xref: /linux/net/ipv4/tcp_minisocks.c (revision 2151003e773c7e7dba4d64bed4bfc483681b5f6a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <net/tcp.h>
23 #include <net/xfrm.h>
24 #include <net/busy_poll.h>
25 #include <net/rstreason.h>
26 
27 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
28 {
29 	if (seq == s_win)
30 		return true;
31 	if (after(end_seq, s_win) && before(seq, e_win))
32 		return true;
33 	return seq == e_win && seq == end_seq;
34 }
35 
36 static enum tcp_tw_status
37 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
38 				  const struct sk_buff *skb, int mib_idx)
39 {
40 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
41 
42 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
43 				  &tcptw->tw_last_oow_ack_time)) {
44 		/* Send ACK. Note, we do not put the bucket,
45 		 * it will be released by caller.
46 		 */
47 		return TCP_TW_ACK;
48 	}
49 
50 	/* We are rate-limiting, so just release the tw sock and drop skb. */
51 	inet_twsk_put(tw);
52 	return TCP_TW_SUCCESS;
53 }
54 
55 static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq,
56 				u32 rcv_nxt)
57 {
58 #ifdef CONFIG_TCP_AO
59 	struct tcp_ao_info *ao;
60 
61 	ao = rcu_dereference(tcptw->ao_info);
62 	if (unlikely(ao && seq < rcv_nxt))
63 		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
64 #endif
65 	WRITE_ONCE(tcptw->tw_rcv_nxt, seq);
66 }
67 
68 /*
69  * * Main purpose of TIME-WAIT state is to close connection gracefully,
70  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
71  *   (and, probably, tail of data) and one or more our ACKs are lost.
72  * * What is TIME-WAIT timeout? It is associated with maximal packet
73  *   lifetime in the internet, which results in wrong conclusion, that
74  *   it is set to catch "old duplicate segments" wandering out of their path.
75  *   It is not quite correct. This timeout is calculated so that it exceeds
76  *   maximal retransmission timeout enough to allow to lose one (or more)
77  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
78  * * When TIME-WAIT socket receives RST, it means that another end
79  *   finally closed and we are allowed to kill TIME-WAIT too.
80  * * Second purpose of TIME-WAIT is catching old duplicate segments.
81  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
82  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
83  * * If we invented some more clever way to catch duplicates
84  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
85  *
86  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
87  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
88  * from the very beginning.
89  *
90  * NOTE. With recycling (and later with fin-wait-2) TW bucket
91  * is _not_ stateless. It means, that strictly speaking we must
92  * spinlock it. I do not want! Well, probability of misbehaviour
93  * is ridiculously low and, seems, we could use some mb() tricks
94  * to avoid misread sequence numbers, states etc.  --ANK
95  *
96  * We don't need to initialize tmp_out.sack_ok as we don't use the results
97  */
98 enum tcp_tw_status
99 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
100 			   const struct tcphdr *th, u32 *tw_isn)
101 {
102 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
103 	u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt);
104 	struct tcp_options_received tmp_opt;
105 	bool paws_reject = false;
106 	int ts_recent_stamp;
107 
108 	tmp_opt.saw_tstamp = 0;
109 	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
110 	if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
111 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
112 
113 		if (tmp_opt.saw_tstamp) {
114 			if (tmp_opt.rcv_tsecr)
115 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
116 			tmp_opt.ts_recent	= READ_ONCE(tcptw->tw_ts_recent);
117 			tmp_opt.ts_recent_stamp	= ts_recent_stamp;
118 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
119 		}
120 	}
121 
122 	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) {
123 		/* Just repeat all the checks of tcp_rcv_state_process() */
124 
125 		/* Out of window, send ACK */
126 		if (paws_reject ||
127 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
128 				   rcv_nxt,
129 				   rcv_nxt + tcptw->tw_rcv_wnd))
130 			return tcp_timewait_check_oow_rate_limit(
131 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
132 
133 		if (th->rst)
134 			goto kill;
135 
136 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt))
137 			return TCP_TW_RST;
138 
139 		/* Dup ACK? */
140 		if (!th->ack ||
141 		    !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) ||
142 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
143 			inet_twsk_put(tw);
144 			return TCP_TW_SUCCESS;
145 		}
146 
147 		/* New data or FIN. If new data arrive after half-duplex close,
148 		 * reset.
149 		 */
150 		if (!th->fin ||
151 		    TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1)
152 			return TCP_TW_RST;
153 
154 		/* FIN arrived, enter true time-wait state. */
155 		WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT);
156 		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq,
157 				    rcv_nxt);
158 
159 		if (tmp_opt.saw_tstamp) {
160 			u64 ts = tcp_clock_ms();
161 
162 			WRITE_ONCE(tw->tw_entry_stamp, ts);
163 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
164 				   div_u64(ts, MSEC_PER_SEC));
165 			WRITE_ONCE(tcptw->tw_ts_recent,
166 				   tmp_opt.rcv_tsval);
167 		}
168 
169 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
170 		return TCP_TW_ACK;
171 	}
172 
173 	/*
174 	 *	Now real TIME-WAIT state.
175 	 *
176 	 *	RFC 1122:
177 	 *	"When a connection is [...] on TIME-WAIT state [...]
178 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
179 	 *	reopen the connection directly, if it:
180 	 *
181 	 *	(1)  assigns its initial sequence number for the new
182 	 *	connection to be larger than the largest sequence
183 	 *	number it used on the previous connection incarnation,
184 	 *	and
185 	 *
186 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
187 	 *	to be an old duplicate".
188 	 */
189 
190 	if (!paws_reject &&
191 	    (TCP_SKB_CB(skb)->seq == rcv_nxt &&
192 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
193 		/* In window segment, it may be only reset or bare ack. */
194 
195 		if (th->rst) {
196 			/* This is TIME_WAIT assassination, in two flavors.
197 			 * Oh well... nobody has a sufficient solution to this
198 			 * protocol bug yet.
199 			 */
200 			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
201 kill:
202 				inet_twsk_deschedule_put(tw);
203 				return TCP_TW_SUCCESS;
204 			}
205 		} else {
206 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
207 		}
208 
209 		if (tmp_opt.saw_tstamp) {
210 			WRITE_ONCE(tcptw->tw_ts_recent,
211 				   tmp_opt.rcv_tsval);
212 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
213 				   ktime_get_seconds());
214 		}
215 
216 		inet_twsk_put(tw);
217 		return TCP_TW_SUCCESS;
218 	}
219 
220 	/* Out of window segment.
221 
222 	   All the segments are ACKed immediately.
223 
224 	   The only exception is new SYN. We accept it, if it is
225 	   not old duplicate and we are not in danger to be killed
226 	   by delayed old duplicates. RFC check is that it has
227 	   newer sequence number works at rates <40Mbit/sec.
228 	   However, if paws works, it is reliable AND even more,
229 	   we even may relax silly seq space cutoff.
230 
231 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
232 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
233 	   we must return socket to time-wait state. It is not good,
234 	   but not fatal yet.
235 	 */
236 
237 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
238 	    (after(TCP_SKB_CB(skb)->seq, rcv_nxt) ||
239 	     (tmp_opt.saw_tstamp &&
240 	      (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
241 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
242 		if (isn == 0)
243 			isn++;
244 		*tw_isn = isn;
245 		return TCP_TW_SYN;
246 	}
247 
248 	if (paws_reject)
249 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
250 
251 	if (!th->rst) {
252 		/* In this case we must reset the TIMEWAIT timer.
253 		 *
254 		 * If it is ACKless SYN it may be both old duplicate
255 		 * and new good SYN with random sequence number <rcv_nxt.
256 		 * Do not reschedule in the last case.
257 		 */
258 		if (paws_reject || th->ack)
259 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
260 
261 		return tcp_timewait_check_oow_rate_limit(
262 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
263 	}
264 	inet_twsk_put(tw);
265 	return TCP_TW_SUCCESS;
266 }
267 EXPORT_SYMBOL(tcp_timewait_state_process);
268 
269 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
270 {
271 #ifdef CONFIG_TCP_MD5SIG
272 	const struct tcp_sock *tp = tcp_sk(sk);
273 	struct tcp_md5sig_key *key;
274 
275 	/*
276 	 * The timewait bucket does not have the key DB from the
277 	 * sock structure. We just make a quick copy of the
278 	 * md5 key being used (if indeed we are using one)
279 	 * so the timewait ack generating code has the key.
280 	 */
281 	tcptw->tw_md5_key = NULL;
282 	if (!static_branch_unlikely(&tcp_md5_needed.key))
283 		return;
284 
285 	key = tp->af_specific->md5_lookup(sk, sk);
286 	if (key) {
287 		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
288 		if (!tcptw->tw_md5_key)
289 			return;
290 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
291 			goto out_free;
292 		tcp_md5_add_sigpool();
293 	}
294 	return;
295 out_free:
296 	WARN_ON_ONCE(1);
297 	kfree(tcptw->tw_md5_key);
298 	tcptw->tw_md5_key = NULL;
299 #endif
300 }
301 
302 /*
303  * Move a socket to time-wait or dead fin-wait-2 state.
304  */
305 void tcp_time_wait(struct sock *sk, int state, int timeo)
306 {
307 	const struct inet_connection_sock *icsk = inet_csk(sk);
308 	struct tcp_sock *tp = tcp_sk(sk);
309 	struct net *net = sock_net(sk);
310 	struct inet_timewait_sock *tw;
311 
312 	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
313 
314 	if (tw) {
315 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
316 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
317 
318 		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
319 		tw->tw_mark		= sk->sk_mark;
320 		tw->tw_priority		= READ_ONCE(sk->sk_priority);
321 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
322 		/* refreshed when we enter true TIME-WAIT state */
323 		tw->tw_entry_stamp	= tcp_time_stamp_ms(tp);
324 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
325 		tcptw->tw_snd_nxt	= tp->snd_nxt;
326 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
327 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
328 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
329 		tcptw->tw_ts_offset	= tp->tsoffset;
330 		tw->tw_usec_ts		= tp->tcp_usec_ts;
331 		tcptw->tw_last_oow_ack_time = 0;
332 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
333 		tw->tw_txhash		= sk->sk_txhash;
334 		tw->tw_tx_queue_mapping = sk->sk_tx_queue_mapping;
335 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
336 		tw->tw_rx_queue_mapping = sk->sk_rx_queue_mapping;
337 #endif
338 #if IS_ENABLED(CONFIG_IPV6)
339 		if (tw->tw_family == PF_INET6) {
340 			struct ipv6_pinfo *np = inet6_sk(sk);
341 
342 			tw->tw_v6_daddr = sk->sk_v6_daddr;
343 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
344 			tw->tw_tclass = np->tclass;
345 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
346 			tw->tw_ipv6only = sk->sk_ipv6only;
347 		}
348 #endif
349 
350 		tcp_time_wait_init(sk, tcptw);
351 		tcp_ao_time_wait(tcptw, tp);
352 
353 		/* Get the TIME_WAIT timeout firing. */
354 		if (timeo < rto)
355 			timeo = rto;
356 
357 		if (state == TCP_TIME_WAIT)
358 			timeo = TCP_TIMEWAIT_LEN;
359 
360 		/* Linkage updates.
361 		 * Note that access to tw after this point is illegal.
362 		 */
363 		inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
364 	} else {
365 		/* Sorry, if we're out of memory, just CLOSE this
366 		 * socket up.  We've got bigger problems than
367 		 * non-graceful socket closings.
368 		 */
369 		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
370 	}
371 
372 	tcp_update_metrics(sk);
373 	tcp_done(sk);
374 }
375 EXPORT_SYMBOL(tcp_time_wait);
376 
377 #ifdef CONFIG_TCP_MD5SIG
378 static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
379 {
380 	struct tcp_md5sig_key *key;
381 
382 	key = container_of(head, struct tcp_md5sig_key, rcu);
383 	kfree(key);
384 	static_branch_slow_dec_deferred(&tcp_md5_needed);
385 	tcp_md5_release_sigpool();
386 }
387 #endif
388 
389 void tcp_twsk_destructor(struct sock *sk)
390 {
391 #ifdef CONFIG_TCP_MD5SIG
392 	if (static_branch_unlikely(&tcp_md5_needed.key)) {
393 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
394 
395 		if (twsk->tw_md5_key)
396 			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
397 	}
398 #endif
399 	tcp_ao_destroy_sock(sk, true);
400 }
401 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
402 
403 void tcp_twsk_purge(struct list_head *net_exit_list)
404 {
405 	bool purged_once = false;
406 	struct net *net;
407 
408 	list_for_each_entry(net, net_exit_list, exit_list) {
409 		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
410 			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
411 			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
412 		} else if (!purged_once) {
413 			inet_twsk_purge(&tcp_hashinfo);
414 			purged_once = true;
415 		}
416 	}
417 }
418 
419 /* Warning : This function is called without sk_listener being locked.
420  * Be sure to read socket fields once, as their value could change under us.
421  */
422 void tcp_openreq_init_rwin(struct request_sock *req,
423 			   const struct sock *sk_listener,
424 			   const struct dst_entry *dst)
425 {
426 	struct inet_request_sock *ireq = inet_rsk(req);
427 	const struct tcp_sock *tp = tcp_sk(sk_listener);
428 	int full_space = tcp_full_space(sk_listener);
429 	u32 window_clamp;
430 	__u8 rcv_wscale;
431 	u32 rcv_wnd;
432 	int mss;
433 
434 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
435 	window_clamp = READ_ONCE(tp->window_clamp);
436 	/* Set this up on the first call only */
437 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
438 
439 	/* limit the window selection if the user enforce a smaller rx buffer */
440 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
441 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
442 		req->rsk_window_clamp = full_space;
443 
444 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
445 	if (rcv_wnd == 0)
446 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
447 	else if (full_space < rcv_wnd * mss)
448 		full_space = rcv_wnd * mss;
449 
450 	/* tcp_full_space because it is guaranteed to be the first packet */
451 	tcp_select_initial_window(sk_listener, full_space,
452 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
453 		&req->rsk_rcv_wnd,
454 		&req->rsk_window_clamp,
455 		ireq->wscale_ok,
456 		&rcv_wscale,
457 		rcv_wnd);
458 	ireq->rcv_wscale = rcv_wscale;
459 }
460 EXPORT_SYMBOL(tcp_openreq_init_rwin);
461 
462 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
463 				  const struct request_sock *req)
464 {
465 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
466 }
467 
468 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
469 {
470 	struct inet_connection_sock *icsk = inet_csk(sk);
471 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
472 	bool ca_got_dst = false;
473 
474 	if (ca_key != TCP_CA_UNSPEC) {
475 		const struct tcp_congestion_ops *ca;
476 
477 		rcu_read_lock();
478 		ca = tcp_ca_find_key(ca_key);
479 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
480 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
481 			icsk->icsk_ca_ops = ca;
482 			ca_got_dst = true;
483 		}
484 		rcu_read_unlock();
485 	}
486 
487 	/* If no valid choice made yet, assign current system default ca. */
488 	if (!ca_got_dst &&
489 	    (!icsk->icsk_ca_setsockopt ||
490 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
491 		tcp_assign_congestion_control(sk);
492 
493 	tcp_set_ca_state(sk, TCP_CA_Open);
494 }
495 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
496 
497 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
498 				    struct request_sock *req,
499 				    struct tcp_sock *newtp)
500 {
501 #if IS_ENABLED(CONFIG_SMC)
502 	struct inet_request_sock *ireq;
503 
504 	if (static_branch_unlikely(&tcp_have_smc)) {
505 		ireq = inet_rsk(req);
506 		if (oldtp->syn_smc && !ireq->smc_ok)
507 			newtp->syn_smc = 0;
508 	}
509 #endif
510 }
511 
512 /* This is not only more efficient than what we used to do, it eliminates
513  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
514  *
515  * Actually, we could lots of memory writes here. tp of listening
516  * socket contains all necessary default parameters.
517  */
518 struct sock *tcp_create_openreq_child(const struct sock *sk,
519 				      struct request_sock *req,
520 				      struct sk_buff *skb)
521 {
522 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
523 	const struct inet_request_sock *ireq = inet_rsk(req);
524 	struct tcp_request_sock *treq = tcp_rsk(req);
525 	struct inet_connection_sock *newicsk;
526 	const struct tcp_sock *oldtp;
527 	struct tcp_sock *newtp;
528 	u32 seq;
529 
530 	if (!newsk)
531 		return NULL;
532 
533 	newicsk = inet_csk(newsk);
534 	newtp = tcp_sk(newsk);
535 	oldtp = tcp_sk(sk);
536 
537 	smc_check_reset_syn_req(oldtp, req, newtp);
538 
539 	/* Now setup tcp_sock */
540 	newtp->pred_flags = 0;
541 
542 	seq = treq->rcv_isn + 1;
543 	newtp->rcv_wup = seq;
544 	WRITE_ONCE(newtp->copied_seq, seq);
545 	WRITE_ONCE(newtp->rcv_nxt, seq);
546 	newtp->segs_in = 1;
547 
548 	seq = treq->snt_isn + 1;
549 	newtp->snd_sml = newtp->snd_una = seq;
550 	WRITE_ONCE(newtp->snd_nxt, seq);
551 	newtp->snd_up = seq;
552 
553 	INIT_LIST_HEAD(&newtp->tsq_node);
554 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
555 
556 	tcp_init_wl(newtp, treq->rcv_isn);
557 
558 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
559 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
560 
561 	newtp->lsndtime = tcp_jiffies32;
562 	newsk->sk_txhash = READ_ONCE(treq->txhash);
563 	newtp->total_retrans = req->num_retrans;
564 
565 	tcp_init_xmit_timers(newsk);
566 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
567 
568 	if (sock_flag(newsk, SOCK_KEEPOPEN))
569 		tcp_reset_keepalive_timer(newsk, keepalive_time_when(newtp));
570 
571 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
572 	newtp->rx_opt.sack_ok = ireq->sack_ok;
573 	newtp->window_clamp = req->rsk_window_clamp;
574 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
575 	newtp->rcv_wnd = req->rsk_rcv_wnd;
576 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
577 	if (newtp->rx_opt.wscale_ok) {
578 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
579 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
580 	} else {
581 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
582 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
583 	}
584 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
585 	newtp->max_window = newtp->snd_wnd;
586 
587 	if (newtp->rx_opt.tstamp_ok) {
588 		newtp->tcp_usec_ts = treq->req_usec_ts;
589 		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
590 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
591 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
592 	} else {
593 		newtp->tcp_usec_ts = 0;
594 		newtp->rx_opt.ts_recent_stamp = 0;
595 		newtp->tcp_header_len = sizeof(struct tcphdr);
596 	}
597 	if (req->num_timeout) {
598 		newtp->total_rto = req->num_timeout;
599 		newtp->undo_marker = treq->snt_isn;
600 		if (newtp->tcp_usec_ts) {
601 			newtp->retrans_stamp = treq->snt_synack;
602 			newtp->total_rto_time = (u32)(tcp_clock_us() -
603 						      newtp->retrans_stamp) / USEC_PER_MSEC;
604 		} else {
605 			newtp->retrans_stamp = div_u64(treq->snt_synack,
606 						       USEC_PER_SEC / TCP_TS_HZ);
607 			newtp->total_rto_time = tcp_clock_ms() -
608 						newtp->retrans_stamp;
609 		}
610 		newtp->total_rto_recoveries = 1;
611 	}
612 	newtp->tsoffset = treq->ts_off;
613 #ifdef CONFIG_TCP_MD5SIG
614 	newtp->md5sig_info = NULL;	/*XXX*/
615 #endif
616 #ifdef CONFIG_TCP_AO
617 	newtp->ao_info = NULL;
618 
619 	if (tcp_rsk_used_ao(req)) {
620 		struct tcp_ao_key *ao_key;
621 
622 		ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
623 		if (ao_key)
624 			newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
625 	}
626  #endif
627 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
628 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
629 	newtp->rx_opt.mss_clamp = req->mss;
630 	tcp_ecn_openreq_child(newtp, req);
631 	newtp->fastopen_req = NULL;
632 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
633 
634 	newtp->bpf_chg_cc_inprogress = 0;
635 	tcp_bpf_clone(sk, newsk);
636 
637 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
638 
639 	xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1);
640 
641 	return newsk;
642 }
643 EXPORT_SYMBOL(tcp_create_openreq_child);
644 
645 /*
646  * Process an incoming packet for SYN_RECV sockets represented as a
647  * request_sock. Normally sk is the listener socket but for TFO it
648  * points to the child socket.
649  *
650  * XXX (TFO) - The current impl contains a special check for ack
651  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
652  *
653  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
654  *
655  * Note: If @fastopen is true, this can be called from process context.
656  *       Otherwise, this is from BH context.
657  */
658 
659 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
660 			   struct request_sock *req,
661 			   bool fastopen, bool *req_stolen)
662 {
663 	struct tcp_options_received tmp_opt;
664 	struct sock *child;
665 	const struct tcphdr *th = tcp_hdr(skb);
666 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
667 	bool paws_reject = false;
668 	bool own_req;
669 
670 	tmp_opt.saw_tstamp = 0;
671 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
672 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
673 
674 		if (tmp_opt.saw_tstamp) {
675 			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
676 			if (tmp_opt.rcv_tsecr)
677 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
678 			/* We do not store true stamp, but it is not required,
679 			 * it can be estimated (approximately)
680 			 * from another data.
681 			 */
682 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
683 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
684 		}
685 	}
686 
687 	/* Check for pure retransmitted SYN. */
688 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
689 	    flg == TCP_FLAG_SYN &&
690 	    !paws_reject) {
691 		/*
692 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
693 		 * this case on figure 6 and figure 8, but formal
694 		 * protocol description says NOTHING.
695 		 * To be more exact, it says that we should send ACK,
696 		 * because this segment (at least, if it has no data)
697 		 * is out of window.
698 		 *
699 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
700 		 *  describe SYN-RECV state. All the description
701 		 *  is wrong, we cannot believe to it and should
702 		 *  rely only on common sense and implementation
703 		 *  experience.
704 		 *
705 		 * Enforce "SYN-ACK" according to figure 8, figure 6
706 		 * of RFC793, fixed by RFC1122.
707 		 *
708 		 * Note that even if there is new data in the SYN packet
709 		 * they will be thrown away too.
710 		 *
711 		 * Reset timer after retransmitting SYNACK, similar to
712 		 * the idea of fast retransmit in recovery.
713 		 */
714 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
715 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
716 					  &tcp_rsk(req)->last_oow_ack_time) &&
717 
718 		    !inet_rtx_syn_ack(sk, req)) {
719 			unsigned long expires = jiffies;
720 
721 			expires += reqsk_timeout(req, TCP_RTO_MAX);
722 			if (!fastopen)
723 				mod_timer_pending(&req->rsk_timer, expires);
724 			else
725 				req->rsk_timer.expires = expires;
726 		}
727 		return NULL;
728 	}
729 
730 	/* Further reproduces section "SEGMENT ARRIVES"
731 	   for state SYN-RECEIVED of RFC793.
732 	   It is broken, however, it does not work only
733 	   when SYNs are crossed.
734 
735 	   You would think that SYN crossing is impossible here, since
736 	   we should have a SYN_SENT socket (from connect()) on our end,
737 	   but this is not true if the crossed SYNs were sent to both
738 	   ends by a malicious third party.  We must defend against this,
739 	   and to do that we first verify the ACK (as per RFC793, page
740 	   36) and reset if it is invalid.  Is this a true full defense?
741 	   To convince ourselves, let us consider a way in which the ACK
742 	   test can still pass in this 'malicious crossed SYNs' case.
743 	   Malicious sender sends identical SYNs (and thus identical sequence
744 	   numbers) to both A and B:
745 
746 		A: gets SYN, seq=7
747 		B: gets SYN, seq=7
748 
749 	   By our good fortune, both A and B select the same initial
750 	   send sequence number of seven :-)
751 
752 		A: sends SYN|ACK, seq=7, ack_seq=8
753 		B: sends SYN|ACK, seq=7, ack_seq=8
754 
755 	   So we are now A eating this SYN|ACK, ACK test passes.  So
756 	   does sequence test, SYN is truncated, and thus we consider
757 	   it a bare ACK.
758 
759 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
760 	   bare ACK.  Otherwise, we create an established connection.  Both
761 	   ends (listening sockets) accept the new incoming connection and try
762 	   to talk to each other. 8-)
763 
764 	   Note: This case is both harmless, and rare.  Possibility is about the
765 	   same as us discovering intelligent life on another plant tomorrow.
766 
767 	   But generally, we should (RFC lies!) to accept ACK
768 	   from SYNACK both here and in tcp_rcv_state_process().
769 	   tcp_rcv_state_process() does not, hence, we do not too.
770 
771 	   Note that the case is absolutely generic:
772 	   we cannot optimize anything here without
773 	   violating protocol. All the checks must be made
774 	   before attempt to create socket.
775 	 */
776 
777 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
778 	 *                  and the incoming segment acknowledges something not yet
779 	 *                  sent (the segment carries an unacceptable ACK) ...
780 	 *                  a reset is sent."
781 	 *
782 	 * Invalid ACK: reset will be sent by listening socket.
783 	 * Note that the ACK validity check for a Fast Open socket is done
784 	 * elsewhere and is checked directly against the child socket rather
785 	 * than req because user data may have been sent out.
786 	 */
787 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
788 	    (TCP_SKB_CB(skb)->ack_seq !=
789 	     tcp_rsk(req)->snt_isn + 1))
790 		return sk;
791 
792 	/* Also, it would be not so bad idea to check rcv_tsecr, which
793 	 * is essentially ACK extension and too early or too late values
794 	 * should cause reset in unsynchronized states.
795 	 */
796 
797 	/* RFC793: "first check sequence number". */
798 
799 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq,
800 					  TCP_SKB_CB(skb)->end_seq,
801 					  tcp_rsk(req)->rcv_nxt,
802 					  tcp_rsk(req)->rcv_nxt +
803 					  tcp_synack_window(req))) {
804 		/* Out of window: send ACK and drop. */
805 		if (!(flg & TCP_FLAG_RST) &&
806 		    !tcp_oow_rate_limited(sock_net(sk), skb,
807 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
808 					  &tcp_rsk(req)->last_oow_ack_time))
809 			req->rsk_ops->send_ack(sk, skb, req);
810 		if (paws_reject)
811 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
812 		return NULL;
813 	}
814 
815 	/* In sequence, PAWS is OK. */
816 
817 	/* TODO: We probably should defer ts_recent change once
818 	 * we take ownership of @req.
819 	 */
820 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
821 		WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
822 
823 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
824 		/* Truncate SYN, it is out of window starting
825 		   at tcp_rsk(req)->rcv_isn + 1. */
826 		flg &= ~TCP_FLAG_SYN;
827 	}
828 
829 	/* RFC793: "second check the RST bit" and
830 	 *	   "fourth, check the SYN bit"
831 	 */
832 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
833 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
834 		goto embryonic_reset;
835 	}
836 
837 	/* ACK sequence verified above, just make sure ACK is
838 	 * set.  If ACK not set, just silently drop the packet.
839 	 *
840 	 * XXX (TFO) - if we ever allow "data after SYN", the
841 	 * following check needs to be removed.
842 	 */
843 	if (!(flg & TCP_FLAG_ACK))
844 		return NULL;
845 
846 	/* For Fast Open no more processing is needed (sk is the
847 	 * child socket).
848 	 */
849 	if (fastopen)
850 		return sk;
851 
852 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
853 	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
854 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
855 		inet_rsk(req)->acked = 1;
856 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
857 		return NULL;
858 	}
859 
860 	/* OK, ACK is valid, create big socket and
861 	 * feed this segment to it. It will repeat all
862 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
863 	 * ESTABLISHED STATE. If it will be dropped after
864 	 * socket is created, wait for troubles.
865 	 */
866 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
867 							 req, &own_req);
868 	if (!child)
869 		goto listen_overflow;
870 
871 	if (own_req && rsk_drop_req(req)) {
872 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
873 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
874 		return child;
875 	}
876 
877 	sock_rps_save_rxhash(child, skb);
878 	tcp_synack_rtt_meas(child, req);
879 	*req_stolen = !own_req;
880 	return inet_csk_complete_hashdance(sk, child, req, own_req);
881 
882 listen_overflow:
883 	if (sk != req->rsk_listener)
884 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
885 
886 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
887 		inet_rsk(req)->acked = 1;
888 		return NULL;
889 	}
890 
891 embryonic_reset:
892 	if (!(flg & TCP_FLAG_RST)) {
893 		/* Received a bad SYN pkt - for TFO We try not to reset
894 		 * the local connection unless it's really necessary to
895 		 * avoid becoming vulnerable to outside attack aiming at
896 		 * resetting legit local connections.
897 		 */
898 		req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
899 	} else if (fastopen) { /* received a valid RST pkt */
900 		reqsk_fastopen_remove(sk, req, true);
901 		tcp_reset(sk, skb);
902 	}
903 	if (!fastopen) {
904 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
905 
906 		if (unlinked)
907 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
908 		*req_stolen = !unlinked;
909 	}
910 	return NULL;
911 }
912 EXPORT_SYMBOL(tcp_check_req);
913 
914 /*
915  * Queue segment on the new socket if the new socket is active,
916  * otherwise we just shortcircuit this and continue with
917  * the new socket.
918  *
919  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
920  * when entering. But other states are possible due to a race condition
921  * where after __inet_lookup_established() fails but before the listener
922  * locked is obtained, other packets cause the same connection to
923  * be created.
924  */
925 
926 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
927 				       struct sk_buff *skb)
928 	__releases(&((child)->sk_lock.slock))
929 {
930 	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
931 	int state = child->sk_state;
932 
933 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
934 	sk_mark_napi_id_set(child, skb);
935 
936 	tcp_segs_in(tcp_sk(child), skb);
937 	if (!sock_owned_by_user(child)) {
938 		reason = tcp_rcv_state_process(child, skb);
939 		/* Wakeup parent, send SIGIO */
940 		if (state == TCP_SYN_RECV && child->sk_state != state)
941 			parent->sk_data_ready(parent);
942 	} else {
943 		/* Alas, it is possible again, because we do lookup
944 		 * in main socket hash table and lock on listening
945 		 * socket does not protect us more.
946 		 */
947 		__sk_add_backlog(child, skb);
948 	}
949 
950 	bh_unlock_sock(child);
951 	sock_put(child);
952 	return reason;
953 }
954 EXPORT_SYMBOL(tcp_child_process);
955