xref: /linux/net/ipv4/tcp_minisocks.c (revision 1c80d50bb697f84bfbc3876e08e1a1d42bfbdddb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 #include <net/tcp.h>
23 #include <net/xfrm.h>
24 #include <net/busy_poll.h>
25 
26 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
27 {
28 	if (seq == s_win)
29 		return true;
30 	if (after(end_seq, s_win) && before(seq, e_win))
31 		return true;
32 	return seq == e_win && seq == end_seq;
33 }
34 
35 static enum tcp_tw_status
36 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
37 				  const struct sk_buff *skb, int mib_idx)
38 {
39 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
40 
41 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
42 				  &tcptw->tw_last_oow_ack_time)) {
43 		/* Send ACK. Note, we do not put the bucket,
44 		 * it will be released by caller.
45 		 */
46 		return TCP_TW_ACK;
47 	}
48 
49 	/* We are rate-limiting, so just release the tw sock and drop skb. */
50 	inet_twsk_put(tw);
51 	return TCP_TW_SUCCESS;
52 }
53 
54 static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq)
55 {
56 #ifdef CONFIG_TCP_AO
57 	struct tcp_ao_info *ao;
58 
59 	ao = rcu_dereference(tcptw->ao_info);
60 	if (unlikely(ao && seq < tcptw->tw_rcv_nxt))
61 		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
62 #endif
63 	tcptw->tw_rcv_nxt = seq;
64 }
65 
66 /*
67  * * Main purpose of TIME-WAIT state is to close connection gracefully,
68  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
69  *   (and, probably, tail of data) and one or more our ACKs are lost.
70  * * What is TIME-WAIT timeout? It is associated with maximal packet
71  *   lifetime in the internet, which results in wrong conclusion, that
72  *   it is set to catch "old duplicate segments" wandering out of their path.
73  *   It is not quite correct. This timeout is calculated so that it exceeds
74  *   maximal retransmission timeout enough to allow to lose one (or more)
75  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
76  * * When TIME-WAIT socket receives RST, it means that another end
77  *   finally closed and we are allowed to kill TIME-WAIT too.
78  * * Second purpose of TIME-WAIT is catching old duplicate segments.
79  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
80  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
81  * * If we invented some more clever way to catch duplicates
82  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
83  *
84  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
85  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
86  * from the very beginning.
87  *
88  * NOTE. With recycling (and later with fin-wait-2) TW bucket
89  * is _not_ stateless. It means, that strictly speaking we must
90  * spinlock it. I do not want! Well, probability of misbehaviour
91  * is ridiculously low and, seems, we could use some mb() tricks
92  * to avoid misread sequence numbers, states etc.  --ANK
93  *
94  * We don't need to initialize tmp_out.sack_ok as we don't use the results
95  */
96 enum tcp_tw_status
97 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
98 			   const struct tcphdr *th)
99 {
100 	struct tcp_options_received tmp_opt;
101 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102 	bool paws_reject = false;
103 
104 	tmp_opt.saw_tstamp = 0;
105 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
107 
108 		if (tmp_opt.saw_tstamp) {
109 			if (tmp_opt.rcv_tsecr)
110 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
111 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
112 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
113 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
114 		}
115 	}
116 
117 	if (tw->tw_substate == TCP_FIN_WAIT2) {
118 		/* Just repeat all the checks of tcp_rcv_state_process() */
119 
120 		/* Out of window, send ACK */
121 		if (paws_reject ||
122 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
123 				   tcptw->tw_rcv_nxt,
124 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
125 			return tcp_timewait_check_oow_rate_limit(
126 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
127 
128 		if (th->rst)
129 			goto kill;
130 
131 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
132 			return TCP_TW_RST;
133 
134 		/* Dup ACK? */
135 		if (!th->ack ||
136 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
137 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
138 			inet_twsk_put(tw);
139 			return TCP_TW_SUCCESS;
140 		}
141 
142 		/* New data or FIN. If new data arrive after half-duplex close,
143 		 * reset.
144 		 */
145 		if (!th->fin ||
146 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
147 			return TCP_TW_RST;
148 
149 		/* FIN arrived, enter true time-wait state. */
150 		tw->tw_substate	  = TCP_TIME_WAIT;
151 		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq);
152 
153 		if (tmp_opt.saw_tstamp) {
154 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
155 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
156 		}
157 
158 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
159 		return TCP_TW_ACK;
160 	}
161 
162 	/*
163 	 *	Now real TIME-WAIT state.
164 	 *
165 	 *	RFC 1122:
166 	 *	"When a connection is [...] on TIME-WAIT state [...]
167 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
168 	 *	reopen the connection directly, if it:
169 	 *
170 	 *	(1)  assigns its initial sequence number for the new
171 	 *	connection to be larger than the largest sequence
172 	 *	number it used on the previous connection incarnation,
173 	 *	and
174 	 *
175 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
176 	 *	to be an old duplicate".
177 	 */
178 
179 	if (!paws_reject &&
180 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
181 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
182 		/* In window segment, it may be only reset or bare ack. */
183 
184 		if (th->rst) {
185 			/* This is TIME_WAIT assassination, in two flavors.
186 			 * Oh well... nobody has a sufficient solution to this
187 			 * protocol bug yet.
188 			 */
189 			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
190 kill:
191 				inet_twsk_deschedule_put(tw);
192 				return TCP_TW_SUCCESS;
193 			}
194 		} else {
195 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
196 		}
197 
198 		if (tmp_opt.saw_tstamp) {
199 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
200 			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
201 		}
202 
203 		inet_twsk_put(tw);
204 		return TCP_TW_SUCCESS;
205 	}
206 
207 	/* Out of window segment.
208 
209 	   All the segments are ACKed immediately.
210 
211 	   The only exception is new SYN. We accept it, if it is
212 	   not old duplicate and we are not in danger to be killed
213 	   by delayed old duplicates. RFC check is that it has
214 	   newer sequence number works at rates <40Mbit/sec.
215 	   However, if paws works, it is reliable AND even more,
216 	   we even may relax silly seq space cutoff.
217 
218 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
219 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
220 	   we must return socket to time-wait state. It is not good,
221 	   but not fatal yet.
222 	 */
223 
224 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
225 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
226 	     (tmp_opt.saw_tstamp &&
227 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
228 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
229 		if (isn == 0)
230 			isn++;
231 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
232 		return TCP_TW_SYN;
233 	}
234 
235 	if (paws_reject)
236 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
237 
238 	if (!th->rst) {
239 		/* In this case we must reset the TIMEWAIT timer.
240 		 *
241 		 * If it is ACKless SYN it may be both old duplicate
242 		 * and new good SYN with random sequence number <rcv_nxt.
243 		 * Do not reschedule in the last case.
244 		 */
245 		if (paws_reject || th->ack)
246 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
247 
248 		return tcp_timewait_check_oow_rate_limit(
249 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
250 	}
251 	inet_twsk_put(tw);
252 	return TCP_TW_SUCCESS;
253 }
254 EXPORT_SYMBOL(tcp_timewait_state_process);
255 
256 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
257 {
258 #ifdef CONFIG_TCP_MD5SIG
259 	const struct tcp_sock *tp = tcp_sk(sk);
260 	struct tcp_md5sig_key *key;
261 
262 	/*
263 	 * The timewait bucket does not have the key DB from the
264 	 * sock structure. We just make a quick copy of the
265 	 * md5 key being used (if indeed we are using one)
266 	 * so the timewait ack generating code has the key.
267 	 */
268 	tcptw->tw_md5_key = NULL;
269 	if (!static_branch_unlikely(&tcp_md5_needed.key))
270 		return;
271 
272 	key = tp->af_specific->md5_lookup(sk, sk);
273 	if (key) {
274 		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
275 		if (!tcptw->tw_md5_key)
276 			return;
277 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
278 			goto out_free;
279 		tcp_md5_add_sigpool();
280 	}
281 	return;
282 out_free:
283 	WARN_ON_ONCE(1);
284 	kfree(tcptw->tw_md5_key);
285 	tcptw->tw_md5_key = NULL;
286 #endif
287 }
288 
289 /*
290  * Move a socket to time-wait or dead fin-wait-2 state.
291  */
292 void tcp_time_wait(struct sock *sk, int state, int timeo)
293 {
294 	const struct inet_connection_sock *icsk = inet_csk(sk);
295 	struct tcp_sock *tp = tcp_sk(sk);
296 	struct net *net = sock_net(sk);
297 	struct inet_timewait_sock *tw;
298 
299 	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
300 
301 	if (tw) {
302 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
303 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
304 
305 		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
306 		tw->tw_mark		= sk->sk_mark;
307 		tw->tw_priority		= READ_ONCE(sk->sk_priority);
308 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
309 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
310 		tcptw->tw_snd_nxt	= tp->snd_nxt;
311 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
312 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
313 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
314 		tcptw->tw_ts_offset	= tp->tsoffset;
315 		tw->tw_usec_ts		= tp->tcp_usec_ts;
316 		tcptw->tw_last_oow_ack_time = 0;
317 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
318 		tw->tw_txhash		= sk->sk_txhash;
319 #if IS_ENABLED(CONFIG_IPV6)
320 		if (tw->tw_family == PF_INET6) {
321 			struct ipv6_pinfo *np = inet6_sk(sk);
322 
323 			tw->tw_v6_daddr = sk->sk_v6_daddr;
324 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
325 			tw->tw_tclass = np->tclass;
326 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
327 			tw->tw_ipv6only = sk->sk_ipv6only;
328 		}
329 #endif
330 
331 		tcp_time_wait_init(sk, tcptw);
332 		tcp_ao_time_wait(tcptw, tp);
333 
334 		/* Get the TIME_WAIT timeout firing. */
335 		if (timeo < rto)
336 			timeo = rto;
337 
338 		if (state == TCP_TIME_WAIT)
339 			timeo = TCP_TIMEWAIT_LEN;
340 
341 		/* tw_timer is pinned, so we need to make sure BH are disabled
342 		 * in following section, otherwise timer handler could run before
343 		 * we complete the initialization.
344 		 */
345 		local_bh_disable();
346 		inet_twsk_schedule(tw, timeo);
347 		/* Linkage updates.
348 		 * Note that access to tw after this point is illegal.
349 		 */
350 		inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
351 		local_bh_enable();
352 	} else {
353 		/* Sorry, if we're out of memory, just CLOSE this
354 		 * socket up.  We've got bigger problems than
355 		 * non-graceful socket closings.
356 		 */
357 		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
358 	}
359 
360 	tcp_update_metrics(sk);
361 	tcp_done(sk);
362 }
363 EXPORT_SYMBOL(tcp_time_wait);
364 
365 #ifdef CONFIG_TCP_MD5SIG
366 static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
367 {
368 	struct tcp_md5sig_key *key;
369 
370 	key = container_of(head, struct tcp_md5sig_key, rcu);
371 	kfree(key);
372 	static_branch_slow_dec_deferred(&tcp_md5_needed);
373 	tcp_md5_release_sigpool();
374 }
375 #endif
376 
377 void tcp_twsk_destructor(struct sock *sk)
378 {
379 #ifdef CONFIG_TCP_MD5SIG
380 	if (static_branch_unlikely(&tcp_md5_needed.key)) {
381 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
382 
383 		if (twsk->tw_md5_key)
384 			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
385 	}
386 #endif
387 	tcp_ao_destroy_sock(sk, true);
388 }
389 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
390 
391 void tcp_twsk_purge(struct list_head *net_exit_list, int family)
392 {
393 	bool purged_once = false;
394 	struct net *net;
395 
396 	list_for_each_entry(net, net_exit_list, exit_list) {
397 		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
398 			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
399 			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family);
400 		} else if (!purged_once) {
401 			inet_twsk_purge(&tcp_hashinfo, family);
402 			purged_once = true;
403 		}
404 	}
405 }
406 EXPORT_SYMBOL_GPL(tcp_twsk_purge);
407 
408 /* Warning : This function is called without sk_listener being locked.
409  * Be sure to read socket fields once, as their value could change under us.
410  */
411 void tcp_openreq_init_rwin(struct request_sock *req,
412 			   const struct sock *sk_listener,
413 			   const struct dst_entry *dst)
414 {
415 	struct inet_request_sock *ireq = inet_rsk(req);
416 	const struct tcp_sock *tp = tcp_sk(sk_listener);
417 	int full_space = tcp_full_space(sk_listener);
418 	u32 window_clamp;
419 	__u8 rcv_wscale;
420 	u32 rcv_wnd;
421 	int mss;
422 
423 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
424 	window_clamp = READ_ONCE(tp->window_clamp);
425 	/* Set this up on the first call only */
426 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
427 
428 	/* limit the window selection if the user enforce a smaller rx buffer */
429 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
430 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
431 		req->rsk_window_clamp = full_space;
432 
433 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
434 	if (rcv_wnd == 0)
435 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
436 	else if (full_space < rcv_wnd * mss)
437 		full_space = rcv_wnd * mss;
438 
439 	/* tcp_full_space because it is guaranteed to be the first packet */
440 	tcp_select_initial_window(sk_listener, full_space,
441 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
442 		&req->rsk_rcv_wnd,
443 		&req->rsk_window_clamp,
444 		ireq->wscale_ok,
445 		&rcv_wscale,
446 		rcv_wnd);
447 	ireq->rcv_wscale = rcv_wscale;
448 }
449 EXPORT_SYMBOL(tcp_openreq_init_rwin);
450 
451 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
452 				  const struct request_sock *req)
453 {
454 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
455 }
456 
457 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
458 {
459 	struct inet_connection_sock *icsk = inet_csk(sk);
460 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
461 	bool ca_got_dst = false;
462 
463 	if (ca_key != TCP_CA_UNSPEC) {
464 		const struct tcp_congestion_ops *ca;
465 
466 		rcu_read_lock();
467 		ca = tcp_ca_find_key(ca_key);
468 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
469 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
470 			icsk->icsk_ca_ops = ca;
471 			ca_got_dst = true;
472 		}
473 		rcu_read_unlock();
474 	}
475 
476 	/* If no valid choice made yet, assign current system default ca. */
477 	if (!ca_got_dst &&
478 	    (!icsk->icsk_ca_setsockopt ||
479 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
480 		tcp_assign_congestion_control(sk);
481 
482 	tcp_set_ca_state(sk, TCP_CA_Open);
483 }
484 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
485 
486 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
487 				    struct request_sock *req,
488 				    struct tcp_sock *newtp)
489 {
490 #if IS_ENABLED(CONFIG_SMC)
491 	struct inet_request_sock *ireq;
492 
493 	if (static_branch_unlikely(&tcp_have_smc)) {
494 		ireq = inet_rsk(req);
495 		if (oldtp->syn_smc && !ireq->smc_ok)
496 			newtp->syn_smc = 0;
497 	}
498 #endif
499 }
500 
501 /* This is not only more efficient than what we used to do, it eliminates
502  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
503  *
504  * Actually, we could lots of memory writes here. tp of listening
505  * socket contains all necessary default parameters.
506  */
507 struct sock *tcp_create_openreq_child(const struct sock *sk,
508 				      struct request_sock *req,
509 				      struct sk_buff *skb)
510 {
511 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
512 	const struct inet_request_sock *ireq = inet_rsk(req);
513 	struct tcp_request_sock *treq = tcp_rsk(req);
514 	struct inet_connection_sock *newicsk;
515 	const struct tcp_sock *oldtp;
516 	struct tcp_sock *newtp;
517 	u32 seq;
518 #ifdef CONFIG_TCP_AO
519 	struct tcp_ao_key *ao_key;
520 #endif
521 
522 	if (!newsk)
523 		return NULL;
524 
525 	newicsk = inet_csk(newsk);
526 	newtp = tcp_sk(newsk);
527 	oldtp = tcp_sk(sk);
528 
529 	smc_check_reset_syn_req(oldtp, req, newtp);
530 
531 	/* Now setup tcp_sock */
532 	newtp->pred_flags = 0;
533 
534 	seq = treq->rcv_isn + 1;
535 	newtp->rcv_wup = seq;
536 	WRITE_ONCE(newtp->copied_seq, seq);
537 	WRITE_ONCE(newtp->rcv_nxt, seq);
538 	newtp->segs_in = 1;
539 
540 	seq = treq->snt_isn + 1;
541 	newtp->snd_sml = newtp->snd_una = seq;
542 	WRITE_ONCE(newtp->snd_nxt, seq);
543 	newtp->snd_up = seq;
544 
545 	INIT_LIST_HEAD(&newtp->tsq_node);
546 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
547 
548 	tcp_init_wl(newtp, treq->rcv_isn);
549 
550 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
551 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
552 
553 	newtp->lsndtime = tcp_jiffies32;
554 	newsk->sk_txhash = READ_ONCE(treq->txhash);
555 	newtp->total_retrans = req->num_retrans;
556 
557 	tcp_init_xmit_timers(newsk);
558 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
559 
560 	if (sock_flag(newsk, SOCK_KEEPOPEN))
561 		inet_csk_reset_keepalive_timer(newsk,
562 					       keepalive_time_when(newtp));
563 
564 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
565 	newtp->rx_opt.sack_ok = ireq->sack_ok;
566 	newtp->window_clamp = req->rsk_window_clamp;
567 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
568 	newtp->rcv_wnd = req->rsk_rcv_wnd;
569 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
570 	if (newtp->rx_opt.wscale_ok) {
571 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
572 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
573 	} else {
574 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
575 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
576 	}
577 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
578 	newtp->max_window = newtp->snd_wnd;
579 
580 	if (newtp->rx_opt.tstamp_ok) {
581 		newtp->tcp_usec_ts = treq->req_usec_ts;
582 		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
583 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
584 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
585 	} else {
586 		newtp->tcp_usec_ts = 0;
587 		newtp->rx_opt.ts_recent_stamp = 0;
588 		newtp->tcp_header_len = sizeof(struct tcphdr);
589 	}
590 	if (req->num_timeout) {
591 		newtp->total_rto = req->num_timeout;
592 		newtp->undo_marker = treq->snt_isn;
593 		if (newtp->tcp_usec_ts) {
594 			newtp->retrans_stamp = treq->snt_synack;
595 			newtp->total_rto_time = (u32)(tcp_clock_us() -
596 						      newtp->retrans_stamp) / USEC_PER_MSEC;
597 		} else {
598 			newtp->retrans_stamp = div_u64(treq->snt_synack,
599 						       USEC_PER_SEC / TCP_TS_HZ);
600 			newtp->total_rto_time = tcp_clock_ms() -
601 						newtp->retrans_stamp;
602 		}
603 		newtp->total_rto_recoveries = 1;
604 	}
605 	newtp->tsoffset = treq->ts_off;
606 #ifdef CONFIG_TCP_MD5SIG
607 	newtp->md5sig_info = NULL;	/*XXX*/
608 #endif
609 #ifdef CONFIG_TCP_AO
610 	newtp->ao_info = NULL;
611 	ao_key = treq->af_specific->ao_lookup(sk, req,
612 				tcp_rsk(req)->ao_keyid, -1);
613 	if (ao_key)
614 		newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
615  #endif
616 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
617 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
618 	newtp->rx_opt.mss_clamp = req->mss;
619 	tcp_ecn_openreq_child(newtp, req);
620 	newtp->fastopen_req = NULL;
621 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
622 
623 	newtp->bpf_chg_cc_inprogress = 0;
624 	tcp_bpf_clone(sk, newsk);
625 
626 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
627 
628 	return newsk;
629 }
630 EXPORT_SYMBOL(tcp_create_openreq_child);
631 
632 /*
633  * Process an incoming packet for SYN_RECV sockets represented as a
634  * request_sock. Normally sk is the listener socket but for TFO it
635  * points to the child socket.
636  *
637  * XXX (TFO) - The current impl contains a special check for ack
638  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
639  *
640  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
641  *
642  * Note: If @fastopen is true, this can be called from process context.
643  *       Otherwise, this is from BH context.
644  */
645 
646 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
647 			   struct request_sock *req,
648 			   bool fastopen, bool *req_stolen)
649 {
650 	struct tcp_options_received tmp_opt;
651 	struct sock *child;
652 	const struct tcphdr *th = tcp_hdr(skb);
653 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
654 	bool paws_reject = false;
655 	bool own_req;
656 
657 	tmp_opt.saw_tstamp = 0;
658 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
659 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
660 
661 		if (tmp_opt.saw_tstamp) {
662 			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
663 			if (tmp_opt.rcv_tsecr)
664 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
665 			/* We do not store true stamp, but it is not required,
666 			 * it can be estimated (approximately)
667 			 * from another data.
668 			 */
669 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
670 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
671 		}
672 	}
673 
674 	/* Check for pure retransmitted SYN. */
675 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
676 	    flg == TCP_FLAG_SYN &&
677 	    !paws_reject) {
678 		/*
679 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
680 		 * this case on figure 6 and figure 8, but formal
681 		 * protocol description says NOTHING.
682 		 * To be more exact, it says that we should send ACK,
683 		 * because this segment (at least, if it has no data)
684 		 * is out of window.
685 		 *
686 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
687 		 *  describe SYN-RECV state. All the description
688 		 *  is wrong, we cannot believe to it and should
689 		 *  rely only on common sense and implementation
690 		 *  experience.
691 		 *
692 		 * Enforce "SYN-ACK" according to figure 8, figure 6
693 		 * of RFC793, fixed by RFC1122.
694 		 *
695 		 * Note that even if there is new data in the SYN packet
696 		 * they will be thrown away too.
697 		 *
698 		 * Reset timer after retransmitting SYNACK, similar to
699 		 * the idea of fast retransmit in recovery.
700 		 */
701 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
702 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
703 					  &tcp_rsk(req)->last_oow_ack_time) &&
704 
705 		    !inet_rtx_syn_ack(sk, req)) {
706 			unsigned long expires = jiffies;
707 
708 			expires += reqsk_timeout(req, TCP_RTO_MAX);
709 			if (!fastopen)
710 				mod_timer_pending(&req->rsk_timer, expires);
711 			else
712 				req->rsk_timer.expires = expires;
713 		}
714 		return NULL;
715 	}
716 
717 	/* Further reproduces section "SEGMENT ARRIVES"
718 	   for state SYN-RECEIVED of RFC793.
719 	   It is broken, however, it does not work only
720 	   when SYNs are crossed.
721 
722 	   You would think that SYN crossing is impossible here, since
723 	   we should have a SYN_SENT socket (from connect()) on our end,
724 	   but this is not true if the crossed SYNs were sent to both
725 	   ends by a malicious third party.  We must defend against this,
726 	   and to do that we first verify the ACK (as per RFC793, page
727 	   36) and reset if it is invalid.  Is this a true full defense?
728 	   To convince ourselves, let us consider a way in which the ACK
729 	   test can still pass in this 'malicious crossed SYNs' case.
730 	   Malicious sender sends identical SYNs (and thus identical sequence
731 	   numbers) to both A and B:
732 
733 		A: gets SYN, seq=7
734 		B: gets SYN, seq=7
735 
736 	   By our good fortune, both A and B select the same initial
737 	   send sequence number of seven :-)
738 
739 		A: sends SYN|ACK, seq=7, ack_seq=8
740 		B: sends SYN|ACK, seq=7, ack_seq=8
741 
742 	   So we are now A eating this SYN|ACK, ACK test passes.  So
743 	   does sequence test, SYN is truncated, and thus we consider
744 	   it a bare ACK.
745 
746 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
747 	   bare ACK.  Otherwise, we create an established connection.  Both
748 	   ends (listening sockets) accept the new incoming connection and try
749 	   to talk to each other. 8-)
750 
751 	   Note: This case is both harmless, and rare.  Possibility is about the
752 	   same as us discovering intelligent life on another plant tomorrow.
753 
754 	   But generally, we should (RFC lies!) to accept ACK
755 	   from SYNACK both here and in tcp_rcv_state_process().
756 	   tcp_rcv_state_process() does not, hence, we do not too.
757 
758 	   Note that the case is absolutely generic:
759 	   we cannot optimize anything here without
760 	   violating protocol. All the checks must be made
761 	   before attempt to create socket.
762 	 */
763 
764 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
765 	 *                  and the incoming segment acknowledges something not yet
766 	 *                  sent (the segment carries an unacceptable ACK) ...
767 	 *                  a reset is sent."
768 	 *
769 	 * Invalid ACK: reset will be sent by listening socket.
770 	 * Note that the ACK validity check for a Fast Open socket is done
771 	 * elsewhere and is checked directly against the child socket rather
772 	 * than req because user data may have been sent out.
773 	 */
774 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
775 	    (TCP_SKB_CB(skb)->ack_seq !=
776 	     tcp_rsk(req)->snt_isn + 1))
777 		return sk;
778 
779 	/* Also, it would be not so bad idea to check rcv_tsecr, which
780 	 * is essentially ACK extension and too early or too late values
781 	 * should cause reset in unsynchronized states.
782 	 */
783 
784 	/* RFC793: "first check sequence number". */
785 
786 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
787 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
788 		/* Out of window: send ACK and drop. */
789 		if (!(flg & TCP_FLAG_RST) &&
790 		    !tcp_oow_rate_limited(sock_net(sk), skb,
791 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
792 					  &tcp_rsk(req)->last_oow_ack_time))
793 			req->rsk_ops->send_ack(sk, skb, req);
794 		if (paws_reject)
795 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
796 		return NULL;
797 	}
798 
799 	/* In sequence, PAWS is OK. */
800 
801 	/* TODO: We probably should defer ts_recent change once
802 	 * we take ownership of @req.
803 	 */
804 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
805 		WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
806 
807 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
808 		/* Truncate SYN, it is out of window starting
809 		   at tcp_rsk(req)->rcv_isn + 1. */
810 		flg &= ~TCP_FLAG_SYN;
811 	}
812 
813 	/* RFC793: "second check the RST bit" and
814 	 *	   "fourth, check the SYN bit"
815 	 */
816 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
817 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
818 		goto embryonic_reset;
819 	}
820 
821 	/* ACK sequence verified above, just make sure ACK is
822 	 * set.  If ACK not set, just silently drop the packet.
823 	 *
824 	 * XXX (TFO) - if we ever allow "data after SYN", the
825 	 * following check needs to be removed.
826 	 */
827 	if (!(flg & TCP_FLAG_ACK))
828 		return NULL;
829 
830 	/* For Fast Open no more processing is needed (sk is the
831 	 * child socket).
832 	 */
833 	if (fastopen)
834 		return sk;
835 
836 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
837 	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
838 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
839 		inet_rsk(req)->acked = 1;
840 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
841 		return NULL;
842 	}
843 
844 	/* OK, ACK is valid, create big socket and
845 	 * feed this segment to it. It will repeat all
846 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
847 	 * ESTABLISHED STATE. If it will be dropped after
848 	 * socket is created, wait for troubles.
849 	 */
850 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
851 							 req, &own_req);
852 	if (!child)
853 		goto listen_overflow;
854 
855 	if (own_req && rsk_drop_req(req)) {
856 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
857 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
858 		return child;
859 	}
860 
861 	sock_rps_save_rxhash(child, skb);
862 	tcp_synack_rtt_meas(child, req);
863 	*req_stolen = !own_req;
864 	return inet_csk_complete_hashdance(sk, child, req, own_req);
865 
866 listen_overflow:
867 	if (sk != req->rsk_listener)
868 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
869 
870 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
871 		inet_rsk(req)->acked = 1;
872 		return NULL;
873 	}
874 
875 embryonic_reset:
876 	if (!(flg & TCP_FLAG_RST)) {
877 		/* Received a bad SYN pkt - for TFO We try not to reset
878 		 * the local connection unless it's really necessary to
879 		 * avoid becoming vulnerable to outside attack aiming at
880 		 * resetting legit local connections.
881 		 */
882 		req->rsk_ops->send_reset(sk, skb);
883 	} else if (fastopen) { /* received a valid RST pkt */
884 		reqsk_fastopen_remove(sk, req, true);
885 		tcp_reset(sk, skb);
886 	}
887 	if (!fastopen) {
888 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
889 
890 		if (unlinked)
891 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
892 		*req_stolen = !unlinked;
893 	}
894 	return NULL;
895 }
896 EXPORT_SYMBOL(tcp_check_req);
897 
898 /*
899  * Queue segment on the new socket if the new socket is active,
900  * otherwise we just shortcircuit this and continue with
901  * the new socket.
902  *
903  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
904  * when entering. But other states are possible due to a race condition
905  * where after __inet_lookup_established() fails but before the listener
906  * locked is obtained, other packets cause the same connection to
907  * be created.
908  */
909 
910 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
911 				       struct sk_buff *skb)
912 	__releases(&((child)->sk_lock.slock))
913 {
914 	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
915 	int state = child->sk_state;
916 
917 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
918 	sk_mark_napi_id_set(child, skb);
919 
920 	tcp_segs_in(tcp_sk(child), skb);
921 	if (!sock_owned_by_user(child)) {
922 		reason = tcp_rcv_state_process(child, skb);
923 		/* Wakeup parent, send SIGIO */
924 		if (state == TCP_SYN_RECV && child->sk_state != state)
925 			parent->sk_data_ready(parent);
926 	} else {
927 		/* Alas, it is possible again, because we do lookup
928 		 * in main socket hash table and lock on listening
929 		 * socket does not protect us more.
930 		 */
931 		__sk_add_backlog(child, skb);
932 	}
933 
934 	bh_unlock_sock(child);
935 	sock_put(child);
936 	return reason;
937 }
938 EXPORT_SYMBOL(tcp_child_process);
939