xref: /linux/net/ipv4/tcp_minisocks.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <net/tcp.h>
23 #include <net/xfrm.h>
24 #include <net/busy_poll.h>
25 #include <net/rstreason.h>
26 
27 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
28 {
29 	if (seq == s_win)
30 		return true;
31 	if (after(end_seq, s_win) && before(seq, e_win))
32 		return true;
33 	return seq == e_win && seq == end_seq;
34 }
35 
36 static enum tcp_tw_status
37 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
38 				  const struct sk_buff *skb, int mib_idx)
39 {
40 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
41 
42 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
43 				  &tcptw->tw_last_oow_ack_time)) {
44 		/* Send ACK. Note, we do not put the bucket,
45 		 * it will be released by caller.
46 		 */
47 		return TCP_TW_ACK;
48 	}
49 
50 	/* We are rate-limiting, so just release the tw sock and drop skb. */
51 	inet_twsk_put(tw);
52 	return TCP_TW_SUCCESS;
53 }
54 
55 static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq,
56 				u32 rcv_nxt)
57 {
58 #ifdef CONFIG_TCP_AO
59 	struct tcp_ao_info *ao;
60 
61 	ao = rcu_dereference(tcptw->ao_info);
62 	if (unlikely(ao && seq < rcv_nxt))
63 		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
64 #endif
65 	WRITE_ONCE(tcptw->tw_rcv_nxt, seq);
66 }
67 
68 /*
69  * * Main purpose of TIME-WAIT state is to close connection gracefully,
70  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
71  *   (and, probably, tail of data) and one or more our ACKs are lost.
72  * * What is TIME-WAIT timeout? It is associated with maximal packet
73  *   lifetime in the internet, which results in wrong conclusion, that
74  *   it is set to catch "old duplicate segments" wandering out of their path.
75  *   It is not quite correct. This timeout is calculated so that it exceeds
76  *   maximal retransmission timeout enough to allow to lose one (or more)
77  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
78  * * When TIME-WAIT socket receives RST, it means that another end
79  *   finally closed and we are allowed to kill TIME-WAIT too.
80  * * Second purpose of TIME-WAIT is catching old duplicate segments.
81  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
82  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
83  * * If we invented some more clever way to catch duplicates
84  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
85  *
86  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
87  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
88  * from the very beginning.
89  *
90  * NOTE. With recycling (and later with fin-wait-2) TW bucket
91  * is _not_ stateless. It means, that strictly speaking we must
92  * spinlock it. I do not want! Well, probability of misbehaviour
93  * is ridiculously low and, seems, we could use some mb() tricks
94  * to avoid misread sequence numbers, states etc.  --ANK
95  *
96  * We don't need to initialize tmp_out.sack_ok as we don't use the results
97  */
98 enum tcp_tw_status
99 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
100 			   const struct tcphdr *th, u32 *tw_isn)
101 {
102 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
103 	u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt);
104 	struct tcp_options_received tmp_opt;
105 	bool paws_reject = false;
106 	int ts_recent_stamp;
107 
108 	tmp_opt.saw_tstamp = 0;
109 	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
110 	if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
111 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
112 
113 		if (tmp_opt.saw_tstamp) {
114 			if (tmp_opt.rcv_tsecr)
115 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
116 			tmp_opt.ts_recent	= READ_ONCE(tcptw->tw_ts_recent);
117 			tmp_opt.ts_recent_stamp	= ts_recent_stamp;
118 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
119 		}
120 	}
121 
122 	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) {
123 		/* Just repeat all the checks of tcp_rcv_state_process() */
124 
125 		/* Out of window, send ACK */
126 		if (paws_reject ||
127 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
128 				   rcv_nxt,
129 				   rcv_nxt + tcptw->tw_rcv_wnd))
130 			return tcp_timewait_check_oow_rate_limit(
131 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
132 
133 		if (th->rst)
134 			goto kill;
135 
136 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt))
137 			return TCP_TW_RST;
138 
139 		/* Dup ACK? */
140 		if (!th->ack ||
141 		    !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) ||
142 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
143 			inet_twsk_put(tw);
144 			return TCP_TW_SUCCESS;
145 		}
146 
147 		/* New data or FIN. If new data arrive after half-duplex close,
148 		 * reset.
149 		 */
150 		if (!th->fin ||
151 		    TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1)
152 			return TCP_TW_RST;
153 
154 		/* FIN arrived, enter true time-wait state. */
155 		WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT);
156 		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq,
157 				    rcv_nxt);
158 
159 		if (tmp_opt.saw_tstamp) {
160 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
161 				  ktime_get_seconds());
162 			WRITE_ONCE(tcptw->tw_ts_recent,
163 				   tmp_opt.rcv_tsval);
164 		}
165 
166 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
167 		return TCP_TW_ACK;
168 	}
169 
170 	/*
171 	 *	Now real TIME-WAIT state.
172 	 *
173 	 *	RFC 1122:
174 	 *	"When a connection is [...] on TIME-WAIT state [...]
175 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
176 	 *	reopen the connection directly, if it:
177 	 *
178 	 *	(1)  assigns its initial sequence number for the new
179 	 *	connection to be larger than the largest sequence
180 	 *	number it used on the previous connection incarnation,
181 	 *	and
182 	 *
183 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
184 	 *	to be an old duplicate".
185 	 */
186 
187 	if (!paws_reject &&
188 	    (TCP_SKB_CB(skb)->seq == rcv_nxt &&
189 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
190 		/* In window segment, it may be only reset or bare ack. */
191 
192 		if (th->rst) {
193 			/* This is TIME_WAIT assassination, in two flavors.
194 			 * Oh well... nobody has a sufficient solution to this
195 			 * protocol bug yet.
196 			 */
197 			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
198 kill:
199 				inet_twsk_deschedule_put(tw);
200 				return TCP_TW_SUCCESS;
201 			}
202 		} else {
203 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
204 		}
205 
206 		if (tmp_opt.saw_tstamp) {
207 			WRITE_ONCE(tcptw->tw_ts_recent,
208 				   tmp_opt.rcv_tsval);
209 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
210 				   ktime_get_seconds());
211 		}
212 
213 		inet_twsk_put(tw);
214 		return TCP_TW_SUCCESS;
215 	}
216 
217 	/* Out of window segment.
218 
219 	   All the segments are ACKed immediately.
220 
221 	   The only exception is new SYN. We accept it, if it is
222 	   not old duplicate and we are not in danger to be killed
223 	   by delayed old duplicates. RFC check is that it has
224 	   newer sequence number works at rates <40Mbit/sec.
225 	   However, if paws works, it is reliable AND even more,
226 	   we even may relax silly seq space cutoff.
227 
228 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
229 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
230 	   we must return socket to time-wait state. It is not good,
231 	   but not fatal yet.
232 	 */
233 
234 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
235 	    (after(TCP_SKB_CB(skb)->seq, rcv_nxt) ||
236 	     (tmp_opt.saw_tstamp &&
237 	      (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
238 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
239 		if (isn == 0)
240 			isn++;
241 		*tw_isn = isn;
242 		return TCP_TW_SYN;
243 	}
244 
245 	if (paws_reject)
246 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
247 
248 	if (!th->rst) {
249 		/* In this case we must reset the TIMEWAIT timer.
250 		 *
251 		 * If it is ACKless SYN it may be both old duplicate
252 		 * and new good SYN with random sequence number <rcv_nxt.
253 		 * Do not reschedule in the last case.
254 		 */
255 		if (paws_reject || th->ack)
256 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
257 
258 		return tcp_timewait_check_oow_rate_limit(
259 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
260 	}
261 	inet_twsk_put(tw);
262 	return TCP_TW_SUCCESS;
263 }
264 EXPORT_SYMBOL(tcp_timewait_state_process);
265 
266 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
267 {
268 #ifdef CONFIG_TCP_MD5SIG
269 	const struct tcp_sock *tp = tcp_sk(sk);
270 	struct tcp_md5sig_key *key;
271 
272 	/*
273 	 * The timewait bucket does not have the key DB from the
274 	 * sock structure. We just make a quick copy of the
275 	 * md5 key being used (if indeed we are using one)
276 	 * so the timewait ack generating code has the key.
277 	 */
278 	tcptw->tw_md5_key = NULL;
279 	if (!static_branch_unlikely(&tcp_md5_needed.key))
280 		return;
281 
282 	key = tp->af_specific->md5_lookup(sk, sk);
283 	if (key) {
284 		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
285 		if (!tcptw->tw_md5_key)
286 			return;
287 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
288 			goto out_free;
289 		tcp_md5_add_sigpool();
290 	}
291 	return;
292 out_free:
293 	WARN_ON_ONCE(1);
294 	kfree(tcptw->tw_md5_key);
295 	tcptw->tw_md5_key = NULL;
296 #endif
297 }
298 
299 /*
300  * Move a socket to time-wait or dead fin-wait-2 state.
301  */
302 void tcp_time_wait(struct sock *sk, int state, int timeo)
303 {
304 	const struct inet_connection_sock *icsk = inet_csk(sk);
305 	struct tcp_sock *tp = tcp_sk(sk);
306 	struct net *net = sock_net(sk);
307 	struct inet_timewait_sock *tw;
308 
309 	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
310 
311 	if (tw) {
312 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
313 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
314 
315 		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
316 		tw->tw_mark		= sk->sk_mark;
317 		tw->tw_priority		= READ_ONCE(sk->sk_priority);
318 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
319 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
320 		tcptw->tw_snd_nxt	= tp->snd_nxt;
321 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
322 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
323 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
324 		tcptw->tw_ts_offset	= tp->tsoffset;
325 		tw->tw_usec_ts		= tp->tcp_usec_ts;
326 		tcptw->tw_last_oow_ack_time = 0;
327 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
328 		tw->tw_txhash		= sk->sk_txhash;
329 		tw->tw_tx_queue_mapping = sk->sk_tx_queue_mapping;
330 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
331 		tw->tw_rx_queue_mapping = sk->sk_rx_queue_mapping;
332 #endif
333 #if IS_ENABLED(CONFIG_IPV6)
334 		if (tw->tw_family == PF_INET6) {
335 			struct ipv6_pinfo *np = inet6_sk(sk);
336 
337 			tw->tw_v6_daddr = sk->sk_v6_daddr;
338 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
339 			tw->tw_tclass = np->tclass;
340 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
341 			tw->tw_ipv6only = sk->sk_ipv6only;
342 		}
343 #endif
344 
345 		tcp_time_wait_init(sk, tcptw);
346 		tcp_ao_time_wait(tcptw, tp);
347 
348 		/* Get the TIME_WAIT timeout firing. */
349 		if (timeo < rto)
350 			timeo = rto;
351 
352 		if (state == TCP_TIME_WAIT)
353 			timeo = TCP_TIMEWAIT_LEN;
354 
355 		/* Linkage updates.
356 		 * Note that access to tw after this point is illegal.
357 		 */
358 		inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
359 	} else {
360 		/* Sorry, if we're out of memory, just CLOSE this
361 		 * socket up.  We've got bigger problems than
362 		 * non-graceful socket closings.
363 		 */
364 		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
365 	}
366 
367 	tcp_update_metrics(sk);
368 	tcp_done(sk);
369 }
370 EXPORT_SYMBOL(tcp_time_wait);
371 
372 #ifdef CONFIG_TCP_MD5SIG
373 static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
374 {
375 	struct tcp_md5sig_key *key;
376 
377 	key = container_of(head, struct tcp_md5sig_key, rcu);
378 	kfree(key);
379 	static_branch_slow_dec_deferred(&tcp_md5_needed);
380 	tcp_md5_release_sigpool();
381 }
382 #endif
383 
384 void tcp_twsk_destructor(struct sock *sk)
385 {
386 #ifdef CONFIG_TCP_MD5SIG
387 	if (static_branch_unlikely(&tcp_md5_needed.key)) {
388 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
389 
390 		if (twsk->tw_md5_key)
391 			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
392 	}
393 #endif
394 	tcp_ao_destroy_sock(sk, true);
395 }
396 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
397 
398 void tcp_twsk_purge(struct list_head *net_exit_list)
399 {
400 	bool purged_once = false;
401 	struct net *net;
402 
403 	list_for_each_entry(net, net_exit_list, exit_list) {
404 		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
405 			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
406 			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
407 		} else if (!purged_once) {
408 			inet_twsk_purge(&tcp_hashinfo);
409 			purged_once = true;
410 		}
411 	}
412 }
413 
414 /* Warning : This function is called without sk_listener being locked.
415  * Be sure to read socket fields once, as their value could change under us.
416  */
417 void tcp_openreq_init_rwin(struct request_sock *req,
418 			   const struct sock *sk_listener,
419 			   const struct dst_entry *dst)
420 {
421 	struct inet_request_sock *ireq = inet_rsk(req);
422 	const struct tcp_sock *tp = tcp_sk(sk_listener);
423 	int full_space = tcp_full_space(sk_listener);
424 	u32 window_clamp;
425 	__u8 rcv_wscale;
426 	u32 rcv_wnd;
427 	int mss;
428 
429 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
430 	window_clamp = READ_ONCE(tp->window_clamp);
431 	/* Set this up on the first call only */
432 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
433 
434 	/* limit the window selection if the user enforce a smaller rx buffer */
435 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
436 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
437 		req->rsk_window_clamp = full_space;
438 
439 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
440 	if (rcv_wnd == 0)
441 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
442 	else if (full_space < rcv_wnd * mss)
443 		full_space = rcv_wnd * mss;
444 
445 	/* tcp_full_space because it is guaranteed to be the first packet */
446 	tcp_select_initial_window(sk_listener, full_space,
447 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
448 		&req->rsk_rcv_wnd,
449 		&req->rsk_window_clamp,
450 		ireq->wscale_ok,
451 		&rcv_wscale,
452 		rcv_wnd);
453 	ireq->rcv_wscale = rcv_wscale;
454 }
455 EXPORT_SYMBOL(tcp_openreq_init_rwin);
456 
457 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
458 				  const struct request_sock *req)
459 {
460 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
461 }
462 
463 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
464 {
465 	struct inet_connection_sock *icsk = inet_csk(sk);
466 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
467 	bool ca_got_dst = false;
468 
469 	if (ca_key != TCP_CA_UNSPEC) {
470 		const struct tcp_congestion_ops *ca;
471 
472 		rcu_read_lock();
473 		ca = tcp_ca_find_key(ca_key);
474 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
475 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
476 			icsk->icsk_ca_ops = ca;
477 			ca_got_dst = true;
478 		}
479 		rcu_read_unlock();
480 	}
481 
482 	/* If no valid choice made yet, assign current system default ca. */
483 	if (!ca_got_dst &&
484 	    (!icsk->icsk_ca_setsockopt ||
485 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
486 		tcp_assign_congestion_control(sk);
487 
488 	tcp_set_ca_state(sk, TCP_CA_Open);
489 }
490 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
491 
492 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
493 				    struct request_sock *req,
494 				    struct tcp_sock *newtp)
495 {
496 #if IS_ENABLED(CONFIG_SMC)
497 	struct inet_request_sock *ireq;
498 
499 	if (static_branch_unlikely(&tcp_have_smc)) {
500 		ireq = inet_rsk(req);
501 		if (oldtp->syn_smc && !ireq->smc_ok)
502 			newtp->syn_smc = 0;
503 	}
504 #endif
505 }
506 
507 /* This is not only more efficient than what we used to do, it eliminates
508  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
509  *
510  * Actually, we could lots of memory writes here. tp of listening
511  * socket contains all necessary default parameters.
512  */
513 struct sock *tcp_create_openreq_child(const struct sock *sk,
514 				      struct request_sock *req,
515 				      struct sk_buff *skb)
516 {
517 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
518 	const struct inet_request_sock *ireq = inet_rsk(req);
519 	struct tcp_request_sock *treq = tcp_rsk(req);
520 	struct inet_connection_sock *newicsk;
521 	const struct tcp_sock *oldtp;
522 	struct tcp_sock *newtp;
523 	u32 seq;
524 
525 	if (!newsk)
526 		return NULL;
527 
528 	newicsk = inet_csk(newsk);
529 	newtp = tcp_sk(newsk);
530 	oldtp = tcp_sk(sk);
531 
532 	smc_check_reset_syn_req(oldtp, req, newtp);
533 
534 	/* Now setup tcp_sock */
535 	newtp->pred_flags = 0;
536 
537 	seq = treq->rcv_isn + 1;
538 	newtp->rcv_wup = seq;
539 	WRITE_ONCE(newtp->copied_seq, seq);
540 	WRITE_ONCE(newtp->rcv_nxt, seq);
541 	newtp->segs_in = 1;
542 
543 	seq = treq->snt_isn + 1;
544 	newtp->snd_sml = newtp->snd_una = seq;
545 	WRITE_ONCE(newtp->snd_nxt, seq);
546 	newtp->snd_up = seq;
547 
548 	INIT_LIST_HEAD(&newtp->tsq_node);
549 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
550 
551 	tcp_init_wl(newtp, treq->rcv_isn);
552 
553 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
554 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
555 
556 	newtp->lsndtime = tcp_jiffies32;
557 	newsk->sk_txhash = READ_ONCE(treq->txhash);
558 	newtp->total_retrans = req->num_retrans;
559 
560 	tcp_init_xmit_timers(newsk);
561 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
562 
563 	if (sock_flag(newsk, SOCK_KEEPOPEN))
564 		inet_csk_reset_keepalive_timer(newsk,
565 					       keepalive_time_when(newtp));
566 
567 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
568 	newtp->rx_opt.sack_ok = ireq->sack_ok;
569 	newtp->window_clamp = req->rsk_window_clamp;
570 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
571 	newtp->rcv_wnd = req->rsk_rcv_wnd;
572 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
573 	if (newtp->rx_opt.wscale_ok) {
574 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
575 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
576 	} else {
577 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
578 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
579 	}
580 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
581 	newtp->max_window = newtp->snd_wnd;
582 
583 	if (newtp->rx_opt.tstamp_ok) {
584 		newtp->tcp_usec_ts = treq->req_usec_ts;
585 		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
586 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
587 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
588 	} else {
589 		newtp->tcp_usec_ts = 0;
590 		newtp->rx_opt.ts_recent_stamp = 0;
591 		newtp->tcp_header_len = sizeof(struct tcphdr);
592 	}
593 	if (req->num_timeout) {
594 		newtp->total_rto = req->num_timeout;
595 		newtp->undo_marker = treq->snt_isn;
596 		if (newtp->tcp_usec_ts) {
597 			newtp->retrans_stamp = treq->snt_synack;
598 			newtp->total_rto_time = (u32)(tcp_clock_us() -
599 						      newtp->retrans_stamp) / USEC_PER_MSEC;
600 		} else {
601 			newtp->retrans_stamp = div_u64(treq->snt_synack,
602 						       USEC_PER_SEC / TCP_TS_HZ);
603 			newtp->total_rto_time = tcp_clock_ms() -
604 						newtp->retrans_stamp;
605 		}
606 		newtp->total_rto_recoveries = 1;
607 	}
608 	newtp->tsoffset = treq->ts_off;
609 #ifdef CONFIG_TCP_MD5SIG
610 	newtp->md5sig_info = NULL;	/*XXX*/
611 #endif
612 #ifdef CONFIG_TCP_AO
613 	newtp->ao_info = NULL;
614 
615 	if (tcp_rsk_used_ao(req)) {
616 		struct tcp_ao_key *ao_key;
617 
618 		ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
619 		if (ao_key)
620 			newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
621 	}
622  #endif
623 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
624 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
625 	newtp->rx_opt.mss_clamp = req->mss;
626 	tcp_ecn_openreq_child(newtp, req);
627 	newtp->fastopen_req = NULL;
628 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
629 
630 	newtp->bpf_chg_cc_inprogress = 0;
631 	tcp_bpf_clone(sk, newsk);
632 
633 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
634 
635 	xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1);
636 
637 	return newsk;
638 }
639 EXPORT_SYMBOL(tcp_create_openreq_child);
640 
641 /*
642  * Process an incoming packet for SYN_RECV sockets represented as a
643  * request_sock. Normally sk is the listener socket but for TFO it
644  * points to the child socket.
645  *
646  * XXX (TFO) - The current impl contains a special check for ack
647  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
648  *
649  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
650  *
651  * Note: If @fastopen is true, this can be called from process context.
652  *       Otherwise, this is from BH context.
653  */
654 
655 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
656 			   struct request_sock *req,
657 			   bool fastopen, bool *req_stolen)
658 {
659 	struct tcp_options_received tmp_opt;
660 	struct sock *child;
661 	const struct tcphdr *th = tcp_hdr(skb);
662 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
663 	bool paws_reject = false;
664 	bool own_req;
665 
666 	tmp_opt.saw_tstamp = 0;
667 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
668 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
669 
670 		if (tmp_opt.saw_tstamp) {
671 			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
672 			if (tmp_opt.rcv_tsecr)
673 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
674 			/* We do not store true stamp, but it is not required,
675 			 * it can be estimated (approximately)
676 			 * from another data.
677 			 */
678 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
679 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
680 		}
681 	}
682 
683 	/* Check for pure retransmitted SYN. */
684 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
685 	    flg == TCP_FLAG_SYN &&
686 	    !paws_reject) {
687 		/*
688 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
689 		 * this case on figure 6 and figure 8, but formal
690 		 * protocol description says NOTHING.
691 		 * To be more exact, it says that we should send ACK,
692 		 * because this segment (at least, if it has no data)
693 		 * is out of window.
694 		 *
695 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
696 		 *  describe SYN-RECV state. All the description
697 		 *  is wrong, we cannot believe to it and should
698 		 *  rely only on common sense and implementation
699 		 *  experience.
700 		 *
701 		 * Enforce "SYN-ACK" according to figure 8, figure 6
702 		 * of RFC793, fixed by RFC1122.
703 		 *
704 		 * Note that even if there is new data in the SYN packet
705 		 * they will be thrown away too.
706 		 *
707 		 * Reset timer after retransmitting SYNACK, similar to
708 		 * the idea of fast retransmit in recovery.
709 		 */
710 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
711 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
712 					  &tcp_rsk(req)->last_oow_ack_time) &&
713 
714 		    !inet_rtx_syn_ack(sk, req)) {
715 			unsigned long expires = jiffies;
716 
717 			expires += reqsk_timeout(req, TCP_RTO_MAX);
718 			if (!fastopen)
719 				mod_timer_pending(&req->rsk_timer, expires);
720 			else
721 				req->rsk_timer.expires = expires;
722 		}
723 		return NULL;
724 	}
725 
726 	/* Further reproduces section "SEGMENT ARRIVES"
727 	   for state SYN-RECEIVED of RFC793.
728 	   It is broken, however, it does not work only
729 	   when SYNs are crossed.
730 
731 	   You would think that SYN crossing is impossible here, since
732 	   we should have a SYN_SENT socket (from connect()) on our end,
733 	   but this is not true if the crossed SYNs were sent to both
734 	   ends by a malicious third party.  We must defend against this,
735 	   and to do that we first verify the ACK (as per RFC793, page
736 	   36) and reset if it is invalid.  Is this a true full defense?
737 	   To convince ourselves, let us consider a way in which the ACK
738 	   test can still pass in this 'malicious crossed SYNs' case.
739 	   Malicious sender sends identical SYNs (and thus identical sequence
740 	   numbers) to both A and B:
741 
742 		A: gets SYN, seq=7
743 		B: gets SYN, seq=7
744 
745 	   By our good fortune, both A and B select the same initial
746 	   send sequence number of seven :-)
747 
748 		A: sends SYN|ACK, seq=7, ack_seq=8
749 		B: sends SYN|ACK, seq=7, ack_seq=8
750 
751 	   So we are now A eating this SYN|ACK, ACK test passes.  So
752 	   does sequence test, SYN is truncated, and thus we consider
753 	   it a bare ACK.
754 
755 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
756 	   bare ACK.  Otherwise, we create an established connection.  Both
757 	   ends (listening sockets) accept the new incoming connection and try
758 	   to talk to each other. 8-)
759 
760 	   Note: This case is both harmless, and rare.  Possibility is about the
761 	   same as us discovering intelligent life on another plant tomorrow.
762 
763 	   But generally, we should (RFC lies!) to accept ACK
764 	   from SYNACK both here and in tcp_rcv_state_process().
765 	   tcp_rcv_state_process() does not, hence, we do not too.
766 
767 	   Note that the case is absolutely generic:
768 	   we cannot optimize anything here without
769 	   violating protocol. All the checks must be made
770 	   before attempt to create socket.
771 	 */
772 
773 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
774 	 *                  and the incoming segment acknowledges something not yet
775 	 *                  sent (the segment carries an unacceptable ACK) ...
776 	 *                  a reset is sent."
777 	 *
778 	 * Invalid ACK: reset will be sent by listening socket.
779 	 * Note that the ACK validity check for a Fast Open socket is done
780 	 * elsewhere and is checked directly against the child socket rather
781 	 * than req because user data may have been sent out.
782 	 */
783 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
784 	    (TCP_SKB_CB(skb)->ack_seq !=
785 	     tcp_rsk(req)->snt_isn + 1))
786 		return sk;
787 
788 	/* Also, it would be not so bad idea to check rcv_tsecr, which
789 	 * is essentially ACK extension and too early or too late values
790 	 * should cause reset in unsynchronized states.
791 	 */
792 
793 	/* RFC793: "first check sequence number". */
794 
795 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq,
796 					  TCP_SKB_CB(skb)->end_seq,
797 					  tcp_rsk(req)->rcv_nxt,
798 					  tcp_rsk(req)->rcv_nxt +
799 					  tcp_synack_window(req))) {
800 		/* Out of window: send ACK and drop. */
801 		if (!(flg & TCP_FLAG_RST) &&
802 		    !tcp_oow_rate_limited(sock_net(sk), skb,
803 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
804 					  &tcp_rsk(req)->last_oow_ack_time))
805 			req->rsk_ops->send_ack(sk, skb, req);
806 		if (paws_reject)
807 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
808 		return NULL;
809 	}
810 
811 	/* In sequence, PAWS is OK. */
812 
813 	/* TODO: We probably should defer ts_recent change once
814 	 * we take ownership of @req.
815 	 */
816 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
817 		WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
818 
819 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
820 		/* Truncate SYN, it is out of window starting
821 		   at tcp_rsk(req)->rcv_isn + 1. */
822 		flg &= ~TCP_FLAG_SYN;
823 	}
824 
825 	/* RFC793: "second check the RST bit" and
826 	 *	   "fourth, check the SYN bit"
827 	 */
828 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
829 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
830 		goto embryonic_reset;
831 	}
832 
833 	/* ACK sequence verified above, just make sure ACK is
834 	 * set.  If ACK not set, just silently drop the packet.
835 	 *
836 	 * XXX (TFO) - if we ever allow "data after SYN", the
837 	 * following check needs to be removed.
838 	 */
839 	if (!(flg & TCP_FLAG_ACK))
840 		return NULL;
841 
842 	/* For Fast Open no more processing is needed (sk is the
843 	 * child socket).
844 	 */
845 	if (fastopen)
846 		return sk;
847 
848 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
849 	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
850 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
851 		inet_rsk(req)->acked = 1;
852 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
853 		return NULL;
854 	}
855 
856 	/* OK, ACK is valid, create big socket and
857 	 * feed this segment to it. It will repeat all
858 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
859 	 * ESTABLISHED STATE. If it will be dropped after
860 	 * socket is created, wait for troubles.
861 	 */
862 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
863 							 req, &own_req);
864 	if (!child)
865 		goto listen_overflow;
866 
867 	if (own_req && rsk_drop_req(req)) {
868 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
869 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
870 		return child;
871 	}
872 
873 	sock_rps_save_rxhash(child, skb);
874 	tcp_synack_rtt_meas(child, req);
875 	*req_stolen = !own_req;
876 	return inet_csk_complete_hashdance(sk, child, req, own_req);
877 
878 listen_overflow:
879 	if (sk != req->rsk_listener)
880 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
881 
882 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
883 		inet_rsk(req)->acked = 1;
884 		return NULL;
885 	}
886 
887 embryonic_reset:
888 	if (!(flg & TCP_FLAG_RST)) {
889 		/* Received a bad SYN pkt - for TFO We try not to reset
890 		 * the local connection unless it's really necessary to
891 		 * avoid becoming vulnerable to outside attack aiming at
892 		 * resetting legit local connections.
893 		 */
894 		req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
895 	} else if (fastopen) { /* received a valid RST pkt */
896 		reqsk_fastopen_remove(sk, req, true);
897 		tcp_reset(sk, skb);
898 	}
899 	if (!fastopen) {
900 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
901 
902 		if (unlinked)
903 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
904 		*req_stolen = !unlinked;
905 	}
906 	return NULL;
907 }
908 EXPORT_SYMBOL(tcp_check_req);
909 
910 /*
911  * Queue segment on the new socket if the new socket is active,
912  * otherwise we just shortcircuit this and continue with
913  * the new socket.
914  *
915  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
916  * when entering. But other states are possible due to a race condition
917  * where after __inet_lookup_established() fails but before the listener
918  * locked is obtained, other packets cause the same connection to
919  * be created.
920  */
921 
922 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
923 				       struct sk_buff *skb)
924 	__releases(&((child)->sk_lock.slock))
925 {
926 	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
927 	int state = child->sk_state;
928 
929 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
930 	sk_mark_napi_id_set(child, skb);
931 
932 	tcp_segs_in(tcp_sk(child), skb);
933 	if (!sock_owned_by_user(child)) {
934 		reason = tcp_rcv_state_process(child, skb);
935 		/* Wakeup parent, send SIGIO */
936 		if (state == TCP_SYN_RECV && child->sk_state != state)
937 			parent->sk_data_ready(parent);
938 	} else {
939 		/* Alas, it is possible again, because we do lookup
940 		 * in main socket hash table and lock on listening
941 		 * socket does not protect us more.
942 		 */
943 		__sk_add_backlog(child, skb);
944 	}
945 
946 	bh_unlock_sock(child);
947 	sock_put(child);
948 	return reason;
949 }
950 EXPORT_SYMBOL(tcp_child_process);
951