xref: /linux/net/ipv4/tcp_minisocks.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_abort_on_overflow __read_mostly;
31 
32 struct inet_timewait_death_row tcp_death_row = {
33 	.sysctl_max_tw_buckets = NR_FILE * 2,
34 	.hashinfo	= &tcp_hashinfo,
35 };
36 EXPORT_SYMBOL_GPL(tcp_death_row);
37 
38 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
39 {
40 	if (seq == s_win)
41 		return true;
42 	if (after(end_seq, s_win) && before(seq, e_win))
43 		return true;
44 	return seq == e_win && seq == end_seq;
45 }
46 
47 static enum tcp_tw_status
48 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
49 				  const struct sk_buff *skb, int mib_idx)
50 {
51 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
52 
53 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
54 				  &tcptw->tw_last_oow_ack_time)) {
55 		/* Send ACK. Note, we do not put the bucket,
56 		 * it will be released by caller.
57 		 */
58 		return TCP_TW_ACK;
59 	}
60 
61 	/* We are rate-limiting, so just release the tw sock and drop skb. */
62 	inet_twsk_put(tw);
63 	return TCP_TW_SUCCESS;
64 }
65 
66 /*
67  * * Main purpose of TIME-WAIT state is to close connection gracefully,
68  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
69  *   (and, probably, tail of data) and one or more our ACKs are lost.
70  * * What is TIME-WAIT timeout? It is associated with maximal packet
71  *   lifetime in the internet, which results in wrong conclusion, that
72  *   it is set to catch "old duplicate segments" wandering out of their path.
73  *   It is not quite correct. This timeout is calculated so that it exceeds
74  *   maximal retransmission timeout enough to allow to lose one (or more)
75  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
76  * * When TIME-WAIT socket receives RST, it means that another end
77  *   finally closed and we are allowed to kill TIME-WAIT too.
78  * * Second purpose of TIME-WAIT is catching old duplicate segments.
79  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
80  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
81  * * If we invented some more clever way to catch duplicates
82  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
83  *
84  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
85  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
86  * from the very beginning.
87  *
88  * NOTE. With recycling (and later with fin-wait-2) TW bucket
89  * is _not_ stateless. It means, that strictly speaking we must
90  * spinlock it. I do not want! Well, probability of misbehaviour
91  * is ridiculously low and, seems, we could use some mb() tricks
92  * to avoid misread sequence numbers, states etc.  --ANK
93  *
94  * We don't need to initialize tmp_out.sack_ok as we don't use the results
95  */
96 enum tcp_tw_status
97 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
98 			   const struct tcphdr *th)
99 {
100 	struct tcp_options_received tmp_opt;
101 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102 	bool paws_reject = false;
103 
104 	tmp_opt.saw_tstamp = 0;
105 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
107 
108 		if (tmp_opt.saw_tstamp) {
109 			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
110 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
111 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
112 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
113 		}
114 	}
115 
116 	if (tw->tw_substate == TCP_FIN_WAIT2) {
117 		/* Just repeat all the checks of tcp_rcv_state_process() */
118 
119 		/* Out of window, send ACK */
120 		if (paws_reject ||
121 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
122 				   tcptw->tw_rcv_nxt,
123 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
124 			return tcp_timewait_check_oow_rate_limit(
125 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
126 
127 		if (th->rst)
128 			goto kill;
129 
130 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
131 			return TCP_TW_RST;
132 
133 		/* Dup ACK? */
134 		if (!th->ack ||
135 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
136 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
137 			inet_twsk_put(tw);
138 			return TCP_TW_SUCCESS;
139 		}
140 
141 		/* New data or FIN. If new data arrive after half-duplex close,
142 		 * reset.
143 		 */
144 		if (!th->fin ||
145 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
146 			return TCP_TW_RST;
147 
148 		/* FIN arrived, enter true time-wait state. */
149 		tw->tw_substate	  = TCP_TIME_WAIT;
150 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
151 		if (tmp_opt.saw_tstamp) {
152 			tcptw->tw_ts_recent_stamp = get_seconds();
153 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
154 		}
155 
156 		if (tcp_death_row.sysctl_tw_recycle &&
157 		    tcptw->tw_ts_recent_stamp &&
158 		    tcp_tw_remember_stamp(tw))
159 			inet_twsk_reschedule(tw, tw->tw_timeout);
160 		else
161 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
162 		return TCP_TW_ACK;
163 	}
164 
165 	/*
166 	 *	Now real TIME-WAIT state.
167 	 *
168 	 *	RFC 1122:
169 	 *	"When a connection is [...] on TIME-WAIT state [...]
170 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171 	 *	reopen the connection directly, if it:
172 	 *
173 	 *	(1)  assigns its initial sequence number for the new
174 	 *	connection to be larger than the largest sequence
175 	 *	number it used on the previous connection incarnation,
176 	 *	and
177 	 *
178 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179 	 *	to be an old duplicate".
180 	 */
181 
182 	if (!paws_reject &&
183 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185 		/* In window segment, it may be only reset or bare ack. */
186 
187 		if (th->rst) {
188 			/* This is TIME_WAIT assassination, in two flavors.
189 			 * Oh well... nobody has a sufficient solution to this
190 			 * protocol bug yet.
191 			 */
192 			if (sysctl_tcp_rfc1337 == 0) {
193 kill:
194 				inet_twsk_deschedule_put(tw);
195 				return TCP_TW_SUCCESS;
196 			}
197 		}
198 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
199 
200 		if (tmp_opt.saw_tstamp) {
201 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
202 			tcptw->tw_ts_recent_stamp = get_seconds();
203 		}
204 
205 		inet_twsk_put(tw);
206 		return TCP_TW_SUCCESS;
207 	}
208 
209 	/* Out of window segment.
210 
211 	   All the segments are ACKed immediately.
212 
213 	   The only exception is new SYN. We accept it, if it is
214 	   not old duplicate and we are not in danger to be killed
215 	   by delayed old duplicates. RFC check is that it has
216 	   newer sequence number works at rates <40Mbit/sec.
217 	   However, if paws works, it is reliable AND even more,
218 	   we even may relax silly seq space cutoff.
219 
220 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
221 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
222 	   we must return socket to time-wait state. It is not good,
223 	   but not fatal yet.
224 	 */
225 
226 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
227 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228 	     (tmp_opt.saw_tstamp &&
229 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231 		if (isn == 0)
232 			isn++;
233 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
234 		return TCP_TW_SYN;
235 	}
236 
237 	if (paws_reject)
238 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239 
240 	if (!th->rst) {
241 		/* In this case we must reset the TIMEWAIT timer.
242 		 *
243 		 * If it is ACKless SYN it may be both old duplicate
244 		 * and new good SYN with random sequence number <rcv_nxt.
245 		 * Do not reschedule in the last case.
246 		 */
247 		if (paws_reject || th->ack)
248 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
249 
250 		return tcp_timewait_check_oow_rate_limit(
251 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
252 	}
253 	inet_twsk_put(tw);
254 	return TCP_TW_SUCCESS;
255 }
256 EXPORT_SYMBOL(tcp_timewait_state_process);
257 
258 /*
259  * Move a socket to time-wait or dead fin-wait-2 state.
260  */
261 void tcp_time_wait(struct sock *sk, int state, int timeo)
262 {
263 	const struct inet_connection_sock *icsk = inet_csk(sk);
264 	const struct tcp_sock *tp = tcp_sk(sk);
265 	struct inet_timewait_sock *tw;
266 	bool recycle_ok = false;
267 
268 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
269 		recycle_ok = tcp_remember_stamp(sk);
270 
271 	tw = inet_twsk_alloc(sk, &tcp_death_row, state);
272 
273 	if (tw) {
274 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
275 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
276 		struct inet_sock *inet = inet_sk(sk);
277 
278 		tw->tw_transparent	= inet->transparent;
279 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
280 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
281 		tcptw->tw_snd_nxt	= tp->snd_nxt;
282 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
283 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
284 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
285 		tcptw->tw_ts_offset	= tp->tsoffset;
286 		tcptw->tw_last_oow_ack_time = 0;
287 
288 #if IS_ENABLED(CONFIG_IPV6)
289 		if (tw->tw_family == PF_INET6) {
290 			struct ipv6_pinfo *np = inet6_sk(sk);
291 
292 			tw->tw_v6_daddr = sk->sk_v6_daddr;
293 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
294 			tw->tw_tclass = np->tclass;
295 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
296 			tw->tw_ipv6only = sk->sk_ipv6only;
297 		}
298 #endif
299 
300 #ifdef CONFIG_TCP_MD5SIG
301 		/*
302 		 * The timewait bucket does not have the key DB from the
303 		 * sock structure. We just make a quick copy of the
304 		 * md5 key being used (if indeed we are using one)
305 		 * so the timewait ack generating code has the key.
306 		 */
307 		do {
308 			struct tcp_md5sig_key *key;
309 			tcptw->tw_md5_key = NULL;
310 			key = tp->af_specific->md5_lookup(sk, sk);
311 			if (key) {
312 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
313 				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
314 					BUG();
315 			}
316 		} while (0);
317 #endif
318 
319 		/* Get the TIME_WAIT timeout firing. */
320 		if (timeo < rto)
321 			timeo = rto;
322 
323 		if (recycle_ok) {
324 			tw->tw_timeout = rto;
325 		} else {
326 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
327 			if (state == TCP_TIME_WAIT)
328 				timeo = TCP_TIMEWAIT_LEN;
329 		}
330 
331 		inet_twsk_schedule(tw, timeo);
332 		/* Linkage updates. */
333 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
334 		inet_twsk_put(tw);
335 	} else {
336 		/* Sorry, if we're out of memory, just CLOSE this
337 		 * socket up.  We've got bigger problems than
338 		 * non-graceful socket closings.
339 		 */
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
341 	}
342 
343 	tcp_update_metrics(sk);
344 	tcp_done(sk);
345 }
346 
347 void tcp_twsk_destructor(struct sock *sk)
348 {
349 #ifdef CONFIG_TCP_MD5SIG
350 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
351 
352 	if (twsk->tw_md5_key)
353 		kfree_rcu(twsk->tw_md5_key, rcu);
354 #endif
355 }
356 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
357 
358 /* Warning : This function is called without sk_listener being locked.
359  * Be sure to read socket fields once, as their value could change under us.
360  */
361 void tcp_openreq_init_rwin(struct request_sock *req,
362 			   const struct sock *sk_listener,
363 			   const struct dst_entry *dst)
364 {
365 	struct inet_request_sock *ireq = inet_rsk(req);
366 	const struct tcp_sock *tp = tcp_sk(sk_listener);
367 	u16 user_mss = READ_ONCE(tp->rx_opt.user_mss);
368 	int full_space = tcp_full_space(sk_listener);
369 	int mss = dst_metric_advmss(dst);
370 	u32 window_clamp;
371 	__u8 rcv_wscale;
372 
373 	if (user_mss && user_mss < mss)
374 		mss = user_mss;
375 
376 	window_clamp = READ_ONCE(tp->window_clamp);
377 	/* Set this up on the first call only */
378 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
379 
380 	/* limit the window selection if the user enforce a smaller rx buffer */
381 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
382 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
383 		req->rsk_window_clamp = full_space;
384 
385 	/* tcp_full_space because it is guaranteed to be the first packet */
386 	tcp_select_initial_window(full_space,
387 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
388 		&req->rsk_rcv_wnd,
389 		&req->rsk_window_clamp,
390 		ireq->wscale_ok,
391 		&rcv_wscale,
392 		dst_metric(dst, RTAX_INITRWND));
393 	ireq->rcv_wscale = rcv_wscale;
394 }
395 EXPORT_SYMBOL(tcp_openreq_init_rwin);
396 
397 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
398 				  const struct request_sock *req)
399 {
400 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
401 }
402 
403 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
404 {
405 	struct inet_connection_sock *icsk = inet_csk(sk);
406 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
407 	bool ca_got_dst = false;
408 
409 	if (ca_key != TCP_CA_UNSPEC) {
410 		const struct tcp_congestion_ops *ca;
411 
412 		rcu_read_lock();
413 		ca = tcp_ca_find_key(ca_key);
414 		if (likely(ca && try_module_get(ca->owner))) {
415 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
416 			icsk->icsk_ca_ops = ca;
417 			ca_got_dst = true;
418 		}
419 		rcu_read_unlock();
420 	}
421 
422 	/* If no valid choice made yet, assign current system default ca. */
423 	if (!ca_got_dst &&
424 	    (!icsk->icsk_ca_setsockopt ||
425 	     !try_module_get(icsk->icsk_ca_ops->owner)))
426 		tcp_assign_congestion_control(sk);
427 
428 	tcp_set_ca_state(sk, TCP_CA_Open);
429 }
430 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
431 
432 /* This is not only more efficient than what we used to do, it eliminates
433  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
434  *
435  * Actually, we could lots of memory writes here. tp of listening
436  * socket contains all necessary default parameters.
437  */
438 struct sock *tcp_create_openreq_child(const struct sock *sk,
439 				      struct request_sock *req,
440 				      struct sk_buff *skb)
441 {
442 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
443 
444 	if (newsk) {
445 		const struct inet_request_sock *ireq = inet_rsk(req);
446 		struct tcp_request_sock *treq = tcp_rsk(req);
447 		struct inet_connection_sock *newicsk = inet_csk(newsk);
448 		struct tcp_sock *newtp = tcp_sk(newsk);
449 
450 		/* Now setup tcp_sock */
451 		newtp->pred_flags = 0;
452 
453 		newtp->rcv_wup = newtp->copied_seq =
454 		newtp->rcv_nxt = treq->rcv_isn + 1;
455 		newtp->segs_in = 1;
456 
457 		newtp->snd_sml = newtp->snd_una =
458 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
459 
460 		tcp_prequeue_init(newtp);
461 		INIT_LIST_HEAD(&newtp->tsq_node);
462 
463 		tcp_init_wl(newtp, treq->rcv_isn);
464 
465 		newtp->srtt_us = 0;
466 		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
467 		minmax_reset(&newtp->rtt_min, tcp_time_stamp, ~0U);
468 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
469 
470 		newtp->packets_out = 0;
471 		newtp->retrans_out = 0;
472 		newtp->sacked_out = 0;
473 		newtp->fackets_out = 0;
474 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
475 		tcp_enable_early_retrans(newtp);
476 		newtp->tlp_high_seq = 0;
477 		newtp->lsndtime = treq->snt_synack.stamp_jiffies;
478 		newsk->sk_txhash = treq->txhash;
479 		newtp->last_oow_ack_time = 0;
480 		newtp->total_retrans = req->num_retrans;
481 
482 		/* So many TCP implementations out there (incorrectly) count the
483 		 * initial SYN frame in their delayed-ACK and congestion control
484 		 * algorithms that we must have the following bandaid to talk
485 		 * efficiently to them.  -DaveM
486 		 */
487 		newtp->snd_cwnd = TCP_INIT_CWND;
488 		newtp->snd_cwnd_cnt = 0;
489 
490 		/* There's a bubble in the pipe until at least the first ACK. */
491 		newtp->app_limited = ~0U;
492 
493 		tcp_init_xmit_timers(newsk);
494 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
495 
496 		newtp->rx_opt.saw_tstamp = 0;
497 
498 		newtp->rx_opt.dsack = 0;
499 		newtp->rx_opt.num_sacks = 0;
500 
501 		newtp->urg_data = 0;
502 
503 		if (sock_flag(newsk, SOCK_KEEPOPEN))
504 			inet_csk_reset_keepalive_timer(newsk,
505 						       keepalive_time_when(newtp));
506 
507 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
508 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
509 			if (sysctl_tcp_fack)
510 				tcp_enable_fack(newtp);
511 		}
512 		newtp->window_clamp = req->rsk_window_clamp;
513 		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
514 		newtp->rcv_wnd = req->rsk_rcv_wnd;
515 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
516 		if (newtp->rx_opt.wscale_ok) {
517 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
518 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
519 		} else {
520 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
521 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
522 		}
523 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
524 				  newtp->rx_opt.snd_wscale);
525 		newtp->max_window = newtp->snd_wnd;
526 
527 		if (newtp->rx_opt.tstamp_ok) {
528 			newtp->rx_opt.ts_recent = req->ts_recent;
529 			newtp->rx_opt.ts_recent_stamp = get_seconds();
530 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
531 		} else {
532 			newtp->rx_opt.ts_recent_stamp = 0;
533 			newtp->tcp_header_len = sizeof(struct tcphdr);
534 		}
535 		newtp->tsoffset = treq->ts_off;
536 #ifdef CONFIG_TCP_MD5SIG
537 		newtp->md5sig_info = NULL;	/*XXX*/
538 		if (newtp->af_specific->md5_lookup(sk, newsk))
539 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
540 #endif
541 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
542 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
543 		newtp->rx_opt.mss_clamp = req->mss;
544 		tcp_ecn_openreq_child(newtp, req);
545 		newtp->fastopen_rsk = NULL;
546 		newtp->syn_data_acked = 0;
547 		newtp->rack.mstamp.v64 = 0;
548 		newtp->rack.advanced = 0;
549 
550 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
551 	}
552 	return newsk;
553 }
554 EXPORT_SYMBOL(tcp_create_openreq_child);
555 
556 /*
557  * Process an incoming packet for SYN_RECV sockets represented as a
558  * request_sock. Normally sk is the listener socket but for TFO it
559  * points to the child socket.
560  *
561  * XXX (TFO) - The current impl contains a special check for ack
562  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
563  *
564  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
565  */
566 
567 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
568 			   struct request_sock *req,
569 			   bool fastopen)
570 {
571 	struct tcp_options_received tmp_opt;
572 	struct sock *child;
573 	const struct tcphdr *th = tcp_hdr(skb);
574 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
575 	bool paws_reject = false;
576 	bool own_req;
577 
578 	tmp_opt.saw_tstamp = 0;
579 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
580 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
581 
582 		if (tmp_opt.saw_tstamp) {
583 			tmp_opt.ts_recent = req->ts_recent;
584 			if (tmp_opt.rcv_tsecr)
585 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
586 			/* We do not store true stamp, but it is not required,
587 			 * it can be estimated (approximately)
588 			 * from another data.
589 			 */
590 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
591 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
592 		}
593 	}
594 
595 	/* Check for pure retransmitted SYN. */
596 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
597 	    flg == TCP_FLAG_SYN &&
598 	    !paws_reject) {
599 		/*
600 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
601 		 * this case on figure 6 and figure 8, but formal
602 		 * protocol description says NOTHING.
603 		 * To be more exact, it says that we should send ACK,
604 		 * because this segment (at least, if it has no data)
605 		 * is out of window.
606 		 *
607 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
608 		 *  describe SYN-RECV state. All the description
609 		 *  is wrong, we cannot believe to it and should
610 		 *  rely only on common sense and implementation
611 		 *  experience.
612 		 *
613 		 * Enforce "SYN-ACK" according to figure 8, figure 6
614 		 * of RFC793, fixed by RFC1122.
615 		 *
616 		 * Note that even if there is new data in the SYN packet
617 		 * they will be thrown away too.
618 		 *
619 		 * Reset timer after retransmitting SYNACK, similar to
620 		 * the idea of fast retransmit in recovery.
621 		 */
622 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
623 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
624 					  &tcp_rsk(req)->last_oow_ack_time) &&
625 
626 		    !inet_rtx_syn_ack(sk, req)) {
627 			unsigned long expires = jiffies;
628 
629 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
630 				       TCP_RTO_MAX);
631 			if (!fastopen)
632 				mod_timer_pending(&req->rsk_timer, expires);
633 			else
634 				req->rsk_timer.expires = expires;
635 		}
636 		return NULL;
637 	}
638 
639 	/* Further reproduces section "SEGMENT ARRIVES"
640 	   for state SYN-RECEIVED of RFC793.
641 	   It is broken, however, it does not work only
642 	   when SYNs are crossed.
643 
644 	   You would think that SYN crossing is impossible here, since
645 	   we should have a SYN_SENT socket (from connect()) on our end,
646 	   but this is not true if the crossed SYNs were sent to both
647 	   ends by a malicious third party.  We must defend against this,
648 	   and to do that we first verify the ACK (as per RFC793, page
649 	   36) and reset if it is invalid.  Is this a true full defense?
650 	   To convince ourselves, let us consider a way in which the ACK
651 	   test can still pass in this 'malicious crossed SYNs' case.
652 	   Malicious sender sends identical SYNs (and thus identical sequence
653 	   numbers) to both A and B:
654 
655 		A: gets SYN, seq=7
656 		B: gets SYN, seq=7
657 
658 	   By our good fortune, both A and B select the same initial
659 	   send sequence number of seven :-)
660 
661 		A: sends SYN|ACK, seq=7, ack_seq=8
662 		B: sends SYN|ACK, seq=7, ack_seq=8
663 
664 	   So we are now A eating this SYN|ACK, ACK test passes.  So
665 	   does sequence test, SYN is truncated, and thus we consider
666 	   it a bare ACK.
667 
668 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
669 	   bare ACK.  Otherwise, we create an established connection.  Both
670 	   ends (listening sockets) accept the new incoming connection and try
671 	   to talk to each other. 8-)
672 
673 	   Note: This case is both harmless, and rare.  Possibility is about the
674 	   same as us discovering intelligent life on another plant tomorrow.
675 
676 	   But generally, we should (RFC lies!) to accept ACK
677 	   from SYNACK both here and in tcp_rcv_state_process().
678 	   tcp_rcv_state_process() does not, hence, we do not too.
679 
680 	   Note that the case is absolutely generic:
681 	   we cannot optimize anything here without
682 	   violating protocol. All the checks must be made
683 	   before attempt to create socket.
684 	 */
685 
686 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
687 	 *                  and the incoming segment acknowledges something not yet
688 	 *                  sent (the segment carries an unacceptable ACK) ...
689 	 *                  a reset is sent."
690 	 *
691 	 * Invalid ACK: reset will be sent by listening socket.
692 	 * Note that the ACK validity check for a Fast Open socket is done
693 	 * elsewhere and is checked directly against the child socket rather
694 	 * than req because user data may have been sent out.
695 	 */
696 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
697 	    (TCP_SKB_CB(skb)->ack_seq !=
698 	     tcp_rsk(req)->snt_isn + 1))
699 		return sk;
700 
701 	/* Also, it would be not so bad idea to check rcv_tsecr, which
702 	 * is essentially ACK extension and too early or too late values
703 	 * should cause reset in unsynchronized states.
704 	 */
705 
706 	/* RFC793: "first check sequence number". */
707 
708 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
709 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
710 		/* Out of window: send ACK and drop. */
711 		if (!(flg & TCP_FLAG_RST) &&
712 		    !tcp_oow_rate_limited(sock_net(sk), skb,
713 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
714 					  &tcp_rsk(req)->last_oow_ack_time))
715 			req->rsk_ops->send_ack(sk, skb, req);
716 		if (paws_reject)
717 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
718 		return NULL;
719 	}
720 
721 	/* In sequence, PAWS is OK. */
722 
723 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
724 		req->ts_recent = tmp_opt.rcv_tsval;
725 
726 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
727 		/* Truncate SYN, it is out of window starting
728 		   at tcp_rsk(req)->rcv_isn + 1. */
729 		flg &= ~TCP_FLAG_SYN;
730 	}
731 
732 	/* RFC793: "second check the RST bit" and
733 	 *	   "fourth, check the SYN bit"
734 	 */
735 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
736 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
737 		goto embryonic_reset;
738 	}
739 
740 	/* ACK sequence verified above, just make sure ACK is
741 	 * set.  If ACK not set, just silently drop the packet.
742 	 *
743 	 * XXX (TFO) - if we ever allow "data after SYN", the
744 	 * following check needs to be removed.
745 	 */
746 	if (!(flg & TCP_FLAG_ACK))
747 		return NULL;
748 
749 	/* For Fast Open no more processing is needed (sk is the
750 	 * child socket).
751 	 */
752 	if (fastopen)
753 		return sk;
754 
755 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
756 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
757 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
758 		inet_rsk(req)->acked = 1;
759 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
760 		return NULL;
761 	}
762 
763 	/* OK, ACK is valid, create big socket and
764 	 * feed this segment to it. It will repeat all
765 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
766 	 * ESTABLISHED STATE. If it will be dropped after
767 	 * socket is created, wait for troubles.
768 	 */
769 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
770 							 req, &own_req);
771 	if (!child)
772 		goto listen_overflow;
773 
774 	sock_rps_save_rxhash(child, skb);
775 	tcp_synack_rtt_meas(child, req);
776 	return inet_csk_complete_hashdance(sk, child, req, own_req);
777 
778 listen_overflow:
779 	if (!sysctl_tcp_abort_on_overflow) {
780 		inet_rsk(req)->acked = 1;
781 		return NULL;
782 	}
783 
784 embryonic_reset:
785 	if (!(flg & TCP_FLAG_RST)) {
786 		/* Received a bad SYN pkt - for TFO We try not to reset
787 		 * the local connection unless it's really necessary to
788 		 * avoid becoming vulnerable to outside attack aiming at
789 		 * resetting legit local connections.
790 		 */
791 		req->rsk_ops->send_reset(sk, skb);
792 	} else if (fastopen) { /* received a valid RST pkt */
793 		reqsk_fastopen_remove(sk, req, true);
794 		tcp_reset(sk);
795 	}
796 	if (!fastopen) {
797 		inet_csk_reqsk_queue_drop(sk, req);
798 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
799 	}
800 	return NULL;
801 }
802 EXPORT_SYMBOL(tcp_check_req);
803 
804 /*
805  * Queue segment on the new socket if the new socket is active,
806  * otherwise we just shortcircuit this and continue with
807  * the new socket.
808  *
809  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
810  * when entering. But other states are possible due to a race condition
811  * where after __inet_lookup_established() fails but before the listener
812  * locked is obtained, other packets cause the same connection to
813  * be created.
814  */
815 
816 int tcp_child_process(struct sock *parent, struct sock *child,
817 		      struct sk_buff *skb)
818 {
819 	int ret = 0;
820 	int state = child->sk_state;
821 
822 	tcp_segs_in(tcp_sk(child), skb);
823 	if (!sock_owned_by_user(child)) {
824 		ret = tcp_rcv_state_process(child, skb);
825 		/* Wakeup parent, send SIGIO */
826 		if (state == TCP_SYN_RECV && child->sk_state != state)
827 			parent->sk_data_ready(parent);
828 	} else {
829 		/* Alas, it is possible again, because we do lookup
830 		 * in main socket hash table and lock on listening
831 		 * socket does not protect us more.
832 		 */
833 		__sk_add_backlog(child, skb);
834 	}
835 
836 	bh_unlock_sock(child);
837 	sock_put(child);
838 	return ret;
839 }
840 EXPORT_SYMBOL(tcp_child_process);
841