xref: /linux/net/ipv4/tcp_minisocks.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32 
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34 
35 struct inet_timewait_death_row tcp_death_row = {
36 	.sysctl_max_tw_buckets = NR_FILE * 2,
37 	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38 	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39 	.hashinfo	= &tcp_hashinfo,
40 	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41 					    (unsigned long)&tcp_death_row),
42 	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43 					     inet_twdr_twkill_work),
44 /* Short-time timewait calendar */
45 
46 	.twcal_hand	= -1,
47 	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48 					    (unsigned long)&tcp_death_row),
49 };
50 EXPORT_SYMBOL_GPL(tcp_death_row);
51 
52 /* VJ's idea. Save last timestamp seen from this destination
53  * and hold it at least for normal timewait interval to use for duplicate
54  * segment detection in subsequent connections, before they enter synchronized
55  * state.
56  */
57 
58 static bool tcp_remember_stamp(struct sock *sk)
59 {
60 	const struct inet_connection_sock *icsk = inet_csk(sk);
61 	struct tcp_sock *tp = tcp_sk(sk);
62 	struct inet_peer *peer;
63 	bool release_it;
64 
65 	peer = icsk->icsk_af_ops->get_peer(sk, &release_it);
66 	if (peer) {
67 		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
68 		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
69 		     peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
70 			peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
71 			peer->tcp_ts = tp->rx_opt.ts_recent;
72 		}
73 		if (release_it)
74 			inet_putpeer(peer);
75 		return true;
76 	}
77 
78 	return false;
79 }
80 
81 static bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
82 {
83 	struct sock *sk = (struct sock *) tw;
84 	struct inet_peer *peer;
85 
86 	peer = twsk_getpeer(sk);
87 	if (peer) {
88 		const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
89 
90 		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
91 		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
92 		     peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
93 			peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
94 			peer->tcp_ts	   = tcptw->tw_ts_recent;
95 		}
96 		inet_putpeer(peer);
97 		return true;
98 	}
99 	return false;
100 }
101 
102 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
103 {
104 	if (seq == s_win)
105 		return true;
106 	if (after(end_seq, s_win) && before(seq, e_win))
107 		return true;
108 	return seq == e_win && seq == end_seq;
109 }
110 
111 /*
112  * * Main purpose of TIME-WAIT state is to close connection gracefully,
113  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
114  *   (and, probably, tail of data) and one or more our ACKs are lost.
115  * * What is TIME-WAIT timeout? It is associated with maximal packet
116  *   lifetime in the internet, which results in wrong conclusion, that
117  *   it is set to catch "old duplicate segments" wandering out of their path.
118  *   It is not quite correct. This timeout is calculated so that it exceeds
119  *   maximal retransmission timeout enough to allow to lose one (or more)
120  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
121  * * When TIME-WAIT socket receives RST, it means that another end
122  *   finally closed and we are allowed to kill TIME-WAIT too.
123  * * Second purpose of TIME-WAIT is catching old duplicate segments.
124  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
125  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
126  * * If we invented some more clever way to catch duplicates
127  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
128  *
129  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
130  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
131  * from the very beginning.
132  *
133  * NOTE. With recycling (and later with fin-wait-2) TW bucket
134  * is _not_ stateless. It means, that strictly speaking we must
135  * spinlock it. I do not want! Well, probability of misbehaviour
136  * is ridiculously low and, seems, we could use some mb() tricks
137  * to avoid misread sequence numbers, states etc.  --ANK
138  */
139 enum tcp_tw_status
140 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
141 			   const struct tcphdr *th)
142 {
143 	struct tcp_options_received tmp_opt;
144 	const u8 *hash_location;
145 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
146 	bool paws_reject = false;
147 
148 	tmp_opt.saw_tstamp = 0;
149 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
150 		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
151 
152 		if (tmp_opt.saw_tstamp) {
153 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
154 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
155 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
156 		}
157 	}
158 
159 	if (tw->tw_substate == TCP_FIN_WAIT2) {
160 		/* Just repeat all the checks of tcp_rcv_state_process() */
161 
162 		/* Out of window, send ACK */
163 		if (paws_reject ||
164 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
165 				   tcptw->tw_rcv_nxt,
166 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
167 			return TCP_TW_ACK;
168 
169 		if (th->rst)
170 			goto kill;
171 
172 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
173 			goto kill_with_rst;
174 
175 		/* Dup ACK? */
176 		if (!th->ack ||
177 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
178 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
179 			inet_twsk_put(tw);
180 			return TCP_TW_SUCCESS;
181 		}
182 
183 		/* New data or FIN. If new data arrive after half-duplex close,
184 		 * reset.
185 		 */
186 		if (!th->fin ||
187 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
188 kill_with_rst:
189 			inet_twsk_deschedule(tw, &tcp_death_row);
190 			inet_twsk_put(tw);
191 			return TCP_TW_RST;
192 		}
193 
194 		/* FIN arrived, enter true time-wait state. */
195 		tw->tw_substate	  = TCP_TIME_WAIT;
196 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
197 		if (tmp_opt.saw_tstamp) {
198 			tcptw->tw_ts_recent_stamp = get_seconds();
199 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
200 		}
201 
202 		if (tcp_death_row.sysctl_tw_recycle &&
203 		    tcptw->tw_ts_recent_stamp &&
204 		    tcp_tw_remember_stamp(tw))
205 			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
206 					   TCP_TIMEWAIT_LEN);
207 		else
208 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
209 					   TCP_TIMEWAIT_LEN);
210 		return TCP_TW_ACK;
211 	}
212 
213 	/*
214 	 *	Now real TIME-WAIT state.
215 	 *
216 	 *	RFC 1122:
217 	 *	"When a connection is [...] on TIME-WAIT state [...]
218 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
219 	 *	reopen the connection directly, if it:
220 	 *
221 	 *	(1)  assigns its initial sequence number for the new
222 	 *	connection to be larger than the largest sequence
223 	 *	number it used on the previous connection incarnation,
224 	 *	and
225 	 *
226 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
227 	 *	to be an old duplicate".
228 	 */
229 
230 	if (!paws_reject &&
231 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
232 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
233 		/* In window segment, it may be only reset or bare ack. */
234 
235 		if (th->rst) {
236 			/* This is TIME_WAIT assassination, in two flavors.
237 			 * Oh well... nobody has a sufficient solution to this
238 			 * protocol bug yet.
239 			 */
240 			if (sysctl_tcp_rfc1337 == 0) {
241 kill:
242 				inet_twsk_deschedule(tw, &tcp_death_row);
243 				inet_twsk_put(tw);
244 				return TCP_TW_SUCCESS;
245 			}
246 		}
247 		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
248 				   TCP_TIMEWAIT_LEN);
249 
250 		if (tmp_opt.saw_tstamp) {
251 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
252 			tcptw->tw_ts_recent_stamp = get_seconds();
253 		}
254 
255 		inet_twsk_put(tw);
256 		return TCP_TW_SUCCESS;
257 	}
258 
259 	/* Out of window segment.
260 
261 	   All the segments are ACKed immediately.
262 
263 	   The only exception is new SYN. We accept it, if it is
264 	   not old duplicate and we are not in danger to be killed
265 	   by delayed old duplicates. RFC check is that it has
266 	   newer sequence number works at rates <40Mbit/sec.
267 	   However, if paws works, it is reliable AND even more,
268 	   we even may relax silly seq space cutoff.
269 
270 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
271 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
272 	   we must return socket to time-wait state. It is not good,
273 	   but not fatal yet.
274 	 */
275 
276 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
277 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
278 	     (tmp_opt.saw_tstamp &&
279 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
280 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
281 		if (isn == 0)
282 			isn++;
283 		TCP_SKB_CB(skb)->when = isn;
284 		return TCP_TW_SYN;
285 	}
286 
287 	if (paws_reject)
288 		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
289 
290 	if (!th->rst) {
291 		/* In this case we must reset the TIMEWAIT timer.
292 		 *
293 		 * If it is ACKless SYN it may be both old duplicate
294 		 * and new good SYN with random sequence number <rcv_nxt.
295 		 * Do not reschedule in the last case.
296 		 */
297 		if (paws_reject || th->ack)
298 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
299 					   TCP_TIMEWAIT_LEN);
300 
301 		/* Send ACK. Note, we do not put the bucket,
302 		 * it will be released by caller.
303 		 */
304 		return TCP_TW_ACK;
305 	}
306 	inet_twsk_put(tw);
307 	return TCP_TW_SUCCESS;
308 }
309 EXPORT_SYMBOL(tcp_timewait_state_process);
310 
311 /*
312  * Move a socket to time-wait or dead fin-wait-2 state.
313  */
314 void tcp_time_wait(struct sock *sk, int state, int timeo)
315 {
316 	struct inet_timewait_sock *tw = NULL;
317 	const struct inet_connection_sock *icsk = inet_csk(sk);
318 	const struct tcp_sock *tp = tcp_sk(sk);
319 	bool recycle_ok = false;
320 
321 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
322 		recycle_ok = tcp_remember_stamp(sk);
323 
324 	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
325 		tw = inet_twsk_alloc(sk, state);
326 
327 	if (tw != NULL) {
328 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
329 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
330 
331 		tw->tw_transparent	= inet_sk(sk)->transparent;
332 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
333 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
334 		tcptw->tw_snd_nxt	= tp->snd_nxt;
335 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
336 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
337 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
338 
339 #if IS_ENABLED(CONFIG_IPV6)
340 		if (tw->tw_family == PF_INET6) {
341 			struct ipv6_pinfo *np = inet6_sk(sk);
342 			struct inet6_timewait_sock *tw6;
343 
344 			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
345 			tw6 = inet6_twsk((struct sock *)tw);
346 			tw6->tw_v6_daddr = np->daddr;
347 			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
348 			tw->tw_tclass = np->tclass;
349 			tw->tw_ipv6only = np->ipv6only;
350 		}
351 #endif
352 
353 #ifdef CONFIG_TCP_MD5SIG
354 		/*
355 		 * The timewait bucket does not have the key DB from the
356 		 * sock structure. We just make a quick copy of the
357 		 * md5 key being used (if indeed we are using one)
358 		 * so the timewait ack generating code has the key.
359 		 */
360 		do {
361 			struct tcp_md5sig_key *key;
362 			tcptw->tw_md5_key = NULL;
363 			key = tp->af_specific->md5_lookup(sk, sk);
364 			if (key != NULL) {
365 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
366 				if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
367 					BUG();
368 			}
369 		} while (0);
370 #endif
371 
372 		/* Linkage updates. */
373 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
374 
375 		/* Get the TIME_WAIT timeout firing. */
376 		if (timeo < rto)
377 			timeo = rto;
378 
379 		if (recycle_ok) {
380 			tw->tw_timeout = rto;
381 		} else {
382 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
383 			if (state == TCP_TIME_WAIT)
384 				timeo = TCP_TIMEWAIT_LEN;
385 		}
386 
387 		inet_twsk_schedule(tw, &tcp_death_row, timeo,
388 				   TCP_TIMEWAIT_LEN);
389 		inet_twsk_put(tw);
390 	} else {
391 		/* Sorry, if we're out of memory, just CLOSE this
392 		 * socket up.  We've got bigger problems than
393 		 * non-graceful socket closings.
394 		 */
395 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
396 	}
397 
398 	tcp_update_metrics(sk);
399 	tcp_done(sk);
400 }
401 
402 void tcp_twsk_destructor(struct sock *sk)
403 {
404 #ifdef CONFIG_TCP_MD5SIG
405 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
406 	if (twsk->tw_md5_key) {
407 		tcp_free_md5sig_pool();
408 		kfree_rcu(twsk->tw_md5_key, rcu);
409 	}
410 #endif
411 }
412 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
413 
414 static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
415 					 struct request_sock *req)
416 {
417 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
418 }
419 
420 /* This is not only more efficient than what we used to do, it eliminates
421  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
422  *
423  * Actually, we could lots of memory writes here. tp of listening
424  * socket contains all necessary default parameters.
425  */
426 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
427 {
428 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
429 
430 	if (newsk != NULL) {
431 		const struct inet_request_sock *ireq = inet_rsk(req);
432 		struct tcp_request_sock *treq = tcp_rsk(req);
433 		struct inet_connection_sock *newicsk = inet_csk(newsk);
434 		struct tcp_sock *newtp = tcp_sk(newsk);
435 		struct tcp_sock *oldtp = tcp_sk(sk);
436 		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
437 
438 		/* TCP Cookie Transactions require space for the cookie pair,
439 		 * as it differs for each connection.  There is no need to
440 		 * copy any s_data_payload stored at the original socket.
441 		 * Failure will prevent resuming the connection.
442 		 *
443 		 * Presumed copied, in order of appearance:
444 		 *	cookie_in_always, cookie_out_never
445 		 */
446 		if (oldcvp != NULL) {
447 			struct tcp_cookie_values *newcvp =
448 				kzalloc(sizeof(*newtp->cookie_values),
449 					GFP_ATOMIC);
450 
451 			if (newcvp != NULL) {
452 				kref_init(&newcvp->kref);
453 				newcvp->cookie_desired =
454 						oldcvp->cookie_desired;
455 				newtp->cookie_values = newcvp;
456 			} else {
457 				/* Not Yet Implemented */
458 				newtp->cookie_values = NULL;
459 			}
460 		}
461 
462 		/* Now setup tcp_sock */
463 		newtp->pred_flags = 0;
464 
465 		newtp->rcv_wup = newtp->copied_seq =
466 		newtp->rcv_nxt = treq->rcv_isn + 1;
467 
468 		newtp->snd_sml = newtp->snd_una =
469 		newtp->snd_nxt = newtp->snd_up =
470 			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
471 
472 		tcp_prequeue_init(newtp);
473 
474 		tcp_init_wl(newtp, treq->rcv_isn);
475 
476 		newtp->srtt = 0;
477 		newtp->mdev = TCP_TIMEOUT_INIT;
478 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
479 
480 		newtp->packets_out = 0;
481 		newtp->retrans_out = 0;
482 		newtp->sacked_out = 0;
483 		newtp->fackets_out = 0;
484 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
485 		tcp_enable_early_retrans(newtp);
486 
487 		/* So many TCP implementations out there (incorrectly) count the
488 		 * initial SYN frame in their delayed-ACK and congestion control
489 		 * algorithms that we must have the following bandaid to talk
490 		 * efficiently to them.  -DaveM
491 		 */
492 		newtp->snd_cwnd = TCP_INIT_CWND;
493 		newtp->snd_cwnd_cnt = 0;
494 		newtp->bytes_acked = 0;
495 
496 		newtp->frto_counter = 0;
497 		newtp->frto_highmark = 0;
498 
499 		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
500 		    !try_module_get(newicsk->icsk_ca_ops->owner))
501 			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
502 
503 		tcp_set_ca_state(newsk, TCP_CA_Open);
504 		tcp_init_xmit_timers(newsk);
505 		skb_queue_head_init(&newtp->out_of_order_queue);
506 		newtp->write_seq = newtp->pushed_seq =
507 			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
508 
509 		newtp->rx_opt.saw_tstamp = 0;
510 
511 		newtp->rx_opt.dsack = 0;
512 		newtp->rx_opt.num_sacks = 0;
513 
514 		newtp->urg_data = 0;
515 
516 		if (sock_flag(newsk, SOCK_KEEPOPEN))
517 			inet_csk_reset_keepalive_timer(newsk,
518 						       keepalive_time_when(newtp));
519 
520 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
521 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
522 			if (sysctl_tcp_fack)
523 				tcp_enable_fack(newtp);
524 		}
525 		newtp->window_clamp = req->window_clamp;
526 		newtp->rcv_ssthresh = req->rcv_wnd;
527 		newtp->rcv_wnd = req->rcv_wnd;
528 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
529 		if (newtp->rx_opt.wscale_ok) {
530 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
531 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
532 		} else {
533 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
534 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
535 		}
536 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
537 				  newtp->rx_opt.snd_wscale);
538 		newtp->max_window = newtp->snd_wnd;
539 
540 		if (newtp->rx_opt.tstamp_ok) {
541 			newtp->rx_opt.ts_recent = req->ts_recent;
542 			newtp->rx_opt.ts_recent_stamp = get_seconds();
543 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
544 		} else {
545 			newtp->rx_opt.ts_recent_stamp = 0;
546 			newtp->tcp_header_len = sizeof(struct tcphdr);
547 		}
548 #ifdef CONFIG_TCP_MD5SIG
549 		newtp->md5sig_info = NULL;	/*XXX*/
550 		if (newtp->af_specific->md5_lookup(sk, newsk))
551 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
552 #endif
553 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
554 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
555 		newtp->rx_opt.mss_clamp = req->mss;
556 		TCP_ECN_openreq_child(newtp, req);
557 
558 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
559 	}
560 	return newsk;
561 }
562 EXPORT_SYMBOL(tcp_create_openreq_child);
563 
564 /*
565  *	Process an incoming packet for SYN_RECV sockets represented
566  *	as a request_sock.
567  */
568 
569 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
570 			   struct request_sock *req,
571 			   struct request_sock **prev)
572 {
573 	struct tcp_options_received tmp_opt;
574 	const u8 *hash_location;
575 	struct sock *child;
576 	const struct tcphdr *th = tcp_hdr(skb);
577 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
578 	bool paws_reject = false;
579 
580 	tmp_opt.saw_tstamp = 0;
581 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
582 		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
583 
584 		if (tmp_opt.saw_tstamp) {
585 			tmp_opt.ts_recent = req->ts_recent;
586 			/* We do not store true stamp, but it is not required,
587 			 * it can be estimated (approximately)
588 			 * from another data.
589 			 */
590 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
591 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
592 		}
593 	}
594 
595 	/* Check for pure retransmitted SYN. */
596 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
597 	    flg == TCP_FLAG_SYN &&
598 	    !paws_reject) {
599 		/*
600 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
601 		 * this case on figure 6 and figure 8, but formal
602 		 * protocol description says NOTHING.
603 		 * To be more exact, it says that we should send ACK,
604 		 * because this segment (at least, if it has no data)
605 		 * is out of window.
606 		 *
607 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
608 		 *  describe SYN-RECV state. All the description
609 		 *  is wrong, we cannot believe to it and should
610 		 *  rely only on common sense and implementation
611 		 *  experience.
612 		 *
613 		 * Enforce "SYN-ACK" according to figure 8, figure 6
614 		 * of RFC793, fixed by RFC1122.
615 		 */
616 		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
617 		return NULL;
618 	}
619 
620 	/* Further reproduces section "SEGMENT ARRIVES"
621 	   for state SYN-RECEIVED of RFC793.
622 	   It is broken, however, it does not work only
623 	   when SYNs are crossed.
624 
625 	   You would think that SYN crossing is impossible here, since
626 	   we should have a SYN_SENT socket (from connect()) on our end,
627 	   but this is not true if the crossed SYNs were sent to both
628 	   ends by a malicious third party.  We must defend against this,
629 	   and to do that we first verify the ACK (as per RFC793, page
630 	   36) and reset if it is invalid.  Is this a true full defense?
631 	   To convince ourselves, let us consider a way in which the ACK
632 	   test can still pass in this 'malicious crossed SYNs' case.
633 	   Malicious sender sends identical SYNs (and thus identical sequence
634 	   numbers) to both A and B:
635 
636 		A: gets SYN, seq=7
637 		B: gets SYN, seq=7
638 
639 	   By our good fortune, both A and B select the same initial
640 	   send sequence number of seven :-)
641 
642 		A: sends SYN|ACK, seq=7, ack_seq=8
643 		B: sends SYN|ACK, seq=7, ack_seq=8
644 
645 	   So we are now A eating this SYN|ACK, ACK test passes.  So
646 	   does sequence test, SYN is truncated, and thus we consider
647 	   it a bare ACK.
648 
649 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
650 	   bare ACK.  Otherwise, we create an established connection.  Both
651 	   ends (listening sockets) accept the new incoming connection and try
652 	   to talk to each other. 8-)
653 
654 	   Note: This case is both harmless, and rare.  Possibility is about the
655 	   same as us discovering intelligent life on another plant tomorrow.
656 
657 	   But generally, we should (RFC lies!) to accept ACK
658 	   from SYNACK both here and in tcp_rcv_state_process().
659 	   tcp_rcv_state_process() does not, hence, we do not too.
660 
661 	   Note that the case is absolutely generic:
662 	   we cannot optimize anything here without
663 	   violating protocol. All the checks must be made
664 	   before attempt to create socket.
665 	 */
666 
667 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
668 	 *                  and the incoming segment acknowledges something not yet
669 	 *                  sent (the segment carries an unacceptable ACK) ...
670 	 *                  a reset is sent."
671 	 *
672 	 * Invalid ACK: reset will be sent by listening socket
673 	 */
674 	if ((flg & TCP_FLAG_ACK) &&
675 	    (TCP_SKB_CB(skb)->ack_seq !=
676 	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
677 		return sk;
678 
679 	/* Also, it would be not so bad idea to check rcv_tsecr, which
680 	 * is essentially ACK extension and too early or too late values
681 	 * should cause reset in unsynchronized states.
682 	 */
683 
684 	/* RFC793: "first check sequence number". */
685 
686 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
687 					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
688 		/* Out of window: send ACK and drop. */
689 		if (!(flg & TCP_FLAG_RST))
690 			req->rsk_ops->send_ack(sk, skb, req);
691 		if (paws_reject)
692 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
693 		return NULL;
694 	}
695 
696 	/* In sequence, PAWS is OK. */
697 
698 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
699 		req->ts_recent = tmp_opt.rcv_tsval;
700 
701 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
702 		/* Truncate SYN, it is out of window starting
703 		   at tcp_rsk(req)->rcv_isn + 1. */
704 		flg &= ~TCP_FLAG_SYN;
705 	}
706 
707 	/* RFC793: "second check the RST bit" and
708 	 *	   "fourth, check the SYN bit"
709 	 */
710 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
711 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
712 		goto embryonic_reset;
713 	}
714 
715 	/* ACK sequence verified above, just make sure ACK is
716 	 * set.  If ACK not set, just silently drop the packet.
717 	 */
718 	if (!(flg & TCP_FLAG_ACK))
719 		return NULL;
720 
721 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
722 	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
723 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
724 		inet_rsk(req)->acked = 1;
725 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
726 		return NULL;
727 	}
728 	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
729 		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
730 	else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
731 		tcp_rsk(req)->snt_synack = 0;
732 
733 	/* OK, ACK is valid, create big socket and
734 	 * feed this segment to it. It will repeat all
735 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
736 	 * ESTABLISHED STATE. If it will be dropped after
737 	 * socket is created, wait for troubles.
738 	 */
739 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
740 	if (child == NULL)
741 		goto listen_overflow;
742 
743 	inet_csk_reqsk_queue_unlink(sk, req, prev);
744 	inet_csk_reqsk_queue_removed(sk, req);
745 
746 	inet_csk_reqsk_queue_add(sk, req, child);
747 	return child;
748 
749 listen_overflow:
750 	if (!sysctl_tcp_abort_on_overflow) {
751 		inet_rsk(req)->acked = 1;
752 		return NULL;
753 	}
754 
755 embryonic_reset:
756 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
757 	if (!(flg & TCP_FLAG_RST))
758 		req->rsk_ops->send_reset(sk, skb);
759 
760 	inet_csk_reqsk_queue_drop(sk, req, prev);
761 	return NULL;
762 }
763 EXPORT_SYMBOL(tcp_check_req);
764 
765 /*
766  * Queue segment on the new socket if the new socket is active,
767  * otherwise we just shortcircuit this and continue with
768  * the new socket.
769  */
770 
771 int tcp_child_process(struct sock *parent, struct sock *child,
772 		      struct sk_buff *skb)
773 {
774 	int ret = 0;
775 	int state = child->sk_state;
776 
777 	if (!sock_owned_by_user(child)) {
778 		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
779 					    skb->len);
780 		/* Wakeup parent, send SIGIO */
781 		if (state == TCP_SYN_RECV && child->sk_state != state)
782 			parent->sk_data_ready(parent, 0);
783 	} else {
784 		/* Alas, it is possible again, because we do lookup
785 		 * in main socket hash table and lock on listening
786 		 * socket does not protect us more.
787 		 */
788 		__sk_add_backlog(child, skb);
789 	}
790 
791 	bh_unlock_sock(child);
792 	sock_put(child);
793 	return ret;
794 }
795 EXPORT_SYMBOL(tcp_child_process);
796