xref: /linux/net/ipv4/tcp_minisocks.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_abort_on_overflow __read_mostly;
31 
32 struct inet_timewait_death_row tcp_death_row = {
33 	.sysctl_max_tw_buckets = NR_FILE * 2,
34 	.hashinfo	= &tcp_hashinfo,
35 };
36 EXPORT_SYMBOL_GPL(tcp_death_row);
37 
38 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
39 {
40 	if (seq == s_win)
41 		return true;
42 	if (after(end_seq, s_win) && before(seq, e_win))
43 		return true;
44 	return seq == e_win && seq == end_seq;
45 }
46 
47 static enum tcp_tw_status
48 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
49 				  const struct sk_buff *skb, int mib_idx)
50 {
51 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
52 
53 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
54 				  &tcptw->tw_last_oow_ack_time)) {
55 		/* Send ACK. Note, we do not put the bucket,
56 		 * it will be released by caller.
57 		 */
58 		return TCP_TW_ACK;
59 	}
60 
61 	/* We are rate-limiting, so just release the tw sock and drop skb. */
62 	inet_twsk_put(tw);
63 	return TCP_TW_SUCCESS;
64 }
65 
66 /*
67  * * Main purpose of TIME-WAIT state is to close connection gracefully,
68  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
69  *   (and, probably, tail of data) and one or more our ACKs are lost.
70  * * What is TIME-WAIT timeout? It is associated with maximal packet
71  *   lifetime in the internet, which results in wrong conclusion, that
72  *   it is set to catch "old duplicate segments" wandering out of their path.
73  *   It is not quite correct. This timeout is calculated so that it exceeds
74  *   maximal retransmission timeout enough to allow to lose one (or more)
75  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
76  * * When TIME-WAIT socket receives RST, it means that another end
77  *   finally closed and we are allowed to kill TIME-WAIT too.
78  * * Second purpose of TIME-WAIT is catching old duplicate segments.
79  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
80  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
81  * * If we invented some more clever way to catch duplicates
82  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
83  *
84  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
85  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
86  * from the very beginning.
87  *
88  * NOTE. With recycling (and later with fin-wait-2) TW bucket
89  * is _not_ stateless. It means, that strictly speaking we must
90  * spinlock it. I do not want! Well, probability of misbehaviour
91  * is ridiculously low and, seems, we could use some mb() tricks
92  * to avoid misread sequence numbers, states etc.  --ANK
93  *
94  * We don't need to initialize tmp_out.sack_ok as we don't use the results
95  */
96 enum tcp_tw_status
97 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
98 			   const struct tcphdr *th)
99 {
100 	struct tcp_options_received tmp_opt;
101 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102 	bool paws_reject = false;
103 
104 	tmp_opt.saw_tstamp = 0;
105 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
107 
108 		if (tmp_opt.saw_tstamp) {
109 			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
110 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
111 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
112 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
113 		}
114 	}
115 
116 	if (tw->tw_substate == TCP_FIN_WAIT2) {
117 		/* Just repeat all the checks of tcp_rcv_state_process() */
118 
119 		/* Out of window, send ACK */
120 		if (paws_reject ||
121 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
122 				   tcptw->tw_rcv_nxt,
123 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
124 			return tcp_timewait_check_oow_rate_limit(
125 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
126 
127 		if (th->rst)
128 			goto kill;
129 
130 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
131 			return TCP_TW_RST;
132 
133 		/* Dup ACK? */
134 		if (!th->ack ||
135 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
136 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
137 			inet_twsk_put(tw);
138 			return TCP_TW_SUCCESS;
139 		}
140 
141 		/* New data or FIN. If new data arrive after half-duplex close,
142 		 * reset.
143 		 */
144 		if (!th->fin ||
145 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
146 			return TCP_TW_RST;
147 
148 		/* FIN arrived, enter true time-wait state. */
149 		tw->tw_substate	  = TCP_TIME_WAIT;
150 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
151 		if (tmp_opt.saw_tstamp) {
152 			tcptw->tw_ts_recent_stamp = get_seconds();
153 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
154 		}
155 
156 		if (tcp_death_row.sysctl_tw_recycle &&
157 		    tcptw->tw_ts_recent_stamp &&
158 		    tcp_tw_remember_stamp(tw))
159 			inet_twsk_reschedule(tw, tw->tw_timeout);
160 		else
161 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
162 		return TCP_TW_ACK;
163 	}
164 
165 	/*
166 	 *	Now real TIME-WAIT state.
167 	 *
168 	 *	RFC 1122:
169 	 *	"When a connection is [...] on TIME-WAIT state [...]
170 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171 	 *	reopen the connection directly, if it:
172 	 *
173 	 *	(1)  assigns its initial sequence number for the new
174 	 *	connection to be larger than the largest sequence
175 	 *	number it used on the previous connection incarnation,
176 	 *	and
177 	 *
178 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179 	 *	to be an old duplicate".
180 	 */
181 
182 	if (!paws_reject &&
183 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185 		/* In window segment, it may be only reset or bare ack. */
186 
187 		if (th->rst) {
188 			/* This is TIME_WAIT assassination, in two flavors.
189 			 * Oh well... nobody has a sufficient solution to this
190 			 * protocol bug yet.
191 			 */
192 			if (sysctl_tcp_rfc1337 == 0) {
193 kill:
194 				inet_twsk_deschedule_put(tw);
195 				return TCP_TW_SUCCESS;
196 			}
197 		}
198 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
199 
200 		if (tmp_opt.saw_tstamp) {
201 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
202 			tcptw->tw_ts_recent_stamp = get_seconds();
203 		}
204 
205 		inet_twsk_put(tw);
206 		return TCP_TW_SUCCESS;
207 	}
208 
209 	/* Out of window segment.
210 
211 	   All the segments are ACKed immediately.
212 
213 	   The only exception is new SYN. We accept it, if it is
214 	   not old duplicate and we are not in danger to be killed
215 	   by delayed old duplicates. RFC check is that it has
216 	   newer sequence number works at rates <40Mbit/sec.
217 	   However, if paws works, it is reliable AND even more,
218 	   we even may relax silly seq space cutoff.
219 
220 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
221 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
222 	   we must return socket to time-wait state. It is not good,
223 	   but not fatal yet.
224 	 */
225 
226 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
227 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228 	     (tmp_opt.saw_tstamp &&
229 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231 		if (isn == 0)
232 			isn++;
233 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
234 		return TCP_TW_SYN;
235 	}
236 
237 	if (paws_reject)
238 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239 
240 	if (!th->rst) {
241 		/* In this case we must reset the TIMEWAIT timer.
242 		 *
243 		 * If it is ACKless SYN it may be both old duplicate
244 		 * and new good SYN with random sequence number <rcv_nxt.
245 		 * Do not reschedule in the last case.
246 		 */
247 		if (paws_reject || th->ack)
248 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
249 
250 		return tcp_timewait_check_oow_rate_limit(
251 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
252 	}
253 	inet_twsk_put(tw);
254 	return TCP_TW_SUCCESS;
255 }
256 EXPORT_SYMBOL(tcp_timewait_state_process);
257 
258 /*
259  * Move a socket to time-wait or dead fin-wait-2 state.
260  */
261 void tcp_time_wait(struct sock *sk, int state, int timeo)
262 {
263 	const struct inet_connection_sock *icsk = inet_csk(sk);
264 	const struct tcp_sock *tp = tcp_sk(sk);
265 	struct inet_timewait_sock *tw;
266 	bool recycle_ok = false;
267 
268 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
269 		recycle_ok = tcp_remember_stamp(sk);
270 
271 	tw = inet_twsk_alloc(sk, &tcp_death_row, state);
272 
273 	if (tw) {
274 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
275 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
276 		struct inet_sock *inet = inet_sk(sk);
277 
278 		tw->tw_transparent	= inet->transparent;
279 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
280 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
281 		tcptw->tw_snd_nxt	= tp->snd_nxt;
282 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
283 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
284 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
285 		tcptw->tw_ts_offset	= tp->tsoffset;
286 		tcptw->tw_last_oow_ack_time = 0;
287 
288 #if IS_ENABLED(CONFIG_IPV6)
289 		if (tw->tw_family == PF_INET6) {
290 			struct ipv6_pinfo *np = inet6_sk(sk);
291 
292 			tw->tw_v6_daddr = sk->sk_v6_daddr;
293 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
294 			tw->tw_tclass = np->tclass;
295 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
296 			tw->tw_ipv6only = sk->sk_ipv6only;
297 		}
298 #endif
299 
300 #ifdef CONFIG_TCP_MD5SIG
301 		/*
302 		 * The timewait bucket does not have the key DB from the
303 		 * sock structure. We just make a quick copy of the
304 		 * md5 key being used (if indeed we are using one)
305 		 * so the timewait ack generating code has the key.
306 		 */
307 		do {
308 			struct tcp_md5sig_key *key;
309 			tcptw->tw_md5_key = NULL;
310 			key = tp->af_specific->md5_lookup(sk, sk);
311 			if (key) {
312 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
313 				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
314 					BUG();
315 			}
316 		} while (0);
317 #endif
318 
319 		/* Get the TIME_WAIT timeout firing. */
320 		if (timeo < rto)
321 			timeo = rto;
322 
323 		if (recycle_ok) {
324 			tw->tw_timeout = rto;
325 		} else {
326 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
327 			if (state == TCP_TIME_WAIT)
328 				timeo = TCP_TIMEWAIT_LEN;
329 		}
330 
331 		inet_twsk_schedule(tw, timeo);
332 		/* Linkage updates. */
333 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
334 		inet_twsk_put(tw);
335 	} else {
336 		/* Sorry, if we're out of memory, just CLOSE this
337 		 * socket up.  We've got bigger problems than
338 		 * non-graceful socket closings.
339 		 */
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
341 	}
342 
343 	tcp_update_metrics(sk);
344 	tcp_done(sk);
345 }
346 
347 void tcp_twsk_destructor(struct sock *sk)
348 {
349 #ifdef CONFIG_TCP_MD5SIG
350 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
351 
352 	if (twsk->tw_md5_key)
353 		kfree_rcu(twsk->tw_md5_key, rcu);
354 #endif
355 }
356 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
357 
358 /* Warning : This function is called without sk_listener being locked.
359  * Be sure to read socket fields once, as their value could change under us.
360  */
361 void tcp_openreq_init_rwin(struct request_sock *req,
362 			   const struct sock *sk_listener,
363 			   const struct dst_entry *dst)
364 {
365 	struct inet_request_sock *ireq = inet_rsk(req);
366 	const struct tcp_sock *tp = tcp_sk(sk_listener);
367 	u16 user_mss = READ_ONCE(tp->rx_opt.user_mss);
368 	int full_space = tcp_full_space(sk_listener);
369 	int mss = dst_metric_advmss(dst);
370 	u32 window_clamp;
371 	__u8 rcv_wscale;
372 
373 	if (user_mss && user_mss < mss)
374 		mss = user_mss;
375 
376 	window_clamp = READ_ONCE(tp->window_clamp);
377 	/* Set this up on the first call only */
378 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
379 
380 	/* limit the window selection if the user enforce a smaller rx buffer */
381 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
382 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
383 		req->rsk_window_clamp = full_space;
384 
385 	/* tcp_full_space because it is guaranteed to be the first packet */
386 	tcp_select_initial_window(full_space,
387 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
388 		&req->rsk_rcv_wnd,
389 		&req->rsk_window_clamp,
390 		ireq->wscale_ok,
391 		&rcv_wscale,
392 		dst_metric(dst, RTAX_INITRWND));
393 	ireq->rcv_wscale = rcv_wscale;
394 }
395 EXPORT_SYMBOL(tcp_openreq_init_rwin);
396 
397 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
398 				  const struct request_sock *req)
399 {
400 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
401 }
402 
403 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
404 {
405 	struct inet_connection_sock *icsk = inet_csk(sk);
406 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
407 	bool ca_got_dst = false;
408 
409 	if (ca_key != TCP_CA_UNSPEC) {
410 		const struct tcp_congestion_ops *ca;
411 
412 		rcu_read_lock();
413 		ca = tcp_ca_find_key(ca_key);
414 		if (likely(ca && try_module_get(ca->owner))) {
415 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
416 			icsk->icsk_ca_ops = ca;
417 			ca_got_dst = true;
418 		}
419 		rcu_read_unlock();
420 	}
421 
422 	/* If no valid choice made yet, assign current system default ca. */
423 	if (!ca_got_dst &&
424 	    (!icsk->icsk_ca_setsockopt ||
425 	     !try_module_get(icsk->icsk_ca_ops->owner)))
426 		tcp_assign_congestion_control(sk);
427 
428 	tcp_set_ca_state(sk, TCP_CA_Open);
429 }
430 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
431 
432 /* This is not only more efficient than what we used to do, it eliminates
433  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
434  *
435  * Actually, we could lots of memory writes here. tp of listening
436  * socket contains all necessary default parameters.
437  */
438 struct sock *tcp_create_openreq_child(const struct sock *sk,
439 				      struct request_sock *req,
440 				      struct sk_buff *skb)
441 {
442 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
443 
444 	if (newsk) {
445 		const struct inet_request_sock *ireq = inet_rsk(req);
446 		struct tcp_request_sock *treq = tcp_rsk(req);
447 		struct inet_connection_sock *newicsk = inet_csk(newsk);
448 		struct tcp_sock *newtp = tcp_sk(newsk);
449 
450 		/* Now setup tcp_sock */
451 		newtp->pred_flags = 0;
452 
453 		newtp->rcv_wup = newtp->copied_seq =
454 		newtp->rcv_nxt = treq->rcv_isn + 1;
455 		newtp->segs_in = 1;
456 
457 		newtp->snd_sml = newtp->snd_una =
458 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
459 
460 		tcp_prequeue_init(newtp);
461 		INIT_LIST_HEAD(&newtp->tsq_node);
462 
463 		tcp_init_wl(newtp, treq->rcv_isn);
464 
465 		newtp->srtt_us = 0;
466 		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
467 		newtp->rtt_min[0].rtt = ~0U;
468 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
469 
470 		newtp->packets_out = 0;
471 		newtp->retrans_out = 0;
472 		newtp->sacked_out = 0;
473 		newtp->fackets_out = 0;
474 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
475 		tcp_enable_early_retrans(newtp);
476 		newtp->tlp_high_seq = 0;
477 		newtp->lsndtime = treq->snt_synack.stamp_jiffies;
478 		newsk->sk_txhash = treq->txhash;
479 		newtp->last_oow_ack_time = 0;
480 		newtp->total_retrans = req->num_retrans;
481 
482 		/* So many TCP implementations out there (incorrectly) count the
483 		 * initial SYN frame in their delayed-ACK and congestion control
484 		 * algorithms that we must have the following bandaid to talk
485 		 * efficiently to them.  -DaveM
486 		 */
487 		newtp->snd_cwnd = TCP_INIT_CWND;
488 		newtp->snd_cwnd_cnt = 0;
489 
490 		tcp_init_xmit_timers(newsk);
491 		__skb_queue_head_init(&newtp->out_of_order_queue);
492 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
493 
494 		newtp->rx_opt.saw_tstamp = 0;
495 
496 		newtp->rx_opt.dsack = 0;
497 		newtp->rx_opt.num_sacks = 0;
498 
499 		newtp->urg_data = 0;
500 
501 		if (sock_flag(newsk, SOCK_KEEPOPEN))
502 			inet_csk_reset_keepalive_timer(newsk,
503 						       keepalive_time_when(newtp));
504 
505 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
506 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
507 			if (sysctl_tcp_fack)
508 				tcp_enable_fack(newtp);
509 		}
510 		newtp->window_clamp = req->rsk_window_clamp;
511 		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
512 		newtp->rcv_wnd = req->rsk_rcv_wnd;
513 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
514 		if (newtp->rx_opt.wscale_ok) {
515 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
516 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
517 		} else {
518 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
519 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
520 		}
521 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
522 				  newtp->rx_opt.snd_wscale);
523 		newtp->max_window = newtp->snd_wnd;
524 
525 		if (newtp->rx_opt.tstamp_ok) {
526 			newtp->rx_opt.ts_recent = req->ts_recent;
527 			newtp->rx_opt.ts_recent_stamp = get_seconds();
528 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
529 		} else {
530 			newtp->rx_opt.ts_recent_stamp = 0;
531 			newtp->tcp_header_len = sizeof(struct tcphdr);
532 		}
533 		newtp->tsoffset = 0;
534 #ifdef CONFIG_TCP_MD5SIG
535 		newtp->md5sig_info = NULL;	/*XXX*/
536 		if (newtp->af_specific->md5_lookup(sk, newsk))
537 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
538 #endif
539 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
540 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
541 		newtp->rx_opt.mss_clamp = req->mss;
542 		tcp_ecn_openreq_child(newtp, req);
543 		newtp->fastopen_rsk = NULL;
544 		newtp->syn_data_acked = 0;
545 		newtp->rack.mstamp.v64 = 0;
546 		newtp->rack.advanced = 0;
547 
548 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
549 	}
550 	return newsk;
551 }
552 EXPORT_SYMBOL(tcp_create_openreq_child);
553 
554 /*
555  * Process an incoming packet for SYN_RECV sockets represented as a
556  * request_sock. Normally sk is the listener socket but for TFO it
557  * points to the child socket.
558  *
559  * XXX (TFO) - The current impl contains a special check for ack
560  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
561  *
562  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
563  */
564 
565 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
566 			   struct request_sock *req,
567 			   bool fastopen)
568 {
569 	struct tcp_options_received tmp_opt;
570 	struct sock *child;
571 	const struct tcphdr *th = tcp_hdr(skb);
572 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
573 	bool paws_reject = false;
574 	bool own_req;
575 
576 	tmp_opt.saw_tstamp = 0;
577 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
578 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
579 
580 		if (tmp_opt.saw_tstamp) {
581 			tmp_opt.ts_recent = req->ts_recent;
582 			/* We do not store true stamp, but it is not required,
583 			 * it can be estimated (approximately)
584 			 * from another data.
585 			 */
586 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
587 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
588 		}
589 	}
590 
591 	/* Check for pure retransmitted SYN. */
592 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
593 	    flg == TCP_FLAG_SYN &&
594 	    !paws_reject) {
595 		/*
596 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
597 		 * this case on figure 6 and figure 8, but formal
598 		 * protocol description says NOTHING.
599 		 * To be more exact, it says that we should send ACK,
600 		 * because this segment (at least, if it has no data)
601 		 * is out of window.
602 		 *
603 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
604 		 *  describe SYN-RECV state. All the description
605 		 *  is wrong, we cannot believe to it and should
606 		 *  rely only on common sense and implementation
607 		 *  experience.
608 		 *
609 		 * Enforce "SYN-ACK" according to figure 8, figure 6
610 		 * of RFC793, fixed by RFC1122.
611 		 *
612 		 * Note that even if there is new data in the SYN packet
613 		 * they will be thrown away too.
614 		 *
615 		 * Reset timer after retransmitting SYNACK, similar to
616 		 * the idea of fast retransmit in recovery.
617 		 */
618 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
619 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
620 					  &tcp_rsk(req)->last_oow_ack_time) &&
621 
622 		    !inet_rtx_syn_ack(sk, req)) {
623 			unsigned long expires = jiffies;
624 
625 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
626 				       TCP_RTO_MAX);
627 			if (!fastopen)
628 				mod_timer_pending(&req->rsk_timer, expires);
629 			else
630 				req->rsk_timer.expires = expires;
631 		}
632 		return NULL;
633 	}
634 
635 	/* Further reproduces section "SEGMENT ARRIVES"
636 	   for state SYN-RECEIVED of RFC793.
637 	   It is broken, however, it does not work only
638 	   when SYNs are crossed.
639 
640 	   You would think that SYN crossing is impossible here, since
641 	   we should have a SYN_SENT socket (from connect()) on our end,
642 	   but this is not true if the crossed SYNs were sent to both
643 	   ends by a malicious third party.  We must defend against this,
644 	   and to do that we first verify the ACK (as per RFC793, page
645 	   36) and reset if it is invalid.  Is this a true full defense?
646 	   To convince ourselves, let us consider a way in which the ACK
647 	   test can still pass in this 'malicious crossed SYNs' case.
648 	   Malicious sender sends identical SYNs (and thus identical sequence
649 	   numbers) to both A and B:
650 
651 		A: gets SYN, seq=7
652 		B: gets SYN, seq=7
653 
654 	   By our good fortune, both A and B select the same initial
655 	   send sequence number of seven :-)
656 
657 		A: sends SYN|ACK, seq=7, ack_seq=8
658 		B: sends SYN|ACK, seq=7, ack_seq=8
659 
660 	   So we are now A eating this SYN|ACK, ACK test passes.  So
661 	   does sequence test, SYN is truncated, and thus we consider
662 	   it a bare ACK.
663 
664 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
665 	   bare ACK.  Otherwise, we create an established connection.  Both
666 	   ends (listening sockets) accept the new incoming connection and try
667 	   to talk to each other. 8-)
668 
669 	   Note: This case is both harmless, and rare.  Possibility is about the
670 	   same as us discovering intelligent life on another plant tomorrow.
671 
672 	   But generally, we should (RFC lies!) to accept ACK
673 	   from SYNACK both here and in tcp_rcv_state_process().
674 	   tcp_rcv_state_process() does not, hence, we do not too.
675 
676 	   Note that the case is absolutely generic:
677 	   we cannot optimize anything here without
678 	   violating protocol. All the checks must be made
679 	   before attempt to create socket.
680 	 */
681 
682 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
683 	 *                  and the incoming segment acknowledges something not yet
684 	 *                  sent (the segment carries an unacceptable ACK) ...
685 	 *                  a reset is sent."
686 	 *
687 	 * Invalid ACK: reset will be sent by listening socket.
688 	 * Note that the ACK validity check for a Fast Open socket is done
689 	 * elsewhere and is checked directly against the child socket rather
690 	 * than req because user data may have been sent out.
691 	 */
692 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
693 	    (TCP_SKB_CB(skb)->ack_seq !=
694 	     tcp_rsk(req)->snt_isn + 1))
695 		return sk;
696 
697 	/* Also, it would be not so bad idea to check rcv_tsecr, which
698 	 * is essentially ACK extension and too early or too late values
699 	 * should cause reset in unsynchronized states.
700 	 */
701 
702 	/* RFC793: "first check sequence number". */
703 
704 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
705 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
706 		/* Out of window: send ACK and drop. */
707 		if (!(flg & TCP_FLAG_RST) &&
708 		    !tcp_oow_rate_limited(sock_net(sk), skb,
709 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
710 					  &tcp_rsk(req)->last_oow_ack_time))
711 			req->rsk_ops->send_ack(sk, skb, req);
712 		if (paws_reject)
713 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
714 		return NULL;
715 	}
716 
717 	/* In sequence, PAWS is OK. */
718 
719 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
720 		req->ts_recent = tmp_opt.rcv_tsval;
721 
722 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
723 		/* Truncate SYN, it is out of window starting
724 		   at tcp_rsk(req)->rcv_isn + 1. */
725 		flg &= ~TCP_FLAG_SYN;
726 	}
727 
728 	/* RFC793: "second check the RST bit" and
729 	 *	   "fourth, check the SYN bit"
730 	 */
731 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
732 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
733 		goto embryonic_reset;
734 	}
735 
736 	/* ACK sequence verified above, just make sure ACK is
737 	 * set.  If ACK not set, just silently drop the packet.
738 	 *
739 	 * XXX (TFO) - if we ever allow "data after SYN", the
740 	 * following check needs to be removed.
741 	 */
742 	if (!(flg & TCP_FLAG_ACK))
743 		return NULL;
744 
745 	/* For Fast Open no more processing is needed (sk is the
746 	 * child socket).
747 	 */
748 	if (fastopen)
749 		return sk;
750 
751 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
752 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
753 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
754 		inet_rsk(req)->acked = 1;
755 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
756 		return NULL;
757 	}
758 
759 	/* OK, ACK is valid, create big socket and
760 	 * feed this segment to it. It will repeat all
761 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
762 	 * ESTABLISHED STATE. If it will be dropped after
763 	 * socket is created, wait for troubles.
764 	 */
765 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
766 							 req, &own_req);
767 	if (!child)
768 		goto listen_overflow;
769 
770 	sock_rps_save_rxhash(child, skb);
771 	tcp_synack_rtt_meas(child, req);
772 	return inet_csk_complete_hashdance(sk, child, req, own_req);
773 
774 listen_overflow:
775 	if (!sysctl_tcp_abort_on_overflow) {
776 		inet_rsk(req)->acked = 1;
777 		return NULL;
778 	}
779 
780 embryonic_reset:
781 	if (!(flg & TCP_FLAG_RST)) {
782 		/* Received a bad SYN pkt - for TFO We try not to reset
783 		 * the local connection unless it's really necessary to
784 		 * avoid becoming vulnerable to outside attack aiming at
785 		 * resetting legit local connections.
786 		 */
787 		req->rsk_ops->send_reset(sk, skb);
788 	} else if (fastopen) { /* received a valid RST pkt */
789 		reqsk_fastopen_remove(sk, req, true);
790 		tcp_reset(sk);
791 	}
792 	if (!fastopen) {
793 		inet_csk_reqsk_queue_drop(sk, req);
794 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
795 	}
796 	return NULL;
797 }
798 EXPORT_SYMBOL(tcp_check_req);
799 
800 /*
801  * Queue segment on the new socket if the new socket is active,
802  * otherwise we just shortcircuit this and continue with
803  * the new socket.
804  *
805  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
806  * when entering. But other states are possible due to a race condition
807  * where after __inet_lookup_established() fails but before the listener
808  * locked is obtained, other packets cause the same connection to
809  * be created.
810  */
811 
812 int tcp_child_process(struct sock *parent, struct sock *child,
813 		      struct sk_buff *skb)
814 {
815 	int ret = 0;
816 	int state = child->sk_state;
817 
818 	tcp_segs_in(tcp_sk(child), skb);
819 	if (!sock_owned_by_user(child)) {
820 		ret = tcp_rcv_state_process(child, skb);
821 		/* Wakeup parent, send SIGIO */
822 		if (state == TCP_SYN_RECV && child->sk_state != state)
823 			parent->sk_data_ready(parent);
824 	} else {
825 		/* Alas, it is possible again, because we do lookup
826 		 * in main socket hash table and lock on listening
827 		 * socket does not protect us more.
828 		 */
829 		__sk_add_backlog(child, skb);
830 	}
831 
832 	bh_unlock_sock(child);
833 	sock_put(child);
834 	return ret;
835 }
836 EXPORT_SYMBOL(tcp_child_process);
837