xref: /linux/net/ipv4/tcp_minisocks.c (revision 8e1bb4a41aa78d6105e59186af3dcd545fc66e70)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <net/tcp.h>
23 #include <net/xfrm.h>
24 #include <net/busy_poll.h>
25 #include <net/rstreason.h>
26 
27 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
28 {
29 	if (seq == s_win)
30 		return true;
31 	if (after(end_seq, s_win) && before(seq, e_win))
32 		return true;
33 	return seq == e_win && seq == end_seq;
34 }
35 
36 static enum tcp_tw_status
37 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
38 				  const struct sk_buff *skb, int mib_idx)
39 {
40 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
41 
42 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
43 				  &tcptw->tw_last_oow_ack_time)) {
44 		/* Send ACK. Note, we do not put the bucket,
45 		 * it will be released by caller.
46 		 */
47 		return TCP_TW_ACK;
48 	}
49 
50 	/* We are rate-limiting, so just release the tw sock and drop skb. */
51 	inet_twsk_put(tw);
52 	return TCP_TW_SUCCESS;
53 }
54 
55 static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq)
56 {
57 #ifdef CONFIG_TCP_AO
58 	struct tcp_ao_info *ao;
59 
60 	ao = rcu_dereference(tcptw->ao_info);
61 	if (unlikely(ao && seq < tcptw->tw_rcv_nxt))
62 		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
63 #endif
64 	tcptw->tw_rcv_nxt = seq;
65 }
66 
67 /*
68  * * Main purpose of TIME-WAIT state is to close connection gracefully,
69  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
70  *   (and, probably, tail of data) and one or more our ACKs are lost.
71  * * What is TIME-WAIT timeout? It is associated with maximal packet
72  *   lifetime in the internet, which results in wrong conclusion, that
73  *   it is set to catch "old duplicate segments" wandering out of their path.
74  *   It is not quite correct. This timeout is calculated so that it exceeds
75  *   maximal retransmission timeout enough to allow to lose one (or more)
76  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
77  * * When TIME-WAIT socket receives RST, it means that another end
78  *   finally closed and we are allowed to kill TIME-WAIT too.
79  * * Second purpose of TIME-WAIT is catching old duplicate segments.
80  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
81  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
82  * * If we invented some more clever way to catch duplicates
83  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
84  *
85  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
86  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
87  * from the very beginning.
88  *
89  * NOTE. With recycling (and later with fin-wait-2) TW bucket
90  * is _not_ stateless. It means, that strictly speaking we must
91  * spinlock it. I do not want! Well, probability of misbehaviour
92  * is ridiculously low and, seems, we could use some mb() tricks
93  * to avoid misread sequence numbers, states etc.  --ANK
94  *
95  * We don't need to initialize tmp_out.sack_ok as we don't use the results
96  */
97 enum tcp_tw_status
98 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
99 			   const struct tcphdr *th, u32 *tw_isn)
100 {
101 	struct tcp_options_received tmp_opt;
102 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
103 	bool paws_reject = false;
104 	int ts_recent_stamp;
105 
106 	tmp_opt.saw_tstamp = 0;
107 	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
108 	if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
109 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
110 
111 		if (tmp_opt.saw_tstamp) {
112 			if (tmp_opt.rcv_tsecr)
113 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
114 			tmp_opt.ts_recent	= READ_ONCE(tcptw->tw_ts_recent);
115 			tmp_opt.ts_recent_stamp	= ts_recent_stamp;
116 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
117 		}
118 	}
119 
120 	if (tw->tw_substate == TCP_FIN_WAIT2) {
121 		/* Just repeat all the checks of tcp_rcv_state_process() */
122 
123 		/* Out of window, send ACK */
124 		if (paws_reject ||
125 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
126 				   tcptw->tw_rcv_nxt,
127 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
128 			return tcp_timewait_check_oow_rate_limit(
129 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
130 
131 		if (th->rst)
132 			goto kill;
133 
134 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
135 			return TCP_TW_RST;
136 
137 		/* Dup ACK? */
138 		if (!th->ack ||
139 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
140 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
141 			inet_twsk_put(tw);
142 			return TCP_TW_SUCCESS;
143 		}
144 
145 		/* New data or FIN. If new data arrive after half-duplex close,
146 		 * reset.
147 		 */
148 		if (!th->fin ||
149 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
150 			return TCP_TW_RST;
151 
152 		/* FIN arrived, enter true time-wait state. */
153 		tw->tw_substate	  = TCP_TIME_WAIT;
154 		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq);
155 
156 		if (tmp_opt.saw_tstamp) {
157 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
158 				  ktime_get_seconds());
159 			WRITE_ONCE(tcptw->tw_ts_recent,
160 				   tmp_opt.rcv_tsval);
161 		}
162 
163 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
164 		return TCP_TW_ACK;
165 	}
166 
167 	/*
168 	 *	Now real TIME-WAIT state.
169 	 *
170 	 *	RFC 1122:
171 	 *	"When a connection is [...] on TIME-WAIT state [...]
172 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
173 	 *	reopen the connection directly, if it:
174 	 *
175 	 *	(1)  assigns its initial sequence number for the new
176 	 *	connection to be larger than the largest sequence
177 	 *	number it used on the previous connection incarnation,
178 	 *	and
179 	 *
180 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
181 	 *	to be an old duplicate".
182 	 */
183 
184 	if (!paws_reject &&
185 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
186 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
187 		/* In window segment, it may be only reset or bare ack. */
188 
189 		if (th->rst) {
190 			/* This is TIME_WAIT assassination, in two flavors.
191 			 * Oh well... nobody has a sufficient solution to this
192 			 * protocol bug yet.
193 			 */
194 			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
195 kill:
196 				inet_twsk_deschedule_put(tw);
197 				return TCP_TW_SUCCESS;
198 			}
199 		} else {
200 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
201 		}
202 
203 		if (tmp_opt.saw_tstamp) {
204 			WRITE_ONCE(tcptw->tw_ts_recent,
205 				   tmp_opt.rcv_tsval);
206 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
207 				   ktime_get_seconds());
208 		}
209 
210 		inet_twsk_put(tw);
211 		return TCP_TW_SUCCESS;
212 	}
213 
214 	/* Out of window segment.
215 
216 	   All the segments are ACKed immediately.
217 
218 	   The only exception is new SYN. We accept it, if it is
219 	   not old duplicate and we are not in danger to be killed
220 	   by delayed old duplicates. RFC check is that it has
221 	   newer sequence number works at rates <40Mbit/sec.
222 	   However, if paws works, it is reliable AND even more,
223 	   we even may relax silly seq space cutoff.
224 
225 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
226 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
227 	   we must return socket to time-wait state. It is not good,
228 	   but not fatal yet.
229 	 */
230 
231 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
232 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
233 	     (tmp_opt.saw_tstamp &&
234 	      (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
235 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
236 		if (isn == 0)
237 			isn++;
238 		*tw_isn = isn;
239 		return TCP_TW_SYN;
240 	}
241 
242 	if (paws_reject)
243 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
244 
245 	if (!th->rst) {
246 		/* In this case we must reset the TIMEWAIT timer.
247 		 *
248 		 * If it is ACKless SYN it may be both old duplicate
249 		 * and new good SYN with random sequence number <rcv_nxt.
250 		 * Do not reschedule in the last case.
251 		 */
252 		if (paws_reject || th->ack)
253 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
254 
255 		return tcp_timewait_check_oow_rate_limit(
256 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
257 	}
258 	inet_twsk_put(tw);
259 	return TCP_TW_SUCCESS;
260 }
261 EXPORT_SYMBOL(tcp_timewait_state_process);
262 
263 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
264 {
265 #ifdef CONFIG_TCP_MD5SIG
266 	const struct tcp_sock *tp = tcp_sk(sk);
267 	struct tcp_md5sig_key *key;
268 
269 	/*
270 	 * The timewait bucket does not have the key DB from the
271 	 * sock structure. We just make a quick copy of the
272 	 * md5 key being used (if indeed we are using one)
273 	 * so the timewait ack generating code has the key.
274 	 */
275 	tcptw->tw_md5_key = NULL;
276 	if (!static_branch_unlikely(&tcp_md5_needed.key))
277 		return;
278 
279 	key = tp->af_specific->md5_lookup(sk, sk);
280 	if (key) {
281 		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
282 		if (!tcptw->tw_md5_key)
283 			return;
284 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
285 			goto out_free;
286 		tcp_md5_add_sigpool();
287 	}
288 	return;
289 out_free:
290 	WARN_ON_ONCE(1);
291 	kfree(tcptw->tw_md5_key);
292 	tcptw->tw_md5_key = NULL;
293 #endif
294 }
295 
296 /*
297  * Move a socket to time-wait or dead fin-wait-2 state.
298  */
299 void tcp_time_wait(struct sock *sk, int state, int timeo)
300 {
301 	const struct inet_connection_sock *icsk = inet_csk(sk);
302 	struct tcp_sock *tp = tcp_sk(sk);
303 	struct net *net = sock_net(sk);
304 	struct inet_timewait_sock *tw;
305 
306 	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
307 
308 	if (tw) {
309 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
310 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
311 
312 		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
313 		tw->tw_mark		= sk->sk_mark;
314 		tw->tw_priority		= READ_ONCE(sk->sk_priority);
315 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
316 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
317 		tcptw->tw_snd_nxt	= tp->snd_nxt;
318 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
319 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
320 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
321 		tcptw->tw_ts_offset	= tp->tsoffset;
322 		tw->tw_usec_ts		= tp->tcp_usec_ts;
323 		tcptw->tw_last_oow_ack_time = 0;
324 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
325 		tw->tw_txhash		= sk->sk_txhash;
326 #if IS_ENABLED(CONFIG_IPV6)
327 		if (tw->tw_family == PF_INET6) {
328 			struct ipv6_pinfo *np = inet6_sk(sk);
329 
330 			tw->tw_v6_daddr = sk->sk_v6_daddr;
331 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
332 			tw->tw_tclass = np->tclass;
333 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
334 			tw->tw_ipv6only = sk->sk_ipv6only;
335 		}
336 #endif
337 
338 		tcp_time_wait_init(sk, tcptw);
339 		tcp_ao_time_wait(tcptw, tp);
340 
341 		/* Get the TIME_WAIT timeout firing. */
342 		if (timeo < rto)
343 			timeo = rto;
344 
345 		if (state == TCP_TIME_WAIT)
346 			timeo = TCP_TIMEWAIT_LEN;
347 
348 		/* Linkage updates.
349 		 * Note that access to tw after this point is illegal.
350 		 */
351 		inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
352 	} else {
353 		/* Sorry, if we're out of memory, just CLOSE this
354 		 * socket up.  We've got bigger problems than
355 		 * non-graceful socket closings.
356 		 */
357 		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
358 	}
359 
360 	tcp_update_metrics(sk);
361 	tcp_done(sk);
362 }
363 EXPORT_SYMBOL(tcp_time_wait);
364 
365 #ifdef CONFIG_TCP_MD5SIG
366 static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
367 {
368 	struct tcp_md5sig_key *key;
369 
370 	key = container_of(head, struct tcp_md5sig_key, rcu);
371 	kfree(key);
372 	static_branch_slow_dec_deferred(&tcp_md5_needed);
373 	tcp_md5_release_sigpool();
374 }
375 #endif
376 
377 void tcp_twsk_destructor(struct sock *sk)
378 {
379 #ifdef CONFIG_TCP_MD5SIG
380 	if (static_branch_unlikely(&tcp_md5_needed.key)) {
381 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
382 
383 		if (twsk->tw_md5_key)
384 			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
385 	}
386 #endif
387 	tcp_ao_destroy_sock(sk, true);
388 }
389 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
390 
391 void tcp_twsk_purge(struct list_head *net_exit_list)
392 {
393 	bool purged_once = false;
394 	struct net *net;
395 
396 	list_for_each_entry(net, net_exit_list, exit_list) {
397 		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
398 			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
399 			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
400 		} else if (!purged_once) {
401 			inet_twsk_purge(&tcp_hashinfo);
402 			purged_once = true;
403 		}
404 	}
405 }
406 
407 /* Warning : This function is called without sk_listener being locked.
408  * Be sure to read socket fields once, as their value could change under us.
409  */
410 void tcp_openreq_init_rwin(struct request_sock *req,
411 			   const struct sock *sk_listener,
412 			   const struct dst_entry *dst)
413 {
414 	struct inet_request_sock *ireq = inet_rsk(req);
415 	const struct tcp_sock *tp = tcp_sk(sk_listener);
416 	int full_space = tcp_full_space(sk_listener);
417 	u32 window_clamp;
418 	__u8 rcv_wscale;
419 	u32 rcv_wnd;
420 	int mss;
421 
422 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
423 	window_clamp = READ_ONCE(tp->window_clamp);
424 	/* Set this up on the first call only */
425 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
426 
427 	/* limit the window selection if the user enforce a smaller rx buffer */
428 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
429 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
430 		req->rsk_window_clamp = full_space;
431 
432 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
433 	if (rcv_wnd == 0)
434 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
435 	else if (full_space < rcv_wnd * mss)
436 		full_space = rcv_wnd * mss;
437 
438 	/* tcp_full_space because it is guaranteed to be the first packet */
439 	tcp_select_initial_window(sk_listener, full_space,
440 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
441 		&req->rsk_rcv_wnd,
442 		&req->rsk_window_clamp,
443 		ireq->wscale_ok,
444 		&rcv_wscale,
445 		rcv_wnd);
446 	ireq->rcv_wscale = rcv_wscale;
447 }
448 EXPORT_SYMBOL(tcp_openreq_init_rwin);
449 
450 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
451 				  const struct request_sock *req)
452 {
453 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
454 }
455 
456 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
457 {
458 	struct inet_connection_sock *icsk = inet_csk(sk);
459 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
460 	bool ca_got_dst = false;
461 
462 	if (ca_key != TCP_CA_UNSPEC) {
463 		const struct tcp_congestion_ops *ca;
464 
465 		rcu_read_lock();
466 		ca = tcp_ca_find_key(ca_key);
467 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
468 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
469 			icsk->icsk_ca_ops = ca;
470 			ca_got_dst = true;
471 		}
472 		rcu_read_unlock();
473 	}
474 
475 	/* If no valid choice made yet, assign current system default ca. */
476 	if (!ca_got_dst &&
477 	    (!icsk->icsk_ca_setsockopt ||
478 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
479 		tcp_assign_congestion_control(sk);
480 
481 	tcp_set_ca_state(sk, TCP_CA_Open);
482 }
483 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
484 
485 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
486 				    struct request_sock *req,
487 				    struct tcp_sock *newtp)
488 {
489 #if IS_ENABLED(CONFIG_SMC)
490 	struct inet_request_sock *ireq;
491 
492 	if (static_branch_unlikely(&tcp_have_smc)) {
493 		ireq = inet_rsk(req);
494 		if (oldtp->syn_smc && !ireq->smc_ok)
495 			newtp->syn_smc = 0;
496 	}
497 #endif
498 }
499 
500 /* This is not only more efficient than what we used to do, it eliminates
501  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
502  *
503  * Actually, we could lots of memory writes here. tp of listening
504  * socket contains all necessary default parameters.
505  */
506 struct sock *tcp_create_openreq_child(const struct sock *sk,
507 				      struct request_sock *req,
508 				      struct sk_buff *skb)
509 {
510 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
511 	const struct inet_request_sock *ireq = inet_rsk(req);
512 	struct tcp_request_sock *treq = tcp_rsk(req);
513 	struct inet_connection_sock *newicsk;
514 	const struct tcp_sock *oldtp;
515 	struct tcp_sock *newtp;
516 	u32 seq;
517 
518 	if (!newsk)
519 		return NULL;
520 
521 	newicsk = inet_csk(newsk);
522 	newtp = tcp_sk(newsk);
523 	oldtp = tcp_sk(sk);
524 
525 	smc_check_reset_syn_req(oldtp, req, newtp);
526 
527 	/* Now setup tcp_sock */
528 	newtp->pred_flags = 0;
529 
530 	seq = treq->rcv_isn + 1;
531 	newtp->rcv_wup = seq;
532 	WRITE_ONCE(newtp->copied_seq, seq);
533 	WRITE_ONCE(newtp->rcv_nxt, seq);
534 	newtp->segs_in = 1;
535 
536 	seq = treq->snt_isn + 1;
537 	newtp->snd_sml = newtp->snd_una = seq;
538 	WRITE_ONCE(newtp->snd_nxt, seq);
539 	newtp->snd_up = seq;
540 
541 	INIT_LIST_HEAD(&newtp->tsq_node);
542 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
543 
544 	tcp_init_wl(newtp, treq->rcv_isn);
545 
546 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
547 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
548 
549 	newtp->lsndtime = tcp_jiffies32;
550 	newsk->sk_txhash = READ_ONCE(treq->txhash);
551 	newtp->total_retrans = req->num_retrans;
552 
553 	tcp_init_xmit_timers(newsk);
554 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
555 
556 	if (sock_flag(newsk, SOCK_KEEPOPEN))
557 		inet_csk_reset_keepalive_timer(newsk,
558 					       keepalive_time_when(newtp));
559 
560 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
561 	newtp->rx_opt.sack_ok = ireq->sack_ok;
562 	newtp->window_clamp = req->rsk_window_clamp;
563 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
564 	newtp->rcv_wnd = req->rsk_rcv_wnd;
565 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
566 	if (newtp->rx_opt.wscale_ok) {
567 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
568 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
569 	} else {
570 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
571 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
572 	}
573 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
574 	newtp->max_window = newtp->snd_wnd;
575 
576 	if (newtp->rx_opt.tstamp_ok) {
577 		newtp->tcp_usec_ts = treq->req_usec_ts;
578 		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
579 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
580 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
581 	} else {
582 		newtp->tcp_usec_ts = 0;
583 		newtp->rx_opt.ts_recent_stamp = 0;
584 		newtp->tcp_header_len = sizeof(struct tcphdr);
585 	}
586 	if (req->num_timeout) {
587 		newtp->total_rto = req->num_timeout;
588 		newtp->undo_marker = treq->snt_isn;
589 		if (newtp->tcp_usec_ts) {
590 			newtp->retrans_stamp = treq->snt_synack;
591 			newtp->total_rto_time = (u32)(tcp_clock_us() -
592 						      newtp->retrans_stamp) / USEC_PER_MSEC;
593 		} else {
594 			newtp->retrans_stamp = div_u64(treq->snt_synack,
595 						       USEC_PER_SEC / TCP_TS_HZ);
596 			newtp->total_rto_time = tcp_clock_ms() -
597 						newtp->retrans_stamp;
598 		}
599 		newtp->total_rto_recoveries = 1;
600 	}
601 	newtp->tsoffset = treq->ts_off;
602 #ifdef CONFIG_TCP_MD5SIG
603 	newtp->md5sig_info = NULL;	/*XXX*/
604 #endif
605 #ifdef CONFIG_TCP_AO
606 	newtp->ao_info = NULL;
607 
608 	if (tcp_rsk_used_ao(req)) {
609 		struct tcp_ao_key *ao_key;
610 
611 		ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
612 		if (ao_key)
613 			newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
614 	}
615  #endif
616 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
617 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
618 	newtp->rx_opt.mss_clamp = req->mss;
619 	tcp_ecn_openreq_child(newtp, req);
620 	newtp->fastopen_req = NULL;
621 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
622 
623 	newtp->bpf_chg_cc_inprogress = 0;
624 	tcp_bpf_clone(sk, newsk);
625 
626 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
627 
628 	return newsk;
629 }
630 EXPORT_SYMBOL(tcp_create_openreq_child);
631 
632 /*
633  * Process an incoming packet for SYN_RECV sockets represented as a
634  * request_sock. Normally sk is the listener socket but for TFO it
635  * points to the child socket.
636  *
637  * XXX (TFO) - The current impl contains a special check for ack
638  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
639  *
640  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
641  *
642  * Note: If @fastopen is true, this can be called from process context.
643  *       Otherwise, this is from BH context.
644  */
645 
646 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
647 			   struct request_sock *req,
648 			   bool fastopen, bool *req_stolen)
649 {
650 	struct tcp_options_received tmp_opt;
651 	struct sock *child;
652 	const struct tcphdr *th = tcp_hdr(skb);
653 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
654 	bool paws_reject = false;
655 	bool own_req;
656 
657 	tmp_opt.saw_tstamp = 0;
658 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
659 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
660 
661 		if (tmp_opt.saw_tstamp) {
662 			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
663 			if (tmp_opt.rcv_tsecr)
664 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
665 			/* We do not store true stamp, but it is not required,
666 			 * it can be estimated (approximately)
667 			 * from another data.
668 			 */
669 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
670 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
671 		}
672 	}
673 
674 	/* Check for pure retransmitted SYN. */
675 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
676 	    flg == TCP_FLAG_SYN &&
677 	    !paws_reject) {
678 		/*
679 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
680 		 * this case on figure 6 and figure 8, but formal
681 		 * protocol description says NOTHING.
682 		 * To be more exact, it says that we should send ACK,
683 		 * because this segment (at least, if it has no data)
684 		 * is out of window.
685 		 *
686 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
687 		 *  describe SYN-RECV state. All the description
688 		 *  is wrong, we cannot believe to it and should
689 		 *  rely only on common sense and implementation
690 		 *  experience.
691 		 *
692 		 * Enforce "SYN-ACK" according to figure 8, figure 6
693 		 * of RFC793, fixed by RFC1122.
694 		 *
695 		 * Note that even if there is new data in the SYN packet
696 		 * they will be thrown away too.
697 		 *
698 		 * Reset timer after retransmitting SYNACK, similar to
699 		 * the idea of fast retransmit in recovery.
700 		 */
701 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
702 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
703 					  &tcp_rsk(req)->last_oow_ack_time) &&
704 
705 		    !inet_rtx_syn_ack(sk, req)) {
706 			unsigned long expires = jiffies;
707 
708 			expires += reqsk_timeout(req, TCP_RTO_MAX);
709 			if (!fastopen)
710 				mod_timer_pending(&req->rsk_timer, expires);
711 			else
712 				req->rsk_timer.expires = expires;
713 		}
714 		return NULL;
715 	}
716 
717 	/* Further reproduces section "SEGMENT ARRIVES"
718 	   for state SYN-RECEIVED of RFC793.
719 	   It is broken, however, it does not work only
720 	   when SYNs are crossed.
721 
722 	   You would think that SYN crossing is impossible here, since
723 	   we should have a SYN_SENT socket (from connect()) on our end,
724 	   but this is not true if the crossed SYNs were sent to both
725 	   ends by a malicious third party.  We must defend against this,
726 	   and to do that we first verify the ACK (as per RFC793, page
727 	   36) and reset if it is invalid.  Is this a true full defense?
728 	   To convince ourselves, let us consider a way in which the ACK
729 	   test can still pass in this 'malicious crossed SYNs' case.
730 	   Malicious sender sends identical SYNs (and thus identical sequence
731 	   numbers) to both A and B:
732 
733 		A: gets SYN, seq=7
734 		B: gets SYN, seq=7
735 
736 	   By our good fortune, both A and B select the same initial
737 	   send sequence number of seven :-)
738 
739 		A: sends SYN|ACK, seq=7, ack_seq=8
740 		B: sends SYN|ACK, seq=7, ack_seq=8
741 
742 	   So we are now A eating this SYN|ACK, ACK test passes.  So
743 	   does sequence test, SYN is truncated, and thus we consider
744 	   it a bare ACK.
745 
746 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
747 	   bare ACK.  Otherwise, we create an established connection.  Both
748 	   ends (listening sockets) accept the new incoming connection and try
749 	   to talk to each other. 8-)
750 
751 	   Note: This case is both harmless, and rare.  Possibility is about the
752 	   same as us discovering intelligent life on another plant tomorrow.
753 
754 	   But generally, we should (RFC lies!) to accept ACK
755 	   from SYNACK both here and in tcp_rcv_state_process().
756 	   tcp_rcv_state_process() does not, hence, we do not too.
757 
758 	   Note that the case is absolutely generic:
759 	   we cannot optimize anything here without
760 	   violating protocol. All the checks must be made
761 	   before attempt to create socket.
762 	 */
763 
764 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
765 	 *                  and the incoming segment acknowledges something not yet
766 	 *                  sent (the segment carries an unacceptable ACK) ...
767 	 *                  a reset is sent."
768 	 *
769 	 * Invalid ACK: reset will be sent by listening socket.
770 	 * Note that the ACK validity check for a Fast Open socket is done
771 	 * elsewhere and is checked directly against the child socket rather
772 	 * than req because user data may have been sent out.
773 	 */
774 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
775 	    (TCP_SKB_CB(skb)->ack_seq !=
776 	     tcp_rsk(req)->snt_isn + 1))
777 		return sk;
778 
779 	/* Also, it would be not so bad idea to check rcv_tsecr, which
780 	 * is essentially ACK extension and too early or too late values
781 	 * should cause reset in unsynchronized states.
782 	 */
783 
784 	/* RFC793: "first check sequence number". */
785 
786 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq,
787 					  TCP_SKB_CB(skb)->end_seq,
788 					  tcp_rsk(req)->rcv_nxt,
789 					  tcp_rsk(req)->rcv_nxt +
790 					  tcp_synack_window(req))) {
791 		/* Out of window: send ACK and drop. */
792 		if (!(flg & TCP_FLAG_RST) &&
793 		    !tcp_oow_rate_limited(sock_net(sk), skb,
794 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
795 					  &tcp_rsk(req)->last_oow_ack_time))
796 			req->rsk_ops->send_ack(sk, skb, req);
797 		if (paws_reject)
798 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
799 		return NULL;
800 	}
801 
802 	/* In sequence, PAWS is OK. */
803 
804 	/* TODO: We probably should defer ts_recent change once
805 	 * we take ownership of @req.
806 	 */
807 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
808 		WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
809 
810 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
811 		/* Truncate SYN, it is out of window starting
812 		   at tcp_rsk(req)->rcv_isn + 1. */
813 		flg &= ~TCP_FLAG_SYN;
814 	}
815 
816 	/* RFC793: "second check the RST bit" and
817 	 *	   "fourth, check the SYN bit"
818 	 */
819 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
820 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
821 		goto embryonic_reset;
822 	}
823 
824 	/* ACK sequence verified above, just make sure ACK is
825 	 * set.  If ACK not set, just silently drop the packet.
826 	 *
827 	 * XXX (TFO) - if we ever allow "data after SYN", the
828 	 * following check needs to be removed.
829 	 */
830 	if (!(flg & TCP_FLAG_ACK))
831 		return NULL;
832 
833 	/* For Fast Open no more processing is needed (sk is the
834 	 * child socket).
835 	 */
836 	if (fastopen)
837 		return sk;
838 
839 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
840 	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
841 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
842 		inet_rsk(req)->acked = 1;
843 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
844 		return NULL;
845 	}
846 
847 	/* OK, ACK is valid, create big socket and
848 	 * feed this segment to it. It will repeat all
849 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
850 	 * ESTABLISHED STATE. If it will be dropped after
851 	 * socket is created, wait for troubles.
852 	 */
853 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
854 							 req, &own_req);
855 	if (!child)
856 		goto listen_overflow;
857 
858 	if (own_req && rsk_drop_req(req)) {
859 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
860 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
861 		return child;
862 	}
863 
864 	sock_rps_save_rxhash(child, skb);
865 	tcp_synack_rtt_meas(child, req);
866 	*req_stolen = !own_req;
867 	return inet_csk_complete_hashdance(sk, child, req, own_req);
868 
869 listen_overflow:
870 	if (sk != req->rsk_listener)
871 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
872 
873 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
874 		inet_rsk(req)->acked = 1;
875 		return NULL;
876 	}
877 
878 embryonic_reset:
879 	if (!(flg & TCP_FLAG_RST)) {
880 		/* Received a bad SYN pkt - for TFO We try not to reset
881 		 * the local connection unless it's really necessary to
882 		 * avoid becoming vulnerable to outside attack aiming at
883 		 * resetting legit local connections.
884 		 */
885 		req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
886 	} else if (fastopen) { /* received a valid RST pkt */
887 		reqsk_fastopen_remove(sk, req, true);
888 		tcp_reset(sk, skb);
889 	}
890 	if (!fastopen) {
891 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
892 
893 		if (unlinked)
894 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
895 		*req_stolen = !unlinked;
896 	}
897 	return NULL;
898 }
899 EXPORT_SYMBOL(tcp_check_req);
900 
901 /*
902  * Queue segment on the new socket if the new socket is active,
903  * otherwise we just shortcircuit this and continue with
904  * the new socket.
905  *
906  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
907  * when entering. But other states are possible due to a race condition
908  * where after __inet_lookup_established() fails but before the listener
909  * locked is obtained, other packets cause the same connection to
910  * be created.
911  */
912 
913 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
914 				       struct sk_buff *skb)
915 	__releases(&((child)->sk_lock.slock))
916 {
917 	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
918 	int state = child->sk_state;
919 
920 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
921 	sk_mark_napi_id_set(child, skb);
922 
923 	tcp_segs_in(tcp_sk(child), skb);
924 	if (!sock_owned_by_user(child)) {
925 		reason = tcp_rcv_state_process(child, skb);
926 		/* Wakeup parent, send SIGIO */
927 		if (state == TCP_SYN_RECV && child->sk_state != state)
928 			parent->sk_data_ready(parent);
929 	} else {
930 		/* Alas, it is possible again, because we do lookup
931 		 * in main socket hash table and lock on listening
932 		 * socket does not protect us more.
933 		 */
934 		__sk_add_backlog(child, skb);
935 	}
936 
937 	bh_unlock_sock(child);
938 	sock_put(child);
939 	return reason;
940 }
941 EXPORT_SYMBOL(tcp_child_process);
942