xref: /linux/net/ipv4/tcp_ipv4.c (revision ea23fbd2a8f7dadfa9cd9b9d73f3b8a69eec0671)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 #include <linux/sched.h>
61 
62 #include <net/net_namespace.h>
63 #include <net/icmp.h>
64 #include <net/inet_hashtables.h>
65 #include <net/tcp.h>
66 #include <net/transp_v6.h>
67 #include <net/ipv6.h>
68 #include <net/inet_common.h>
69 #include <net/timewait_sock.h>
70 #include <net/xfrm.h>
71 #include <net/secure_seq.h>
72 #include <net/busy_poll.h>
73 
74 #include <linux/inet.h>
75 #include <linux/ipv6.h>
76 #include <linux/stddef.h>
77 #include <linux/proc_fs.h>
78 #include <linux/seq_file.h>
79 #include <linux/inetdevice.h>
80 #include <linux/btf_ids.h>
81 
82 #include <crypto/hash.h>
83 #include <linux/scatterlist.h>
84 
85 #include <trace/events/tcp.h>
86 
87 #ifdef CONFIG_TCP_MD5SIG
88 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
89 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
90 #endif
91 
92 struct inet_hashinfo tcp_hashinfo;
93 EXPORT_SYMBOL(tcp_hashinfo);
94 
95 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
96 
97 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
98 {
99 	return secure_tcp_seq(ip_hdr(skb)->daddr,
100 			      ip_hdr(skb)->saddr,
101 			      tcp_hdr(skb)->dest,
102 			      tcp_hdr(skb)->source);
103 }
104 
105 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
106 {
107 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
108 }
109 
110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 {
112 	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
113 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
114 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115 	struct tcp_sock *tp = tcp_sk(sk);
116 
117 	if (reuse == 2) {
118 		/* Still does not detect *everything* that goes through
119 		 * lo, since we require a loopback src or dst address
120 		 * or direct binding to 'lo' interface.
121 		 */
122 		bool loopback = false;
123 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
124 			loopback = true;
125 #if IS_ENABLED(CONFIG_IPV6)
126 		if (tw->tw_family == AF_INET6) {
127 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
128 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
129 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
130 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
131 				loopback = true;
132 		} else
133 #endif
134 		{
135 			if (ipv4_is_loopback(tw->tw_daddr) ||
136 			    ipv4_is_loopback(tw->tw_rcv_saddr))
137 				loopback = true;
138 		}
139 		if (!loopback)
140 			reuse = 0;
141 	}
142 
143 	/* With PAWS, it is safe from the viewpoint
144 	   of data integrity. Even without PAWS it is safe provided sequence
145 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
146 
147 	   Actually, the idea is close to VJ's one, only timestamp cache is
148 	   held not per host, but per port pair and TW bucket is used as state
149 	   holder.
150 
151 	   If TW bucket has been already destroyed we fall back to VJ's scheme
152 	   and use initial timestamp retrieved from peer table.
153 	 */
154 	if (tcptw->tw_ts_recent_stamp &&
155 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
156 					    tcptw->tw_ts_recent_stamp)))) {
157 		/* In case of repair and re-using TIME-WAIT sockets we still
158 		 * want to be sure that it is safe as above but honor the
159 		 * sequence numbers and time stamps set as part of the repair
160 		 * process.
161 		 *
162 		 * Without this check re-using a TIME-WAIT socket with TCP
163 		 * repair would accumulate a -1 on the repair assigned
164 		 * sequence number. The first time it is reused the sequence
165 		 * is -1, the second time -2, etc. This fixes that issue
166 		 * without appearing to create any others.
167 		 */
168 		if (likely(!tp->repair)) {
169 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
170 
171 			if (!seq)
172 				seq = 1;
173 			WRITE_ONCE(tp->write_seq, seq);
174 			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
175 			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
176 		}
177 		sock_hold(sktw);
178 		return 1;
179 	}
180 
181 	return 0;
182 }
183 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
184 
185 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
186 			      int addr_len)
187 {
188 	/* This check is replicated from tcp_v4_connect() and intended to
189 	 * prevent BPF program called below from accessing bytes that are out
190 	 * of the bound specified by user in addr_len.
191 	 */
192 	if (addr_len < sizeof(struct sockaddr_in))
193 		return -EINVAL;
194 
195 	sock_owned_by_me(sk);
196 
197 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
198 }
199 
200 /* This will initiate an outgoing connection. */
201 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
202 {
203 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
204 	struct inet_timewait_death_row *tcp_death_row;
205 	struct inet_sock *inet = inet_sk(sk);
206 	struct tcp_sock *tp = tcp_sk(sk);
207 	struct ip_options_rcu *inet_opt;
208 	struct net *net = sock_net(sk);
209 	__be16 orig_sport, orig_dport;
210 	__be32 daddr, nexthop;
211 	struct flowi4 *fl4;
212 	struct rtable *rt;
213 	int err;
214 
215 	if (addr_len < sizeof(struct sockaddr_in))
216 		return -EINVAL;
217 
218 	if (usin->sin_family != AF_INET)
219 		return -EAFNOSUPPORT;
220 
221 	nexthop = daddr = usin->sin_addr.s_addr;
222 	inet_opt = rcu_dereference_protected(inet->inet_opt,
223 					     lockdep_sock_is_held(sk));
224 	if (inet_opt && inet_opt->opt.srr) {
225 		if (!daddr)
226 			return -EINVAL;
227 		nexthop = inet_opt->opt.faddr;
228 	}
229 
230 	orig_sport = inet->inet_sport;
231 	orig_dport = usin->sin_port;
232 	fl4 = &inet->cork.fl.u.ip4;
233 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
234 			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
235 			      orig_dport, sk);
236 	if (IS_ERR(rt)) {
237 		err = PTR_ERR(rt);
238 		if (err == -ENETUNREACH)
239 			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
240 		return err;
241 	}
242 
243 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
244 		ip_rt_put(rt);
245 		return -ENETUNREACH;
246 	}
247 
248 	if (!inet_opt || !inet_opt->opt.srr)
249 		daddr = fl4->daddr;
250 
251 	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
252 
253 	if (!inet->inet_saddr) {
254 		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
255 		if (err) {
256 			ip_rt_put(rt);
257 			return err;
258 		}
259 	} else {
260 		sk_rcv_saddr_set(sk, inet->inet_saddr);
261 	}
262 
263 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
264 		/* Reset inherited state */
265 		tp->rx_opt.ts_recent	   = 0;
266 		tp->rx_opt.ts_recent_stamp = 0;
267 		if (likely(!tp->repair))
268 			WRITE_ONCE(tp->write_seq, 0);
269 	}
270 
271 	inet->inet_dport = usin->sin_port;
272 	sk_daddr_set(sk, daddr);
273 
274 	inet_csk(sk)->icsk_ext_hdr_len = 0;
275 	if (inet_opt)
276 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
277 
278 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
279 
280 	/* Socket identity is still unknown (sport may be zero).
281 	 * However we set state to SYN-SENT and not releasing socket
282 	 * lock select source port, enter ourselves into the hash tables and
283 	 * complete initialization after this.
284 	 */
285 	tcp_set_state(sk, TCP_SYN_SENT);
286 	err = inet_hash_connect(tcp_death_row, sk);
287 	if (err)
288 		goto failure;
289 
290 	sk_set_txhash(sk);
291 
292 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
293 			       inet->inet_sport, inet->inet_dport, sk);
294 	if (IS_ERR(rt)) {
295 		err = PTR_ERR(rt);
296 		rt = NULL;
297 		goto failure;
298 	}
299 	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
300 	/* OK, now commit destination to socket.  */
301 	sk->sk_gso_type = SKB_GSO_TCPV4;
302 	sk_setup_caps(sk, &rt->dst);
303 	rt = NULL;
304 
305 	if (likely(!tp->repair)) {
306 		if (!tp->write_seq)
307 			WRITE_ONCE(tp->write_seq,
308 				   secure_tcp_seq(inet->inet_saddr,
309 						  inet->inet_daddr,
310 						  inet->inet_sport,
311 						  usin->sin_port));
312 		WRITE_ONCE(tp->tsoffset,
313 			   secure_tcp_ts_off(net, inet->inet_saddr,
314 					     inet->inet_daddr));
315 	}
316 
317 	atomic_set(&inet->inet_id, get_random_u16());
318 
319 	if (tcp_fastopen_defer_connect(sk, &err))
320 		return err;
321 	if (err)
322 		goto failure;
323 
324 	err = tcp_connect(sk);
325 
326 	if (err)
327 		goto failure;
328 
329 	return 0;
330 
331 failure:
332 	/*
333 	 * This unhashes the socket and releases the local port,
334 	 * if necessary.
335 	 */
336 	tcp_set_state(sk, TCP_CLOSE);
337 	inet_bhash2_reset_saddr(sk);
338 	ip_rt_put(rt);
339 	sk->sk_route_caps = 0;
340 	inet->inet_dport = 0;
341 	return err;
342 }
343 EXPORT_SYMBOL(tcp_v4_connect);
344 
345 /*
346  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
347  * It can be called through tcp_release_cb() if socket was owned by user
348  * at the time tcp_v4_err() was called to handle ICMP message.
349  */
350 void tcp_v4_mtu_reduced(struct sock *sk)
351 {
352 	struct inet_sock *inet = inet_sk(sk);
353 	struct dst_entry *dst;
354 	u32 mtu;
355 
356 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
357 		return;
358 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
359 	dst = inet_csk_update_pmtu(sk, mtu);
360 	if (!dst)
361 		return;
362 
363 	/* Something is about to be wrong... Remember soft error
364 	 * for the case, if this connection will not able to recover.
365 	 */
366 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
367 		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
368 
369 	mtu = dst_mtu(dst);
370 
371 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
372 	    ip_sk_accept_pmtu(sk) &&
373 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
374 		tcp_sync_mss(sk, mtu);
375 
376 		/* Resend the TCP packet because it's
377 		 * clear that the old packet has been
378 		 * dropped. This is the new "fast" path mtu
379 		 * discovery.
380 		 */
381 		tcp_simple_retransmit(sk);
382 	} /* else let the usual retransmit timer handle it */
383 }
384 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
385 
386 static void do_redirect(struct sk_buff *skb, struct sock *sk)
387 {
388 	struct dst_entry *dst = __sk_dst_check(sk, 0);
389 
390 	if (dst)
391 		dst->ops->redirect(dst, sk, skb);
392 }
393 
394 
395 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
396 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
397 {
398 	struct request_sock *req = inet_reqsk(sk);
399 	struct net *net = sock_net(sk);
400 
401 	/* ICMPs are not backlogged, hence we cannot get
402 	 * an established socket here.
403 	 */
404 	if (seq != tcp_rsk(req)->snt_isn) {
405 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
406 	} else if (abort) {
407 		/*
408 		 * Still in SYN_RECV, just remove it silently.
409 		 * There is no good way to pass the error to the newly
410 		 * created socket, and POSIX does not want network
411 		 * errors returned from accept().
412 		 */
413 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
414 		tcp_listendrop(req->rsk_listener);
415 	}
416 	reqsk_put(req);
417 }
418 EXPORT_SYMBOL(tcp_req_err);
419 
420 /* TCP-LD (RFC 6069) logic */
421 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
422 {
423 	struct inet_connection_sock *icsk = inet_csk(sk);
424 	struct tcp_sock *tp = tcp_sk(sk);
425 	struct sk_buff *skb;
426 	s32 remaining;
427 	u32 delta_us;
428 
429 	if (sock_owned_by_user(sk))
430 		return;
431 
432 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
433 	    !icsk->icsk_backoff)
434 		return;
435 
436 	skb = tcp_rtx_queue_head(sk);
437 	if (WARN_ON_ONCE(!skb))
438 		return;
439 
440 	icsk->icsk_backoff--;
441 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
442 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
443 
444 	tcp_mstamp_refresh(tp);
445 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
446 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
447 
448 	if (remaining > 0) {
449 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
450 					  remaining, TCP_RTO_MAX);
451 	} else {
452 		/* RTO revert clocked out retransmission.
453 		 * Will retransmit now.
454 		 */
455 		tcp_retransmit_timer(sk);
456 	}
457 }
458 EXPORT_SYMBOL(tcp_ld_RTO_revert);
459 
460 /*
461  * This routine is called by the ICMP module when it gets some
462  * sort of error condition.  If err < 0 then the socket should
463  * be closed and the error returned to the user.  If err > 0
464  * it's just the icmp type << 8 | icmp code.  After adjustment
465  * header points to the first 8 bytes of the tcp header.  We need
466  * to find the appropriate port.
467  *
468  * The locking strategy used here is very "optimistic". When
469  * someone else accesses the socket the ICMP is just dropped
470  * and for some paths there is no check at all.
471  * A more general error queue to queue errors for later handling
472  * is probably better.
473  *
474  */
475 
476 int tcp_v4_err(struct sk_buff *skb, u32 info)
477 {
478 	const struct iphdr *iph = (const struct iphdr *)skb->data;
479 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
480 	struct tcp_sock *tp;
481 	const int type = icmp_hdr(skb)->type;
482 	const int code = icmp_hdr(skb)->code;
483 	struct sock *sk;
484 	struct request_sock *fastopen;
485 	u32 seq, snd_una;
486 	int err;
487 	struct net *net = dev_net(skb->dev);
488 
489 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
490 				       iph->daddr, th->dest, iph->saddr,
491 				       ntohs(th->source), inet_iif(skb), 0);
492 	if (!sk) {
493 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
494 		return -ENOENT;
495 	}
496 	if (sk->sk_state == TCP_TIME_WAIT) {
497 		inet_twsk_put(inet_twsk(sk));
498 		return 0;
499 	}
500 	seq = ntohl(th->seq);
501 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
502 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
503 				     type == ICMP_TIME_EXCEEDED ||
504 				     (type == ICMP_DEST_UNREACH &&
505 				      (code == ICMP_NET_UNREACH ||
506 				       code == ICMP_HOST_UNREACH)));
507 		return 0;
508 	}
509 
510 	bh_lock_sock(sk);
511 	/* If too many ICMPs get dropped on busy
512 	 * servers this needs to be solved differently.
513 	 * We do take care of PMTU discovery (RFC1191) special case :
514 	 * we can receive locally generated ICMP messages while socket is held.
515 	 */
516 	if (sock_owned_by_user(sk)) {
517 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
518 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
519 	}
520 	if (sk->sk_state == TCP_CLOSE)
521 		goto out;
522 
523 	if (static_branch_unlikely(&ip4_min_ttl)) {
524 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
525 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
526 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
527 			goto out;
528 		}
529 	}
530 
531 	tp = tcp_sk(sk);
532 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
533 	fastopen = rcu_dereference(tp->fastopen_rsk);
534 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
535 	if (sk->sk_state != TCP_LISTEN &&
536 	    !between(seq, snd_una, tp->snd_nxt)) {
537 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
538 		goto out;
539 	}
540 
541 	switch (type) {
542 	case ICMP_REDIRECT:
543 		if (!sock_owned_by_user(sk))
544 			do_redirect(skb, sk);
545 		goto out;
546 	case ICMP_SOURCE_QUENCH:
547 		/* Just silently ignore these. */
548 		goto out;
549 	case ICMP_PARAMETERPROB:
550 		err = EPROTO;
551 		break;
552 	case ICMP_DEST_UNREACH:
553 		if (code > NR_ICMP_UNREACH)
554 			goto out;
555 
556 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
557 			/* We are not interested in TCP_LISTEN and open_requests
558 			 * (SYN-ACKs send out by Linux are always <576bytes so
559 			 * they should go through unfragmented).
560 			 */
561 			if (sk->sk_state == TCP_LISTEN)
562 				goto out;
563 
564 			WRITE_ONCE(tp->mtu_info, info);
565 			if (!sock_owned_by_user(sk)) {
566 				tcp_v4_mtu_reduced(sk);
567 			} else {
568 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
569 					sock_hold(sk);
570 			}
571 			goto out;
572 		}
573 
574 		err = icmp_err_convert[code].errno;
575 		/* check if this ICMP message allows revert of backoff.
576 		 * (see RFC 6069)
577 		 */
578 		if (!fastopen &&
579 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
580 			tcp_ld_RTO_revert(sk, seq);
581 		break;
582 	case ICMP_TIME_EXCEEDED:
583 		err = EHOSTUNREACH;
584 		break;
585 	default:
586 		goto out;
587 	}
588 
589 	switch (sk->sk_state) {
590 	case TCP_SYN_SENT:
591 	case TCP_SYN_RECV:
592 		/* Only in fast or simultaneous open. If a fast open socket is
593 		 * already accepted it is treated as a connected one below.
594 		 */
595 		if (fastopen && !fastopen->sk)
596 			break;
597 
598 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
599 
600 		if (!sock_owned_by_user(sk)) {
601 			WRITE_ONCE(sk->sk_err, err);
602 
603 			sk_error_report(sk);
604 
605 			tcp_done(sk);
606 		} else {
607 			WRITE_ONCE(sk->sk_err_soft, err);
608 		}
609 		goto out;
610 	}
611 
612 	/* If we've already connected we will keep trying
613 	 * until we time out, or the user gives up.
614 	 *
615 	 * rfc1122 4.2.3.9 allows to consider as hard errors
616 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
617 	 * but it is obsoleted by pmtu discovery).
618 	 *
619 	 * Note, that in modern internet, where routing is unreliable
620 	 * and in each dark corner broken firewalls sit, sending random
621 	 * errors ordered by their masters even this two messages finally lose
622 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
623 	 *
624 	 * Now we are in compliance with RFCs.
625 	 *							--ANK (980905)
626 	 */
627 
628 	if (!sock_owned_by_user(sk) &&
629 	    inet_test_bit(RECVERR, sk)) {
630 		WRITE_ONCE(sk->sk_err, err);
631 		sk_error_report(sk);
632 	} else	{ /* Only an error on timeout */
633 		WRITE_ONCE(sk->sk_err_soft, err);
634 	}
635 
636 out:
637 	bh_unlock_sock(sk);
638 	sock_put(sk);
639 	return 0;
640 }
641 
642 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
643 {
644 	struct tcphdr *th = tcp_hdr(skb);
645 
646 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
647 	skb->csum_start = skb_transport_header(skb) - skb->head;
648 	skb->csum_offset = offsetof(struct tcphdr, check);
649 }
650 
651 /* This routine computes an IPv4 TCP checksum. */
652 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
653 {
654 	const struct inet_sock *inet = inet_sk(sk);
655 
656 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
657 }
658 EXPORT_SYMBOL(tcp_v4_send_check);
659 
660 /*
661  *	This routine will send an RST to the other tcp.
662  *
663  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
664  *		      for reset.
665  *	Answer: if a packet caused RST, it is not for a socket
666  *		existing in our system, if it is matched to a socket,
667  *		it is just duplicate segment or bug in other side's TCP.
668  *		So that we build reply only basing on parameters
669  *		arrived with segment.
670  *	Exception: precedence violation. We do not implement it in any case.
671  */
672 
673 #ifdef CONFIG_TCP_MD5SIG
674 #define OPTION_BYTES TCPOLEN_MD5SIG_ALIGNED
675 #else
676 #define OPTION_BYTES sizeof(__be32)
677 #endif
678 
679 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
680 {
681 	const struct tcphdr *th = tcp_hdr(skb);
682 	struct {
683 		struct tcphdr th;
684 		__be32 opt[OPTION_BYTES / sizeof(__be32)];
685 	} rep;
686 	struct ip_reply_arg arg;
687 #ifdef CONFIG_TCP_MD5SIG
688 	struct tcp_md5sig_key *key = NULL;
689 	const __u8 *hash_location = NULL;
690 	unsigned char newhash[16];
691 	int genhash;
692 	struct sock *sk1 = NULL;
693 #endif
694 	u64 transmit_time = 0;
695 	struct sock *ctl_sk;
696 	struct net *net;
697 	u32 txhash = 0;
698 
699 	/* Never send a reset in response to a reset. */
700 	if (th->rst)
701 		return;
702 
703 	/* If sk not NULL, it means we did a successful lookup and incoming
704 	 * route had to be correct. prequeue might have dropped our dst.
705 	 */
706 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
707 		return;
708 
709 	/* Swap the send and the receive. */
710 	memset(&rep, 0, sizeof(rep));
711 	rep.th.dest   = th->source;
712 	rep.th.source = th->dest;
713 	rep.th.doff   = sizeof(struct tcphdr) / 4;
714 	rep.th.rst    = 1;
715 
716 	if (th->ack) {
717 		rep.th.seq = th->ack_seq;
718 	} else {
719 		rep.th.ack = 1;
720 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
721 				       skb->len - (th->doff << 2));
722 	}
723 
724 	memset(&arg, 0, sizeof(arg));
725 	arg.iov[0].iov_base = (unsigned char *)&rep;
726 	arg.iov[0].iov_len  = sizeof(rep.th);
727 
728 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
729 #ifdef CONFIG_TCP_MD5SIG
730 	rcu_read_lock();
731 	hash_location = tcp_parse_md5sig_option(th);
732 	if (sk && sk_fullsock(sk)) {
733 		const union tcp_md5_addr *addr;
734 		int l3index;
735 
736 		/* sdif set, means packet ingressed via a device
737 		 * in an L3 domain and inet_iif is set to it.
738 		 */
739 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
740 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
741 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
742 	} else if (hash_location) {
743 		const union tcp_md5_addr *addr;
744 		int sdif = tcp_v4_sdif(skb);
745 		int dif = inet_iif(skb);
746 		int l3index;
747 
748 		/*
749 		 * active side is lost. Try to find listening socket through
750 		 * source port, and then find md5 key through listening socket.
751 		 * we are not loose security here:
752 		 * Incoming packet is checked with md5 hash with finding key,
753 		 * no RST generated if md5 hash doesn't match.
754 		 */
755 		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
756 					     NULL, 0, ip_hdr(skb)->saddr,
757 					     th->source, ip_hdr(skb)->daddr,
758 					     ntohs(th->source), dif, sdif);
759 		/* don't send rst if it can't find key */
760 		if (!sk1)
761 			goto out;
762 
763 		/* sdif set, means packet ingressed via a device
764 		 * in an L3 domain and dif is set to it.
765 		 */
766 		l3index = sdif ? dif : 0;
767 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
768 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
769 		if (!key)
770 			goto out;
771 
772 
773 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
774 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
775 			goto out;
776 
777 	}
778 
779 	if (key) {
780 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
781 				   (TCPOPT_NOP << 16) |
782 				   (TCPOPT_MD5SIG << 8) |
783 				   TCPOLEN_MD5SIG);
784 		/* Update length and the length the header thinks exists */
785 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
786 		rep.th.doff = arg.iov[0].iov_len / 4;
787 
788 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
789 				     key, ip_hdr(skb)->saddr,
790 				     ip_hdr(skb)->daddr, &rep.th);
791 	}
792 #endif
793 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
794 	if (rep.opt[0] == 0) {
795 		__be32 mrst = mptcp_reset_option(skb);
796 
797 		if (mrst) {
798 			rep.opt[0] = mrst;
799 			arg.iov[0].iov_len += sizeof(mrst);
800 			rep.th.doff = arg.iov[0].iov_len / 4;
801 		}
802 	}
803 
804 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
805 				      ip_hdr(skb)->saddr, /* XXX */
806 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
807 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
808 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
809 
810 	/* When socket is gone, all binding information is lost.
811 	 * routing might fail in this case. No choice here, if we choose to force
812 	 * input interface, we will misroute in case of asymmetric route.
813 	 */
814 	if (sk) {
815 		arg.bound_dev_if = sk->sk_bound_dev_if;
816 		if (sk_fullsock(sk))
817 			trace_tcp_send_reset(sk, skb);
818 	}
819 
820 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
821 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
822 
823 	arg.tos = ip_hdr(skb)->tos;
824 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
825 	local_bh_disable();
826 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
827 	sock_net_set(ctl_sk, net);
828 	if (sk) {
829 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
830 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
831 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
832 				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
833 		transmit_time = tcp_transmit_time(sk);
834 		xfrm_sk_clone_policy(ctl_sk, sk);
835 		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
836 			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
837 	} else {
838 		ctl_sk->sk_mark = 0;
839 		ctl_sk->sk_priority = 0;
840 	}
841 	ip_send_unicast_reply(ctl_sk,
842 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
843 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
844 			      &arg, arg.iov[0].iov_len,
845 			      transmit_time, txhash);
846 
847 	xfrm_sk_free_policy(ctl_sk);
848 	sock_net_set(ctl_sk, &init_net);
849 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
850 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
851 	local_bh_enable();
852 
853 #ifdef CONFIG_TCP_MD5SIG
854 out:
855 	rcu_read_unlock();
856 #endif
857 }
858 
859 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
860    outside socket context is ugly, certainly. What can I do?
861  */
862 
863 static void tcp_v4_send_ack(const struct sock *sk,
864 			    struct sk_buff *skb, u32 seq, u32 ack,
865 			    u32 win, u32 tsval, u32 tsecr, int oif,
866 			    struct tcp_md5sig_key *key,
867 			    int reply_flags, u8 tos, u32 txhash)
868 {
869 	const struct tcphdr *th = tcp_hdr(skb);
870 	struct {
871 		struct tcphdr th;
872 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
873 #ifdef CONFIG_TCP_MD5SIG
874 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
875 #endif
876 			];
877 	} rep;
878 	struct net *net = sock_net(sk);
879 	struct ip_reply_arg arg;
880 	struct sock *ctl_sk;
881 	u64 transmit_time;
882 
883 	memset(&rep.th, 0, sizeof(struct tcphdr));
884 	memset(&arg, 0, sizeof(arg));
885 
886 	arg.iov[0].iov_base = (unsigned char *)&rep;
887 	arg.iov[0].iov_len  = sizeof(rep.th);
888 	if (tsecr) {
889 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
890 				   (TCPOPT_TIMESTAMP << 8) |
891 				   TCPOLEN_TIMESTAMP);
892 		rep.opt[1] = htonl(tsval);
893 		rep.opt[2] = htonl(tsecr);
894 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
895 	}
896 
897 	/* Swap the send and the receive. */
898 	rep.th.dest    = th->source;
899 	rep.th.source  = th->dest;
900 	rep.th.doff    = arg.iov[0].iov_len / 4;
901 	rep.th.seq     = htonl(seq);
902 	rep.th.ack_seq = htonl(ack);
903 	rep.th.ack     = 1;
904 	rep.th.window  = htons(win);
905 
906 #ifdef CONFIG_TCP_MD5SIG
907 	if (key) {
908 		int offset = (tsecr) ? 3 : 0;
909 
910 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
911 					  (TCPOPT_NOP << 16) |
912 					  (TCPOPT_MD5SIG << 8) |
913 					  TCPOLEN_MD5SIG);
914 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
915 		rep.th.doff = arg.iov[0].iov_len/4;
916 
917 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
918 				    key, ip_hdr(skb)->saddr,
919 				    ip_hdr(skb)->daddr, &rep.th);
920 	}
921 #endif
922 	arg.flags = reply_flags;
923 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
924 				      ip_hdr(skb)->saddr, /* XXX */
925 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
926 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
927 	if (oif)
928 		arg.bound_dev_if = oif;
929 	arg.tos = tos;
930 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
931 	local_bh_disable();
932 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
933 	sock_net_set(ctl_sk, net);
934 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
935 			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
936 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
937 			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
938 	transmit_time = tcp_transmit_time(sk);
939 	ip_send_unicast_reply(ctl_sk,
940 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
941 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
942 			      &arg, arg.iov[0].iov_len,
943 			      transmit_time, txhash);
944 
945 	sock_net_set(ctl_sk, &init_net);
946 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
947 	local_bh_enable();
948 }
949 
950 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
951 {
952 	struct inet_timewait_sock *tw = inet_twsk(sk);
953 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
954 
955 	tcp_v4_send_ack(sk, skb,
956 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
957 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
958 			tcp_tw_tsval(tcptw),
959 			tcptw->tw_ts_recent,
960 			tw->tw_bound_dev_if,
961 			tcp_twsk_md5_key(tcptw),
962 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
963 			tw->tw_tos,
964 			tw->tw_txhash
965 			);
966 
967 	inet_twsk_put(tw);
968 }
969 
970 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
971 				  struct request_sock *req)
972 {
973 	const union tcp_md5_addr *addr;
974 	int l3index;
975 
976 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
977 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
978 	 */
979 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
980 					     tcp_sk(sk)->snd_nxt;
981 
982 	/* RFC 7323 2.3
983 	 * The window field (SEG.WND) of every outgoing segment, with the
984 	 * exception of <SYN> segments, MUST be right-shifted by
985 	 * Rcv.Wind.Shift bits:
986 	 */
987 	addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
988 	l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
989 	tcp_v4_send_ack(sk, skb, seq,
990 			tcp_rsk(req)->rcv_nxt,
991 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
992 			tcp_rsk_tsval(tcp_rsk(req)),
993 			READ_ONCE(req->ts_recent),
994 			0,
995 			tcp_md5_do_lookup(sk, l3index, addr, AF_INET),
996 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
997 			ip_hdr(skb)->tos,
998 			READ_ONCE(tcp_rsk(req)->txhash));
999 }
1000 
1001 /*
1002  *	Send a SYN-ACK after having received a SYN.
1003  *	This still operates on a request_sock only, not on a big
1004  *	socket.
1005  */
1006 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1007 			      struct flowi *fl,
1008 			      struct request_sock *req,
1009 			      struct tcp_fastopen_cookie *foc,
1010 			      enum tcp_synack_type synack_type,
1011 			      struct sk_buff *syn_skb)
1012 {
1013 	const struct inet_request_sock *ireq = inet_rsk(req);
1014 	struct flowi4 fl4;
1015 	int err = -1;
1016 	struct sk_buff *skb;
1017 	u8 tos;
1018 
1019 	/* First, grab a route. */
1020 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1021 		return -1;
1022 
1023 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1024 
1025 	if (skb) {
1026 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1027 
1028 		tos = READ_ONCE(inet_sk(sk)->tos);
1029 
1030 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1031 			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1032 			      (tos & INET_ECN_MASK);
1033 
1034 		if (!INET_ECN_is_capable(tos) &&
1035 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1036 			tos |= INET_ECN_ECT_0;
1037 
1038 		rcu_read_lock();
1039 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1040 					    ireq->ir_rmt_addr,
1041 					    rcu_dereference(ireq->ireq_opt),
1042 					    tos);
1043 		rcu_read_unlock();
1044 		err = net_xmit_eval(err);
1045 	}
1046 
1047 	return err;
1048 }
1049 
1050 /*
1051  *	IPv4 request_sock destructor.
1052  */
1053 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1054 {
1055 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1056 }
1057 
1058 #ifdef CONFIG_TCP_MD5SIG
1059 /*
1060  * RFC2385 MD5 checksumming requires a mapping of
1061  * IP address->MD5 Key.
1062  * We need to maintain these in the sk structure.
1063  */
1064 
1065 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1066 EXPORT_SYMBOL(tcp_md5_needed);
1067 
1068 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1069 {
1070 	if (!old)
1071 		return true;
1072 
1073 	/* l3index always overrides non-l3index */
1074 	if (old->l3index && new->l3index == 0)
1075 		return false;
1076 	if (old->l3index == 0 && new->l3index)
1077 		return true;
1078 
1079 	return old->prefixlen < new->prefixlen;
1080 }
1081 
1082 /* Find the Key structure for an address.  */
1083 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1084 					   const union tcp_md5_addr *addr,
1085 					   int family)
1086 {
1087 	const struct tcp_sock *tp = tcp_sk(sk);
1088 	struct tcp_md5sig_key *key;
1089 	const struct tcp_md5sig_info *md5sig;
1090 	__be32 mask;
1091 	struct tcp_md5sig_key *best_match = NULL;
1092 	bool match;
1093 
1094 	/* caller either holds rcu_read_lock() or socket lock */
1095 	md5sig = rcu_dereference_check(tp->md5sig_info,
1096 				       lockdep_sock_is_held(sk));
1097 	if (!md5sig)
1098 		return NULL;
1099 
1100 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1101 				 lockdep_sock_is_held(sk)) {
1102 		if (key->family != family)
1103 			continue;
1104 		if (key->flags & TCP_MD5SIG_FLAG_IFINDEX && key->l3index != l3index)
1105 			continue;
1106 		if (family == AF_INET) {
1107 			mask = inet_make_mask(key->prefixlen);
1108 			match = (key->addr.a4.s_addr & mask) ==
1109 				(addr->a4.s_addr & mask);
1110 #if IS_ENABLED(CONFIG_IPV6)
1111 		} else if (family == AF_INET6) {
1112 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1113 						  key->prefixlen);
1114 #endif
1115 		} else {
1116 			match = false;
1117 		}
1118 
1119 		if (match && better_md5_match(best_match, key))
1120 			best_match = key;
1121 	}
1122 	return best_match;
1123 }
1124 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1125 
1126 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1127 						      const union tcp_md5_addr *addr,
1128 						      int family, u8 prefixlen,
1129 						      int l3index, u8 flags)
1130 {
1131 	const struct tcp_sock *tp = tcp_sk(sk);
1132 	struct tcp_md5sig_key *key;
1133 	unsigned int size = sizeof(struct in_addr);
1134 	const struct tcp_md5sig_info *md5sig;
1135 
1136 	/* caller either holds rcu_read_lock() or socket lock */
1137 	md5sig = rcu_dereference_check(tp->md5sig_info,
1138 				       lockdep_sock_is_held(sk));
1139 	if (!md5sig)
1140 		return NULL;
1141 #if IS_ENABLED(CONFIG_IPV6)
1142 	if (family == AF_INET6)
1143 		size = sizeof(struct in6_addr);
1144 #endif
1145 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1146 				 lockdep_sock_is_held(sk)) {
1147 		if (key->family != family)
1148 			continue;
1149 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1150 			continue;
1151 		if (key->l3index != l3index)
1152 			continue;
1153 		if (!memcmp(&key->addr, addr, size) &&
1154 		    key->prefixlen == prefixlen)
1155 			return key;
1156 	}
1157 	return NULL;
1158 }
1159 
1160 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1161 					 const struct sock *addr_sk)
1162 {
1163 	const union tcp_md5_addr *addr;
1164 	int l3index;
1165 
1166 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1167 						 addr_sk->sk_bound_dev_if);
1168 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1169 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1170 }
1171 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1172 
1173 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1174 {
1175 	struct tcp_sock *tp = tcp_sk(sk);
1176 	struct tcp_md5sig_info *md5sig;
1177 
1178 	md5sig = kmalloc(sizeof(*md5sig), gfp);
1179 	if (!md5sig)
1180 		return -ENOMEM;
1181 
1182 	sk_gso_disable(sk);
1183 	INIT_HLIST_HEAD(&md5sig->head);
1184 	rcu_assign_pointer(tp->md5sig_info, md5sig);
1185 	return 0;
1186 }
1187 
1188 /* This can be called on a newly created socket, from other files */
1189 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1190 			    int family, u8 prefixlen, int l3index, u8 flags,
1191 			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1192 {
1193 	/* Add Key to the list */
1194 	struct tcp_md5sig_key *key;
1195 	struct tcp_sock *tp = tcp_sk(sk);
1196 	struct tcp_md5sig_info *md5sig;
1197 
1198 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1199 	if (key) {
1200 		/* Pre-existing entry - just update that one.
1201 		 * Note that the key might be used concurrently.
1202 		 * data_race() is telling kcsan that we do not care of
1203 		 * key mismatches, since changing MD5 key on live flows
1204 		 * can lead to packet drops.
1205 		 */
1206 		data_race(memcpy(key->key, newkey, newkeylen));
1207 
1208 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1209 		 * Also note that a reader could catch new key->keylen value
1210 		 * but old key->key[], this is the reason we use __GFP_ZERO
1211 		 * at sock_kmalloc() time below these lines.
1212 		 */
1213 		WRITE_ONCE(key->keylen, newkeylen);
1214 
1215 		return 0;
1216 	}
1217 
1218 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1219 					   lockdep_sock_is_held(sk));
1220 
1221 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1222 	if (!key)
1223 		return -ENOMEM;
1224 	if (!tcp_alloc_md5sig_pool()) {
1225 		sock_kfree_s(sk, key, sizeof(*key));
1226 		return -ENOMEM;
1227 	}
1228 
1229 	memcpy(key->key, newkey, newkeylen);
1230 	key->keylen = newkeylen;
1231 	key->family = family;
1232 	key->prefixlen = prefixlen;
1233 	key->l3index = l3index;
1234 	key->flags = flags;
1235 	memcpy(&key->addr, addr,
1236 	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1237 								 sizeof(struct in_addr));
1238 	hlist_add_head_rcu(&key->node, &md5sig->head);
1239 	return 0;
1240 }
1241 
1242 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1243 		   int family, u8 prefixlen, int l3index, u8 flags,
1244 		   const u8 *newkey, u8 newkeylen)
1245 {
1246 	struct tcp_sock *tp = tcp_sk(sk);
1247 
1248 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1249 		if (tcp_md5sig_info_add(sk, GFP_KERNEL))
1250 			return -ENOMEM;
1251 
1252 		if (!static_branch_inc(&tcp_md5_needed.key)) {
1253 			struct tcp_md5sig_info *md5sig;
1254 
1255 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1256 			rcu_assign_pointer(tp->md5sig_info, NULL);
1257 			kfree_rcu(md5sig, rcu);
1258 			return -EUSERS;
1259 		}
1260 	}
1261 
1262 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1263 				newkey, newkeylen, GFP_KERNEL);
1264 }
1265 EXPORT_SYMBOL(tcp_md5_do_add);
1266 
1267 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1268 		     int family, u8 prefixlen, int l3index,
1269 		     struct tcp_md5sig_key *key)
1270 {
1271 	struct tcp_sock *tp = tcp_sk(sk);
1272 
1273 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1274 		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC)))
1275 			return -ENOMEM;
1276 
1277 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1278 			struct tcp_md5sig_info *md5sig;
1279 
1280 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1281 			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1282 			rcu_assign_pointer(tp->md5sig_info, NULL);
1283 			kfree_rcu(md5sig, rcu);
1284 			return -EUSERS;
1285 		}
1286 	}
1287 
1288 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1289 				key->flags, key->key, key->keylen,
1290 				sk_gfp_mask(sk, GFP_ATOMIC));
1291 }
1292 EXPORT_SYMBOL(tcp_md5_key_copy);
1293 
1294 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1295 		   u8 prefixlen, int l3index, u8 flags)
1296 {
1297 	struct tcp_md5sig_key *key;
1298 
1299 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1300 	if (!key)
1301 		return -ENOENT;
1302 	hlist_del_rcu(&key->node);
1303 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1304 	kfree_rcu(key, rcu);
1305 	return 0;
1306 }
1307 EXPORT_SYMBOL(tcp_md5_do_del);
1308 
1309 static void tcp_clear_md5_list(struct sock *sk)
1310 {
1311 	struct tcp_sock *tp = tcp_sk(sk);
1312 	struct tcp_md5sig_key *key;
1313 	struct hlist_node *n;
1314 	struct tcp_md5sig_info *md5sig;
1315 
1316 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1317 
1318 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1319 		hlist_del_rcu(&key->node);
1320 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1321 		kfree_rcu(key, rcu);
1322 	}
1323 }
1324 
1325 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1326 				 sockptr_t optval, int optlen)
1327 {
1328 	struct tcp_md5sig cmd;
1329 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1330 	const union tcp_md5_addr *addr;
1331 	u8 prefixlen = 32;
1332 	int l3index = 0;
1333 	u8 flags;
1334 
1335 	if (optlen < sizeof(cmd))
1336 		return -EINVAL;
1337 
1338 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1339 		return -EFAULT;
1340 
1341 	if (sin->sin_family != AF_INET)
1342 		return -EINVAL;
1343 
1344 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1345 
1346 	if (optname == TCP_MD5SIG_EXT &&
1347 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1348 		prefixlen = cmd.tcpm_prefixlen;
1349 		if (prefixlen > 32)
1350 			return -EINVAL;
1351 	}
1352 
1353 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1354 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1355 		struct net_device *dev;
1356 
1357 		rcu_read_lock();
1358 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1359 		if (dev && netif_is_l3_master(dev))
1360 			l3index = dev->ifindex;
1361 
1362 		rcu_read_unlock();
1363 
1364 		/* ok to reference set/not set outside of rcu;
1365 		 * right now device MUST be an L3 master
1366 		 */
1367 		if (!dev || !l3index)
1368 			return -EINVAL;
1369 	}
1370 
1371 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1372 
1373 	if (!cmd.tcpm_keylen)
1374 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1375 
1376 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1377 		return -EINVAL;
1378 
1379 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1380 			      cmd.tcpm_key, cmd.tcpm_keylen);
1381 }
1382 
1383 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp,
1384 				   __be32 daddr, __be32 saddr,
1385 				   const struct tcphdr *th, int nbytes)
1386 {
1387 	struct tcp4_pseudohdr *bp;
1388 	struct scatterlist sg;
1389 	struct tcphdr *_th;
1390 
1391 	bp = hp->scratch;
1392 	bp->saddr = saddr;
1393 	bp->daddr = daddr;
1394 	bp->pad = 0;
1395 	bp->protocol = IPPROTO_TCP;
1396 	bp->len = cpu_to_be16(nbytes);
1397 
1398 	_th = (struct tcphdr *)(bp + 1);
1399 	memcpy(_th, th, sizeof(*th));
1400 	_th->check = 0;
1401 
1402 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1403 	ahash_request_set_crypt(hp->md5_req, &sg, NULL,
1404 				sizeof(*bp) + sizeof(*th));
1405 	return crypto_ahash_update(hp->md5_req);
1406 }
1407 
1408 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1409 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1410 {
1411 	struct tcp_md5sig_pool *hp;
1412 	struct ahash_request *req;
1413 
1414 	hp = tcp_get_md5sig_pool();
1415 	if (!hp)
1416 		goto clear_hash_noput;
1417 	req = hp->md5_req;
1418 
1419 	if (crypto_ahash_init(req))
1420 		goto clear_hash;
1421 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2))
1422 		goto clear_hash;
1423 	if (tcp_md5_hash_key(hp, key))
1424 		goto clear_hash;
1425 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1426 	if (crypto_ahash_final(req))
1427 		goto clear_hash;
1428 
1429 	tcp_put_md5sig_pool();
1430 	return 0;
1431 
1432 clear_hash:
1433 	tcp_put_md5sig_pool();
1434 clear_hash_noput:
1435 	memset(md5_hash, 0, 16);
1436 	return 1;
1437 }
1438 
1439 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1440 			const struct sock *sk,
1441 			const struct sk_buff *skb)
1442 {
1443 	struct tcp_md5sig_pool *hp;
1444 	struct ahash_request *req;
1445 	const struct tcphdr *th = tcp_hdr(skb);
1446 	__be32 saddr, daddr;
1447 
1448 	if (sk) { /* valid for establish/request sockets */
1449 		saddr = sk->sk_rcv_saddr;
1450 		daddr = sk->sk_daddr;
1451 	} else {
1452 		const struct iphdr *iph = ip_hdr(skb);
1453 		saddr = iph->saddr;
1454 		daddr = iph->daddr;
1455 	}
1456 
1457 	hp = tcp_get_md5sig_pool();
1458 	if (!hp)
1459 		goto clear_hash_noput;
1460 	req = hp->md5_req;
1461 
1462 	if (crypto_ahash_init(req))
1463 		goto clear_hash;
1464 
1465 	if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len))
1466 		goto clear_hash;
1467 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1468 		goto clear_hash;
1469 	if (tcp_md5_hash_key(hp, key))
1470 		goto clear_hash;
1471 	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1472 	if (crypto_ahash_final(req))
1473 		goto clear_hash;
1474 
1475 	tcp_put_md5sig_pool();
1476 	return 0;
1477 
1478 clear_hash:
1479 	tcp_put_md5sig_pool();
1480 clear_hash_noput:
1481 	memset(md5_hash, 0, 16);
1482 	return 1;
1483 }
1484 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1485 
1486 #endif
1487 
1488 static void tcp_v4_init_req(struct request_sock *req,
1489 			    const struct sock *sk_listener,
1490 			    struct sk_buff *skb)
1491 {
1492 	struct inet_request_sock *ireq = inet_rsk(req);
1493 	struct net *net = sock_net(sk_listener);
1494 
1495 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1496 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1497 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1498 }
1499 
1500 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1501 					  struct sk_buff *skb,
1502 					  struct flowi *fl,
1503 					  struct request_sock *req)
1504 {
1505 	tcp_v4_init_req(req, sk, skb);
1506 
1507 	if (security_inet_conn_request(sk, skb, req))
1508 		return NULL;
1509 
1510 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1511 }
1512 
1513 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1514 	.family		=	PF_INET,
1515 	.obj_size	=	sizeof(struct tcp_request_sock),
1516 	.rtx_syn_ack	=	tcp_rtx_synack,
1517 	.send_ack	=	tcp_v4_reqsk_send_ack,
1518 	.destructor	=	tcp_v4_reqsk_destructor,
1519 	.send_reset	=	tcp_v4_send_reset,
1520 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1521 };
1522 
1523 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1524 	.mss_clamp	=	TCP_MSS_DEFAULT,
1525 #ifdef CONFIG_TCP_MD5SIG
1526 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1527 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1528 #endif
1529 #ifdef CONFIG_SYN_COOKIES
1530 	.cookie_init_seq =	cookie_v4_init_sequence,
1531 #endif
1532 	.route_req	=	tcp_v4_route_req,
1533 	.init_seq	=	tcp_v4_init_seq,
1534 	.init_ts_off	=	tcp_v4_init_ts_off,
1535 	.send_synack	=	tcp_v4_send_synack,
1536 };
1537 
1538 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1539 {
1540 	/* Never answer to SYNs send to broadcast or multicast */
1541 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1542 		goto drop;
1543 
1544 	return tcp_conn_request(&tcp_request_sock_ops,
1545 				&tcp_request_sock_ipv4_ops, sk, skb);
1546 
1547 drop:
1548 	tcp_listendrop(sk);
1549 	return 0;
1550 }
1551 EXPORT_SYMBOL(tcp_v4_conn_request);
1552 
1553 
1554 /*
1555  * The three way handshake has completed - we got a valid synack -
1556  * now create the new socket.
1557  */
1558 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1559 				  struct request_sock *req,
1560 				  struct dst_entry *dst,
1561 				  struct request_sock *req_unhash,
1562 				  bool *own_req)
1563 {
1564 	struct inet_request_sock *ireq;
1565 	bool found_dup_sk = false;
1566 	struct inet_sock *newinet;
1567 	struct tcp_sock *newtp;
1568 	struct sock *newsk;
1569 #ifdef CONFIG_TCP_MD5SIG
1570 	const union tcp_md5_addr *addr;
1571 	struct tcp_md5sig_key *key;
1572 	int l3index;
1573 #endif
1574 	struct ip_options_rcu *inet_opt;
1575 
1576 	if (sk_acceptq_is_full(sk))
1577 		goto exit_overflow;
1578 
1579 	newsk = tcp_create_openreq_child(sk, req, skb);
1580 	if (!newsk)
1581 		goto exit_nonewsk;
1582 
1583 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1584 	inet_sk_rx_dst_set(newsk, skb);
1585 
1586 	newtp		      = tcp_sk(newsk);
1587 	newinet		      = inet_sk(newsk);
1588 	ireq		      = inet_rsk(req);
1589 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1590 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1591 	newsk->sk_bound_dev_if = ireq->ir_iif;
1592 	newinet->inet_saddr   = ireq->ir_loc_addr;
1593 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1594 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1595 	newinet->mc_index     = inet_iif(skb);
1596 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1597 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1598 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1599 	if (inet_opt)
1600 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1601 	atomic_set(&newinet->inet_id, get_random_u16());
1602 
1603 	/* Set ToS of the new socket based upon the value of incoming SYN.
1604 	 * ECT bits are set later in tcp_init_transfer().
1605 	 */
1606 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1607 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1608 
1609 	if (!dst) {
1610 		dst = inet_csk_route_child_sock(sk, newsk, req);
1611 		if (!dst)
1612 			goto put_and_exit;
1613 	} else {
1614 		/* syncookie case : see end of cookie_v4_check() */
1615 	}
1616 	sk_setup_caps(newsk, dst);
1617 
1618 	tcp_ca_openreq_child(newsk, dst);
1619 
1620 	tcp_sync_mss(newsk, dst_mtu(dst));
1621 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1622 
1623 	tcp_initialize_rcv_mss(newsk);
1624 
1625 #ifdef CONFIG_TCP_MD5SIG
1626 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1627 	/* Copy over the MD5 key from the original socket */
1628 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1629 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1630 	if (key) {
1631 		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1632 			goto put_and_exit;
1633 		sk_gso_disable(newsk);
1634 	}
1635 #endif
1636 
1637 	if (__inet_inherit_port(sk, newsk) < 0)
1638 		goto put_and_exit;
1639 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1640 				       &found_dup_sk);
1641 	if (likely(*own_req)) {
1642 		tcp_move_syn(newtp, req);
1643 		ireq->ireq_opt = NULL;
1644 	} else {
1645 		newinet->inet_opt = NULL;
1646 
1647 		if (!req_unhash && found_dup_sk) {
1648 			/* This code path should only be executed in the
1649 			 * syncookie case only
1650 			 */
1651 			bh_unlock_sock(newsk);
1652 			sock_put(newsk);
1653 			newsk = NULL;
1654 		}
1655 	}
1656 	return newsk;
1657 
1658 exit_overflow:
1659 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1660 exit_nonewsk:
1661 	dst_release(dst);
1662 exit:
1663 	tcp_listendrop(sk);
1664 	return NULL;
1665 put_and_exit:
1666 	newinet->inet_opt = NULL;
1667 	inet_csk_prepare_forced_close(newsk);
1668 	tcp_done(newsk);
1669 	goto exit;
1670 }
1671 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1672 
1673 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1674 {
1675 #ifdef CONFIG_SYN_COOKIES
1676 	const struct tcphdr *th = tcp_hdr(skb);
1677 
1678 	if (!th->syn)
1679 		sk = cookie_v4_check(sk, skb);
1680 #endif
1681 	return sk;
1682 }
1683 
1684 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1685 			 struct tcphdr *th, u32 *cookie)
1686 {
1687 	u16 mss = 0;
1688 #ifdef CONFIG_SYN_COOKIES
1689 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1690 				    &tcp_request_sock_ipv4_ops, sk, th);
1691 	if (mss) {
1692 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1693 		tcp_synq_overflow(sk);
1694 	}
1695 #endif
1696 	return mss;
1697 }
1698 
1699 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1700 							   u32));
1701 /* The socket must have it's spinlock held when we get
1702  * here, unless it is a TCP_LISTEN socket.
1703  *
1704  * We have a potential double-lock case here, so even when
1705  * doing backlog processing we use the BH locking scheme.
1706  * This is because we cannot sleep with the original spinlock
1707  * held.
1708  */
1709 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1710 {
1711 	enum skb_drop_reason reason;
1712 	struct sock *rsk;
1713 
1714 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1715 		struct dst_entry *dst;
1716 
1717 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1718 						lockdep_sock_is_held(sk));
1719 
1720 		sock_rps_save_rxhash(sk, skb);
1721 		sk_mark_napi_id(sk, skb);
1722 		if (dst) {
1723 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1724 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1725 					     dst, 0)) {
1726 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1727 				dst_release(dst);
1728 			}
1729 		}
1730 		tcp_rcv_established(sk, skb);
1731 		return 0;
1732 	}
1733 
1734 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
1735 	if (tcp_checksum_complete(skb))
1736 		goto csum_err;
1737 
1738 	if (sk->sk_state == TCP_LISTEN) {
1739 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1740 
1741 		if (!nsk)
1742 			goto discard;
1743 		if (nsk != sk) {
1744 			if (tcp_child_process(sk, nsk, skb)) {
1745 				rsk = nsk;
1746 				goto reset;
1747 			}
1748 			return 0;
1749 		}
1750 	} else
1751 		sock_rps_save_rxhash(sk, skb);
1752 
1753 	if (tcp_rcv_state_process(sk, skb)) {
1754 		rsk = sk;
1755 		goto reset;
1756 	}
1757 	return 0;
1758 
1759 reset:
1760 	tcp_v4_send_reset(rsk, skb);
1761 discard:
1762 	kfree_skb_reason(skb, reason);
1763 	/* Be careful here. If this function gets more complicated and
1764 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1765 	 * might be destroyed here. This current version compiles correctly,
1766 	 * but you have been warned.
1767 	 */
1768 	return 0;
1769 
1770 csum_err:
1771 	reason = SKB_DROP_REASON_TCP_CSUM;
1772 	trace_tcp_bad_csum(skb);
1773 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1774 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1775 	goto discard;
1776 }
1777 EXPORT_SYMBOL(tcp_v4_do_rcv);
1778 
1779 int tcp_v4_early_demux(struct sk_buff *skb)
1780 {
1781 	struct net *net = dev_net(skb->dev);
1782 	const struct iphdr *iph;
1783 	const struct tcphdr *th;
1784 	struct sock *sk;
1785 
1786 	if (skb->pkt_type != PACKET_HOST)
1787 		return 0;
1788 
1789 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1790 		return 0;
1791 
1792 	iph = ip_hdr(skb);
1793 	th = tcp_hdr(skb);
1794 
1795 	if (th->doff < sizeof(struct tcphdr) / 4)
1796 		return 0;
1797 
1798 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1799 				       iph->saddr, th->source,
1800 				       iph->daddr, ntohs(th->dest),
1801 				       skb->skb_iif, inet_sdif(skb));
1802 	if (sk) {
1803 		skb->sk = sk;
1804 		skb->destructor = sock_edemux;
1805 		if (sk_fullsock(sk)) {
1806 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1807 
1808 			if (dst)
1809 				dst = dst_check(dst, 0);
1810 			if (dst &&
1811 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1812 				skb_dst_set_noref(skb, dst);
1813 		}
1814 	}
1815 	return 0;
1816 }
1817 
1818 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1819 		     enum skb_drop_reason *reason)
1820 {
1821 	u32 limit, tail_gso_size, tail_gso_segs;
1822 	struct skb_shared_info *shinfo;
1823 	const struct tcphdr *th;
1824 	struct tcphdr *thtail;
1825 	struct sk_buff *tail;
1826 	unsigned int hdrlen;
1827 	bool fragstolen;
1828 	u32 gso_segs;
1829 	u32 gso_size;
1830 	int delta;
1831 
1832 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
1833 	 * we can fix skb->truesize to its real value to avoid future drops.
1834 	 * This is valid because skb is not yet charged to the socket.
1835 	 * It has been noticed pure SACK packets were sometimes dropped
1836 	 * (if cooked by drivers without copybreak feature).
1837 	 */
1838 	skb_condense(skb);
1839 
1840 	skb_dst_drop(skb);
1841 
1842 	if (unlikely(tcp_checksum_complete(skb))) {
1843 		bh_unlock_sock(sk);
1844 		trace_tcp_bad_csum(skb);
1845 		*reason = SKB_DROP_REASON_TCP_CSUM;
1846 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1847 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1848 		return true;
1849 	}
1850 
1851 	/* Attempt coalescing to last skb in backlog, even if we are
1852 	 * above the limits.
1853 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
1854 	 */
1855 	th = (const struct tcphdr *)skb->data;
1856 	hdrlen = th->doff * 4;
1857 
1858 	tail = sk->sk_backlog.tail;
1859 	if (!tail)
1860 		goto no_coalesce;
1861 	thtail = (struct tcphdr *)tail->data;
1862 
1863 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
1864 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
1865 	    ((TCP_SKB_CB(tail)->tcp_flags |
1866 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
1867 	    !((TCP_SKB_CB(tail)->tcp_flags &
1868 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
1869 	    ((TCP_SKB_CB(tail)->tcp_flags ^
1870 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
1871 #ifdef CONFIG_TLS_DEVICE
1872 	    tail->decrypted != skb->decrypted ||
1873 #endif
1874 	    !mptcp_skb_can_collapse(tail, skb) ||
1875 	    thtail->doff != th->doff ||
1876 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
1877 		goto no_coalesce;
1878 
1879 	__skb_pull(skb, hdrlen);
1880 
1881 	shinfo = skb_shinfo(skb);
1882 	gso_size = shinfo->gso_size ?: skb->len;
1883 	gso_segs = shinfo->gso_segs ?: 1;
1884 
1885 	shinfo = skb_shinfo(tail);
1886 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
1887 	tail_gso_segs = shinfo->gso_segs ?: 1;
1888 
1889 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
1890 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
1891 
1892 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
1893 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
1894 			thtail->window = th->window;
1895 		}
1896 
1897 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
1898 		 * thtail->fin, so that the fast path in tcp_rcv_established()
1899 		 * is not entered if we append a packet with a FIN.
1900 		 * SYN, RST, URG are not present.
1901 		 * ACK is set on both packets.
1902 		 * PSH : we do not really care in TCP stack,
1903 		 *       at least for 'GRO' packets.
1904 		 */
1905 		thtail->fin |= th->fin;
1906 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1907 
1908 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1909 			TCP_SKB_CB(tail)->has_rxtstamp = true;
1910 			tail->tstamp = skb->tstamp;
1911 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
1912 		}
1913 
1914 		/* Not as strict as GRO. We only need to carry mss max value */
1915 		shinfo->gso_size = max(gso_size, tail_gso_size);
1916 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
1917 
1918 		sk->sk_backlog.len += delta;
1919 		__NET_INC_STATS(sock_net(sk),
1920 				LINUX_MIB_TCPBACKLOGCOALESCE);
1921 		kfree_skb_partial(skb, fragstolen);
1922 		return false;
1923 	}
1924 	__skb_push(skb, hdrlen);
1925 
1926 no_coalesce:
1927 	limit = (u32)READ_ONCE(sk->sk_rcvbuf) + (u32)(READ_ONCE(sk->sk_sndbuf) >> 1);
1928 
1929 	/* Only socket owner can try to collapse/prune rx queues
1930 	 * to reduce memory overhead, so add a little headroom here.
1931 	 * Few sockets backlog are possibly concurrently non empty.
1932 	 */
1933 	limit += 64 * 1024;
1934 
1935 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
1936 		bh_unlock_sock(sk);
1937 		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
1938 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
1939 		return true;
1940 	}
1941 	return false;
1942 }
1943 EXPORT_SYMBOL(tcp_add_backlog);
1944 
1945 int tcp_filter(struct sock *sk, struct sk_buff *skb)
1946 {
1947 	struct tcphdr *th = (struct tcphdr *)skb->data;
1948 
1949 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
1950 }
1951 EXPORT_SYMBOL(tcp_filter);
1952 
1953 static void tcp_v4_restore_cb(struct sk_buff *skb)
1954 {
1955 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
1956 		sizeof(struct inet_skb_parm));
1957 }
1958 
1959 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
1960 			   const struct tcphdr *th)
1961 {
1962 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1963 	 * barrier() makes sure compiler wont play fool^Waliasing games.
1964 	 */
1965 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1966 		sizeof(struct inet_skb_parm));
1967 	barrier();
1968 
1969 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1970 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1971 				    skb->len - th->doff * 4);
1972 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1973 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1974 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1975 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1976 	TCP_SKB_CB(skb)->sacked	 = 0;
1977 	TCP_SKB_CB(skb)->has_rxtstamp =
1978 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
1979 }
1980 
1981 /*
1982  *	From tcp_input.c
1983  */
1984 
1985 int tcp_v4_rcv(struct sk_buff *skb)
1986 {
1987 	struct net *net = dev_net(skb->dev);
1988 	enum skb_drop_reason drop_reason;
1989 	int sdif = inet_sdif(skb);
1990 	int dif = inet_iif(skb);
1991 	const struct iphdr *iph;
1992 	const struct tcphdr *th;
1993 	bool refcounted;
1994 	struct sock *sk;
1995 	int ret;
1996 
1997 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
1998 	if (skb->pkt_type != PACKET_HOST)
1999 		goto discard_it;
2000 
2001 	/* Count it even if it's bad */
2002 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2003 
2004 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2005 		goto discard_it;
2006 
2007 	th = (const struct tcphdr *)skb->data;
2008 
2009 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2010 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2011 		goto bad_packet;
2012 	}
2013 	if (!pskb_may_pull(skb, th->doff * 4))
2014 		goto discard_it;
2015 
2016 	/* An explanation is required here, I think.
2017 	 * Packet length and doff are validated by header prediction,
2018 	 * provided case of th->doff==0 is eliminated.
2019 	 * So, we defer the checks. */
2020 
2021 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2022 		goto csum_error;
2023 
2024 	th = (const struct tcphdr *)skb->data;
2025 	iph = ip_hdr(skb);
2026 lookup:
2027 	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2028 			       skb, __tcp_hdrlen(th), th->source,
2029 			       th->dest, sdif, &refcounted);
2030 	if (!sk)
2031 		goto no_tcp_socket;
2032 
2033 process:
2034 	if (sk->sk_state == TCP_TIME_WAIT)
2035 		goto do_time_wait;
2036 
2037 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2038 		struct request_sock *req = inet_reqsk(sk);
2039 		bool req_stolen = false;
2040 		struct sock *nsk;
2041 
2042 		sk = req->rsk_listener;
2043 		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2044 			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2045 		else
2046 			drop_reason = tcp_inbound_md5_hash(sk, skb,
2047 						   &iph->saddr, &iph->daddr,
2048 						   AF_INET, dif, sdif);
2049 		if (unlikely(drop_reason)) {
2050 			sk_drops_add(sk, skb);
2051 			reqsk_put(req);
2052 			goto discard_it;
2053 		}
2054 		if (tcp_checksum_complete(skb)) {
2055 			reqsk_put(req);
2056 			goto csum_error;
2057 		}
2058 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2059 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2060 			if (!nsk) {
2061 				inet_csk_reqsk_queue_drop_and_put(sk, req);
2062 				goto lookup;
2063 			}
2064 			sk = nsk;
2065 			/* reuseport_migrate_sock() has already held one sk_refcnt
2066 			 * before returning.
2067 			 */
2068 		} else {
2069 			/* We own a reference on the listener, increase it again
2070 			 * as we might lose it too soon.
2071 			 */
2072 			sock_hold(sk);
2073 		}
2074 		refcounted = true;
2075 		nsk = NULL;
2076 		if (!tcp_filter(sk, skb)) {
2077 			th = (const struct tcphdr *)skb->data;
2078 			iph = ip_hdr(skb);
2079 			tcp_v4_fill_cb(skb, iph, th);
2080 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2081 		} else {
2082 			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2083 		}
2084 		if (!nsk) {
2085 			reqsk_put(req);
2086 			if (req_stolen) {
2087 				/* Another cpu got exclusive access to req
2088 				 * and created a full blown socket.
2089 				 * Try to feed this packet to this socket
2090 				 * instead of discarding it.
2091 				 */
2092 				tcp_v4_restore_cb(skb);
2093 				sock_put(sk);
2094 				goto lookup;
2095 			}
2096 			goto discard_and_relse;
2097 		}
2098 		nf_reset_ct(skb);
2099 		if (nsk == sk) {
2100 			reqsk_put(req);
2101 			tcp_v4_restore_cb(skb);
2102 		} else if (tcp_child_process(sk, nsk, skb)) {
2103 			tcp_v4_send_reset(nsk, skb);
2104 			goto discard_and_relse;
2105 		} else {
2106 			sock_put(sk);
2107 			return 0;
2108 		}
2109 	}
2110 
2111 	if (static_branch_unlikely(&ip4_min_ttl)) {
2112 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2113 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2114 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2115 			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2116 			goto discard_and_relse;
2117 		}
2118 	}
2119 
2120 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2121 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2122 		goto discard_and_relse;
2123 	}
2124 
2125 	drop_reason = tcp_inbound_md5_hash(sk, skb, &iph->saddr,
2126 					   &iph->daddr, AF_INET, dif, sdif);
2127 	if (drop_reason)
2128 		goto discard_and_relse;
2129 
2130 	nf_reset_ct(skb);
2131 
2132 	if (tcp_filter(sk, skb)) {
2133 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2134 		goto discard_and_relse;
2135 	}
2136 	th = (const struct tcphdr *)skb->data;
2137 	iph = ip_hdr(skb);
2138 	tcp_v4_fill_cb(skb, iph, th);
2139 
2140 	skb->dev = NULL;
2141 
2142 	if (sk->sk_state == TCP_LISTEN) {
2143 		ret = tcp_v4_do_rcv(sk, skb);
2144 		goto put_and_return;
2145 	}
2146 
2147 	sk_incoming_cpu_update(sk);
2148 
2149 	bh_lock_sock_nested(sk);
2150 	tcp_segs_in(tcp_sk(sk), skb);
2151 	ret = 0;
2152 	if (!sock_owned_by_user(sk)) {
2153 		ret = tcp_v4_do_rcv(sk, skb);
2154 	} else {
2155 		if (tcp_add_backlog(sk, skb, &drop_reason))
2156 			goto discard_and_relse;
2157 	}
2158 	bh_unlock_sock(sk);
2159 
2160 put_and_return:
2161 	if (refcounted)
2162 		sock_put(sk);
2163 
2164 	return ret;
2165 
2166 no_tcp_socket:
2167 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2168 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2169 		goto discard_it;
2170 
2171 	tcp_v4_fill_cb(skb, iph, th);
2172 
2173 	if (tcp_checksum_complete(skb)) {
2174 csum_error:
2175 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2176 		trace_tcp_bad_csum(skb);
2177 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2178 bad_packet:
2179 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2180 	} else {
2181 		tcp_v4_send_reset(NULL, skb);
2182 	}
2183 
2184 discard_it:
2185 	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2186 	/* Discard frame. */
2187 	kfree_skb_reason(skb, drop_reason);
2188 	return 0;
2189 
2190 discard_and_relse:
2191 	sk_drops_add(sk, skb);
2192 	if (refcounted)
2193 		sock_put(sk);
2194 	goto discard_it;
2195 
2196 do_time_wait:
2197 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2198 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2199 		inet_twsk_put(inet_twsk(sk));
2200 		goto discard_it;
2201 	}
2202 
2203 	tcp_v4_fill_cb(skb, iph, th);
2204 
2205 	if (tcp_checksum_complete(skb)) {
2206 		inet_twsk_put(inet_twsk(sk));
2207 		goto csum_error;
2208 	}
2209 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2210 	case TCP_TW_SYN: {
2211 		struct sock *sk2 = inet_lookup_listener(net,
2212 							net->ipv4.tcp_death_row.hashinfo,
2213 							skb, __tcp_hdrlen(th),
2214 							iph->saddr, th->source,
2215 							iph->daddr, th->dest,
2216 							inet_iif(skb),
2217 							sdif);
2218 		if (sk2) {
2219 			inet_twsk_deschedule_put(inet_twsk(sk));
2220 			sk = sk2;
2221 			tcp_v4_restore_cb(skb);
2222 			refcounted = false;
2223 			goto process;
2224 		}
2225 	}
2226 		/* to ACK */
2227 		fallthrough;
2228 	case TCP_TW_ACK:
2229 		tcp_v4_timewait_ack(sk, skb);
2230 		break;
2231 	case TCP_TW_RST:
2232 		tcp_v4_send_reset(sk, skb);
2233 		inet_twsk_deschedule_put(inet_twsk(sk));
2234 		goto discard_it;
2235 	case TCP_TW_SUCCESS:;
2236 	}
2237 	goto discard_it;
2238 }
2239 
2240 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2241 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2242 	.twsk_unique	= tcp_twsk_unique,
2243 	.twsk_destructor= tcp_twsk_destructor,
2244 };
2245 
2246 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2247 {
2248 	struct dst_entry *dst = skb_dst(skb);
2249 
2250 	if (dst && dst_hold_safe(dst)) {
2251 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2252 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2253 	}
2254 }
2255 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2256 
2257 const struct inet_connection_sock_af_ops ipv4_specific = {
2258 	.queue_xmit	   = ip_queue_xmit,
2259 	.send_check	   = tcp_v4_send_check,
2260 	.rebuild_header	   = inet_sk_rebuild_header,
2261 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2262 	.conn_request	   = tcp_v4_conn_request,
2263 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2264 	.net_header_len	   = sizeof(struct iphdr),
2265 	.setsockopt	   = ip_setsockopt,
2266 	.getsockopt	   = ip_getsockopt,
2267 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2268 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2269 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2270 };
2271 EXPORT_SYMBOL(ipv4_specific);
2272 
2273 #ifdef CONFIG_TCP_MD5SIG
2274 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2275 	.md5_lookup		= tcp_v4_md5_lookup,
2276 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2277 	.md5_parse		= tcp_v4_parse_md5_keys,
2278 };
2279 #endif
2280 
2281 /* NOTE: A lot of things set to zero explicitly by call to
2282  *       sk_alloc() so need not be done here.
2283  */
2284 static int tcp_v4_init_sock(struct sock *sk)
2285 {
2286 	struct inet_connection_sock *icsk = inet_csk(sk);
2287 
2288 	tcp_init_sock(sk);
2289 
2290 	icsk->icsk_af_ops = &ipv4_specific;
2291 
2292 #ifdef CONFIG_TCP_MD5SIG
2293 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2294 #endif
2295 
2296 	return 0;
2297 }
2298 
2299 void tcp_v4_destroy_sock(struct sock *sk)
2300 {
2301 	struct tcp_sock *tp = tcp_sk(sk);
2302 
2303 	trace_tcp_destroy_sock(sk);
2304 
2305 	tcp_clear_xmit_timers(sk);
2306 
2307 	tcp_cleanup_congestion_control(sk);
2308 
2309 	tcp_cleanup_ulp(sk);
2310 
2311 	/* Cleanup up the write buffer. */
2312 	tcp_write_queue_purge(sk);
2313 
2314 	/* Check if we want to disable active TFO */
2315 	tcp_fastopen_active_disable_ofo_check(sk);
2316 
2317 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2318 	skb_rbtree_purge(&tp->out_of_order_queue);
2319 
2320 #ifdef CONFIG_TCP_MD5SIG
2321 	/* Clean up the MD5 key list, if any */
2322 	if (tp->md5sig_info) {
2323 		tcp_clear_md5_list(sk);
2324 		kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu);
2325 		tp->md5sig_info = NULL;
2326 		static_branch_slow_dec_deferred(&tcp_md5_needed);
2327 	}
2328 #endif
2329 
2330 	/* Clean up a referenced TCP bind bucket. */
2331 	if (inet_csk(sk)->icsk_bind_hash)
2332 		inet_put_port(sk);
2333 
2334 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2335 
2336 	/* If socket is aborted during connect operation */
2337 	tcp_free_fastopen_req(tp);
2338 	tcp_fastopen_destroy_cipher(sk);
2339 	tcp_saved_syn_free(tp);
2340 
2341 	sk_sockets_allocated_dec(sk);
2342 }
2343 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2344 
2345 #ifdef CONFIG_PROC_FS
2346 /* Proc filesystem TCP sock list dumping. */
2347 
2348 static unsigned short seq_file_family(const struct seq_file *seq);
2349 
2350 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2351 {
2352 	unsigned short family = seq_file_family(seq);
2353 
2354 	/* AF_UNSPEC is used as a match all */
2355 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2356 		net_eq(sock_net(sk), seq_file_net(seq)));
2357 }
2358 
2359 /* Find a non empty bucket (starting from st->bucket)
2360  * and return the first sk from it.
2361  */
2362 static void *listening_get_first(struct seq_file *seq)
2363 {
2364 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2365 	struct tcp_iter_state *st = seq->private;
2366 
2367 	st->offset = 0;
2368 	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2369 		struct inet_listen_hashbucket *ilb2;
2370 		struct hlist_nulls_node *node;
2371 		struct sock *sk;
2372 
2373 		ilb2 = &hinfo->lhash2[st->bucket];
2374 		if (hlist_nulls_empty(&ilb2->nulls_head))
2375 			continue;
2376 
2377 		spin_lock(&ilb2->lock);
2378 		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2379 			if (seq_sk_match(seq, sk))
2380 				return sk;
2381 		}
2382 		spin_unlock(&ilb2->lock);
2383 	}
2384 
2385 	return NULL;
2386 }
2387 
2388 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2389  * If "cur" is the last one in the st->bucket,
2390  * call listening_get_first() to return the first sk of the next
2391  * non empty bucket.
2392  */
2393 static void *listening_get_next(struct seq_file *seq, void *cur)
2394 {
2395 	struct tcp_iter_state *st = seq->private;
2396 	struct inet_listen_hashbucket *ilb2;
2397 	struct hlist_nulls_node *node;
2398 	struct inet_hashinfo *hinfo;
2399 	struct sock *sk = cur;
2400 
2401 	++st->num;
2402 	++st->offset;
2403 
2404 	sk = sk_nulls_next(sk);
2405 	sk_nulls_for_each_from(sk, node) {
2406 		if (seq_sk_match(seq, sk))
2407 			return sk;
2408 	}
2409 
2410 	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2411 	ilb2 = &hinfo->lhash2[st->bucket];
2412 	spin_unlock(&ilb2->lock);
2413 	++st->bucket;
2414 	return listening_get_first(seq);
2415 }
2416 
2417 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2418 {
2419 	struct tcp_iter_state *st = seq->private;
2420 	void *rc;
2421 
2422 	st->bucket = 0;
2423 	st->offset = 0;
2424 	rc = listening_get_first(seq);
2425 
2426 	while (rc && *pos) {
2427 		rc = listening_get_next(seq, rc);
2428 		--*pos;
2429 	}
2430 	return rc;
2431 }
2432 
2433 static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2434 				const struct tcp_iter_state *st)
2435 {
2436 	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2437 }
2438 
2439 /*
2440  * Get first established socket starting from bucket given in st->bucket.
2441  * If st->bucket is zero, the very first socket in the hash is returned.
2442  */
2443 static void *established_get_first(struct seq_file *seq)
2444 {
2445 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2446 	struct tcp_iter_state *st = seq->private;
2447 
2448 	st->offset = 0;
2449 	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2450 		struct sock *sk;
2451 		struct hlist_nulls_node *node;
2452 		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2453 
2454 		cond_resched();
2455 
2456 		/* Lockless fast path for the common case of empty buckets */
2457 		if (empty_bucket(hinfo, st))
2458 			continue;
2459 
2460 		spin_lock_bh(lock);
2461 		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2462 			if (seq_sk_match(seq, sk))
2463 				return sk;
2464 		}
2465 		spin_unlock_bh(lock);
2466 	}
2467 
2468 	return NULL;
2469 }
2470 
2471 static void *established_get_next(struct seq_file *seq, void *cur)
2472 {
2473 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2474 	struct tcp_iter_state *st = seq->private;
2475 	struct hlist_nulls_node *node;
2476 	struct sock *sk = cur;
2477 
2478 	++st->num;
2479 	++st->offset;
2480 
2481 	sk = sk_nulls_next(sk);
2482 
2483 	sk_nulls_for_each_from(sk, node) {
2484 		if (seq_sk_match(seq, sk))
2485 			return sk;
2486 	}
2487 
2488 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2489 	++st->bucket;
2490 	return established_get_first(seq);
2491 }
2492 
2493 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2494 {
2495 	struct tcp_iter_state *st = seq->private;
2496 	void *rc;
2497 
2498 	st->bucket = 0;
2499 	rc = established_get_first(seq);
2500 
2501 	while (rc && pos) {
2502 		rc = established_get_next(seq, rc);
2503 		--pos;
2504 	}
2505 	return rc;
2506 }
2507 
2508 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2509 {
2510 	void *rc;
2511 	struct tcp_iter_state *st = seq->private;
2512 
2513 	st->state = TCP_SEQ_STATE_LISTENING;
2514 	rc	  = listening_get_idx(seq, &pos);
2515 
2516 	if (!rc) {
2517 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2518 		rc	  = established_get_idx(seq, pos);
2519 	}
2520 
2521 	return rc;
2522 }
2523 
2524 static void *tcp_seek_last_pos(struct seq_file *seq)
2525 {
2526 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2527 	struct tcp_iter_state *st = seq->private;
2528 	int bucket = st->bucket;
2529 	int offset = st->offset;
2530 	int orig_num = st->num;
2531 	void *rc = NULL;
2532 
2533 	switch (st->state) {
2534 	case TCP_SEQ_STATE_LISTENING:
2535 		if (st->bucket > hinfo->lhash2_mask)
2536 			break;
2537 		rc = listening_get_first(seq);
2538 		while (offset-- && rc && bucket == st->bucket)
2539 			rc = listening_get_next(seq, rc);
2540 		if (rc)
2541 			break;
2542 		st->bucket = 0;
2543 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2544 		fallthrough;
2545 	case TCP_SEQ_STATE_ESTABLISHED:
2546 		if (st->bucket > hinfo->ehash_mask)
2547 			break;
2548 		rc = established_get_first(seq);
2549 		while (offset-- && rc && bucket == st->bucket)
2550 			rc = established_get_next(seq, rc);
2551 	}
2552 
2553 	st->num = orig_num;
2554 
2555 	return rc;
2556 }
2557 
2558 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2559 {
2560 	struct tcp_iter_state *st = seq->private;
2561 	void *rc;
2562 
2563 	if (*pos && *pos == st->last_pos) {
2564 		rc = tcp_seek_last_pos(seq);
2565 		if (rc)
2566 			goto out;
2567 	}
2568 
2569 	st->state = TCP_SEQ_STATE_LISTENING;
2570 	st->num = 0;
2571 	st->bucket = 0;
2572 	st->offset = 0;
2573 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2574 
2575 out:
2576 	st->last_pos = *pos;
2577 	return rc;
2578 }
2579 EXPORT_SYMBOL(tcp_seq_start);
2580 
2581 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2582 {
2583 	struct tcp_iter_state *st = seq->private;
2584 	void *rc = NULL;
2585 
2586 	if (v == SEQ_START_TOKEN) {
2587 		rc = tcp_get_idx(seq, 0);
2588 		goto out;
2589 	}
2590 
2591 	switch (st->state) {
2592 	case TCP_SEQ_STATE_LISTENING:
2593 		rc = listening_get_next(seq, v);
2594 		if (!rc) {
2595 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2596 			st->bucket = 0;
2597 			st->offset = 0;
2598 			rc	  = established_get_first(seq);
2599 		}
2600 		break;
2601 	case TCP_SEQ_STATE_ESTABLISHED:
2602 		rc = established_get_next(seq, v);
2603 		break;
2604 	}
2605 out:
2606 	++*pos;
2607 	st->last_pos = *pos;
2608 	return rc;
2609 }
2610 EXPORT_SYMBOL(tcp_seq_next);
2611 
2612 void tcp_seq_stop(struct seq_file *seq, void *v)
2613 {
2614 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2615 	struct tcp_iter_state *st = seq->private;
2616 
2617 	switch (st->state) {
2618 	case TCP_SEQ_STATE_LISTENING:
2619 		if (v != SEQ_START_TOKEN)
2620 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2621 		break;
2622 	case TCP_SEQ_STATE_ESTABLISHED:
2623 		if (v)
2624 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2625 		break;
2626 	}
2627 }
2628 EXPORT_SYMBOL(tcp_seq_stop);
2629 
2630 static void get_openreq4(const struct request_sock *req,
2631 			 struct seq_file *f, int i)
2632 {
2633 	const struct inet_request_sock *ireq = inet_rsk(req);
2634 	long delta = req->rsk_timer.expires - jiffies;
2635 
2636 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2637 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2638 		i,
2639 		ireq->ir_loc_addr,
2640 		ireq->ir_num,
2641 		ireq->ir_rmt_addr,
2642 		ntohs(ireq->ir_rmt_port),
2643 		TCP_SYN_RECV,
2644 		0, 0, /* could print option size, but that is af dependent. */
2645 		1,    /* timers active (only the expire timer) */
2646 		jiffies_delta_to_clock_t(delta),
2647 		req->num_timeout,
2648 		from_kuid_munged(seq_user_ns(f),
2649 				 sock_i_uid(req->rsk_listener)),
2650 		0,  /* non standard timer */
2651 		0, /* open_requests have no inode */
2652 		0,
2653 		req);
2654 }
2655 
2656 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2657 {
2658 	int timer_active;
2659 	unsigned long timer_expires;
2660 	const struct tcp_sock *tp = tcp_sk(sk);
2661 	const struct inet_connection_sock *icsk = inet_csk(sk);
2662 	const struct inet_sock *inet = inet_sk(sk);
2663 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2664 	__be32 dest = inet->inet_daddr;
2665 	__be32 src = inet->inet_rcv_saddr;
2666 	__u16 destp = ntohs(inet->inet_dport);
2667 	__u16 srcp = ntohs(inet->inet_sport);
2668 	int rx_queue;
2669 	int state;
2670 
2671 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2672 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2673 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2674 		timer_active	= 1;
2675 		timer_expires	= icsk->icsk_timeout;
2676 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2677 		timer_active	= 4;
2678 		timer_expires	= icsk->icsk_timeout;
2679 	} else if (timer_pending(&sk->sk_timer)) {
2680 		timer_active	= 2;
2681 		timer_expires	= sk->sk_timer.expires;
2682 	} else {
2683 		timer_active	= 0;
2684 		timer_expires = jiffies;
2685 	}
2686 
2687 	state = inet_sk_state_load(sk);
2688 	if (state == TCP_LISTEN)
2689 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2690 	else
2691 		/* Because we don't lock the socket,
2692 		 * we might find a transient negative value.
2693 		 */
2694 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2695 				      READ_ONCE(tp->copied_seq), 0);
2696 
2697 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2698 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2699 		i, src, srcp, dest, destp, state,
2700 		READ_ONCE(tp->write_seq) - tp->snd_una,
2701 		rx_queue,
2702 		timer_active,
2703 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2704 		icsk->icsk_retransmits,
2705 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2706 		icsk->icsk_probes_out,
2707 		sock_i_ino(sk),
2708 		refcount_read(&sk->sk_refcnt), sk,
2709 		jiffies_to_clock_t(icsk->icsk_rto),
2710 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2711 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2712 		tcp_snd_cwnd(tp),
2713 		state == TCP_LISTEN ?
2714 		    fastopenq->max_qlen :
2715 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2716 }
2717 
2718 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2719 			       struct seq_file *f, int i)
2720 {
2721 	long delta = tw->tw_timer.expires - jiffies;
2722 	__be32 dest, src;
2723 	__u16 destp, srcp;
2724 
2725 	dest  = tw->tw_daddr;
2726 	src   = tw->tw_rcv_saddr;
2727 	destp = ntohs(tw->tw_dport);
2728 	srcp  = ntohs(tw->tw_sport);
2729 
2730 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2731 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2732 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2733 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2734 		refcount_read(&tw->tw_refcnt), tw);
2735 }
2736 
2737 #define TMPSZ 150
2738 
2739 static int tcp4_seq_show(struct seq_file *seq, void *v)
2740 {
2741 	struct tcp_iter_state *st;
2742 	struct sock *sk = v;
2743 
2744 	seq_setwidth(seq, TMPSZ - 1);
2745 	if (v == SEQ_START_TOKEN) {
2746 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2747 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2748 			   "inode");
2749 		goto out;
2750 	}
2751 	st = seq->private;
2752 
2753 	if (sk->sk_state == TCP_TIME_WAIT)
2754 		get_timewait4_sock(v, seq, st->num);
2755 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2756 		get_openreq4(v, seq, st->num);
2757 	else
2758 		get_tcp4_sock(v, seq, st->num);
2759 out:
2760 	seq_pad(seq, '\n');
2761 	return 0;
2762 }
2763 
2764 #ifdef CONFIG_BPF_SYSCALL
2765 struct bpf_tcp_iter_state {
2766 	struct tcp_iter_state state;
2767 	unsigned int cur_sk;
2768 	unsigned int end_sk;
2769 	unsigned int max_sk;
2770 	struct sock **batch;
2771 	bool st_bucket_done;
2772 };
2773 
2774 struct bpf_iter__tcp {
2775 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2776 	__bpf_md_ptr(struct sock_common *, sk_common);
2777 	uid_t uid __aligned(8);
2778 };
2779 
2780 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2781 			     struct sock_common *sk_common, uid_t uid)
2782 {
2783 	struct bpf_iter__tcp ctx;
2784 
2785 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2786 	ctx.meta = meta;
2787 	ctx.sk_common = sk_common;
2788 	ctx.uid = uid;
2789 	return bpf_iter_run_prog(prog, &ctx);
2790 }
2791 
2792 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
2793 {
2794 	while (iter->cur_sk < iter->end_sk)
2795 		sock_gen_put(iter->batch[iter->cur_sk++]);
2796 }
2797 
2798 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
2799 				      unsigned int new_batch_sz)
2800 {
2801 	struct sock **new_batch;
2802 
2803 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
2804 			     GFP_USER | __GFP_NOWARN);
2805 	if (!new_batch)
2806 		return -ENOMEM;
2807 
2808 	bpf_iter_tcp_put_batch(iter);
2809 	kvfree(iter->batch);
2810 	iter->batch = new_batch;
2811 	iter->max_sk = new_batch_sz;
2812 
2813 	return 0;
2814 }
2815 
2816 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
2817 						 struct sock *start_sk)
2818 {
2819 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2820 	struct bpf_tcp_iter_state *iter = seq->private;
2821 	struct tcp_iter_state *st = &iter->state;
2822 	struct hlist_nulls_node *node;
2823 	unsigned int expected = 1;
2824 	struct sock *sk;
2825 
2826 	sock_hold(start_sk);
2827 	iter->batch[iter->end_sk++] = start_sk;
2828 
2829 	sk = sk_nulls_next(start_sk);
2830 	sk_nulls_for_each_from(sk, node) {
2831 		if (seq_sk_match(seq, sk)) {
2832 			if (iter->end_sk < iter->max_sk) {
2833 				sock_hold(sk);
2834 				iter->batch[iter->end_sk++] = sk;
2835 			}
2836 			expected++;
2837 		}
2838 	}
2839 	spin_unlock(&hinfo->lhash2[st->bucket].lock);
2840 
2841 	return expected;
2842 }
2843 
2844 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
2845 						   struct sock *start_sk)
2846 {
2847 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2848 	struct bpf_tcp_iter_state *iter = seq->private;
2849 	struct tcp_iter_state *st = &iter->state;
2850 	struct hlist_nulls_node *node;
2851 	unsigned int expected = 1;
2852 	struct sock *sk;
2853 
2854 	sock_hold(start_sk);
2855 	iter->batch[iter->end_sk++] = start_sk;
2856 
2857 	sk = sk_nulls_next(start_sk);
2858 	sk_nulls_for_each_from(sk, node) {
2859 		if (seq_sk_match(seq, sk)) {
2860 			if (iter->end_sk < iter->max_sk) {
2861 				sock_hold(sk);
2862 				iter->batch[iter->end_sk++] = sk;
2863 			}
2864 			expected++;
2865 		}
2866 	}
2867 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2868 
2869 	return expected;
2870 }
2871 
2872 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
2873 {
2874 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2875 	struct bpf_tcp_iter_state *iter = seq->private;
2876 	struct tcp_iter_state *st = &iter->state;
2877 	unsigned int expected;
2878 	bool resized = false;
2879 	struct sock *sk;
2880 
2881 	/* The st->bucket is done.  Directly advance to the next
2882 	 * bucket instead of having the tcp_seek_last_pos() to skip
2883 	 * one by one in the current bucket and eventually find out
2884 	 * it has to advance to the next bucket.
2885 	 */
2886 	if (iter->st_bucket_done) {
2887 		st->offset = 0;
2888 		st->bucket++;
2889 		if (st->state == TCP_SEQ_STATE_LISTENING &&
2890 		    st->bucket > hinfo->lhash2_mask) {
2891 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2892 			st->bucket = 0;
2893 		}
2894 	}
2895 
2896 again:
2897 	/* Get a new batch */
2898 	iter->cur_sk = 0;
2899 	iter->end_sk = 0;
2900 	iter->st_bucket_done = false;
2901 
2902 	sk = tcp_seek_last_pos(seq);
2903 	if (!sk)
2904 		return NULL; /* Done */
2905 
2906 	if (st->state == TCP_SEQ_STATE_LISTENING)
2907 		expected = bpf_iter_tcp_listening_batch(seq, sk);
2908 	else
2909 		expected = bpf_iter_tcp_established_batch(seq, sk);
2910 
2911 	if (iter->end_sk == expected) {
2912 		iter->st_bucket_done = true;
2913 		return sk;
2914 	}
2915 
2916 	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
2917 		resized = true;
2918 		goto again;
2919 	}
2920 
2921 	return sk;
2922 }
2923 
2924 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
2925 {
2926 	/* bpf iter does not support lseek, so it always
2927 	 * continue from where it was stop()-ped.
2928 	 */
2929 	if (*pos)
2930 		return bpf_iter_tcp_batch(seq);
2931 
2932 	return SEQ_START_TOKEN;
2933 }
2934 
2935 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2936 {
2937 	struct bpf_tcp_iter_state *iter = seq->private;
2938 	struct tcp_iter_state *st = &iter->state;
2939 	struct sock *sk;
2940 
2941 	/* Whenever seq_next() is called, the iter->cur_sk is
2942 	 * done with seq_show(), so advance to the next sk in
2943 	 * the batch.
2944 	 */
2945 	if (iter->cur_sk < iter->end_sk) {
2946 		/* Keeping st->num consistent in tcp_iter_state.
2947 		 * bpf_iter_tcp does not use st->num.
2948 		 * meta.seq_num is used instead.
2949 		 */
2950 		st->num++;
2951 		/* Move st->offset to the next sk in the bucket such that
2952 		 * the future start() will resume at st->offset in
2953 		 * st->bucket.  See tcp_seek_last_pos().
2954 		 */
2955 		st->offset++;
2956 		sock_gen_put(iter->batch[iter->cur_sk++]);
2957 	}
2958 
2959 	if (iter->cur_sk < iter->end_sk)
2960 		sk = iter->batch[iter->cur_sk];
2961 	else
2962 		sk = bpf_iter_tcp_batch(seq);
2963 
2964 	++*pos;
2965 	/* Keeping st->last_pos consistent in tcp_iter_state.
2966 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
2967 	 */
2968 	st->last_pos = *pos;
2969 	return sk;
2970 }
2971 
2972 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
2973 {
2974 	struct bpf_iter_meta meta;
2975 	struct bpf_prog *prog;
2976 	struct sock *sk = v;
2977 	uid_t uid;
2978 	int ret;
2979 
2980 	if (v == SEQ_START_TOKEN)
2981 		return 0;
2982 
2983 	if (sk_fullsock(sk))
2984 		lock_sock(sk);
2985 
2986 	if (unlikely(sk_unhashed(sk))) {
2987 		ret = SEQ_SKIP;
2988 		goto unlock;
2989 	}
2990 
2991 	if (sk->sk_state == TCP_TIME_WAIT) {
2992 		uid = 0;
2993 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
2994 		const struct request_sock *req = v;
2995 
2996 		uid = from_kuid_munged(seq_user_ns(seq),
2997 				       sock_i_uid(req->rsk_listener));
2998 	} else {
2999 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3000 	}
3001 
3002 	meta.seq = seq;
3003 	prog = bpf_iter_get_info(&meta, false);
3004 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3005 
3006 unlock:
3007 	if (sk_fullsock(sk))
3008 		release_sock(sk);
3009 	return ret;
3010 
3011 }
3012 
3013 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3014 {
3015 	struct bpf_tcp_iter_state *iter = seq->private;
3016 	struct bpf_iter_meta meta;
3017 	struct bpf_prog *prog;
3018 
3019 	if (!v) {
3020 		meta.seq = seq;
3021 		prog = bpf_iter_get_info(&meta, true);
3022 		if (prog)
3023 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3024 	}
3025 
3026 	if (iter->cur_sk < iter->end_sk) {
3027 		bpf_iter_tcp_put_batch(iter);
3028 		iter->st_bucket_done = false;
3029 	}
3030 }
3031 
3032 static const struct seq_operations bpf_iter_tcp_seq_ops = {
3033 	.show		= bpf_iter_tcp_seq_show,
3034 	.start		= bpf_iter_tcp_seq_start,
3035 	.next		= bpf_iter_tcp_seq_next,
3036 	.stop		= bpf_iter_tcp_seq_stop,
3037 };
3038 #endif
3039 static unsigned short seq_file_family(const struct seq_file *seq)
3040 {
3041 	const struct tcp_seq_afinfo *afinfo;
3042 
3043 #ifdef CONFIG_BPF_SYSCALL
3044 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3045 	if (seq->op == &bpf_iter_tcp_seq_ops)
3046 		return AF_UNSPEC;
3047 #endif
3048 
3049 	/* Iterated from proc fs */
3050 	afinfo = pde_data(file_inode(seq->file));
3051 	return afinfo->family;
3052 }
3053 
3054 static const struct seq_operations tcp4_seq_ops = {
3055 	.show		= tcp4_seq_show,
3056 	.start		= tcp_seq_start,
3057 	.next		= tcp_seq_next,
3058 	.stop		= tcp_seq_stop,
3059 };
3060 
3061 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3062 	.family		= AF_INET,
3063 };
3064 
3065 static int __net_init tcp4_proc_init_net(struct net *net)
3066 {
3067 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3068 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3069 		return -ENOMEM;
3070 	return 0;
3071 }
3072 
3073 static void __net_exit tcp4_proc_exit_net(struct net *net)
3074 {
3075 	remove_proc_entry("tcp", net->proc_net);
3076 }
3077 
3078 static struct pernet_operations tcp4_net_ops = {
3079 	.init = tcp4_proc_init_net,
3080 	.exit = tcp4_proc_exit_net,
3081 };
3082 
3083 int __init tcp4_proc_init(void)
3084 {
3085 	return register_pernet_subsys(&tcp4_net_ops);
3086 }
3087 
3088 void tcp4_proc_exit(void)
3089 {
3090 	unregister_pernet_subsys(&tcp4_net_ops);
3091 }
3092 #endif /* CONFIG_PROC_FS */
3093 
3094 /* @wake is one when sk_stream_write_space() calls us.
3095  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3096  * This mimics the strategy used in sock_def_write_space().
3097  */
3098 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3099 {
3100 	const struct tcp_sock *tp = tcp_sk(sk);
3101 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3102 			    READ_ONCE(tp->snd_nxt);
3103 
3104 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3105 }
3106 EXPORT_SYMBOL(tcp_stream_memory_free);
3107 
3108 struct proto tcp_prot = {
3109 	.name			= "TCP",
3110 	.owner			= THIS_MODULE,
3111 	.close			= tcp_close,
3112 	.pre_connect		= tcp_v4_pre_connect,
3113 	.connect		= tcp_v4_connect,
3114 	.disconnect		= tcp_disconnect,
3115 	.accept			= inet_csk_accept,
3116 	.ioctl			= tcp_ioctl,
3117 	.init			= tcp_v4_init_sock,
3118 	.destroy		= tcp_v4_destroy_sock,
3119 	.shutdown		= tcp_shutdown,
3120 	.setsockopt		= tcp_setsockopt,
3121 	.getsockopt		= tcp_getsockopt,
3122 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3123 	.keepalive		= tcp_set_keepalive,
3124 	.recvmsg		= tcp_recvmsg,
3125 	.sendmsg		= tcp_sendmsg,
3126 	.splice_eof		= tcp_splice_eof,
3127 	.backlog_rcv		= tcp_v4_do_rcv,
3128 	.release_cb		= tcp_release_cb,
3129 	.hash			= inet_hash,
3130 	.unhash			= inet_unhash,
3131 	.get_port		= inet_csk_get_port,
3132 	.put_port		= inet_put_port,
3133 #ifdef CONFIG_BPF_SYSCALL
3134 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3135 #endif
3136 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3137 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3138 	.stream_memory_free	= tcp_stream_memory_free,
3139 	.sockets_allocated	= &tcp_sockets_allocated,
3140 	.orphan_count		= &tcp_orphan_count,
3141 
3142 	.memory_allocated	= &tcp_memory_allocated,
3143 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3144 
3145 	.memory_pressure	= &tcp_memory_pressure,
3146 	.sysctl_mem		= sysctl_tcp_mem,
3147 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3148 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3149 	.max_header		= MAX_TCP_HEADER,
3150 	.obj_size		= sizeof(struct tcp_sock),
3151 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3152 	.twsk_prot		= &tcp_timewait_sock_ops,
3153 	.rsk_prot		= &tcp_request_sock_ops,
3154 	.h.hashinfo		= NULL,
3155 	.no_autobind		= true,
3156 	.diag_destroy		= tcp_abort,
3157 };
3158 EXPORT_SYMBOL(tcp_prot);
3159 
3160 static void __net_exit tcp_sk_exit(struct net *net)
3161 {
3162 	if (net->ipv4.tcp_congestion_control)
3163 		bpf_module_put(net->ipv4.tcp_congestion_control,
3164 			       net->ipv4.tcp_congestion_control->owner);
3165 }
3166 
3167 static void __net_init tcp_set_hashinfo(struct net *net)
3168 {
3169 	struct inet_hashinfo *hinfo;
3170 	unsigned int ehash_entries;
3171 	struct net *old_net;
3172 
3173 	if (net_eq(net, &init_net))
3174 		goto fallback;
3175 
3176 	old_net = current->nsproxy->net_ns;
3177 	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3178 	if (!ehash_entries)
3179 		goto fallback;
3180 
3181 	ehash_entries = roundup_pow_of_two(ehash_entries);
3182 	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3183 	if (!hinfo) {
3184 		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3185 			"for a netns, fallback to the global one\n",
3186 			ehash_entries);
3187 fallback:
3188 		hinfo = &tcp_hashinfo;
3189 		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3190 	}
3191 
3192 	net->ipv4.tcp_death_row.hashinfo = hinfo;
3193 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3194 	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3195 }
3196 
3197 static int __net_init tcp_sk_init(struct net *net)
3198 {
3199 	net->ipv4.sysctl_tcp_ecn = 2;
3200 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3201 
3202 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3203 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3204 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3205 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3206 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3207 
3208 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3209 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3210 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3211 
3212 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3213 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3214 	net->ipv4.sysctl_tcp_syncookies = 1;
3215 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3216 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3217 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3218 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3219 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3220 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3221 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3222 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3223 
3224 	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3225 	tcp_set_hashinfo(net);
3226 
3227 	net->ipv4.sysctl_tcp_sack = 1;
3228 	net->ipv4.sysctl_tcp_window_scaling = 1;
3229 	net->ipv4.sysctl_tcp_timestamps = 1;
3230 	net->ipv4.sysctl_tcp_early_retrans = 3;
3231 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3232 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3233 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3234 	net->ipv4.sysctl_tcp_max_reordering = 300;
3235 	net->ipv4.sysctl_tcp_dsack = 1;
3236 	net->ipv4.sysctl_tcp_app_win = 31;
3237 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3238 	net->ipv4.sysctl_tcp_frto = 2;
3239 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3240 	/* This limits the percentage of the congestion window which we
3241 	 * will allow a single TSO frame to consume.  Building TSO frames
3242 	 * which are too large can cause TCP streams to be bursty.
3243 	 */
3244 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3245 	/* Default TSQ limit of 16 TSO segments */
3246 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3247 
3248 	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3249 	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3250 
3251 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3252 	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3253 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3254 	net->ipv4.sysctl_tcp_autocorking = 1;
3255 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3256 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3257 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3258 	if (net != &init_net) {
3259 		memcpy(net->ipv4.sysctl_tcp_rmem,
3260 		       init_net.ipv4.sysctl_tcp_rmem,
3261 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3262 		memcpy(net->ipv4.sysctl_tcp_wmem,
3263 		       init_net.ipv4.sysctl_tcp_wmem,
3264 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3265 	}
3266 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3267 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3268 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3269 	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3270 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3271 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3272 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3273 
3274 	/* Set default values for PLB */
3275 	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3276 	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3277 	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3278 	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3279 	/* Default congestion threshold for PLB to mark a round is 50% */
3280 	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3281 
3282 	/* Reno is always built in */
3283 	if (!net_eq(net, &init_net) &&
3284 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3285 			       init_net.ipv4.tcp_congestion_control->owner))
3286 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3287 	else
3288 		net->ipv4.tcp_congestion_control = &tcp_reno;
3289 
3290 	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3291 	net->ipv4.sysctl_tcp_shrink_window = 0;
3292 
3293 	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3294 
3295 	return 0;
3296 }
3297 
3298 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3299 {
3300 	struct net *net;
3301 
3302 	tcp_twsk_purge(net_exit_list, AF_INET);
3303 
3304 	list_for_each_entry(net, net_exit_list, exit_list) {
3305 		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3306 		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3307 		tcp_fastopen_ctx_destroy(net);
3308 	}
3309 }
3310 
3311 static struct pernet_operations __net_initdata tcp_sk_ops = {
3312        .init	   = tcp_sk_init,
3313        .exit	   = tcp_sk_exit,
3314        .exit_batch = tcp_sk_exit_batch,
3315 };
3316 
3317 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3318 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3319 		     struct sock_common *sk_common, uid_t uid)
3320 
3321 #define INIT_BATCH_SZ 16
3322 
3323 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3324 {
3325 	struct bpf_tcp_iter_state *iter = priv_data;
3326 	int err;
3327 
3328 	err = bpf_iter_init_seq_net(priv_data, aux);
3329 	if (err)
3330 		return err;
3331 
3332 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3333 	if (err) {
3334 		bpf_iter_fini_seq_net(priv_data);
3335 		return err;
3336 	}
3337 
3338 	return 0;
3339 }
3340 
3341 static void bpf_iter_fini_tcp(void *priv_data)
3342 {
3343 	struct bpf_tcp_iter_state *iter = priv_data;
3344 
3345 	bpf_iter_fini_seq_net(priv_data);
3346 	kvfree(iter->batch);
3347 }
3348 
3349 static const struct bpf_iter_seq_info tcp_seq_info = {
3350 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3351 	.init_seq_private	= bpf_iter_init_tcp,
3352 	.fini_seq_private	= bpf_iter_fini_tcp,
3353 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3354 };
3355 
3356 static const struct bpf_func_proto *
3357 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3358 			    const struct bpf_prog *prog)
3359 {
3360 	switch (func_id) {
3361 	case BPF_FUNC_setsockopt:
3362 		return &bpf_sk_setsockopt_proto;
3363 	case BPF_FUNC_getsockopt:
3364 		return &bpf_sk_getsockopt_proto;
3365 	default:
3366 		return NULL;
3367 	}
3368 }
3369 
3370 static struct bpf_iter_reg tcp_reg_info = {
3371 	.target			= "tcp",
3372 	.ctx_arg_info_size	= 1,
3373 	.ctx_arg_info		= {
3374 		{ offsetof(struct bpf_iter__tcp, sk_common),
3375 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3376 	},
3377 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3378 	.seq_info		= &tcp_seq_info,
3379 };
3380 
3381 static void __init bpf_iter_register(void)
3382 {
3383 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3384 	if (bpf_iter_reg_target(&tcp_reg_info))
3385 		pr_warn("Warning: could not register bpf iterator tcp\n");
3386 }
3387 
3388 #endif
3389 
3390 void __init tcp_v4_init(void)
3391 {
3392 	int cpu, res;
3393 
3394 	for_each_possible_cpu(cpu) {
3395 		struct sock *sk;
3396 
3397 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3398 					   IPPROTO_TCP, &init_net);
3399 		if (res)
3400 			panic("Failed to create the TCP control socket.\n");
3401 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3402 
3403 		/* Please enforce IP_DF and IPID==0 for RST and
3404 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3405 		 */
3406 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3407 
3408 		per_cpu(ipv4_tcp_sk, cpu) = sk;
3409 	}
3410 	if (register_pernet_subsys(&tcp_sk_ops))
3411 		panic("Failed to create the TCP control socket.\n");
3412 
3413 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3414 	bpf_iter_register();
3415 #endif
3416 }
3417