1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 #define pr_fmt(fmt) "TCP: " fmt 54 55 #include <linux/bottom_half.h> 56 #include <linux/types.h> 57 #include <linux/fcntl.h> 58 #include <linux/module.h> 59 #include <linux/random.h> 60 #include <linux/cache.h> 61 #include <linux/jhash.h> 62 #include <linux/init.h> 63 #include <linux/times.h> 64 #include <linux/slab.h> 65 66 #include <net/net_namespace.h> 67 #include <net/icmp.h> 68 #include <net/inet_hashtables.h> 69 #include <net/tcp.h> 70 #include <net/transp_v6.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 #include <net/timewait_sock.h> 74 #include <net/xfrm.h> 75 #include <net/secure_seq.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/inet.h> 79 #include <linux/ipv6.h> 80 #include <linux/stddef.h> 81 #include <linux/proc_fs.h> 82 #include <linux/seq_file.h> 83 84 #include <crypto/hash.h> 85 #include <linux/scatterlist.h> 86 87 int sysctl_tcp_tw_reuse __read_mostly; 88 int sysctl_tcp_low_latency __read_mostly; 89 90 #ifdef CONFIG_TCP_MD5SIG 91 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 92 __be32 daddr, __be32 saddr, const struct tcphdr *th); 93 #endif 94 95 struct inet_hashinfo tcp_hashinfo; 96 EXPORT_SYMBOL(tcp_hashinfo); 97 98 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb) 99 { 100 return secure_tcp_sequence_number(ip_hdr(skb)->daddr, 101 ip_hdr(skb)->saddr, 102 tcp_hdr(skb)->dest, 103 tcp_hdr(skb)->source); 104 } 105 106 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 107 { 108 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 109 struct tcp_sock *tp = tcp_sk(sk); 110 111 /* With PAWS, it is safe from the viewpoint 112 of data integrity. Even without PAWS it is safe provided sequence 113 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 114 115 Actually, the idea is close to VJ's one, only timestamp cache is 116 held not per host, but per port pair and TW bucket is used as state 117 holder. 118 119 If TW bucket has been already destroyed we fall back to VJ's scheme 120 and use initial timestamp retrieved from peer table. 121 */ 122 if (tcptw->tw_ts_recent_stamp && 123 (!twp || (sysctl_tcp_tw_reuse && 124 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) { 125 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 126 if (tp->write_seq == 0) 127 tp->write_seq = 1; 128 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 129 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 130 sock_hold(sktw); 131 return 1; 132 } 133 134 return 0; 135 } 136 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 137 138 /* This will initiate an outgoing connection. */ 139 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 140 { 141 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 142 struct inet_sock *inet = inet_sk(sk); 143 struct tcp_sock *tp = tcp_sk(sk); 144 __be16 orig_sport, orig_dport; 145 __be32 daddr, nexthop; 146 struct flowi4 *fl4; 147 struct rtable *rt; 148 int err; 149 struct ip_options_rcu *inet_opt; 150 151 if (addr_len < sizeof(struct sockaddr_in)) 152 return -EINVAL; 153 154 if (usin->sin_family != AF_INET) 155 return -EAFNOSUPPORT; 156 157 nexthop = daddr = usin->sin_addr.s_addr; 158 inet_opt = rcu_dereference_protected(inet->inet_opt, 159 lockdep_sock_is_held(sk)); 160 if (inet_opt && inet_opt->opt.srr) { 161 if (!daddr) 162 return -EINVAL; 163 nexthop = inet_opt->opt.faddr; 164 } 165 166 orig_sport = inet->inet_sport; 167 orig_dport = usin->sin_port; 168 fl4 = &inet->cork.fl.u.ip4; 169 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 170 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 171 IPPROTO_TCP, 172 orig_sport, orig_dport, sk); 173 if (IS_ERR(rt)) { 174 err = PTR_ERR(rt); 175 if (err == -ENETUNREACH) 176 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 177 return err; 178 } 179 180 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 181 ip_rt_put(rt); 182 return -ENETUNREACH; 183 } 184 185 if (!inet_opt || !inet_opt->opt.srr) 186 daddr = fl4->daddr; 187 188 if (!inet->inet_saddr) 189 inet->inet_saddr = fl4->saddr; 190 sk_rcv_saddr_set(sk, inet->inet_saddr); 191 192 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 193 /* Reset inherited state */ 194 tp->rx_opt.ts_recent = 0; 195 tp->rx_opt.ts_recent_stamp = 0; 196 if (likely(!tp->repair)) 197 tp->write_seq = 0; 198 } 199 200 if (tcp_death_row.sysctl_tw_recycle && 201 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) 202 tcp_fetch_timewait_stamp(sk, &rt->dst); 203 204 inet->inet_dport = usin->sin_port; 205 sk_daddr_set(sk, daddr); 206 207 inet_csk(sk)->icsk_ext_hdr_len = 0; 208 if (inet_opt) 209 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 210 211 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 212 213 /* Socket identity is still unknown (sport may be zero). 214 * However we set state to SYN-SENT and not releasing socket 215 * lock select source port, enter ourselves into the hash tables and 216 * complete initialization after this. 217 */ 218 tcp_set_state(sk, TCP_SYN_SENT); 219 err = inet_hash_connect(&tcp_death_row, sk); 220 if (err) 221 goto failure; 222 223 sk_set_txhash(sk); 224 225 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 226 inet->inet_sport, inet->inet_dport, sk); 227 if (IS_ERR(rt)) { 228 err = PTR_ERR(rt); 229 rt = NULL; 230 goto failure; 231 } 232 /* OK, now commit destination to socket. */ 233 sk->sk_gso_type = SKB_GSO_TCPV4; 234 sk_setup_caps(sk, &rt->dst); 235 236 if (!tp->write_seq && likely(!tp->repair)) 237 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr, 238 inet->inet_daddr, 239 inet->inet_sport, 240 usin->sin_port); 241 242 inet->inet_id = tp->write_seq ^ jiffies; 243 244 err = tcp_connect(sk); 245 246 rt = NULL; 247 if (err) 248 goto failure; 249 250 return 0; 251 252 failure: 253 /* 254 * This unhashes the socket and releases the local port, 255 * if necessary. 256 */ 257 tcp_set_state(sk, TCP_CLOSE); 258 ip_rt_put(rt); 259 sk->sk_route_caps = 0; 260 inet->inet_dport = 0; 261 return err; 262 } 263 EXPORT_SYMBOL(tcp_v4_connect); 264 265 /* 266 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 267 * It can be called through tcp_release_cb() if socket was owned by user 268 * at the time tcp_v4_err() was called to handle ICMP message. 269 */ 270 void tcp_v4_mtu_reduced(struct sock *sk) 271 { 272 struct dst_entry *dst; 273 struct inet_sock *inet = inet_sk(sk); 274 u32 mtu = tcp_sk(sk)->mtu_info; 275 276 dst = inet_csk_update_pmtu(sk, mtu); 277 if (!dst) 278 return; 279 280 /* Something is about to be wrong... Remember soft error 281 * for the case, if this connection will not able to recover. 282 */ 283 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 284 sk->sk_err_soft = EMSGSIZE; 285 286 mtu = dst_mtu(dst); 287 288 if (inet->pmtudisc != IP_PMTUDISC_DONT && 289 ip_sk_accept_pmtu(sk) && 290 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 291 tcp_sync_mss(sk, mtu); 292 293 /* Resend the TCP packet because it's 294 * clear that the old packet has been 295 * dropped. This is the new "fast" path mtu 296 * discovery. 297 */ 298 tcp_simple_retransmit(sk); 299 } /* else let the usual retransmit timer handle it */ 300 } 301 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 302 303 static void do_redirect(struct sk_buff *skb, struct sock *sk) 304 { 305 struct dst_entry *dst = __sk_dst_check(sk, 0); 306 307 if (dst) 308 dst->ops->redirect(dst, sk, skb); 309 } 310 311 312 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 313 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 314 { 315 struct request_sock *req = inet_reqsk(sk); 316 struct net *net = sock_net(sk); 317 318 /* ICMPs are not backlogged, hence we cannot get 319 * an established socket here. 320 */ 321 if (seq != tcp_rsk(req)->snt_isn) { 322 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 323 } else if (abort) { 324 /* 325 * Still in SYN_RECV, just remove it silently. 326 * There is no good way to pass the error to the newly 327 * created socket, and POSIX does not want network 328 * errors returned from accept(). 329 */ 330 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 331 tcp_listendrop(req->rsk_listener); 332 } 333 reqsk_put(req); 334 } 335 EXPORT_SYMBOL(tcp_req_err); 336 337 /* 338 * This routine is called by the ICMP module when it gets some 339 * sort of error condition. If err < 0 then the socket should 340 * be closed and the error returned to the user. If err > 0 341 * it's just the icmp type << 8 | icmp code. After adjustment 342 * header points to the first 8 bytes of the tcp header. We need 343 * to find the appropriate port. 344 * 345 * The locking strategy used here is very "optimistic". When 346 * someone else accesses the socket the ICMP is just dropped 347 * and for some paths there is no check at all. 348 * A more general error queue to queue errors for later handling 349 * is probably better. 350 * 351 */ 352 353 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 354 { 355 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 356 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 357 struct inet_connection_sock *icsk; 358 struct tcp_sock *tp; 359 struct inet_sock *inet; 360 const int type = icmp_hdr(icmp_skb)->type; 361 const int code = icmp_hdr(icmp_skb)->code; 362 struct sock *sk; 363 struct sk_buff *skb; 364 struct request_sock *fastopen; 365 __u32 seq, snd_una; 366 __u32 remaining; 367 int err; 368 struct net *net = dev_net(icmp_skb->dev); 369 370 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, 371 th->dest, iph->saddr, ntohs(th->source), 372 inet_iif(icmp_skb)); 373 if (!sk) { 374 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 375 return; 376 } 377 if (sk->sk_state == TCP_TIME_WAIT) { 378 inet_twsk_put(inet_twsk(sk)); 379 return; 380 } 381 seq = ntohl(th->seq); 382 if (sk->sk_state == TCP_NEW_SYN_RECV) 383 return tcp_req_err(sk, seq, 384 type == ICMP_PARAMETERPROB || 385 type == ICMP_TIME_EXCEEDED || 386 (type == ICMP_DEST_UNREACH && 387 (code == ICMP_NET_UNREACH || 388 code == ICMP_HOST_UNREACH))); 389 390 bh_lock_sock(sk); 391 /* If too many ICMPs get dropped on busy 392 * servers this needs to be solved differently. 393 * We do take care of PMTU discovery (RFC1191) special case : 394 * we can receive locally generated ICMP messages while socket is held. 395 */ 396 if (sock_owned_by_user(sk)) { 397 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 398 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 399 } 400 if (sk->sk_state == TCP_CLOSE) 401 goto out; 402 403 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 404 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 405 goto out; 406 } 407 408 icsk = inet_csk(sk); 409 tp = tcp_sk(sk); 410 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 411 fastopen = tp->fastopen_rsk; 412 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 413 if (sk->sk_state != TCP_LISTEN && 414 !between(seq, snd_una, tp->snd_nxt)) { 415 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 416 goto out; 417 } 418 419 switch (type) { 420 case ICMP_REDIRECT: 421 do_redirect(icmp_skb, sk); 422 goto out; 423 case ICMP_SOURCE_QUENCH: 424 /* Just silently ignore these. */ 425 goto out; 426 case ICMP_PARAMETERPROB: 427 err = EPROTO; 428 break; 429 case ICMP_DEST_UNREACH: 430 if (code > NR_ICMP_UNREACH) 431 goto out; 432 433 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 434 /* We are not interested in TCP_LISTEN and open_requests 435 * (SYN-ACKs send out by Linux are always <576bytes so 436 * they should go through unfragmented). 437 */ 438 if (sk->sk_state == TCP_LISTEN) 439 goto out; 440 441 tp->mtu_info = info; 442 if (!sock_owned_by_user(sk)) { 443 tcp_v4_mtu_reduced(sk); 444 } else { 445 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags)) 446 sock_hold(sk); 447 } 448 goto out; 449 } 450 451 err = icmp_err_convert[code].errno; 452 /* check if icmp_skb allows revert of backoff 453 * (see draft-zimmermann-tcp-lcd) */ 454 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 455 break; 456 if (seq != tp->snd_una || !icsk->icsk_retransmits || 457 !icsk->icsk_backoff || fastopen) 458 break; 459 460 if (sock_owned_by_user(sk)) 461 break; 462 463 icsk->icsk_backoff--; 464 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : 465 TCP_TIMEOUT_INIT; 466 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 467 468 skb = tcp_write_queue_head(sk); 469 BUG_ON(!skb); 470 471 remaining = icsk->icsk_rto - 472 min(icsk->icsk_rto, 473 tcp_time_stamp - tcp_skb_timestamp(skb)); 474 475 if (remaining) { 476 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 477 remaining, TCP_RTO_MAX); 478 } else { 479 /* RTO revert clocked out retransmission. 480 * Will retransmit now */ 481 tcp_retransmit_timer(sk); 482 } 483 484 break; 485 case ICMP_TIME_EXCEEDED: 486 err = EHOSTUNREACH; 487 break; 488 default: 489 goto out; 490 } 491 492 switch (sk->sk_state) { 493 case TCP_SYN_SENT: 494 case TCP_SYN_RECV: 495 /* Only in fast or simultaneous open. If a fast open socket is 496 * is already accepted it is treated as a connected one below. 497 */ 498 if (fastopen && !fastopen->sk) 499 break; 500 501 if (!sock_owned_by_user(sk)) { 502 sk->sk_err = err; 503 504 sk->sk_error_report(sk); 505 506 tcp_done(sk); 507 } else { 508 sk->sk_err_soft = err; 509 } 510 goto out; 511 } 512 513 /* If we've already connected we will keep trying 514 * until we time out, or the user gives up. 515 * 516 * rfc1122 4.2.3.9 allows to consider as hard errors 517 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 518 * but it is obsoleted by pmtu discovery). 519 * 520 * Note, that in modern internet, where routing is unreliable 521 * and in each dark corner broken firewalls sit, sending random 522 * errors ordered by their masters even this two messages finally lose 523 * their original sense (even Linux sends invalid PORT_UNREACHs) 524 * 525 * Now we are in compliance with RFCs. 526 * --ANK (980905) 527 */ 528 529 inet = inet_sk(sk); 530 if (!sock_owned_by_user(sk) && inet->recverr) { 531 sk->sk_err = err; 532 sk->sk_error_report(sk); 533 } else { /* Only an error on timeout */ 534 sk->sk_err_soft = err; 535 } 536 537 out: 538 bh_unlock_sock(sk); 539 sock_put(sk); 540 } 541 542 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 543 { 544 struct tcphdr *th = tcp_hdr(skb); 545 546 if (skb->ip_summed == CHECKSUM_PARTIAL) { 547 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 548 skb->csum_start = skb_transport_header(skb) - skb->head; 549 skb->csum_offset = offsetof(struct tcphdr, check); 550 } else { 551 th->check = tcp_v4_check(skb->len, saddr, daddr, 552 csum_partial(th, 553 th->doff << 2, 554 skb->csum)); 555 } 556 } 557 558 /* This routine computes an IPv4 TCP checksum. */ 559 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 560 { 561 const struct inet_sock *inet = inet_sk(sk); 562 563 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 564 } 565 EXPORT_SYMBOL(tcp_v4_send_check); 566 567 /* 568 * This routine will send an RST to the other tcp. 569 * 570 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 571 * for reset. 572 * Answer: if a packet caused RST, it is not for a socket 573 * existing in our system, if it is matched to a socket, 574 * it is just duplicate segment or bug in other side's TCP. 575 * So that we build reply only basing on parameters 576 * arrived with segment. 577 * Exception: precedence violation. We do not implement it in any case. 578 */ 579 580 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 581 { 582 const struct tcphdr *th = tcp_hdr(skb); 583 struct { 584 struct tcphdr th; 585 #ifdef CONFIG_TCP_MD5SIG 586 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 587 #endif 588 } rep; 589 struct ip_reply_arg arg; 590 #ifdef CONFIG_TCP_MD5SIG 591 struct tcp_md5sig_key *key = NULL; 592 const __u8 *hash_location = NULL; 593 unsigned char newhash[16]; 594 int genhash; 595 struct sock *sk1 = NULL; 596 #endif 597 struct net *net; 598 599 /* Never send a reset in response to a reset. */ 600 if (th->rst) 601 return; 602 603 /* If sk not NULL, it means we did a successful lookup and incoming 604 * route had to be correct. prequeue might have dropped our dst. 605 */ 606 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 607 return; 608 609 /* Swap the send and the receive. */ 610 memset(&rep, 0, sizeof(rep)); 611 rep.th.dest = th->source; 612 rep.th.source = th->dest; 613 rep.th.doff = sizeof(struct tcphdr) / 4; 614 rep.th.rst = 1; 615 616 if (th->ack) { 617 rep.th.seq = th->ack_seq; 618 } else { 619 rep.th.ack = 1; 620 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 621 skb->len - (th->doff << 2)); 622 } 623 624 memset(&arg, 0, sizeof(arg)); 625 arg.iov[0].iov_base = (unsigned char *)&rep; 626 arg.iov[0].iov_len = sizeof(rep.th); 627 628 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 629 #ifdef CONFIG_TCP_MD5SIG 630 rcu_read_lock(); 631 hash_location = tcp_parse_md5sig_option(th); 632 if (sk && sk_fullsock(sk)) { 633 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 634 &ip_hdr(skb)->saddr, AF_INET); 635 } else if (hash_location) { 636 /* 637 * active side is lost. Try to find listening socket through 638 * source port, and then find md5 key through listening socket. 639 * we are not loose security here: 640 * Incoming packet is checked with md5 hash with finding key, 641 * no RST generated if md5 hash doesn't match. 642 */ 643 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0, 644 ip_hdr(skb)->saddr, 645 th->source, ip_hdr(skb)->daddr, 646 ntohs(th->source), inet_iif(skb)); 647 /* don't send rst if it can't find key */ 648 if (!sk1) 649 goto out; 650 651 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 652 &ip_hdr(skb)->saddr, AF_INET); 653 if (!key) 654 goto out; 655 656 657 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 658 if (genhash || memcmp(hash_location, newhash, 16) != 0) 659 goto out; 660 661 } 662 663 if (key) { 664 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 665 (TCPOPT_NOP << 16) | 666 (TCPOPT_MD5SIG << 8) | 667 TCPOLEN_MD5SIG); 668 /* Update length and the length the header thinks exists */ 669 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 670 rep.th.doff = arg.iov[0].iov_len / 4; 671 672 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 673 key, ip_hdr(skb)->saddr, 674 ip_hdr(skb)->daddr, &rep.th); 675 } 676 #endif 677 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 678 ip_hdr(skb)->saddr, /* XXX */ 679 arg.iov[0].iov_len, IPPROTO_TCP, 0); 680 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 681 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 682 683 /* When socket is gone, all binding information is lost. 684 * routing might fail in this case. No choice here, if we choose to force 685 * input interface, we will misroute in case of asymmetric route. 686 */ 687 if (sk) 688 arg.bound_dev_if = sk->sk_bound_dev_if; 689 690 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 691 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 692 693 arg.tos = ip_hdr(skb)->tos; 694 local_bh_disable(); 695 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk), 696 skb, &TCP_SKB_CB(skb)->header.h4.opt, 697 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 698 &arg, arg.iov[0].iov_len); 699 700 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 701 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 702 local_bh_enable(); 703 704 #ifdef CONFIG_TCP_MD5SIG 705 out: 706 rcu_read_unlock(); 707 #endif 708 } 709 710 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 711 outside socket context is ugly, certainly. What can I do? 712 */ 713 714 static void tcp_v4_send_ack(struct net *net, 715 struct sk_buff *skb, u32 seq, u32 ack, 716 u32 win, u32 tsval, u32 tsecr, int oif, 717 struct tcp_md5sig_key *key, 718 int reply_flags, u8 tos) 719 { 720 const struct tcphdr *th = tcp_hdr(skb); 721 struct { 722 struct tcphdr th; 723 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 724 #ifdef CONFIG_TCP_MD5SIG 725 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 726 #endif 727 ]; 728 } rep; 729 struct ip_reply_arg arg; 730 731 memset(&rep.th, 0, sizeof(struct tcphdr)); 732 memset(&arg, 0, sizeof(arg)); 733 734 arg.iov[0].iov_base = (unsigned char *)&rep; 735 arg.iov[0].iov_len = sizeof(rep.th); 736 if (tsecr) { 737 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 738 (TCPOPT_TIMESTAMP << 8) | 739 TCPOLEN_TIMESTAMP); 740 rep.opt[1] = htonl(tsval); 741 rep.opt[2] = htonl(tsecr); 742 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 743 } 744 745 /* Swap the send and the receive. */ 746 rep.th.dest = th->source; 747 rep.th.source = th->dest; 748 rep.th.doff = arg.iov[0].iov_len / 4; 749 rep.th.seq = htonl(seq); 750 rep.th.ack_seq = htonl(ack); 751 rep.th.ack = 1; 752 rep.th.window = htons(win); 753 754 #ifdef CONFIG_TCP_MD5SIG 755 if (key) { 756 int offset = (tsecr) ? 3 : 0; 757 758 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 759 (TCPOPT_NOP << 16) | 760 (TCPOPT_MD5SIG << 8) | 761 TCPOLEN_MD5SIG); 762 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 763 rep.th.doff = arg.iov[0].iov_len/4; 764 765 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 766 key, ip_hdr(skb)->saddr, 767 ip_hdr(skb)->daddr, &rep.th); 768 } 769 #endif 770 arg.flags = reply_flags; 771 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 772 ip_hdr(skb)->saddr, /* XXX */ 773 arg.iov[0].iov_len, IPPROTO_TCP, 0); 774 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 775 if (oif) 776 arg.bound_dev_if = oif; 777 arg.tos = tos; 778 local_bh_disable(); 779 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk), 780 skb, &TCP_SKB_CB(skb)->header.h4.opt, 781 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 782 &arg, arg.iov[0].iov_len); 783 784 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 785 local_bh_enable(); 786 } 787 788 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 789 { 790 struct inet_timewait_sock *tw = inet_twsk(sk); 791 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 792 793 tcp_v4_send_ack(sock_net(sk), skb, 794 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 795 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 796 tcp_time_stamp + tcptw->tw_ts_offset, 797 tcptw->tw_ts_recent, 798 tw->tw_bound_dev_if, 799 tcp_twsk_md5_key(tcptw), 800 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 801 tw->tw_tos 802 ); 803 804 inet_twsk_put(tw); 805 } 806 807 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 808 struct request_sock *req) 809 { 810 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 811 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 812 */ 813 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 814 tcp_sk(sk)->snd_nxt; 815 816 /* RFC 7323 2.3 817 * The window field (SEG.WND) of every outgoing segment, with the 818 * exception of <SYN> segments, MUST be right-shifted by 819 * Rcv.Wind.Shift bits: 820 */ 821 tcp_v4_send_ack(sock_net(sk), skb, seq, 822 tcp_rsk(req)->rcv_nxt, 823 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 824 tcp_time_stamp, 825 req->ts_recent, 826 0, 827 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr, 828 AF_INET), 829 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 830 ip_hdr(skb)->tos); 831 } 832 833 /* 834 * Send a SYN-ACK after having received a SYN. 835 * This still operates on a request_sock only, not on a big 836 * socket. 837 */ 838 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 839 struct flowi *fl, 840 struct request_sock *req, 841 struct tcp_fastopen_cookie *foc, 842 enum tcp_synack_type synack_type) 843 { 844 const struct inet_request_sock *ireq = inet_rsk(req); 845 struct flowi4 fl4; 846 int err = -1; 847 struct sk_buff *skb; 848 849 /* First, grab a route. */ 850 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 851 return -1; 852 853 skb = tcp_make_synack(sk, dst, req, foc, synack_type); 854 855 if (skb) { 856 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 857 858 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 859 ireq->ir_rmt_addr, 860 ireq->opt); 861 err = net_xmit_eval(err); 862 } 863 864 return err; 865 } 866 867 /* 868 * IPv4 request_sock destructor. 869 */ 870 static void tcp_v4_reqsk_destructor(struct request_sock *req) 871 { 872 kfree(inet_rsk(req)->opt); 873 } 874 875 #ifdef CONFIG_TCP_MD5SIG 876 /* 877 * RFC2385 MD5 checksumming requires a mapping of 878 * IP address->MD5 Key. 879 * We need to maintain these in the sk structure. 880 */ 881 882 /* Find the Key structure for an address. */ 883 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk, 884 const union tcp_md5_addr *addr, 885 int family) 886 { 887 const struct tcp_sock *tp = tcp_sk(sk); 888 struct tcp_md5sig_key *key; 889 unsigned int size = sizeof(struct in_addr); 890 const struct tcp_md5sig_info *md5sig; 891 892 /* caller either holds rcu_read_lock() or socket lock */ 893 md5sig = rcu_dereference_check(tp->md5sig_info, 894 lockdep_sock_is_held(sk)); 895 if (!md5sig) 896 return NULL; 897 #if IS_ENABLED(CONFIG_IPV6) 898 if (family == AF_INET6) 899 size = sizeof(struct in6_addr); 900 #endif 901 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 902 if (key->family != family) 903 continue; 904 if (!memcmp(&key->addr, addr, size)) 905 return key; 906 } 907 return NULL; 908 } 909 EXPORT_SYMBOL(tcp_md5_do_lookup); 910 911 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 912 const struct sock *addr_sk) 913 { 914 const union tcp_md5_addr *addr; 915 916 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 917 return tcp_md5_do_lookup(sk, addr, AF_INET); 918 } 919 EXPORT_SYMBOL(tcp_v4_md5_lookup); 920 921 /* This can be called on a newly created socket, from other files */ 922 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 923 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp) 924 { 925 /* Add Key to the list */ 926 struct tcp_md5sig_key *key; 927 struct tcp_sock *tp = tcp_sk(sk); 928 struct tcp_md5sig_info *md5sig; 929 930 key = tcp_md5_do_lookup(sk, addr, family); 931 if (key) { 932 /* Pre-existing entry - just update that one. */ 933 memcpy(key->key, newkey, newkeylen); 934 key->keylen = newkeylen; 935 return 0; 936 } 937 938 md5sig = rcu_dereference_protected(tp->md5sig_info, 939 lockdep_sock_is_held(sk)); 940 if (!md5sig) { 941 md5sig = kmalloc(sizeof(*md5sig), gfp); 942 if (!md5sig) 943 return -ENOMEM; 944 945 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 946 INIT_HLIST_HEAD(&md5sig->head); 947 rcu_assign_pointer(tp->md5sig_info, md5sig); 948 } 949 950 key = sock_kmalloc(sk, sizeof(*key), gfp); 951 if (!key) 952 return -ENOMEM; 953 if (!tcp_alloc_md5sig_pool()) { 954 sock_kfree_s(sk, key, sizeof(*key)); 955 return -ENOMEM; 956 } 957 958 memcpy(key->key, newkey, newkeylen); 959 key->keylen = newkeylen; 960 key->family = family; 961 memcpy(&key->addr, addr, 962 (family == AF_INET6) ? sizeof(struct in6_addr) : 963 sizeof(struct in_addr)); 964 hlist_add_head_rcu(&key->node, &md5sig->head); 965 return 0; 966 } 967 EXPORT_SYMBOL(tcp_md5_do_add); 968 969 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family) 970 { 971 struct tcp_md5sig_key *key; 972 973 key = tcp_md5_do_lookup(sk, addr, family); 974 if (!key) 975 return -ENOENT; 976 hlist_del_rcu(&key->node); 977 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 978 kfree_rcu(key, rcu); 979 return 0; 980 } 981 EXPORT_SYMBOL(tcp_md5_do_del); 982 983 static void tcp_clear_md5_list(struct sock *sk) 984 { 985 struct tcp_sock *tp = tcp_sk(sk); 986 struct tcp_md5sig_key *key; 987 struct hlist_node *n; 988 struct tcp_md5sig_info *md5sig; 989 990 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 991 992 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 993 hlist_del_rcu(&key->node); 994 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 995 kfree_rcu(key, rcu); 996 } 997 } 998 999 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval, 1000 int optlen) 1001 { 1002 struct tcp_md5sig cmd; 1003 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1004 1005 if (optlen < sizeof(cmd)) 1006 return -EINVAL; 1007 1008 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1009 return -EFAULT; 1010 1011 if (sin->sin_family != AF_INET) 1012 return -EINVAL; 1013 1014 if (!cmd.tcpm_keylen) 1015 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1016 AF_INET); 1017 1018 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1019 return -EINVAL; 1020 1021 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1022 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen, 1023 GFP_KERNEL); 1024 } 1025 1026 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, 1027 __be32 daddr, __be32 saddr, 1028 const struct tcphdr *th, int nbytes) 1029 { 1030 struct tcp4_pseudohdr *bp; 1031 struct scatterlist sg; 1032 struct tcphdr *_th; 1033 1034 bp = hp->scratch; 1035 bp->saddr = saddr; 1036 bp->daddr = daddr; 1037 bp->pad = 0; 1038 bp->protocol = IPPROTO_TCP; 1039 bp->len = cpu_to_be16(nbytes); 1040 1041 _th = (struct tcphdr *)(bp + 1); 1042 memcpy(_th, th, sizeof(*th)); 1043 _th->check = 0; 1044 1045 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1046 ahash_request_set_crypt(hp->md5_req, &sg, NULL, 1047 sizeof(*bp) + sizeof(*th)); 1048 return crypto_ahash_update(hp->md5_req); 1049 } 1050 1051 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1052 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1053 { 1054 struct tcp_md5sig_pool *hp; 1055 struct ahash_request *req; 1056 1057 hp = tcp_get_md5sig_pool(); 1058 if (!hp) 1059 goto clear_hash_noput; 1060 req = hp->md5_req; 1061 1062 if (crypto_ahash_init(req)) 1063 goto clear_hash; 1064 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) 1065 goto clear_hash; 1066 if (tcp_md5_hash_key(hp, key)) 1067 goto clear_hash; 1068 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1069 if (crypto_ahash_final(req)) 1070 goto clear_hash; 1071 1072 tcp_put_md5sig_pool(); 1073 return 0; 1074 1075 clear_hash: 1076 tcp_put_md5sig_pool(); 1077 clear_hash_noput: 1078 memset(md5_hash, 0, 16); 1079 return 1; 1080 } 1081 1082 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1083 const struct sock *sk, 1084 const struct sk_buff *skb) 1085 { 1086 struct tcp_md5sig_pool *hp; 1087 struct ahash_request *req; 1088 const struct tcphdr *th = tcp_hdr(skb); 1089 __be32 saddr, daddr; 1090 1091 if (sk) { /* valid for establish/request sockets */ 1092 saddr = sk->sk_rcv_saddr; 1093 daddr = sk->sk_daddr; 1094 } else { 1095 const struct iphdr *iph = ip_hdr(skb); 1096 saddr = iph->saddr; 1097 daddr = iph->daddr; 1098 } 1099 1100 hp = tcp_get_md5sig_pool(); 1101 if (!hp) 1102 goto clear_hash_noput; 1103 req = hp->md5_req; 1104 1105 if (crypto_ahash_init(req)) 1106 goto clear_hash; 1107 1108 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) 1109 goto clear_hash; 1110 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1111 goto clear_hash; 1112 if (tcp_md5_hash_key(hp, key)) 1113 goto clear_hash; 1114 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1115 if (crypto_ahash_final(req)) 1116 goto clear_hash; 1117 1118 tcp_put_md5sig_pool(); 1119 return 0; 1120 1121 clear_hash: 1122 tcp_put_md5sig_pool(); 1123 clear_hash_noput: 1124 memset(md5_hash, 0, 16); 1125 return 1; 1126 } 1127 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1128 1129 #endif 1130 1131 /* Called with rcu_read_lock() */ 1132 static bool tcp_v4_inbound_md5_hash(const struct sock *sk, 1133 const struct sk_buff *skb) 1134 { 1135 #ifdef CONFIG_TCP_MD5SIG 1136 /* 1137 * This gets called for each TCP segment that arrives 1138 * so we want to be efficient. 1139 * We have 3 drop cases: 1140 * o No MD5 hash and one expected. 1141 * o MD5 hash and we're not expecting one. 1142 * o MD5 hash and its wrong. 1143 */ 1144 const __u8 *hash_location = NULL; 1145 struct tcp_md5sig_key *hash_expected; 1146 const struct iphdr *iph = ip_hdr(skb); 1147 const struct tcphdr *th = tcp_hdr(skb); 1148 int genhash; 1149 unsigned char newhash[16]; 1150 1151 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1152 AF_INET); 1153 hash_location = tcp_parse_md5sig_option(th); 1154 1155 /* We've parsed the options - do we have a hash? */ 1156 if (!hash_expected && !hash_location) 1157 return false; 1158 1159 if (hash_expected && !hash_location) { 1160 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1161 return true; 1162 } 1163 1164 if (!hash_expected && hash_location) { 1165 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1166 return true; 1167 } 1168 1169 /* Okay, so this is hash_expected and hash_location - 1170 * so we need to calculate the checksum. 1171 */ 1172 genhash = tcp_v4_md5_hash_skb(newhash, 1173 hash_expected, 1174 NULL, skb); 1175 1176 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1177 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 1178 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1179 &iph->saddr, ntohs(th->source), 1180 &iph->daddr, ntohs(th->dest), 1181 genhash ? " tcp_v4_calc_md5_hash failed" 1182 : ""); 1183 return true; 1184 } 1185 return false; 1186 #endif 1187 return false; 1188 } 1189 1190 static void tcp_v4_init_req(struct request_sock *req, 1191 const struct sock *sk_listener, 1192 struct sk_buff *skb) 1193 { 1194 struct inet_request_sock *ireq = inet_rsk(req); 1195 1196 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1197 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1198 ireq->opt = tcp_v4_save_options(skb); 1199 } 1200 1201 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1202 struct flowi *fl, 1203 const struct request_sock *req, 1204 bool *strict) 1205 { 1206 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req); 1207 1208 if (strict) { 1209 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr) 1210 *strict = true; 1211 else 1212 *strict = false; 1213 } 1214 1215 return dst; 1216 } 1217 1218 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1219 .family = PF_INET, 1220 .obj_size = sizeof(struct tcp_request_sock), 1221 .rtx_syn_ack = tcp_rtx_synack, 1222 .send_ack = tcp_v4_reqsk_send_ack, 1223 .destructor = tcp_v4_reqsk_destructor, 1224 .send_reset = tcp_v4_send_reset, 1225 .syn_ack_timeout = tcp_syn_ack_timeout, 1226 }; 1227 1228 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1229 .mss_clamp = TCP_MSS_DEFAULT, 1230 #ifdef CONFIG_TCP_MD5SIG 1231 .req_md5_lookup = tcp_v4_md5_lookup, 1232 .calc_md5_hash = tcp_v4_md5_hash_skb, 1233 #endif 1234 .init_req = tcp_v4_init_req, 1235 #ifdef CONFIG_SYN_COOKIES 1236 .cookie_init_seq = cookie_v4_init_sequence, 1237 #endif 1238 .route_req = tcp_v4_route_req, 1239 .init_seq = tcp_v4_init_sequence, 1240 .send_synack = tcp_v4_send_synack, 1241 }; 1242 1243 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1244 { 1245 /* Never answer to SYNs send to broadcast or multicast */ 1246 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1247 goto drop; 1248 1249 return tcp_conn_request(&tcp_request_sock_ops, 1250 &tcp_request_sock_ipv4_ops, sk, skb); 1251 1252 drop: 1253 tcp_listendrop(sk); 1254 return 0; 1255 } 1256 EXPORT_SYMBOL(tcp_v4_conn_request); 1257 1258 1259 /* 1260 * The three way handshake has completed - we got a valid synack - 1261 * now create the new socket. 1262 */ 1263 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1264 struct request_sock *req, 1265 struct dst_entry *dst, 1266 struct request_sock *req_unhash, 1267 bool *own_req) 1268 { 1269 struct inet_request_sock *ireq; 1270 struct inet_sock *newinet; 1271 struct tcp_sock *newtp; 1272 struct sock *newsk; 1273 #ifdef CONFIG_TCP_MD5SIG 1274 struct tcp_md5sig_key *key; 1275 #endif 1276 struct ip_options_rcu *inet_opt; 1277 1278 if (sk_acceptq_is_full(sk)) 1279 goto exit_overflow; 1280 1281 newsk = tcp_create_openreq_child(sk, req, skb); 1282 if (!newsk) 1283 goto exit_nonewsk; 1284 1285 newsk->sk_gso_type = SKB_GSO_TCPV4; 1286 inet_sk_rx_dst_set(newsk, skb); 1287 1288 newtp = tcp_sk(newsk); 1289 newinet = inet_sk(newsk); 1290 ireq = inet_rsk(req); 1291 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1292 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1293 newsk->sk_bound_dev_if = ireq->ir_iif; 1294 newinet->inet_saddr = ireq->ir_loc_addr; 1295 inet_opt = ireq->opt; 1296 rcu_assign_pointer(newinet->inet_opt, inet_opt); 1297 ireq->opt = NULL; 1298 newinet->mc_index = inet_iif(skb); 1299 newinet->mc_ttl = ip_hdr(skb)->ttl; 1300 newinet->rcv_tos = ip_hdr(skb)->tos; 1301 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1302 if (inet_opt) 1303 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1304 newinet->inet_id = newtp->write_seq ^ jiffies; 1305 1306 if (!dst) { 1307 dst = inet_csk_route_child_sock(sk, newsk, req); 1308 if (!dst) 1309 goto put_and_exit; 1310 } else { 1311 /* syncookie case : see end of cookie_v4_check() */ 1312 } 1313 sk_setup_caps(newsk, dst); 1314 1315 tcp_ca_openreq_child(newsk, dst); 1316 1317 tcp_sync_mss(newsk, dst_mtu(dst)); 1318 newtp->advmss = dst_metric_advmss(dst); 1319 if (tcp_sk(sk)->rx_opt.user_mss && 1320 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss) 1321 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss; 1322 1323 tcp_initialize_rcv_mss(newsk); 1324 1325 #ifdef CONFIG_TCP_MD5SIG 1326 /* Copy over the MD5 key from the original socket */ 1327 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1328 AF_INET); 1329 if (key) { 1330 /* 1331 * We're using one, so create a matching key 1332 * on the newsk structure. If we fail to get 1333 * memory, then we end up not copying the key 1334 * across. Shucks. 1335 */ 1336 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1337 AF_INET, key->key, key->keylen, GFP_ATOMIC); 1338 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1339 } 1340 #endif 1341 1342 if (__inet_inherit_port(sk, newsk) < 0) 1343 goto put_and_exit; 1344 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash)); 1345 if (*own_req) 1346 tcp_move_syn(newtp, req); 1347 1348 return newsk; 1349 1350 exit_overflow: 1351 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1352 exit_nonewsk: 1353 dst_release(dst); 1354 exit: 1355 tcp_listendrop(sk); 1356 return NULL; 1357 put_and_exit: 1358 inet_csk_prepare_forced_close(newsk); 1359 tcp_done(newsk); 1360 goto exit; 1361 } 1362 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1363 1364 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1365 { 1366 #ifdef CONFIG_SYN_COOKIES 1367 const struct tcphdr *th = tcp_hdr(skb); 1368 1369 if (!th->syn) 1370 sk = cookie_v4_check(sk, skb); 1371 #endif 1372 return sk; 1373 } 1374 1375 /* The socket must have it's spinlock held when we get 1376 * here, unless it is a TCP_LISTEN socket. 1377 * 1378 * We have a potential double-lock case here, so even when 1379 * doing backlog processing we use the BH locking scheme. 1380 * This is because we cannot sleep with the original spinlock 1381 * held. 1382 */ 1383 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1384 { 1385 struct sock *rsk; 1386 1387 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1388 struct dst_entry *dst = sk->sk_rx_dst; 1389 1390 sock_rps_save_rxhash(sk, skb); 1391 sk_mark_napi_id(sk, skb); 1392 if (dst) { 1393 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1394 !dst->ops->check(dst, 0)) { 1395 dst_release(dst); 1396 sk->sk_rx_dst = NULL; 1397 } 1398 } 1399 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len); 1400 return 0; 1401 } 1402 1403 if (tcp_checksum_complete(skb)) 1404 goto csum_err; 1405 1406 if (sk->sk_state == TCP_LISTEN) { 1407 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1408 1409 if (!nsk) 1410 goto discard; 1411 if (nsk != sk) { 1412 sock_rps_save_rxhash(nsk, skb); 1413 sk_mark_napi_id(nsk, skb); 1414 if (tcp_child_process(sk, nsk, skb)) { 1415 rsk = nsk; 1416 goto reset; 1417 } 1418 return 0; 1419 } 1420 } else 1421 sock_rps_save_rxhash(sk, skb); 1422 1423 if (tcp_rcv_state_process(sk, skb)) { 1424 rsk = sk; 1425 goto reset; 1426 } 1427 return 0; 1428 1429 reset: 1430 tcp_v4_send_reset(rsk, skb); 1431 discard: 1432 kfree_skb(skb); 1433 /* Be careful here. If this function gets more complicated and 1434 * gcc suffers from register pressure on the x86, sk (in %ebx) 1435 * might be destroyed here. This current version compiles correctly, 1436 * but you have been warned. 1437 */ 1438 return 0; 1439 1440 csum_err: 1441 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1442 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1443 goto discard; 1444 } 1445 EXPORT_SYMBOL(tcp_v4_do_rcv); 1446 1447 void tcp_v4_early_demux(struct sk_buff *skb) 1448 { 1449 const struct iphdr *iph; 1450 const struct tcphdr *th; 1451 struct sock *sk; 1452 1453 if (skb->pkt_type != PACKET_HOST) 1454 return; 1455 1456 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1457 return; 1458 1459 iph = ip_hdr(skb); 1460 th = tcp_hdr(skb); 1461 1462 if (th->doff < sizeof(struct tcphdr) / 4) 1463 return; 1464 1465 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1466 iph->saddr, th->source, 1467 iph->daddr, ntohs(th->dest), 1468 skb->skb_iif); 1469 if (sk) { 1470 skb->sk = sk; 1471 skb->destructor = sock_edemux; 1472 if (sk_fullsock(sk)) { 1473 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst); 1474 1475 if (dst) 1476 dst = dst_check(dst, 0); 1477 if (dst && 1478 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1479 skb_dst_set_noref(skb, dst); 1480 } 1481 } 1482 } 1483 1484 /* Packet is added to VJ-style prequeue for processing in process 1485 * context, if a reader task is waiting. Apparently, this exciting 1486 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93) 1487 * failed somewhere. Latency? Burstiness? Well, at least now we will 1488 * see, why it failed. 8)8) --ANK 1489 * 1490 */ 1491 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb) 1492 { 1493 struct tcp_sock *tp = tcp_sk(sk); 1494 1495 if (sysctl_tcp_low_latency || !tp->ucopy.task) 1496 return false; 1497 1498 if (skb->len <= tcp_hdrlen(skb) && 1499 skb_queue_len(&tp->ucopy.prequeue) == 0) 1500 return false; 1501 1502 /* Before escaping RCU protected region, we need to take care of skb 1503 * dst. Prequeue is only enabled for established sockets. 1504 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst 1505 * Instead of doing full sk_rx_dst validity here, let's perform 1506 * an optimistic check. 1507 */ 1508 if (likely(sk->sk_rx_dst)) 1509 skb_dst_drop(skb); 1510 else 1511 skb_dst_force_safe(skb); 1512 1513 __skb_queue_tail(&tp->ucopy.prequeue, skb); 1514 tp->ucopy.memory += skb->truesize; 1515 if (skb_queue_len(&tp->ucopy.prequeue) >= 32 || 1516 tp->ucopy.memory + atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) { 1517 struct sk_buff *skb1; 1518 1519 BUG_ON(sock_owned_by_user(sk)); 1520 __NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUEDROPPED, 1521 skb_queue_len(&tp->ucopy.prequeue)); 1522 1523 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1524 sk_backlog_rcv(sk, skb1); 1525 1526 tp->ucopy.memory = 0; 1527 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) { 1528 wake_up_interruptible_sync_poll(sk_sleep(sk), 1529 POLLIN | POLLRDNORM | POLLRDBAND); 1530 if (!inet_csk_ack_scheduled(sk)) 1531 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 1532 (3 * tcp_rto_min(sk)) / 4, 1533 TCP_RTO_MAX); 1534 } 1535 return true; 1536 } 1537 EXPORT_SYMBOL(tcp_prequeue); 1538 1539 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb) 1540 { 1541 u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf; 1542 1543 /* Only socket owner can try to collapse/prune rx queues 1544 * to reduce memory overhead, so add a little headroom here. 1545 * Few sockets backlog are possibly concurrently non empty. 1546 */ 1547 limit += 64*1024; 1548 1549 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 1550 * we can fix skb->truesize to its real value to avoid future drops. 1551 * This is valid because skb is not yet charged to the socket. 1552 * It has been noticed pure SACK packets were sometimes dropped 1553 * (if cooked by drivers without copybreak feature). 1554 */ 1555 if (!skb->data_len) 1556 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 1557 1558 if (unlikely(sk_add_backlog(sk, skb, limit))) { 1559 bh_unlock_sock(sk); 1560 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 1561 return true; 1562 } 1563 return false; 1564 } 1565 EXPORT_SYMBOL(tcp_add_backlog); 1566 1567 /* 1568 * From tcp_input.c 1569 */ 1570 1571 int tcp_v4_rcv(struct sk_buff *skb) 1572 { 1573 struct net *net = dev_net(skb->dev); 1574 const struct iphdr *iph; 1575 const struct tcphdr *th; 1576 bool refcounted; 1577 struct sock *sk; 1578 int ret; 1579 1580 if (skb->pkt_type != PACKET_HOST) 1581 goto discard_it; 1582 1583 /* Count it even if it's bad */ 1584 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 1585 1586 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1587 goto discard_it; 1588 1589 th = (const struct tcphdr *)skb->data; 1590 1591 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) 1592 goto bad_packet; 1593 if (!pskb_may_pull(skb, th->doff * 4)) 1594 goto discard_it; 1595 1596 /* An explanation is required here, I think. 1597 * Packet length and doff are validated by header prediction, 1598 * provided case of th->doff==0 is eliminated. 1599 * So, we defer the checks. */ 1600 1601 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 1602 goto csum_error; 1603 1604 th = (const struct tcphdr *)skb->data; 1605 iph = ip_hdr(skb); 1606 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1607 * barrier() makes sure compiler wont play fool^Waliasing games. 1608 */ 1609 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1610 sizeof(struct inet_skb_parm)); 1611 barrier(); 1612 1613 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1614 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1615 skb->len - th->doff * 4); 1616 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1617 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1618 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1619 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1620 TCP_SKB_CB(skb)->sacked = 0; 1621 1622 lookup: 1623 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source, 1624 th->dest, &refcounted); 1625 if (!sk) 1626 goto no_tcp_socket; 1627 1628 process: 1629 if (sk->sk_state == TCP_TIME_WAIT) 1630 goto do_time_wait; 1631 1632 if (sk->sk_state == TCP_NEW_SYN_RECV) { 1633 struct request_sock *req = inet_reqsk(sk); 1634 struct sock *nsk; 1635 1636 sk = req->rsk_listener; 1637 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) { 1638 sk_drops_add(sk, skb); 1639 reqsk_put(req); 1640 goto discard_it; 1641 } 1642 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1643 inet_csk_reqsk_queue_drop_and_put(sk, req); 1644 goto lookup; 1645 } 1646 /* We own a reference on the listener, increase it again 1647 * as we might lose it too soon. 1648 */ 1649 sock_hold(sk); 1650 refcounted = true; 1651 nsk = tcp_check_req(sk, skb, req, false); 1652 if (!nsk) { 1653 reqsk_put(req); 1654 goto discard_and_relse; 1655 } 1656 if (nsk == sk) { 1657 reqsk_put(req); 1658 } else if (tcp_child_process(sk, nsk, skb)) { 1659 tcp_v4_send_reset(nsk, skb); 1660 goto discard_and_relse; 1661 } else { 1662 sock_put(sk); 1663 return 0; 1664 } 1665 } 1666 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1667 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 1668 goto discard_and_relse; 1669 } 1670 1671 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1672 goto discard_and_relse; 1673 1674 if (tcp_v4_inbound_md5_hash(sk, skb)) 1675 goto discard_and_relse; 1676 1677 nf_reset(skb); 1678 1679 if (sk_filter(sk, skb)) 1680 goto discard_and_relse; 1681 1682 skb->dev = NULL; 1683 1684 if (sk->sk_state == TCP_LISTEN) { 1685 ret = tcp_v4_do_rcv(sk, skb); 1686 goto put_and_return; 1687 } 1688 1689 sk_incoming_cpu_update(sk); 1690 1691 bh_lock_sock_nested(sk); 1692 tcp_segs_in(tcp_sk(sk), skb); 1693 ret = 0; 1694 if (!sock_owned_by_user(sk)) { 1695 if (!tcp_prequeue(sk, skb)) 1696 ret = tcp_v4_do_rcv(sk, skb); 1697 } else if (tcp_add_backlog(sk, skb)) { 1698 goto discard_and_relse; 1699 } 1700 bh_unlock_sock(sk); 1701 1702 put_and_return: 1703 if (refcounted) 1704 sock_put(sk); 1705 1706 return ret; 1707 1708 no_tcp_socket: 1709 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1710 goto discard_it; 1711 1712 if (tcp_checksum_complete(skb)) { 1713 csum_error: 1714 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 1715 bad_packet: 1716 __TCP_INC_STATS(net, TCP_MIB_INERRS); 1717 } else { 1718 tcp_v4_send_reset(NULL, skb); 1719 } 1720 1721 discard_it: 1722 /* Discard frame. */ 1723 kfree_skb(skb); 1724 return 0; 1725 1726 discard_and_relse: 1727 sk_drops_add(sk, skb); 1728 if (refcounted) 1729 sock_put(sk); 1730 goto discard_it; 1731 1732 do_time_wait: 1733 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 1734 inet_twsk_put(inet_twsk(sk)); 1735 goto discard_it; 1736 } 1737 1738 if (tcp_checksum_complete(skb)) { 1739 inet_twsk_put(inet_twsk(sk)); 1740 goto csum_error; 1741 } 1742 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 1743 case TCP_TW_SYN: { 1744 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 1745 &tcp_hashinfo, skb, 1746 __tcp_hdrlen(th), 1747 iph->saddr, th->source, 1748 iph->daddr, th->dest, 1749 inet_iif(skb)); 1750 if (sk2) { 1751 inet_twsk_deschedule_put(inet_twsk(sk)); 1752 sk = sk2; 1753 refcounted = false; 1754 goto process; 1755 } 1756 /* Fall through to ACK */ 1757 } 1758 case TCP_TW_ACK: 1759 tcp_v4_timewait_ack(sk, skb); 1760 break; 1761 case TCP_TW_RST: 1762 tcp_v4_send_reset(sk, skb); 1763 inet_twsk_deschedule_put(inet_twsk(sk)); 1764 goto discard_it; 1765 case TCP_TW_SUCCESS:; 1766 } 1767 goto discard_it; 1768 } 1769 1770 static struct timewait_sock_ops tcp_timewait_sock_ops = { 1771 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 1772 .twsk_unique = tcp_twsk_unique, 1773 .twsk_destructor= tcp_twsk_destructor, 1774 }; 1775 1776 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 1777 { 1778 struct dst_entry *dst = skb_dst(skb); 1779 1780 if (dst && dst_hold_safe(dst)) { 1781 sk->sk_rx_dst = dst; 1782 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 1783 } 1784 } 1785 EXPORT_SYMBOL(inet_sk_rx_dst_set); 1786 1787 const struct inet_connection_sock_af_ops ipv4_specific = { 1788 .queue_xmit = ip_queue_xmit, 1789 .send_check = tcp_v4_send_check, 1790 .rebuild_header = inet_sk_rebuild_header, 1791 .sk_rx_dst_set = inet_sk_rx_dst_set, 1792 .conn_request = tcp_v4_conn_request, 1793 .syn_recv_sock = tcp_v4_syn_recv_sock, 1794 .net_header_len = sizeof(struct iphdr), 1795 .setsockopt = ip_setsockopt, 1796 .getsockopt = ip_getsockopt, 1797 .addr2sockaddr = inet_csk_addr2sockaddr, 1798 .sockaddr_len = sizeof(struct sockaddr_in), 1799 .bind_conflict = inet_csk_bind_conflict, 1800 #ifdef CONFIG_COMPAT 1801 .compat_setsockopt = compat_ip_setsockopt, 1802 .compat_getsockopt = compat_ip_getsockopt, 1803 #endif 1804 .mtu_reduced = tcp_v4_mtu_reduced, 1805 }; 1806 EXPORT_SYMBOL(ipv4_specific); 1807 1808 #ifdef CONFIG_TCP_MD5SIG 1809 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 1810 .md5_lookup = tcp_v4_md5_lookup, 1811 .calc_md5_hash = tcp_v4_md5_hash_skb, 1812 .md5_parse = tcp_v4_parse_md5_keys, 1813 }; 1814 #endif 1815 1816 /* NOTE: A lot of things set to zero explicitly by call to 1817 * sk_alloc() so need not be done here. 1818 */ 1819 static int tcp_v4_init_sock(struct sock *sk) 1820 { 1821 struct inet_connection_sock *icsk = inet_csk(sk); 1822 1823 tcp_init_sock(sk); 1824 1825 icsk->icsk_af_ops = &ipv4_specific; 1826 1827 #ifdef CONFIG_TCP_MD5SIG 1828 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 1829 #endif 1830 1831 return 0; 1832 } 1833 1834 void tcp_v4_destroy_sock(struct sock *sk) 1835 { 1836 struct tcp_sock *tp = tcp_sk(sk); 1837 1838 tcp_clear_xmit_timers(sk); 1839 1840 tcp_cleanup_congestion_control(sk); 1841 1842 /* Cleanup up the write buffer. */ 1843 tcp_write_queue_purge(sk); 1844 1845 /* Cleans up our, hopefully empty, out_of_order_queue. */ 1846 skb_rbtree_purge(&tp->out_of_order_queue); 1847 1848 #ifdef CONFIG_TCP_MD5SIG 1849 /* Clean up the MD5 key list, if any */ 1850 if (tp->md5sig_info) { 1851 tcp_clear_md5_list(sk); 1852 kfree_rcu(tp->md5sig_info, rcu); 1853 tp->md5sig_info = NULL; 1854 } 1855 #endif 1856 1857 /* Clean prequeue, it must be empty really */ 1858 __skb_queue_purge(&tp->ucopy.prequeue); 1859 1860 /* Clean up a referenced TCP bind bucket. */ 1861 if (inet_csk(sk)->icsk_bind_hash) 1862 inet_put_port(sk); 1863 1864 BUG_ON(tp->fastopen_rsk); 1865 1866 /* If socket is aborted during connect operation */ 1867 tcp_free_fastopen_req(tp); 1868 tcp_saved_syn_free(tp); 1869 1870 local_bh_disable(); 1871 sk_sockets_allocated_dec(sk); 1872 local_bh_enable(); 1873 } 1874 EXPORT_SYMBOL(tcp_v4_destroy_sock); 1875 1876 #ifdef CONFIG_PROC_FS 1877 /* Proc filesystem TCP sock list dumping. */ 1878 1879 /* 1880 * Get next listener socket follow cur. If cur is NULL, get first socket 1881 * starting from bucket given in st->bucket; when st->bucket is zero the 1882 * very first socket in the hash table is returned. 1883 */ 1884 static void *listening_get_next(struct seq_file *seq, void *cur) 1885 { 1886 struct tcp_iter_state *st = seq->private; 1887 struct net *net = seq_file_net(seq); 1888 struct inet_listen_hashbucket *ilb; 1889 struct sock *sk = cur; 1890 1891 if (!sk) { 1892 get_head: 1893 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1894 spin_lock_bh(&ilb->lock); 1895 sk = sk_head(&ilb->head); 1896 st->offset = 0; 1897 goto get_sk; 1898 } 1899 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1900 ++st->num; 1901 ++st->offset; 1902 1903 sk = sk_next(sk); 1904 get_sk: 1905 sk_for_each_from(sk) { 1906 if (!net_eq(sock_net(sk), net)) 1907 continue; 1908 if (sk->sk_family == st->family) 1909 return sk; 1910 } 1911 spin_unlock_bh(&ilb->lock); 1912 st->offset = 0; 1913 if (++st->bucket < INET_LHTABLE_SIZE) 1914 goto get_head; 1915 return NULL; 1916 } 1917 1918 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 1919 { 1920 struct tcp_iter_state *st = seq->private; 1921 void *rc; 1922 1923 st->bucket = 0; 1924 st->offset = 0; 1925 rc = listening_get_next(seq, NULL); 1926 1927 while (rc && *pos) { 1928 rc = listening_get_next(seq, rc); 1929 --*pos; 1930 } 1931 return rc; 1932 } 1933 1934 static inline bool empty_bucket(const struct tcp_iter_state *st) 1935 { 1936 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); 1937 } 1938 1939 /* 1940 * Get first established socket starting from bucket given in st->bucket. 1941 * If st->bucket is zero, the very first socket in the hash is returned. 1942 */ 1943 static void *established_get_first(struct seq_file *seq) 1944 { 1945 struct tcp_iter_state *st = seq->private; 1946 struct net *net = seq_file_net(seq); 1947 void *rc = NULL; 1948 1949 st->offset = 0; 1950 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 1951 struct sock *sk; 1952 struct hlist_nulls_node *node; 1953 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 1954 1955 /* Lockless fast path for the common case of empty buckets */ 1956 if (empty_bucket(st)) 1957 continue; 1958 1959 spin_lock_bh(lock); 1960 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 1961 if (sk->sk_family != st->family || 1962 !net_eq(sock_net(sk), net)) { 1963 continue; 1964 } 1965 rc = sk; 1966 goto out; 1967 } 1968 spin_unlock_bh(lock); 1969 } 1970 out: 1971 return rc; 1972 } 1973 1974 static void *established_get_next(struct seq_file *seq, void *cur) 1975 { 1976 struct sock *sk = cur; 1977 struct hlist_nulls_node *node; 1978 struct tcp_iter_state *st = seq->private; 1979 struct net *net = seq_file_net(seq); 1980 1981 ++st->num; 1982 ++st->offset; 1983 1984 sk = sk_nulls_next(sk); 1985 1986 sk_nulls_for_each_from(sk, node) { 1987 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) 1988 return sk; 1989 } 1990 1991 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 1992 ++st->bucket; 1993 return established_get_first(seq); 1994 } 1995 1996 static void *established_get_idx(struct seq_file *seq, loff_t pos) 1997 { 1998 struct tcp_iter_state *st = seq->private; 1999 void *rc; 2000 2001 st->bucket = 0; 2002 rc = established_get_first(seq); 2003 2004 while (rc && pos) { 2005 rc = established_get_next(seq, rc); 2006 --pos; 2007 } 2008 return rc; 2009 } 2010 2011 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2012 { 2013 void *rc; 2014 struct tcp_iter_state *st = seq->private; 2015 2016 st->state = TCP_SEQ_STATE_LISTENING; 2017 rc = listening_get_idx(seq, &pos); 2018 2019 if (!rc) { 2020 st->state = TCP_SEQ_STATE_ESTABLISHED; 2021 rc = established_get_idx(seq, pos); 2022 } 2023 2024 return rc; 2025 } 2026 2027 static void *tcp_seek_last_pos(struct seq_file *seq) 2028 { 2029 struct tcp_iter_state *st = seq->private; 2030 int offset = st->offset; 2031 int orig_num = st->num; 2032 void *rc = NULL; 2033 2034 switch (st->state) { 2035 case TCP_SEQ_STATE_LISTENING: 2036 if (st->bucket >= INET_LHTABLE_SIZE) 2037 break; 2038 st->state = TCP_SEQ_STATE_LISTENING; 2039 rc = listening_get_next(seq, NULL); 2040 while (offset-- && rc) 2041 rc = listening_get_next(seq, rc); 2042 if (rc) 2043 break; 2044 st->bucket = 0; 2045 st->state = TCP_SEQ_STATE_ESTABLISHED; 2046 /* Fallthrough */ 2047 case TCP_SEQ_STATE_ESTABLISHED: 2048 if (st->bucket > tcp_hashinfo.ehash_mask) 2049 break; 2050 rc = established_get_first(seq); 2051 while (offset-- && rc) 2052 rc = established_get_next(seq, rc); 2053 } 2054 2055 st->num = orig_num; 2056 2057 return rc; 2058 } 2059 2060 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2061 { 2062 struct tcp_iter_state *st = seq->private; 2063 void *rc; 2064 2065 if (*pos && *pos == st->last_pos) { 2066 rc = tcp_seek_last_pos(seq); 2067 if (rc) 2068 goto out; 2069 } 2070 2071 st->state = TCP_SEQ_STATE_LISTENING; 2072 st->num = 0; 2073 st->bucket = 0; 2074 st->offset = 0; 2075 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2076 2077 out: 2078 st->last_pos = *pos; 2079 return rc; 2080 } 2081 2082 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2083 { 2084 struct tcp_iter_state *st = seq->private; 2085 void *rc = NULL; 2086 2087 if (v == SEQ_START_TOKEN) { 2088 rc = tcp_get_idx(seq, 0); 2089 goto out; 2090 } 2091 2092 switch (st->state) { 2093 case TCP_SEQ_STATE_LISTENING: 2094 rc = listening_get_next(seq, v); 2095 if (!rc) { 2096 st->state = TCP_SEQ_STATE_ESTABLISHED; 2097 st->bucket = 0; 2098 st->offset = 0; 2099 rc = established_get_first(seq); 2100 } 2101 break; 2102 case TCP_SEQ_STATE_ESTABLISHED: 2103 rc = established_get_next(seq, v); 2104 break; 2105 } 2106 out: 2107 ++*pos; 2108 st->last_pos = *pos; 2109 return rc; 2110 } 2111 2112 static void tcp_seq_stop(struct seq_file *seq, void *v) 2113 { 2114 struct tcp_iter_state *st = seq->private; 2115 2116 switch (st->state) { 2117 case TCP_SEQ_STATE_LISTENING: 2118 if (v != SEQ_START_TOKEN) 2119 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock); 2120 break; 2121 case TCP_SEQ_STATE_ESTABLISHED: 2122 if (v) 2123 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2124 break; 2125 } 2126 } 2127 2128 int tcp_seq_open(struct inode *inode, struct file *file) 2129 { 2130 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode); 2131 struct tcp_iter_state *s; 2132 int err; 2133 2134 err = seq_open_net(inode, file, &afinfo->seq_ops, 2135 sizeof(struct tcp_iter_state)); 2136 if (err < 0) 2137 return err; 2138 2139 s = ((struct seq_file *)file->private_data)->private; 2140 s->family = afinfo->family; 2141 s->last_pos = 0; 2142 return 0; 2143 } 2144 EXPORT_SYMBOL(tcp_seq_open); 2145 2146 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo) 2147 { 2148 int rc = 0; 2149 struct proc_dir_entry *p; 2150 2151 afinfo->seq_ops.start = tcp_seq_start; 2152 afinfo->seq_ops.next = tcp_seq_next; 2153 afinfo->seq_ops.stop = tcp_seq_stop; 2154 2155 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2156 afinfo->seq_fops, afinfo); 2157 if (!p) 2158 rc = -ENOMEM; 2159 return rc; 2160 } 2161 EXPORT_SYMBOL(tcp_proc_register); 2162 2163 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo) 2164 { 2165 remove_proc_entry(afinfo->name, net->proc_net); 2166 } 2167 EXPORT_SYMBOL(tcp_proc_unregister); 2168 2169 static void get_openreq4(const struct request_sock *req, 2170 struct seq_file *f, int i) 2171 { 2172 const struct inet_request_sock *ireq = inet_rsk(req); 2173 long delta = req->rsk_timer.expires - jiffies; 2174 2175 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2176 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2177 i, 2178 ireq->ir_loc_addr, 2179 ireq->ir_num, 2180 ireq->ir_rmt_addr, 2181 ntohs(ireq->ir_rmt_port), 2182 TCP_SYN_RECV, 2183 0, 0, /* could print option size, but that is af dependent. */ 2184 1, /* timers active (only the expire timer) */ 2185 jiffies_delta_to_clock_t(delta), 2186 req->num_timeout, 2187 from_kuid_munged(seq_user_ns(f), 2188 sock_i_uid(req->rsk_listener)), 2189 0, /* non standard timer */ 2190 0, /* open_requests have no inode */ 2191 0, 2192 req); 2193 } 2194 2195 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2196 { 2197 int timer_active; 2198 unsigned long timer_expires; 2199 const struct tcp_sock *tp = tcp_sk(sk); 2200 const struct inet_connection_sock *icsk = inet_csk(sk); 2201 const struct inet_sock *inet = inet_sk(sk); 2202 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2203 __be32 dest = inet->inet_daddr; 2204 __be32 src = inet->inet_rcv_saddr; 2205 __u16 destp = ntohs(inet->inet_dport); 2206 __u16 srcp = ntohs(inet->inet_sport); 2207 int rx_queue; 2208 int state; 2209 2210 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2211 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2212 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2213 timer_active = 1; 2214 timer_expires = icsk->icsk_timeout; 2215 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2216 timer_active = 4; 2217 timer_expires = icsk->icsk_timeout; 2218 } else if (timer_pending(&sk->sk_timer)) { 2219 timer_active = 2; 2220 timer_expires = sk->sk_timer.expires; 2221 } else { 2222 timer_active = 0; 2223 timer_expires = jiffies; 2224 } 2225 2226 state = sk_state_load(sk); 2227 if (state == TCP_LISTEN) 2228 rx_queue = sk->sk_ack_backlog; 2229 else 2230 /* Because we don't lock the socket, 2231 * we might find a transient negative value. 2232 */ 2233 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2234 2235 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2236 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2237 i, src, srcp, dest, destp, state, 2238 tp->write_seq - tp->snd_una, 2239 rx_queue, 2240 timer_active, 2241 jiffies_delta_to_clock_t(timer_expires - jiffies), 2242 icsk->icsk_retransmits, 2243 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2244 icsk->icsk_probes_out, 2245 sock_i_ino(sk), 2246 atomic_read(&sk->sk_refcnt), sk, 2247 jiffies_to_clock_t(icsk->icsk_rto), 2248 jiffies_to_clock_t(icsk->icsk_ack.ato), 2249 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2250 tp->snd_cwnd, 2251 state == TCP_LISTEN ? 2252 fastopenq->max_qlen : 2253 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2254 } 2255 2256 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2257 struct seq_file *f, int i) 2258 { 2259 long delta = tw->tw_timer.expires - jiffies; 2260 __be32 dest, src; 2261 __u16 destp, srcp; 2262 2263 dest = tw->tw_daddr; 2264 src = tw->tw_rcv_saddr; 2265 destp = ntohs(tw->tw_dport); 2266 srcp = ntohs(tw->tw_sport); 2267 2268 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2269 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2270 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2271 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2272 atomic_read(&tw->tw_refcnt), tw); 2273 } 2274 2275 #define TMPSZ 150 2276 2277 static int tcp4_seq_show(struct seq_file *seq, void *v) 2278 { 2279 struct tcp_iter_state *st; 2280 struct sock *sk = v; 2281 2282 seq_setwidth(seq, TMPSZ - 1); 2283 if (v == SEQ_START_TOKEN) { 2284 seq_puts(seq, " sl local_address rem_address st tx_queue " 2285 "rx_queue tr tm->when retrnsmt uid timeout " 2286 "inode"); 2287 goto out; 2288 } 2289 st = seq->private; 2290 2291 if (sk->sk_state == TCP_TIME_WAIT) 2292 get_timewait4_sock(v, seq, st->num); 2293 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2294 get_openreq4(v, seq, st->num); 2295 else 2296 get_tcp4_sock(v, seq, st->num); 2297 out: 2298 seq_pad(seq, '\n'); 2299 return 0; 2300 } 2301 2302 static const struct file_operations tcp_afinfo_seq_fops = { 2303 .owner = THIS_MODULE, 2304 .open = tcp_seq_open, 2305 .read = seq_read, 2306 .llseek = seq_lseek, 2307 .release = seq_release_net 2308 }; 2309 2310 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2311 .name = "tcp", 2312 .family = AF_INET, 2313 .seq_fops = &tcp_afinfo_seq_fops, 2314 .seq_ops = { 2315 .show = tcp4_seq_show, 2316 }, 2317 }; 2318 2319 static int __net_init tcp4_proc_init_net(struct net *net) 2320 { 2321 return tcp_proc_register(net, &tcp4_seq_afinfo); 2322 } 2323 2324 static void __net_exit tcp4_proc_exit_net(struct net *net) 2325 { 2326 tcp_proc_unregister(net, &tcp4_seq_afinfo); 2327 } 2328 2329 static struct pernet_operations tcp4_net_ops = { 2330 .init = tcp4_proc_init_net, 2331 .exit = tcp4_proc_exit_net, 2332 }; 2333 2334 int __init tcp4_proc_init(void) 2335 { 2336 return register_pernet_subsys(&tcp4_net_ops); 2337 } 2338 2339 void tcp4_proc_exit(void) 2340 { 2341 unregister_pernet_subsys(&tcp4_net_ops); 2342 } 2343 #endif /* CONFIG_PROC_FS */ 2344 2345 struct proto tcp_prot = { 2346 .name = "TCP", 2347 .owner = THIS_MODULE, 2348 .close = tcp_close, 2349 .connect = tcp_v4_connect, 2350 .disconnect = tcp_disconnect, 2351 .accept = inet_csk_accept, 2352 .ioctl = tcp_ioctl, 2353 .init = tcp_v4_init_sock, 2354 .destroy = tcp_v4_destroy_sock, 2355 .shutdown = tcp_shutdown, 2356 .setsockopt = tcp_setsockopt, 2357 .getsockopt = tcp_getsockopt, 2358 .recvmsg = tcp_recvmsg, 2359 .sendmsg = tcp_sendmsg, 2360 .sendpage = tcp_sendpage, 2361 .backlog_rcv = tcp_v4_do_rcv, 2362 .release_cb = tcp_release_cb, 2363 .hash = inet_hash, 2364 .unhash = inet_unhash, 2365 .get_port = inet_csk_get_port, 2366 .enter_memory_pressure = tcp_enter_memory_pressure, 2367 .stream_memory_free = tcp_stream_memory_free, 2368 .sockets_allocated = &tcp_sockets_allocated, 2369 .orphan_count = &tcp_orphan_count, 2370 .memory_allocated = &tcp_memory_allocated, 2371 .memory_pressure = &tcp_memory_pressure, 2372 .sysctl_mem = sysctl_tcp_mem, 2373 .sysctl_wmem = sysctl_tcp_wmem, 2374 .sysctl_rmem = sysctl_tcp_rmem, 2375 .max_header = MAX_TCP_HEADER, 2376 .obj_size = sizeof(struct tcp_sock), 2377 .slab_flags = SLAB_DESTROY_BY_RCU, 2378 .twsk_prot = &tcp_timewait_sock_ops, 2379 .rsk_prot = &tcp_request_sock_ops, 2380 .h.hashinfo = &tcp_hashinfo, 2381 .no_autobind = true, 2382 #ifdef CONFIG_COMPAT 2383 .compat_setsockopt = compat_tcp_setsockopt, 2384 .compat_getsockopt = compat_tcp_getsockopt, 2385 #endif 2386 .diag_destroy = tcp_abort, 2387 }; 2388 EXPORT_SYMBOL(tcp_prot); 2389 2390 static void __net_exit tcp_sk_exit(struct net *net) 2391 { 2392 int cpu; 2393 2394 for_each_possible_cpu(cpu) 2395 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu)); 2396 free_percpu(net->ipv4.tcp_sk); 2397 } 2398 2399 static int __net_init tcp_sk_init(struct net *net) 2400 { 2401 int res, cpu; 2402 2403 net->ipv4.tcp_sk = alloc_percpu(struct sock *); 2404 if (!net->ipv4.tcp_sk) 2405 return -ENOMEM; 2406 2407 for_each_possible_cpu(cpu) { 2408 struct sock *sk; 2409 2410 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 2411 IPPROTO_TCP, net); 2412 if (res) 2413 goto fail; 2414 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 2415 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk; 2416 } 2417 2418 net->ipv4.sysctl_tcp_ecn = 2; 2419 net->ipv4.sysctl_tcp_ecn_fallback = 1; 2420 2421 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 2422 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 2423 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 2424 2425 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 2426 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 2427 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 2428 2429 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 2430 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 2431 net->ipv4.sysctl_tcp_syncookies = 1; 2432 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 2433 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 2434 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 2435 net->ipv4.sysctl_tcp_orphan_retries = 0; 2436 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 2437 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 2438 2439 return 0; 2440 fail: 2441 tcp_sk_exit(net); 2442 2443 return res; 2444 } 2445 2446 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2447 { 2448 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET); 2449 } 2450 2451 static struct pernet_operations __net_initdata tcp_sk_ops = { 2452 .init = tcp_sk_init, 2453 .exit = tcp_sk_exit, 2454 .exit_batch = tcp_sk_exit_batch, 2455 }; 2456 2457 void __init tcp_v4_init(void) 2458 { 2459 inet_hashinfo_init(&tcp_hashinfo); 2460 if (register_pernet_subsys(&tcp_sk_ops)) 2461 panic("Failed to create the TCP control socket.\n"); 2462 } 2463