet_sk(sk);
259 
260 		tw->tw_transparent	= inet->transparent;
261 		tw->tw_mark		= sk->sk_mark;
262 		tw->tw_priority		= sk->sk_priority;
263 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
264 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
265 		tcptw->tw_snd_nxt	= tp->snd_nxt;
266 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
267 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
268 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
269 		tcptw->tw_ts_offset	= tp->tsoffset;
270 		tcptw->tw_last_oow_ack_time = 0;
271 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
272 #if IS_ENABLED(CONFIG_IPV6)
273 		if (tw->tw_family == PF_INET6) {
274 			struct ipv6_pinfo *np = inet6_sk(sk);
275 
276 			tw->tw_v6_daddr = sk->sk_v6_daddr;
277 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
278 			tw->tw_tclass = np->tclass;
279 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
280 			tw->tw_txhash = sk->sk_txhash;
281 			tw->tw_ipv6only = sk->sk_ipv6only;
282 		}
283 #endif
284 
285 #ifdef CONFIG_TCP_MD5SIG
286 		/*
287 		 * The timewait bucket does not have the key DB from the
288 		 * sock structure. We just make a quick copy of the
289 		 * md5 key being used (if indeed we are using one)
290 		 * so the timewait ack generating code has the key.
291 		 */
292 		do {
293 			tcptw->tw_md5_key = NULL;
294 			if (static_branch_unlikely(&tcp_md5_needed)) {
295 				struct tcp_md5sig_key *key;
296 
297 				key = tp->af_specific->md5_lookup(sk, sk);
298 				if (key) {
299 					tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
300 					BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
301 				}
302 			}
303 		} while (0);
304 #endif
305 
306 		/* Get the TIME_WAIT timeout firing. */
307 		if (timeo < rto)
308 			timeo = rto;
309 
310 		if (state == TCP_TIME_WAIT)
311 			timeo = TCP_TIMEWAIT_LEN;
312 
313 		/* tw_timer is pinned, so we need to make sure BH are disabled
314 		 * in following section, otherwise timer handler could run before
315 		 * we complete the initialization.
316 		 */
317 		local_bh_disable();
318 		inet_twsk_schedule(tw, timeo);
319 		/* Linkage updates.
320 		 * Note that access to tw after this point is illegal.
321 		 */
322 		inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
323 		local_bh_enable();
324 	} else {
325 		/* Sorry, if we're out of memory, just CLOSE this
326 		 * socket up.  We've got bigger problems than
327 		 * non-graceful socket closings.
328 		 */
329 		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
330 	}
331 
332 	tcp_update_metrics(sk);
333 	tcp_done(sk);
334 }
335 EXPORT_SYMBOL(tcp_time_wait);
336 
337 void tcp_twsk_destructor(struct sock *sk)
338 {
339 #ifdef CONFIG_TCP_MD5SIG
340 	if (static_branch_unlikely(&tcp_md5_needed)) {
341 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
342 
343 		if (twsk->tw_md5_key)
344 			kfree_rcu(twsk->tw_md5_key, rcu);
345 	}
346 #endif
347 }
348 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
349 
350 void tcp_twsk_purge(struct list_head *net_exit_list, int family)
351 {
352 	bool purged_once = false;
353 	struct net *net;
354 
355 	list_for_each_entry(net, net_exit_list, exit_list) {
356 		/* The last refcount is decremented in tcp_sk_exit_batch() */
357 		if (refcount_read(&net->ipv4.tcp_death_row.tw_refcount) == 1)
358 			continue;
359 
360 		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
361 			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family);
362 		} else if (!purged_once) {
363 			inet_twsk_purge(&tcp_hashinfo, family);
364 			purged_once = true;
365 		}
366 	}
367 }
368 EXPORT_SYMBOL_GPL(tcp_twsk_purge);
369 
370 /* Warning : This function is called without sk_listener being locked.
371  * Be sure to read socket fields once, as their value could change under us.
372  */
373 void tcp_openreq_init_rwin(struct request_sock *req,
374 			   const struct sock *sk_listener,
375 			   const struct dst_entry *dst)
376 {
377 	struct inet_request_sock *ireq = inet_rsk(req);
378 	const struct tcp_sock *tp = tcp_sk(sk_listener);
379 	int full_space = tcp_full_space(sk_listener);
380 	u32 window_clamp;
381 	__u8 rcv_wscale;
382 	u32 rcv_wnd;
383 	int mss;
384 
385 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
386 	window_clamp = READ_ONCE(tp->window_clamp);
387 	/* Set this up on the first call only */
388 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
389 
390 	/* limit the window selection if the user enforce a smaller rx buffer */
391 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
392 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
393 		req->rsk_window_clamp = full_space;
394 
395 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
396 	if (rcv_wnd == 0)
397 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
398 	else if (full_space < rcv_wnd * mss)
399 		full_space = rcv_wnd * mss;
400 
401 	/* tcp_full_space because it is guaranteed to be the first packet */
402 	tcp_select_initial_window(sk_listener, full_space,
403 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
404 		&req->rsk_rcv_wnd,
405 		&req->rsk_window_clamp,
406 		ireq->wscale_ok,
407 		&rcv_wscale,
408 		rcv_wnd);
409 	ireq->rcv_wscale = rcv_wscale;
410 }
411 EXPORT_SYMBOL(tcp_openreq_init_rwin);
412 
413 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
414 				  const struct request_sock *req)
415 {
416 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
417 }
418 
419 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
420 {
421 	struct inet_connection_sock *icsk = inet_csk(sk);
422 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
423 	bool ca_got_dst = false;
424 
425 	if (ca_key != TCP_CA_UNSPEC) {
426 		const struct tcp_congestion_ops *ca;
427 
428 		rcu_read_lock();
429 		ca = tcp_ca_find_key(ca_key);
430 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
431 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
432 			icsk->icsk_ca_ops = ca;
433 			ca_got_dst = true;
434 		}
435 		rcu_read_unlock();
436 	}
437 
438 	/* If no valid choice made yet, assign current system default ca. */
439 	if (!ca_got_dst &&
440 	    (!icsk->icsk_ca_setsockopt ||
441 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
442 		tcp_assign_congestion_control(sk);
443 
444 	tcp_set_ca_state(sk, TCP_CA_Open);
445 }
446 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
447 
448 static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
449 				    struct request_sock *req,
450 				    struct tcp_sock *newtp)
451 {
452 #if IS_ENABLED(CONFIG_SMC)
453 	struct inet_request_sock *ireq;
454 
455 	if (static_branch_unlikely(&tcp_have_smc)) {
456 		ireq = inet_rsk(req);
457 		if (oldtp->syn_smc && !ireq->smc_ok)
458 			newtp->syn_smc = 0;
459 	}
460 #endif
461 }
462 
463 /* This is not only more efficient than what we used to do, it eliminates
464  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
465  *
466  * Actually, we could lots of memory writes here. tp of listening
467  * socket contains all necessary default parameters.
468  */
469 struct sock *tcp_create_openreq_child(const struct sock *sk,
470 				      struct request_sock *req,
471 				      struct sk_buff *skb)
472 {
473 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
474 	const struct inet_request_sock *ireq = inet_rsk(req);
475 	struct tcp_request_sock *treq = tcp_rsk(req);
476 	struct inet_connection_sock *newicsk;
477 	struct tcp_sock *oldtp, *newtp;
478 	u32 seq;
479 
480 	if (!newsk)
481 		return NULL;
482 
483 	newicsk = inet_csk(newsk);
484 	newtp = tcp_sk(newsk);
485 	oldtp = tcp_sk(sk);
486 
487 	smc_check_reset_syn_req(oldtp, req, newtp);
488 
489 	/* Now setup tcp_sock */
490 	newtp->pred_flags = 0;
491 
492 	seq = treq->rcv_isn + 1;
493 	newtp->rcv_wup = seq;
494 	WRITE_ONCE(newtp->copied_seq, seq);
495 	WRITE_ONCE(newtp->rcv_nxt, seq);
496 	newtp->segs_in = 1;
497 
498 	seq = treq->snt_isn + 1;
499 	newtp->snd_sml = newtp->snd_una = seq;
500 	WRITE_ONCE(newtp->snd_nxt, seq);
501 	newtp->snd_up = seq;
502 
503 	INIT_LIST_HEAD(&newtp->tsq_node);
504 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
505 
506 	tcp_init_wl(newtp, treq->rcv_isn);
507 
508 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
509 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
510 
511 	newtp->lsndtime = tcp_jiffies32;
512 	newsk->sk_txhash = treq->txhash;
513 	newtp->total_retrans = req->num_retrans;
514 
515 	tcp_init_xmit_timers(newsk);
516 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
517 
518 	if (sock_flag(newsk, SOCK_KEEPOPEN))
519 		inet_csk_reset_keepalive_timer(newsk,
520 					       keepalive_time_when(newtp));
521 
522 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
523 	newtp->rx_opt.sack_ok = ireq->sack_ok;
524 	newtp->window_clamp = req->rsk_window_clamp;
525 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
526 	newtp->rcv_wnd = req->rsk_rcv_wnd;
527 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
528 	if (newtp->rx_opt.wscale_ok) {
529 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
530 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
531 	} else {
532 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
533 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
534 	}
535 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
536 	newtp->max_window = newtp->snd_wnd;
537 
538 	if (newtp->rx_opt.tstamp_ok) {
539 		newtp->rx_opt.ts_recent = req->ts_recent;
540 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
541 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
542 	} else {
543 		newtp->rx_opt.ts_recent_stamp = 0;
544 		newtp->tcp_header_len = sizeof(struct tcphdr);
545 	}
546 	if (req->num_timeout) {
547 		newtp->undo_marker = treq->snt_isn;
548 		newtp->retrans_stamp = div_u64(treq->snt_synack,
549 					       USEC_PER_SEC / TCP_TS_HZ);
550 	}
551 	newtp->tsoffset = treq->ts_off;
552 #ifdef CONFIG_TCP_MD5SIG
553 	newtp->md5sig_info = NULL;	/*XXX*/
554 	if (treq->af_specific->req_md5_lookup(sk, req_to_sk(req)))
555 		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
556 #endif
557 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
558 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
559 	newtp->rx_opt.mss_clamp = req->mss;
560 	tcp_ecn_openreq_child(newtp, req);
561 	newtp->fastopen_req = NULL;
562 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
563 
564 	newtp->bpf_chg_cc_inprogress = 0;
565 	tcp_bpf_clone(sk, newsk);
566 
567 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
568 
569 	return newsk;
570 }
571 EXPORT_SYMBOL(tcp_create_openreq_child);
572 
573 /*
574  * Process an incoming packet for SYN_RECV sockets represented as a
575  * request_sock. Normally sk is the listener socket but for TFO it
576  * points to the child socket.
577  *
578  * XXX (TFO) - The current impl contains a special check for ack
579  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
580  *
581  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
582  */
583 
584 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
585 			   struct request_sock *req,
586 			   bool fastopen, bool *req_stolen)
587 {
588 	struct tcp_options_received tmp_opt;
589 	struct sock *child;
590 	const struct tcphdr *th = tcp_hdr(skb);
591 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
592 	bool paws_reject = false;
593 	bool own_req;
594 
595 	tmp_opt.saw_tstamp = 0;
596 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
597 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
598 
599 		if (tmp_opt.saw_tstamp) {
600 			tmp_opt.ts_recent = req->ts_recent;
601 			if (tmp_opt.rcv_tsecr)
602 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
603 			/* We do not store true stamp, but it is not required,
604 			 * it can be estimated (approximately)
605 			 * from another data.
606 			 */
607 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
608 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
609 		}
610 	}
611 
612 	/* Check for pure retransmitted SYN. */
613 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
614 	    flg == TCP_FLAG_SYN &&
615 	    !paws_reject) {
616 		/*
617 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
618 		 * this case on figure 6 and figure 8, but formal
619 		 * protocol description says NOTHING.
620 		 * To be more exact, it says that we should send ACK,
621 		 * because this segment (at least, if it has no data)
622 		 * is out of window.
623 		 *
624 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
625 		 *  describe SYN-RECV state. All the description
626 		 *  is wrong, we cannot believe to it and should
627 		 *  rely only on common sense and implementation
628 		 *  experience.
629 		 *
630 		 * Enforce "SYN-ACK" according to figure 8, figure 6
631 		 * of RFC793, fixed by RFC1122.
632 		 *
633 		 * Note that even if there is new data in the SYN packet
634 		 * they will be thrown away too.
635 		 *
636 		 * Reset timer after retransmitting SYNACK, similar to
637 		 * the idea of fast retransmit in recovery.
638 		 */
639 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
640 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
641 					  &tcp_rsk(req)->last_oow_ack_time) &&
642 
643 		    !inet_rtx_syn_ack(sk, req)) {
644 			unsigned long expires = jiffies;
645 
646 			expires += reqsk_timeout(req, TCP_RTO_MAX);
647 			if (!fastopen)
648 				mod_timer_pending(&req->rsk_timer, expires);
649 			else
650 				req->rsk_timer.expires = expires;
651 		}
652 		return NULL;
653 	}
654 
655 	/* Further reproduces section "SEGMENT ARRIVES"
656 	   for state SYN-RECEIVED of RFC793.
657 	   It is broken, however, it does not work only
658 	   when SYNs are crossed.
659 
660 	   You would think that SYN crossing is impossible here, since
661 	   we should have a SYN_SENT socket (from connect()) on our end,
662 	   but this is not true if the crossed SYNs were sent to both
663 	   ends by a malicious third party.  We must defend against this,
664 	   and to do that we first verify the ACK (as per RFC793, page
665 	   36) and reset if it is invalid.  Is this a true full defense?
666 	   To convince ourselves, let us consider a way in which the ACK
667 	   test can still pass in this 'malicious crossed SYNs' case.
668 	   Malicious sender sends identical SYNs (and thus identical sequence
669 	   numbers) to both A and B:
670 
671 		A: gets SYN, seq=7
672 		B: gets SYN, seq=7
673 
674 	   By our good fortune, both A and B select the same initial
675 	   send sequence number of seven :-)
676 
677 		A: sends SYN|ACK, seq=7, ack_seq=8
678 		B: sends SYN|ACK, seq=7, ack_seq=8
679 
680 	   So we are now A eating this SYN|ACK, ACK test passes.  So
681 	   does sequence test, SYN is truncated, and thus we consider
682 	   it a bare ACK.
683 
684 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
685 	   bare ACK.  Otherwise, we create an established connection.  Both
686 	   ends (listening sockets) accept the new incoming connection and try
687 	   to talk to each other. 8-)
688 
689 	   Note: This case is both harmless, and rare.  Possibility is about the
690 	   same as us discovering intelligent life on another plant tomorrow.
691 
692 	   But generally, we should (RFC lies!) to accept ACK
693 	   from SYNACK both here and in tcp_rcv_state_process().
694 	   tcp_rcv_state_process() does not, hence, we do not too.
695 
696 	   Note that the case is absolutely generic:
697 	   we cannot optimize anything here without
698 	   violating protocol. All the checks must be made
699 	   before attempt to create socket.
700 	 */
701 
702 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
703 	 *                  and the incoming segment acknowledges something not yet
704 	 *                  sent (the segment carries an unacceptable ACK) ...
705 	 *                  a reset is sent."
706 	 *
707 	 * Invalid ACK: reset will be sent by listening socket.
708 	 * Note that the ACK validity check for a Fast Open socket is done
709 	 * elsewhere and is checked directly against the child socket rather
710 	 * than req because user data may have been sent out.
711 	 */
712 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
713 	    (TCP_SKB_CB(skb)->ack_seq !=
714 	     tcp_rsk(req)->snt_isn + 1))
715 		return sk;
716 
717 	/* Also, it would be not so bad idea to check rcv_tsecr, which
718 	 * is essentially ACK extension and too early or too late values
719 	 * should cause reset in unsynchronized states.
720 	 */
721 
722 	/* RFC793: "first check sequence number". */
723 
724 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
725 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
726 		/* Out of window: send ACK and drop. */
727 		if (!(flg & TCP_FLAG_RST) &&
728 		    !tcp_oow_rate_limited(sock_net(sk), skb,
729 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
730 					  &tcp_rsk(req)->last_oow_ack_time))
731 			req->rsk_ops->send_ack(sk, skb, req);
732 		if (paws_reject)
733 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
734 		return NULL;
735 	}
736 
737 	/* In sequence, PAWS is OK. */
738 
739 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
740 		req->ts_recent = tmp_opt.rcv_tsval;
741 
742 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
743 		/* Truncate SYN, it is out of window starting
744 		   at tcp_rsk(req)->rcv_isn + 1. */
745 		flg &= ~TCP_FLAG_SYN;
746 	}
747 
748 	/* RFC793: "second check the RST bit" and
749 	 *	   "fourth, check the SYN bit"
750 	 */
751 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
752 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
753 		goto embryonic_reset;
754 	}
755 
756 	/* ACK sequence verified above, just make sure ACK is
757 	 * set.  If ACK not set, just silently drop the packet.
758 	 *
759 	 * XXX (TFO) - if we ever allow "data after SYN", the
760 	 * following check needs to be removed.
761 	 */
762 	if (!(flg & TCP_FLAG_ACK))
763 		return NULL;
764 
765 	/* For Fast Open no more processing is needed (sk is the
766 	 * child socket).
767 	 */
768 	if (fastopen)
769 		return sk;
770 
771 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
772 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
773 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
774 		inet_rsk(req)->acked = 1;
775 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
776 		return NULL;
777 	}
778 
779 	/* OK, ACK is valid, create big socket and
780 	 * feed this segment to it. It will repeat all
781 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
782 	 * ESTABLISHED STATE. If it will be dropped after
783 	 * socket is created, wait for troubles.
784 	 */
785 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
786 							 req, &own_req);
787 	if (!child)
788 		goto listen_overflow;
789 
790 	if (own_req && rsk_drop_req(req)) {
791 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
792 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
793 		return child;
794 	}
795 
796 	sock_rps_save_rxhash(child, skb);
797 	tcp_synack_rtt_meas(child, req);
798 	*req_stolen = !own_req;
799 	return inet_csk_complete_hashdance(sk, child, req, own_req);
800 
801 listen_overflow:
802 	if (sk != req->rsk_listener)
803 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
804 
805 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
806 		inet_rsk(req)->acked = 1;
807 		return NULL;
808 	}
809 
810 embryonic_reset:
811 	if (!(flg & TCP_FLAG_RST)) {
812 		/* Received a bad SYN pkt - for TFO We try not to reset
813 		 * the local connection unless it's really necessary to
814 		 * avoid becoming vulnerable to outside attack aiming at
815 		 * resetting legit local connections.
816 		 */
817 		req->rsk_ops->send_reset(sk, skb);
818 	} else if (fastopen) { /* received a valid RST pkt */
819 		reqsk_fastopen_remove(sk, req, true);
820 		tcp_reset(sk, skb);
821 	}
822 	if (!fastopen) {
823 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
824 
825 		if (unlinked)
826 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
827 		*req_stolen = !unlinked;
828 	}
829 	return NULL;
830 }
831 EXPORT_SYMBOL(tcp_check_req);
832 
833 /*
834  * Queue segment on the new socket if the new socket is active,
835  * otherwise we just shortcircuit this and continue with
836  * the new socket.
837  *
838  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
839  * when entering. But other states are possible due to a race condition
840  * where after __inet_lookup_established() fails but before the listener
841  * locked is obtained, other packets cause the same connection to
842  * be created.
843  */
844 
845 int tcp_child_process(struct sock *parent, struct sock *child,
846 		      struct sk_buff *skb)
847 	__releases(&((child)->sk_lock.slock))
848 {
849 	int ret = 0;
850 	int state = child->sk_state;
851 
852 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
853 	sk_mark_napi_id_set(child, skb);
854 
855 	tcp_segs_in(tcp_sk(child), skb);
856 	if (!sock_owned_by_user(child)) {
857 		ret = tcp_rcv_state_process(child, skb);
858 		/* Wakeup parent, send SIGIO */
859 		if (state == TCP_SYN_RECV && child->sk_state != state)
860 			parent->sk_data_ready(parent);
861 	} else {
862 		/* Alas, it is possible again, because we do lookup
863 		 * in main socket hash table and lock on listening
864 		 * socket does not protect us more.
865 		 */
866 		__sk_add_backlog(child, skb);
867 	}
868 
869 	bh_unlock_sock(child);
870 	sock_put(child);
871 	return ret;
872 }
873 EXPORT_SYMBOL(tcp_child_process);
874