xref: /linux/net/ipv4/tcp_minisocks.c (revision 515c0ead788f4118a91b3ae55fe51f95543553ec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <net/tcp.h>
23 #include <net/xfrm.h>
24 #include <net/busy_poll.h>
25 #include <net/rstreason.h>
26 
27 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
28 {
29 	if (seq == s_win)
30 		return true;
31 	if (after(end_seq, s_win) && before(seq, e_win))
32 		return true;
33 	return seq == e_win && seq == end_seq;
34 }
35 
36 static enum tcp_tw_status
37 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
38 				  const struct sk_buff *skb, int mib_idx)
39 {
40 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
41 
42 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
43 				  &tcptw->tw_last_oow_ack_time)) {
44 		/* Send ACK. Note, we do not put the bucket,
45 		 * it will be released by caller.
46 		 */
47 		return TCP_TW_ACK_OOW;
48 	}
49 
50 	/* We are rate-limiting, so just release the tw sock and drop skb. */
51 	inet_twsk_put(tw);
52 	return TCP_TW_SUCCESS;
53 }
54 
55 static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq,
56 				u32 rcv_nxt)
57 {
58 #ifdef CONFIG_TCP_AO
59 	struct tcp_ao_info *ao;
60 
61 	ao = rcu_dereference(tcptw->ao_info);
62 	if (unlikely(ao && seq < rcv_nxt))
63 		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
64 #endif
65 	WRITE_ONCE(tcptw->tw_rcv_nxt, seq);
66 }
67 
68 /*
69  * * Main purpose of TIME-WAIT state is to close connection gracefully,
70  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
71  *   (and, probably, tail of data) and one or more our ACKs are lost.
72  * * What is TIME-WAIT timeout? It is associated with maximal packet
73  *   lifetime in the internet, which results in wrong conclusion, that
74  *   it is set to catch "old duplicate segments" wandering out of their path.
75  *   It is not quite correct. This timeout is calculated so that it exceeds
76  *   maximal retransmission timeout enough to allow to lose one (or more)
77  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
78  * * When TIME-WAIT socket receives RST, it means that another end
79  *   finally closed and we are allowed to kill TIME-WAIT too.
80  * * Second purpose of TIME-WAIT is catching old duplicate segments.
81  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
82  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
83  * * If we invented some more clever way to catch duplicates
84  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
85  *
86  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
87  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
88  * from the very beginning.
89  *
90  * NOTE. With recycling (and later with fin-wait-2) TW bucket
91  * is _not_ stateless. It means, that strictly speaking we must
92  * spinlock it. I do not want! Well, probability of misbehaviour
93  * is ridiculously low and, seems, we could use some mb() tricks
94  * to avoid misread sequence numbers, states etc.  --ANK
95  *
96  * We don't need to initialize tmp_out.sack_ok as we don't use the results
97  */
98 enum tcp_tw_status
99 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
100 			   const struct tcphdr *th, u32 *tw_isn,
101 			   enum skb_drop_reason *drop_reason)
102 {
103 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
104 	u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt);
105 	struct tcp_options_received tmp_opt;
106 	bool paws_reject = false;
107 	int ts_recent_stamp;
108 
109 	tmp_opt.saw_tstamp = 0;
110 	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
111 	if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
112 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
113 
114 		if (tmp_opt.saw_tstamp) {
115 			if (tmp_opt.rcv_tsecr)
116 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
117 			tmp_opt.ts_recent	= READ_ONCE(tcptw->tw_ts_recent);
118 			tmp_opt.ts_recent_stamp	= ts_recent_stamp;
119 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
120 		}
121 	}
122 
123 	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) {
124 		/* Just repeat all the checks of tcp_rcv_state_process() */
125 
126 		/* Out of window, send ACK */
127 		if (paws_reject ||
128 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
129 				   rcv_nxt,
130 				   rcv_nxt + tcptw->tw_rcv_wnd))
131 			return tcp_timewait_check_oow_rate_limit(
132 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
133 
134 		if (th->rst)
135 			goto kill;
136 
137 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt))
138 			return TCP_TW_RST;
139 
140 		/* Dup ACK? */
141 		if (!th->ack ||
142 		    !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) ||
143 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
144 			inet_twsk_put(tw);
145 			return TCP_TW_SUCCESS;
146 		}
147 
148 		/* New data or FIN. If new data arrive after half-duplex close,
149 		 * reset.
150 		 */
151 		if (!th->fin ||
152 		    TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1)
153 			return TCP_TW_RST;
154 
155 		/* FIN arrived, enter true time-wait state. */
156 		WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT);
157 		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq,
158 				    rcv_nxt);
159 
160 		if (tmp_opt.saw_tstamp) {
161 			u64 ts = tcp_clock_ms();
162 
163 			WRITE_ONCE(tw->tw_entry_stamp, ts);
164 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
165 				   div_u64(ts, MSEC_PER_SEC));
166 			WRITE_ONCE(tcptw->tw_ts_recent,
167 				   tmp_opt.rcv_tsval);
168 		}
169 
170 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
171 		return TCP_TW_ACK;
172 	}
173 
174 	/*
175 	 *	Now real TIME-WAIT state.
176 	 *
177 	 *	RFC 1122:
178 	 *	"When a connection is [...] on TIME-WAIT state [...]
179 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
180 	 *	reopen the connection directly, if it:
181 	 *
182 	 *	(1)  assigns its initial sequence number for the new
183 	 *	connection to be larger than the largest sequence
184 	 *	number it used on the previous connection incarnation,
185 	 *	and
186 	 *
187 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
188 	 *	to be an old duplicate".
189 	 */
190 
191 	if (!paws_reject &&
192 	    (TCP_SKB_CB(skb)->seq == rcv_nxt &&
193 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
194 		/* In window segment, it may be only reset or bare ack. */
195 
196 		if (th->rst) {
197 			/* This is TIME_WAIT assassination, in two flavors.
198 			 * Oh well... nobody has a sufficient solution to this
199 			 * protocol bug yet.
200 			 */
201 			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
202 kill:
203 				inet_twsk_deschedule_put(tw);
204 				return TCP_TW_SUCCESS;
205 			}
206 		} else {
207 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
208 		}
209 
210 		if (tmp_opt.saw_tstamp) {
211 			WRITE_ONCE(tcptw->tw_ts_recent,
212 				   tmp_opt.rcv_tsval);
213 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
214 				   ktime_get_seconds());
215 		}
216 
217 		inet_twsk_put(tw);
218 		return TCP_TW_SUCCESS;
219 	}
220 
221 	/* Out of window segment.
222 
223 	   All the segments are ACKed immediately.
224 
225 	   The only exception is new SYN. We accept it, if it is
226 	   not old duplicate and we are not in danger to be killed
227 	   by delayed old duplicates. RFC check is that it has
228 	   newer sequence number works at rates <40Mbit/sec.
229 	   However, if paws works, it is reliable AND even more,
230 	   we even may relax silly seq space cutoff.
231 
232 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
233 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
234 	   we must return socket to time-wait state. It is not good,
235 	   but not fatal yet.
236 	 */
237 
238 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
239 	    (after(TCP_SKB_CB(skb)->seq, rcv_nxt) ||
240 	     (tmp_opt.saw_tstamp &&
241 	      (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
242 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
243 		if (isn == 0)
244 			isn++;
245 		*tw_isn = isn;
246 		return TCP_TW_SYN;
247 	}
248 
249 	if (paws_reject) {
250 		*drop_reason = SKB_DROP_REASON_TCP_RFC7323_TW_PAWS;
251 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWS_TW_REJECTED);
252 	}
253 
254 	if (!th->rst) {
255 		/* In this case we must reset the TIMEWAIT timer.
256 		 *
257 		 * If it is ACKless SYN it may be both old duplicate
258 		 * and new good SYN with random sequence number <rcv_nxt.
259 		 * Do not reschedule in the last case.
260 		 */
261 		if (paws_reject || th->ack)
262 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
263 
264 		return tcp_timewait_check_oow_rate_limit(
265 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
266 	}
267 	inet_twsk_put(tw);
268 	return TCP_TW_SUCCESS;
269 }
270 EXPORT_IPV6_MOD(tcp_timewait_state_process);
271 
272 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
273 {
274 #ifdef CONFIG_TCP_MD5SIG
275 	const struct tcp_sock *tp = tcp_sk(sk);
276 	struct tcp_md5sig_key *key;
277 
278 	/*
279 	 * The timewait bucket does not have the key DB from the
280 	 * sock structure. We just make a quick copy of the
281 	 * md5 key being used (if indeed we are using one)
282 	 * so the timewait ack generating code has the key.
283 	 */
284 	tcptw->tw_md5_key = NULL;
285 	if (!static_branch_unlikely(&tcp_md5_needed.key))
286 		return;
287 
288 	key = tp->af_specific->md5_lookup(sk, sk);
289 	if (key) {
290 		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
291 		if (!tcptw->tw_md5_key)
292 			return;
293 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
294 			goto out_free;
295 		tcp_md5_add_sigpool();
296 	}
297 	return;
298 out_free:
299 	WARN_ON_ONCE(1);
300 	kfree(tcptw->tw_md5_key);
301 	tcptw->tw_md5_key = NULL;
302 #endif
303 }
304 
305 /*
306  * Move a socket to time-wait or dead fin-wait-2 state.
307  */
308 void tcp_time_wait(struct sock *sk, int state, int timeo)
309 {
310 	const struct inet_connection_sock *icsk = inet_csk(sk);
311 	struct tcp_sock *tp = tcp_sk(sk);
312 	struct net *net = sock_net(sk);
313 	struct inet_timewait_sock *tw;
314 
315 	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
316 
317 	if (tw) {
318 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
319 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
320 
321 		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
322 		tw->tw_mark		= sk->sk_mark;
323 		tw->tw_priority		= READ_ONCE(sk->sk_priority);
324 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
325 		/* refreshed when we enter true TIME-WAIT state */
326 		tw->tw_entry_stamp	= tcp_time_stamp_ms(tp);
327 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
328 		tcptw->tw_snd_nxt	= tp->snd_nxt;
329 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
330 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
331 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
332 		tcptw->tw_ts_offset	= tp->tsoffset;
333 		tw->tw_usec_ts		= tp->tcp_usec_ts;
334 		tcptw->tw_last_oow_ack_time = 0;
335 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
336 		tw->tw_txhash		= sk->sk_txhash;
337 		tw->tw_tx_queue_mapping = sk->sk_tx_queue_mapping;
338 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
339 		tw->tw_rx_queue_mapping = sk->sk_rx_queue_mapping;
340 #endif
341 #if IS_ENABLED(CONFIG_IPV6)
342 		if (tw->tw_family == PF_INET6) {
343 			struct ipv6_pinfo *np = inet6_sk(sk);
344 
345 			tw->tw_v6_daddr = sk->sk_v6_daddr;
346 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
347 			tw->tw_tclass = np->tclass;
348 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
349 			tw->tw_ipv6only = sk->sk_ipv6only;
350 		}
351 #endif
352 
353 		tcp_time_wait_init(sk, tcptw);
354 		tcp_ao_time_wait(tcptw, tp);
355 
356 		/* Get the TIME_WAIT timeout firing. */
357 		if (timeo < rto)
358 			timeo = rto;
359 
360 		if (state == TCP_TIME_WAIT)
361 			timeo = TCP_TIMEWAIT_LEN;
362 
363 		/* Linkage updates.
364 		 * Note that access to tw after this point is illegal.
365 		 */
366 		inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
367 	} else {
368 		/* Sorry, if we're out of memory, just CLOSE this
369 		 * socket up.  We've got bigger problems than
370 		 * non-graceful socket closings.
371 		 */
372 		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
373 	}
374 
375 	tcp_update_metrics(sk);
376 	tcp_done(sk);
377 }
378 EXPORT_SYMBOL(tcp_time_wait);
379 
380 void tcp_twsk_destructor(struct sock *sk)
381 {
382 #ifdef CONFIG_TCP_MD5SIG
383 	if (static_branch_unlikely(&tcp_md5_needed.key)) {
384 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
385 
386 		if (twsk->tw_md5_key) {
387 			kfree(twsk->tw_md5_key);
388 			static_branch_slow_dec_deferred(&tcp_md5_needed);
389 			tcp_md5_release_sigpool();
390 		}
391 	}
392 #endif
393 	tcp_ao_destroy_sock(sk, true);
394 }
395 
396 void tcp_twsk_purge(struct list_head *net_exit_list)
397 {
398 	bool purged_once = false;
399 	struct net *net;
400 
401 	list_for_each_entry(net, net_exit_list, exit_list) {
402 		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
403 			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
404 			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
405 		} else if (!purged_once) {
406 			inet_twsk_purge(&tcp_hashinfo);
407 			purged_once = true;
408 		}
409 	}
410 }
411 
412 /* Warning : This function is called without sk_listener being locked.
413  * Be sure to read socket fields once, as their value could change under us.
414  */
415 void tcp_openreq_init_rwin(struct request_sock *req,
416 			   const struct sock *sk_listener,
417 			   const struct dst_entry *dst)
418 {
419 	struct inet_request_sock *ireq = inet_rsk(req);
420 	const struct tcp_sock *tp = tcp_sk(sk_listener);
421 	int full_space = tcp_full_space(sk_listener);
422 	u32 window_clamp;
423 	__u8 rcv_wscale;
424 	u32 rcv_wnd;
425 	int mss;
426 
427 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
428 	window_clamp = READ_ONCE(tp->window_clamp);
429 	/* Set this up on the first call only */
430 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
431 
432 	/* limit the window selection if the user enforce a smaller rx buffer */
433 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
434 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
435 		req->rsk_window_clamp = full_space;
436 
437 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
438 	if (rcv_wnd == 0)
439 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
440 	else if (full_space < rcv_wnd * mss)
441 		full_space = rcv_wnd * mss;
442 
443 	/* tcp_full_space because it is guaranteed to be the first packet */
444 	tcp_select_initial_window(sk_listener, full_space,
445 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
446 		&req->rsk_rcv_wnd,
447 		&req->rsk_window_clamp,
448 		ireq->wscale_ok,
449 		&rcv_wscale,
450 		rcv_wnd);
451 	ireq->rcv_wscale = rcv_wscale;
452 }
453 
454 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
455 				  const struct request_sock *req)
456 {
457 	tcp_ecn_mode_set(tp, inet_rsk(req)->ecn_ok ?
458 			     TCP_ECN_MODE_RFC3168 :
459 			     TCP_ECN_DISABLED);
460 }
461 
462 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
463 {
464 	struct inet_connection_sock *icsk = inet_csk(sk);
465 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
466 	bool ca_got_dst = false;
467 
468 	if (ca_key != TCP_CA_UNSPEC) {
469 		const struct tcp_congestion_ops *ca;
470 
471 		rcu_read_lock();
472 		ca = tcp_ca_find_key(ca_key);
473 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
474 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
475 			icsk->icsk_ca_ops = ca;
476 			ca_got_dst = true;
477 		}
478 		rcu_read_unlock();
479 	}
480 
481 	/* If no valid choice made yet, assign current system default ca. */
482 	if (!ca_got_dst &&
483 	    (!icsk->icsk_ca_setsockopt ||
484 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
485 		tcp_assign_congestion_control(sk);
486 
487 	tcp_set_ca_state(sk, TCP_CA_Open);
488 }
489 EXPORT_IPV6_MOD_GPL(tcp_ca_openreq_child);
490 
491 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
492 				    struct request_sock *req,
493 				    struct tcp_sock *newtp)
494 {
495 #if IS_ENABLED(CONFIG_SMC)
496 	struct inet_request_sock *ireq;
497 
498 	if (static_branch_unlikely(&tcp_have_smc)) {
499 		ireq = inet_rsk(req);
500 		if (oldtp->syn_smc && !ireq->smc_ok)
501 			newtp->syn_smc = 0;
502 	}
503 #endif
504 }
505 
506 /* This is not only more efficient than what we used to do, it eliminates
507  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
508  *
509  * Actually, we could lots of memory writes here. tp of listening
510  * socket contains all necessary default parameters.
511  */
512 struct sock *tcp_create_openreq_child(const struct sock *sk,
513 				      struct request_sock *req,
514 				      struct sk_buff *skb)
515 {
516 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
517 	const struct inet_request_sock *ireq = inet_rsk(req);
518 	struct tcp_request_sock *treq = tcp_rsk(req);
519 	struct inet_connection_sock *newicsk;
520 	const struct tcp_sock *oldtp;
521 	struct tcp_sock *newtp;
522 	u32 seq;
523 
524 	if (!newsk)
525 		return NULL;
526 
527 	newicsk = inet_csk(newsk);
528 	newtp = tcp_sk(newsk);
529 	oldtp = tcp_sk(sk);
530 
531 	smc_check_reset_syn_req(oldtp, req, newtp);
532 
533 	/* Now setup tcp_sock */
534 	newtp->pred_flags = 0;
535 
536 	seq = treq->rcv_isn + 1;
537 	newtp->rcv_wup = seq;
538 	WRITE_ONCE(newtp->copied_seq, seq);
539 	WRITE_ONCE(newtp->rcv_nxt, seq);
540 	newtp->segs_in = 1;
541 
542 	seq = treq->snt_isn + 1;
543 	newtp->snd_sml = newtp->snd_una = seq;
544 	WRITE_ONCE(newtp->snd_nxt, seq);
545 	newtp->snd_up = seq;
546 
547 	INIT_LIST_HEAD(&newtp->tsq_node);
548 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
549 
550 	tcp_init_wl(newtp, treq->rcv_isn);
551 
552 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
553 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
554 
555 	newtp->lsndtime = tcp_jiffies32;
556 	newsk->sk_txhash = READ_ONCE(treq->txhash);
557 	newtp->total_retrans = req->num_retrans;
558 
559 	tcp_init_xmit_timers(newsk);
560 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
561 
562 	if (sock_flag(newsk, SOCK_KEEPOPEN))
563 		tcp_reset_keepalive_timer(newsk, keepalive_time_when(newtp));
564 
565 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
566 	newtp->rx_opt.sack_ok = ireq->sack_ok;
567 	newtp->window_clamp = req->rsk_window_clamp;
568 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
569 	newtp->rcv_wnd = req->rsk_rcv_wnd;
570 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
571 	if (newtp->rx_opt.wscale_ok) {
572 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
573 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
574 	} else {
575 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
576 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
577 	}
578 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
579 	newtp->max_window = newtp->snd_wnd;
580 
581 	if (newtp->rx_opt.tstamp_ok) {
582 		newtp->tcp_usec_ts = treq->req_usec_ts;
583 		newtp->rx_opt.ts_recent = req->ts_recent;
584 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
585 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
586 	} else {
587 		newtp->tcp_usec_ts = 0;
588 		newtp->rx_opt.ts_recent_stamp = 0;
589 		newtp->tcp_header_len = sizeof(struct tcphdr);
590 	}
591 	if (req->num_timeout) {
592 		newtp->total_rto = req->num_timeout;
593 		newtp->undo_marker = treq->snt_isn;
594 		if (newtp->tcp_usec_ts) {
595 			newtp->retrans_stamp = treq->snt_synack;
596 			newtp->total_rto_time = (u32)(tcp_clock_us() -
597 						      newtp->retrans_stamp) / USEC_PER_MSEC;
598 		} else {
599 			newtp->retrans_stamp = div_u64(treq->snt_synack,
600 						       USEC_PER_SEC / TCP_TS_HZ);
601 			newtp->total_rto_time = tcp_clock_ms() -
602 						newtp->retrans_stamp;
603 		}
604 		newtp->total_rto_recoveries = 1;
605 	}
606 	newtp->tsoffset = treq->ts_off;
607 #ifdef CONFIG_TCP_MD5SIG
608 	newtp->md5sig_info = NULL;	/*XXX*/
609 #endif
610 #ifdef CONFIG_TCP_AO
611 	newtp->ao_info = NULL;
612 
613 	if (tcp_rsk_used_ao(req)) {
614 		struct tcp_ao_key *ao_key;
615 
616 		ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
617 		if (ao_key)
618 			newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
619 	}
620  #endif
621 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
622 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
623 	newtp->rx_opt.mss_clamp = req->mss;
624 	tcp_ecn_openreq_child(newtp, req);
625 	newtp->fastopen_req = NULL;
626 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
627 
628 	newtp->bpf_chg_cc_inprogress = 0;
629 	tcp_bpf_clone(sk, newsk);
630 
631 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
632 
633 	xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1);
634 
635 	return newsk;
636 }
637 EXPORT_SYMBOL(tcp_create_openreq_child);
638 
639 /*
640  * Process an incoming packet for SYN_RECV sockets represented as a
641  * request_sock. Normally sk is the listener socket but for TFO it
642  * points to the child socket.
643  *
644  * XXX (TFO) - The current impl contains a special check for ack
645  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
646  *
647  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
648  *
649  * Note: If @fastopen is true, this can be called from process context.
650  *       Otherwise, this is from BH context.
651  */
652 
653 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
654 			   struct request_sock *req,
655 			   bool fastopen, bool *req_stolen,
656 			   enum skb_drop_reason *drop_reason)
657 {
658 	struct tcp_options_received tmp_opt;
659 	struct sock *child;
660 	const struct tcphdr *th = tcp_hdr(skb);
661 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
662 	bool tsecr_reject = false;
663 	bool paws_reject = false;
664 	bool own_req;
665 
666 	tmp_opt.saw_tstamp = 0;
667 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
668 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
669 
670 		if (tmp_opt.saw_tstamp) {
671 			tmp_opt.ts_recent = req->ts_recent;
672 			if (tmp_opt.rcv_tsecr) {
673 				if (inet_rsk(req)->tstamp_ok && !fastopen)
674 					tsecr_reject = !between(tmp_opt.rcv_tsecr,
675 							tcp_rsk(req)->snt_tsval_first,
676 							READ_ONCE(tcp_rsk(req)->snt_tsval_last));
677 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
678 			}
679 			/* We do not store true stamp, but it is not required,
680 			 * it can be estimated (approximately)
681 			 * from another data.
682 			 */
683 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
684 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
685 		}
686 	}
687 
688 	/* Check for pure retransmitted SYN. */
689 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
690 	    flg == TCP_FLAG_SYN &&
691 	    !paws_reject) {
692 		/*
693 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
694 		 * this case on figure 6 and figure 8, but formal
695 		 * protocol description says NOTHING.
696 		 * To be more exact, it says that we should send ACK,
697 		 * because this segment (at least, if it has no data)
698 		 * is out of window.
699 		 *
700 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
701 		 *  describe SYN-RECV state. All the description
702 		 *  is wrong, we cannot believe to it and should
703 		 *  rely only on common sense and implementation
704 		 *  experience.
705 		 *
706 		 * Enforce "SYN-ACK" according to figure 8, figure 6
707 		 * of RFC793, fixed by RFC1122.
708 		 *
709 		 * Note that even if there is new data in the SYN packet
710 		 * they will be thrown away too.
711 		 *
712 		 * Reset timer after retransmitting SYNACK, similar to
713 		 * the idea of fast retransmit in recovery.
714 		 */
715 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
716 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
717 					  &tcp_rsk(req)->last_oow_ack_time) &&
718 
719 		    !tcp_rtx_synack(sk, req)) {
720 			unsigned long expires = jiffies;
721 
722 			expires += reqsk_timeout(req, TCP_RTO_MAX);
723 			if (!fastopen)
724 				mod_timer_pending(&req->rsk_timer, expires);
725 			else
726 				req->rsk_timer.expires = expires;
727 		}
728 		return NULL;
729 	}
730 
731 	/* Further reproduces section "SEGMENT ARRIVES"
732 	   for state SYN-RECEIVED of RFC793.
733 	   It is broken, however, it does not work only
734 	   when SYNs are crossed.
735 
736 	   You would think that SYN crossing is impossible here, since
737 	   we should have a SYN_SENT socket (from connect()) on our end,
738 	   but this is not true if the crossed SYNs were sent to both
739 	   ends by a malicious third party.  We must defend against this,
740 	   and to do that we first verify the ACK (as per RFC793, page
741 	   36) and reset if it is invalid.  Is this a true full defense?
742 	   To convince ourselves, let us consider a way in which the ACK
743 	   test can still pass in this 'malicious crossed SYNs' case.
744 	   Malicious sender sends identical SYNs (and thus identical sequence
745 	   numbers) to both A and B:
746 
747 		A: gets SYN, seq=7
748 		B: gets SYN, seq=7
749 
750 	   By our good fortune, both A and B select the same initial
751 	   send sequence number of seven :-)
752 
753 		A: sends SYN|ACK, seq=7, ack_seq=8
754 		B: sends SYN|ACK, seq=7, ack_seq=8
755 
756 	   So we are now A eating this SYN|ACK, ACK test passes.  So
757 	   does sequence test, SYN is truncated, and thus we consider
758 	   it a bare ACK.
759 
760 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
761 	   bare ACK.  Otherwise, we create an established connection.  Both
762 	   ends (listening sockets) accept the new incoming connection and try
763 	   to talk to each other. 8-)
764 
765 	   Note: This case is both harmless, and rare.  Possibility is about the
766 	   same as us discovering intelligent life on another plant tomorrow.
767 
768 	   But generally, we should (RFC lies!) to accept ACK
769 	   from SYNACK both here and in tcp_rcv_state_process().
770 	   tcp_rcv_state_process() does not, hence, we do not too.
771 
772 	   Note that the case is absolutely generic:
773 	   we cannot optimize anything here without
774 	   violating protocol. All the checks must be made
775 	   before attempt to create socket.
776 	 */
777 
778 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
779 	 *                  and the incoming segment acknowledges something not yet
780 	 *                  sent (the segment carries an unacceptable ACK) ...
781 	 *                  a reset is sent."
782 	 *
783 	 * Invalid ACK: reset will be sent by listening socket.
784 	 * Note that the ACK validity check for a Fast Open socket is done
785 	 * elsewhere and is checked directly against the child socket rather
786 	 * than req because user data may have been sent out.
787 	 */
788 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
789 	    (TCP_SKB_CB(skb)->ack_seq !=
790 	     tcp_rsk(req)->snt_isn + 1))
791 		return sk;
792 
793 	/* RFC793: "first check sequence number". */
794 
795 	if (paws_reject || tsecr_reject ||
796 	    !tcp_in_window(TCP_SKB_CB(skb)->seq,
797 			   TCP_SKB_CB(skb)->end_seq,
798 			   tcp_rsk(req)->rcv_nxt,
799 			   tcp_rsk(req)->rcv_nxt +
800 			   tcp_synack_window(req))) {
801 		/* Out of window: send ACK and drop. */
802 		if (!(flg & TCP_FLAG_RST) &&
803 		    !tcp_oow_rate_limited(sock_net(sk), skb,
804 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
805 					  &tcp_rsk(req)->last_oow_ack_time))
806 			req->rsk_ops->send_ack(sk, skb, req);
807 		if (paws_reject) {
808 			SKB_DR_SET(*drop_reason, TCP_RFC7323_PAWS);
809 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
810 		} else if (tsecr_reject) {
811 			SKB_DR_SET(*drop_reason, TCP_RFC7323_TSECR);
812 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TSECRREJECTED);
813 		} else {
814 			SKB_DR_SET(*drop_reason, TCP_OVERWINDOW);
815 		}
816 		return NULL;
817 	}
818 
819 	/* In sequence, PAWS is OK. */
820 
821 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
822 		/* Truncate SYN, it is out of window starting
823 		   at tcp_rsk(req)->rcv_isn + 1. */
824 		flg &= ~TCP_FLAG_SYN;
825 	}
826 
827 	/* RFC793: "second check the RST bit" and
828 	 *	   "fourth, check the SYN bit"
829 	 */
830 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
831 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
832 		goto embryonic_reset;
833 	}
834 
835 	/* ACK sequence verified above, just make sure ACK is
836 	 * set.  If ACK not set, just silently drop the packet.
837 	 *
838 	 * XXX (TFO) - if we ever allow "data after SYN", the
839 	 * following check needs to be removed.
840 	 */
841 	if (!(flg & TCP_FLAG_ACK))
842 		return NULL;
843 
844 	/* For Fast Open no more processing is needed (sk is the
845 	 * child socket).
846 	 */
847 	if (fastopen)
848 		return sk;
849 
850 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
851 	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
852 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
853 		inet_rsk(req)->acked = 1;
854 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
855 		return NULL;
856 	}
857 
858 	/* OK, ACK is valid, create big socket and
859 	 * feed this segment to it. It will repeat all
860 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
861 	 * ESTABLISHED STATE. If it will be dropped after
862 	 * socket is created, wait for troubles.
863 	 */
864 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
865 							 req, &own_req);
866 	if (!child)
867 		goto listen_overflow;
868 
869 	if (own_req && tmp_opt.saw_tstamp &&
870 	    !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
871 		tcp_sk(child)->rx_opt.ts_recent = tmp_opt.rcv_tsval;
872 
873 	if (own_req && rsk_drop_req(req)) {
874 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
875 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
876 		return child;
877 	}
878 
879 	sock_rps_save_rxhash(child, skb);
880 	tcp_synack_rtt_meas(child, req);
881 	*req_stolen = !own_req;
882 	return inet_csk_complete_hashdance(sk, child, req, own_req);
883 
884 listen_overflow:
885 	SKB_DR_SET(*drop_reason, TCP_LISTEN_OVERFLOW);
886 	if (sk != req->rsk_listener)
887 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
888 
889 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
890 		inet_rsk(req)->acked = 1;
891 		return NULL;
892 	}
893 
894 embryonic_reset:
895 	if (!(flg & TCP_FLAG_RST)) {
896 		/* Received a bad SYN pkt - for TFO We try not to reset
897 		 * the local connection unless it's really necessary to
898 		 * avoid becoming vulnerable to outside attack aiming at
899 		 * resetting legit local connections.
900 		 */
901 		req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
902 	} else if (fastopen) { /* received a valid RST pkt */
903 		reqsk_fastopen_remove(sk, req, true);
904 		tcp_reset(sk, skb);
905 	}
906 	if (!fastopen) {
907 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
908 
909 		if (unlinked)
910 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
911 		*req_stolen = !unlinked;
912 	}
913 	return NULL;
914 }
915 EXPORT_IPV6_MOD(tcp_check_req);
916 
917 /*
918  * Queue segment on the new socket if the new socket is active,
919  * otherwise we just shortcircuit this and continue with
920  * the new socket.
921  *
922  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
923  * when entering. But other states are possible due to a race condition
924  * where after __inet_lookup_established() fails but before the listener
925  * locked is obtained, other packets cause the same connection to
926  * be created.
927  */
928 
929 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
930 				       struct sk_buff *skb)
931 	__releases(&((child)->sk_lock.slock))
932 {
933 	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
934 	int state = child->sk_state;
935 
936 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
937 	sk_mark_napi_id_set(child, skb);
938 
939 	tcp_segs_in(tcp_sk(child), skb);
940 	if (!sock_owned_by_user(child)) {
941 		reason = tcp_rcv_state_process(child, skb);
942 		/* Wakeup parent, send SIGIO */
943 		if (state == TCP_SYN_RECV && child->sk_state != state)
944 			parent->sk_data_ready(parent);
945 	} else {
946 		/* Alas, it is possible again, because we do lookup
947 		 * in main socket hash table and lock on listening
948 		 * socket does not protect us more.
949 		 */
950 		__sk_add_backlog(child, skb);
951 	}
952 
953 	bh_unlock_sock(child);
954 	sock_put(child);
955 	return reason;
956 }
957 EXPORT_IPV6_MOD(tcp_child_process);
958