xref: /linux/net/ipv4/tcp_minisocks.c (revision 04d8a0a5f3b6887543850d991a5e37c4ec90e250)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_abort_on_overflow __read_mostly;
31 
32 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
33 {
34 	if (seq == s_win)
35 		return true;
36 	if (after(end_seq, s_win) && before(seq, e_win))
37 		return true;
38 	return seq == e_win && seq == end_seq;
39 }
40 
41 static enum tcp_tw_status
42 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
43 				  const struct sk_buff *skb, int mib_idx)
44 {
45 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
46 
47 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
48 				  &tcptw->tw_last_oow_ack_time)) {
49 		/* Send ACK. Note, we do not put the bucket,
50 		 * it will be released by caller.
51 		 */
52 		return TCP_TW_ACK;
53 	}
54 
55 	/* We are rate-limiting, so just release the tw sock and drop skb. */
56 	inet_twsk_put(tw);
57 	return TCP_TW_SUCCESS;
58 }
59 
60 /*
61  * * Main purpose of TIME-WAIT state is to close connection gracefully,
62  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
63  *   (and, probably, tail of data) and one or more our ACKs are lost.
64  * * What is TIME-WAIT timeout? It is associated with maximal packet
65  *   lifetime in the internet, which results in wrong conclusion, that
66  *   it is set to catch "old duplicate segments" wandering out of their path.
67  *   It is not quite correct. This timeout is calculated so that it exceeds
68  *   maximal retransmission timeout enough to allow to lose one (or more)
69  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
70  * * When TIME-WAIT socket receives RST, it means that another end
71  *   finally closed and we are allowed to kill TIME-WAIT too.
72  * * Second purpose of TIME-WAIT is catching old duplicate segments.
73  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
74  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
75  * * If we invented some more clever way to catch duplicates
76  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
77  *
78  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
79  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
80  * from the very beginning.
81  *
82  * NOTE. With recycling (and later with fin-wait-2) TW bucket
83  * is _not_ stateless. It means, that strictly speaking we must
84  * spinlock it. I do not want! Well, probability of misbehaviour
85  * is ridiculously low and, seems, we could use some mb() tricks
86  * to avoid misread sequence numbers, states etc.  --ANK
87  *
88  * We don't need to initialize tmp_out.sack_ok as we don't use the results
89  */
90 enum tcp_tw_status
91 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
92 			   const struct tcphdr *th)
93 {
94 	struct tcp_options_received tmp_opt;
95 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
96 	bool paws_reject = false;
97 	struct inet_timewait_death_row *tcp_death_row = &sock_net((struct sock*)tw)->ipv4.tcp_death_row;
98 
99 	tmp_opt.saw_tstamp = 0;
100 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
102 
103 		if (tmp_opt.saw_tstamp) {
104 			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
105 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108 		}
109 	}
110 
111 	if (tw->tw_substate == TCP_FIN_WAIT2) {
112 		/* Just repeat all the checks of tcp_rcv_state_process() */
113 
114 		/* Out of window, send ACK */
115 		if (paws_reject ||
116 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117 				   tcptw->tw_rcv_nxt,
118 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119 			return tcp_timewait_check_oow_rate_limit(
120 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
121 
122 		if (th->rst)
123 			goto kill;
124 
125 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
126 			return TCP_TW_RST;
127 
128 		/* Dup ACK? */
129 		if (!th->ack ||
130 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
131 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
132 			inet_twsk_put(tw);
133 			return TCP_TW_SUCCESS;
134 		}
135 
136 		/* New data or FIN. If new data arrive after half-duplex close,
137 		 * reset.
138 		 */
139 		if (!th->fin ||
140 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
141 			return TCP_TW_RST;
142 
143 		/* FIN arrived, enter true time-wait state. */
144 		tw->tw_substate	  = TCP_TIME_WAIT;
145 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
146 		if (tmp_opt.saw_tstamp) {
147 			tcptw->tw_ts_recent_stamp = get_seconds();
148 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
149 		}
150 
151 		if (tcp_death_row->sysctl_tw_recycle &&
152 		    tcptw->tw_ts_recent_stamp &&
153 		    tcp_tw_remember_stamp(tw))
154 			inet_twsk_reschedule(tw, tw->tw_timeout);
155 		else
156 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
157 		return TCP_TW_ACK;
158 	}
159 
160 	/*
161 	 *	Now real TIME-WAIT state.
162 	 *
163 	 *	RFC 1122:
164 	 *	"When a connection is [...] on TIME-WAIT state [...]
165 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
166 	 *	reopen the connection directly, if it:
167 	 *
168 	 *	(1)  assigns its initial sequence number for the new
169 	 *	connection to be larger than the largest sequence
170 	 *	number it used on the previous connection incarnation,
171 	 *	and
172 	 *
173 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
174 	 *	to be an old duplicate".
175 	 */
176 
177 	if (!paws_reject &&
178 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
179 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
180 		/* In window segment, it may be only reset or bare ack. */
181 
182 		if (th->rst) {
183 			/* This is TIME_WAIT assassination, in two flavors.
184 			 * Oh well... nobody has a sufficient solution to this
185 			 * protocol bug yet.
186 			 */
187 			if (sysctl_tcp_rfc1337 == 0) {
188 kill:
189 				inet_twsk_deschedule_put(tw);
190 				return TCP_TW_SUCCESS;
191 			}
192 		}
193 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
194 
195 		if (tmp_opt.saw_tstamp) {
196 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
197 			tcptw->tw_ts_recent_stamp = get_seconds();
198 		}
199 
200 		inet_twsk_put(tw);
201 		return TCP_TW_SUCCESS;
202 	}
203 
204 	/* Out of window segment.
205 
206 	   All the segments are ACKed immediately.
207 
208 	   The only exception is new SYN. We accept it, if it is
209 	   not old duplicate and we are not in danger to be killed
210 	   by delayed old duplicates. RFC check is that it has
211 	   newer sequence number works at rates <40Mbit/sec.
212 	   However, if paws works, it is reliable AND even more,
213 	   we even may relax silly seq space cutoff.
214 
215 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
216 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
217 	   we must return socket to time-wait state. It is not good,
218 	   but not fatal yet.
219 	 */
220 
221 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
222 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
223 	     (tmp_opt.saw_tstamp &&
224 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
225 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
226 		if (isn == 0)
227 			isn++;
228 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
229 		return TCP_TW_SYN;
230 	}
231 
232 	if (paws_reject)
233 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
234 
235 	if (!th->rst) {
236 		/* In this case we must reset the TIMEWAIT timer.
237 		 *
238 		 * If it is ACKless SYN it may be both old duplicate
239 		 * and new good SYN with random sequence number <rcv_nxt.
240 		 * Do not reschedule in the last case.
241 		 */
242 		if (paws_reject || th->ack)
243 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
244 
245 		return tcp_timewait_check_oow_rate_limit(
246 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
247 	}
248 	inet_twsk_put(tw);
249 	return TCP_TW_SUCCESS;
250 }
251 EXPORT_SYMBOL(tcp_timewait_state_process);
252 
253 /*
254  * Move a socket to time-wait or dead fin-wait-2 state.
255  */
256 void tcp_time_wait(struct sock *sk, int state, int timeo)
257 {
258 	const struct inet_connection_sock *icsk = inet_csk(sk);
259 	const struct tcp_sock *tp = tcp_sk(sk);
260 	struct inet_timewait_sock *tw;
261 	bool recycle_ok = false;
262 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
263 
264 	if (tcp_death_row->sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
265 		recycle_ok = tcp_remember_stamp(sk);
266 
267 	tw = inet_twsk_alloc(sk, tcp_death_row, state);
268 
269 	if (tw) {
270 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
271 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
272 		struct inet_sock *inet = inet_sk(sk);
273 
274 		tw->tw_transparent	= inet->transparent;
275 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
276 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
277 		tcptw->tw_snd_nxt	= tp->snd_nxt;
278 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
279 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
280 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
281 		tcptw->tw_ts_offset	= tp->tsoffset;
282 		tcptw->tw_last_oow_ack_time = 0;
283 
284 #if IS_ENABLED(CONFIG_IPV6)
285 		if (tw->tw_family == PF_INET6) {
286 			struct ipv6_pinfo *np = inet6_sk(sk);
287 
288 			tw->tw_v6_daddr = sk->sk_v6_daddr;
289 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
290 			tw->tw_tclass = np->tclass;
291 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
292 			tw->tw_ipv6only = sk->sk_ipv6only;
293 		}
294 #endif
295 
296 #ifdef CONFIG_TCP_MD5SIG
297 		/*
298 		 * The timewait bucket does not have the key DB from the
299 		 * sock structure. We just make a quick copy of the
300 		 * md5 key being used (if indeed we are using one)
301 		 * so the timewait ack generating code has the key.
302 		 */
303 		do {
304 			struct tcp_md5sig_key *key;
305 			tcptw->tw_md5_key = NULL;
306 			key = tp->af_specific->md5_lookup(sk, sk);
307 			if (key) {
308 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
309 				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
310 					BUG();
311 			}
312 		} while (0);
313 #endif
314 
315 		/* Get the TIME_WAIT timeout firing. */
316 		if (timeo < rto)
317 			timeo = rto;
318 
319 		if (recycle_ok) {
320 			tw->tw_timeout = rto;
321 		} else {
322 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
323 			if (state == TCP_TIME_WAIT)
324 				timeo = TCP_TIMEWAIT_LEN;
325 		}
326 
327 		inet_twsk_schedule(tw, timeo);
328 		/* Linkage updates. */
329 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
330 		inet_twsk_put(tw);
331 	} else {
332 		/* Sorry, if we're out of memory, just CLOSE this
333 		 * socket up.  We've got bigger problems than
334 		 * non-graceful socket closings.
335 		 */
336 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
337 	}
338 
339 	tcp_update_metrics(sk);
340 	tcp_done(sk);
341 }
342 
343 void tcp_twsk_destructor(struct sock *sk)
344 {
345 #ifdef CONFIG_TCP_MD5SIG
346 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
347 
348 	if (twsk->tw_md5_key)
349 		kfree_rcu(twsk->tw_md5_key, rcu);
350 #endif
351 }
352 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
353 
354 /* Warning : This function is called without sk_listener being locked.
355  * Be sure to read socket fields once, as their value could change under us.
356  */
357 void tcp_openreq_init_rwin(struct request_sock *req,
358 			   const struct sock *sk_listener,
359 			   const struct dst_entry *dst)
360 {
361 	struct inet_request_sock *ireq = inet_rsk(req);
362 	const struct tcp_sock *tp = tcp_sk(sk_listener);
363 	int full_space = tcp_full_space(sk_listener);
364 	u32 window_clamp;
365 	__u8 rcv_wscale;
366 	int mss;
367 
368 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
369 	window_clamp = READ_ONCE(tp->window_clamp);
370 	/* Set this up on the first call only */
371 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
372 
373 	/* limit the window selection if the user enforce a smaller rx buffer */
374 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
375 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
376 		req->rsk_window_clamp = full_space;
377 
378 	/* tcp_full_space because it is guaranteed to be the first packet */
379 	tcp_select_initial_window(full_space,
380 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
381 		&req->rsk_rcv_wnd,
382 		&req->rsk_window_clamp,
383 		ireq->wscale_ok,
384 		&rcv_wscale,
385 		dst_metric(dst, RTAX_INITRWND));
386 	ireq->rcv_wscale = rcv_wscale;
387 }
388 EXPORT_SYMBOL(tcp_openreq_init_rwin);
389 
390 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
391 				  const struct request_sock *req)
392 {
393 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
394 }
395 
396 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
397 {
398 	struct inet_connection_sock *icsk = inet_csk(sk);
399 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
400 	bool ca_got_dst = false;
401 
402 	if (ca_key != TCP_CA_UNSPEC) {
403 		const struct tcp_congestion_ops *ca;
404 
405 		rcu_read_lock();
406 		ca = tcp_ca_find_key(ca_key);
407 		if (likely(ca && try_module_get(ca->owner))) {
408 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
409 			icsk->icsk_ca_ops = ca;
410 			ca_got_dst = true;
411 		}
412 		rcu_read_unlock();
413 	}
414 
415 	/* If no valid choice made yet, assign current system default ca. */
416 	if (!ca_got_dst &&
417 	    (!icsk->icsk_ca_setsockopt ||
418 	     !try_module_get(icsk->icsk_ca_ops->owner)))
419 		tcp_assign_congestion_control(sk);
420 
421 	tcp_set_ca_state(sk, TCP_CA_Open);
422 }
423 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
424 
425 /* This is not only more efficient than what we used to do, it eliminates
426  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
427  *
428  * Actually, we could lots of memory writes here. tp of listening
429  * socket contains all necessary default parameters.
430  */
431 struct sock *tcp_create_openreq_child(const struct sock *sk,
432 				      struct request_sock *req,
433 				      struct sk_buff *skb)
434 {
435 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
436 
437 	if (newsk) {
438 		const struct inet_request_sock *ireq = inet_rsk(req);
439 		struct tcp_request_sock *treq = tcp_rsk(req);
440 		struct inet_connection_sock *newicsk = inet_csk(newsk);
441 		struct tcp_sock *newtp = tcp_sk(newsk);
442 
443 		/* Now setup tcp_sock */
444 		newtp->pred_flags = 0;
445 
446 		newtp->rcv_wup = newtp->copied_seq =
447 		newtp->rcv_nxt = treq->rcv_isn + 1;
448 		newtp->segs_in = 1;
449 
450 		newtp->snd_sml = newtp->snd_una =
451 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
452 
453 		tcp_prequeue_init(newtp);
454 		INIT_LIST_HEAD(&newtp->tsq_node);
455 
456 		tcp_init_wl(newtp, treq->rcv_isn);
457 
458 		newtp->srtt_us = 0;
459 		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
460 		minmax_reset(&newtp->rtt_min, tcp_time_stamp, ~0U);
461 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
462 
463 		newtp->packets_out = 0;
464 		newtp->retrans_out = 0;
465 		newtp->sacked_out = 0;
466 		newtp->fackets_out = 0;
467 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
468 		newtp->tlp_high_seq = 0;
469 		newtp->lsndtime = treq->snt_synack.stamp_jiffies;
470 		newsk->sk_txhash = treq->txhash;
471 		newtp->last_oow_ack_time = 0;
472 		newtp->total_retrans = req->num_retrans;
473 
474 		/* So many TCP implementations out there (incorrectly) count the
475 		 * initial SYN frame in their delayed-ACK and congestion control
476 		 * algorithms that we must have the following bandaid to talk
477 		 * efficiently to them.  -DaveM
478 		 */
479 		newtp->snd_cwnd = TCP_INIT_CWND;
480 		newtp->snd_cwnd_cnt = 0;
481 
482 		/* There's a bubble in the pipe until at least the first ACK. */
483 		newtp->app_limited = ~0U;
484 
485 		tcp_init_xmit_timers(newsk);
486 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
487 
488 		newtp->rx_opt.saw_tstamp = 0;
489 
490 		newtp->rx_opt.dsack = 0;
491 		newtp->rx_opt.num_sacks = 0;
492 
493 		newtp->urg_data = 0;
494 
495 		if (sock_flag(newsk, SOCK_KEEPOPEN))
496 			inet_csk_reset_keepalive_timer(newsk,
497 						       keepalive_time_when(newtp));
498 
499 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
500 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
501 			if (sysctl_tcp_fack)
502 				tcp_enable_fack(newtp);
503 		}
504 		newtp->window_clamp = req->rsk_window_clamp;
505 		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
506 		newtp->rcv_wnd = req->rsk_rcv_wnd;
507 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
508 		if (newtp->rx_opt.wscale_ok) {
509 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
510 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
511 		} else {
512 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
513 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
514 		}
515 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
516 				  newtp->rx_opt.snd_wscale);
517 		newtp->max_window = newtp->snd_wnd;
518 
519 		if (newtp->rx_opt.tstamp_ok) {
520 			newtp->rx_opt.ts_recent = req->ts_recent;
521 			newtp->rx_opt.ts_recent_stamp = get_seconds();
522 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
523 		} else {
524 			newtp->rx_opt.ts_recent_stamp = 0;
525 			newtp->tcp_header_len = sizeof(struct tcphdr);
526 		}
527 		newtp->tsoffset = treq->ts_off;
528 #ifdef CONFIG_TCP_MD5SIG
529 		newtp->md5sig_info = NULL;	/*XXX*/
530 		if (newtp->af_specific->md5_lookup(sk, newsk))
531 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
532 #endif
533 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
534 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
535 		newtp->rx_opt.mss_clamp = req->mss;
536 		tcp_ecn_openreq_child(newtp, req);
537 		newtp->fastopen_rsk = NULL;
538 		newtp->syn_data_acked = 0;
539 		newtp->rack.mstamp.v64 = 0;
540 		newtp->rack.advanced = 0;
541 
542 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
543 	}
544 	return newsk;
545 }
546 EXPORT_SYMBOL(tcp_create_openreq_child);
547 
548 /*
549  * Process an incoming packet for SYN_RECV sockets represented as a
550  * request_sock. Normally sk is the listener socket but for TFO it
551  * points to the child socket.
552  *
553  * XXX (TFO) - The current impl contains a special check for ack
554  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
555  *
556  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
557  */
558 
559 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
560 			   struct request_sock *req,
561 			   bool fastopen)
562 {
563 	struct tcp_options_received tmp_opt;
564 	struct sock *child;
565 	const struct tcphdr *th = tcp_hdr(skb);
566 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
567 	bool paws_reject = false;
568 	bool own_req;
569 
570 	tmp_opt.saw_tstamp = 0;
571 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
572 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
573 
574 		if (tmp_opt.saw_tstamp) {
575 			tmp_opt.ts_recent = req->ts_recent;
576 			if (tmp_opt.rcv_tsecr)
577 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
578 			/* We do not store true stamp, but it is not required,
579 			 * it can be estimated (approximately)
580 			 * from another data.
581 			 */
582 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
583 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
584 		}
585 	}
586 
587 	/* Check for pure retransmitted SYN. */
588 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
589 	    flg == TCP_FLAG_SYN &&
590 	    !paws_reject) {
591 		/*
592 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
593 		 * this case on figure 6 and figure 8, but formal
594 		 * protocol description says NOTHING.
595 		 * To be more exact, it says that we should send ACK,
596 		 * because this segment (at least, if it has no data)
597 		 * is out of window.
598 		 *
599 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
600 		 *  describe SYN-RECV state. All the description
601 		 *  is wrong, we cannot believe to it and should
602 		 *  rely only on common sense and implementation
603 		 *  experience.
604 		 *
605 		 * Enforce "SYN-ACK" according to figure 8, figure 6
606 		 * of RFC793, fixed by RFC1122.
607 		 *
608 		 * Note that even if there is new data in the SYN packet
609 		 * they will be thrown away too.
610 		 *
611 		 * Reset timer after retransmitting SYNACK, similar to
612 		 * the idea of fast retransmit in recovery.
613 		 */
614 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
615 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
616 					  &tcp_rsk(req)->last_oow_ack_time) &&
617 
618 		    !inet_rtx_syn_ack(sk, req)) {
619 			unsigned long expires = jiffies;
620 
621 			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
622 				       TCP_RTO_MAX);
623 			if (!fastopen)
624 				mod_timer_pending(&req->rsk_timer, expires);
625 			else
626 				req->rsk_timer.expires = expires;
627 		}
628 		return NULL;
629 	}
630 
631 	/* Further reproduces section "SEGMENT ARRIVES"
632 	   for state SYN-RECEIVED of RFC793.
633 	   It is broken, however, it does not work only
634 	   when SYNs are crossed.
635 
636 	   You would think that SYN crossing is impossible here, since
637 	   we should have a SYN_SENT socket (from connect()) on our end,
638 	   but this is not true if the crossed SYNs were sent to both
639 	   ends by a malicious third party.  We must defend against this,
640 	   and to do that we first verify the ACK (as per RFC793, page
641 	   36) and reset if it is invalid.  Is this a true full defense?
642 	   To convince ourselves, let us consider a way in which the ACK
643 	   test can still pass in this 'malicious crossed SYNs' case.
644 	   Malicious sender sends identical SYNs (and thus identical sequence
645 	   numbers) to both A and B:
646 
647 		A: gets SYN, seq=7
648 		B: gets SYN, seq=7
649 
650 	   By our good fortune, both A and B select the same initial
651 	   send sequence number of seven :-)
652 
653 		A: sends SYN|ACK, seq=7, ack_seq=8
654 		B: sends SYN|ACK, seq=7, ack_seq=8
655 
656 	   So we are now A eating this SYN|ACK, ACK test passes.  So
657 	   does sequence test, SYN is truncated, and thus we consider
658 	   it a bare ACK.
659 
660 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
661 	   bare ACK.  Otherwise, we create an established connection.  Both
662 	   ends (listening sockets) accept the new incoming connection and try
663 	   to talk to each other. 8-)
664 
665 	   Note: This case is both harmless, and rare.  Possibility is about the
666 	   same as us discovering intelligent life on another plant tomorrow.
667 
668 	   But generally, we should (RFC lies!) to accept ACK
669 	   from SYNACK both here and in tcp_rcv_state_process().
670 	   tcp_rcv_state_process() does not, hence, we do not too.
671 
672 	   Note that the case is absolutely generic:
673 	   we cannot optimize anything here without
674 	   violating protocol. All the checks must be made
675 	   before attempt to create socket.
676 	 */
677 
678 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
679 	 *                  and the incoming segment acknowledges something not yet
680 	 *                  sent (the segment carries an unacceptable ACK) ...
681 	 *                  a reset is sent."
682 	 *
683 	 * Invalid ACK: reset will be sent by listening socket.
684 	 * Note that the ACK validity check for a Fast Open socket is done
685 	 * elsewhere and is checked directly against the child socket rather
686 	 * than req because user data may have been sent out.
687 	 */
688 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
689 	    (TCP_SKB_CB(skb)->ack_seq !=
690 	     tcp_rsk(req)->snt_isn + 1))
691 		return sk;
692 
693 	/* Also, it would be not so bad idea to check rcv_tsecr, which
694 	 * is essentially ACK extension and too early or too late values
695 	 * should cause reset in unsynchronized states.
696 	 */
697 
698 	/* RFC793: "first check sequence number". */
699 
700 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
701 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
702 		/* Out of window: send ACK and drop. */
703 		if (!(flg & TCP_FLAG_RST) &&
704 		    !tcp_oow_rate_limited(sock_net(sk), skb,
705 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
706 					  &tcp_rsk(req)->last_oow_ack_time))
707 			req->rsk_ops->send_ack(sk, skb, req);
708 		if (paws_reject)
709 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
710 		return NULL;
711 	}
712 
713 	/* In sequence, PAWS is OK. */
714 
715 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
716 		req->ts_recent = tmp_opt.rcv_tsval;
717 
718 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
719 		/* Truncate SYN, it is out of window starting
720 		   at tcp_rsk(req)->rcv_isn + 1. */
721 		flg &= ~TCP_FLAG_SYN;
722 	}
723 
724 	/* RFC793: "second check the RST bit" and
725 	 *	   "fourth, check the SYN bit"
726 	 */
727 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
728 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
729 		goto embryonic_reset;
730 	}
731 
732 	/* ACK sequence verified above, just make sure ACK is
733 	 * set.  If ACK not set, just silently drop the packet.
734 	 *
735 	 * XXX (TFO) - if we ever allow "data after SYN", the
736 	 * following check needs to be removed.
737 	 */
738 	if (!(flg & TCP_FLAG_ACK))
739 		return NULL;
740 
741 	/* For Fast Open no more processing is needed (sk is the
742 	 * child socket).
743 	 */
744 	if (fastopen)
745 		return sk;
746 
747 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
748 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
749 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
750 		inet_rsk(req)->acked = 1;
751 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
752 		return NULL;
753 	}
754 
755 	/* OK, ACK is valid, create big socket and
756 	 * feed this segment to it. It will repeat all
757 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
758 	 * ESTABLISHED STATE. If it will be dropped after
759 	 * socket is created, wait for troubles.
760 	 */
761 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
762 							 req, &own_req);
763 	if (!child)
764 		goto listen_overflow;
765 
766 	sock_rps_save_rxhash(child, skb);
767 	tcp_synack_rtt_meas(child, req);
768 	return inet_csk_complete_hashdance(sk, child, req, own_req);
769 
770 listen_overflow:
771 	if (!sysctl_tcp_abort_on_overflow) {
772 		inet_rsk(req)->acked = 1;
773 		return NULL;
774 	}
775 
776 embryonic_reset:
777 	if (!(flg & TCP_FLAG_RST)) {
778 		/* Received a bad SYN pkt - for TFO We try not to reset
779 		 * the local connection unless it's really necessary to
780 		 * avoid becoming vulnerable to outside attack aiming at
781 		 * resetting legit local connections.
782 		 */
783 		req->rsk_ops->send_reset(sk, skb);
784 	} else if (fastopen) { /* received a valid RST pkt */
785 		reqsk_fastopen_remove(sk, req, true);
786 		tcp_reset(sk);
787 	}
788 	if (!fastopen) {
789 		inet_csk_reqsk_queue_drop(sk, req);
790 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
791 	}
792 	return NULL;
793 }
794 EXPORT_SYMBOL(tcp_check_req);
795 
796 /*
797  * Queue segment on the new socket if the new socket is active,
798  * otherwise we just shortcircuit this and continue with
799  * the new socket.
800  *
801  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
802  * when entering. But other states are possible due to a race condition
803  * where after __inet_lookup_established() fails but before the listener
804  * locked is obtained, other packets cause the same connection to
805  * be created.
806  */
807 
808 int tcp_child_process(struct sock *parent, struct sock *child,
809 		      struct sk_buff *skb)
810 {
811 	int ret = 0;
812 	int state = child->sk_state;
813 
814 	tcp_segs_in(tcp_sk(child), skb);
815 	if (!sock_owned_by_user(child)) {
816 		ret = tcp_rcv_state_process(child, skb);
817 		/* Wakeup parent, send SIGIO */
818 		if (state == TCP_SYN_RECV && child->sk_state != state)
819 			parent->sk_data_ready(parent);
820 	} else {
821 		/* Alas, it is possible again, because we do lookup
822 		 * in main socket hash table and lock on listening
823 		 * socket does not protect us more.
824 		 */
825 		__sk_add_backlog(child, skb);
826 	}
827 
828 	bh_unlock_sock(child);
829 	sock_put(child);
830 	return ret;
831 }
832 EXPORT_SYMBOL(tcp_child_process);
833