xref: /linux/net/ipv4/tcp_minisocks.c (revision 2bd87951de659df3381ce083342aaf5b1ea24689)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <net/tcp.h>
23 #include <net/xfrm.h>
24 #include <net/busy_poll.h>
25 
26 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
27 {
28 	if (seq == s_win)
29 		return true;
30 	if (after(end_seq, s_win) && before(seq, e_win))
31 		return true;
32 	return seq == e_win && seq == end_seq;
33 }
34 
35 static enum tcp_tw_status
36 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
37 				  const struct sk_buff *skb, int mib_idx)
38 {
39 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
40 
41 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
42 				  &tcptw->tw_last_oow_ack_time)) {
43 		/* Send ACK. Note, we do not put the bucket,
44 		 * it will be released by caller.
45 		 */
46 		return TCP_TW_ACK;
47 	}
48 
49 	/* We are rate-limiting, so just release the tw sock and drop skb. */
50 	inet_twsk_put(tw);
51 	return TCP_TW_SUCCESS;
52 }
53 
54 static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq)
55 {
56 #ifdef CONFIG_TCP_AO
57 	struct tcp_ao_info *ao;
58 
59 	ao = rcu_dereference(tcptw->ao_info);
60 	if (unlikely(ao && seq < tcptw->tw_rcv_nxt))
61 		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
62 #endif
63 	tcptw->tw_rcv_nxt = seq;
64 }
65 
66 /*
67  * * Main purpose of TIME-WAIT state is to close connection gracefully,
68  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
69  *   (and, probably, tail of data) and one or more our ACKs are lost.
70  * * What is TIME-WAIT timeout? It is associated with maximal packet
71  *   lifetime in the internet, which results in wrong conclusion, that
72  *   it is set to catch "old duplicate segments" wandering out of their path.
73  *   It is not quite correct. This timeout is calculated so that it exceeds
74  *   maximal retransmission timeout enough to allow to lose one (or more)
75  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
76  * * When TIME-WAIT socket receives RST, it means that another end
77  *   finally closed and we are allowed to kill TIME-WAIT too.
78  * * Second purpose of TIME-WAIT is catching old duplicate segments.
79  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
80  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
81  * * If we invented some more clever way to catch duplicates
82  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
83  *
84  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
85  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
86  * from the very beginning.
87  *
88  * NOTE. With recycling (and later with fin-wait-2) TW bucket
89  * is _not_ stateless. It means, that strictly speaking we must
90  * spinlock it. I do not want! Well, probability of misbehaviour
91  * is ridiculously low and, seems, we could use some mb() tricks
92  * to avoid misread sequence numbers, states etc.  --ANK
93  *
94  * We don't need to initialize tmp_out.sack_ok as we don't use the results
95  */
96 enum tcp_tw_status
97 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
98 			   const struct tcphdr *th, u32 *tw_isn)
99 {
100 	struct tcp_options_received tmp_opt;
101 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102 	bool paws_reject = false;
103 
104 	tmp_opt.saw_tstamp = 0;
105 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
107 
108 		if (tmp_opt.saw_tstamp) {
109 			if (tmp_opt.rcv_tsecr)
110 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
111 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
112 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
113 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
114 		}
115 	}
116 
117 	if (tw->tw_substate == TCP_FIN_WAIT2) {
118 		/* Just repeat all the checks of tcp_rcv_state_process() */
119 
120 		/* Out of window, send ACK */
121 		if (paws_reject ||
122 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
123 				   tcptw->tw_rcv_nxt,
124 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
125 			return tcp_timewait_check_oow_rate_limit(
126 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
127 
128 		if (th->rst)
129 			goto kill;
130 
131 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
132 			return TCP_TW_RST;
133 
134 		/* Dup ACK? */
135 		if (!th->ack ||
136 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
137 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
138 			inet_twsk_put(tw);
139 			return TCP_TW_SUCCESS;
140 		}
141 
142 		/* New data or FIN. If new data arrive after half-duplex close,
143 		 * reset.
144 		 */
145 		if (!th->fin ||
146 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
147 			return TCP_TW_RST;
148 
149 		/* FIN arrived, enter true time-wait state. */
150 		tw->tw_substate	  = TCP_TIME_WAIT;
151 		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq);
152 
153 		if (tmp_opt.saw_tstamp) {
154 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
155 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
156 		}
157 
158 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
159 		return TCP_TW_ACK;
160 	}
161 
162 	/*
163 	 *	Now real TIME-WAIT state.
164 	 *
165 	 *	RFC 1122:
166 	 *	"When a connection is [...] on TIME-WAIT state [...]
167 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
168 	 *	reopen the connection directly, if it:
169 	 *
170 	 *	(1)  assigns its initial sequence number for the new
171 	 *	connection to be larger than the largest sequence
172 	 *	number it used on the previous connection incarnation,
173 	 *	and
174 	 *
175 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
176 	 *	to be an old duplicate".
177 	 */
178 
179 	if (!paws_reject &&
180 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
181 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
182 		/* In window segment, it may be only reset or bare ack. */
183 
184 		if (th->rst) {
185 			/* This is TIME_WAIT assassination, in two flavors.
186 			 * Oh well... nobody has a sufficient solution to this
187 			 * protocol bug yet.
188 			 */
189 			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
190 kill:
191 				inet_twsk_deschedule_put(tw);
192 				return TCP_TW_SUCCESS;
193 			}
194 		} else {
195 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
196 		}
197 
198 		if (tmp_opt.saw_tstamp) {
199 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
200 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
201 		}
202 
203 		inet_twsk_put(tw);
204 		return TCP_TW_SUCCESS;
205 	}
206 
207 	/* Out of window segment.
208 
209 	   All the segments are ACKed immediately.
210 
211 	   The only exception is new SYN. We accept it, if it is
212 	   not old duplicate and we are not in danger to be killed
213 	   by delayed old duplicates. RFC check is that it has
214 	   newer sequence number works at rates <40Mbit/sec.
215 	   However, if paws works, it is reliable AND even more,
216 	   we even may relax silly seq space cutoff.
217 
218 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
219 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
220 	   we must return socket to time-wait state. It is not good,
221 	   but not fatal yet.
222 	 */
223 
224 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
225 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
226 	     (tmp_opt.saw_tstamp &&
227 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
228 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
229 		if (isn == 0)
230 			isn++;
231 		*tw_isn = isn;
232 		return TCP_TW_SYN;
233 	}
234 
235 	if (paws_reject)
236 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
237 
238 	if (!th->rst) {
239 		/* In this case we must reset the TIMEWAIT timer.
240 		 *
241 		 * If it is ACKless SYN it may be both old duplicate
242 		 * and new good SYN with random sequence number <rcv_nxt.
243 		 * Do not reschedule in the last case.
244 		 */
245 		if (paws_reject || th->ack)
246 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
247 
248 		return tcp_timewait_check_oow_rate_limit(
249 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
250 	}
251 	inet_twsk_put(tw);
252 	return TCP_TW_SUCCESS;
253 }
254 EXPORT_SYMBOL(tcp_timewait_state_process);
255 
256 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
257 {
258 #ifdef CONFIG_TCP_MD5SIG
259 	const struct tcp_sock *tp = tcp_sk(sk);
260 	struct tcp_md5sig_key *key;
261 
262 	/*
263 	 * The timewait bucket does not have the key DB from the
264 	 * sock structure. We just make a quick copy of the
265 	 * md5 key being used (if indeed we are using one)
266 	 * so the timewait ack generating code has the key.
267 	 */
268 	tcptw->tw_md5_key = NULL;
269 	if (!static_branch_unlikely(&tcp_md5_needed.key))
270 		return;
271 
272 	key = tp->af_specific->md5_lookup(sk, sk);
273 	if (key) {
274 		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
275 		if (!tcptw->tw_md5_key)
276 			return;
277 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
278 			goto out_free;
279 		tcp_md5_add_sigpool();
280 	}
281 	return;
282 out_free:
283 	WARN_ON_ONCE(1);
284 	kfree(tcptw->tw_md5_key);
285 	tcptw->tw_md5_key = NULL;
286 #endif
287 }
288 
289 /*
290  * Move a socket to time-wait or dead fin-wait-2 state.
291  */
292 void tcp_time_wait(struct sock *sk, int state, int timeo)
293 {
294 	const struct inet_connection_sock *icsk = inet_csk(sk);
295 	struct tcp_sock *tp = tcp_sk(sk);
296 	struct net *net = sock_net(sk);
297 	struct inet_timewait_sock *tw;
298 
299 	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
300 
301 	if (tw) {
302 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
303 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
304 
305 		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
306 		tw->tw_mark		= sk->sk_mark;
307 		tw->tw_priority		= READ_ONCE(sk->sk_priority);
308 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
309 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
310 		tcptw->tw_snd_nxt	= tp->snd_nxt;
311 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
312 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
313 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
314 		tcptw->tw_ts_offset	= tp->tsoffset;
315 		tw->tw_usec_ts		= tp->tcp_usec_ts;
316 		tcptw->tw_last_oow_ack_time = 0;
317 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
318 		tw->tw_txhash		= sk->sk_txhash;
319 #if IS_ENABLED(CONFIG_IPV6)
320 		if (tw->tw_family == PF_INET6) {
321 			struct ipv6_pinfo *np = inet6_sk(sk);
322 
323 			tw->tw_v6_daddr = sk->sk_v6_daddr;
324 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
325 			tw->tw_tclass = np->tclass;
326 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
327 			tw->tw_ipv6only = sk->sk_ipv6only;
328 		}
329 #endif
330 
331 		tcp_time_wait_init(sk, tcptw);
332 		tcp_ao_time_wait(tcptw, tp);
333 
334 		/* Get the TIME_WAIT timeout firing. */
335 		if (timeo < rto)
336 			timeo = rto;
337 
338 		if (state == TCP_TIME_WAIT)
339 			timeo = TCP_TIMEWAIT_LEN;
340 
341 		/* tw_timer is pinned, so we need to make sure BH are disabled
342 		 * in following section, otherwise timer handler could run before
343 		 * we complete the initialization.
344 		 */
345 		local_bh_disable();
346 		inet_twsk_schedule(tw, timeo);
347 		/* Linkage updates.
348 		 * Note that access to tw after this point is illegal.
349 		 */
350 		inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
351 		local_bh_enable();
352 	} else {
353 		/* Sorry, if we're out of memory, just CLOSE this
354 		 * socket up.  We've got bigger problems than
355 		 * non-graceful socket closings.
356 		 */
357 		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
358 	}
359 
360 	tcp_update_metrics(sk);
361 	tcp_done(sk);
362 }
363 EXPORT_SYMBOL(tcp_time_wait);
364 
365 #ifdef CONFIG_TCP_MD5SIG
366 static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
367 {
368 	struct tcp_md5sig_key *key;
369 
370 	key = container_of(head, struct tcp_md5sig_key, rcu);
371 	kfree(key);
372 	static_branch_slow_dec_deferred(&tcp_md5_needed);
373 	tcp_md5_release_sigpool();
374 }
375 #endif
376 
377 void tcp_twsk_destructor(struct sock *sk)
378 {
379 #ifdef CONFIG_TCP_MD5SIG
380 	if (static_branch_unlikely(&tcp_md5_needed.key)) {
381 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
382 
383 		if (twsk->tw_md5_key)
384 			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
385 	}
386 #endif
387 	tcp_ao_destroy_sock(sk, true);
388 }
389 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
390 
391 void tcp_twsk_purge(struct list_head *net_exit_list)
392 {
393 	bool purged_once = false;
394 	struct net *net;
395 
396 	list_for_each_entry(net, net_exit_list, exit_list) {
397 		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
398 			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
399 			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
400 		} else if (!purged_once) {
401 			inet_twsk_purge(&tcp_hashinfo);
402 			purged_once = true;
403 		}
404 	}
405 }
406 
407 /* Warning : This function is called without sk_listener being locked.
408  * Be sure to read socket fields once, as their value could change under us.
409  */
410 void tcp_openreq_init_rwin(struct request_sock *req,
411 			   const struct sock *sk_listener,
412 			   const struct dst_entry *dst)
413 {
414 	struct inet_request_sock *ireq = inet_rsk(req);
415 	const struct tcp_sock *tp = tcp_sk(sk_listener);
416 	int full_space = tcp_full_space(sk_listener);
417 	u32 window_clamp;
418 	__u8 rcv_wscale;
419 	u32 rcv_wnd;
420 	int mss;
421 
422 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
423 	window_clamp = READ_ONCE(tp->window_clamp);
424 	/* Set this up on the first call only */
425 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
426 
427 	/* limit the window selection if the user enforce a smaller rx buffer */
428 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
429 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
430 		req->rsk_window_clamp = full_space;
431 
432 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
433 	if (rcv_wnd == 0)
434 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
435 	else if (full_space < rcv_wnd * mss)
436 		full_space = rcv_wnd * mss;
437 
438 	/* tcp_full_space because it is guaranteed to be the first packet */
439 	tcp_select_initial_window(sk_listener, full_space,
440 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
441 		&req->rsk_rcv_wnd,
442 		&req->rsk_window_clamp,
443 		ireq->wscale_ok,
444 		&rcv_wscale,
445 		rcv_wnd);
446 	ireq->rcv_wscale = rcv_wscale;
447 }
448 EXPORT_SYMBOL(tcp_openreq_init_rwin);
449 
450 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
451 				  const struct request_sock *req)
452 {
453 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
454 }
455 
456 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
457 {
458 	struct inet_connection_sock *icsk = inet_csk(sk);
459 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
460 	bool ca_got_dst = false;
461 
462 	if (ca_key != TCP_CA_UNSPEC) {
463 		const struct tcp_congestion_ops *ca;
464 
465 		rcu_read_lock();
466 		ca = tcp_ca_find_key(ca_key);
467 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
468 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
469 			icsk->icsk_ca_ops = ca;
470 			ca_got_dst = true;
471 		}
472 		rcu_read_unlock();
473 	}
474 
475 	/* If no valid choice made yet, assign current system default ca. */
476 	if (!ca_got_dst &&
477 	    (!icsk->icsk_ca_setsockopt ||
478 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
479 		tcp_assign_congestion_control(sk);
480 
481 	tcp_set_ca_state(sk, TCP_CA_Open);
482 }
483 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
484 
485 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
486 				    struct request_sock *req,
487 				    struct tcp_sock *newtp)
488 {
489 #if IS_ENABLED(CONFIG_SMC)
490 	struct inet_request_sock *ireq;
491 
492 	if (static_branch_unlikely(&tcp_have_smc)) {
493 		ireq = inet_rsk(req);
494 		if (oldtp->syn_smc && !ireq->smc_ok)
495 			newtp->syn_smc = 0;
496 	}
497 #endif
498 }
499 
500 /* This is not only more efficient than what we used to do, it eliminates
501  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
502  *
503  * Actually, we could lots of memory writes here. tp of listening
504  * socket contains all necessary default parameters.
505  */
506 struct sock *tcp_create_openreq_child(const struct sock *sk,
507 				      struct request_sock *req,
508 				      struct sk_buff *skb)
509 {
510 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
511 	const struct inet_request_sock *ireq = inet_rsk(req);
512 	struct tcp_request_sock *treq = tcp_rsk(req);
513 	struct inet_connection_sock *newicsk;
514 	const struct tcp_sock *oldtp;
515 	struct tcp_sock *newtp;
516 	u32 seq;
517 #ifdef CONFIG_TCP_AO
518 	struct tcp_ao_key *ao_key;
519 #endif
520 
521 	if (!newsk)
522 		return NULL;
523 
524 	newicsk = inet_csk(newsk);
525 	newtp = tcp_sk(newsk);
526 	oldtp = tcp_sk(sk);
527 
528 	smc_check_reset_syn_req(oldtp, req, newtp);
529 
530 	/* Now setup tcp_sock */
531 	newtp->pred_flags = 0;
532 
533 	seq = treq->rcv_isn + 1;
534 	newtp->rcv_wup = seq;
535 	WRITE_ONCE(newtp->copied_seq, seq);
536 	WRITE_ONCE(newtp->rcv_nxt, seq);
537 	newtp->segs_in = 1;
538 
539 	seq = treq->snt_isn + 1;
540 	newtp->snd_sml = newtp->snd_una = seq;
541 	WRITE_ONCE(newtp->snd_nxt, seq);
542 	newtp->snd_up = seq;
543 
544 	INIT_LIST_HEAD(&newtp->tsq_node);
545 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
546 
547 	tcp_init_wl(newtp, treq->rcv_isn);
548 
549 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
550 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
551 
552 	newtp->lsndtime = tcp_jiffies32;
553 	newsk->sk_txhash = READ_ONCE(treq->txhash);
554 	newtp->total_retrans = req->num_retrans;
555 
556 	tcp_init_xmit_timers(newsk);
557 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
558 
559 	if (sock_flag(newsk, SOCK_KEEPOPEN))
560 		inet_csk_reset_keepalive_timer(newsk,
561 					       keepalive_time_when(newtp));
562 
563 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
564 	newtp->rx_opt.sack_ok = ireq->sack_ok;
565 	newtp->window_clamp = req->rsk_window_clamp;
566 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
567 	newtp->rcv_wnd = req->rsk_rcv_wnd;
568 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
569 	if (newtp->rx_opt.wscale_ok) {
570 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
571 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
572 	} else {
573 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
574 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
575 	}
576 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
577 	newtp->max_window = newtp->snd_wnd;
578 
579 	if (newtp->rx_opt.tstamp_ok) {
580 		newtp->tcp_usec_ts = treq->req_usec_ts;
581 		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
582 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
583 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
584 	} else {
585 		newtp->tcp_usec_ts = 0;
586 		newtp->rx_opt.ts_recent_stamp = 0;
587 		newtp->tcp_header_len = sizeof(struct tcphdr);
588 	}
589 	if (req->num_timeout) {
590 		newtp->total_rto = req->num_timeout;
591 		newtp->undo_marker = treq->snt_isn;
592 		if (newtp->tcp_usec_ts) {
593 			newtp->retrans_stamp = treq->snt_synack;
594 			newtp->total_rto_time = (u32)(tcp_clock_us() -
595 						      newtp->retrans_stamp) / USEC_PER_MSEC;
596 		} else {
597 			newtp->retrans_stamp = div_u64(treq->snt_synack,
598 						       USEC_PER_SEC / TCP_TS_HZ);
599 			newtp->total_rto_time = tcp_clock_ms() -
600 						newtp->retrans_stamp;
601 		}
602 		newtp->total_rto_recoveries = 1;
603 	}
604 	newtp->tsoffset = treq->ts_off;
605 #ifdef CONFIG_TCP_MD5SIG
606 	newtp->md5sig_info = NULL;	/*XXX*/
607 #endif
608 #ifdef CONFIG_TCP_AO
609 	newtp->ao_info = NULL;
610 	ao_key = treq->af_specific->ao_lookup(sk, req,
611 				tcp_rsk(req)->ao_keyid, -1);
612 	if (ao_key)
613 		newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
614  #endif
615 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
616 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
617 	newtp->rx_opt.mss_clamp = req->mss;
618 	tcp_ecn_openreq_child(newtp, req);
619 	newtp->fastopen_req = NULL;
620 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
621 
622 	newtp->bpf_chg_cc_inprogress = 0;
623 	tcp_bpf_clone(sk, newsk);
624 
625 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
626 
627 	return newsk;
628 }
629 EXPORT_SYMBOL(tcp_create_openreq_child);
630 
631 /*
632  * Process an incoming packet for SYN_RECV sockets represented as a
633  * request_sock. Normally sk is the listener socket but for TFO it
634  * points to the child socket.
635  *
636  * XXX (TFO) - The current impl contains a special check for ack
637  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
638  *
639  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
640  *
641  * Note: If @fastopen is true, this can be called from process context.
642  *       Otherwise, this is from BH context.
643  */
644 
645 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
646 			   struct request_sock *req,
647 			   bool fastopen, bool *req_stolen)
648 {
649 	struct tcp_options_received tmp_opt;
650 	struct sock *child;
651 	const struct tcphdr *th = tcp_hdr(skb);
652 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
653 	bool paws_reject = false;
654 	bool own_req;
655 
656 	tmp_opt.saw_tstamp = 0;
657 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
658 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
659 
660 		if (tmp_opt.saw_tstamp) {
661 			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
662 			if (tmp_opt.rcv_tsecr)
663 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
664 			/* We do not store true stamp, but it is not required,
665 			 * it can be estimated (approximately)
666 			 * from another data.
667 			 */
668 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
669 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
670 		}
671 	}
672 
673 	/* Check for pure retransmitted SYN. */
674 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
675 	    flg == TCP_FLAG_SYN &&
676 	    !paws_reject) {
677 		/*
678 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
679 		 * this case on figure 6 and figure 8, but formal
680 		 * protocol description says NOTHING.
681 		 * To be more exact, it says that we should send ACK,
682 		 * because this segment (at least, if it has no data)
683 		 * is out of window.
684 		 *
685 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
686 		 *  describe SYN-RECV state. All the description
687 		 *  is wrong, we cannot believe to it and should
688 		 *  rely only on common sense and implementation
689 		 *  experience.
690 		 *
691 		 * Enforce "SYN-ACK" according to figure 8, figure 6
692 		 * of RFC793, fixed by RFC1122.
693 		 *
694 		 * Note that even if there is new data in the SYN packet
695 		 * they will be thrown away too.
696 		 *
697 		 * Reset timer after retransmitting SYNACK, similar to
698 		 * the idea of fast retransmit in recovery.
699 		 */
700 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
701 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
702 					  &tcp_rsk(req)->last_oow_ack_time) &&
703 
704 		    !inet_rtx_syn_ack(sk, req)) {
705 			unsigned long expires = jiffies;
706 
707 			expires += reqsk_timeout(req, TCP_RTO_MAX);
708 			if (!fastopen)
709 				mod_timer_pending(&req->rsk_timer, expires);
710 			else
711 				req->rsk_timer.expires = expires;
712 		}
713 		return NULL;
714 	}
715 
716 	/* Further reproduces section "SEGMENT ARRIVES"
717 	   for state SYN-RECEIVED of RFC793.
718 	   It is broken, however, it does not work only
719 	   when SYNs are crossed.
720 
721 	   You would think that SYN crossing is impossible here, since
722 	   we should have a SYN_SENT socket (from connect()) on our end,
723 	   but this is not true if the crossed SYNs were sent to both
724 	   ends by a malicious third party.  We must defend against this,
725 	   and to do that we first verify the ACK (as per RFC793, page
726 	   36) and reset if it is invalid.  Is this a true full defense?
727 	   To convince ourselves, let us consider a way in which the ACK
728 	   test can still pass in this 'malicious crossed SYNs' case.
729 	   Malicious sender sends identical SYNs (and thus identical sequence
730 	   numbers) to both A and B:
731 
732 		A: gets SYN, seq=7
733 		B: gets SYN, seq=7
734 
735 	   By our good fortune, both A and B select the same initial
736 	   send sequence number of seven :-)
737 
738 		A: sends SYN|ACK, seq=7, ack_seq=8
739 		B: sends SYN|ACK, seq=7, ack_seq=8
740 
741 	   So we are now A eating this SYN|ACK, ACK test passes.  So
742 	   does sequence test, SYN is truncated, and thus we consider
743 	   it a bare ACK.
744 
745 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
746 	   bare ACK.  Otherwise, we create an established connection.  Both
747 	   ends (listening sockets) accept the new incoming connection and try
748 	   to talk to each other. 8-)
749 
750 	   Note: This case is both harmless, and rare.  Possibility is about the
751 	   same as us discovering intelligent life on another plant tomorrow.
752 
753 	   But generally, we should (RFC lies!) to accept ACK
754 	   from SYNACK both here and in tcp_rcv_state_process().
755 	   tcp_rcv_state_process() does not, hence, we do not too.
756 
757 	   Note that the case is absolutely generic:
758 	   we cannot optimize anything here without
759 	   violating protocol. All the checks must be made
760 	   before attempt to create socket.
761 	 */
762 
763 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
764 	 *                  and the incoming segment acknowledges something not yet
765 	 *                  sent (the segment carries an unacceptable ACK) ...
766 	 *                  a reset is sent."
767 	 *
768 	 * Invalid ACK: reset will be sent by listening socket.
769 	 * Note that the ACK validity check for a Fast Open socket is done
770 	 * elsewhere and is checked directly against the child socket rather
771 	 * than req because user data may have been sent out.
772 	 */
773 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
774 	    (TCP_SKB_CB(skb)->ack_seq !=
775 	     tcp_rsk(req)->snt_isn + 1))
776 		return sk;
777 
778 	/* Also, it would be not so bad idea to check rcv_tsecr, which
779 	 * is essentially ACK extension and too early or too late values
780 	 * should cause reset in unsynchronized states.
781 	 */
782 
783 	/* RFC793: "first check sequence number". */
784 
785 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
786 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
787 		/* Out of window: send ACK and drop. */
788 		if (!(flg & TCP_FLAG_RST) &&
789 		    !tcp_oow_rate_limited(sock_net(sk), skb,
790 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
791 					  &tcp_rsk(req)->last_oow_ack_time))
792 			req->rsk_ops->send_ack(sk, skb, req);
793 		if (paws_reject)
794 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
795 		return NULL;
796 	}
797 
798 	/* In sequence, PAWS is OK. */
799 
800 	/* TODO: We probably should defer ts_recent change once
801 	 * we take ownership of @req.
802 	 */
803 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
804 		WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
805 
806 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
807 		/* Truncate SYN, it is out of window starting
808 		   at tcp_rsk(req)->rcv_isn + 1. */
809 		flg &= ~TCP_FLAG_SYN;
810 	}
811 
812 	/* RFC793: "second check the RST bit" and
813 	 *	   "fourth, check the SYN bit"
814 	 */
815 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
816 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
817 		goto embryonic_reset;
818 	}
819 
820 	/* ACK sequence verified above, just make sure ACK is
821 	 * set.  If ACK not set, just silently drop the packet.
822 	 *
823 	 * XXX (TFO) - if we ever allow "data after SYN", the
824 	 * following check needs to be removed.
825 	 */
826 	if (!(flg & TCP_FLAG_ACK))
827 		return NULL;
828 
829 	/* For Fast Open no more processing is needed (sk is the
830 	 * child socket).
831 	 */
832 	if (fastopen)
833 		return sk;
834 
835 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
836 	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
837 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
838 		inet_rsk(req)->acked = 1;
839 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
840 		return NULL;
841 	}
842 
843 	/* OK, ACK is valid, create big socket and
844 	 * feed this segment to it. It will repeat all
845 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
846 	 * ESTABLISHED STATE. If it will be dropped after
847 	 * socket is created, wait for troubles.
848 	 */
849 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
850 							 req, &own_req);
851 	if (!child)
852 		goto listen_overflow;
853 
854 	if (own_req && rsk_drop_req(req)) {
855 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
856 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
857 		return child;
858 	}
859 
860 	sock_rps_save_rxhash(child, skb);
861 	tcp_synack_rtt_meas(child, req);
862 	*req_stolen = !own_req;
863 	return inet_csk_complete_hashdance(sk, child, req, own_req);
864 
865 listen_overflow:
866 	if (sk != req->rsk_listener)
867 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
868 
869 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
870 		inet_rsk(req)->acked = 1;
871 		return NULL;
872 	}
873 
874 embryonic_reset:
875 	if (!(flg & TCP_FLAG_RST)) {
876 		/* Received a bad SYN pkt - for TFO We try not to reset
877 		 * the local connection unless it's really necessary to
878 		 * avoid becoming vulnerable to outside attack aiming at
879 		 * resetting legit local connections.
880 		 */
881 		req->rsk_ops->send_reset(sk, skb);
882 	} else if (fastopen) { /* received a valid RST pkt */
883 		reqsk_fastopen_remove(sk, req, true);
884 		tcp_reset(sk, skb);
885 	}
886 	if (!fastopen) {
887 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
888 
889 		if (unlinked)
890 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
891 		*req_stolen = !unlinked;
892 	}
893 	return NULL;
894 }
895 EXPORT_SYMBOL(tcp_check_req);
896 
897 /*
898  * Queue segment on the new socket if the new socket is active,
899  * otherwise we just shortcircuit this and continue with
900  * the new socket.
901  *
902  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
903  * when entering. But other states are possible due to a race condition
904  * where after __inet_lookup_established() fails but before the listener
905  * locked is obtained, other packets cause the same connection to
906  * be created.
907  */
908 
909 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
910 				       struct sk_buff *skb)
911 	__releases(&((child)->sk_lock.slock))
912 {
913 	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
914 	int state = child->sk_state;
915 
916 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
917 	sk_mark_napi_id_set(child, skb);
918 
919 	tcp_segs_in(tcp_sk(child), skb);
920 	if (!sock_owned_by_user(child)) {
921 		reason = tcp_rcv_state_process(child, skb);
922 		/* Wakeup parent, send SIGIO */
923 		if (state == TCP_SYN_RECV && child->sk_state != state)
924 			parent->sk_data_ready(parent);
925 	} else {
926 		/* Alas, it is possible again, because we do lookup
927 		 * in main socket hash table and lock on listening
928 		 * socket does not protect us more.
929 		 */
930 		__sk_add_backlog(child, skb);
931 	}
932 
933 	bh_unlock_sock(child);
934 	sock_put(child);
935 	return reason;
936 }
937 EXPORT_SYMBOL(tcp_child_process);
938