xref: /linux/net/ipv4/tcp_minisocks.c (revision 79997eda0d31bc68203c95ecb978773ee6ce7a1f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <net/tcp.h>
23 #include <net/xfrm.h>
24 #include <net/busy_poll.h>
25 
26 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
27 {
28 	if (seq == s_win)
29 		return true;
30 	if (after(end_seq, s_win) && before(seq, e_win))
31 		return true;
32 	return seq == e_win && seq == end_seq;
33 }
34 
35 static enum tcp_tw_status
36 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
37 				  const struct sk_buff *skb, int mib_idx)
38 {
39 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
40 
41 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
42 				  &tcptw->tw_last_oow_ack_time)) {
43 		/* Send ACK. Note, we do not put the bucket,
44 		 * it will be released by caller.
45 		 */
46 		return TCP_TW_ACK;
47 	}
48 
49 	/* We are rate-limiting, so just release the tw sock and drop skb. */
50 	inet_twsk_put(tw);
51 	return TCP_TW_SUCCESS;
52 }
53 
54 static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq)
55 {
56 #ifdef CONFIG_TCP_AO
57 	struct tcp_ao_info *ao;
58 
59 	ao = rcu_dereference(tcptw->ao_info);
60 	if (unlikely(ao && seq < tcptw->tw_rcv_nxt))
61 		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
62 #endif
63 	tcptw->tw_rcv_nxt = seq;
64 }
65 
66 /*
67  * * Main purpose of TIME-WAIT state is to close connection gracefully,
68  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
69  *   (and, probably, tail of data) and one or more our ACKs are lost.
70  * * What is TIME-WAIT timeout? It is associated with maximal packet
71  *   lifetime in the internet, which results in wrong conclusion, that
72  *   it is set to catch "old duplicate segments" wandering out of their path.
73  *   It is not quite correct. This timeout is calculated so that it exceeds
74  *   maximal retransmission timeout enough to allow to lose one (or more)
75  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
76  * * When TIME-WAIT socket receives RST, it means that another end
77  *   finally closed and we are allowed to kill TIME-WAIT too.
78  * * Second purpose of TIME-WAIT is catching old duplicate segments.
79  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
80  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
81  * * If we invented some more clever way to catch duplicates
82  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
83  *
84  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
85  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
86  * from the very beginning.
87  *
88  * NOTE. With recycling (and later with fin-wait-2) TW bucket
89  * is _not_ stateless. It means, that strictly speaking we must
90  * spinlock it. I do not want! Well, probability of misbehaviour
91  * is ridiculously low and, seems, we could use some mb() tricks
92  * to avoid misread sequence numbers, states etc.  --ANK
93  *
94  * We don't need to initialize tmp_out.sack_ok as we don't use the results
95  */
96 enum tcp_tw_status
97 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
98 			   const struct tcphdr *th)
99 {
100 	struct tcp_options_received tmp_opt;
101 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102 	bool paws_reject = false;
103 
104 	tmp_opt.saw_tstamp = 0;
105 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
107 
108 		if (tmp_opt.saw_tstamp) {
109 			if (tmp_opt.rcv_tsecr)
110 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
111 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
112 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
113 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
114 		}
115 	}
116 
117 	if (tw->tw_substate == TCP_FIN_WAIT2) {
118 		/* Just repeat all the checks of tcp_rcv_state_process() */
119 
120 		/* Out of window, send ACK */
121 		if (paws_reject ||
122 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
123 				   tcptw->tw_rcv_nxt,
124 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
125 			return tcp_timewait_check_oow_rate_limit(
126 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
127 
128 		if (th->rst)
129 			goto kill;
130 
131 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
132 			return TCP_TW_RST;
133 
134 		/* Dup ACK? */
135 		if (!th->ack ||
136 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
137 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
138 			inet_twsk_put(tw);
139 			return TCP_TW_SUCCESS;
140 		}
141 
142 		/* New data or FIN. If new data arrive after half-duplex close,
143 		 * reset.
144 		 */
145 		if (!th->fin ||
146 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
147 			return TCP_TW_RST;
148 
149 		/* FIN arrived, enter true time-wait state. */
150 		tw->tw_substate	  = TCP_TIME_WAIT;
151 		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq);
152 
153 		if (tmp_opt.saw_tstamp) {
154 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
155 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
156 		}
157 
158 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
159 		return TCP_TW_ACK;
160 	}
161 
162 	/*
163 	 *	Now real TIME-WAIT state.
164 	 *
165 	 *	RFC 1122:
166 	 *	"When a connection is [...] on TIME-WAIT state [...]
167 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
168 	 *	reopen the connection directly, if it:
169 	 *
170 	 *	(1)  assigns its initial sequence number for the new
171 	 *	connection to be larger than the largest sequence
172 	 *	number it used on the previous connection incarnation,
173 	 *	and
174 	 *
175 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
176 	 *	to be an old duplicate".
177 	 */
178 
179 	if (!paws_reject &&
180 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
181 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
182 		/* In window segment, it may be only reset or bare ack. */
183 
184 		if (th->rst) {
185 			/* This is TIME_WAIT assassination, in two flavors.
186 			 * Oh well... nobody has a sufficient solution to this
187 			 * protocol bug yet.
188 			 */
189 			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
190 kill:
191 				inet_twsk_deschedule_put(tw);
192 				return TCP_TW_SUCCESS;
193 			}
194 		} else {
195 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
196 		}
197 
198 		if (tmp_opt.saw_tstamp) {
199 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
200 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
201 		}
202 
203 		inet_twsk_put(tw);
204 		return TCP_TW_SUCCESS;
205 	}
206 
207 	/* Out of window segment.
208 
209 	   All the segments are ACKed immediately.
210 
211 	   The only exception is new SYN. We accept it, if it is
212 	   not old duplicate and we are not in danger to be killed
213 	   by delayed old duplicates. RFC check is that it has
214 	   newer sequence number works at rates <40Mbit/sec.
215 	   However, if paws works, it is reliable AND even more,
216 	   we even may relax silly seq space cutoff.
217 
218 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
219 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
220 	   we must return socket to time-wait state. It is not good,
221 	   but not fatal yet.
222 	 */
223 
224 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
225 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
226 	     (tmp_opt.saw_tstamp &&
227 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
228 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
229 		if (isn == 0)
230 			isn++;
231 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
232 		return TCP_TW_SYN;
233 	}
234 
235 	if (paws_reject)
236 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
237 
238 	if (!th->rst) {
239 		/* In this case we must reset the TIMEWAIT timer.
240 		 *
241 		 * If it is ACKless SYN it may be both old duplicate
242 		 * and new good SYN with random sequence number <rcv_nxt.
243 		 * Do not reschedule in the last case.
244 		 */
245 		if (paws_reject || th->ack)
246 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
247 
248 		return tcp_timewait_check_oow_rate_limit(
249 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
250 	}
251 	inet_twsk_put(tw);
252 	return TCP_TW_SUCCESS;
253 }
254 EXPORT_SYMBOL(tcp_timewait_state_process);
255 
256 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
257 {
258 #ifdef CONFIG_TCP_MD5SIG
259 	const struct tcp_sock *tp = tcp_sk(sk);
260 	struct tcp_md5sig_key *key;
261 
262 	/*
263 	 * The timewait bucket does not have the key DB from the
264 	 * sock structure. We just make a quick copy of the
265 	 * md5 key being used (if indeed we are using one)
266 	 * so the timewait ack generating code has the key.
267 	 */
268 	tcptw->tw_md5_key = NULL;
269 	if (!static_branch_unlikely(&tcp_md5_needed.key))
270 		return;
271 
272 	key = tp->af_specific->md5_lookup(sk, sk);
273 	if (key) {
274 		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
275 		if (!tcptw->tw_md5_key)
276 			return;
277 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
278 			goto out_free;
279 		tcp_md5_add_sigpool();
280 	}
281 	return;
282 out_free:
283 	WARN_ON_ONCE(1);
284 	kfree(tcptw->tw_md5_key);
285 	tcptw->tw_md5_key = NULL;
286 #endif
287 }
288 
289 /*
290  * Move a socket to time-wait or dead fin-wait-2 state.
291  */
292 void tcp_time_wait(struct sock *sk, int state, int timeo)
293 {
294 	const struct inet_connection_sock *icsk = inet_csk(sk);
295 	struct tcp_sock *tp = tcp_sk(sk);
296 	struct net *net = sock_net(sk);
297 	struct inet_timewait_sock *tw;
298 
299 	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
300 
301 	if (tw) {
302 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
303 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
304 
305 		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
306 		tw->tw_mark		= sk->sk_mark;
307 		tw->tw_priority		= READ_ONCE(sk->sk_priority);
308 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
309 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
310 		tcptw->tw_snd_nxt	= tp->snd_nxt;
311 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
312 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
313 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
314 		tcptw->tw_ts_offset	= tp->tsoffset;
315 		tw->tw_usec_ts		= tp->tcp_usec_ts;
316 		tcptw->tw_last_oow_ack_time = 0;
317 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
318 		tw->tw_txhash		= sk->sk_txhash;
319 #if IS_ENABLED(CONFIG_IPV6)
320 		if (tw->tw_family == PF_INET6) {
321 			struct ipv6_pinfo *np = inet6_sk(sk);
322 
323 			tw->tw_v6_daddr = sk->sk_v6_daddr;
324 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
325 			tw->tw_tclass = np->tclass;
326 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
327 			tw->tw_ipv6only = sk->sk_ipv6only;
328 		}
329 #endif
330 
331 		tcp_time_wait_init(sk, tcptw);
332 		tcp_ao_time_wait(tcptw, tp);
333 
334 		/* Get the TIME_WAIT timeout firing. */
335 		if (timeo < rto)
336 			timeo = rto;
337 
338 		if (state == TCP_TIME_WAIT)
339 			timeo = TCP_TIMEWAIT_LEN;
340 
341 		/* tw_timer is pinned, so we need to make sure BH are disabled
342 		 * in following section, otherwise timer handler could run before
343 		 * we complete the initialization.
344 		 */
345 		local_bh_disable();
346 		inet_twsk_schedule(tw, timeo);
347 		/* Linkage updates.
348 		 * Note that access to tw after this point is illegal.
349 		 */
350 		inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
351 		local_bh_enable();
352 	} else {
353 		/* Sorry, if we're out of memory, just CLOSE this
354 		 * socket up.  We've got bigger problems than
355 		 * non-graceful socket closings.
356 		 */
357 		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
358 	}
359 
360 	tcp_update_metrics(sk);
361 	tcp_done(sk);
362 }
363 EXPORT_SYMBOL(tcp_time_wait);
364 
365 #ifdef CONFIG_TCP_MD5SIG
366 static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
367 {
368 	struct tcp_md5sig_key *key;
369 
370 	key = container_of(head, struct tcp_md5sig_key, rcu);
371 	kfree(key);
372 	static_branch_slow_dec_deferred(&tcp_md5_needed);
373 	tcp_md5_release_sigpool();
374 }
375 #endif
376 
377 void tcp_twsk_destructor(struct sock *sk)
378 {
379 #ifdef CONFIG_TCP_MD5SIG
380 	if (static_branch_unlikely(&tcp_md5_needed.key)) {
381 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
382 
383 		if (twsk->tw_md5_key)
384 			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
385 	}
386 #endif
387 	tcp_ao_destroy_sock(sk, true);
388 }
389 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
390 
391 void tcp_twsk_purge(struct list_head *net_exit_list, int family)
392 {
393 	bool purged_once = false;
394 	struct net *net;
395 
396 	list_for_each_entry(net, net_exit_list, exit_list) {
397 		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
398 			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
399 			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family);
400 		} else if (!purged_once) {
401 			/* The last refcount is decremented in tcp_sk_exit_batch() */
402 			if (refcount_read(&net->ipv4.tcp_death_row.tw_refcount) == 1)
403 				continue;
404 
405 			inet_twsk_purge(&tcp_hashinfo, family);
406 			purged_once = true;
407 		}
408 	}
409 }
410 EXPORT_SYMBOL_GPL(tcp_twsk_purge);
411 
412 /* Warning : This function is called without sk_listener being locked.
413  * Be sure to read socket fields once, as their value could change under us.
414  */
415 void tcp_openreq_init_rwin(struct request_sock *req,
416 			   const struct sock *sk_listener,
417 			   const struct dst_entry *dst)
418 {
419 	struct inet_request_sock *ireq = inet_rsk(req);
420 	const struct tcp_sock *tp = tcp_sk(sk_listener);
421 	int full_space = tcp_full_space(sk_listener);
422 	u32 window_clamp;
423 	__u8 rcv_wscale;
424 	u32 rcv_wnd;
425 	int mss;
426 
427 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
428 	window_clamp = READ_ONCE(tp->window_clamp);
429 	/* Set this up on the first call only */
430 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
431 
432 	/* limit the window selection if the user enforce a smaller rx buffer */
433 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
434 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
435 		req->rsk_window_clamp = full_space;
436 
437 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
438 	if (rcv_wnd == 0)
439 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
440 	else if (full_space < rcv_wnd * mss)
441 		full_space = rcv_wnd * mss;
442 
443 	/* tcp_full_space because it is guaranteed to be the first packet */
444 	tcp_select_initial_window(sk_listener, full_space,
445 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
446 		&req->rsk_rcv_wnd,
447 		&req->rsk_window_clamp,
448 		ireq->wscale_ok,
449 		&rcv_wscale,
450 		rcv_wnd);
451 	ireq->rcv_wscale = rcv_wscale;
452 }
453 EXPORT_SYMBOL(tcp_openreq_init_rwin);
454 
455 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
456 				  const struct request_sock *req)
457 {
458 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
459 }
460 
461 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
462 {
463 	struct inet_connection_sock *icsk = inet_csk(sk);
464 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
465 	bool ca_got_dst = false;
466 
467 	if (ca_key != TCP_CA_UNSPEC) {
468 		const struct tcp_congestion_ops *ca;
469 
470 		rcu_read_lock();
471 		ca = tcp_ca_find_key(ca_key);
472 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
473 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
474 			icsk->icsk_ca_ops = ca;
475 			ca_got_dst = true;
476 		}
477 		rcu_read_unlock();
478 	}
479 
480 	/* If no valid choice made yet, assign current system default ca. */
481 	if (!ca_got_dst &&
482 	    (!icsk->icsk_ca_setsockopt ||
483 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
484 		tcp_assign_congestion_control(sk);
485 
486 	tcp_set_ca_state(sk, TCP_CA_Open);
487 }
488 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
489 
490 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
491 				    struct request_sock *req,
492 				    struct tcp_sock *newtp)
493 {
494 #if IS_ENABLED(CONFIG_SMC)
495 	struct inet_request_sock *ireq;
496 
497 	if (static_branch_unlikely(&tcp_have_smc)) {
498 		ireq = inet_rsk(req);
499 		if (oldtp->syn_smc && !ireq->smc_ok)
500 			newtp->syn_smc = 0;
501 	}
502 #endif
503 }
504 
505 /* This is not only more efficient than what we used to do, it eliminates
506  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
507  *
508  * Actually, we could lots of memory writes here. tp of listening
509  * socket contains all necessary default parameters.
510  */
511 struct sock *tcp_create_openreq_child(const struct sock *sk,
512 				      struct request_sock *req,
513 				      struct sk_buff *skb)
514 {
515 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
516 	const struct inet_request_sock *ireq = inet_rsk(req);
517 	struct tcp_request_sock *treq = tcp_rsk(req);
518 	struct inet_connection_sock *newicsk;
519 	const struct tcp_sock *oldtp;
520 	struct tcp_sock *newtp;
521 	u32 seq;
522 #ifdef CONFIG_TCP_AO
523 	struct tcp_ao_key *ao_key;
524 #endif
525 
526 	if (!newsk)
527 		return NULL;
528 
529 	newicsk = inet_csk(newsk);
530 	newtp = tcp_sk(newsk);
531 	oldtp = tcp_sk(sk);
532 
533 	smc_check_reset_syn_req(oldtp, req, newtp);
534 
535 	/* Now setup tcp_sock */
536 	newtp->pred_flags = 0;
537 
538 	seq = treq->rcv_isn + 1;
539 	newtp->rcv_wup = seq;
540 	WRITE_ONCE(newtp->copied_seq, seq);
541 	WRITE_ONCE(newtp->rcv_nxt, seq);
542 	newtp->segs_in = 1;
543 
544 	seq = treq->snt_isn + 1;
545 	newtp->snd_sml = newtp->snd_una = seq;
546 	WRITE_ONCE(newtp->snd_nxt, seq);
547 	newtp->snd_up = seq;
548 
549 	INIT_LIST_HEAD(&newtp->tsq_node);
550 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
551 
552 	tcp_init_wl(newtp, treq->rcv_isn);
553 
554 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
555 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
556 
557 	newtp->lsndtime = tcp_jiffies32;
558 	newsk->sk_txhash = READ_ONCE(treq->txhash);
559 	newtp->total_retrans = req->num_retrans;
560 
561 	tcp_init_xmit_timers(newsk);
562 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
563 
564 	if (sock_flag(newsk, SOCK_KEEPOPEN))
565 		inet_csk_reset_keepalive_timer(newsk,
566 					       keepalive_time_when(newtp));
567 
568 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
569 	newtp->rx_opt.sack_ok = ireq->sack_ok;
570 	newtp->window_clamp = req->rsk_window_clamp;
571 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
572 	newtp->rcv_wnd = req->rsk_rcv_wnd;
573 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
574 	if (newtp->rx_opt.wscale_ok) {
575 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
576 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
577 	} else {
578 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
579 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
580 	}
581 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
582 	newtp->max_window = newtp->snd_wnd;
583 
584 	if (newtp->rx_opt.tstamp_ok) {
585 		newtp->tcp_usec_ts = treq->req_usec_ts;
586 		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
587 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
588 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
589 	} else {
590 		newtp->tcp_usec_ts = 0;
591 		newtp->rx_opt.ts_recent_stamp = 0;
592 		newtp->tcp_header_len = sizeof(struct tcphdr);
593 	}
594 	if (req->num_timeout) {
595 		newtp->total_rto = req->num_timeout;
596 		newtp->undo_marker = treq->snt_isn;
597 		if (newtp->tcp_usec_ts) {
598 			newtp->retrans_stamp = treq->snt_synack;
599 			newtp->total_rto_time = (u32)(tcp_clock_us() -
600 						      newtp->retrans_stamp) / USEC_PER_MSEC;
601 		} else {
602 			newtp->retrans_stamp = div_u64(treq->snt_synack,
603 						       USEC_PER_SEC / TCP_TS_HZ);
604 			newtp->total_rto_time = tcp_clock_ms() -
605 						newtp->retrans_stamp;
606 		}
607 		newtp->total_rto_recoveries = 1;
608 	}
609 	newtp->tsoffset = treq->ts_off;
610 #ifdef CONFIG_TCP_MD5SIG
611 	newtp->md5sig_info = NULL;	/*XXX*/
612 #endif
613 #ifdef CONFIG_TCP_AO
614 	newtp->ao_info = NULL;
615 	ao_key = treq->af_specific->ao_lookup(sk, req,
616 				tcp_rsk(req)->ao_keyid, -1);
617 	if (ao_key)
618 		newtp->tcp_header_len += tcp_ao_len(ao_key);
619  #endif
620 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
621 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
622 	newtp->rx_opt.mss_clamp = req->mss;
623 	tcp_ecn_openreq_child(newtp, req);
624 	newtp->fastopen_req = NULL;
625 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
626 
627 	newtp->bpf_chg_cc_inprogress = 0;
628 	tcp_bpf_clone(sk, newsk);
629 
630 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
631 
632 	return newsk;
633 }
634 EXPORT_SYMBOL(tcp_create_openreq_child);
635 
636 /*
637  * Process an incoming packet for SYN_RECV sockets represented as a
638  * request_sock. Normally sk is the listener socket but for TFO it
639  * points to the child socket.
640  *
641  * XXX (TFO) - The current impl contains a special check for ack
642  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
643  *
644  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
645  *
646  * Note: If @fastopen is true, this can be called from process context.
647  *       Otherwise, this is from BH context.
648  */
649 
650 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
651 			   struct request_sock *req,
652 			   bool fastopen, bool *req_stolen)
653 {
654 	struct tcp_options_received tmp_opt;
655 	struct sock *child;
656 	const struct tcphdr *th = tcp_hdr(skb);
657 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
658 	bool paws_reject = false;
659 	bool own_req;
660 
661 	tmp_opt.saw_tstamp = 0;
662 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
663 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
664 
665 		if (tmp_opt.saw_tstamp) {
666 			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
667 			if (tmp_opt.rcv_tsecr)
668 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
669 			/* We do not store true stamp, but it is not required,
670 			 * it can be estimated (approximately)
671 			 * from another data.
672 			 */
673 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
674 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
675 		}
676 	}
677 
678 	/* Check for pure retransmitted SYN. */
679 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
680 	    flg == TCP_FLAG_SYN &&
681 	    !paws_reject) {
682 		/*
683 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
684 		 * this case on figure 6 and figure 8, but formal
685 		 * protocol description says NOTHING.
686 		 * To be more exact, it says that we should send ACK,
687 		 * because this segment (at least, if it has no data)
688 		 * is out of window.
689 		 *
690 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
691 		 *  describe SYN-RECV state. All the description
692 		 *  is wrong, we cannot believe to it and should
693 		 *  rely only on common sense and implementation
694 		 *  experience.
695 		 *
696 		 * Enforce "SYN-ACK" according to figure 8, figure 6
697 		 * of RFC793, fixed by RFC1122.
698 		 *
699 		 * Note that even if there is new data in the SYN packet
700 		 * they will be thrown away too.
701 		 *
702 		 * Reset timer after retransmitting SYNACK, similar to
703 		 * the idea of fast retransmit in recovery.
704 		 */
705 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
706 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
707 					  &tcp_rsk(req)->last_oow_ack_time) &&
708 
709 		    !inet_rtx_syn_ack(sk, req)) {
710 			unsigned long expires = jiffies;
711 
712 			expires += reqsk_timeout(req, TCP_RTO_MAX);
713 			if (!fastopen)
714 				mod_timer_pending(&req->rsk_timer, expires);
715 			else
716 				req->rsk_timer.expires = expires;
717 		}
718 		return NULL;
719 	}
720 
721 	/* Further reproduces section "SEGMENT ARRIVES"
722 	   for state SYN-RECEIVED of RFC793.
723 	   It is broken, however, it does not work only
724 	   when SYNs are crossed.
725 
726 	   You would think that SYN crossing is impossible here, since
727 	   we should have a SYN_SENT socket (from connect()) on our end,
728 	   but this is not true if the crossed SYNs were sent to both
729 	   ends by a malicious third party.  We must defend against this,
730 	   and to do that we first verify the ACK (as per RFC793, page
731 	   36) and reset if it is invalid.  Is this a true full defense?
732 	   To convince ourselves, let us consider a way in which the ACK
733 	   test can still pass in this 'malicious crossed SYNs' case.
734 	   Malicious sender sends identical SYNs (and thus identical sequence
735 	   numbers) to both A and B:
736 
737 		A: gets SYN, seq=7
738 		B: gets SYN, seq=7
739 
740 	   By our good fortune, both A and B select the same initial
741 	   send sequence number of seven :-)
742 
743 		A: sends SYN|ACK, seq=7, ack_seq=8
744 		B: sends SYN|ACK, seq=7, ack_seq=8
745 
746 	   So we are now A eating this SYN|ACK, ACK test passes.  So
747 	   does sequence test, SYN is truncated, and thus we consider
748 	   it a bare ACK.
749 
750 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
751 	   bare ACK.  Otherwise, we create an established connection.  Both
752 	   ends (listening sockets) accept the new incoming connection and try
753 	   to talk to each other. 8-)
754 
755 	   Note: This case is both harmless, and rare.  Possibility is about the
756 	   same as us discovering intelligent life on another plant tomorrow.
757 
758 	   But generally, we should (RFC lies!) to accept ACK
759 	   from SYNACK both here and in tcp_rcv_state_process().
760 	   tcp_rcv_state_process() does not, hence, we do not too.
761 
762 	   Note that the case is absolutely generic:
763 	   we cannot optimize anything here without
764 	   violating protocol. All the checks must be made
765 	   before attempt to create socket.
766 	 */
767 
768 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
769 	 *                  and the incoming segment acknowledges something not yet
770 	 *                  sent (the segment carries an unacceptable ACK) ...
771 	 *                  a reset is sent."
772 	 *
773 	 * Invalid ACK: reset will be sent by listening socket.
774 	 * Note that the ACK validity check for a Fast Open socket is done
775 	 * elsewhere and is checked directly against the child socket rather
776 	 * than req because user data may have been sent out.
777 	 */
778 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
779 	    (TCP_SKB_CB(skb)->ack_seq !=
780 	     tcp_rsk(req)->snt_isn + 1))
781 		return sk;
782 
783 	/* Also, it would be not so bad idea to check rcv_tsecr, which
784 	 * is essentially ACK extension and too early or too late values
785 	 * should cause reset in unsynchronized states.
786 	 */
787 
788 	/* RFC793: "first check sequence number". */
789 
790 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
791 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
792 		/* Out of window: send ACK and drop. */
793 		if (!(flg & TCP_FLAG_RST) &&
794 		    !tcp_oow_rate_limited(sock_net(sk), skb,
795 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
796 					  &tcp_rsk(req)->last_oow_ack_time))
797 			req->rsk_ops->send_ack(sk, skb, req);
798 		if (paws_reject)
799 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
800 		return NULL;
801 	}
802 
803 	/* In sequence, PAWS is OK. */
804 
805 	/* TODO: We probably should defer ts_recent change once
806 	 * we take ownership of @req.
807 	 */
808 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
809 		WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
810 
811 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
812 		/* Truncate SYN, it is out of window starting
813 		   at tcp_rsk(req)->rcv_isn + 1. */
814 		flg &= ~TCP_FLAG_SYN;
815 	}
816 
817 	/* RFC793: "second check the RST bit" and
818 	 *	   "fourth, check the SYN bit"
819 	 */
820 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
821 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
822 		goto embryonic_reset;
823 	}
824 
825 	/* ACK sequence verified above, just make sure ACK is
826 	 * set.  If ACK not set, just silently drop the packet.
827 	 *
828 	 * XXX (TFO) - if we ever allow "data after SYN", the
829 	 * following check needs to be removed.
830 	 */
831 	if (!(flg & TCP_FLAG_ACK))
832 		return NULL;
833 
834 	/* For Fast Open no more processing is needed (sk is the
835 	 * child socket).
836 	 */
837 	if (fastopen)
838 		return sk;
839 
840 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
841 	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
842 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
843 		inet_rsk(req)->acked = 1;
844 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
845 		return NULL;
846 	}
847 
848 	/* OK, ACK is valid, create big socket and
849 	 * feed this segment to it. It will repeat all
850 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
851 	 * ESTABLISHED STATE. If it will be dropped after
852 	 * socket is created, wait for troubles.
853 	 */
854 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
855 							 req, &own_req);
856 	if (!child)
857 		goto listen_overflow;
858 
859 	if (own_req && rsk_drop_req(req)) {
860 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
861 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
862 		return child;
863 	}
864 
865 	sock_rps_save_rxhash(child, skb);
866 	tcp_synack_rtt_meas(child, req);
867 	*req_stolen = !own_req;
868 	return inet_csk_complete_hashdance(sk, child, req, own_req);
869 
870 listen_overflow:
871 	if (sk != req->rsk_listener)
872 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
873 
874 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
875 		inet_rsk(req)->acked = 1;
876 		return NULL;
877 	}
878 
879 embryonic_reset:
880 	if (!(flg & TCP_FLAG_RST)) {
881 		/* Received a bad SYN pkt - for TFO We try not to reset
882 		 * the local connection unless it's really necessary to
883 		 * avoid becoming vulnerable to outside attack aiming at
884 		 * resetting legit local connections.
885 		 */
886 		req->rsk_ops->send_reset(sk, skb);
887 	} else if (fastopen) { /* received a valid RST pkt */
888 		reqsk_fastopen_remove(sk, req, true);
889 		tcp_reset(sk, skb);
890 	}
891 	if (!fastopen) {
892 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
893 
894 		if (unlinked)
895 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
896 		*req_stolen = !unlinked;
897 	}
898 	return NULL;
899 }
900 EXPORT_SYMBOL(tcp_check_req);
901 
902 /*
903  * Queue segment on the new socket if the new socket is active,
904  * otherwise we just shortcircuit this and continue with
905  * the new socket.
906  *
907  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
908  * when entering. But other states are possible due to a race condition
909  * where after __inet_lookup_established() fails but before the listener
910  * locked is obtained, other packets cause the same connection to
911  * be created.
912  */
913 
914 int tcp_child_process(struct sock *parent, struct sock *child,
915 		      struct sk_buff *skb)
916 	__releases(&((child)->sk_lock.slock))
917 {
918 	int ret = 0;
919 	int state = child->sk_state;
920 
921 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
922 	sk_mark_napi_id_set(child, skb);
923 
924 	tcp_segs_in(tcp_sk(child), skb);
925 	if (!sock_owned_by_user(child)) {
926 		ret = tcp_rcv_state_process(child, skb);
927 		/* Wakeup parent, send SIGIO */
928 		if (state == TCP_SYN_RECV && child->sk_state != state)
929 			parent->sk_data_ready(parent);
930 	} else {
931 		/* Alas, it is possible again, because we do lookup
932 		 * in main socket hash table and lock on listening
933 		 * socket does not protect us more.
934 		 */
935 		__sk_add_backlog(child, skb);
936 	}
937 
938 	bh_unlock_sock(child);
939 	sock_put(child);
940 	return ret;
941 }
942 EXPORT_SYMBOL(tcp_child_process);
943