xref: /linux/net/ipv4/tcp_minisocks.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 #include <linux/config.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/sysctl.h>
27 #include <linux/workqueue.h>
28 #include <net/tcp.h>
29 #include <net/inet_common.h>
30 #include <net/xfrm.h>
31 
32 #ifdef CONFIG_SYSCTL
33 #define SYNC_INIT 0 /* let the user enable it */
34 #else
35 #define SYNC_INIT 1
36 #endif
37 
38 int sysctl_tcp_syncookies = SYNC_INIT;
39 int sysctl_tcp_abort_on_overflow;
40 
41 struct inet_timewait_death_row tcp_death_row = {
42 	.sysctl_max_tw_buckets = NR_FILE * 2,
43 	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
44 	.death_lock	= SPIN_LOCK_UNLOCKED,
45 	.hashinfo	= &tcp_hashinfo,
46 	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
47 					    (unsigned long)&tcp_death_row),
48 	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
49 					     inet_twdr_twkill_work,
50 					     &tcp_death_row),
51 /* Short-time timewait calendar */
52 
53 	.twcal_hand	= -1,
54 	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
55 					    (unsigned long)&tcp_death_row),
56 };
57 
58 EXPORT_SYMBOL_GPL(tcp_death_row);
59 
60 static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
61 {
62 	if (seq == s_win)
63 		return 1;
64 	if (after(end_seq, s_win) && before(seq, e_win))
65 		return 1;
66 	return (seq == e_win && seq == end_seq);
67 }
68 
69 /*
70  * * Main purpose of TIME-WAIT state is to close connection gracefully,
71  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
72  *   (and, probably, tail of data) and one or more our ACKs are lost.
73  * * What is TIME-WAIT timeout? It is associated with maximal packet
74  *   lifetime in the internet, which results in wrong conclusion, that
75  *   it is set to catch "old duplicate segments" wandering out of their path.
76  *   It is not quite correct. This timeout is calculated so that it exceeds
77  *   maximal retransmission timeout enough to allow to lose one (or more)
78  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
79  * * When TIME-WAIT socket receives RST, it means that another end
80  *   finally closed and we are allowed to kill TIME-WAIT too.
81  * * Second purpose of TIME-WAIT is catching old duplicate segments.
82  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
83  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
84  * * If we invented some more clever way to catch duplicates
85  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
86  *
87  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
88  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
89  * from the very beginning.
90  *
91  * NOTE. With recycling (and later with fin-wait-2) TW bucket
92  * is _not_ stateless. It means, that strictly speaking we must
93  * spinlock it. I do not want! Well, probability of misbehaviour
94  * is ridiculously low and, seems, we could use some mb() tricks
95  * to avoid misread sequence numbers, states etc.  --ANK
96  */
97 enum tcp_tw_status
98 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
99 			   const struct tcphdr *th)
100 {
101 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102 	struct tcp_options_received tmp_opt;
103 	int paws_reject = 0;
104 
105 	tmp_opt.saw_tstamp = 0;
106 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
107 		tcp_parse_options(skb, &tmp_opt, 0);
108 
109 		if (tmp_opt.saw_tstamp) {
110 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
111 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
112 			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
113 		}
114 	}
115 
116 	if (tw->tw_substate == TCP_FIN_WAIT2) {
117 		/* Just repeat all the checks of tcp_rcv_state_process() */
118 
119 		/* Out of window, send ACK */
120 		if (paws_reject ||
121 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
122 				   tcptw->tw_rcv_nxt,
123 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
124 			return TCP_TW_ACK;
125 
126 		if (th->rst)
127 			goto kill;
128 
129 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
130 			goto kill_with_rst;
131 
132 		/* Dup ACK? */
133 		if (!after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
134 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
135 			inet_twsk_put(tw);
136 			return TCP_TW_SUCCESS;
137 		}
138 
139 		/* New data or FIN. If new data arrive after half-duplex close,
140 		 * reset.
141 		 */
142 		if (!th->fin ||
143 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
144 kill_with_rst:
145 			inet_twsk_deschedule(tw, &tcp_death_row);
146 			inet_twsk_put(tw);
147 			return TCP_TW_RST;
148 		}
149 
150 		/* FIN arrived, enter true time-wait state. */
151 		tw->tw_substate	  = TCP_TIME_WAIT;
152 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
153 		if (tmp_opt.saw_tstamp) {
154 			tcptw->tw_ts_recent_stamp = xtime.tv_sec;
155 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
156 		}
157 
158 		/* I am shamed, but failed to make it more elegant.
159 		 * Yes, it is direct reference to IP, which is impossible
160 		 * to generalize to IPv6. Taking into account that IPv6
161 		 * do not undertsnad recycling in any case, it not
162 		 * a big problem in practice. --ANK */
163 		if (tw->tw_family == AF_INET &&
164 		    tcp_death_row.sysctl_tw_recycle && tcptw->tw_ts_recent_stamp &&
165 		    tcp_v4_tw_remember_stamp(tw))
166 			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
167 					   TCP_TIMEWAIT_LEN);
168 		else
169 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
170 					   TCP_TIMEWAIT_LEN);
171 		return TCP_TW_ACK;
172 	}
173 
174 	/*
175 	 *	Now real TIME-WAIT state.
176 	 *
177 	 *	RFC 1122:
178 	 *	"When a connection is [...] on TIME-WAIT state [...]
179 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
180 	 *	reopen the connection directly, if it:
181 	 *
182 	 *	(1)  assigns its initial sequence number for the new
183 	 *	connection to be larger than the largest sequence
184 	 *	number it used on the previous connection incarnation,
185 	 *	and
186 	 *
187 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
188 	 *	to be an old duplicate".
189 	 */
190 
191 	if (!paws_reject &&
192 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
193 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
194 		/* In window segment, it may be only reset or bare ack. */
195 
196 		if (th->rst) {
197 			/* This is TIME_WAIT assasination, in two flavors.
198 			 * Oh well... nobody has a sufficient solution to this
199 			 * protocol bug yet.
200 			 */
201 			if (sysctl_tcp_rfc1337 == 0) {
202 kill:
203 				inet_twsk_deschedule(tw, &tcp_death_row);
204 				inet_twsk_put(tw);
205 				return TCP_TW_SUCCESS;
206 			}
207 		}
208 		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
209 				   TCP_TIMEWAIT_LEN);
210 
211 		if (tmp_opt.saw_tstamp) {
212 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
213 			tcptw->tw_ts_recent_stamp = xtime.tv_sec;
214 		}
215 
216 		inet_twsk_put(tw);
217 		return TCP_TW_SUCCESS;
218 	}
219 
220 	/* Out of window segment.
221 
222 	   All the segments are ACKed immediately.
223 
224 	   The only exception is new SYN. We accept it, if it is
225 	   not old duplicate and we are not in danger to be killed
226 	   by delayed old duplicates. RFC check is that it has
227 	   newer sequence number works at rates <40Mbit/sec.
228 	   However, if paws works, it is reliable AND even more,
229 	   we even may relax silly seq space cutoff.
230 
231 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
232 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
233 	   we must return socket to time-wait state. It is not good,
234 	   but not fatal yet.
235 	 */
236 
237 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
238 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
239 	     (tmp_opt.saw_tstamp &&
240 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
241 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
242 		if (isn == 0)
243 			isn++;
244 		TCP_SKB_CB(skb)->when = isn;
245 		return TCP_TW_SYN;
246 	}
247 
248 	if (paws_reject)
249 		NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
250 
251 	if(!th->rst) {
252 		/* In this case we must reset the TIMEWAIT timer.
253 		 *
254 		 * If it is ACKless SYN it may be both old duplicate
255 		 * and new good SYN with random sequence number <rcv_nxt.
256 		 * Do not reschedule in the last case.
257 		 */
258 		if (paws_reject || th->ack)
259 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
260 					   TCP_TIMEWAIT_LEN);
261 
262 		/* Send ACK. Note, we do not put the bucket,
263 		 * it will be released by caller.
264 		 */
265 		return TCP_TW_ACK;
266 	}
267 	inet_twsk_put(tw);
268 	return TCP_TW_SUCCESS;
269 }
270 
271 /*
272  * Move a socket to time-wait or dead fin-wait-2 state.
273  */
274 void tcp_time_wait(struct sock *sk, int state, int timeo)
275 {
276 	struct inet_timewait_sock *tw = NULL;
277 	const struct tcp_sock *tp = tcp_sk(sk);
278 	int recycle_ok = 0;
279 
280 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
281 		recycle_ok = tp->af_specific->remember_stamp(sk);
282 
283 	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
284 		tw = inet_twsk_alloc(sk, state);
285 
286 	if (tw != NULL) {
287 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
288 		const struct inet_connection_sock *icsk = inet_csk(sk);
289 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
290 
291 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
292 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
293 		tcptw->tw_snd_nxt	= tp->snd_nxt;
294 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
295 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
296 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
297 
298 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
299 		if (tw->tw_family == PF_INET6) {
300 			struct ipv6_pinfo *np = inet6_sk(sk);
301 			struct tcp6_timewait_sock *tcp6tw = tcp6_twsk((struct sock *)tw);
302 
303 			ipv6_addr_copy(&tcp6tw->tw_v6_daddr, &np->daddr);
304 			ipv6_addr_copy(&tcp6tw->tw_v6_rcv_saddr, &np->rcv_saddr);
305 			tw->tw_ipv6only = np->ipv6only;
306 		}
307 #endif
308 		/* Linkage updates. */
309 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
310 
311 		/* Get the TIME_WAIT timeout firing. */
312 		if (timeo < rto)
313 			timeo = rto;
314 
315 		if (recycle_ok) {
316 			tw->tw_timeout = rto;
317 		} else {
318 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
319 			if (state == TCP_TIME_WAIT)
320 				timeo = TCP_TIMEWAIT_LEN;
321 		}
322 
323 		inet_twsk_schedule(tw, &tcp_death_row, timeo,
324 				   TCP_TIMEWAIT_LEN);
325 		inet_twsk_put(tw);
326 	} else {
327 		/* Sorry, if we're out of memory, just CLOSE this
328 		 * socket up.  We've got bigger problems than
329 		 * non-graceful socket closings.
330 		 */
331 		if (net_ratelimit())
332 			printk(KERN_INFO "TCP: time wait bucket table overflow\n");
333 	}
334 
335 	tcp_update_metrics(sk);
336 	tcp_done(sk);
337 }
338 
339 /* This is not only more efficient than what we used to do, it eliminates
340  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
341  *
342  * Actually, we could lots of memory writes here. tp of listening
343  * socket contains all necessary default parameters.
344  */
345 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
346 {
347 	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
348 
349 	if (newsk != NULL) {
350 		const struct inet_request_sock *ireq = inet_rsk(req);
351 		struct tcp_request_sock *treq = tcp_rsk(req);
352 		struct inet_connection_sock *newicsk = inet_csk(sk);
353 		struct tcp_sock *newtp;
354 
355 		/* Now setup tcp_sock */
356 		newtp = tcp_sk(newsk);
357 		newtp->pred_flags = 0;
358 		newtp->rcv_nxt = treq->rcv_isn + 1;
359 		newtp->snd_nxt = newtp->snd_una = newtp->snd_sml = treq->snt_isn + 1;
360 
361 		tcp_prequeue_init(newtp);
362 
363 		tcp_init_wl(newtp, treq->snt_isn, treq->rcv_isn);
364 
365 		newtp->srtt = 0;
366 		newtp->mdev = TCP_TIMEOUT_INIT;
367 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
368 
369 		newtp->packets_out = 0;
370 		newtp->left_out = 0;
371 		newtp->retrans_out = 0;
372 		newtp->sacked_out = 0;
373 		newtp->fackets_out = 0;
374 		newtp->snd_ssthresh = 0x7fffffff;
375 
376 		/* So many TCP implementations out there (incorrectly) count the
377 		 * initial SYN frame in their delayed-ACK and congestion control
378 		 * algorithms that we must have the following bandaid to talk
379 		 * efficiently to them.  -DaveM
380 		 */
381 		newtp->snd_cwnd = 2;
382 		newtp->snd_cwnd_cnt = 0;
383 
384 		newtp->frto_counter = 0;
385 		newtp->frto_highmark = 0;
386 
387 		newicsk->icsk_ca_ops = &tcp_reno;
388 
389 		tcp_set_ca_state(newsk, TCP_CA_Open);
390 		tcp_init_xmit_timers(newsk);
391 		skb_queue_head_init(&newtp->out_of_order_queue);
392 		newtp->rcv_wup = treq->rcv_isn + 1;
393 		newtp->write_seq = treq->snt_isn + 1;
394 		newtp->pushed_seq = newtp->write_seq;
395 		newtp->copied_seq = treq->rcv_isn + 1;
396 
397 		newtp->rx_opt.saw_tstamp = 0;
398 
399 		newtp->rx_opt.dsack = 0;
400 		newtp->rx_opt.eff_sacks = 0;
401 
402 		newtp->rx_opt.num_sacks = 0;
403 		newtp->urg_data = 0;
404 
405 		if (sock_flag(newsk, SOCK_KEEPOPEN))
406 			inet_csk_reset_keepalive_timer(newsk,
407 						       keepalive_time_when(newtp));
408 
409 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
410 		if((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
411 			if (sysctl_tcp_fack)
412 				newtp->rx_opt.sack_ok |= 2;
413 		}
414 		newtp->window_clamp = req->window_clamp;
415 		newtp->rcv_ssthresh = req->rcv_wnd;
416 		newtp->rcv_wnd = req->rcv_wnd;
417 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
418 		if (newtp->rx_opt.wscale_ok) {
419 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
420 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
421 		} else {
422 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
423 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
424 		}
425 		newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale;
426 		newtp->max_window = newtp->snd_wnd;
427 
428 		if (newtp->rx_opt.tstamp_ok) {
429 			newtp->rx_opt.ts_recent = req->ts_recent;
430 			newtp->rx_opt.ts_recent_stamp = xtime.tv_sec;
431 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
432 		} else {
433 			newtp->rx_opt.ts_recent_stamp = 0;
434 			newtp->tcp_header_len = sizeof(struct tcphdr);
435 		}
436 		if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
437 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
438 		newtp->rx_opt.mss_clamp = req->mss;
439 		TCP_ECN_openreq_child(newtp, req);
440 		if (newtp->ecn_flags&TCP_ECN_OK)
441 			sock_set_flag(newsk, SOCK_NO_LARGESEND);
442 
443 		TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
444 	}
445 	return newsk;
446 }
447 
448 /*
449  *	Process an incoming packet for SYN_RECV sockets represented
450  *	as a request_sock.
451  */
452 
453 struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
454 			   struct request_sock *req,
455 			   struct request_sock **prev)
456 {
457 	struct tcphdr *th = skb->h.th;
458 	struct tcp_sock *tp = tcp_sk(sk);
459 	u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
460 	int paws_reject = 0;
461 	struct tcp_options_received tmp_opt;
462 	struct sock *child;
463 
464 	tmp_opt.saw_tstamp = 0;
465 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
466 		tcp_parse_options(skb, &tmp_opt, 0);
467 
468 		if (tmp_opt.saw_tstamp) {
469 			tmp_opt.ts_recent = req->ts_recent;
470 			/* We do not store true stamp, but it is not required,
471 			 * it can be estimated (approximately)
472 			 * from another data.
473 			 */
474 			tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
475 			paws_reject = tcp_paws_check(&tmp_opt, th->rst);
476 		}
477 	}
478 
479 	/* Check for pure retransmitted SYN. */
480 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
481 	    flg == TCP_FLAG_SYN &&
482 	    !paws_reject) {
483 		/*
484 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
485 		 * this case on figure 6 and figure 8, but formal
486 		 * protocol description says NOTHING.
487 		 * To be more exact, it says that we should send ACK,
488 		 * because this segment (at least, if it has no data)
489 		 * is out of window.
490 		 *
491 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
492 		 *  describe SYN-RECV state. All the description
493 		 *  is wrong, we cannot believe to it and should
494 		 *  rely only on common sense and implementation
495 		 *  experience.
496 		 *
497 		 * Enforce "SYN-ACK" according to figure 8, figure 6
498 		 * of RFC793, fixed by RFC1122.
499 		 */
500 		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
501 		return NULL;
502 	}
503 
504 	/* Further reproduces section "SEGMENT ARRIVES"
505 	   for state SYN-RECEIVED of RFC793.
506 	   It is broken, however, it does not work only
507 	   when SYNs are crossed.
508 
509 	   You would think that SYN crossing is impossible here, since
510 	   we should have a SYN_SENT socket (from connect()) on our end,
511 	   but this is not true if the crossed SYNs were sent to both
512 	   ends by a malicious third party.  We must defend against this,
513 	   and to do that we first verify the ACK (as per RFC793, page
514 	   36) and reset if it is invalid.  Is this a true full defense?
515 	   To convince ourselves, let us consider a way in which the ACK
516 	   test can still pass in this 'malicious crossed SYNs' case.
517 	   Malicious sender sends identical SYNs (and thus identical sequence
518 	   numbers) to both A and B:
519 
520 		A: gets SYN, seq=7
521 		B: gets SYN, seq=7
522 
523 	   By our good fortune, both A and B select the same initial
524 	   send sequence number of seven :-)
525 
526 		A: sends SYN|ACK, seq=7, ack_seq=8
527 		B: sends SYN|ACK, seq=7, ack_seq=8
528 
529 	   So we are now A eating this SYN|ACK, ACK test passes.  So
530 	   does sequence test, SYN is truncated, and thus we consider
531 	   it a bare ACK.
532 
533 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
534 	   bare ACK.  Otherwise, we create an established connection.  Both
535 	   ends (listening sockets) accept the new incoming connection and try
536 	   to talk to each other. 8-)
537 
538 	   Note: This case is both harmless, and rare.  Possibility is about the
539 	   same as us discovering intelligent life on another plant tomorrow.
540 
541 	   But generally, we should (RFC lies!) to accept ACK
542 	   from SYNACK both here and in tcp_rcv_state_process().
543 	   tcp_rcv_state_process() does not, hence, we do not too.
544 
545 	   Note that the case is absolutely generic:
546 	   we cannot optimize anything here without
547 	   violating protocol. All the checks must be made
548 	   before attempt to create socket.
549 	 */
550 
551 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
552 	 *                  and the incoming segment acknowledges something not yet
553 	 *                  sent (the segment carries an unaccaptable ACK) ...
554 	 *                  a reset is sent."
555 	 *
556 	 * Invalid ACK: reset will be sent by listening socket
557 	 */
558 	if ((flg & TCP_FLAG_ACK) &&
559 	    (TCP_SKB_CB(skb)->ack_seq != tcp_rsk(req)->snt_isn + 1))
560 		return sk;
561 
562 	/* Also, it would be not so bad idea to check rcv_tsecr, which
563 	 * is essentially ACK extension and too early or too late values
564 	 * should cause reset in unsynchronized states.
565 	 */
566 
567 	/* RFC793: "first check sequence number". */
568 
569 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
570 					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
571 		/* Out of window: send ACK and drop. */
572 		if (!(flg & TCP_FLAG_RST))
573 			req->rsk_ops->send_ack(skb, req);
574 		if (paws_reject)
575 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
576 		return NULL;
577 	}
578 
579 	/* In sequence, PAWS is OK. */
580 
581 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
582 			req->ts_recent = tmp_opt.rcv_tsval;
583 
584 		if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
585 			/* Truncate SYN, it is out of window starting
586 			   at tcp_rsk(req)->rcv_isn + 1. */
587 			flg &= ~TCP_FLAG_SYN;
588 		}
589 
590 		/* RFC793: "second check the RST bit" and
591 		 *	   "fourth, check the SYN bit"
592 		 */
593 		if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN))
594 			goto embryonic_reset;
595 
596 		/* ACK sequence verified above, just make sure ACK is
597 		 * set.  If ACK not set, just silently drop the packet.
598 		 */
599 		if (!(flg & TCP_FLAG_ACK))
600 			return NULL;
601 
602 		/* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
603 		if (inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
604 		    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
605 			inet_rsk(req)->acked = 1;
606 			return NULL;
607 		}
608 
609 		/* OK, ACK is valid, create big socket and
610 		 * feed this segment to it. It will repeat all
611 		 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
612 		 * ESTABLISHED STATE. If it will be dropped after
613 		 * socket is created, wait for troubles.
614 		 */
615 		child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL);
616 		if (child == NULL)
617 			goto listen_overflow;
618 
619 		inet_csk_reqsk_queue_unlink(sk, req, prev);
620 		inet_csk_reqsk_queue_removed(sk, req);
621 
622 		inet_csk_reqsk_queue_add(sk, req, child);
623 		return child;
624 
625 	listen_overflow:
626 		if (!sysctl_tcp_abort_on_overflow) {
627 			inet_rsk(req)->acked = 1;
628 			return NULL;
629 		}
630 
631 	embryonic_reset:
632 		NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
633 		if (!(flg & TCP_FLAG_RST))
634 			req->rsk_ops->send_reset(skb);
635 
636 		inet_csk_reqsk_queue_drop(sk, req, prev);
637 		return NULL;
638 }
639 
640 /*
641  * Queue segment on the new socket if the new socket is active,
642  * otherwise we just shortcircuit this and continue with
643  * the new socket.
644  */
645 
646 int tcp_child_process(struct sock *parent, struct sock *child,
647 		      struct sk_buff *skb)
648 {
649 	int ret = 0;
650 	int state = child->sk_state;
651 
652 	if (!sock_owned_by_user(child)) {
653 		ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
654 
655 		/* Wakeup parent, send SIGIO */
656 		if (state == TCP_SYN_RECV && child->sk_state != state)
657 			parent->sk_data_ready(parent, 0);
658 	} else {
659 		/* Alas, it is possible again, because we do lookup
660 		 * in main socket hash table and lock on listening
661 		 * socket does not protect us more.
662 		 */
663 		sk_add_backlog(child, skb);
664 	}
665 
666 	bh_unlock_sock(child);
667 	sock_put(child);
668 	return ret;
669 }
670 
671 EXPORT_SYMBOL(tcp_check_req);
672 EXPORT_SYMBOL(tcp_child_process);
673 EXPORT_SYMBOL(tcp_create_openreq_child);
674 EXPORT_SYMBOL(tcp_timewait_state_process);
675