xref: /linux/net/ipv4/tcp_ipv4.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
9  *
10  *		IPv4 specific functions
11  *
12  *
13  *		code split from:
14  *		linux/ipv4/tcp.c
15  *		linux/ipv4/tcp_input.c
16  *		linux/ipv4/tcp_output.c
17  *
18  *		See tcp.c for author information
19  *
20  *	This program is free software; you can redistribute it and/or
21  *      modify it under the terms of the GNU General Public License
22  *      as published by the Free Software Foundation; either version
23  *      2 of the License, or (at your option) any later version.
24  */
25 
26 /*
27  * Changes:
28  *		David S. Miller	:	New socket lookup architecture.
29  *					This code is dedicated to John Dyson.
30  *		David S. Miller :	Change semantics of established hash,
31  *					half is devoted to TIME_WAIT sockets
32  *					and the rest go in the other half.
33  *		Andi Kleen :		Add support for syncookies and fixed
34  *					some bugs: ip options weren't passed to
35  *					the TCP layer, missed a check for an
36  *					ACK bit.
37  *		Andi Kleen :		Implemented fast path mtu discovery.
38  *	     				Fixed many serious bugs in the
39  *					request_sock handling and moved
40  *					most of it into the af independent code.
41  *					Added tail drop and some other bugfixes.
42  *					Added new listen semantics.
43  *		Mike McLagan	:	Routing by source
44  *	Juan Jose Ciarlante:		ip_dynaddr bits
45  *		Andi Kleen:		various fixes.
46  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
47  *					coma.
48  *	Andi Kleen		:	Fix new listen.
49  *	Andi Kleen		:	Fix accept error reporting.
50  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
51  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
52  *					a single port at the same time.
53  */
54 
55 #include <linux/config.h>
56 
57 #include <linux/types.h>
58 #include <linux/fcntl.h>
59 #include <linux/module.h>
60 #include <linux/random.h>
61 #include <linux/cache.h>
62 #include <linux/jhash.h>
63 #include <linux/init.h>
64 #include <linux/times.h>
65 
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
75 
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
81 
82 int sysctl_tcp_tw_reuse;
83 int sysctl_tcp_low_latency;
84 
85 /* Check TCP sequence numbers in ICMP packets. */
86 #define ICMP_MIN_LENGTH 8
87 
88 /* Socket used for sending RSTs */
89 static struct socket *tcp_socket;
90 
91 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);
92 
93 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
94 	.lhash_lock	= RW_LOCK_UNLOCKED,
95 	.lhash_users	= ATOMIC_INIT(0),
96 	.lhash_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
97 };
98 
99 static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
100 {
101 	return inet_csk_get_port(&tcp_hashinfo, sk, snum,
102 				 inet_csk_bind_conflict);
103 }
104 
105 static void tcp_v4_hash(struct sock *sk)
106 {
107 	inet_hash(&tcp_hashinfo, sk);
108 }
109 
110 void tcp_unhash(struct sock *sk)
111 {
112 	inet_unhash(&tcp_hashinfo, sk);
113 }
114 
115 static inline __u32 tcp_v4_init_sequence(struct sock *sk, struct sk_buff *skb)
116 {
117 	return secure_tcp_sequence_number(skb->nh.iph->daddr,
118 					  skb->nh.iph->saddr,
119 					  skb->h.th->dest,
120 					  skb->h.th->source);
121 }
122 
123 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
124 {
125 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
126 	struct tcp_sock *tp = tcp_sk(sk);
127 
128 	/* With PAWS, it is safe from the viewpoint
129 	   of data integrity. Even without PAWS it is safe provided sequence
130 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
131 
132 	   Actually, the idea is close to VJ's one, only timestamp cache is
133 	   held not per host, but per port pair and TW bucket is used as state
134 	   holder.
135 
136 	   If TW bucket has been already destroyed we fall back to VJ's scheme
137 	   and use initial timestamp retrieved from peer table.
138 	 */
139 	if (tcptw->tw_ts_recent_stamp &&
140 	    (twp == NULL || (sysctl_tcp_tw_reuse &&
141 			     xtime.tv_sec - tcptw->tw_ts_recent_stamp > 1))) {
142 		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
143 		if (tp->write_seq == 0)
144 			tp->write_seq = 1;
145 		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
146 		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
147 		sock_hold(sktw);
148 		return 1;
149 	}
150 
151 	return 0;
152 }
153 
154 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
155 
156 /* This will initiate an outgoing connection. */
157 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
158 {
159 	struct inet_sock *inet = inet_sk(sk);
160 	struct tcp_sock *tp = tcp_sk(sk);
161 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
162 	struct rtable *rt;
163 	u32 daddr, nexthop;
164 	int tmp;
165 	int err;
166 
167 	if (addr_len < sizeof(struct sockaddr_in))
168 		return -EINVAL;
169 
170 	if (usin->sin_family != AF_INET)
171 		return -EAFNOSUPPORT;
172 
173 	nexthop = daddr = usin->sin_addr.s_addr;
174 	if (inet->opt && inet->opt->srr) {
175 		if (!daddr)
176 			return -EINVAL;
177 		nexthop = inet->opt->faddr;
178 	}
179 
180 	tmp = ip_route_connect(&rt, nexthop, inet->saddr,
181 			       RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 			       IPPROTO_TCP,
183 			       inet->sport, usin->sin_port, sk);
184 	if (tmp < 0)
185 		return tmp;
186 
187 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
188 		ip_rt_put(rt);
189 		return -ENETUNREACH;
190 	}
191 
192 	if (!inet->opt || !inet->opt->srr)
193 		daddr = rt->rt_dst;
194 
195 	if (!inet->saddr)
196 		inet->saddr = rt->rt_src;
197 	inet->rcv_saddr = inet->saddr;
198 
199 	if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
200 		/* Reset inherited state */
201 		tp->rx_opt.ts_recent	   = 0;
202 		tp->rx_opt.ts_recent_stamp = 0;
203 		tp->write_seq		   = 0;
204 	}
205 
206 	if (tcp_death_row.sysctl_tw_recycle &&
207 	    !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
208 		struct inet_peer *peer = rt_get_peer(rt);
209 
210 		/* VJ's idea. We save last timestamp seen from
211 		 * the destination in peer table, when entering state TIME-WAIT
212 		 * and initialize rx_opt.ts_recent from it, when trying new connection.
213 		 */
214 
215 		if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >= xtime.tv_sec) {
216 			tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
217 			tp->rx_opt.ts_recent = peer->tcp_ts;
218 		}
219 	}
220 
221 	inet->dport = usin->sin_port;
222 	inet->daddr = daddr;
223 
224 	inet_csk(sk)->icsk_ext_hdr_len = 0;
225 	if (inet->opt)
226 		inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
227 
228 	tp->rx_opt.mss_clamp = 536;
229 
230 	/* Socket identity is still unknown (sport may be zero).
231 	 * However we set state to SYN-SENT and not releasing socket
232 	 * lock select source port, enter ourselves into the hash tables and
233 	 * complete initialization after this.
234 	 */
235 	tcp_set_state(sk, TCP_SYN_SENT);
236 	err = inet_hash_connect(&tcp_death_row, sk);
237 	if (err)
238 		goto failure;
239 
240 	err = ip_route_newports(&rt, IPPROTO_TCP, inet->sport, inet->dport, sk);
241 	if (err)
242 		goto failure;
243 
244 	/* OK, now commit destination to socket.  */
245 	sk_setup_caps(sk, &rt->u.dst);
246 
247 	if (!tp->write_seq)
248 		tp->write_seq = secure_tcp_sequence_number(inet->saddr,
249 							   inet->daddr,
250 							   inet->sport,
251 							   usin->sin_port);
252 
253 	inet->id = tp->write_seq ^ jiffies;
254 
255 	err = tcp_connect(sk);
256 	rt = NULL;
257 	if (err)
258 		goto failure;
259 
260 	return 0;
261 
262 failure:
263 	/* This unhashes the socket and releases the local port, if necessary. */
264 	tcp_set_state(sk, TCP_CLOSE);
265 	ip_rt_put(rt);
266 	sk->sk_route_caps = 0;
267 	inet->dport = 0;
268 	return err;
269 }
270 
271 /*
272  * This routine does path mtu discovery as defined in RFC1191.
273  */
274 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
275 {
276 	struct dst_entry *dst;
277 	struct inet_sock *inet = inet_sk(sk);
278 
279 	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
280 	 * send out by Linux are always <576bytes so they should go through
281 	 * unfragmented).
282 	 */
283 	if (sk->sk_state == TCP_LISTEN)
284 		return;
285 
286 	/* We don't check in the destentry if pmtu discovery is forbidden
287 	 * on this route. We just assume that no packet_to_big packets
288 	 * are send back when pmtu discovery is not active.
289      	 * There is a small race when the user changes this flag in the
290 	 * route, but I think that's acceptable.
291 	 */
292 	if ((dst = __sk_dst_check(sk, 0)) == NULL)
293 		return;
294 
295 	dst->ops->update_pmtu(dst, mtu);
296 
297 	/* Something is about to be wrong... Remember soft error
298 	 * for the case, if this connection will not able to recover.
299 	 */
300 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
301 		sk->sk_err_soft = EMSGSIZE;
302 
303 	mtu = dst_mtu(dst);
304 
305 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
306 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
307 		tcp_sync_mss(sk, mtu);
308 
309 		/* Resend the TCP packet because it's
310 		 * clear that the old packet has been
311 		 * dropped. This is the new "fast" path mtu
312 		 * discovery.
313 		 */
314 		tcp_simple_retransmit(sk);
315 	} /* else let the usual retransmit timer handle it */
316 }
317 
318 /*
319  * This routine is called by the ICMP module when it gets some
320  * sort of error condition.  If err < 0 then the socket should
321  * be closed and the error returned to the user.  If err > 0
322  * it's just the icmp type << 8 | icmp code.  After adjustment
323  * header points to the first 8 bytes of the tcp header.  We need
324  * to find the appropriate port.
325  *
326  * The locking strategy used here is very "optimistic". When
327  * someone else accesses the socket the ICMP is just dropped
328  * and for some paths there is no check at all.
329  * A more general error queue to queue errors for later handling
330  * is probably better.
331  *
332  */
333 
334 void tcp_v4_err(struct sk_buff *skb, u32 info)
335 {
336 	struct iphdr *iph = (struct iphdr *)skb->data;
337 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
338 	struct tcp_sock *tp;
339 	struct inet_sock *inet;
340 	int type = skb->h.icmph->type;
341 	int code = skb->h.icmph->code;
342 	struct sock *sk;
343 	__u32 seq;
344 	int err;
345 
346 	if (skb->len < (iph->ihl << 2) + 8) {
347 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
348 		return;
349 	}
350 
351 	sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
352 			 th->source, inet_iif(skb));
353 	if (!sk) {
354 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
355 		return;
356 	}
357 	if (sk->sk_state == TCP_TIME_WAIT) {
358 		inet_twsk_put((struct inet_timewait_sock *)sk);
359 		return;
360 	}
361 
362 	bh_lock_sock(sk);
363 	/* If too many ICMPs get dropped on busy
364 	 * servers this needs to be solved differently.
365 	 */
366 	if (sock_owned_by_user(sk))
367 		NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
368 
369 	if (sk->sk_state == TCP_CLOSE)
370 		goto out;
371 
372 	tp = tcp_sk(sk);
373 	seq = ntohl(th->seq);
374 	if (sk->sk_state != TCP_LISTEN &&
375 	    !between(seq, tp->snd_una, tp->snd_nxt)) {
376 		NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS);
377 		goto out;
378 	}
379 
380 	switch (type) {
381 	case ICMP_SOURCE_QUENCH:
382 		/* Just silently ignore these. */
383 		goto out;
384 	case ICMP_PARAMETERPROB:
385 		err = EPROTO;
386 		break;
387 	case ICMP_DEST_UNREACH:
388 		if (code > NR_ICMP_UNREACH)
389 			goto out;
390 
391 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
392 			if (!sock_owned_by_user(sk))
393 				do_pmtu_discovery(sk, iph, info);
394 			goto out;
395 		}
396 
397 		err = icmp_err_convert[code].errno;
398 		break;
399 	case ICMP_TIME_EXCEEDED:
400 		err = EHOSTUNREACH;
401 		break;
402 	default:
403 		goto out;
404 	}
405 
406 	switch (sk->sk_state) {
407 		struct request_sock *req, **prev;
408 	case TCP_LISTEN:
409 		if (sock_owned_by_user(sk))
410 			goto out;
411 
412 		req = inet_csk_search_req(sk, &prev, th->dest,
413 					  iph->daddr, iph->saddr);
414 		if (!req)
415 			goto out;
416 
417 		/* ICMPs are not backlogged, hence we cannot get
418 		   an established socket here.
419 		 */
420 		BUG_TRAP(!req->sk);
421 
422 		if (seq != tcp_rsk(req)->snt_isn) {
423 			NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
424 			goto out;
425 		}
426 
427 		/*
428 		 * Still in SYN_RECV, just remove it silently.
429 		 * There is no good way to pass the error to the newly
430 		 * created socket, and POSIX does not want network
431 		 * errors returned from accept().
432 		 */
433 		inet_csk_reqsk_queue_drop(sk, req, prev);
434 		goto out;
435 
436 	case TCP_SYN_SENT:
437 	case TCP_SYN_RECV:  /* Cannot happen.
438 			       It can f.e. if SYNs crossed.
439 			     */
440 		if (!sock_owned_by_user(sk)) {
441 			TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
442 			sk->sk_err = err;
443 
444 			sk->sk_error_report(sk);
445 
446 			tcp_done(sk);
447 		} else {
448 			sk->sk_err_soft = err;
449 		}
450 		goto out;
451 	}
452 
453 	/* If we've already connected we will keep trying
454 	 * until we time out, or the user gives up.
455 	 *
456 	 * rfc1122 4.2.3.9 allows to consider as hard errors
457 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
458 	 * but it is obsoleted by pmtu discovery).
459 	 *
460 	 * Note, that in modern internet, where routing is unreliable
461 	 * and in each dark corner broken firewalls sit, sending random
462 	 * errors ordered by their masters even this two messages finally lose
463 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
464 	 *
465 	 * Now we are in compliance with RFCs.
466 	 *							--ANK (980905)
467 	 */
468 
469 	inet = inet_sk(sk);
470 	if (!sock_owned_by_user(sk) && inet->recverr) {
471 		sk->sk_err = err;
472 		sk->sk_error_report(sk);
473 	} else	{ /* Only an error on timeout */
474 		sk->sk_err_soft = err;
475 	}
476 
477 out:
478 	bh_unlock_sock(sk);
479 	sock_put(sk);
480 }
481 
482 /* This routine computes an IPv4 TCP checksum. */
483 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
484 {
485 	struct inet_sock *inet = inet_sk(sk);
486 	struct tcphdr *th = skb->h.th;
487 
488 	if (skb->ip_summed == CHECKSUM_HW) {
489 		th->check = ~tcp_v4_check(th, len, inet->saddr, inet->daddr, 0);
490 		skb->csum = offsetof(struct tcphdr, check);
491 	} else {
492 		th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr,
493 					 csum_partial((char *)th,
494 						      th->doff << 2,
495 						      skb->csum));
496 	}
497 }
498 
499 /*
500  *	This routine will send an RST to the other tcp.
501  *
502  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
503  *		      for reset.
504  *	Answer: if a packet caused RST, it is not for a socket
505  *		existing in our system, if it is matched to a socket,
506  *		it is just duplicate segment or bug in other side's TCP.
507  *		So that we build reply only basing on parameters
508  *		arrived with segment.
509  *	Exception: precedence violation. We do not implement it in any case.
510  */
511 
512 static void tcp_v4_send_reset(struct sk_buff *skb)
513 {
514 	struct tcphdr *th = skb->h.th;
515 	struct tcphdr rth;
516 	struct ip_reply_arg arg;
517 
518 	/* Never send a reset in response to a reset. */
519 	if (th->rst)
520 		return;
521 
522 	if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
523 		return;
524 
525 	/* Swap the send and the receive. */
526 	memset(&rth, 0, sizeof(struct tcphdr));
527 	rth.dest   = th->source;
528 	rth.source = th->dest;
529 	rth.doff   = sizeof(struct tcphdr) / 4;
530 	rth.rst    = 1;
531 
532 	if (th->ack) {
533 		rth.seq = th->ack_seq;
534 	} else {
535 		rth.ack = 1;
536 		rth.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
537 				    skb->len - (th->doff << 2));
538 	}
539 
540 	memset(&arg, 0, sizeof arg);
541 	arg.iov[0].iov_base = (unsigned char *)&rth;
542 	arg.iov[0].iov_len  = sizeof rth;
543 	arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
544 				      skb->nh.iph->saddr, /*XXX*/
545 				      sizeof(struct tcphdr), IPPROTO_TCP, 0);
546 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
547 
548 	ip_send_reply(tcp_socket->sk, skb, &arg, sizeof rth);
549 
550 	TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
551 	TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
552 }
553 
554 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
555    outside socket context is ugly, certainly. What can I do?
556  */
557 
558 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
559 			    u32 win, u32 ts)
560 {
561 	struct tcphdr *th = skb->h.th;
562 	struct {
563 		struct tcphdr th;
564 		u32 tsopt[3];
565 	} rep;
566 	struct ip_reply_arg arg;
567 
568 	memset(&rep.th, 0, sizeof(struct tcphdr));
569 	memset(&arg, 0, sizeof arg);
570 
571 	arg.iov[0].iov_base = (unsigned char *)&rep;
572 	arg.iov[0].iov_len  = sizeof(rep.th);
573 	if (ts) {
574 		rep.tsopt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
575 				     (TCPOPT_TIMESTAMP << 8) |
576 				     TCPOLEN_TIMESTAMP);
577 		rep.tsopt[1] = htonl(tcp_time_stamp);
578 		rep.tsopt[2] = htonl(ts);
579 		arg.iov[0].iov_len = sizeof(rep);
580 	}
581 
582 	/* Swap the send and the receive. */
583 	rep.th.dest    = th->source;
584 	rep.th.source  = th->dest;
585 	rep.th.doff    = arg.iov[0].iov_len / 4;
586 	rep.th.seq     = htonl(seq);
587 	rep.th.ack_seq = htonl(ack);
588 	rep.th.ack     = 1;
589 	rep.th.window  = htons(win);
590 
591 	arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
592 				      skb->nh.iph->saddr, /*XXX*/
593 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
594 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
595 
596 	ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
597 
598 	TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
599 }
600 
601 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
602 {
603 	struct inet_timewait_sock *tw = inet_twsk(sk);
604 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
605 
606 	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
607 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcptw->tw_ts_recent);
608 
609 	inet_twsk_put(tw);
610 }
611 
612 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb, struct request_sock *req)
613 {
614 	tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
615 			req->ts_recent);
616 }
617 
618 /*
619  *	Send a SYN-ACK after having received an ACK.
620  *	This still operates on a request_sock only, not on a big
621  *	socket.
622  */
623 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
624 			      struct dst_entry *dst)
625 {
626 	const struct inet_request_sock *ireq = inet_rsk(req);
627 	int err = -1;
628 	struct sk_buff * skb;
629 
630 	/* First, grab a route. */
631 	if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
632 		goto out;
633 
634 	skb = tcp_make_synack(sk, dst, req);
635 
636 	if (skb) {
637 		struct tcphdr *th = skb->h.th;
638 
639 		th->check = tcp_v4_check(th, skb->len,
640 					 ireq->loc_addr,
641 					 ireq->rmt_addr,
642 					 csum_partial((char *)th, skb->len,
643 						      skb->csum));
644 
645 		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
646 					    ireq->rmt_addr,
647 					    ireq->opt);
648 		if (err == NET_XMIT_CN)
649 			err = 0;
650 	}
651 
652 out:
653 	dst_release(dst);
654 	return err;
655 }
656 
657 /*
658  *	IPv4 request_sock destructor.
659  */
660 static void tcp_v4_reqsk_destructor(struct request_sock *req)
661 {
662 	kfree(inet_rsk(req)->opt);
663 }
664 
665 #ifdef CONFIG_SYN_COOKIES
666 static void syn_flood_warning(struct sk_buff *skb)
667 {
668 	static unsigned long warntime;
669 
670 	if (time_after(jiffies, (warntime + HZ * 60))) {
671 		warntime = jiffies;
672 		printk(KERN_INFO
673 		       "possible SYN flooding on port %d. Sending cookies.\n",
674 		       ntohs(skb->h.th->dest));
675 	}
676 }
677 #endif
678 
679 /*
680  * Save and compile IPv4 options into the request_sock if needed.
681  */
682 static struct ip_options *tcp_v4_save_options(struct sock *sk,
683 					      struct sk_buff *skb)
684 {
685 	struct ip_options *opt = &(IPCB(skb)->opt);
686 	struct ip_options *dopt = NULL;
687 
688 	if (opt && opt->optlen) {
689 		int opt_size = optlength(opt);
690 		dopt = kmalloc(opt_size, GFP_ATOMIC);
691 		if (dopt) {
692 			if (ip_options_echo(dopt, skb)) {
693 				kfree(dopt);
694 				dopt = NULL;
695 			}
696 		}
697 	}
698 	return dopt;
699 }
700 
701 struct request_sock_ops tcp_request_sock_ops = {
702 	.family		=	PF_INET,
703 	.obj_size	=	sizeof(struct tcp_request_sock),
704 	.rtx_syn_ack	=	tcp_v4_send_synack,
705 	.send_ack	=	tcp_v4_reqsk_send_ack,
706 	.destructor	=	tcp_v4_reqsk_destructor,
707 	.send_reset	=	tcp_v4_send_reset,
708 };
709 
710 static struct timewait_sock_ops tcp_timewait_sock_ops = {
711 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
712 	.twsk_unique	= tcp_twsk_unique,
713 };
714 
715 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
716 {
717 	struct inet_request_sock *ireq;
718 	struct tcp_options_received tmp_opt;
719 	struct request_sock *req;
720 	__u32 saddr = skb->nh.iph->saddr;
721 	__u32 daddr = skb->nh.iph->daddr;
722 	__u32 isn = TCP_SKB_CB(skb)->when;
723 	struct dst_entry *dst = NULL;
724 #ifdef CONFIG_SYN_COOKIES
725 	int want_cookie = 0;
726 #else
727 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
728 #endif
729 
730 	/* Never answer to SYNs send to broadcast or multicast */
731 	if (((struct rtable *)skb->dst)->rt_flags &
732 	    (RTCF_BROADCAST | RTCF_MULTICAST))
733 		goto drop;
734 
735 	/* TW buckets are converted to open requests without
736 	 * limitations, they conserve resources and peer is
737 	 * evidently real one.
738 	 */
739 	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
740 #ifdef CONFIG_SYN_COOKIES
741 		if (sysctl_tcp_syncookies) {
742 			want_cookie = 1;
743 		} else
744 #endif
745 		goto drop;
746 	}
747 
748 	/* Accept backlog is full. If we have already queued enough
749 	 * of warm entries in syn queue, drop request. It is better than
750 	 * clogging syn queue with openreqs with exponentially increasing
751 	 * timeout.
752 	 */
753 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
754 		goto drop;
755 
756 	req = reqsk_alloc(&tcp_request_sock_ops);
757 	if (!req)
758 		goto drop;
759 
760 	tcp_clear_options(&tmp_opt);
761 	tmp_opt.mss_clamp = 536;
762 	tmp_opt.user_mss  = tcp_sk(sk)->rx_opt.user_mss;
763 
764 	tcp_parse_options(skb, &tmp_opt, 0);
765 
766 	if (want_cookie) {
767 		tcp_clear_options(&tmp_opt);
768 		tmp_opt.saw_tstamp = 0;
769 	}
770 
771 	if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
772 		/* Some OSes (unknown ones, but I see them on web server, which
773 		 * contains information interesting only for windows'
774 		 * users) do not send their stamp in SYN. It is easy case.
775 		 * We simply do not advertise TS support.
776 		 */
777 		tmp_opt.saw_tstamp = 0;
778 		tmp_opt.tstamp_ok  = 0;
779 	}
780 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
781 
782 	tcp_openreq_init(req, &tmp_opt, skb);
783 
784 	ireq = inet_rsk(req);
785 	ireq->loc_addr = daddr;
786 	ireq->rmt_addr = saddr;
787 	ireq->opt = tcp_v4_save_options(sk, skb);
788 	if (!want_cookie)
789 		TCP_ECN_create_request(req, skb->h.th);
790 
791 	if (want_cookie) {
792 #ifdef CONFIG_SYN_COOKIES
793 		syn_flood_warning(skb);
794 #endif
795 		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
796 	} else if (!isn) {
797 		struct inet_peer *peer = NULL;
798 
799 		/* VJ's idea. We save last timestamp seen
800 		 * from the destination in peer table, when entering
801 		 * state TIME-WAIT, and check against it before
802 		 * accepting new connection request.
803 		 *
804 		 * If "isn" is not zero, this request hit alive
805 		 * timewait bucket, so that all the necessary checks
806 		 * are made in the function processing timewait state.
807 		 */
808 		if (tmp_opt.saw_tstamp &&
809 		    tcp_death_row.sysctl_tw_recycle &&
810 		    (dst = inet_csk_route_req(sk, req)) != NULL &&
811 		    (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
812 		    peer->v4daddr == saddr) {
813 			if (xtime.tv_sec < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
814 			    (s32)(peer->tcp_ts - req->ts_recent) >
815 							TCP_PAWS_WINDOW) {
816 				NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
817 				dst_release(dst);
818 				goto drop_and_free;
819 			}
820 		}
821 		/* Kill the following clause, if you dislike this way. */
822 		else if (!sysctl_tcp_syncookies &&
823 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
824 			  (sysctl_max_syn_backlog >> 2)) &&
825 			 (!peer || !peer->tcp_ts_stamp) &&
826 			 (!dst || !dst_metric(dst, RTAX_RTT))) {
827 			/* Without syncookies last quarter of
828 			 * backlog is filled with destinations,
829 			 * proven to be alive.
830 			 * It means that we continue to communicate
831 			 * to destinations, already remembered
832 			 * to the moment of synflood.
833 			 */
834 			LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
835 				       "request from %u.%u.%u.%u/%u\n",
836 				       NIPQUAD(saddr),
837 				       ntohs(skb->h.th->source));
838 			dst_release(dst);
839 			goto drop_and_free;
840 		}
841 
842 		isn = tcp_v4_init_sequence(sk, skb);
843 	}
844 	tcp_rsk(req)->snt_isn = isn;
845 
846 	if (tcp_v4_send_synack(sk, req, dst))
847 		goto drop_and_free;
848 
849 	if (want_cookie) {
850 	   	reqsk_free(req);
851 	} else {
852 		inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
853 	}
854 	return 0;
855 
856 drop_and_free:
857 	reqsk_free(req);
858 drop:
859 	TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
860 	return 0;
861 }
862 
863 
864 /*
865  * The three way handshake has completed - we got a valid synack -
866  * now create the new socket.
867  */
868 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
869 				  struct request_sock *req,
870 				  struct dst_entry *dst)
871 {
872 	struct inet_request_sock *ireq;
873 	struct inet_sock *newinet;
874 	struct tcp_sock *newtp;
875 	struct sock *newsk;
876 
877 	if (sk_acceptq_is_full(sk))
878 		goto exit_overflow;
879 
880 	if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
881 		goto exit;
882 
883 	newsk = tcp_create_openreq_child(sk, req, skb);
884 	if (!newsk)
885 		goto exit;
886 
887 	sk_setup_caps(newsk, dst);
888 
889 	newtp		      = tcp_sk(newsk);
890 	newinet		      = inet_sk(newsk);
891 	ireq		      = inet_rsk(req);
892 	newinet->daddr	      = ireq->rmt_addr;
893 	newinet->rcv_saddr    = ireq->loc_addr;
894 	newinet->saddr	      = ireq->loc_addr;
895 	newinet->opt	      = ireq->opt;
896 	ireq->opt	      = NULL;
897 	newinet->mc_index     = inet_iif(skb);
898 	newinet->mc_ttl	      = skb->nh.iph->ttl;
899 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
900 	if (newinet->opt)
901 		inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
902 	newinet->id = newtp->write_seq ^ jiffies;
903 
904 	tcp_mtup_init(newsk);
905 	tcp_sync_mss(newsk, dst_mtu(dst));
906 	newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
907 	tcp_initialize_rcv_mss(newsk);
908 
909 	__inet_hash(&tcp_hashinfo, newsk, 0);
910 	__inet_inherit_port(&tcp_hashinfo, sk, newsk);
911 
912 	return newsk;
913 
914 exit_overflow:
915 	NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
916 exit:
917 	NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
918 	dst_release(dst);
919 	return NULL;
920 }
921 
922 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
923 {
924 	struct tcphdr *th = skb->h.th;
925 	struct iphdr *iph = skb->nh.iph;
926 	struct sock *nsk;
927 	struct request_sock **prev;
928 	/* Find possible connection requests. */
929 	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
930 						       iph->saddr, iph->daddr);
931 	if (req)
932 		return tcp_check_req(sk, skb, req, prev);
933 
934 	nsk = __inet_lookup_established(&tcp_hashinfo, skb->nh.iph->saddr,
935 					th->source, skb->nh.iph->daddr,
936 					ntohs(th->dest), inet_iif(skb));
937 
938 	if (nsk) {
939 		if (nsk->sk_state != TCP_TIME_WAIT) {
940 			bh_lock_sock(nsk);
941 			return nsk;
942 		}
943 		inet_twsk_put((struct inet_timewait_sock *)nsk);
944 		return NULL;
945 	}
946 
947 #ifdef CONFIG_SYN_COOKIES
948 	if (!th->rst && !th->syn && th->ack)
949 		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
950 #endif
951 	return sk;
952 }
953 
954 static int tcp_v4_checksum_init(struct sk_buff *skb)
955 {
956 	if (skb->ip_summed == CHECKSUM_HW) {
957 		if (!tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
958 				  skb->nh.iph->daddr, skb->csum)) {
959 			skb->ip_summed = CHECKSUM_UNNECESSARY;
960 			return 0;
961 		}
962 	}
963 
964 	skb->csum = csum_tcpudp_nofold(skb->nh.iph->saddr, skb->nh.iph->daddr,
965 				       skb->len, IPPROTO_TCP, 0);
966 
967 	if (skb->len <= 76) {
968 		return __skb_checksum_complete(skb);
969 	}
970 	return 0;
971 }
972 
973 
974 /* The socket must have it's spinlock held when we get
975  * here.
976  *
977  * We have a potential double-lock case here, so even when
978  * doing backlog processing we use the BH locking scheme.
979  * This is because we cannot sleep with the original spinlock
980  * held.
981  */
982 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
983 {
984 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
985 		TCP_CHECK_TIMER(sk);
986 		if (tcp_rcv_established(sk, skb, skb->h.th, skb->len))
987 			goto reset;
988 		TCP_CHECK_TIMER(sk);
989 		return 0;
990 	}
991 
992 	if (skb->len < (skb->h.th->doff << 2) || tcp_checksum_complete(skb))
993 		goto csum_err;
994 
995 	if (sk->sk_state == TCP_LISTEN) {
996 		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
997 		if (!nsk)
998 			goto discard;
999 
1000 		if (nsk != sk) {
1001 			if (tcp_child_process(sk, nsk, skb))
1002 				goto reset;
1003 			return 0;
1004 		}
1005 	}
1006 
1007 	TCP_CHECK_TIMER(sk);
1008 	if (tcp_rcv_state_process(sk, skb, skb->h.th, skb->len))
1009 		goto reset;
1010 	TCP_CHECK_TIMER(sk);
1011 	return 0;
1012 
1013 reset:
1014 	tcp_v4_send_reset(skb);
1015 discard:
1016 	kfree_skb(skb);
1017 	/* Be careful here. If this function gets more complicated and
1018 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1019 	 * might be destroyed here. This current version compiles correctly,
1020 	 * but you have been warned.
1021 	 */
1022 	return 0;
1023 
1024 csum_err:
1025 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
1026 	goto discard;
1027 }
1028 
1029 /*
1030  *	From tcp_input.c
1031  */
1032 
1033 int tcp_v4_rcv(struct sk_buff *skb)
1034 {
1035 	struct tcphdr *th;
1036 	struct sock *sk;
1037 	int ret;
1038 
1039 	if (skb->pkt_type != PACKET_HOST)
1040 		goto discard_it;
1041 
1042 	/* Count it even if it's bad */
1043 	TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1044 
1045 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1046 		goto discard_it;
1047 
1048 	th = skb->h.th;
1049 
1050 	if (th->doff < sizeof(struct tcphdr) / 4)
1051 		goto bad_packet;
1052 	if (!pskb_may_pull(skb, th->doff * 4))
1053 		goto discard_it;
1054 
1055 	/* An explanation is required here, I think.
1056 	 * Packet length and doff are validated by header prediction,
1057 	 * provided case of th->doff==0 is eliminated.
1058 	 * So, we defer the checks. */
1059 	if ((skb->ip_summed != CHECKSUM_UNNECESSARY &&
1060 	     tcp_v4_checksum_init(skb)))
1061 		goto bad_packet;
1062 
1063 	th = skb->h.th;
1064 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1065 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1066 				    skb->len - th->doff * 4);
1067 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1068 	TCP_SKB_CB(skb)->when	 = 0;
1069 	TCP_SKB_CB(skb)->flags	 = skb->nh.iph->tos;
1070 	TCP_SKB_CB(skb)->sacked	 = 0;
1071 
1072 	sk = __inet_lookup(&tcp_hashinfo, skb->nh.iph->saddr, th->source,
1073 			   skb->nh.iph->daddr, ntohs(th->dest),
1074 			   inet_iif(skb));
1075 
1076 	if (!sk)
1077 		goto no_tcp_socket;
1078 
1079 process:
1080 	if (sk->sk_state == TCP_TIME_WAIT)
1081 		goto do_time_wait;
1082 
1083 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1084 		goto discard_and_relse;
1085 	nf_reset(skb);
1086 
1087 	if (sk_filter(sk, skb, 0))
1088 		goto discard_and_relse;
1089 
1090 	skb->dev = NULL;
1091 
1092 	bh_lock_sock(sk);
1093 	ret = 0;
1094 	if (!sock_owned_by_user(sk)) {
1095 #ifdef CONFIG_NET_DMA
1096 		struct tcp_sock *tp = tcp_sk(sk);
1097 		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1098 			tp->ucopy.dma_chan = get_softnet_dma();
1099 		if (tp->ucopy.dma_chan)
1100 			ret = tcp_v4_do_rcv(sk, skb);
1101 		else
1102 #endif
1103 		{
1104 			if (!tcp_prequeue(sk, skb))
1105 			ret = tcp_v4_do_rcv(sk, skb);
1106 		}
1107 	} else
1108 		sk_add_backlog(sk, skb);
1109 	bh_unlock_sock(sk);
1110 
1111 	sock_put(sk);
1112 
1113 	return ret;
1114 
1115 no_tcp_socket:
1116 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1117 		goto discard_it;
1118 
1119 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1120 bad_packet:
1121 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
1122 	} else {
1123 		tcp_v4_send_reset(skb);
1124 	}
1125 
1126 discard_it:
1127 	/* Discard frame. */
1128 	kfree_skb(skb);
1129   	return 0;
1130 
1131 discard_and_relse:
1132 	sock_put(sk);
1133 	goto discard_it;
1134 
1135 do_time_wait:
1136 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1137 		inet_twsk_put((struct inet_timewait_sock *) sk);
1138 		goto discard_it;
1139 	}
1140 
1141 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1142 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
1143 		inet_twsk_put((struct inet_timewait_sock *) sk);
1144 		goto discard_it;
1145 	}
1146 	switch (tcp_timewait_state_process((struct inet_timewait_sock *)sk,
1147 					   skb, th)) {
1148 	case TCP_TW_SYN: {
1149 		struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1150 							skb->nh.iph->daddr,
1151 							ntohs(th->dest),
1152 							inet_iif(skb));
1153 		if (sk2) {
1154 			inet_twsk_deschedule((struct inet_timewait_sock *)sk,
1155 					     &tcp_death_row);
1156 			inet_twsk_put((struct inet_timewait_sock *)sk);
1157 			sk = sk2;
1158 			goto process;
1159 		}
1160 		/* Fall through to ACK */
1161 	}
1162 	case TCP_TW_ACK:
1163 		tcp_v4_timewait_ack(sk, skb);
1164 		break;
1165 	case TCP_TW_RST:
1166 		goto no_tcp_socket;
1167 	case TCP_TW_SUCCESS:;
1168 	}
1169 	goto discard_it;
1170 }
1171 
1172 /* VJ's idea. Save last timestamp seen from this destination
1173  * and hold it at least for normal timewait interval to use for duplicate
1174  * segment detection in subsequent connections, before they enter synchronized
1175  * state.
1176  */
1177 
1178 int tcp_v4_remember_stamp(struct sock *sk)
1179 {
1180 	struct inet_sock *inet = inet_sk(sk);
1181 	struct tcp_sock *tp = tcp_sk(sk);
1182 	struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1183 	struct inet_peer *peer = NULL;
1184 	int release_it = 0;
1185 
1186 	if (!rt || rt->rt_dst != inet->daddr) {
1187 		peer = inet_getpeer(inet->daddr, 1);
1188 		release_it = 1;
1189 	} else {
1190 		if (!rt->peer)
1191 			rt_bind_peer(rt, 1);
1192 		peer = rt->peer;
1193 	}
1194 
1195 	if (peer) {
1196 		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1197 		    (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1198 		     peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1199 			peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1200 			peer->tcp_ts = tp->rx_opt.ts_recent;
1201 		}
1202 		if (release_it)
1203 			inet_putpeer(peer);
1204 		return 1;
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1211 {
1212 	struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1213 
1214 	if (peer) {
1215 		const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1216 
1217 		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1218 		    (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1219 		     peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1220 			peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1221 			peer->tcp_ts	   = tcptw->tw_ts_recent;
1222 		}
1223 		inet_putpeer(peer);
1224 		return 1;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 struct inet_connection_sock_af_ops ipv4_specific = {
1231 	.queue_xmit	   = ip_queue_xmit,
1232 	.send_check	   = tcp_v4_send_check,
1233 	.rebuild_header	   = inet_sk_rebuild_header,
1234 	.conn_request	   = tcp_v4_conn_request,
1235 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1236 	.remember_stamp	   = tcp_v4_remember_stamp,
1237 	.net_header_len	   = sizeof(struct iphdr),
1238 	.setsockopt	   = ip_setsockopt,
1239 	.getsockopt	   = ip_getsockopt,
1240 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1241 	.sockaddr_len	   = sizeof(struct sockaddr_in),
1242 #ifdef CONFIG_COMPAT
1243 	.compat_setsockopt = compat_ip_setsockopt,
1244 	.compat_getsockopt = compat_ip_getsockopt,
1245 #endif
1246 };
1247 
1248 /* NOTE: A lot of things set to zero explicitly by call to
1249  *       sk_alloc() so need not be done here.
1250  */
1251 static int tcp_v4_init_sock(struct sock *sk)
1252 {
1253 	struct inet_connection_sock *icsk = inet_csk(sk);
1254 	struct tcp_sock *tp = tcp_sk(sk);
1255 
1256 	skb_queue_head_init(&tp->out_of_order_queue);
1257 	tcp_init_xmit_timers(sk);
1258 	tcp_prequeue_init(tp);
1259 
1260 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
1261 	tp->mdev = TCP_TIMEOUT_INIT;
1262 
1263 	/* So many TCP implementations out there (incorrectly) count the
1264 	 * initial SYN frame in their delayed-ACK and congestion control
1265 	 * algorithms that we must have the following bandaid to talk
1266 	 * efficiently to them.  -DaveM
1267 	 */
1268 	tp->snd_cwnd = 2;
1269 
1270 	/* See draft-stevens-tcpca-spec-01 for discussion of the
1271 	 * initialization of these values.
1272 	 */
1273 	tp->snd_ssthresh = 0x7fffffff;	/* Infinity */
1274 	tp->snd_cwnd_clamp = ~0;
1275 	tp->mss_cache = 536;
1276 
1277 	tp->reordering = sysctl_tcp_reordering;
1278 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1279 
1280 	sk->sk_state = TCP_CLOSE;
1281 
1282 	sk->sk_write_space = sk_stream_write_space;
1283 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1284 
1285 	icsk->icsk_af_ops = &ipv4_specific;
1286 	icsk->icsk_sync_mss = tcp_sync_mss;
1287 
1288 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
1289 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1290 
1291 	atomic_inc(&tcp_sockets_allocated);
1292 
1293 	return 0;
1294 }
1295 
1296 int tcp_v4_destroy_sock(struct sock *sk)
1297 {
1298 	struct tcp_sock *tp = tcp_sk(sk);
1299 
1300 	tcp_clear_xmit_timers(sk);
1301 
1302 	tcp_cleanup_congestion_control(sk);
1303 
1304 	/* Cleanup up the write buffer. */
1305   	sk_stream_writequeue_purge(sk);
1306 
1307 	/* Cleans up our, hopefully empty, out_of_order_queue. */
1308   	__skb_queue_purge(&tp->out_of_order_queue);
1309 
1310 #ifdef CONFIG_NET_DMA
1311 	/* Cleans up our sk_async_wait_queue */
1312   	__skb_queue_purge(&sk->sk_async_wait_queue);
1313 #endif
1314 
1315 	/* Clean prequeue, it must be empty really */
1316 	__skb_queue_purge(&tp->ucopy.prequeue);
1317 
1318 	/* Clean up a referenced TCP bind bucket. */
1319 	if (inet_csk(sk)->icsk_bind_hash)
1320 		inet_put_port(&tcp_hashinfo, sk);
1321 
1322 	/*
1323 	 * If sendmsg cached page exists, toss it.
1324 	 */
1325 	if (sk->sk_sndmsg_page) {
1326 		__free_page(sk->sk_sndmsg_page);
1327 		sk->sk_sndmsg_page = NULL;
1328 	}
1329 
1330 	atomic_dec(&tcp_sockets_allocated);
1331 
1332 	return 0;
1333 }
1334 
1335 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1336 
1337 #ifdef CONFIG_PROC_FS
1338 /* Proc filesystem TCP sock list dumping. */
1339 
1340 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1341 {
1342 	return hlist_empty(head) ? NULL :
1343 		list_entry(head->first, struct inet_timewait_sock, tw_node);
1344 }
1345 
1346 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1347 {
1348 	return tw->tw_node.next ?
1349 		hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1350 }
1351 
1352 static void *listening_get_next(struct seq_file *seq, void *cur)
1353 {
1354 	struct inet_connection_sock *icsk;
1355 	struct hlist_node *node;
1356 	struct sock *sk = cur;
1357 	struct tcp_iter_state* st = seq->private;
1358 
1359 	if (!sk) {
1360 		st->bucket = 0;
1361 		sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1362 		goto get_sk;
1363 	}
1364 
1365 	++st->num;
1366 
1367 	if (st->state == TCP_SEQ_STATE_OPENREQ) {
1368 		struct request_sock *req = cur;
1369 
1370 	       	icsk = inet_csk(st->syn_wait_sk);
1371 		req = req->dl_next;
1372 		while (1) {
1373 			while (req) {
1374 				if (req->rsk_ops->family == st->family) {
1375 					cur = req;
1376 					goto out;
1377 				}
1378 				req = req->dl_next;
1379 			}
1380 			if (++st->sbucket >= TCP_SYNQ_HSIZE)
1381 				break;
1382 get_req:
1383 			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1384 		}
1385 		sk	  = sk_next(st->syn_wait_sk);
1386 		st->state = TCP_SEQ_STATE_LISTENING;
1387 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1388 	} else {
1389 	       	icsk = inet_csk(sk);
1390 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1391 		if (reqsk_queue_len(&icsk->icsk_accept_queue))
1392 			goto start_req;
1393 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1394 		sk = sk_next(sk);
1395 	}
1396 get_sk:
1397 	sk_for_each_from(sk, node) {
1398 		if (sk->sk_family == st->family) {
1399 			cur = sk;
1400 			goto out;
1401 		}
1402 	       	icsk = inet_csk(sk);
1403 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1404 		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1405 start_req:
1406 			st->uid		= sock_i_uid(sk);
1407 			st->syn_wait_sk = sk;
1408 			st->state	= TCP_SEQ_STATE_OPENREQ;
1409 			st->sbucket	= 0;
1410 			goto get_req;
1411 		}
1412 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1413 	}
1414 	if (++st->bucket < INET_LHTABLE_SIZE) {
1415 		sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1416 		goto get_sk;
1417 	}
1418 	cur = NULL;
1419 out:
1420 	return cur;
1421 }
1422 
1423 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1424 {
1425 	void *rc = listening_get_next(seq, NULL);
1426 
1427 	while (rc && *pos) {
1428 		rc = listening_get_next(seq, rc);
1429 		--*pos;
1430 	}
1431 	return rc;
1432 }
1433 
1434 static void *established_get_first(struct seq_file *seq)
1435 {
1436 	struct tcp_iter_state* st = seq->private;
1437 	void *rc = NULL;
1438 
1439 	for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1440 		struct sock *sk;
1441 		struct hlist_node *node;
1442 		struct inet_timewait_sock *tw;
1443 
1444 		/* We can reschedule _before_ having picked the target: */
1445 		cond_resched_softirq();
1446 
1447 		read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1448 		sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1449 			if (sk->sk_family != st->family) {
1450 				continue;
1451 			}
1452 			rc = sk;
1453 			goto out;
1454 		}
1455 		st->state = TCP_SEQ_STATE_TIME_WAIT;
1456 		inet_twsk_for_each(tw, node,
1457 				   &tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain) {
1458 			if (tw->tw_family != st->family) {
1459 				continue;
1460 			}
1461 			rc = tw;
1462 			goto out;
1463 		}
1464 		read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1465 		st->state = TCP_SEQ_STATE_ESTABLISHED;
1466 	}
1467 out:
1468 	return rc;
1469 }
1470 
1471 static void *established_get_next(struct seq_file *seq, void *cur)
1472 {
1473 	struct sock *sk = cur;
1474 	struct inet_timewait_sock *tw;
1475 	struct hlist_node *node;
1476 	struct tcp_iter_state* st = seq->private;
1477 
1478 	++st->num;
1479 
1480 	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
1481 		tw = cur;
1482 		tw = tw_next(tw);
1483 get_tw:
1484 		while (tw && tw->tw_family != st->family) {
1485 			tw = tw_next(tw);
1486 		}
1487 		if (tw) {
1488 			cur = tw;
1489 			goto out;
1490 		}
1491 		read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1492 		st->state = TCP_SEQ_STATE_ESTABLISHED;
1493 
1494 		/* We can reschedule between buckets: */
1495 		cond_resched_softirq();
1496 
1497 		if (++st->bucket < tcp_hashinfo.ehash_size) {
1498 			read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1499 			sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
1500 		} else {
1501 			cur = NULL;
1502 			goto out;
1503 		}
1504 	} else
1505 		sk = sk_next(sk);
1506 
1507 	sk_for_each_from(sk, node) {
1508 		if (sk->sk_family == st->family)
1509 			goto found;
1510 	}
1511 
1512 	st->state = TCP_SEQ_STATE_TIME_WAIT;
1513 	tw = tw_head(&tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain);
1514 	goto get_tw;
1515 found:
1516 	cur = sk;
1517 out:
1518 	return cur;
1519 }
1520 
1521 static void *established_get_idx(struct seq_file *seq, loff_t pos)
1522 {
1523 	void *rc = established_get_first(seq);
1524 
1525 	while (rc && pos) {
1526 		rc = established_get_next(seq, rc);
1527 		--pos;
1528 	}
1529 	return rc;
1530 }
1531 
1532 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1533 {
1534 	void *rc;
1535 	struct tcp_iter_state* st = seq->private;
1536 
1537 	inet_listen_lock(&tcp_hashinfo);
1538 	st->state = TCP_SEQ_STATE_LISTENING;
1539 	rc	  = listening_get_idx(seq, &pos);
1540 
1541 	if (!rc) {
1542 		inet_listen_unlock(&tcp_hashinfo);
1543 		local_bh_disable();
1544 		st->state = TCP_SEQ_STATE_ESTABLISHED;
1545 		rc	  = established_get_idx(seq, pos);
1546 	}
1547 
1548 	return rc;
1549 }
1550 
1551 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
1552 {
1553 	struct tcp_iter_state* st = seq->private;
1554 	st->state = TCP_SEQ_STATE_LISTENING;
1555 	st->num = 0;
1556 	return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
1557 }
1558 
1559 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1560 {
1561 	void *rc = NULL;
1562 	struct tcp_iter_state* st;
1563 
1564 	if (v == SEQ_START_TOKEN) {
1565 		rc = tcp_get_idx(seq, 0);
1566 		goto out;
1567 	}
1568 	st = seq->private;
1569 
1570 	switch (st->state) {
1571 	case TCP_SEQ_STATE_OPENREQ:
1572 	case TCP_SEQ_STATE_LISTENING:
1573 		rc = listening_get_next(seq, v);
1574 		if (!rc) {
1575 			inet_listen_unlock(&tcp_hashinfo);
1576 			local_bh_disable();
1577 			st->state = TCP_SEQ_STATE_ESTABLISHED;
1578 			rc	  = established_get_first(seq);
1579 		}
1580 		break;
1581 	case TCP_SEQ_STATE_ESTABLISHED:
1582 	case TCP_SEQ_STATE_TIME_WAIT:
1583 		rc = established_get_next(seq, v);
1584 		break;
1585 	}
1586 out:
1587 	++*pos;
1588 	return rc;
1589 }
1590 
1591 static void tcp_seq_stop(struct seq_file *seq, void *v)
1592 {
1593 	struct tcp_iter_state* st = seq->private;
1594 
1595 	switch (st->state) {
1596 	case TCP_SEQ_STATE_OPENREQ:
1597 		if (v) {
1598 			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
1599 			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1600 		}
1601 	case TCP_SEQ_STATE_LISTENING:
1602 		if (v != SEQ_START_TOKEN)
1603 			inet_listen_unlock(&tcp_hashinfo);
1604 		break;
1605 	case TCP_SEQ_STATE_TIME_WAIT:
1606 	case TCP_SEQ_STATE_ESTABLISHED:
1607 		if (v)
1608 			read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1609 		local_bh_enable();
1610 		break;
1611 	}
1612 }
1613 
1614 static int tcp_seq_open(struct inode *inode, struct file *file)
1615 {
1616 	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
1617 	struct seq_file *seq;
1618 	struct tcp_iter_state *s;
1619 	int rc;
1620 
1621 	if (unlikely(afinfo == NULL))
1622 		return -EINVAL;
1623 
1624 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1625 	if (!s)
1626 		return -ENOMEM;
1627 	memset(s, 0, sizeof(*s));
1628 	s->family		= afinfo->family;
1629 	s->seq_ops.start	= tcp_seq_start;
1630 	s->seq_ops.next		= tcp_seq_next;
1631 	s->seq_ops.show		= afinfo->seq_show;
1632 	s->seq_ops.stop		= tcp_seq_stop;
1633 
1634 	rc = seq_open(file, &s->seq_ops);
1635 	if (rc)
1636 		goto out_kfree;
1637 	seq	     = file->private_data;
1638 	seq->private = s;
1639 out:
1640 	return rc;
1641 out_kfree:
1642 	kfree(s);
1643 	goto out;
1644 }
1645 
1646 int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
1647 {
1648 	int rc = 0;
1649 	struct proc_dir_entry *p;
1650 
1651 	if (!afinfo)
1652 		return -EINVAL;
1653 	afinfo->seq_fops->owner		= afinfo->owner;
1654 	afinfo->seq_fops->open		= tcp_seq_open;
1655 	afinfo->seq_fops->read		= seq_read;
1656 	afinfo->seq_fops->llseek	= seq_lseek;
1657 	afinfo->seq_fops->release	= seq_release_private;
1658 
1659 	p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1660 	if (p)
1661 		p->data = afinfo;
1662 	else
1663 		rc = -ENOMEM;
1664 	return rc;
1665 }
1666 
1667 void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
1668 {
1669 	if (!afinfo)
1670 		return;
1671 	proc_net_remove(afinfo->name);
1672 	memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1673 }
1674 
1675 static void get_openreq4(struct sock *sk, struct request_sock *req,
1676 			 char *tmpbuf, int i, int uid)
1677 {
1678 	const struct inet_request_sock *ireq = inet_rsk(req);
1679 	int ttd = req->expires - jiffies;
1680 
1681 	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1682 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
1683 		i,
1684 		ireq->loc_addr,
1685 		ntohs(inet_sk(sk)->sport),
1686 		ireq->rmt_addr,
1687 		ntohs(ireq->rmt_port),
1688 		TCP_SYN_RECV,
1689 		0, 0, /* could print option size, but that is af dependent. */
1690 		1,    /* timers active (only the expire timer) */
1691 		jiffies_to_clock_t(ttd),
1692 		req->retrans,
1693 		uid,
1694 		0,  /* non standard timer */
1695 		0, /* open_requests have no inode */
1696 		atomic_read(&sk->sk_refcnt),
1697 		req);
1698 }
1699 
1700 static void get_tcp4_sock(struct sock *sp, char *tmpbuf, int i)
1701 {
1702 	int timer_active;
1703 	unsigned long timer_expires;
1704 	struct tcp_sock *tp = tcp_sk(sp);
1705 	const struct inet_connection_sock *icsk = inet_csk(sp);
1706 	struct inet_sock *inet = inet_sk(sp);
1707 	unsigned int dest = inet->daddr;
1708 	unsigned int src = inet->rcv_saddr;
1709 	__u16 destp = ntohs(inet->dport);
1710 	__u16 srcp = ntohs(inet->sport);
1711 
1712 	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
1713 		timer_active	= 1;
1714 		timer_expires	= icsk->icsk_timeout;
1715 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
1716 		timer_active	= 4;
1717 		timer_expires	= icsk->icsk_timeout;
1718 	} else if (timer_pending(&sp->sk_timer)) {
1719 		timer_active	= 2;
1720 		timer_expires	= sp->sk_timer.expires;
1721 	} else {
1722 		timer_active	= 0;
1723 		timer_expires = jiffies;
1724 	}
1725 
1726 	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
1727 			"%08X %5d %8d %lu %d %p %u %u %u %u %d",
1728 		i, src, srcp, dest, destp, sp->sk_state,
1729 		tp->write_seq - tp->snd_una, tp->rcv_nxt - tp->copied_seq,
1730 		timer_active,
1731 		jiffies_to_clock_t(timer_expires - jiffies),
1732 		icsk->icsk_retransmits,
1733 		sock_i_uid(sp),
1734 		icsk->icsk_probes_out,
1735 		sock_i_ino(sp),
1736 		atomic_read(&sp->sk_refcnt), sp,
1737 		icsk->icsk_rto,
1738 		icsk->icsk_ack.ato,
1739 		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
1740 		tp->snd_cwnd,
1741 		tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
1742 }
1743 
1744 static void get_timewait4_sock(struct inet_timewait_sock *tw, char *tmpbuf, int i)
1745 {
1746 	unsigned int dest, src;
1747 	__u16 destp, srcp;
1748 	int ttd = tw->tw_ttd - jiffies;
1749 
1750 	if (ttd < 0)
1751 		ttd = 0;
1752 
1753 	dest  = tw->tw_daddr;
1754 	src   = tw->tw_rcv_saddr;
1755 	destp = ntohs(tw->tw_dport);
1756 	srcp  = ntohs(tw->tw_sport);
1757 
1758 	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1759 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
1760 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
1761 		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
1762 		atomic_read(&tw->tw_refcnt), tw);
1763 }
1764 
1765 #define TMPSZ 150
1766 
1767 static int tcp4_seq_show(struct seq_file *seq, void *v)
1768 {
1769 	struct tcp_iter_state* st;
1770 	char tmpbuf[TMPSZ + 1];
1771 
1772 	if (v == SEQ_START_TOKEN) {
1773 		seq_printf(seq, "%-*s\n", TMPSZ - 1,
1774 			   "  sl  local_address rem_address   st tx_queue "
1775 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1776 			   "inode");
1777 		goto out;
1778 	}
1779 	st = seq->private;
1780 
1781 	switch (st->state) {
1782 	case TCP_SEQ_STATE_LISTENING:
1783 	case TCP_SEQ_STATE_ESTABLISHED:
1784 		get_tcp4_sock(v, tmpbuf, st->num);
1785 		break;
1786 	case TCP_SEQ_STATE_OPENREQ:
1787 		get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
1788 		break;
1789 	case TCP_SEQ_STATE_TIME_WAIT:
1790 		get_timewait4_sock(v, tmpbuf, st->num);
1791 		break;
1792 	}
1793 	seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
1794 out:
1795 	return 0;
1796 }
1797 
1798 static struct file_operations tcp4_seq_fops;
1799 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
1800 	.owner		= THIS_MODULE,
1801 	.name		= "tcp",
1802 	.family		= AF_INET,
1803 	.seq_show	= tcp4_seq_show,
1804 	.seq_fops	= &tcp4_seq_fops,
1805 };
1806 
1807 int __init tcp4_proc_init(void)
1808 {
1809 	return tcp_proc_register(&tcp4_seq_afinfo);
1810 }
1811 
1812 void tcp4_proc_exit(void)
1813 {
1814 	tcp_proc_unregister(&tcp4_seq_afinfo);
1815 }
1816 #endif /* CONFIG_PROC_FS */
1817 
1818 struct proto tcp_prot = {
1819 	.name			= "TCP",
1820 	.owner			= THIS_MODULE,
1821 	.close			= tcp_close,
1822 	.connect		= tcp_v4_connect,
1823 	.disconnect		= tcp_disconnect,
1824 	.accept			= inet_csk_accept,
1825 	.ioctl			= tcp_ioctl,
1826 	.init			= tcp_v4_init_sock,
1827 	.destroy		= tcp_v4_destroy_sock,
1828 	.shutdown		= tcp_shutdown,
1829 	.setsockopt		= tcp_setsockopt,
1830 	.getsockopt		= tcp_getsockopt,
1831 	.sendmsg		= tcp_sendmsg,
1832 	.recvmsg		= tcp_recvmsg,
1833 	.backlog_rcv		= tcp_v4_do_rcv,
1834 	.hash			= tcp_v4_hash,
1835 	.unhash			= tcp_unhash,
1836 	.get_port		= tcp_v4_get_port,
1837 	.enter_memory_pressure	= tcp_enter_memory_pressure,
1838 	.sockets_allocated	= &tcp_sockets_allocated,
1839 	.orphan_count		= &tcp_orphan_count,
1840 	.memory_allocated	= &tcp_memory_allocated,
1841 	.memory_pressure	= &tcp_memory_pressure,
1842 	.sysctl_mem		= sysctl_tcp_mem,
1843 	.sysctl_wmem		= sysctl_tcp_wmem,
1844 	.sysctl_rmem		= sysctl_tcp_rmem,
1845 	.max_header		= MAX_TCP_HEADER,
1846 	.obj_size		= sizeof(struct tcp_sock),
1847 	.twsk_prot		= &tcp_timewait_sock_ops,
1848 	.rsk_prot		= &tcp_request_sock_ops,
1849 #ifdef CONFIG_COMPAT
1850 	.compat_setsockopt	= compat_tcp_setsockopt,
1851 	.compat_getsockopt	= compat_tcp_getsockopt,
1852 #endif
1853 };
1854 
1855 void __init tcp_v4_init(struct net_proto_family *ops)
1856 {
1857 	if (inet_csk_ctl_sock_create(&tcp_socket, PF_INET, SOCK_RAW, IPPROTO_TCP) < 0)
1858 		panic("Failed to create the TCP control socket.\n");
1859 }
1860 
1861 EXPORT_SYMBOL(ipv4_specific);
1862 EXPORT_SYMBOL(tcp_hashinfo);
1863 EXPORT_SYMBOL(tcp_prot);
1864 EXPORT_SYMBOL(tcp_unhash);
1865 EXPORT_SYMBOL(tcp_v4_conn_request);
1866 EXPORT_SYMBOL(tcp_v4_connect);
1867 EXPORT_SYMBOL(tcp_v4_do_rcv);
1868 EXPORT_SYMBOL(tcp_v4_remember_stamp);
1869 EXPORT_SYMBOL(tcp_v4_send_check);
1870 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1871 
1872 #ifdef CONFIG_PROC_FS
1873 EXPORT_SYMBOL(tcp_proc_register);
1874 EXPORT_SYMBOL(tcp_proc_unregister);
1875 #endif
1876 EXPORT_SYMBOL(sysctl_local_port_range);
1877 EXPORT_SYMBOL(sysctl_tcp_low_latency);
1878 
1879