xref: /linux/net/ipv4/tcp_minisocks.c (revision 870b7fdc660b38c4e1bd8bf48e62aa352ddf8f42)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <net/tcp.h>
23 #include <net/xfrm.h>
24 #include <net/busy_poll.h>
25 #include <net/rstreason.h>
26 
27 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
28 {
29 	if (seq == s_win)
30 		return true;
31 	if (after(end_seq, s_win) && before(seq, e_win))
32 		return true;
33 	return seq == e_win && seq == end_seq;
34 }
35 
36 static enum tcp_tw_status
37 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
38 				  const struct sk_buff *skb, int mib_idx)
39 {
40 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
41 
42 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
43 				  &tcptw->tw_last_oow_ack_time)) {
44 		/* Send ACK. Note, we do not put the bucket,
45 		 * it will be released by caller.
46 		 */
47 		return TCP_TW_ACK;
48 	}
49 
50 	/* We are rate-limiting, so just release the tw sock and drop skb. */
51 	inet_twsk_put(tw);
52 	return TCP_TW_SUCCESS;
53 }
54 
55 static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq,
56 				u32 rcv_nxt)
57 {
58 #ifdef CONFIG_TCP_AO
59 	struct tcp_ao_info *ao;
60 
61 	ao = rcu_dereference(tcptw->ao_info);
62 	if (unlikely(ao && seq < rcv_nxt))
63 		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
64 #endif
65 	WRITE_ONCE(tcptw->tw_rcv_nxt, seq);
66 }
67 
68 /*
69  * * Main purpose of TIME-WAIT state is to close connection gracefully,
70  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
71  *   (and, probably, tail of data) and one or more our ACKs are lost.
72  * * What is TIME-WAIT timeout? It is associated with maximal packet
73  *   lifetime in the internet, which results in wrong conclusion, that
74  *   it is set to catch "old duplicate segments" wandering out of their path.
75  *   It is not quite correct. This timeout is calculated so that it exceeds
76  *   maximal retransmission timeout enough to allow to lose one (or more)
77  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
78  * * When TIME-WAIT socket receives RST, it means that another end
79  *   finally closed and we are allowed to kill TIME-WAIT too.
80  * * Second purpose of TIME-WAIT is catching old duplicate segments.
81  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
82  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
83  * * If we invented some more clever way to catch duplicates
84  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
85  *
86  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
87  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
88  * from the very beginning.
89  *
90  * NOTE. With recycling (and later with fin-wait-2) TW bucket
91  * is _not_ stateless. It means, that strictly speaking we must
92  * spinlock it. I do not want! Well, probability of misbehaviour
93  * is ridiculously low and, seems, we could use some mb() tricks
94  * to avoid misread sequence numbers, states etc.  --ANK
95  *
96  * We don't need to initialize tmp_out.sack_ok as we don't use the results
97  */
98 enum tcp_tw_status
99 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
100 			   const struct tcphdr *th, u32 *tw_isn)
101 {
102 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
103 	u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt);
104 	struct tcp_options_received tmp_opt;
105 	bool paws_reject = false;
106 	int ts_recent_stamp;
107 
108 	tmp_opt.saw_tstamp = 0;
109 	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
110 	if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
111 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
112 
113 		if (tmp_opt.saw_tstamp) {
114 			if (tmp_opt.rcv_tsecr)
115 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
116 			tmp_opt.ts_recent	= READ_ONCE(tcptw->tw_ts_recent);
117 			tmp_opt.ts_recent_stamp	= ts_recent_stamp;
118 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
119 		}
120 	}
121 
122 	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) {
123 		/* Just repeat all the checks of tcp_rcv_state_process() */
124 
125 		/* Out of window, send ACK */
126 		if (paws_reject ||
127 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
128 				   rcv_nxt,
129 				   rcv_nxt + tcptw->tw_rcv_wnd))
130 			return tcp_timewait_check_oow_rate_limit(
131 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
132 
133 		if (th->rst)
134 			goto kill;
135 
136 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt))
137 			return TCP_TW_RST;
138 
139 		/* Dup ACK? */
140 		if (!th->ack ||
141 		    !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) ||
142 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
143 			inet_twsk_put(tw);
144 			return TCP_TW_SUCCESS;
145 		}
146 
147 		/* New data or FIN. If new data arrive after half-duplex close,
148 		 * reset.
149 		 */
150 		if (!th->fin ||
151 		    TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1)
152 			return TCP_TW_RST;
153 
154 		/* FIN arrived, enter true time-wait state. */
155 		WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT);
156 		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq,
157 				    rcv_nxt);
158 
159 		if (tmp_opt.saw_tstamp) {
160 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
161 				  ktime_get_seconds());
162 			WRITE_ONCE(tcptw->tw_ts_recent,
163 				   tmp_opt.rcv_tsval);
164 		}
165 
166 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
167 		return TCP_TW_ACK;
168 	}
169 
170 	/*
171 	 *	Now real TIME-WAIT state.
172 	 *
173 	 *	RFC 1122:
174 	 *	"When a connection is [...] on TIME-WAIT state [...]
175 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
176 	 *	reopen the connection directly, if it:
177 	 *
178 	 *	(1)  assigns its initial sequence number for the new
179 	 *	connection to be larger than the largest sequence
180 	 *	number it used on the previous connection incarnation,
181 	 *	and
182 	 *
183 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
184 	 *	to be an old duplicate".
185 	 */
186 
187 	if (!paws_reject &&
188 	    (TCP_SKB_CB(skb)->seq == rcv_nxt &&
189 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
190 		/* In window segment, it may be only reset or bare ack. */
191 
192 		if (th->rst) {
193 			/* This is TIME_WAIT assassination, in two flavors.
194 			 * Oh well... nobody has a sufficient solution to this
195 			 * protocol bug yet.
196 			 */
197 			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
198 kill:
199 				inet_twsk_deschedule_put(tw);
200 				return TCP_TW_SUCCESS;
201 			}
202 		} else {
203 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
204 		}
205 
206 		if (tmp_opt.saw_tstamp) {
207 			WRITE_ONCE(tcptw->tw_ts_recent,
208 				   tmp_opt.rcv_tsval);
209 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
210 				   ktime_get_seconds());
211 		}
212 
213 		inet_twsk_put(tw);
214 		return TCP_TW_SUCCESS;
215 	}
216 
217 	/* Out of window segment.
218 
219 	   All the segments are ACKed immediately.
220 
221 	   The only exception is new SYN. We accept it, if it is
222 	   not old duplicate and we are not in danger to be killed
223 	   by delayed old duplicates. RFC check is that it has
224 	   newer sequence number works at rates <40Mbit/sec.
225 	   However, if paws works, it is reliable AND even more,
226 	   we even may relax silly seq space cutoff.
227 
228 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
229 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
230 	   we must return socket to time-wait state. It is not good,
231 	   but not fatal yet.
232 	 */
233 
234 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
235 	    (after(TCP_SKB_CB(skb)->seq, rcv_nxt) ||
236 	     (tmp_opt.saw_tstamp &&
237 	      (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
238 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
239 		if (isn == 0)
240 			isn++;
241 		*tw_isn = isn;
242 		return TCP_TW_SYN;
243 	}
244 
245 	if (paws_reject)
246 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
247 
248 	if (!th->rst) {
249 		/* In this case we must reset the TIMEWAIT timer.
250 		 *
251 		 * If it is ACKless SYN it may be both old duplicate
252 		 * and new good SYN with random sequence number <rcv_nxt.
253 		 * Do not reschedule in the last case.
254 		 */
255 		if (paws_reject || th->ack)
256 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
257 
258 		return tcp_timewait_check_oow_rate_limit(
259 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
260 	}
261 	inet_twsk_put(tw);
262 	return TCP_TW_SUCCESS;
263 }
264 EXPORT_SYMBOL(tcp_timewait_state_process);
265 
266 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
267 {
268 #ifdef CONFIG_TCP_MD5SIG
269 	const struct tcp_sock *tp = tcp_sk(sk);
270 	struct tcp_md5sig_key *key;
271 
272 	/*
273 	 * The timewait bucket does not have the key DB from the
274 	 * sock structure. We just make a quick copy of the
275 	 * md5 key being used (if indeed we are using one)
276 	 * so the timewait ack generating code has the key.
277 	 */
278 	tcptw->tw_md5_key = NULL;
279 	if (!static_branch_unlikely(&tcp_md5_needed.key))
280 		return;
281 
282 	key = tp->af_specific->md5_lookup(sk, sk);
283 	if (key) {
284 		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
285 		if (!tcptw->tw_md5_key)
286 			return;
287 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
288 			goto out_free;
289 		tcp_md5_add_sigpool();
290 	}
291 	return;
292 out_free:
293 	WARN_ON_ONCE(1);
294 	kfree(tcptw->tw_md5_key);
295 	tcptw->tw_md5_key = NULL;
296 #endif
297 }
298 
299 /*
300  * Move a socket to time-wait or dead fin-wait-2 state.
301  */
302 void tcp_time_wait(struct sock *sk, int state, int timeo)
303 {
304 	const struct inet_connection_sock *icsk = inet_csk(sk);
305 	struct tcp_sock *tp = tcp_sk(sk);
306 	struct net *net = sock_net(sk);
307 	struct inet_timewait_sock *tw;
308 
309 	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
310 
311 	if (tw) {
312 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
313 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
314 
315 		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
316 		tw->tw_mark		= sk->sk_mark;
317 		tw->tw_priority		= READ_ONCE(sk->sk_priority);
318 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
319 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
320 		tcptw->tw_snd_nxt	= tp->snd_nxt;
321 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
322 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
323 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
324 		tcptw->tw_ts_offset	= tp->tsoffset;
325 		tw->tw_usec_ts		= tp->tcp_usec_ts;
326 		tcptw->tw_last_oow_ack_time = 0;
327 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
328 		tw->tw_txhash		= sk->sk_txhash;
329 #if IS_ENABLED(CONFIG_IPV6)
330 		if (tw->tw_family == PF_INET6) {
331 			struct ipv6_pinfo *np = inet6_sk(sk);
332 
333 			tw->tw_v6_daddr = sk->sk_v6_daddr;
334 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
335 			tw->tw_tclass = np->tclass;
336 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
337 			tw->tw_ipv6only = sk->sk_ipv6only;
338 		}
339 #endif
340 
341 		tcp_time_wait_init(sk, tcptw);
342 		tcp_ao_time_wait(tcptw, tp);
343 
344 		/* Get the TIME_WAIT timeout firing. */
345 		if (timeo < rto)
346 			timeo = rto;
347 
348 		if (state == TCP_TIME_WAIT)
349 			timeo = TCP_TIMEWAIT_LEN;
350 
351 		/* Linkage updates.
352 		 * Note that access to tw after this point is illegal.
353 		 */
354 		inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
355 	} else {
356 		/* Sorry, if we're out of memory, just CLOSE this
357 		 * socket up.  We've got bigger problems than
358 		 * non-graceful socket closings.
359 		 */
360 		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
361 	}
362 
363 	tcp_update_metrics(sk);
364 	tcp_done(sk);
365 }
366 EXPORT_SYMBOL(tcp_time_wait);
367 
368 #ifdef CONFIG_TCP_MD5SIG
369 static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
370 {
371 	struct tcp_md5sig_key *key;
372 
373 	key = container_of(head, struct tcp_md5sig_key, rcu);
374 	kfree(key);
375 	static_branch_slow_dec_deferred(&tcp_md5_needed);
376 	tcp_md5_release_sigpool();
377 }
378 #endif
379 
380 void tcp_twsk_destructor(struct sock *sk)
381 {
382 #ifdef CONFIG_TCP_MD5SIG
383 	if (static_branch_unlikely(&tcp_md5_needed.key)) {
384 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
385 
386 		if (twsk->tw_md5_key)
387 			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
388 	}
389 #endif
390 	tcp_ao_destroy_sock(sk, true);
391 }
392 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
393 
394 void tcp_twsk_purge(struct list_head *net_exit_list)
395 {
396 	bool purged_once = false;
397 	struct net *net;
398 
399 	list_for_each_entry(net, net_exit_list, exit_list) {
400 		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
401 			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
402 			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
403 		} else if (!purged_once) {
404 			inet_twsk_purge(&tcp_hashinfo);
405 			purged_once = true;
406 		}
407 	}
408 }
409 
410 /* Warning : This function is called without sk_listener being locked.
411  * Be sure to read socket fields once, as their value could change under us.
412  */
413 void tcp_openreq_init_rwin(struct request_sock *req,
414 			   const struct sock *sk_listener,
415 			   const struct dst_entry *dst)
416 {
417 	struct inet_request_sock *ireq = inet_rsk(req);
418 	const struct tcp_sock *tp = tcp_sk(sk_listener);
419 	int full_space = tcp_full_space(sk_listener);
420 	u32 window_clamp;
421 	__u8 rcv_wscale;
422 	u32 rcv_wnd;
423 	int mss;
424 
425 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
426 	window_clamp = READ_ONCE(tp->window_clamp);
427 	/* Set this up on the first call only */
428 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
429 
430 	/* limit the window selection if the user enforce a smaller rx buffer */
431 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
432 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
433 		req->rsk_window_clamp = full_space;
434 
435 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
436 	if (rcv_wnd == 0)
437 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
438 	else if (full_space < rcv_wnd * mss)
439 		full_space = rcv_wnd * mss;
440 
441 	/* tcp_full_space because it is guaranteed to be the first packet */
442 	tcp_select_initial_window(sk_listener, full_space,
443 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
444 		&req->rsk_rcv_wnd,
445 		&req->rsk_window_clamp,
446 		ireq->wscale_ok,
447 		&rcv_wscale,
448 		rcv_wnd);
449 	ireq->rcv_wscale = rcv_wscale;
450 }
451 EXPORT_SYMBOL(tcp_openreq_init_rwin);
452 
453 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
454 				  const struct request_sock *req)
455 {
456 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
457 }
458 
459 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
460 {
461 	struct inet_connection_sock *icsk = inet_csk(sk);
462 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
463 	bool ca_got_dst = false;
464 
465 	if (ca_key != TCP_CA_UNSPEC) {
466 		const struct tcp_congestion_ops *ca;
467 
468 		rcu_read_lock();
469 		ca = tcp_ca_find_key(ca_key);
470 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
471 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
472 			icsk->icsk_ca_ops = ca;
473 			ca_got_dst = true;
474 		}
475 		rcu_read_unlock();
476 	}
477 
478 	/* If no valid choice made yet, assign current system default ca. */
479 	if (!ca_got_dst &&
480 	    (!icsk->icsk_ca_setsockopt ||
481 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
482 		tcp_assign_congestion_control(sk);
483 
484 	tcp_set_ca_state(sk, TCP_CA_Open);
485 }
486 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
487 
488 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
489 				    struct request_sock *req,
490 				    struct tcp_sock *newtp)
491 {
492 #if IS_ENABLED(CONFIG_SMC)
493 	struct inet_request_sock *ireq;
494 
495 	if (static_branch_unlikely(&tcp_have_smc)) {
496 		ireq = inet_rsk(req);
497 		if (oldtp->syn_smc && !ireq->smc_ok)
498 			newtp->syn_smc = 0;
499 	}
500 #endif
501 }
502 
503 /* This is not only more efficient than what we used to do, it eliminates
504  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
505  *
506  * Actually, we could lots of memory writes here. tp of listening
507  * socket contains all necessary default parameters.
508  */
509 struct sock *tcp_create_openreq_child(const struct sock *sk,
510 				      struct request_sock *req,
511 				      struct sk_buff *skb)
512 {
513 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
514 	const struct inet_request_sock *ireq = inet_rsk(req);
515 	struct tcp_request_sock *treq = tcp_rsk(req);
516 	struct inet_connection_sock *newicsk;
517 	const struct tcp_sock *oldtp;
518 	struct tcp_sock *newtp;
519 	u32 seq;
520 
521 	if (!newsk)
522 		return NULL;
523 
524 	newicsk = inet_csk(newsk);
525 	newtp = tcp_sk(newsk);
526 	oldtp = tcp_sk(sk);
527 
528 	smc_check_reset_syn_req(oldtp, req, newtp);
529 
530 	/* Now setup tcp_sock */
531 	newtp->pred_flags = 0;
532 
533 	seq = treq->rcv_isn + 1;
534 	newtp->rcv_wup = seq;
535 	WRITE_ONCE(newtp->copied_seq, seq);
536 	WRITE_ONCE(newtp->rcv_nxt, seq);
537 	newtp->segs_in = 1;
538 
539 	seq = treq->snt_isn + 1;
540 	newtp->snd_sml = newtp->snd_una = seq;
541 	WRITE_ONCE(newtp->snd_nxt, seq);
542 	newtp->snd_up = seq;
543 
544 	INIT_LIST_HEAD(&newtp->tsq_node);
545 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
546 
547 	tcp_init_wl(newtp, treq->rcv_isn);
548 
549 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
550 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
551 
552 	newtp->lsndtime = tcp_jiffies32;
553 	newsk->sk_txhash = READ_ONCE(treq->txhash);
554 	newtp->total_retrans = req->num_retrans;
555 
556 	tcp_init_xmit_timers(newsk);
557 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
558 
559 	if (sock_flag(newsk, SOCK_KEEPOPEN))
560 		inet_csk_reset_keepalive_timer(newsk,
561 					       keepalive_time_when(newtp));
562 
563 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
564 	newtp->rx_opt.sack_ok = ireq->sack_ok;
565 	newtp->window_clamp = req->rsk_window_clamp;
566 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
567 	newtp->rcv_wnd = req->rsk_rcv_wnd;
568 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
569 	if (newtp->rx_opt.wscale_ok) {
570 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
571 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
572 	} else {
573 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
574 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
575 	}
576 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
577 	newtp->max_window = newtp->snd_wnd;
578 
579 	if (newtp->rx_opt.tstamp_ok) {
580 		newtp->tcp_usec_ts = treq->req_usec_ts;
581 		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
582 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
583 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
584 	} else {
585 		newtp->tcp_usec_ts = 0;
586 		newtp->rx_opt.ts_recent_stamp = 0;
587 		newtp->tcp_header_len = sizeof(struct tcphdr);
588 	}
589 	if (req->num_timeout) {
590 		newtp->total_rto = req->num_timeout;
591 		newtp->undo_marker = treq->snt_isn;
592 		if (newtp->tcp_usec_ts) {
593 			newtp->retrans_stamp = treq->snt_synack;
594 			newtp->total_rto_time = (u32)(tcp_clock_us() -
595 						      newtp->retrans_stamp) / USEC_PER_MSEC;
596 		} else {
597 			newtp->retrans_stamp = div_u64(treq->snt_synack,
598 						       USEC_PER_SEC / TCP_TS_HZ);
599 			newtp->total_rto_time = tcp_clock_ms() -
600 						newtp->retrans_stamp;
601 		}
602 		newtp->total_rto_recoveries = 1;
603 	}
604 	newtp->tsoffset = treq->ts_off;
605 #ifdef CONFIG_TCP_MD5SIG
606 	newtp->md5sig_info = NULL;	/*XXX*/
607 #endif
608 #ifdef CONFIG_TCP_AO
609 	newtp->ao_info = NULL;
610 
611 	if (tcp_rsk_used_ao(req)) {
612 		struct tcp_ao_key *ao_key;
613 
614 		ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
615 		if (ao_key)
616 			newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
617 	}
618  #endif
619 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
620 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
621 	newtp->rx_opt.mss_clamp = req->mss;
622 	tcp_ecn_openreq_child(newtp, req);
623 	newtp->fastopen_req = NULL;
624 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
625 
626 	newtp->bpf_chg_cc_inprogress = 0;
627 	tcp_bpf_clone(sk, newsk);
628 
629 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
630 
631 	xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1);
632 
633 	return newsk;
634 }
635 EXPORT_SYMBOL(tcp_create_openreq_child);
636 
637 /*
638  * Process an incoming packet for SYN_RECV sockets represented as a
639  * request_sock. Normally sk is the listener socket but for TFO it
640  * points to the child socket.
641  *
642  * XXX (TFO) - The current impl contains a special check for ack
643  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
644  *
645  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
646  *
647  * Note: If @fastopen is true, this can be called from process context.
648  *       Otherwise, this is from BH context.
649  */
650 
651 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
652 			   struct request_sock *req,
653 			   bool fastopen, bool *req_stolen)
654 {
655 	struct tcp_options_received tmp_opt;
656 	struct sock *child;
657 	const struct tcphdr *th = tcp_hdr(skb);
658 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
659 	bool paws_reject = false;
660 	bool own_req;
661 
662 	tmp_opt.saw_tstamp = 0;
663 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
664 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
665 
666 		if (tmp_opt.saw_tstamp) {
667 			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
668 			if (tmp_opt.rcv_tsecr)
669 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
670 			/* We do not store true stamp, but it is not required,
671 			 * it can be estimated (approximately)
672 			 * from another data.
673 			 */
674 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
675 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
676 		}
677 	}
678 
679 	/* Check for pure retransmitted SYN. */
680 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
681 	    flg == TCP_FLAG_SYN &&
682 	    !paws_reject) {
683 		/*
684 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
685 		 * this case on figure 6 and figure 8, but formal
686 		 * protocol description says NOTHING.
687 		 * To be more exact, it says that we should send ACK,
688 		 * because this segment (at least, if it has no data)
689 		 * is out of window.
690 		 *
691 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
692 		 *  describe SYN-RECV state. All the description
693 		 *  is wrong, we cannot believe to it and should
694 		 *  rely only on common sense and implementation
695 		 *  experience.
696 		 *
697 		 * Enforce "SYN-ACK" according to figure 8, figure 6
698 		 * of RFC793, fixed by RFC1122.
699 		 *
700 		 * Note that even if there is new data in the SYN packet
701 		 * they will be thrown away too.
702 		 *
703 		 * Reset timer after retransmitting SYNACK, similar to
704 		 * the idea of fast retransmit in recovery.
705 		 */
706 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
707 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
708 					  &tcp_rsk(req)->last_oow_ack_time) &&
709 
710 		    !inet_rtx_syn_ack(sk, req)) {
711 			unsigned long expires = jiffies;
712 
713 			expires += reqsk_timeout(req, TCP_RTO_MAX);
714 			if (!fastopen)
715 				mod_timer_pending(&req->rsk_timer, expires);
716 			else
717 				req->rsk_timer.expires = expires;
718 		}
719 		return NULL;
720 	}
721 
722 	/* Further reproduces section "SEGMENT ARRIVES"
723 	   for state SYN-RECEIVED of RFC793.
724 	   It is broken, however, it does not work only
725 	   when SYNs are crossed.
726 
727 	   You would think that SYN crossing is impossible here, since
728 	   we should have a SYN_SENT socket (from connect()) on our end,
729 	   but this is not true if the crossed SYNs were sent to both
730 	   ends by a malicious third party.  We must defend against this,
731 	   and to do that we first verify the ACK (as per RFC793, page
732 	   36) and reset if it is invalid.  Is this a true full defense?
733 	   To convince ourselves, let us consider a way in which the ACK
734 	   test can still pass in this 'malicious crossed SYNs' case.
735 	   Malicious sender sends identical SYNs (and thus identical sequence
736 	   numbers) to both A and B:
737 
738 		A: gets SYN, seq=7
739 		B: gets SYN, seq=7
740 
741 	   By our good fortune, both A and B select the same initial
742 	   send sequence number of seven :-)
743 
744 		A: sends SYN|ACK, seq=7, ack_seq=8
745 		B: sends SYN|ACK, seq=7, ack_seq=8
746 
747 	   So we are now A eating this SYN|ACK, ACK test passes.  So
748 	   does sequence test, SYN is truncated, and thus we consider
749 	   it a bare ACK.
750 
751 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
752 	   bare ACK.  Otherwise, we create an established connection.  Both
753 	   ends (listening sockets) accept the new incoming connection and try
754 	   to talk to each other. 8-)
755 
756 	   Note: This case is both harmless, and rare.  Possibility is about the
757 	   same as us discovering intelligent life on another plant tomorrow.
758 
759 	   But generally, we should (RFC lies!) to accept ACK
760 	   from SYNACK both here and in tcp_rcv_state_process().
761 	   tcp_rcv_state_process() does not, hence, we do not too.
762 
763 	   Note that the case is absolutely generic:
764 	   we cannot optimize anything here without
765 	   violating protocol. All the checks must be made
766 	   before attempt to create socket.
767 	 */
768 
769 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
770 	 *                  and the incoming segment acknowledges something not yet
771 	 *                  sent (the segment carries an unacceptable ACK) ...
772 	 *                  a reset is sent."
773 	 *
774 	 * Invalid ACK: reset will be sent by listening socket.
775 	 * Note that the ACK validity check for a Fast Open socket is done
776 	 * elsewhere and is checked directly against the child socket rather
777 	 * than req because user data may have been sent out.
778 	 */
779 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
780 	    (TCP_SKB_CB(skb)->ack_seq !=
781 	     tcp_rsk(req)->snt_isn + 1))
782 		return sk;
783 
784 	/* Also, it would be not so bad idea to check rcv_tsecr, which
785 	 * is essentially ACK extension and too early or too late values
786 	 * should cause reset in unsynchronized states.
787 	 */
788 
789 	/* RFC793: "first check sequence number". */
790 
791 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq,
792 					  TCP_SKB_CB(skb)->end_seq,
793 					  tcp_rsk(req)->rcv_nxt,
794 					  tcp_rsk(req)->rcv_nxt +
795 					  tcp_synack_window(req))) {
796 		/* Out of window: send ACK and drop. */
797 		if (!(flg & TCP_FLAG_RST) &&
798 		    !tcp_oow_rate_limited(sock_net(sk), skb,
799 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
800 					  &tcp_rsk(req)->last_oow_ack_time))
801 			req->rsk_ops->send_ack(sk, skb, req);
802 		if (paws_reject)
803 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
804 		return NULL;
805 	}
806 
807 	/* In sequence, PAWS is OK. */
808 
809 	/* TODO: We probably should defer ts_recent change once
810 	 * we take ownership of @req.
811 	 */
812 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
813 		WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
814 
815 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
816 		/* Truncate SYN, it is out of window starting
817 		   at tcp_rsk(req)->rcv_isn + 1. */
818 		flg &= ~TCP_FLAG_SYN;
819 	}
820 
821 	/* RFC793: "second check the RST bit" and
822 	 *	   "fourth, check the SYN bit"
823 	 */
824 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
825 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
826 		goto embryonic_reset;
827 	}
828 
829 	/* ACK sequence verified above, just make sure ACK is
830 	 * set.  If ACK not set, just silently drop the packet.
831 	 *
832 	 * XXX (TFO) - if we ever allow "data after SYN", the
833 	 * following check needs to be removed.
834 	 */
835 	if (!(flg & TCP_FLAG_ACK))
836 		return NULL;
837 
838 	/* For Fast Open no more processing is needed (sk is the
839 	 * child socket).
840 	 */
841 	if (fastopen)
842 		return sk;
843 
844 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
845 	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
846 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
847 		inet_rsk(req)->acked = 1;
848 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
849 		return NULL;
850 	}
851 
852 	/* OK, ACK is valid, create big socket and
853 	 * feed this segment to it. It will repeat all
854 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
855 	 * ESTABLISHED STATE. If it will be dropped after
856 	 * socket is created, wait for troubles.
857 	 */
858 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
859 							 req, &own_req);
860 	if (!child)
861 		goto listen_overflow;
862 
863 	if (own_req && rsk_drop_req(req)) {
864 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
865 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
866 		return child;
867 	}
868 
869 	sock_rps_save_rxhash(child, skb);
870 	tcp_synack_rtt_meas(child, req);
871 	*req_stolen = !own_req;
872 	return inet_csk_complete_hashdance(sk, child, req, own_req);
873 
874 listen_overflow:
875 	if (sk != req->rsk_listener)
876 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
877 
878 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
879 		inet_rsk(req)->acked = 1;
880 		return NULL;
881 	}
882 
883 embryonic_reset:
884 	if (!(flg & TCP_FLAG_RST)) {
885 		/* Received a bad SYN pkt - for TFO We try not to reset
886 		 * the local connection unless it's really necessary to
887 		 * avoid becoming vulnerable to outside attack aiming at
888 		 * resetting legit local connections.
889 		 */
890 		req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
891 	} else if (fastopen) { /* received a valid RST pkt */
892 		reqsk_fastopen_remove(sk, req, true);
893 		tcp_reset(sk, skb);
894 	}
895 	if (!fastopen) {
896 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
897 
898 		if (unlinked)
899 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
900 		*req_stolen = !unlinked;
901 	}
902 	return NULL;
903 }
904 EXPORT_SYMBOL(tcp_check_req);
905 
906 /*
907  * Queue segment on the new socket if the new socket is active,
908  * otherwise we just shortcircuit this and continue with
909  * the new socket.
910  *
911  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
912  * when entering. But other states are possible due to a race condition
913  * where after __inet_lookup_established() fails but before the listener
914  * locked is obtained, other packets cause the same connection to
915  * be created.
916  */
917 
918 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
919 				       struct sk_buff *skb)
920 	__releases(&((child)->sk_lock.slock))
921 {
922 	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
923 	int state = child->sk_state;
924 
925 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
926 	sk_mark_napi_id_set(child, skb);
927 
928 	tcp_segs_in(tcp_sk(child), skb);
929 	if (!sock_owned_by_user(child)) {
930 		reason = tcp_rcv_state_process(child, skb);
931 		/* Wakeup parent, send SIGIO */
932 		if (state == TCP_SYN_RECV && child->sk_state != state)
933 			parent->sk_data_ready(parent);
934 	} else {
935 		/* Alas, it is possible again, because we do lookup
936 		 * in main socket hash table and lock on listening
937 		 * socket does not protect us more.
938 		 */
939 		__sk_add_backlog(child, skb);
940 	}
941 
942 	bh_unlock_sock(child);
943 	sock_put(child);
944 	return reason;
945 }
946 EXPORT_SYMBOL(tcp_child_process);
947