xref: /linux/net/ipv4/tcp_ipv4.c (revision d1e879ec600f9b3bdd253167533959facfefb17b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 #include <linux/sched.h>
61 
62 #include <net/net_namespace.h>
63 #include <net/icmp.h>
64 #include <net/inet_hashtables.h>
65 #include <net/tcp.h>
66 #include <net/transp_v6.h>
67 #include <net/ipv6.h>
68 #include <net/inet_common.h>
69 #include <net/timewait_sock.h>
70 #include <net/xfrm.h>
71 #include <net/secure_seq.h>
72 #include <net/busy_poll.h>
73 #include <net/rstreason.h>
74 
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
80 #include <linux/inetdevice.h>
81 #include <linux/btf_ids.h>
82 #include <linux/skbuff_ref.h>
83 
84 #include <crypto/hash.h>
85 #include <linux/scatterlist.h>
86 
87 #include <trace/events/tcp.h>
88 
89 #ifdef CONFIG_TCP_MD5SIG
90 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
91 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
92 #endif
93 
94 struct inet_hashinfo tcp_hashinfo;
95 
96 static DEFINE_PER_CPU(struct sock_bh_locked, ipv4_tcp_sk) = {
97 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
98 };
99 
100 static DEFINE_MUTEX(tcp_exit_batch_mutex);
101 
102 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
103 {
104 	return secure_tcp_seq(ip_hdr(skb)->daddr,
105 			      ip_hdr(skb)->saddr,
106 			      tcp_hdr(skb)->dest,
107 			      tcp_hdr(skb)->source);
108 }
109 
110 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
111 {
112 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
113 }
114 
115 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
116 {
117 	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
118 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
119 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
120 	struct tcp_sock *tp = tcp_sk(sk);
121 	int ts_recent_stamp;
122 	u32 reuse_thresh;
123 
124 	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2)
125 		reuse = 0;
126 
127 	if (reuse == 2) {
128 		/* Still does not detect *everything* that goes through
129 		 * lo, since we require a loopback src or dst address
130 		 * or direct binding to 'lo' interface.
131 		 */
132 		bool loopback = false;
133 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
134 			loopback = true;
135 #if IS_ENABLED(CONFIG_IPV6)
136 		if (tw->tw_family == AF_INET6) {
137 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
138 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
139 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
140 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
141 				loopback = true;
142 		} else
143 #endif
144 		{
145 			if (ipv4_is_loopback(tw->tw_daddr) ||
146 			    ipv4_is_loopback(tw->tw_rcv_saddr))
147 				loopback = true;
148 		}
149 		if (!loopback)
150 			reuse = 0;
151 	}
152 
153 	/* With PAWS, it is safe from the viewpoint
154 	   of data integrity. Even without PAWS it is safe provided sequence
155 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
156 
157 	   Actually, the idea is close to VJ's one, only timestamp cache is
158 	   held not per host, but per port pair and TW bucket is used as state
159 	   holder.
160 
161 	   If TW bucket has been already destroyed we fall back to VJ's scheme
162 	   and use initial timestamp retrieved from peer table.
163 	 */
164 	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
165 	reuse_thresh = READ_ONCE(tw->tw_entry_stamp) +
166 		       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse_delay);
167 	if (ts_recent_stamp &&
168 	    (!twp || (reuse && time_after32(tcp_clock_ms(), reuse_thresh)))) {
169 		/* inet_twsk_hashdance_schedule() sets sk_refcnt after putting twsk
170 		 * and releasing the bucket lock.
171 		 */
172 		if (unlikely(!refcount_inc_not_zero(&sktw->sk_refcnt)))
173 			return 0;
174 
175 		/* In case of repair and re-using TIME-WAIT sockets we still
176 		 * want to be sure that it is safe as above but honor the
177 		 * sequence numbers and time stamps set as part of the repair
178 		 * process.
179 		 *
180 		 * Without this check re-using a TIME-WAIT socket with TCP
181 		 * repair would accumulate a -1 on the repair assigned
182 		 * sequence number. The first time it is reused the sequence
183 		 * is -1, the second time -2, etc. This fixes that issue
184 		 * without appearing to create any others.
185 		 */
186 		if (likely(!tp->repair)) {
187 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
188 
189 			if (!seq)
190 				seq = 1;
191 			WRITE_ONCE(tp->write_seq, seq);
192 			tp->rx_opt.ts_recent	   = READ_ONCE(tcptw->tw_ts_recent);
193 			tp->rx_opt.ts_recent_stamp = ts_recent_stamp;
194 		}
195 
196 		return 1;
197 	}
198 
199 	return 0;
200 }
201 EXPORT_IPV6_MOD_GPL(tcp_twsk_unique);
202 
203 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
204 			      int addr_len)
205 {
206 	/* This check is replicated from tcp_v4_connect() and intended to
207 	 * prevent BPF program called below from accessing bytes that are out
208 	 * of the bound specified by user in addr_len.
209 	 */
210 	if (addr_len < sizeof(struct sockaddr_in))
211 		return -EINVAL;
212 
213 	sock_owned_by_me(sk);
214 
215 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
216 }
217 
218 /* This will initiate an outgoing connection. */
219 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
220 {
221 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
222 	struct inet_timewait_death_row *tcp_death_row;
223 	struct inet_sock *inet = inet_sk(sk);
224 	struct tcp_sock *tp = tcp_sk(sk);
225 	struct ip_options_rcu *inet_opt;
226 	struct net *net = sock_net(sk);
227 	__be16 orig_sport, orig_dport;
228 	__be32 daddr, nexthop;
229 	struct flowi4 *fl4;
230 	struct rtable *rt;
231 	int err;
232 
233 	if (addr_len < sizeof(struct sockaddr_in))
234 		return -EINVAL;
235 
236 	if (usin->sin_family != AF_INET)
237 		return -EAFNOSUPPORT;
238 
239 	nexthop = daddr = usin->sin_addr.s_addr;
240 	inet_opt = rcu_dereference_protected(inet->inet_opt,
241 					     lockdep_sock_is_held(sk));
242 	if (inet_opt && inet_opt->opt.srr) {
243 		if (!daddr)
244 			return -EINVAL;
245 		nexthop = inet_opt->opt.faddr;
246 	}
247 
248 	orig_sport = inet->inet_sport;
249 	orig_dport = usin->sin_port;
250 	fl4 = &inet->cork.fl.u.ip4;
251 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
252 			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
253 			      orig_dport, sk);
254 	if (IS_ERR(rt)) {
255 		err = PTR_ERR(rt);
256 		if (err == -ENETUNREACH)
257 			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
258 		return err;
259 	}
260 
261 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
262 		ip_rt_put(rt);
263 		return -ENETUNREACH;
264 	}
265 
266 	if (!inet_opt || !inet_opt->opt.srr)
267 		daddr = fl4->daddr;
268 
269 	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
270 
271 	if (!inet->inet_saddr) {
272 		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
273 		if (err) {
274 			ip_rt_put(rt);
275 			return err;
276 		}
277 	} else {
278 		sk_rcv_saddr_set(sk, inet->inet_saddr);
279 	}
280 
281 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
282 		/* Reset inherited state */
283 		tp->rx_opt.ts_recent	   = 0;
284 		tp->rx_opt.ts_recent_stamp = 0;
285 		if (likely(!tp->repair))
286 			WRITE_ONCE(tp->write_seq, 0);
287 	}
288 
289 	inet->inet_dport = usin->sin_port;
290 	sk_daddr_set(sk, daddr);
291 
292 	inet_csk(sk)->icsk_ext_hdr_len = 0;
293 	if (inet_opt)
294 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
295 
296 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
297 
298 	/* Socket identity is still unknown (sport may be zero).
299 	 * However we set state to SYN-SENT and not releasing socket
300 	 * lock select source port, enter ourselves into the hash tables and
301 	 * complete initialization after this.
302 	 */
303 	tcp_set_state(sk, TCP_SYN_SENT);
304 	err = inet_hash_connect(tcp_death_row, sk);
305 	if (err)
306 		goto failure;
307 
308 	sk_set_txhash(sk);
309 
310 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
311 			       inet->inet_sport, inet->inet_dport, sk);
312 	if (IS_ERR(rt)) {
313 		err = PTR_ERR(rt);
314 		rt = NULL;
315 		goto failure;
316 	}
317 	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
318 	/* OK, now commit destination to socket.  */
319 	sk->sk_gso_type = SKB_GSO_TCPV4;
320 	sk_setup_caps(sk, &rt->dst);
321 	rt = NULL;
322 
323 	if (likely(!tp->repair)) {
324 		if (!tp->write_seq)
325 			WRITE_ONCE(tp->write_seq,
326 				   secure_tcp_seq(inet->inet_saddr,
327 						  inet->inet_daddr,
328 						  inet->inet_sport,
329 						  usin->sin_port));
330 		WRITE_ONCE(tp->tsoffset,
331 			   secure_tcp_ts_off(net, inet->inet_saddr,
332 					     inet->inet_daddr));
333 	}
334 
335 	atomic_set(&inet->inet_id, get_random_u16());
336 
337 	if (tcp_fastopen_defer_connect(sk, &err))
338 		return err;
339 	if (err)
340 		goto failure;
341 
342 	err = tcp_connect(sk);
343 
344 	if (err)
345 		goto failure;
346 
347 	return 0;
348 
349 failure:
350 	/*
351 	 * This unhashes the socket and releases the local port,
352 	 * if necessary.
353 	 */
354 	tcp_set_state(sk, TCP_CLOSE);
355 	inet_bhash2_reset_saddr(sk);
356 	ip_rt_put(rt);
357 	sk->sk_route_caps = 0;
358 	inet->inet_dport = 0;
359 	return err;
360 }
361 EXPORT_IPV6_MOD(tcp_v4_connect);
362 
363 /*
364  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
365  * It can be called through tcp_release_cb() if socket was owned by user
366  * at the time tcp_v4_err() was called to handle ICMP message.
367  */
368 void tcp_v4_mtu_reduced(struct sock *sk)
369 {
370 	struct inet_sock *inet = inet_sk(sk);
371 	struct dst_entry *dst;
372 	u32 mtu;
373 
374 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
375 		return;
376 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
377 	dst = inet_csk_update_pmtu(sk, mtu);
378 	if (!dst)
379 		return;
380 
381 	/* Something is about to be wrong... Remember soft error
382 	 * for the case, if this connection will not able to recover.
383 	 */
384 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
385 		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
386 
387 	mtu = dst_mtu(dst);
388 
389 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
390 	    ip_sk_accept_pmtu(sk) &&
391 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
392 		tcp_sync_mss(sk, mtu);
393 
394 		/* Resend the TCP packet because it's
395 		 * clear that the old packet has been
396 		 * dropped. This is the new "fast" path mtu
397 		 * discovery.
398 		 */
399 		tcp_simple_retransmit(sk);
400 	} /* else let the usual retransmit timer handle it */
401 }
402 EXPORT_IPV6_MOD(tcp_v4_mtu_reduced);
403 
404 static void do_redirect(struct sk_buff *skb, struct sock *sk)
405 {
406 	struct dst_entry *dst = __sk_dst_check(sk, 0);
407 
408 	if (dst)
409 		dst->ops->redirect(dst, sk, skb);
410 }
411 
412 
413 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
414 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
415 {
416 	struct request_sock *req = inet_reqsk(sk);
417 	struct net *net = sock_net(sk);
418 
419 	/* ICMPs are not backlogged, hence we cannot get
420 	 * an established socket here.
421 	 */
422 	if (seq != tcp_rsk(req)->snt_isn) {
423 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
424 	} else if (abort) {
425 		/*
426 		 * Still in SYN_RECV, just remove it silently.
427 		 * There is no good way to pass the error to the newly
428 		 * created socket, and POSIX does not want network
429 		 * errors returned from accept().
430 		 */
431 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
432 		tcp_listendrop(req->rsk_listener);
433 	}
434 	reqsk_put(req);
435 }
436 EXPORT_IPV6_MOD(tcp_req_err);
437 
438 /* TCP-LD (RFC 6069) logic */
439 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
440 {
441 	struct inet_connection_sock *icsk = inet_csk(sk);
442 	struct tcp_sock *tp = tcp_sk(sk);
443 	struct sk_buff *skb;
444 	s32 remaining;
445 	u32 delta_us;
446 
447 	if (sock_owned_by_user(sk))
448 		return;
449 
450 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
451 	    !icsk->icsk_backoff)
452 		return;
453 
454 	skb = tcp_rtx_queue_head(sk);
455 	if (WARN_ON_ONCE(!skb))
456 		return;
457 
458 	icsk->icsk_backoff--;
459 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
460 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, tcp_rto_max(sk));
461 
462 	tcp_mstamp_refresh(tp);
463 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
464 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
465 
466 	if (remaining > 0) {
467 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, remaining, false);
468 	} else {
469 		/* RTO revert clocked out retransmission.
470 		 * Will retransmit now.
471 		 */
472 		tcp_retransmit_timer(sk);
473 	}
474 }
475 EXPORT_IPV6_MOD(tcp_ld_RTO_revert);
476 
477 /*
478  * This routine is called by the ICMP module when it gets some
479  * sort of error condition.  If err < 0 then the socket should
480  * be closed and the error returned to the user.  If err > 0
481  * it's just the icmp type << 8 | icmp code.  After adjustment
482  * header points to the first 8 bytes of the tcp header.  We need
483  * to find the appropriate port.
484  *
485  * The locking strategy used here is very "optimistic". When
486  * someone else accesses the socket the ICMP is just dropped
487  * and for some paths there is no check at all.
488  * A more general error queue to queue errors for later handling
489  * is probably better.
490  *
491  */
492 
493 int tcp_v4_err(struct sk_buff *skb, u32 info)
494 {
495 	const struct iphdr *iph = (const struct iphdr *)skb->data;
496 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
497 	struct net *net = dev_net_rcu(skb->dev);
498 	const int type = icmp_hdr(skb)->type;
499 	const int code = icmp_hdr(skb)->code;
500 	struct request_sock *fastopen;
501 	struct tcp_sock *tp;
502 	u32 seq, snd_una;
503 	struct sock *sk;
504 	int err;
505 
506 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
507 				       iph->daddr, th->dest, iph->saddr,
508 				       ntohs(th->source), inet_iif(skb), 0);
509 	if (!sk) {
510 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
511 		return -ENOENT;
512 	}
513 	if (sk->sk_state == TCP_TIME_WAIT) {
514 		/* To increase the counter of ignored icmps for TCP-AO */
515 		tcp_ao_ignore_icmp(sk, AF_INET, type, code);
516 		inet_twsk_put(inet_twsk(sk));
517 		return 0;
518 	}
519 	seq = ntohl(th->seq);
520 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
521 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
522 				     type == ICMP_TIME_EXCEEDED ||
523 				     (type == ICMP_DEST_UNREACH &&
524 				      (code == ICMP_NET_UNREACH ||
525 				       code == ICMP_HOST_UNREACH)));
526 		return 0;
527 	}
528 
529 	if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
530 		sock_put(sk);
531 		return 0;
532 	}
533 
534 	bh_lock_sock(sk);
535 	/* If too many ICMPs get dropped on busy
536 	 * servers this needs to be solved differently.
537 	 * We do take care of PMTU discovery (RFC1191) special case :
538 	 * we can receive locally generated ICMP messages while socket is held.
539 	 */
540 	if (sock_owned_by_user(sk)) {
541 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
542 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
543 	}
544 	if (sk->sk_state == TCP_CLOSE)
545 		goto out;
546 
547 	if (static_branch_unlikely(&ip4_min_ttl)) {
548 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
549 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
550 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
551 			goto out;
552 		}
553 	}
554 
555 	tp = tcp_sk(sk);
556 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
557 	fastopen = rcu_dereference(tp->fastopen_rsk);
558 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
559 	if (sk->sk_state != TCP_LISTEN &&
560 	    !between(seq, snd_una, tp->snd_nxt)) {
561 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
562 		goto out;
563 	}
564 
565 	switch (type) {
566 	case ICMP_REDIRECT:
567 		if (!sock_owned_by_user(sk))
568 			do_redirect(skb, sk);
569 		goto out;
570 	case ICMP_SOURCE_QUENCH:
571 		/* Just silently ignore these. */
572 		goto out;
573 	case ICMP_PARAMETERPROB:
574 		err = EPROTO;
575 		break;
576 	case ICMP_DEST_UNREACH:
577 		if (code > NR_ICMP_UNREACH)
578 			goto out;
579 
580 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
581 			/* We are not interested in TCP_LISTEN and open_requests
582 			 * (SYN-ACKs send out by Linux are always <576bytes so
583 			 * they should go through unfragmented).
584 			 */
585 			if (sk->sk_state == TCP_LISTEN)
586 				goto out;
587 
588 			WRITE_ONCE(tp->mtu_info, info);
589 			if (!sock_owned_by_user(sk)) {
590 				tcp_v4_mtu_reduced(sk);
591 			} else {
592 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
593 					sock_hold(sk);
594 			}
595 			goto out;
596 		}
597 
598 		err = icmp_err_convert[code].errno;
599 		/* check if this ICMP message allows revert of backoff.
600 		 * (see RFC 6069)
601 		 */
602 		if (!fastopen &&
603 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
604 			tcp_ld_RTO_revert(sk, seq);
605 		break;
606 	case ICMP_TIME_EXCEEDED:
607 		err = EHOSTUNREACH;
608 		break;
609 	default:
610 		goto out;
611 	}
612 
613 	switch (sk->sk_state) {
614 	case TCP_SYN_SENT:
615 	case TCP_SYN_RECV:
616 		/* Only in fast or simultaneous open. If a fast open socket is
617 		 * already accepted it is treated as a connected one below.
618 		 */
619 		if (fastopen && !fastopen->sk)
620 			break;
621 
622 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
623 
624 		if (!sock_owned_by_user(sk))
625 			tcp_done_with_error(sk, err);
626 		else
627 			WRITE_ONCE(sk->sk_err_soft, err);
628 		goto out;
629 	}
630 
631 	/* If we've already connected we will keep trying
632 	 * until we time out, or the user gives up.
633 	 *
634 	 * rfc1122 4.2.3.9 allows to consider as hard errors
635 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
636 	 * but it is obsoleted by pmtu discovery).
637 	 *
638 	 * Note, that in modern internet, where routing is unreliable
639 	 * and in each dark corner broken firewalls sit, sending random
640 	 * errors ordered by their masters even this two messages finally lose
641 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
642 	 *
643 	 * Now we are in compliance with RFCs.
644 	 *							--ANK (980905)
645 	 */
646 
647 	if (!sock_owned_by_user(sk) &&
648 	    inet_test_bit(RECVERR, sk)) {
649 		WRITE_ONCE(sk->sk_err, err);
650 		sk_error_report(sk);
651 	} else	{ /* Only an error on timeout */
652 		WRITE_ONCE(sk->sk_err_soft, err);
653 	}
654 
655 out:
656 	bh_unlock_sock(sk);
657 	sock_put(sk);
658 	return 0;
659 }
660 
661 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
662 {
663 	struct tcphdr *th = tcp_hdr(skb);
664 
665 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
666 	skb->csum_start = skb_transport_header(skb) - skb->head;
667 	skb->csum_offset = offsetof(struct tcphdr, check);
668 }
669 
670 /* This routine computes an IPv4 TCP checksum. */
671 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
672 {
673 	const struct inet_sock *inet = inet_sk(sk);
674 
675 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
676 }
677 EXPORT_IPV6_MOD(tcp_v4_send_check);
678 
679 #define REPLY_OPTIONS_LEN      (MAX_TCP_OPTION_SPACE / sizeof(__be32))
680 
681 static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
682 				 const struct tcp_ao_hdr *aoh,
683 				 struct ip_reply_arg *arg, struct tcphdr *reply,
684 				 __be32 reply_options[REPLY_OPTIONS_LEN])
685 {
686 #ifdef CONFIG_TCP_AO
687 	int sdif = tcp_v4_sdif(skb);
688 	int dif = inet_iif(skb);
689 	int l3index = sdif ? dif : 0;
690 	bool allocated_traffic_key;
691 	struct tcp_ao_key *key;
692 	char *traffic_key;
693 	bool drop = true;
694 	u32 ao_sne = 0;
695 	u8 keyid;
696 
697 	rcu_read_lock();
698 	if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
699 				 &key, &traffic_key, &allocated_traffic_key,
700 				 &keyid, &ao_sne))
701 		goto out;
702 
703 	reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
704 				 (aoh->rnext_keyid << 8) | keyid);
705 	arg->iov[0].iov_len += tcp_ao_len_aligned(key);
706 	reply->doff = arg->iov[0].iov_len / 4;
707 
708 	if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
709 			    key, traffic_key,
710 			    (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
711 			    (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
712 			    reply, ao_sne))
713 		goto out;
714 	drop = false;
715 out:
716 	rcu_read_unlock();
717 	if (allocated_traffic_key)
718 		kfree(traffic_key);
719 	return drop;
720 #else
721 	return true;
722 #endif
723 }
724 
725 /*
726  *	This routine will send an RST to the other tcp.
727  *
728  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
729  *		      for reset.
730  *	Answer: if a packet caused RST, it is not for a socket
731  *		existing in our system, if it is matched to a socket,
732  *		it is just duplicate segment or bug in other side's TCP.
733  *		So that we build reply only basing on parameters
734  *		arrived with segment.
735  *	Exception: precedence violation. We do not implement it in any case.
736  */
737 
738 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb,
739 			      enum sk_rst_reason reason)
740 {
741 	const struct tcphdr *th = tcp_hdr(skb);
742 	struct {
743 		struct tcphdr th;
744 		__be32 opt[REPLY_OPTIONS_LEN];
745 	} rep;
746 	const __u8 *md5_hash_location = NULL;
747 	const struct tcp_ao_hdr *aoh;
748 	struct ip_reply_arg arg;
749 #ifdef CONFIG_TCP_MD5SIG
750 	struct tcp_md5sig_key *key = NULL;
751 	unsigned char newhash[16];
752 	struct sock *sk1 = NULL;
753 	int genhash;
754 #endif
755 	u64 transmit_time = 0;
756 	struct sock *ctl_sk;
757 	struct net *net;
758 	u32 txhash = 0;
759 
760 	/* Never send a reset in response to a reset. */
761 	if (th->rst)
762 		return;
763 
764 	/* If sk not NULL, it means we did a successful lookup and incoming
765 	 * route had to be correct. prequeue might have dropped our dst.
766 	 */
767 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
768 		return;
769 
770 	/* Swap the send and the receive. */
771 	memset(&rep, 0, sizeof(rep));
772 	rep.th.dest   = th->source;
773 	rep.th.source = th->dest;
774 	rep.th.doff   = sizeof(struct tcphdr) / 4;
775 	rep.th.rst    = 1;
776 
777 	if (th->ack) {
778 		rep.th.seq = th->ack_seq;
779 	} else {
780 		rep.th.ack = 1;
781 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
782 				       skb->len - (th->doff << 2));
783 	}
784 
785 	memset(&arg, 0, sizeof(arg));
786 	arg.iov[0].iov_base = (unsigned char *)&rep;
787 	arg.iov[0].iov_len  = sizeof(rep.th);
788 
789 	net = sk ? sock_net(sk) : dev_net_rcu(skb_dst(skb)->dev);
790 
791 	/* Invalid TCP option size or twice included auth */
792 	if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
793 		return;
794 
795 	if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
796 		return;
797 
798 #ifdef CONFIG_TCP_MD5SIG
799 	rcu_read_lock();
800 	if (sk && sk_fullsock(sk)) {
801 		const union tcp_md5_addr *addr;
802 		int l3index;
803 
804 		/* sdif set, means packet ingressed via a device
805 		 * in an L3 domain and inet_iif is set to it.
806 		 */
807 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
808 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
809 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
810 	} else if (md5_hash_location) {
811 		const union tcp_md5_addr *addr;
812 		int sdif = tcp_v4_sdif(skb);
813 		int dif = inet_iif(skb);
814 		int l3index;
815 
816 		/*
817 		 * active side is lost. Try to find listening socket through
818 		 * source port, and then find md5 key through listening socket.
819 		 * we are not loose security here:
820 		 * Incoming packet is checked with md5 hash with finding key,
821 		 * no RST generated if md5 hash doesn't match.
822 		 */
823 		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
824 					     NULL, 0, ip_hdr(skb)->saddr,
825 					     th->source, ip_hdr(skb)->daddr,
826 					     ntohs(th->source), dif, sdif);
827 		/* don't send rst if it can't find key */
828 		if (!sk1)
829 			goto out;
830 
831 		/* sdif set, means packet ingressed via a device
832 		 * in an L3 domain and dif is set to it.
833 		 */
834 		l3index = sdif ? dif : 0;
835 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
836 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
837 		if (!key)
838 			goto out;
839 
840 
841 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
842 		if (genhash || memcmp(md5_hash_location, newhash, 16) != 0)
843 			goto out;
844 
845 	}
846 
847 	if (key) {
848 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
849 				   (TCPOPT_NOP << 16) |
850 				   (TCPOPT_MD5SIG << 8) |
851 				   TCPOLEN_MD5SIG);
852 		/* Update length and the length the header thinks exists */
853 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
854 		rep.th.doff = arg.iov[0].iov_len / 4;
855 
856 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
857 				     key, ip_hdr(skb)->saddr,
858 				     ip_hdr(skb)->daddr, &rep.th);
859 	}
860 #endif
861 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
862 	if (rep.opt[0] == 0) {
863 		__be32 mrst = mptcp_reset_option(skb);
864 
865 		if (mrst) {
866 			rep.opt[0] = mrst;
867 			arg.iov[0].iov_len += sizeof(mrst);
868 			rep.th.doff = arg.iov[0].iov_len / 4;
869 		}
870 	}
871 
872 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
873 				      ip_hdr(skb)->saddr, /* XXX */
874 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
875 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
876 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
877 
878 	/* When socket is gone, all binding information is lost.
879 	 * routing might fail in this case. No choice here, if we choose to force
880 	 * input interface, we will misroute in case of asymmetric route.
881 	 */
882 	if (sk)
883 		arg.bound_dev_if = sk->sk_bound_dev_if;
884 
885 	trace_tcp_send_reset(sk, skb, reason);
886 
887 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
888 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
889 
890 	arg.tos = ip_hdr(skb)->tos;
891 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
892 	local_bh_disable();
893 	local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
894 	ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
895 
896 	sock_net_set(ctl_sk, net);
897 	if (sk) {
898 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
899 				   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
900 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
901 				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
902 		transmit_time = tcp_transmit_time(sk);
903 		xfrm_sk_clone_policy(ctl_sk, sk);
904 		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
905 			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
906 	} else {
907 		ctl_sk->sk_mark = 0;
908 		ctl_sk->sk_priority = 0;
909 	}
910 	ip_send_unicast_reply(ctl_sk, sk,
911 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
912 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
913 			      &arg, arg.iov[0].iov_len,
914 			      transmit_time, txhash);
915 
916 	xfrm_sk_free_policy(ctl_sk);
917 	sock_net_set(ctl_sk, &init_net);
918 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
919 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
920 	local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
921 	local_bh_enable();
922 
923 #ifdef CONFIG_TCP_MD5SIG
924 out:
925 	rcu_read_unlock();
926 #endif
927 }
928 
929 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
930    outside socket context is ugly, certainly. What can I do?
931  */
932 
933 static void tcp_v4_send_ack(const struct sock *sk,
934 			    struct sk_buff *skb, u32 seq, u32 ack,
935 			    u32 win, u32 tsval, u32 tsecr, int oif,
936 			    struct tcp_key *key,
937 			    int reply_flags, u8 tos, u32 txhash)
938 {
939 	const struct tcphdr *th = tcp_hdr(skb);
940 	struct {
941 		struct tcphdr th;
942 		__be32 opt[(MAX_TCP_OPTION_SPACE  >> 2)];
943 	} rep;
944 	struct net *net = sock_net(sk);
945 	struct ip_reply_arg arg;
946 	struct sock *ctl_sk;
947 	u64 transmit_time;
948 
949 	memset(&rep.th, 0, sizeof(struct tcphdr));
950 	memset(&arg, 0, sizeof(arg));
951 
952 	arg.iov[0].iov_base = (unsigned char *)&rep;
953 	arg.iov[0].iov_len  = sizeof(rep.th);
954 	if (tsecr) {
955 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
956 				   (TCPOPT_TIMESTAMP << 8) |
957 				   TCPOLEN_TIMESTAMP);
958 		rep.opt[1] = htonl(tsval);
959 		rep.opt[2] = htonl(tsecr);
960 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
961 	}
962 
963 	/* Swap the send and the receive. */
964 	rep.th.dest    = th->source;
965 	rep.th.source  = th->dest;
966 	rep.th.doff    = arg.iov[0].iov_len / 4;
967 	rep.th.seq     = htonl(seq);
968 	rep.th.ack_seq = htonl(ack);
969 	rep.th.ack     = 1;
970 	rep.th.window  = htons(win);
971 
972 #ifdef CONFIG_TCP_MD5SIG
973 	if (tcp_key_is_md5(key)) {
974 		int offset = (tsecr) ? 3 : 0;
975 
976 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
977 					  (TCPOPT_NOP << 16) |
978 					  (TCPOPT_MD5SIG << 8) |
979 					  TCPOLEN_MD5SIG);
980 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
981 		rep.th.doff = arg.iov[0].iov_len/4;
982 
983 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
984 				    key->md5_key, ip_hdr(skb)->saddr,
985 				    ip_hdr(skb)->daddr, &rep.th);
986 	}
987 #endif
988 #ifdef CONFIG_TCP_AO
989 	if (tcp_key_is_ao(key)) {
990 		int offset = (tsecr) ? 3 : 0;
991 
992 		rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
993 					  (tcp_ao_len(key->ao_key) << 16) |
994 					  (key->ao_key->sndid << 8) |
995 					  key->rcv_next);
996 		arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
997 		rep.th.doff = arg.iov[0].iov_len / 4;
998 
999 		tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
1000 				key->ao_key, key->traffic_key,
1001 				(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
1002 				(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
1003 				&rep.th, key->sne);
1004 	}
1005 #endif
1006 	arg.flags = reply_flags;
1007 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
1008 				      ip_hdr(skb)->saddr, /* XXX */
1009 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
1010 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
1011 	if (oif)
1012 		arg.bound_dev_if = oif;
1013 	arg.tos = tos;
1014 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
1015 	local_bh_disable();
1016 	local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
1017 	ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
1018 	sock_net_set(ctl_sk, net);
1019 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1020 			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1021 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1022 			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1023 	transmit_time = tcp_transmit_time(sk);
1024 	ip_send_unicast_reply(ctl_sk, sk,
1025 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
1026 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1027 			      &arg, arg.iov[0].iov_len,
1028 			      transmit_time, txhash);
1029 
1030 	sock_net_set(ctl_sk, &init_net);
1031 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1032 	local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
1033 	local_bh_enable();
1034 }
1035 
1036 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
1037 {
1038 	struct inet_timewait_sock *tw = inet_twsk(sk);
1039 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1040 	struct tcp_key key = {};
1041 #ifdef CONFIG_TCP_AO
1042 	struct tcp_ao_info *ao_info;
1043 
1044 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
1045 		/* FIXME: the segment to-be-acked is not verified yet */
1046 		ao_info = rcu_dereference(tcptw->ao_info);
1047 		if (ao_info) {
1048 			const struct tcp_ao_hdr *aoh;
1049 
1050 			if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1051 				inet_twsk_put(tw);
1052 				return;
1053 			}
1054 
1055 			if (aoh)
1056 				key.ao_key = tcp_ao_established_key(sk, ao_info,
1057 								    aoh->rnext_keyid, -1);
1058 		}
1059 	}
1060 	if (key.ao_key) {
1061 		struct tcp_ao_key *rnext_key;
1062 
1063 		key.traffic_key = snd_other_key(key.ao_key);
1064 		key.sne = READ_ONCE(ao_info->snd_sne);
1065 		rnext_key = READ_ONCE(ao_info->rnext_key);
1066 		key.rcv_next = rnext_key->rcvid;
1067 		key.type = TCP_KEY_AO;
1068 #else
1069 	if (0) {
1070 #endif
1071 	} else if (static_branch_tcp_md5()) {
1072 		key.md5_key = tcp_twsk_md5_key(tcptw);
1073 		if (key.md5_key)
1074 			key.type = TCP_KEY_MD5;
1075 	}
1076 
1077 	tcp_v4_send_ack(sk, skb,
1078 			tcptw->tw_snd_nxt, READ_ONCE(tcptw->tw_rcv_nxt),
1079 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1080 			tcp_tw_tsval(tcptw),
1081 			READ_ONCE(tcptw->tw_ts_recent),
1082 			tw->tw_bound_dev_if, &key,
1083 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1084 			tw->tw_tos,
1085 			tw->tw_txhash);
1086 
1087 	inet_twsk_put(tw);
1088 }
1089 
1090 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1091 				  struct request_sock *req)
1092 {
1093 	struct tcp_key key = {};
1094 
1095 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1096 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1097 	 */
1098 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1099 					     tcp_sk(sk)->snd_nxt;
1100 
1101 #ifdef CONFIG_TCP_AO
1102 	if (static_branch_unlikely(&tcp_ao_needed.key) &&
1103 	    tcp_rsk_used_ao(req)) {
1104 		const union tcp_md5_addr *addr;
1105 		const struct tcp_ao_hdr *aoh;
1106 		int l3index;
1107 
1108 		/* Invalid TCP option size or twice included auth */
1109 		if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1110 			return;
1111 		if (!aoh)
1112 			return;
1113 
1114 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1115 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1116 		key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1117 					      aoh->rnext_keyid, -1);
1118 		if (unlikely(!key.ao_key)) {
1119 			/* Send ACK with any matching MKT for the peer */
1120 			key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1121 			/* Matching key disappeared (user removed the key?)
1122 			 * let the handshake timeout.
1123 			 */
1124 			if (!key.ao_key) {
1125 				net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1126 						     addr,
1127 						     ntohs(tcp_hdr(skb)->source),
1128 						     &ip_hdr(skb)->daddr,
1129 						     ntohs(tcp_hdr(skb)->dest));
1130 				return;
1131 			}
1132 		}
1133 		key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1134 		if (!key.traffic_key)
1135 			return;
1136 
1137 		key.type = TCP_KEY_AO;
1138 		key.rcv_next = aoh->keyid;
1139 		tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1140 #else
1141 	if (0) {
1142 #endif
1143 	} else if (static_branch_tcp_md5()) {
1144 		const union tcp_md5_addr *addr;
1145 		int l3index;
1146 
1147 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1148 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1149 		key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1150 		if (key.md5_key)
1151 			key.type = TCP_KEY_MD5;
1152 	}
1153 
1154 	tcp_v4_send_ack(sk, skb, seq,
1155 			tcp_rsk(req)->rcv_nxt,
1156 			tcp_synack_window(req) >> inet_rsk(req)->rcv_wscale,
1157 			tcp_rsk_tsval(tcp_rsk(req)),
1158 			req->ts_recent,
1159 			0, &key,
1160 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1161 			ip_hdr(skb)->tos,
1162 			READ_ONCE(tcp_rsk(req)->txhash));
1163 	if (tcp_key_is_ao(&key))
1164 		kfree(key.traffic_key);
1165 }
1166 
1167 /*
1168  *	Send a SYN-ACK after having received a SYN.
1169  *	This still operates on a request_sock only, not on a big
1170  *	socket.
1171  */
1172 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1173 			      struct flowi *fl,
1174 			      struct request_sock *req,
1175 			      struct tcp_fastopen_cookie *foc,
1176 			      enum tcp_synack_type synack_type,
1177 			      struct sk_buff *syn_skb)
1178 {
1179 	const struct inet_request_sock *ireq = inet_rsk(req);
1180 	struct flowi4 fl4;
1181 	int err = -1;
1182 	struct sk_buff *skb;
1183 	u8 tos;
1184 
1185 	/* First, grab a route. */
1186 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1187 		return -1;
1188 
1189 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1190 
1191 	if (skb) {
1192 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1193 
1194 		tos = READ_ONCE(inet_sk(sk)->tos);
1195 
1196 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1197 			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1198 			      (tos & INET_ECN_MASK);
1199 
1200 		if (!INET_ECN_is_capable(tos) &&
1201 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1202 			tos |= INET_ECN_ECT_0;
1203 
1204 		rcu_read_lock();
1205 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1206 					    ireq->ir_rmt_addr,
1207 					    rcu_dereference(ireq->ireq_opt),
1208 					    tos);
1209 		rcu_read_unlock();
1210 		err = net_xmit_eval(err);
1211 	}
1212 
1213 	return err;
1214 }
1215 
1216 /*
1217  *	IPv4 request_sock destructor.
1218  */
1219 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1220 {
1221 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1222 }
1223 
1224 #ifdef CONFIG_TCP_MD5SIG
1225 /*
1226  * RFC2385 MD5 checksumming requires a mapping of
1227  * IP address->MD5 Key.
1228  * We need to maintain these in the sk structure.
1229  */
1230 
1231 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1232 EXPORT_IPV6_MOD(tcp_md5_needed);
1233 
1234 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1235 {
1236 	if (!old)
1237 		return true;
1238 
1239 	/* l3index always overrides non-l3index */
1240 	if (old->l3index && new->l3index == 0)
1241 		return false;
1242 	if (old->l3index == 0 && new->l3index)
1243 		return true;
1244 
1245 	return old->prefixlen < new->prefixlen;
1246 }
1247 
1248 /* Find the Key structure for an address.  */
1249 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1250 					   const union tcp_md5_addr *addr,
1251 					   int family, bool any_l3index)
1252 {
1253 	const struct tcp_sock *tp = tcp_sk(sk);
1254 	struct tcp_md5sig_key *key;
1255 	const struct tcp_md5sig_info *md5sig;
1256 	__be32 mask;
1257 	struct tcp_md5sig_key *best_match = NULL;
1258 	bool match;
1259 
1260 	/* caller either holds rcu_read_lock() or socket lock */
1261 	md5sig = rcu_dereference_check(tp->md5sig_info,
1262 				       lockdep_sock_is_held(sk));
1263 	if (!md5sig)
1264 		return NULL;
1265 
1266 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1267 				 lockdep_sock_is_held(sk)) {
1268 		if (key->family != family)
1269 			continue;
1270 		if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1271 		    key->l3index != l3index)
1272 			continue;
1273 		if (family == AF_INET) {
1274 			mask = inet_make_mask(key->prefixlen);
1275 			match = (key->addr.a4.s_addr & mask) ==
1276 				(addr->a4.s_addr & mask);
1277 #if IS_ENABLED(CONFIG_IPV6)
1278 		} else if (family == AF_INET6) {
1279 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1280 						  key->prefixlen);
1281 #endif
1282 		} else {
1283 			match = false;
1284 		}
1285 
1286 		if (match && better_md5_match(best_match, key))
1287 			best_match = key;
1288 	}
1289 	return best_match;
1290 }
1291 EXPORT_IPV6_MOD(__tcp_md5_do_lookup);
1292 
1293 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1294 						      const union tcp_md5_addr *addr,
1295 						      int family, u8 prefixlen,
1296 						      int l3index, u8 flags)
1297 {
1298 	const struct tcp_sock *tp = tcp_sk(sk);
1299 	struct tcp_md5sig_key *key;
1300 	unsigned int size = sizeof(struct in_addr);
1301 	const struct tcp_md5sig_info *md5sig;
1302 
1303 	/* caller either holds rcu_read_lock() or socket lock */
1304 	md5sig = rcu_dereference_check(tp->md5sig_info,
1305 				       lockdep_sock_is_held(sk));
1306 	if (!md5sig)
1307 		return NULL;
1308 #if IS_ENABLED(CONFIG_IPV6)
1309 	if (family == AF_INET6)
1310 		size = sizeof(struct in6_addr);
1311 #endif
1312 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1313 				 lockdep_sock_is_held(sk)) {
1314 		if (key->family != family)
1315 			continue;
1316 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1317 			continue;
1318 		if (key->l3index != l3index)
1319 			continue;
1320 		if (!memcmp(&key->addr, addr, size) &&
1321 		    key->prefixlen == prefixlen)
1322 			return key;
1323 	}
1324 	return NULL;
1325 }
1326 
1327 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1328 					 const struct sock *addr_sk)
1329 {
1330 	const union tcp_md5_addr *addr;
1331 	int l3index;
1332 
1333 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1334 						 addr_sk->sk_bound_dev_if);
1335 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1336 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1337 }
1338 EXPORT_IPV6_MOD(tcp_v4_md5_lookup);
1339 
1340 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1341 {
1342 	struct tcp_sock *tp = tcp_sk(sk);
1343 	struct tcp_md5sig_info *md5sig;
1344 
1345 	md5sig = kmalloc(sizeof(*md5sig), gfp);
1346 	if (!md5sig)
1347 		return -ENOMEM;
1348 
1349 	sk_gso_disable(sk);
1350 	INIT_HLIST_HEAD(&md5sig->head);
1351 	rcu_assign_pointer(tp->md5sig_info, md5sig);
1352 	return 0;
1353 }
1354 
1355 /* This can be called on a newly created socket, from other files */
1356 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1357 			    int family, u8 prefixlen, int l3index, u8 flags,
1358 			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1359 {
1360 	/* Add Key to the list */
1361 	struct tcp_md5sig_key *key;
1362 	struct tcp_sock *tp = tcp_sk(sk);
1363 	struct tcp_md5sig_info *md5sig;
1364 
1365 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1366 	if (key) {
1367 		/* Pre-existing entry - just update that one.
1368 		 * Note that the key might be used concurrently.
1369 		 * data_race() is telling kcsan that we do not care of
1370 		 * key mismatches, since changing MD5 key on live flows
1371 		 * can lead to packet drops.
1372 		 */
1373 		data_race(memcpy(key->key, newkey, newkeylen));
1374 
1375 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1376 		 * Also note that a reader could catch new key->keylen value
1377 		 * but old key->key[], this is the reason we use __GFP_ZERO
1378 		 * at sock_kmalloc() time below these lines.
1379 		 */
1380 		WRITE_ONCE(key->keylen, newkeylen);
1381 
1382 		return 0;
1383 	}
1384 
1385 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1386 					   lockdep_sock_is_held(sk));
1387 
1388 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1389 	if (!key)
1390 		return -ENOMEM;
1391 
1392 	memcpy(key->key, newkey, newkeylen);
1393 	key->keylen = newkeylen;
1394 	key->family = family;
1395 	key->prefixlen = prefixlen;
1396 	key->l3index = l3index;
1397 	key->flags = flags;
1398 	memcpy(&key->addr, addr,
1399 	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1400 								 sizeof(struct in_addr));
1401 	hlist_add_head_rcu(&key->node, &md5sig->head);
1402 	return 0;
1403 }
1404 
1405 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1406 		   int family, u8 prefixlen, int l3index, u8 flags,
1407 		   const u8 *newkey, u8 newkeylen)
1408 {
1409 	struct tcp_sock *tp = tcp_sk(sk);
1410 
1411 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1412 		if (tcp_md5_alloc_sigpool())
1413 			return -ENOMEM;
1414 
1415 		if (tcp_md5sig_info_add(sk, GFP_KERNEL)) {
1416 			tcp_md5_release_sigpool();
1417 			return -ENOMEM;
1418 		}
1419 
1420 		if (!static_branch_inc(&tcp_md5_needed.key)) {
1421 			struct tcp_md5sig_info *md5sig;
1422 
1423 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1424 			rcu_assign_pointer(tp->md5sig_info, NULL);
1425 			kfree_rcu(md5sig, rcu);
1426 			tcp_md5_release_sigpool();
1427 			return -EUSERS;
1428 		}
1429 	}
1430 
1431 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1432 				newkey, newkeylen, GFP_KERNEL);
1433 }
1434 EXPORT_IPV6_MOD(tcp_md5_do_add);
1435 
1436 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1437 		     int family, u8 prefixlen, int l3index,
1438 		     struct tcp_md5sig_key *key)
1439 {
1440 	struct tcp_sock *tp = tcp_sk(sk);
1441 
1442 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1443 		tcp_md5_add_sigpool();
1444 
1445 		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) {
1446 			tcp_md5_release_sigpool();
1447 			return -ENOMEM;
1448 		}
1449 
1450 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1451 			struct tcp_md5sig_info *md5sig;
1452 
1453 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1454 			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1455 			rcu_assign_pointer(tp->md5sig_info, NULL);
1456 			kfree_rcu(md5sig, rcu);
1457 			tcp_md5_release_sigpool();
1458 			return -EUSERS;
1459 		}
1460 	}
1461 
1462 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1463 				key->flags, key->key, key->keylen,
1464 				sk_gfp_mask(sk, GFP_ATOMIC));
1465 }
1466 EXPORT_IPV6_MOD(tcp_md5_key_copy);
1467 
1468 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1469 		   u8 prefixlen, int l3index, u8 flags)
1470 {
1471 	struct tcp_md5sig_key *key;
1472 
1473 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1474 	if (!key)
1475 		return -ENOENT;
1476 	hlist_del_rcu(&key->node);
1477 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1478 	kfree_rcu(key, rcu);
1479 	return 0;
1480 }
1481 EXPORT_IPV6_MOD(tcp_md5_do_del);
1482 
1483 void tcp_clear_md5_list(struct sock *sk)
1484 {
1485 	struct tcp_sock *tp = tcp_sk(sk);
1486 	struct tcp_md5sig_key *key;
1487 	struct hlist_node *n;
1488 	struct tcp_md5sig_info *md5sig;
1489 
1490 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1491 
1492 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1493 		hlist_del_rcu(&key->node);
1494 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1495 		kfree_rcu(key, rcu);
1496 	}
1497 }
1498 
1499 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1500 				 sockptr_t optval, int optlen)
1501 {
1502 	struct tcp_md5sig cmd;
1503 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1504 	const union tcp_md5_addr *addr;
1505 	u8 prefixlen = 32;
1506 	int l3index = 0;
1507 	bool l3flag;
1508 	u8 flags;
1509 
1510 	if (optlen < sizeof(cmd))
1511 		return -EINVAL;
1512 
1513 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1514 		return -EFAULT;
1515 
1516 	if (sin->sin_family != AF_INET)
1517 		return -EINVAL;
1518 
1519 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1520 	l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1521 
1522 	if (optname == TCP_MD5SIG_EXT &&
1523 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1524 		prefixlen = cmd.tcpm_prefixlen;
1525 		if (prefixlen > 32)
1526 			return -EINVAL;
1527 	}
1528 
1529 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1530 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1531 		struct net_device *dev;
1532 
1533 		rcu_read_lock();
1534 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1535 		if (dev && netif_is_l3_master(dev))
1536 			l3index = dev->ifindex;
1537 
1538 		rcu_read_unlock();
1539 
1540 		/* ok to reference set/not set outside of rcu;
1541 		 * right now device MUST be an L3 master
1542 		 */
1543 		if (!dev || !l3index)
1544 			return -EINVAL;
1545 	}
1546 
1547 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1548 
1549 	if (!cmd.tcpm_keylen)
1550 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1551 
1552 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1553 		return -EINVAL;
1554 
1555 	/* Don't allow keys for peers that have a matching TCP-AO key.
1556 	 * See the comment in tcp_ao_add_cmd()
1557 	 */
1558 	if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1559 		return -EKEYREJECTED;
1560 
1561 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1562 			      cmd.tcpm_key, cmd.tcpm_keylen);
1563 }
1564 
1565 static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp,
1566 				   __be32 daddr, __be32 saddr,
1567 				   const struct tcphdr *th, int nbytes)
1568 {
1569 	struct tcp4_pseudohdr *bp;
1570 	struct scatterlist sg;
1571 	struct tcphdr *_th;
1572 
1573 	bp = hp->scratch;
1574 	bp->saddr = saddr;
1575 	bp->daddr = daddr;
1576 	bp->pad = 0;
1577 	bp->protocol = IPPROTO_TCP;
1578 	bp->len = cpu_to_be16(nbytes);
1579 
1580 	_th = (struct tcphdr *)(bp + 1);
1581 	memcpy(_th, th, sizeof(*th));
1582 	_th->check = 0;
1583 
1584 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1585 	ahash_request_set_crypt(hp->req, &sg, NULL,
1586 				sizeof(*bp) + sizeof(*th));
1587 	return crypto_ahash_update(hp->req);
1588 }
1589 
1590 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1591 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1592 {
1593 	struct tcp_sigpool hp;
1594 
1595 	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1596 		goto clear_hash_nostart;
1597 
1598 	if (crypto_ahash_init(hp.req))
1599 		goto clear_hash;
1600 	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2))
1601 		goto clear_hash;
1602 	if (tcp_md5_hash_key(&hp, key))
1603 		goto clear_hash;
1604 	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1605 	if (crypto_ahash_final(hp.req))
1606 		goto clear_hash;
1607 
1608 	tcp_sigpool_end(&hp);
1609 	return 0;
1610 
1611 clear_hash:
1612 	tcp_sigpool_end(&hp);
1613 clear_hash_nostart:
1614 	memset(md5_hash, 0, 16);
1615 	return 1;
1616 }
1617 
1618 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1619 			const struct sock *sk,
1620 			const struct sk_buff *skb)
1621 {
1622 	const struct tcphdr *th = tcp_hdr(skb);
1623 	struct tcp_sigpool hp;
1624 	__be32 saddr, daddr;
1625 
1626 	if (sk) { /* valid for establish/request sockets */
1627 		saddr = sk->sk_rcv_saddr;
1628 		daddr = sk->sk_daddr;
1629 	} else {
1630 		const struct iphdr *iph = ip_hdr(skb);
1631 		saddr = iph->saddr;
1632 		daddr = iph->daddr;
1633 	}
1634 
1635 	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1636 		goto clear_hash_nostart;
1637 
1638 	if (crypto_ahash_init(hp.req))
1639 		goto clear_hash;
1640 
1641 	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len))
1642 		goto clear_hash;
1643 	if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
1644 		goto clear_hash;
1645 	if (tcp_md5_hash_key(&hp, key))
1646 		goto clear_hash;
1647 	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1648 	if (crypto_ahash_final(hp.req))
1649 		goto clear_hash;
1650 
1651 	tcp_sigpool_end(&hp);
1652 	return 0;
1653 
1654 clear_hash:
1655 	tcp_sigpool_end(&hp);
1656 clear_hash_nostart:
1657 	memset(md5_hash, 0, 16);
1658 	return 1;
1659 }
1660 EXPORT_IPV6_MOD(tcp_v4_md5_hash_skb);
1661 
1662 #endif
1663 
1664 static void tcp_v4_init_req(struct request_sock *req,
1665 			    const struct sock *sk_listener,
1666 			    struct sk_buff *skb)
1667 {
1668 	struct inet_request_sock *ireq = inet_rsk(req);
1669 	struct net *net = sock_net(sk_listener);
1670 
1671 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1672 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1673 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1674 }
1675 
1676 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1677 					  struct sk_buff *skb,
1678 					  struct flowi *fl,
1679 					  struct request_sock *req,
1680 					  u32 tw_isn)
1681 {
1682 	tcp_v4_init_req(req, sk, skb);
1683 
1684 	if (security_inet_conn_request(sk, skb, req))
1685 		return NULL;
1686 
1687 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1688 }
1689 
1690 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1691 	.family		=	PF_INET,
1692 	.obj_size	=	sizeof(struct tcp_request_sock),
1693 	.rtx_syn_ack	=	tcp_rtx_synack,
1694 	.send_ack	=	tcp_v4_reqsk_send_ack,
1695 	.destructor	=	tcp_v4_reqsk_destructor,
1696 	.send_reset	=	tcp_v4_send_reset,
1697 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1698 };
1699 
1700 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1701 	.mss_clamp	=	TCP_MSS_DEFAULT,
1702 #ifdef CONFIG_TCP_MD5SIG
1703 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1704 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1705 #endif
1706 #ifdef CONFIG_TCP_AO
1707 	.ao_lookup	=	tcp_v4_ao_lookup_rsk,
1708 	.ao_calc_key	=	tcp_v4_ao_calc_key_rsk,
1709 	.ao_synack_hash	=	tcp_v4_ao_synack_hash,
1710 #endif
1711 #ifdef CONFIG_SYN_COOKIES
1712 	.cookie_init_seq =	cookie_v4_init_sequence,
1713 #endif
1714 	.route_req	=	tcp_v4_route_req,
1715 	.init_seq	=	tcp_v4_init_seq,
1716 	.init_ts_off	=	tcp_v4_init_ts_off,
1717 	.send_synack	=	tcp_v4_send_synack,
1718 };
1719 
1720 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1721 {
1722 	/* Never answer to SYNs send to broadcast or multicast */
1723 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1724 		goto drop;
1725 
1726 	return tcp_conn_request(&tcp_request_sock_ops,
1727 				&tcp_request_sock_ipv4_ops, sk, skb);
1728 
1729 drop:
1730 	tcp_listendrop(sk);
1731 	return 0;
1732 }
1733 EXPORT_IPV6_MOD(tcp_v4_conn_request);
1734 
1735 
1736 /*
1737  * The three way handshake has completed - we got a valid synack -
1738  * now create the new socket.
1739  */
1740 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1741 				  struct request_sock *req,
1742 				  struct dst_entry *dst,
1743 				  struct request_sock *req_unhash,
1744 				  bool *own_req)
1745 {
1746 	struct inet_request_sock *ireq;
1747 	bool found_dup_sk = false;
1748 	struct inet_sock *newinet;
1749 	struct tcp_sock *newtp;
1750 	struct sock *newsk;
1751 #ifdef CONFIG_TCP_MD5SIG
1752 	const union tcp_md5_addr *addr;
1753 	struct tcp_md5sig_key *key;
1754 	int l3index;
1755 #endif
1756 	struct ip_options_rcu *inet_opt;
1757 
1758 	if (sk_acceptq_is_full(sk))
1759 		goto exit_overflow;
1760 
1761 	newsk = tcp_create_openreq_child(sk, req, skb);
1762 	if (!newsk)
1763 		goto exit_nonewsk;
1764 
1765 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1766 	inet_sk_rx_dst_set(newsk, skb);
1767 
1768 	newtp		      = tcp_sk(newsk);
1769 	newinet		      = inet_sk(newsk);
1770 	ireq		      = inet_rsk(req);
1771 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1772 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1773 	newinet->mc_index     = inet_iif(skb);
1774 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1775 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1776 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1777 	if (inet_opt)
1778 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1779 	atomic_set(&newinet->inet_id, get_random_u16());
1780 
1781 	/* Set ToS of the new socket based upon the value of incoming SYN.
1782 	 * ECT bits are set later in tcp_init_transfer().
1783 	 */
1784 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1785 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1786 
1787 	if (!dst) {
1788 		dst = inet_csk_route_child_sock(sk, newsk, req);
1789 		if (!dst)
1790 			goto put_and_exit;
1791 	} else {
1792 		/* syncookie case : see end of cookie_v4_check() */
1793 	}
1794 	sk_setup_caps(newsk, dst);
1795 
1796 	tcp_ca_openreq_child(newsk, dst);
1797 
1798 	tcp_sync_mss(newsk, dst_mtu(dst));
1799 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1800 
1801 	tcp_initialize_rcv_mss(newsk);
1802 
1803 #ifdef CONFIG_TCP_MD5SIG
1804 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1805 	/* Copy over the MD5 key from the original socket */
1806 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1807 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1808 	if (key && !tcp_rsk_used_ao(req)) {
1809 		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1810 			goto put_and_exit;
1811 		sk_gso_disable(newsk);
1812 	}
1813 #endif
1814 #ifdef CONFIG_TCP_AO
1815 	if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1816 		goto put_and_exit; /* OOM, release back memory */
1817 #endif
1818 
1819 	if (__inet_inherit_port(sk, newsk) < 0)
1820 		goto put_and_exit;
1821 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1822 				       &found_dup_sk);
1823 	if (likely(*own_req)) {
1824 		tcp_move_syn(newtp, req);
1825 		ireq->ireq_opt = NULL;
1826 	} else {
1827 		newinet->inet_opt = NULL;
1828 
1829 		if (!req_unhash && found_dup_sk) {
1830 			/* This code path should only be executed in the
1831 			 * syncookie case only
1832 			 */
1833 			bh_unlock_sock(newsk);
1834 			sock_put(newsk);
1835 			newsk = NULL;
1836 		}
1837 	}
1838 	return newsk;
1839 
1840 exit_overflow:
1841 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1842 exit_nonewsk:
1843 	dst_release(dst);
1844 exit:
1845 	tcp_listendrop(sk);
1846 	return NULL;
1847 put_and_exit:
1848 	newinet->inet_opt = NULL;
1849 	inet_csk_prepare_forced_close(newsk);
1850 	tcp_done(newsk);
1851 	goto exit;
1852 }
1853 EXPORT_IPV6_MOD(tcp_v4_syn_recv_sock);
1854 
1855 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1856 {
1857 #ifdef CONFIG_SYN_COOKIES
1858 	const struct tcphdr *th = tcp_hdr(skb);
1859 
1860 	if (!th->syn)
1861 		sk = cookie_v4_check(sk, skb);
1862 #endif
1863 	return sk;
1864 }
1865 
1866 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1867 			 struct tcphdr *th, u32 *cookie)
1868 {
1869 	u16 mss = 0;
1870 #ifdef CONFIG_SYN_COOKIES
1871 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1872 				    &tcp_request_sock_ipv4_ops, sk, th);
1873 	if (mss) {
1874 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1875 		tcp_synq_overflow(sk);
1876 	}
1877 #endif
1878 	return mss;
1879 }
1880 
1881 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1882 							   u32));
1883 /* The socket must have it's spinlock held when we get
1884  * here, unless it is a TCP_LISTEN socket.
1885  *
1886  * We have a potential double-lock case here, so even when
1887  * doing backlog processing we use the BH locking scheme.
1888  * This is because we cannot sleep with the original spinlock
1889  * held.
1890  */
1891 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1892 {
1893 	enum skb_drop_reason reason;
1894 	struct sock *rsk;
1895 
1896 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1897 		struct dst_entry *dst;
1898 
1899 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1900 						lockdep_sock_is_held(sk));
1901 
1902 		sock_rps_save_rxhash(sk, skb);
1903 		sk_mark_napi_id(sk, skb);
1904 		if (dst) {
1905 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1906 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1907 					     dst, 0)) {
1908 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1909 				dst_release(dst);
1910 			}
1911 		}
1912 		tcp_rcv_established(sk, skb);
1913 		return 0;
1914 	}
1915 
1916 	if (tcp_checksum_complete(skb))
1917 		goto csum_err;
1918 
1919 	if (sk->sk_state == TCP_LISTEN) {
1920 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1921 
1922 		if (!nsk)
1923 			return 0;
1924 		if (nsk != sk) {
1925 			reason = tcp_child_process(sk, nsk, skb);
1926 			if (reason) {
1927 				rsk = nsk;
1928 				goto reset;
1929 			}
1930 			return 0;
1931 		}
1932 	} else
1933 		sock_rps_save_rxhash(sk, skb);
1934 
1935 	reason = tcp_rcv_state_process(sk, skb);
1936 	if (reason) {
1937 		rsk = sk;
1938 		goto reset;
1939 	}
1940 	return 0;
1941 
1942 reset:
1943 	tcp_v4_send_reset(rsk, skb, sk_rst_convert_drop_reason(reason));
1944 discard:
1945 	sk_skb_reason_drop(sk, skb, reason);
1946 	/* Be careful here. If this function gets more complicated and
1947 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1948 	 * might be destroyed here. This current version compiles correctly,
1949 	 * but you have been warned.
1950 	 */
1951 	return 0;
1952 
1953 csum_err:
1954 	reason = SKB_DROP_REASON_TCP_CSUM;
1955 	trace_tcp_bad_csum(skb);
1956 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1957 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1958 	goto discard;
1959 }
1960 EXPORT_SYMBOL(tcp_v4_do_rcv);
1961 
1962 int tcp_v4_early_demux(struct sk_buff *skb)
1963 {
1964 	struct net *net = dev_net_rcu(skb->dev);
1965 	const struct iphdr *iph;
1966 	const struct tcphdr *th;
1967 	struct sock *sk;
1968 
1969 	if (skb->pkt_type != PACKET_HOST)
1970 		return 0;
1971 
1972 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1973 		return 0;
1974 
1975 	iph = ip_hdr(skb);
1976 	th = tcp_hdr(skb);
1977 
1978 	if (th->doff < sizeof(struct tcphdr) / 4)
1979 		return 0;
1980 
1981 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1982 				       iph->saddr, th->source,
1983 				       iph->daddr, ntohs(th->dest),
1984 				       skb->skb_iif, inet_sdif(skb));
1985 	if (sk) {
1986 		skb->sk = sk;
1987 		skb->destructor = sock_edemux;
1988 		if (sk_fullsock(sk)) {
1989 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1990 
1991 			if (dst)
1992 				dst = dst_check(dst, 0);
1993 			if (dst &&
1994 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1995 				skb_dst_set_noref(skb, dst);
1996 		}
1997 	}
1998 	return 0;
1999 }
2000 
2001 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
2002 		     enum skb_drop_reason *reason)
2003 {
2004 	u32 tail_gso_size, tail_gso_segs;
2005 	struct skb_shared_info *shinfo;
2006 	const struct tcphdr *th;
2007 	struct tcphdr *thtail;
2008 	struct sk_buff *tail;
2009 	unsigned int hdrlen;
2010 	bool fragstolen;
2011 	u32 gso_segs;
2012 	u32 gso_size;
2013 	u64 limit;
2014 	int delta;
2015 
2016 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
2017 	 * we can fix skb->truesize to its real value to avoid future drops.
2018 	 * This is valid because skb is not yet charged to the socket.
2019 	 * It has been noticed pure SACK packets were sometimes dropped
2020 	 * (if cooked by drivers without copybreak feature).
2021 	 */
2022 	skb_condense(skb);
2023 
2024 	tcp_cleanup_skb(skb);
2025 
2026 	if (unlikely(tcp_checksum_complete(skb))) {
2027 		bh_unlock_sock(sk);
2028 		trace_tcp_bad_csum(skb);
2029 		*reason = SKB_DROP_REASON_TCP_CSUM;
2030 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2031 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2032 		return true;
2033 	}
2034 
2035 	/* Attempt coalescing to last skb in backlog, even if we are
2036 	 * above the limits.
2037 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2038 	 */
2039 	th = (const struct tcphdr *)skb->data;
2040 	hdrlen = th->doff * 4;
2041 
2042 	tail = sk->sk_backlog.tail;
2043 	if (!tail)
2044 		goto no_coalesce;
2045 	thtail = (struct tcphdr *)tail->data;
2046 
2047 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2048 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2049 	    ((TCP_SKB_CB(tail)->tcp_flags |
2050 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2051 	    !((TCP_SKB_CB(tail)->tcp_flags &
2052 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2053 	    ((TCP_SKB_CB(tail)->tcp_flags ^
2054 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
2055 	    !tcp_skb_can_collapse_rx(tail, skb) ||
2056 	    thtail->doff != th->doff ||
2057 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
2058 		goto no_coalesce;
2059 
2060 	__skb_pull(skb, hdrlen);
2061 
2062 	shinfo = skb_shinfo(skb);
2063 	gso_size = shinfo->gso_size ?: skb->len;
2064 	gso_segs = shinfo->gso_segs ?: 1;
2065 
2066 	shinfo = skb_shinfo(tail);
2067 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2068 	tail_gso_segs = shinfo->gso_segs ?: 1;
2069 
2070 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2071 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2072 
2073 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2074 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2075 			thtail->window = th->window;
2076 		}
2077 
2078 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2079 		 * thtail->fin, so that the fast path in tcp_rcv_established()
2080 		 * is not entered if we append a packet with a FIN.
2081 		 * SYN, RST, URG are not present.
2082 		 * ACK is set on both packets.
2083 		 * PSH : we do not really care in TCP stack,
2084 		 *       at least for 'GRO' packets.
2085 		 */
2086 		thtail->fin |= th->fin;
2087 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2088 
2089 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2090 			TCP_SKB_CB(tail)->has_rxtstamp = true;
2091 			tail->tstamp = skb->tstamp;
2092 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2093 		}
2094 
2095 		/* Not as strict as GRO. We only need to carry mss max value */
2096 		shinfo->gso_size = max(gso_size, tail_gso_size);
2097 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2098 
2099 		sk->sk_backlog.len += delta;
2100 		__NET_INC_STATS(sock_net(sk),
2101 				LINUX_MIB_TCPBACKLOGCOALESCE);
2102 		kfree_skb_partial(skb, fragstolen);
2103 		return false;
2104 	}
2105 	__skb_push(skb, hdrlen);
2106 
2107 no_coalesce:
2108 	/* sk->sk_backlog.len is reset only at the end of __release_sock().
2109 	 * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
2110 	 * sk_rcvbuf in normal conditions.
2111 	 */
2112 	limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1;
2113 
2114 	limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1;
2115 
2116 	/* Only socket owner can try to collapse/prune rx queues
2117 	 * to reduce memory overhead, so add a little headroom here.
2118 	 * Few sockets backlog are possibly concurrently non empty.
2119 	 */
2120 	limit += 64 * 1024;
2121 
2122 	limit = min_t(u64, limit, UINT_MAX);
2123 
2124 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
2125 		bh_unlock_sock(sk);
2126 		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2127 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2128 		return true;
2129 	}
2130 	return false;
2131 }
2132 EXPORT_IPV6_MOD(tcp_add_backlog);
2133 
2134 int tcp_filter(struct sock *sk, struct sk_buff *skb)
2135 {
2136 	struct tcphdr *th = (struct tcphdr *)skb->data;
2137 
2138 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
2139 }
2140 EXPORT_IPV6_MOD(tcp_filter);
2141 
2142 static void tcp_v4_restore_cb(struct sk_buff *skb)
2143 {
2144 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2145 		sizeof(struct inet_skb_parm));
2146 }
2147 
2148 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2149 			   const struct tcphdr *th)
2150 {
2151 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2152 	 * barrier() makes sure compiler wont play fool^Waliasing games.
2153 	 */
2154 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2155 		sizeof(struct inet_skb_parm));
2156 	barrier();
2157 
2158 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2159 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2160 				    skb->len - th->doff * 4);
2161 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2162 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
2163 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2164 	TCP_SKB_CB(skb)->sacked	 = 0;
2165 	TCP_SKB_CB(skb)->has_rxtstamp =
2166 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2167 }
2168 
2169 /*
2170  *	From tcp_input.c
2171  */
2172 
2173 int tcp_v4_rcv(struct sk_buff *skb)
2174 {
2175 	struct net *net = dev_net_rcu(skb->dev);
2176 	enum skb_drop_reason drop_reason;
2177 	int sdif = inet_sdif(skb);
2178 	int dif = inet_iif(skb);
2179 	const struct iphdr *iph;
2180 	const struct tcphdr *th;
2181 	struct sock *sk = NULL;
2182 	bool refcounted;
2183 	int ret;
2184 	u32 isn;
2185 
2186 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2187 	if (skb->pkt_type != PACKET_HOST)
2188 		goto discard_it;
2189 
2190 	/* Count it even if it's bad */
2191 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2192 
2193 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2194 		goto discard_it;
2195 
2196 	th = (const struct tcphdr *)skb->data;
2197 
2198 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2199 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2200 		goto bad_packet;
2201 	}
2202 	if (!pskb_may_pull(skb, th->doff * 4))
2203 		goto discard_it;
2204 
2205 	/* An explanation is required here, I think.
2206 	 * Packet length and doff are validated by header prediction,
2207 	 * provided case of th->doff==0 is eliminated.
2208 	 * So, we defer the checks. */
2209 
2210 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2211 		goto csum_error;
2212 
2213 	th = (const struct tcphdr *)skb->data;
2214 	iph = ip_hdr(skb);
2215 lookup:
2216 	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2217 			       skb, __tcp_hdrlen(th), th->source,
2218 			       th->dest, sdif, &refcounted);
2219 	if (!sk)
2220 		goto no_tcp_socket;
2221 
2222 	if (sk->sk_state == TCP_TIME_WAIT)
2223 		goto do_time_wait;
2224 
2225 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2226 		struct request_sock *req = inet_reqsk(sk);
2227 		bool req_stolen = false;
2228 		struct sock *nsk;
2229 
2230 		sk = req->rsk_listener;
2231 		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2232 			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2233 		else
2234 			drop_reason = tcp_inbound_hash(sk, req, skb,
2235 						       &iph->saddr, &iph->daddr,
2236 						       AF_INET, dif, sdif);
2237 		if (unlikely(drop_reason)) {
2238 			sk_drops_add(sk, skb);
2239 			reqsk_put(req);
2240 			goto discard_it;
2241 		}
2242 		if (tcp_checksum_complete(skb)) {
2243 			reqsk_put(req);
2244 			goto csum_error;
2245 		}
2246 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2247 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2248 			if (!nsk) {
2249 				inet_csk_reqsk_queue_drop_and_put(sk, req);
2250 				goto lookup;
2251 			}
2252 			sk = nsk;
2253 			/* reuseport_migrate_sock() has already held one sk_refcnt
2254 			 * before returning.
2255 			 */
2256 		} else {
2257 			/* We own a reference on the listener, increase it again
2258 			 * as we might lose it too soon.
2259 			 */
2260 			sock_hold(sk);
2261 		}
2262 		refcounted = true;
2263 		nsk = NULL;
2264 		if (!tcp_filter(sk, skb)) {
2265 			th = (const struct tcphdr *)skb->data;
2266 			iph = ip_hdr(skb);
2267 			tcp_v4_fill_cb(skb, iph, th);
2268 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen,
2269 					    &drop_reason);
2270 		} else {
2271 			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2272 		}
2273 		if (!nsk) {
2274 			reqsk_put(req);
2275 			if (req_stolen) {
2276 				/* Another cpu got exclusive access to req
2277 				 * and created a full blown socket.
2278 				 * Try to feed this packet to this socket
2279 				 * instead of discarding it.
2280 				 */
2281 				tcp_v4_restore_cb(skb);
2282 				sock_put(sk);
2283 				goto lookup;
2284 			}
2285 			goto discard_and_relse;
2286 		}
2287 		nf_reset_ct(skb);
2288 		if (nsk == sk) {
2289 			reqsk_put(req);
2290 			tcp_v4_restore_cb(skb);
2291 		} else {
2292 			drop_reason = tcp_child_process(sk, nsk, skb);
2293 			if (drop_reason) {
2294 				enum sk_rst_reason rst_reason;
2295 
2296 				rst_reason = sk_rst_convert_drop_reason(drop_reason);
2297 				tcp_v4_send_reset(nsk, skb, rst_reason);
2298 				goto discard_and_relse;
2299 			}
2300 			sock_put(sk);
2301 			return 0;
2302 		}
2303 	}
2304 
2305 process:
2306 	if (static_branch_unlikely(&ip4_min_ttl)) {
2307 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2308 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2309 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2310 			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2311 			goto discard_and_relse;
2312 		}
2313 	}
2314 
2315 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2316 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2317 		goto discard_and_relse;
2318 	}
2319 
2320 	drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2321 				       AF_INET, dif, sdif);
2322 	if (drop_reason)
2323 		goto discard_and_relse;
2324 
2325 	nf_reset_ct(skb);
2326 
2327 	if (tcp_filter(sk, skb)) {
2328 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2329 		goto discard_and_relse;
2330 	}
2331 	th = (const struct tcphdr *)skb->data;
2332 	iph = ip_hdr(skb);
2333 	tcp_v4_fill_cb(skb, iph, th);
2334 
2335 	skb->dev = NULL;
2336 
2337 	if (sk->sk_state == TCP_LISTEN) {
2338 		ret = tcp_v4_do_rcv(sk, skb);
2339 		goto put_and_return;
2340 	}
2341 
2342 	sk_incoming_cpu_update(sk);
2343 
2344 	bh_lock_sock_nested(sk);
2345 	tcp_segs_in(tcp_sk(sk), skb);
2346 	ret = 0;
2347 	if (!sock_owned_by_user(sk)) {
2348 		ret = tcp_v4_do_rcv(sk, skb);
2349 	} else {
2350 		if (tcp_add_backlog(sk, skb, &drop_reason))
2351 			goto discard_and_relse;
2352 	}
2353 	bh_unlock_sock(sk);
2354 
2355 put_and_return:
2356 	if (refcounted)
2357 		sock_put(sk);
2358 
2359 	return ret;
2360 
2361 no_tcp_socket:
2362 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2363 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2364 		goto discard_it;
2365 
2366 	tcp_v4_fill_cb(skb, iph, th);
2367 
2368 	if (tcp_checksum_complete(skb)) {
2369 csum_error:
2370 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2371 		trace_tcp_bad_csum(skb);
2372 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2373 bad_packet:
2374 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2375 	} else {
2376 		tcp_v4_send_reset(NULL, skb, sk_rst_convert_drop_reason(drop_reason));
2377 	}
2378 
2379 discard_it:
2380 	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2381 	/* Discard frame. */
2382 	sk_skb_reason_drop(sk, skb, drop_reason);
2383 	return 0;
2384 
2385 discard_and_relse:
2386 	sk_drops_add(sk, skb);
2387 	if (refcounted)
2388 		sock_put(sk);
2389 	goto discard_it;
2390 
2391 do_time_wait:
2392 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2393 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2394 		inet_twsk_put(inet_twsk(sk));
2395 		goto discard_it;
2396 	}
2397 
2398 	tcp_v4_fill_cb(skb, iph, th);
2399 
2400 	if (tcp_checksum_complete(skb)) {
2401 		inet_twsk_put(inet_twsk(sk));
2402 		goto csum_error;
2403 	}
2404 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn)) {
2405 	case TCP_TW_SYN: {
2406 		struct sock *sk2 = inet_lookup_listener(net,
2407 							net->ipv4.tcp_death_row.hashinfo,
2408 							skb, __tcp_hdrlen(th),
2409 							iph->saddr, th->source,
2410 							iph->daddr, th->dest,
2411 							inet_iif(skb),
2412 							sdif);
2413 		if (sk2) {
2414 			inet_twsk_deschedule_put(inet_twsk(sk));
2415 			sk = sk2;
2416 			tcp_v4_restore_cb(skb);
2417 			refcounted = false;
2418 			__this_cpu_write(tcp_tw_isn, isn);
2419 			goto process;
2420 		}
2421 	}
2422 		/* to ACK */
2423 		fallthrough;
2424 	case TCP_TW_ACK:
2425 		tcp_v4_timewait_ack(sk, skb);
2426 		break;
2427 	case TCP_TW_RST:
2428 		tcp_v4_send_reset(sk, skb, SK_RST_REASON_TCP_TIMEWAIT_SOCKET);
2429 		inet_twsk_deschedule_put(inet_twsk(sk));
2430 		goto discard_it;
2431 	case TCP_TW_SUCCESS:;
2432 	}
2433 	goto discard_it;
2434 }
2435 
2436 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2437 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2438 	.twsk_destructor= tcp_twsk_destructor,
2439 };
2440 
2441 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2442 {
2443 	struct dst_entry *dst = skb_dst(skb);
2444 
2445 	if (dst && dst_hold_safe(dst)) {
2446 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2447 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2448 	}
2449 }
2450 EXPORT_IPV6_MOD(inet_sk_rx_dst_set);
2451 
2452 const struct inet_connection_sock_af_ops ipv4_specific = {
2453 	.queue_xmit	   = ip_queue_xmit,
2454 	.send_check	   = tcp_v4_send_check,
2455 	.rebuild_header	   = inet_sk_rebuild_header,
2456 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2457 	.conn_request	   = tcp_v4_conn_request,
2458 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2459 	.net_header_len	   = sizeof(struct iphdr),
2460 	.setsockopt	   = ip_setsockopt,
2461 	.getsockopt	   = ip_getsockopt,
2462 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2463 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2464 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2465 };
2466 EXPORT_IPV6_MOD(ipv4_specific);
2467 
2468 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2469 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2470 #ifdef CONFIG_TCP_MD5SIG
2471 	.md5_lookup		= tcp_v4_md5_lookup,
2472 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2473 	.md5_parse		= tcp_v4_parse_md5_keys,
2474 #endif
2475 #ifdef CONFIG_TCP_AO
2476 	.ao_lookup		= tcp_v4_ao_lookup,
2477 	.calc_ao_hash		= tcp_v4_ao_hash_skb,
2478 	.ao_parse		= tcp_v4_parse_ao,
2479 	.ao_calc_key_sk		= tcp_v4_ao_calc_key_sk,
2480 #endif
2481 };
2482 #endif
2483 
2484 /* NOTE: A lot of things set to zero explicitly by call to
2485  *       sk_alloc() so need not be done here.
2486  */
2487 static int tcp_v4_init_sock(struct sock *sk)
2488 {
2489 	struct inet_connection_sock *icsk = inet_csk(sk);
2490 
2491 	tcp_init_sock(sk);
2492 
2493 	icsk->icsk_af_ops = &ipv4_specific;
2494 
2495 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2496 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2497 #endif
2498 
2499 	return 0;
2500 }
2501 
2502 #ifdef CONFIG_TCP_MD5SIG
2503 static void tcp_md5sig_info_free_rcu(struct rcu_head *head)
2504 {
2505 	struct tcp_md5sig_info *md5sig;
2506 
2507 	md5sig = container_of(head, struct tcp_md5sig_info, rcu);
2508 	kfree(md5sig);
2509 	static_branch_slow_dec_deferred(&tcp_md5_needed);
2510 	tcp_md5_release_sigpool();
2511 }
2512 #endif
2513 
2514 static void tcp_release_user_frags(struct sock *sk)
2515 {
2516 #ifdef CONFIG_PAGE_POOL
2517 	unsigned long index;
2518 	void *netmem;
2519 
2520 	xa_for_each(&sk->sk_user_frags, index, netmem)
2521 		WARN_ON_ONCE(!napi_pp_put_page((__force netmem_ref)netmem));
2522 #endif
2523 }
2524 
2525 void tcp_v4_destroy_sock(struct sock *sk)
2526 {
2527 	struct tcp_sock *tp = tcp_sk(sk);
2528 
2529 	tcp_release_user_frags(sk);
2530 
2531 	xa_destroy(&sk->sk_user_frags);
2532 
2533 	trace_tcp_destroy_sock(sk);
2534 
2535 	tcp_clear_xmit_timers(sk);
2536 
2537 	tcp_cleanup_congestion_control(sk);
2538 
2539 	tcp_cleanup_ulp(sk);
2540 
2541 	/* Cleanup up the write buffer. */
2542 	tcp_write_queue_purge(sk);
2543 
2544 	/* Check if we want to disable active TFO */
2545 	tcp_fastopen_active_disable_ofo_check(sk);
2546 
2547 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2548 	skb_rbtree_purge(&tp->out_of_order_queue);
2549 
2550 #ifdef CONFIG_TCP_MD5SIG
2551 	/* Clean up the MD5 key list, if any */
2552 	if (tp->md5sig_info) {
2553 		struct tcp_md5sig_info *md5sig;
2554 
2555 		md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
2556 		tcp_clear_md5_list(sk);
2557 		call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu);
2558 		rcu_assign_pointer(tp->md5sig_info, NULL);
2559 	}
2560 #endif
2561 	tcp_ao_destroy_sock(sk, false);
2562 
2563 	/* Clean up a referenced TCP bind bucket. */
2564 	if (inet_csk(sk)->icsk_bind_hash)
2565 		inet_put_port(sk);
2566 
2567 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2568 
2569 	/* If socket is aborted during connect operation */
2570 	tcp_free_fastopen_req(tp);
2571 	tcp_fastopen_destroy_cipher(sk);
2572 	tcp_saved_syn_free(tp);
2573 
2574 	sk_sockets_allocated_dec(sk);
2575 }
2576 EXPORT_IPV6_MOD(tcp_v4_destroy_sock);
2577 
2578 #ifdef CONFIG_PROC_FS
2579 /* Proc filesystem TCP sock list dumping. */
2580 
2581 static unsigned short seq_file_family(const struct seq_file *seq);
2582 
2583 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2584 {
2585 	unsigned short family = seq_file_family(seq);
2586 
2587 	/* AF_UNSPEC is used as a match all */
2588 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2589 		net_eq(sock_net(sk), seq_file_net(seq)));
2590 }
2591 
2592 /* Find a non empty bucket (starting from st->bucket)
2593  * and return the first sk from it.
2594  */
2595 static void *listening_get_first(struct seq_file *seq)
2596 {
2597 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2598 	struct tcp_iter_state *st = seq->private;
2599 
2600 	st->offset = 0;
2601 	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2602 		struct inet_listen_hashbucket *ilb2;
2603 		struct hlist_nulls_node *node;
2604 		struct sock *sk;
2605 
2606 		ilb2 = &hinfo->lhash2[st->bucket];
2607 		if (hlist_nulls_empty(&ilb2->nulls_head))
2608 			continue;
2609 
2610 		spin_lock(&ilb2->lock);
2611 		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2612 			if (seq_sk_match(seq, sk))
2613 				return sk;
2614 		}
2615 		spin_unlock(&ilb2->lock);
2616 	}
2617 
2618 	return NULL;
2619 }
2620 
2621 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2622  * If "cur" is the last one in the st->bucket,
2623  * call listening_get_first() to return the first sk of the next
2624  * non empty bucket.
2625  */
2626 static void *listening_get_next(struct seq_file *seq, void *cur)
2627 {
2628 	struct tcp_iter_state *st = seq->private;
2629 	struct inet_listen_hashbucket *ilb2;
2630 	struct hlist_nulls_node *node;
2631 	struct inet_hashinfo *hinfo;
2632 	struct sock *sk = cur;
2633 
2634 	++st->num;
2635 	++st->offset;
2636 
2637 	sk = sk_nulls_next(sk);
2638 	sk_nulls_for_each_from(sk, node) {
2639 		if (seq_sk_match(seq, sk))
2640 			return sk;
2641 	}
2642 
2643 	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2644 	ilb2 = &hinfo->lhash2[st->bucket];
2645 	spin_unlock(&ilb2->lock);
2646 	++st->bucket;
2647 	return listening_get_first(seq);
2648 }
2649 
2650 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2651 {
2652 	struct tcp_iter_state *st = seq->private;
2653 	void *rc;
2654 
2655 	st->bucket = 0;
2656 	st->offset = 0;
2657 	rc = listening_get_first(seq);
2658 
2659 	while (rc && *pos) {
2660 		rc = listening_get_next(seq, rc);
2661 		--*pos;
2662 	}
2663 	return rc;
2664 }
2665 
2666 static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2667 				const struct tcp_iter_state *st)
2668 {
2669 	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2670 }
2671 
2672 /*
2673  * Get first established socket starting from bucket given in st->bucket.
2674  * If st->bucket is zero, the very first socket in the hash is returned.
2675  */
2676 static void *established_get_first(struct seq_file *seq)
2677 {
2678 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2679 	struct tcp_iter_state *st = seq->private;
2680 
2681 	st->offset = 0;
2682 	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2683 		struct sock *sk;
2684 		struct hlist_nulls_node *node;
2685 		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2686 
2687 		cond_resched();
2688 
2689 		/* Lockless fast path for the common case of empty buckets */
2690 		if (empty_bucket(hinfo, st))
2691 			continue;
2692 
2693 		spin_lock_bh(lock);
2694 		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2695 			if (seq_sk_match(seq, sk))
2696 				return sk;
2697 		}
2698 		spin_unlock_bh(lock);
2699 	}
2700 
2701 	return NULL;
2702 }
2703 
2704 static void *established_get_next(struct seq_file *seq, void *cur)
2705 {
2706 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2707 	struct tcp_iter_state *st = seq->private;
2708 	struct hlist_nulls_node *node;
2709 	struct sock *sk = cur;
2710 
2711 	++st->num;
2712 	++st->offset;
2713 
2714 	sk = sk_nulls_next(sk);
2715 
2716 	sk_nulls_for_each_from(sk, node) {
2717 		if (seq_sk_match(seq, sk))
2718 			return sk;
2719 	}
2720 
2721 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2722 	++st->bucket;
2723 	return established_get_first(seq);
2724 }
2725 
2726 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2727 {
2728 	struct tcp_iter_state *st = seq->private;
2729 	void *rc;
2730 
2731 	st->bucket = 0;
2732 	rc = established_get_first(seq);
2733 
2734 	while (rc && pos) {
2735 		rc = established_get_next(seq, rc);
2736 		--pos;
2737 	}
2738 	return rc;
2739 }
2740 
2741 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2742 {
2743 	void *rc;
2744 	struct tcp_iter_state *st = seq->private;
2745 
2746 	st->state = TCP_SEQ_STATE_LISTENING;
2747 	rc	  = listening_get_idx(seq, &pos);
2748 
2749 	if (!rc) {
2750 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2751 		rc	  = established_get_idx(seq, pos);
2752 	}
2753 
2754 	return rc;
2755 }
2756 
2757 static void *tcp_seek_last_pos(struct seq_file *seq)
2758 {
2759 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2760 	struct tcp_iter_state *st = seq->private;
2761 	int bucket = st->bucket;
2762 	int offset = st->offset;
2763 	int orig_num = st->num;
2764 	void *rc = NULL;
2765 
2766 	switch (st->state) {
2767 	case TCP_SEQ_STATE_LISTENING:
2768 		if (st->bucket > hinfo->lhash2_mask)
2769 			break;
2770 		rc = listening_get_first(seq);
2771 		while (offset-- && rc && bucket == st->bucket)
2772 			rc = listening_get_next(seq, rc);
2773 		if (rc)
2774 			break;
2775 		st->bucket = 0;
2776 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2777 		fallthrough;
2778 	case TCP_SEQ_STATE_ESTABLISHED:
2779 		if (st->bucket > hinfo->ehash_mask)
2780 			break;
2781 		rc = established_get_first(seq);
2782 		while (offset-- && rc && bucket == st->bucket)
2783 			rc = established_get_next(seq, rc);
2784 	}
2785 
2786 	st->num = orig_num;
2787 
2788 	return rc;
2789 }
2790 
2791 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2792 {
2793 	struct tcp_iter_state *st = seq->private;
2794 	void *rc;
2795 
2796 	if (*pos && *pos == st->last_pos) {
2797 		rc = tcp_seek_last_pos(seq);
2798 		if (rc)
2799 			goto out;
2800 	}
2801 
2802 	st->state = TCP_SEQ_STATE_LISTENING;
2803 	st->num = 0;
2804 	st->bucket = 0;
2805 	st->offset = 0;
2806 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2807 
2808 out:
2809 	st->last_pos = *pos;
2810 	return rc;
2811 }
2812 EXPORT_IPV6_MOD(tcp_seq_start);
2813 
2814 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2815 {
2816 	struct tcp_iter_state *st = seq->private;
2817 	void *rc = NULL;
2818 
2819 	if (v == SEQ_START_TOKEN) {
2820 		rc = tcp_get_idx(seq, 0);
2821 		goto out;
2822 	}
2823 
2824 	switch (st->state) {
2825 	case TCP_SEQ_STATE_LISTENING:
2826 		rc = listening_get_next(seq, v);
2827 		if (!rc) {
2828 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2829 			st->bucket = 0;
2830 			st->offset = 0;
2831 			rc	  = established_get_first(seq);
2832 		}
2833 		break;
2834 	case TCP_SEQ_STATE_ESTABLISHED:
2835 		rc = established_get_next(seq, v);
2836 		break;
2837 	}
2838 out:
2839 	++*pos;
2840 	st->last_pos = *pos;
2841 	return rc;
2842 }
2843 EXPORT_IPV6_MOD(tcp_seq_next);
2844 
2845 void tcp_seq_stop(struct seq_file *seq, void *v)
2846 {
2847 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2848 	struct tcp_iter_state *st = seq->private;
2849 
2850 	switch (st->state) {
2851 	case TCP_SEQ_STATE_LISTENING:
2852 		if (v != SEQ_START_TOKEN)
2853 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2854 		break;
2855 	case TCP_SEQ_STATE_ESTABLISHED:
2856 		if (v)
2857 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2858 		break;
2859 	}
2860 }
2861 EXPORT_IPV6_MOD(tcp_seq_stop);
2862 
2863 static void get_openreq4(const struct request_sock *req,
2864 			 struct seq_file *f, int i)
2865 {
2866 	const struct inet_request_sock *ireq = inet_rsk(req);
2867 	long delta = req->rsk_timer.expires - jiffies;
2868 
2869 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2870 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2871 		i,
2872 		ireq->ir_loc_addr,
2873 		ireq->ir_num,
2874 		ireq->ir_rmt_addr,
2875 		ntohs(ireq->ir_rmt_port),
2876 		TCP_SYN_RECV,
2877 		0, 0, /* could print option size, but that is af dependent. */
2878 		1,    /* timers active (only the expire timer) */
2879 		jiffies_delta_to_clock_t(delta),
2880 		req->num_timeout,
2881 		from_kuid_munged(seq_user_ns(f),
2882 				 sock_i_uid(req->rsk_listener)),
2883 		0,  /* non standard timer */
2884 		0, /* open_requests have no inode */
2885 		0,
2886 		req);
2887 }
2888 
2889 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2890 {
2891 	int timer_active;
2892 	unsigned long timer_expires;
2893 	const struct tcp_sock *tp = tcp_sk(sk);
2894 	const struct inet_connection_sock *icsk = inet_csk(sk);
2895 	const struct inet_sock *inet = inet_sk(sk);
2896 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2897 	__be32 dest = inet->inet_daddr;
2898 	__be32 src = inet->inet_rcv_saddr;
2899 	__u16 destp = ntohs(inet->inet_dport);
2900 	__u16 srcp = ntohs(inet->inet_sport);
2901 	u8 icsk_pending;
2902 	int rx_queue;
2903 	int state;
2904 
2905 	icsk_pending = smp_load_acquire(&icsk->icsk_pending);
2906 	if (icsk_pending == ICSK_TIME_RETRANS ||
2907 	    icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2908 	    icsk_pending == ICSK_TIME_LOSS_PROBE) {
2909 		timer_active	= 1;
2910 		timer_expires	= icsk->icsk_timeout;
2911 	} else if (icsk_pending == ICSK_TIME_PROBE0) {
2912 		timer_active	= 4;
2913 		timer_expires	= icsk->icsk_timeout;
2914 	} else if (timer_pending(&sk->sk_timer)) {
2915 		timer_active	= 2;
2916 		timer_expires	= sk->sk_timer.expires;
2917 	} else {
2918 		timer_active	= 0;
2919 		timer_expires = jiffies;
2920 	}
2921 
2922 	state = inet_sk_state_load(sk);
2923 	if (state == TCP_LISTEN)
2924 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2925 	else
2926 		/* Because we don't lock the socket,
2927 		 * we might find a transient negative value.
2928 		 */
2929 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2930 				      READ_ONCE(tp->copied_seq), 0);
2931 
2932 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2933 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2934 		i, src, srcp, dest, destp, state,
2935 		READ_ONCE(tp->write_seq) - tp->snd_una,
2936 		rx_queue,
2937 		timer_active,
2938 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2939 		icsk->icsk_retransmits,
2940 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2941 		icsk->icsk_probes_out,
2942 		sock_i_ino(sk),
2943 		refcount_read(&sk->sk_refcnt), sk,
2944 		jiffies_to_clock_t(icsk->icsk_rto),
2945 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2946 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2947 		tcp_snd_cwnd(tp),
2948 		state == TCP_LISTEN ?
2949 		    fastopenq->max_qlen :
2950 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2951 }
2952 
2953 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2954 			       struct seq_file *f, int i)
2955 {
2956 	long delta = tw->tw_timer.expires - jiffies;
2957 	__be32 dest, src;
2958 	__u16 destp, srcp;
2959 
2960 	dest  = tw->tw_daddr;
2961 	src   = tw->tw_rcv_saddr;
2962 	destp = ntohs(tw->tw_dport);
2963 	srcp  = ntohs(tw->tw_sport);
2964 
2965 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2966 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2967 		i, src, srcp, dest, destp, READ_ONCE(tw->tw_substate), 0, 0,
2968 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2969 		refcount_read(&tw->tw_refcnt), tw);
2970 }
2971 
2972 #define TMPSZ 150
2973 
2974 static int tcp4_seq_show(struct seq_file *seq, void *v)
2975 {
2976 	struct tcp_iter_state *st;
2977 	struct sock *sk = v;
2978 
2979 	seq_setwidth(seq, TMPSZ - 1);
2980 	if (v == SEQ_START_TOKEN) {
2981 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2982 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2983 			   "inode");
2984 		goto out;
2985 	}
2986 	st = seq->private;
2987 
2988 	if (sk->sk_state == TCP_TIME_WAIT)
2989 		get_timewait4_sock(v, seq, st->num);
2990 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2991 		get_openreq4(v, seq, st->num);
2992 	else
2993 		get_tcp4_sock(v, seq, st->num);
2994 out:
2995 	seq_pad(seq, '\n');
2996 	return 0;
2997 }
2998 
2999 #ifdef CONFIG_BPF_SYSCALL
3000 struct bpf_tcp_iter_state {
3001 	struct tcp_iter_state state;
3002 	unsigned int cur_sk;
3003 	unsigned int end_sk;
3004 	unsigned int max_sk;
3005 	struct sock **batch;
3006 	bool st_bucket_done;
3007 };
3008 
3009 struct bpf_iter__tcp {
3010 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3011 	__bpf_md_ptr(struct sock_common *, sk_common);
3012 	uid_t uid __aligned(8);
3013 };
3014 
3015 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3016 			     struct sock_common *sk_common, uid_t uid)
3017 {
3018 	struct bpf_iter__tcp ctx;
3019 
3020 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3021 	ctx.meta = meta;
3022 	ctx.sk_common = sk_common;
3023 	ctx.uid = uid;
3024 	return bpf_iter_run_prog(prog, &ctx);
3025 }
3026 
3027 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
3028 {
3029 	while (iter->cur_sk < iter->end_sk)
3030 		sock_gen_put(iter->batch[iter->cur_sk++]);
3031 }
3032 
3033 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
3034 				      unsigned int new_batch_sz)
3035 {
3036 	struct sock **new_batch;
3037 
3038 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3039 			     GFP_USER | __GFP_NOWARN);
3040 	if (!new_batch)
3041 		return -ENOMEM;
3042 
3043 	bpf_iter_tcp_put_batch(iter);
3044 	kvfree(iter->batch);
3045 	iter->batch = new_batch;
3046 	iter->max_sk = new_batch_sz;
3047 
3048 	return 0;
3049 }
3050 
3051 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3052 						 struct sock *start_sk)
3053 {
3054 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3055 	struct bpf_tcp_iter_state *iter = seq->private;
3056 	struct tcp_iter_state *st = &iter->state;
3057 	struct hlist_nulls_node *node;
3058 	unsigned int expected = 1;
3059 	struct sock *sk;
3060 
3061 	sock_hold(start_sk);
3062 	iter->batch[iter->end_sk++] = start_sk;
3063 
3064 	sk = sk_nulls_next(start_sk);
3065 	sk_nulls_for_each_from(sk, node) {
3066 		if (seq_sk_match(seq, sk)) {
3067 			if (iter->end_sk < iter->max_sk) {
3068 				sock_hold(sk);
3069 				iter->batch[iter->end_sk++] = sk;
3070 			}
3071 			expected++;
3072 		}
3073 	}
3074 	spin_unlock(&hinfo->lhash2[st->bucket].lock);
3075 
3076 	return expected;
3077 }
3078 
3079 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3080 						   struct sock *start_sk)
3081 {
3082 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3083 	struct bpf_tcp_iter_state *iter = seq->private;
3084 	struct tcp_iter_state *st = &iter->state;
3085 	struct hlist_nulls_node *node;
3086 	unsigned int expected = 1;
3087 	struct sock *sk;
3088 
3089 	sock_hold(start_sk);
3090 	iter->batch[iter->end_sk++] = start_sk;
3091 
3092 	sk = sk_nulls_next(start_sk);
3093 	sk_nulls_for_each_from(sk, node) {
3094 		if (seq_sk_match(seq, sk)) {
3095 			if (iter->end_sk < iter->max_sk) {
3096 				sock_hold(sk);
3097 				iter->batch[iter->end_sk++] = sk;
3098 			}
3099 			expected++;
3100 		}
3101 	}
3102 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3103 
3104 	return expected;
3105 }
3106 
3107 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3108 {
3109 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3110 	struct bpf_tcp_iter_state *iter = seq->private;
3111 	struct tcp_iter_state *st = &iter->state;
3112 	unsigned int expected;
3113 	bool resized = false;
3114 	struct sock *sk;
3115 
3116 	/* The st->bucket is done.  Directly advance to the next
3117 	 * bucket instead of having the tcp_seek_last_pos() to skip
3118 	 * one by one in the current bucket and eventually find out
3119 	 * it has to advance to the next bucket.
3120 	 */
3121 	if (iter->st_bucket_done) {
3122 		st->offset = 0;
3123 		st->bucket++;
3124 		if (st->state == TCP_SEQ_STATE_LISTENING &&
3125 		    st->bucket > hinfo->lhash2_mask) {
3126 			st->state = TCP_SEQ_STATE_ESTABLISHED;
3127 			st->bucket = 0;
3128 		}
3129 	}
3130 
3131 again:
3132 	/* Get a new batch */
3133 	iter->cur_sk = 0;
3134 	iter->end_sk = 0;
3135 	iter->st_bucket_done = false;
3136 
3137 	sk = tcp_seek_last_pos(seq);
3138 	if (!sk)
3139 		return NULL; /* Done */
3140 
3141 	if (st->state == TCP_SEQ_STATE_LISTENING)
3142 		expected = bpf_iter_tcp_listening_batch(seq, sk);
3143 	else
3144 		expected = bpf_iter_tcp_established_batch(seq, sk);
3145 
3146 	if (iter->end_sk == expected) {
3147 		iter->st_bucket_done = true;
3148 		return sk;
3149 	}
3150 
3151 	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
3152 		resized = true;
3153 		goto again;
3154 	}
3155 
3156 	return sk;
3157 }
3158 
3159 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3160 {
3161 	/* bpf iter does not support lseek, so it always
3162 	 * continue from where it was stop()-ped.
3163 	 */
3164 	if (*pos)
3165 		return bpf_iter_tcp_batch(seq);
3166 
3167 	return SEQ_START_TOKEN;
3168 }
3169 
3170 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3171 {
3172 	struct bpf_tcp_iter_state *iter = seq->private;
3173 	struct tcp_iter_state *st = &iter->state;
3174 	struct sock *sk;
3175 
3176 	/* Whenever seq_next() is called, the iter->cur_sk is
3177 	 * done with seq_show(), so advance to the next sk in
3178 	 * the batch.
3179 	 */
3180 	if (iter->cur_sk < iter->end_sk) {
3181 		/* Keeping st->num consistent in tcp_iter_state.
3182 		 * bpf_iter_tcp does not use st->num.
3183 		 * meta.seq_num is used instead.
3184 		 */
3185 		st->num++;
3186 		/* Move st->offset to the next sk in the bucket such that
3187 		 * the future start() will resume at st->offset in
3188 		 * st->bucket.  See tcp_seek_last_pos().
3189 		 */
3190 		st->offset++;
3191 		sock_gen_put(iter->batch[iter->cur_sk++]);
3192 	}
3193 
3194 	if (iter->cur_sk < iter->end_sk)
3195 		sk = iter->batch[iter->cur_sk];
3196 	else
3197 		sk = bpf_iter_tcp_batch(seq);
3198 
3199 	++*pos;
3200 	/* Keeping st->last_pos consistent in tcp_iter_state.
3201 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3202 	 */
3203 	st->last_pos = *pos;
3204 	return sk;
3205 }
3206 
3207 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3208 {
3209 	struct bpf_iter_meta meta;
3210 	struct bpf_prog *prog;
3211 	struct sock *sk = v;
3212 	uid_t uid;
3213 	int ret;
3214 
3215 	if (v == SEQ_START_TOKEN)
3216 		return 0;
3217 
3218 	if (sk_fullsock(sk))
3219 		lock_sock(sk);
3220 
3221 	if (unlikely(sk_unhashed(sk))) {
3222 		ret = SEQ_SKIP;
3223 		goto unlock;
3224 	}
3225 
3226 	if (sk->sk_state == TCP_TIME_WAIT) {
3227 		uid = 0;
3228 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3229 		const struct request_sock *req = v;
3230 
3231 		uid = from_kuid_munged(seq_user_ns(seq),
3232 				       sock_i_uid(req->rsk_listener));
3233 	} else {
3234 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3235 	}
3236 
3237 	meta.seq = seq;
3238 	prog = bpf_iter_get_info(&meta, false);
3239 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3240 
3241 unlock:
3242 	if (sk_fullsock(sk))
3243 		release_sock(sk);
3244 	return ret;
3245 
3246 }
3247 
3248 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3249 {
3250 	struct bpf_tcp_iter_state *iter = seq->private;
3251 	struct bpf_iter_meta meta;
3252 	struct bpf_prog *prog;
3253 
3254 	if (!v) {
3255 		meta.seq = seq;
3256 		prog = bpf_iter_get_info(&meta, true);
3257 		if (prog)
3258 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3259 	}
3260 
3261 	if (iter->cur_sk < iter->end_sk) {
3262 		bpf_iter_tcp_put_batch(iter);
3263 		iter->st_bucket_done = false;
3264 	}
3265 }
3266 
3267 static const struct seq_operations bpf_iter_tcp_seq_ops = {
3268 	.show		= bpf_iter_tcp_seq_show,
3269 	.start		= bpf_iter_tcp_seq_start,
3270 	.next		= bpf_iter_tcp_seq_next,
3271 	.stop		= bpf_iter_tcp_seq_stop,
3272 };
3273 #endif
3274 static unsigned short seq_file_family(const struct seq_file *seq)
3275 {
3276 	const struct tcp_seq_afinfo *afinfo;
3277 
3278 #ifdef CONFIG_BPF_SYSCALL
3279 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3280 	if (seq->op == &bpf_iter_tcp_seq_ops)
3281 		return AF_UNSPEC;
3282 #endif
3283 
3284 	/* Iterated from proc fs */
3285 	afinfo = pde_data(file_inode(seq->file));
3286 	return afinfo->family;
3287 }
3288 
3289 static const struct seq_operations tcp4_seq_ops = {
3290 	.show		= tcp4_seq_show,
3291 	.start		= tcp_seq_start,
3292 	.next		= tcp_seq_next,
3293 	.stop		= tcp_seq_stop,
3294 };
3295 
3296 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3297 	.family		= AF_INET,
3298 };
3299 
3300 static int __net_init tcp4_proc_init_net(struct net *net)
3301 {
3302 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3303 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3304 		return -ENOMEM;
3305 	return 0;
3306 }
3307 
3308 static void __net_exit tcp4_proc_exit_net(struct net *net)
3309 {
3310 	remove_proc_entry("tcp", net->proc_net);
3311 }
3312 
3313 static struct pernet_operations tcp4_net_ops = {
3314 	.init = tcp4_proc_init_net,
3315 	.exit = tcp4_proc_exit_net,
3316 };
3317 
3318 int __init tcp4_proc_init(void)
3319 {
3320 	return register_pernet_subsys(&tcp4_net_ops);
3321 }
3322 
3323 void tcp4_proc_exit(void)
3324 {
3325 	unregister_pernet_subsys(&tcp4_net_ops);
3326 }
3327 #endif /* CONFIG_PROC_FS */
3328 
3329 /* @wake is one when sk_stream_write_space() calls us.
3330  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3331  * This mimics the strategy used in sock_def_write_space().
3332  */
3333 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3334 {
3335 	const struct tcp_sock *tp = tcp_sk(sk);
3336 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3337 			    READ_ONCE(tp->snd_nxt);
3338 
3339 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3340 }
3341 EXPORT_SYMBOL(tcp_stream_memory_free);
3342 
3343 struct proto tcp_prot = {
3344 	.name			= "TCP",
3345 	.owner			= THIS_MODULE,
3346 	.close			= tcp_close,
3347 	.pre_connect		= tcp_v4_pre_connect,
3348 	.connect		= tcp_v4_connect,
3349 	.disconnect		= tcp_disconnect,
3350 	.accept			= inet_csk_accept,
3351 	.ioctl			= tcp_ioctl,
3352 	.init			= tcp_v4_init_sock,
3353 	.destroy		= tcp_v4_destroy_sock,
3354 	.shutdown		= tcp_shutdown,
3355 	.setsockopt		= tcp_setsockopt,
3356 	.getsockopt		= tcp_getsockopt,
3357 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3358 	.keepalive		= tcp_set_keepalive,
3359 	.recvmsg		= tcp_recvmsg,
3360 	.sendmsg		= tcp_sendmsg,
3361 	.splice_eof		= tcp_splice_eof,
3362 	.backlog_rcv		= tcp_v4_do_rcv,
3363 	.release_cb		= tcp_release_cb,
3364 	.hash			= inet_hash,
3365 	.unhash			= inet_unhash,
3366 	.get_port		= inet_csk_get_port,
3367 	.put_port		= inet_put_port,
3368 #ifdef CONFIG_BPF_SYSCALL
3369 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3370 #endif
3371 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3372 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3373 	.stream_memory_free	= tcp_stream_memory_free,
3374 	.sockets_allocated	= &tcp_sockets_allocated,
3375 	.orphan_count		= &tcp_orphan_count,
3376 
3377 	.memory_allocated	= &tcp_memory_allocated,
3378 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3379 
3380 	.memory_pressure	= &tcp_memory_pressure,
3381 	.sysctl_mem		= sysctl_tcp_mem,
3382 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3383 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3384 	.max_header		= MAX_TCP_HEADER,
3385 	.obj_size		= sizeof(struct tcp_sock),
3386 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3387 	.twsk_prot		= &tcp_timewait_sock_ops,
3388 	.rsk_prot		= &tcp_request_sock_ops,
3389 	.h.hashinfo		= NULL,
3390 	.no_autobind		= true,
3391 	.diag_destroy		= tcp_abort,
3392 };
3393 EXPORT_SYMBOL(tcp_prot);
3394 
3395 static void __net_exit tcp_sk_exit(struct net *net)
3396 {
3397 	if (net->ipv4.tcp_congestion_control)
3398 		bpf_module_put(net->ipv4.tcp_congestion_control,
3399 			       net->ipv4.tcp_congestion_control->owner);
3400 }
3401 
3402 static void __net_init tcp_set_hashinfo(struct net *net)
3403 {
3404 	struct inet_hashinfo *hinfo;
3405 	unsigned int ehash_entries;
3406 	struct net *old_net;
3407 
3408 	if (net_eq(net, &init_net))
3409 		goto fallback;
3410 
3411 	old_net = current->nsproxy->net_ns;
3412 	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3413 	if (!ehash_entries)
3414 		goto fallback;
3415 
3416 	ehash_entries = roundup_pow_of_two(ehash_entries);
3417 	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3418 	if (!hinfo) {
3419 		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3420 			"for a netns, fallback to the global one\n",
3421 			ehash_entries);
3422 fallback:
3423 		hinfo = &tcp_hashinfo;
3424 		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3425 	}
3426 
3427 	net->ipv4.tcp_death_row.hashinfo = hinfo;
3428 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3429 	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3430 }
3431 
3432 static int __net_init tcp_sk_init(struct net *net)
3433 {
3434 	net->ipv4.sysctl_tcp_ecn = 2;
3435 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3436 
3437 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3438 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3439 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3440 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3441 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3442 
3443 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3444 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3445 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3446 
3447 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3448 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3449 	net->ipv4.sysctl_tcp_syncookies = 1;
3450 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3451 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3452 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3453 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3454 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3455 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3456 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3457 	net->ipv4.sysctl_tcp_tw_reuse_delay = 1 * MSEC_PER_SEC;
3458 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3459 
3460 	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3461 	tcp_set_hashinfo(net);
3462 
3463 	net->ipv4.sysctl_tcp_sack = 1;
3464 	net->ipv4.sysctl_tcp_window_scaling = 1;
3465 	net->ipv4.sysctl_tcp_timestamps = 1;
3466 	net->ipv4.sysctl_tcp_early_retrans = 3;
3467 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3468 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3469 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3470 	net->ipv4.sysctl_tcp_max_reordering = 300;
3471 	net->ipv4.sysctl_tcp_dsack = 1;
3472 	net->ipv4.sysctl_tcp_app_win = 31;
3473 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3474 	net->ipv4.sysctl_tcp_frto = 2;
3475 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3476 	/* This limits the percentage of the congestion window which we
3477 	 * will allow a single TSO frame to consume.  Building TSO frames
3478 	 * which are too large can cause TCP streams to be bursty.
3479 	 */
3480 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3481 	/* Default TSQ limit of 16 TSO segments */
3482 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3483 
3484 	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3485 	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3486 
3487 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3488 	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3489 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3490 	net->ipv4.sysctl_tcp_autocorking = 1;
3491 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3492 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3493 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3494 	if (net != &init_net) {
3495 		memcpy(net->ipv4.sysctl_tcp_rmem,
3496 		       init_net.ipv4.sysctl_tcp_rmem,
3497 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3498 		memcpy(net->ipv4.sysctl_tcp_wmem,
3499 		       init_net.ipv4.sysctl_tcp_wmem,
3500 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3501 	}
3502 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3503 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3504 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3505 	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3506 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3507 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3508 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3509 
3510 	/* Set default values for PLB */
3511 	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3512 	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3513 	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3514 	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3515 	/* Default congestion threshold for PLB to mark a round is 50% */
3516 	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3517 
3518 	/* Reno is always built in */
3519 	if (!net_eq(net, &init_net) &&
3520 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3521 			       init_net.ipv4.tcp_congestion_control->owner))
3522 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3523 	else
3524 		net->ipv4.tcp_congestion_control = &tcp_reno;
3525 
3526 	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3527 	net->ipv4.sysctl_tcp_shrink_window = 0;
3528 
3529 	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3530 	net->ipv4.sysctl_tcp_rto_min_us = jiffies_to_usecs(TCP_RTO_MIN);
3531 	net->ipv4.sysctl_tcp_rto_max_ms = TCP_RTO_MAX_SEC * MSEC_PER_SEC;
3532 
3533 	return 0;
3534 }
3535 
3536 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3537 {
3538 	struct net *net;
3539 
3540 	/* make sure concurrent calls to tcp_sk_exit_batch from net_cleanup_work
3541 	 * and failed setup_net error unwinding path are serialized.
3542 	 *
3543 	 * tcp_twsk_purge() handles twsk in any dead netns, not just those in
3544 	 * net_exit_list, the thread that dismantles a particular twsk must
3545 	 * do so without other thread progressing to refcount_dec_and_test() of
3546 	 * tcp_death_row.tw_refcount.
3547 	 */
3548 	mutex_lock(&tcp_exit_batch_mutex);
3549 
3550 	tcp_twsk_purge(net_exit_list);
3551 
3552 	list_for_each_entry(net, net_exit_list, exit_list) {
3553 		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3554 		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3555 		tcp_fastopen_ctx_destroy(net);
3556 	}
3557 
3558 	mutex_unlock(&tcp_exit_batch_mutex);
3559 }
3560 
3561 static struct pernet_operations __net_initdata tcp_sk_ops = {
3562        .init	   = tcp_sk_init,
3563        .exit	   = tcp_sk_exit,
3564        .exit_batch = tcp_sk_exit_batch,
3565 };
3566 
3567 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3568 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3569 		     struct sock_common *sk_common, uid_t uid)
3570 
3571 #define INIT_BATCH_SZ 16
3572 
3573 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3574 {
3575 	struct bpf_tcp_iter_state *iter = priv_data;
3576 	int err;
3577 
3578 	err = bpf_iter_init_seq_net(priv_data, aux);
3579 	if (err)
3580 		return err;
3581 
3582 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3583 	if (err) {
3584 		bpf_iter_fini_seq_net(priv_data);
3585 		return err;
3586 	}
3587 
3588 	return 0;
3589 }
3590 
3591 static void bpf_iter_fini_tcp(void *priv_data)
3592 {
3593 	struct bpf_tcp_iter_state *iter = priv_data;
3594 
3595 	bpf_iter_fini_seq_net(priv_data);
3596 	kvfree(iter->batch);
3597 }
3598 
3599 static const struct bpf_iter_seq_info tcp_seq_info = {
3600 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3601 	.init_seq_private	= bpf_iter_init_tcp,
3602 	.fini_seq_private	= bpf_iter_fini_tcp,
3603 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3604 };
3605 
3606 static const struct bpf_func_proto *
3607 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3608 			    const struct bpf_prog *prog)
3609 {
3610 	switch (func_id) {
3611 	case BPF_FUNC_setsockopt:
3612 		return &bpf_sk_setsockopt_proto;
3613 	case BPF_FUNC_getsockopt:
3614 		return &bpf_sk_getsockopt_proto;
3615 	default:
3616 		return NULL;
3617 	}
3618 }
3619 
3620 static struct bpf_iter_reg tcp_reg_info = {
3621 	.target			= "tcp",
3622 	.ctx_arg_info_size	= 1,
3623 	.ctx_arg_info		= {
3624 		{ offsetof(struct bpf_iter__tcp, sk_common),
3625 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3626 	},
3627 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3628 	.seq_info		= &tcp_seq_info,
3629 };
3630 
3631 static void __init bpf_iter_register(void)
3632 {
3633 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3634 	if (bpf_iter_reg_target(&tcp_reg_info))
3635 		pr_warn("Warning: could not register bpf iterator tcp\n");
3636 }
3637 
3638 #endif
3639 
3640 void __init tcp_v4_init(void)
3641 {
3642 	int cpu, res;
3643 
3644 	for_each_possible_cpu(cpu) {
3645 		struct sock *sk;
3646 
3647 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3648 					   IPPROTO_TCP, &init_net);
3649 		if (res)
3650 			panic("Failed to create the TCP control socket.\n");
3651 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3652 
3653 		/* Please enforce IP_DF and IPID==0 for RST and
3654 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3655 		 */
3656 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3657 
3658 		sk->sk_clockid = CLOCK_MONOTONIC;
3659 
3660 		per_cpu(ipv4_tcp_sk.sock, cpu) = sk;
3661 	}
3662 	if (register_pernet_subsys(&tcp_sk_ops))
3663 		panic("Failed to create the TCP control socket.\n");
3664 
3665 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3666 	bpf_iter_register();
3667 #endif
3668 }
3669