1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 #define pr_fmt(fmt) "TCP: " fmt 54 55 #include <linux/bottom_half.h> 56 #include <linux/types.h> 57 #include <linux/fcntl.h> 58 #include <linux/module.h> 59 #include <linux/random.h> 60 #include <linux/cache.h> 61 #include <linux/jhash.h> 62 #include <linux/init.h> 63 #include <linux/times.h> 64 #include <linux/slab.h> 65 66 #include <net/net_namespace.h> 67 #include <net/icmp.h> 68 #include <net/inet_hashtables.h> 69 #include <net/tcp.h> 70 #include <net/transp_v6.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 #include <net/timewait_sock.h> 74 #include <net/xfrm.h> 75 #include <net/netdma.h> 76 #include <net/secure_seq.h> 77 #include <net/tcp_memcontrol.h> 78 79 #include <linux/inet.h> 80 #include <linux/ipv6.h> 81 #include <linux/stddef.h> 82 #include <linux/proc_fs.h> 83 #include <linux/seq_file.h> 84 85 #include <linux/crypto.h> 86 #include <linux/scatterlist.h> 87 88 int sysctl_tcp_tw_reuse __read_mostly; 89 int sysctl_tcp_low_latency __read_mostly; 90 EXPORT_SYMBOL(sysctl_tcp_low_latency); 91 92 93 #ifdef CONFIG_TCP_MD5SIG 94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 95 __be32 daddr, __be32 saddr, const struct tcphdr *th); 96 #endif 97 98 struct inet_hashinfo tcp_hashinfo; 99 EXPORT_SYMBOL(tcp_hashinfo); 100 101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb) 102 { 103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr, 104 ip_hdr(skb)->saddr, 105 tcp_hdr(skb)->dest, 106 tcp_hdr(skb)->source); 107 } 108 109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 110 { 111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 112 struct tcp_sock *tp = tcp_sk(sk); 113 114 /* With PAWS, it is safe from the viewpoint 115 of data integrity. Even without PAWS it is safe provided sequence 116 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 117 118 Actually, the idea is close to VJ's one, only timestamp cache is 119 held not per host, but per port pair and TW bucket is used as state 120 holder. 121 122 If TW bucket has been already destroyed we fall back to VJ's scheme 123 and use initial timestamp retrieved from peer table. 124 */ 125 if (tcptw->tw_ts_recent_stamp && 126 (twp == NULL || (sysctl_tcp_tw_reuse && 127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) { 128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 129 if (tp->write_seq == 0) 130 tp->write_seq = 1; 131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 133 sock_hold(sktw); 134 return 1; 135 } 136 137 return 0; 138 } 139 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 140 141 static int tcp_repair_connect(struct sock *sk) 142 { 143 tcp_connect_init(sk); 144 tcp_finish_connect(sk, NULL); 145 146 return 0; 147 } 148 149 /* This will initiate an outgoing connection. */ 150 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 151 { 152 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 153 struct inet_sock *inet = inet_sk(sk); 154 struct tcp_sock *tp = tcp_sk(sk); 155 __be16 orig_sport, orig_dport; 156 __be32 daddr, nexthop; 157 struct flowi4 *fl4; 158 struct rtable *rt; 159 int err; 160 struct ip_options_rcu *inet_opt; 161 162 if (addr_len < sizeof(struct sockaddr_in)) 163 return -EINVAL; 164 165 if (usin->sin_family != AF_INET) 166 return -EAFNOSUPPORT; 167 168 nexthop = daddr = usin->sin_addr.s_addr; 169 inet_opt = rcu_dereference_protected(inet->inet_opt, 170 sock_owned_by_user(sk)); 171 if (inet_opt && inet_opt->opt.srr) { 172 if (!daddr) 173 return -EINVAL; 174 nexthop = inet_opt->opt.faddr; 175 } 176 177 orig_sport = inet->inet_sport; 178 orig_dport = usin->sin_port; 179 fl4 = &inet->cork.fl.u.ip4; 180 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 181 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 182 IPPROTO_TCP, 183 orig_sport, orig_dport, sk, true); 184 if (IS_ERR(rt)) { 185 err = PTR_ERR(rt); 186 if (err == -ENETUNREACH) 187 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 188 return err; 189 } 190 191 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 192 ip_rt_put(rt); 193 return -ENETUNREACH; 194 } 195 196 if (!inet_opt || !inet_opt->opt.srr) 197 daddr = fl4->daddr; 198 199 if (!inet->inet_saddr) 200 inet->inet_saddr = fl4->saddr; 201 inet->inet_rcv_saddr = inet->inet_saddr; 202 203 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 204 /* Reset inherited state */ 205 tp->rx_opt.ts_recent = 0; 206 tp->rx_opt.ts_recent_stamp = 0; 207 if (likely(!tp->repair)) 208 tp->write_seq = 0; 209 } 210 211 if (tcp_death_row.sysctl_tw_recycle && 212 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) 213 tcp_fetch_timewait_stamp(sk, &rt->dst); 214 215 inet->inet_dport = usin->sin_port; 216 inet->inet_daddr = daddr; 217 218 inet_csk(sk)->icsk_ext_hdr_len = 0; 219 if (inet_opt) 220 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 221 222 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 223 224 /* Socket identity is still unknown (sport may be zero). 225 * However we set state to SYN-SENT and not releasing socket 226 * lock select source port, enter ourselves into the hash tables and 227 * complete initialization after this. 228 */ 229 tcp_set_state(sk, TCP_SYN_SENT); 230 err = inet_hash_connect(&tcp_death_row, sk); 231 if (err) 232 goto failure; 233 234 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 235 inet->inet_sport, inet->inet_dport, sk); 236 if (IS_ERR(rt)) { 237 err = PTR_ERR(rt); 238 rt = NULL; 239 goto failure; 240 } 241 /* OK, now commit destination to socket. */ 242 sk->sk_gso_type = SKB_GSO_TCPV4; 243 sk_setup_caps(sk, &rt->dst); 244 245 if (!tp->write_seq && likely(!tp->repair)) 246 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr, 247 inet->inet_daddr, 248 inet->inet_sport, 249 usin->sin_port); 250 251 inet->inet_id = tp->write_seq ^ jiffies; 252 253 if (likely(!tp->repair)) 254 err = tcp_connect(sk); 255 else 256 err = tcp_repair_connect(sk); 257 258 rt = NULL; 259 if (err) 260 goto failure; 261 262 return 0; 263 264 failure: 265 /* 266 * This unhashes the socket and releases the local port, 267 * if necessary. 268 */ 269 tcp_set_state(sk, TCP_CLOSE); 270 ip_rt_put(rt); 271 sk->sk_route_caps = 0; 272 inet->inet_dport = 0; 273 return err; 274 } 275 EXPORT_SYMBOL(tcp_v4_connect); 276 277 /* 278 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 279 * It can be called through tcp_release_cb() if socket was owned by user 280 * at the time tcp_v4_err() was called to handle ICMP message. 281 */ 282 static void tcp_v4_mtu_reduced(struct sock *sk) 283 { 284 struct dst_entry *dst; 285 struct inet_sock *inet = inet_sk(sk); 286 u32 mtu = tcp_sk(sk)->mtu_info; 287 288 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs 289 * send out by Linux are always <576bytes so they should go through 290 * unfragmented). 291 */ 292 if (sk->sk_state == TCP_LISTEN) 293 return; 294 295 dst = inet_csk_update_pmtu(sk, mtu); 296 if (!dst) 297 return; 298 299 /* Something is about to be wrong... Remember soft error 300 * for the case, if this connection will not able to recover. 301 */ 302 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 303 sk->sk_err_soft = EMSGSIZE; 304 305 mtu = dst_mtu(dst); 306 307 if (inet->pmtudisc != IP_PMTUDISC_DONT && 308 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 309 tcp_sync_mss(sk, mtu); 310 311 /* Resend the TCP packet because it's 312 * clear that the old packet has been 313 * dropped. This is the new "fast" path mtu 314 * discovery. 315 */ 316 tcp_simple_retransmit(sk); 317 } /* else let the usual retransmit timer handle it */ 318 } 319 320 static void do_redirect(struct sk_buff *skb, struct sock *sk) 321 { 322 struct dst_entry *dst = __sk_dst_check(sk, 0); 323 324 if (dst) 325 dst->ops->redirect(dst, sk, skb); 326 } 327 328 /* 329 * This routine is called by the ICMP module when it gets some 330 * sort of error condition. If err < 0 then the socket should 331 * be closed and the error returned to the user. If err > 0 332 * it's just the icmp type << 8 | icmp code. After adjustment 333 * header points to the first 8 bytes of the tcp header. We need 334 * to find the appropriate port. 335 * 336 * The locking strategy used here is very "optimistic". When 337 * someone else accesses the socket the ICMP is just dropped 338 * and for some paths there is no check at all. 339 * A more general error queue to queue errors for later handling 340 * is probably better. 341 * 342 */ 343 344 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 345 { 346 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 347 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 348 struct inet_connection_sock *icsk; 349 struct tcp_sock *tp; 350 struct inet_sock *inet; 351 const int type = icmp_hdr(icmp_skb)->type; 352 const int code = icmp_hdr(icmp_skb)->code; 353 struct sock *sk; 354 struct sk_buff *skb; 355 __u32 seq; 356 __u32 remaining; 357 int err; 358 struct net *net = dev_net(icmp_skb->dev); 359 360 if (icmp_skb->len < (iph->ihl << 2) + 8) { 361 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 362 return; 363 } 364 365 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest, 366 iph->saddr, th->source, inet_iif(icmp_skb)); 367 if (!sk) { 368 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 369 return; 370 } 371 if (sk->sk_state == TCP_TIME_WAIT) { 372 inet_twsk_put(inet_twsk(sk)); 373 return; 374 } 375 376 bh_lock_sock(sk); 377 /* If too many ICMPs get dropped on busy 378 * servers this needs to be solved differently. 379 * We do take care of PMTU discovery (RFC1191) special case : 380 * we can receive locally generated ICMP messages while socket is held. 381 */ 382 if (sock_owned_by_user(sk) && 383 type != ICMP_DEST_UNREACH && 384 code != ICMP_FRAG_NEEDED) 385 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS); 386 387 if (sk->sk_state == TCP_CLOSE) 388 goto out; 389 390 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 391 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP); 392 goto out; 393 } 394 395 icsk = inet_csk(sk); 396 tp = tcp_sk(sk); 397 seq = ntohl(th->seq); 398 if (sk->sk_state != TCP_LISTEN && 399 !between(seq, tp->snd_una, tp->snd_nxt)) { 400 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 401 goto out; 402 } 403 404 switch (type) { 405 case ICMP_REDIRECT: 406 do_redirect(icmp_skb, sk); 407 goto out; 408 case ICMP_SOURCE_QUENCH: 409 /* Just silently ignore these. */ 410 goto out; 411 case ICMP_PARAMETERPROB: 412 err = EPROTO; 413 break; 414 case ICMP_DEST_UNREACH: 415 if (code > NR_ICMP_UNREACH) 416 goto out; 417 418 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 419 tp->mtu_info = info; 420 if (!sock_owned_by_user(sk)) 421 tcp_v4_mtu_reduced(sk); 422 else 423 set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags); 424 goto out; 425 } 426 427 err = icmp_err_convert[code].errno; 428 /* check if icmp_skb allows revert of backoff 429 * (see draft-zimmermann-tcp-lcd) */ 430 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 431 break; 432 if (seq != tp->snd_una || !icsk->icsk_retransmits || 433 !icsk->icsk_backoff) 434 break; 435 436 if (sock_owned_by_user(sk)) 437 break; 438 439 icsk->icsk_backoff--; 440 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) : 441 TCP_TIMEOUT_INIT) << icsk->icsk_backoff; 442 tcp_bound_rto(sk); 443 444 skb = tcp_write_queue_head(sk); 445 BUG_ON(!skb); 446 447 remaining = icsk->icsk_rto - min(icsk->icsk_rto, 448 tcp_time_stamp - TCP_SKB_CB(skb)->when); 449 450 if (remaining) { 451 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 452 remaining, TCP_RTO_MAX); 453 } else { 454 /* RTO revert clocked out retransmission. 455 * Will retransmit now */ 456 tcp_retransmit_timer(sk); 457 } 458 459 break; 460 case ICMP_TIME_EXCEEDED: 461 err = EHOSTUNREACH; 462 break; 463 default: 464 goto out; 465 } 466 467 switch (sk->sk_state) { 468 struct request_sock *req, **prev; 469 case TCP_LISTEN: 470 if (sock_owned_by_user(sk)) 471 goto out; 472 473 req = inet_csk_search_req(sk, &prev, th->dest, 474 iph->daddr, iph->saddr); 475 if (!req) 476 goto out; 477 478 /* ICMPs are not backlogged, hence we cannot get 479 an established socket here. 480 */ 481 WARN_ON(req->sk); 482 483 if (seq != tcp_rsk(req)->snt_isn) { 484 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 485 goto out; 486 } 487 488 /* 489 * Still in SYN_RECV, just remove it silently. 490 * There is no good way to pass the error to the newly 491 * created socket, and POSIX does not want network 492 * errors returned from accept(). 493 */ 494 inet_csk_reqsk_queue_drop(sk, req, prev); 495 goto out; 496 497 case TCP_SYN_SENT: 498 case TCP_SYN_RECV: /* Cannot happen. 499 It can f.e. if SYNs crossed. 500 */ 501 if (!sock_owned_by_user(sk)) { 502 sk->sk_err = err; 503 504 sk->sk_error_report(sk); 505 506 tcp_done(sk); 507 } else { 508 sk->sk_err_soft = err; 509 } 510 goto out; 511 } 512 513 /* If we've already connected we will keep trying 514 * until we time out, or the user gives up. 515 * 516 * rfc1122 4.2.3.9 allows to consider as hard errors 517 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 518 * but it is obsoleted by pmtu discovery). 519 * 520 * Note, that in modern internet, where routing is unreliable 521 * and in each dark corner broken firewalls sit, sending random 522 * errors ordered by their masters even this two messages finally lose 523 * their original sense (even Linux sends invalid PORT_UNREACHs) 524 * 525 * Now we are in compliance with RFCs. 526 * --ANK (980905) 527 */ 528 529 inet = inet_sk(sk); 530 if (!sock_owned_by_user(sk) && inet->recverr) { 531 sk->sk_err = err; 532 sk->sk_error_report(sk); 533 } else { /* Only an error on timeout */ 534 sk->sk_err_soft = err; 535 } 536 537 out: 538 bh_unlock_sock(sk); 539 sock_put(sk); 540 } 541 542 static void __tcp_v4_send_check(struct sk_buff *skb, 543 __be32 saddr, __be32 daddr) 544 { 545 struct tcphdr *th = tcp_hdr(skb); 546 547 if (skb->ip_summed == CHECKSUM_PARTIAL) { 548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 549 skb->csum_start = skb_transport_header(skb) - skb->head; 550 skb->csum_offset = offsetof(struct tcphdr, check); 551 } else { 552 th->check = tcp_v4_check(skb->len, saddr, daddr, 553 csum_partial(th, 554 th->doff << 2, 555 skb->csum)); 556 } 557 } 558 559 /* This routine computes an IPv4 TCP checksum. */ 560 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 561 { 562 const struct inet_sock *inet = inet_sk(sk); 563 564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 565 } 566 EXPORT_SYMBOL(tcp_v4_send_check); 567 568 int tcp_v4_gso_send_check(struct sk_buff *skb) 569 { 570 const struct iphdr *iph; 571 struct tcphdr *th; 572 573 if (!pskb_may_pull(skb, sizeof(*th))) 574 return -EINVAL; 575 576 iph = ip_hdr(skb); 577 th = tcp_hdr(skb); 578 579 th->check = 0; 580 skb->ip_summed = CHECKSUM_PARTIAL; 581 __tcp_v4_send_check(skb, iph->saddr, iph->daddr); 582 return 0; 583 } 584 585 /* 586 * This routine will send an RST to the other tcp. 587 * 588 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 589 * for reset. 590 * Answer: if a packet caused RST, it is not for a socket 591 * existing in our system, if it is matched to a socket, 592 * it is just duplicate segment or bug in other side's TCP. 593 * So that we build reply only basing on parameters 594 * arrived with segment. 595 * Exception: precedence violation. We do not implement it in any case. 596 */ 597 598 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb) 599 { 600 const struct tcphdr *th = tcp_hdr(skb); 601 struct { 602 struct tcphdr th; 603 #ifdef CONFIG_TCP_MD5SIG 604 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 605 #endif 606 } rep; 607 struct ip_reply_arg arg; 608 #ifdef CONFIG_TCP_MD5SIG 609 struct tcp_md5sig_key *key; 610 const __u8 *hash_location = NULL; 611 unsigned char newhash[16]; 612 int genhash; 613 struct sock *sk1 = NULL; 614 #endif 615 struct net *net; 616 617 /* Never send a reset in response to a reset. */ 618 if (th->rst) 619 return; 620 621 if (skb_rtable(skb)->rt_type != RTN_LOCAL) 622 return; 623 624 /* Swap the send and the receive. */ 625 memset(&rep, 0, sizeof(rep)); 626 rep.th.dest = th->source; 627 rep.th.source = th->dest; 628 rep.th.doff = sizeof(struct tcphdr) / 4; 629 rep.th.rst = 1; 630 631 if (th->ack) { 632 rep.th.seq = th->ack_seq; 633 } else { 634 rep.th.ack = 1; 635 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 636 skb->len - (th->doff << 2)); 637 } 638 639 memset(&arg, 0, sizeof(arg)); 640 arg.iov[0].iov_base = (unsigned char *)&rep; 641 arg.iov[0].iov_len = sizeof(rep.th); 642 643 #ifdef CONFIG_TCP_MD5SIG 644 hash_location = tcp_parse_md5sig_option(th); 645 if (!sk && hash_location) { 646 /* 647 * active side is lost. Try to find listening socket through 648 * source port, and then find md5 key through listening socket. 649 * we are not loose security here: 650 * Incoming packet is checked with md5 hash with finding key, 651 * no RST generated if md5 hash doesn't match. 652 */ 653 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev), 654 &tcp_hashinfo, ip_hdr(skb)->daddr, 655 ntohs(th->source), inet_iif(skb)); 656 /* don't send rst if it can't find key */ 657 if (!sk1) 658 return; 659 rcu_read_lock(); 660 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 661 &ip_hdr(skb)->saddr, AF_INET); 662 if (!key) 663 goto release_sk1; 664 665 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb); 666 if (genhash || memcmp(hash_location, newhash, 16) != 0) 667 goto release_sk1; 668 } else { 669 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 670 &ip_hdr(skb)->saddr, 671 AF_INET) : NULL; 672 } 673 674 if (key) { 675 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 676 (TCPOPT_NOP << 16) | 677 (TCPOPT_MD5SIG << 8) | 678 TCPOLEN_MD5SIG); 679 /* Update length and the length the header thinks exists */ 680 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 681 rep.th.doff = arg.iov[0].iov_len / 4; 682 683 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 684 key, ip_hdr(skb)->saddr, 685 ip_hdr(skb)->daddr, &rep.th); 686 } 687 #endif 688 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 689 ip_hdr(skb)->saddr, /* XXX */ 690 arg.iov[0].iov_len, IPPROTO_TCP, 0); 691 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 692 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0; 693 /* When socket is gone, all binding information is lost. 694 * routing might fail in this case. using iif for oif to 695 * make sure we can deliver it 696 */ 697 arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb); 698 699 net = dev_net(skb_dst(skb)->dev); 700 arg.tos = ip_hdr(skb)->tos; 701 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr, 702 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len); 703 704 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 705 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS); 706 707 #ifdef CONFIG_TCP_MD5SIG 708 release_sk1: 709 if (sk1) { 710 rcu_read_unlock(); 711 sock_put(sk1); 712 } 713 #endif 714 } 715 716 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 717 outside socket context is ugly, certainly. What can I do? 718 */ 719 720 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack, 721 u32 win, u32 ts, int oif, 722 struct tcp_md5sig_key *key, 723 int reply_flags, u8 tos) 724 { 725 const struct tcphdr *th = tcp_hdr(skb); 726 struct { 727 struct tcphdr th; 728 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 729 #ifdef CONFIG_TCP_MD5SIG 730 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 731 #endif 732 ]; 733 } rep; 734 struct ip_reply_arg arg; 735 struct net *net = dev_net(skb_dst(skb)->dev); 736 737 memset(&rep.th, 0, sizeof(struct tcphdr)); 738 memset(&arg, 0, sizeof(arg)); 739 740 arg.iov[0].iov_base = (unsigned char *)&rep; 741 arg.iov[0].iov_len = sizeof(rep.th); 742 if (ts) { 743 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 744 (TCPOPT_TIMESTAMP << 8) | 745 TCPOLEN_TIMESTAMP); 746 rep.opt[1] = htonl(tcp_time_stamp); 747 rep.opt[2] = htonl(ts); 748 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 749 } 750 751 /* Swap the send and the receive. */ 752 rep.th.dest = th->source; 753 rep.th.source = th->dest; 754 rep.th.doff = arg.iov[0].iov_len / 4; 755 rep.th.seq = htonl(seq); 756 rep.th.ack_seq = htonl(ack); 757 rep.th.ack = 1; 758 rep.th.window = htons(win); 759 760 #ifdef CONFIG_TCP_MD5SIG 761 if (key) { 762 int offset = (ts) ? 3 : 0; 763 764 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 765 (TCPOPT_NOP << 16) | 766 (TCPOPT_MD5SIG << 8) | 767 TCPOLEN_MD5SIG); 768 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 769 rep.th.doff = arg.iov[0].iov_len/4; 770 771 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 772 key, ip_hdr(skb)->saddr, 773 ip_hdr(skb)->daddr, &rep.th); 774 } 775 #endif 776 arg.flags = reply_flags; 777 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 778 ip_hdr(skb)->saddr, /* XXX */ 779 arg.iov[0].iov_len, IPPROTO_TCP, 0); 780 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 781 if (oif) 782 arg.bound_dev_if = oif; 783 arg.tos = tos; 784 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr, 785 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len); 786 787 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 788 } 789 790 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 791 { 792 struct inet_timewait_sock *tw = inet_twsk(sk); 793 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 794 795 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 796 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 797 tcptw->tw_ts_recent, 798 tw->tw_bound_dev_if, 799 tcp_twsk_md5_key(tcptw), 800 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 801 tw->tw_tos 802 ); 803 804 inet_twsk_put(tw); 805 } 806 807 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb, 808 struct request_sock *req) 809 { 810 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, 811 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd, 812 req->ts_recent, 813 0, 814 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr, 815 AF_INET), 816 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 817 ip_hdr(skb)->tos); 818 } 819 820 /* 821 * Send a SYN-ACK after having received a SYN. 822 * This still operates on a request_sock only, not on a big 823 * socket. 824 */ 825 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst, 826 struct request_sock *req, 827 struct request_values *rvp, 828 u16 queue_mapping, 829 bool nocache) 830 { 831 const struct inet_request_sock *ireq = inet_rsk(req); 832 struct flowi4 fl4; 833 int err = -1; 834 struct sk_buff * skb; 835 836 /* First, grab a route. */ 837 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 838 return -1; 839 840 skb = tcp_make_synack(sk, dst, req, rvp); 841 842 if (skb) { 843 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr); 844 845 skb_set_queue_mapping(skb, queue_mapping); 846 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr, 847 ireq->rmt_addr, 848 ireq->opt); 849 err = net_xmit_eval(err); 850 } 851 852 return err; 853 } 854 855 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req, 856 struct request_values *rvp) 857 { 858 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 859 return tcp_v4_send_synack(sk, NULL, req, rvp, 0, false); 860 } 861 862 /* 863 * IPv4 request_sock destructor. 864 */ 865 static void tcp_v4_reqsk_destructor(struct request_sock *req) 866 { 867 kfree(inet_rsk(req)->opt); 868 } 869 870 /* 871 * Return true if a syncookie should be sent 872 */ 873 bool tcp_syn_flood_action(struct sock *sk, 874 const struct sk_buff *skb, 875 const char *proto) 876 { 877 const char *msg = "Dropping request"; 878 bool want_cookie = false; 879 struct listen_sock *lopt; 880 881 882 883 #ifdef CONFIG_SYN_COOKIES 884 if (sysctl_tcp_syncookies) { 885 msg = "Sending cookies"; 886 want_cookie = true; 887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 888 } else 889 #endif 890 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 891 892 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt; 893 if (!lopt->synflood_warned) { 894 lopt->synflood_warned = 1; 895 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 896 proto, ntohs(tcp_hdr(skb)->dest), msg); 897 } 898 return want_cookie; 899 } 900 EXPORT_SYMBOL(tcp_syn_flood_action); 901 902 /* 903 * Save and compile IPv4 options into the request_sock if needed. 904 */ 905 static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk, 906 struct sk_buff *skb) 907 { 908 const struct ip_options *opt = &(IPCB(skb)->opt); 909 struct ip_options_rcu *dopt = NULL; 910 911 if (opt && opt->optlen) { 912 int opt_size = sizeof(*dopt) + opt->optlen; 913 914 dopt = kmalloc(opt_size, GFP_ATOMIC); 915 if (dopt) { 916 if (ip_options_echo(&dopt->opt, skb)) { 917 kfree(dopt); 918 dopt = NULL; 919 } 920 } 921 } 922 return dopt; 923 } 924 925 #ifdef CONFIG_TCP_MD5SIG 926 /* 927 * RFC2385 MD5 checksumming requires a mapping of 928 * IP address->MD5 Key. 929 * We need to maintain these in the sk structure. 930 */ 931 932 /* Find the Key structure for an address. */ 933 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk, 934 const union tcp_md5_addr *addr, 935 int family) 936 { 937 struct tcp_sock *tp = tcp_sk(sk); 938 struct tcp_md5sig_key *key; 939 struct hlist_node *pos; 940 unsigned int size = sizeof(struct in_addr); 941 struct tcp_md5sig_info *md5sig; 942 943 /* caller either holds rcu_read_lock() or socket lock */ 944 md5sig = rcu_dereference_check(tp->md5sig_info, 945 sock_owned_by_user(sk) || 946 lockdep_is_held(&sk->sk_lock.slock)); 947 if (!md5sig) 948 return NULL; 949 #if IS_ENABLED(CONFIG_IPV6) 950 if (family == AF_INET6) 951 size = sizeof(struct in6_addr); 952 #endif 953 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) { 954 if (key->family != family) 955 continue; 956 if (!memcmp(&key->addr, addr, size)) 957 return key; 958 } 959 return NULL; 960 } 961 EXPORT_SYMBOL(tcp_md5_do_lookup); 962 963 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk, 964 struct sock *addr_sk) 965 { 966 union tcp_md5_addr *addr; 967 968 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr; 969 return tcp_md5_do_lookup(sk, addr, AF_INET); 970 } 971 EXPORT_SYMBOL(tcp_v4_md5_lookup); 972 973 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk, 974 struct request_sock *req) 975 { 976 union tcp_md5_addr *addr; 977 978 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr; 979 return tcp_md5_do_lookup(sk, addr, AF_INET); 980 } 981 982 /* This can be called on a newly created socket, from other files */ 983 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 984 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp) 985 { 986 /* Add Key to the list */ 987 struct tcp_md5sig_key *key; 988 struct tcp_sock *tp = tcp_sk(sk); 989 struct tcp_md5sig_info *md5sig; 990 991 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET); 992 if (key) { 993 /* Pre-existing entry - just update that one. */ 994 memcpy(key->key, newkey, newkeylen); 995 key->keylen = newkeylen; 996 return 0; 997 } 998 999 md5sig = rcu_dereference_protected(tp->md5sig_info, 1000 sock_owned_by_user(sk)); 1001 if (!md5sig) { 1002 md5sig = kmalloc(sizeof(*md5sig), gfp); 1003 if (!md5sig) 1004 return -ENOMEM; 1005 1006 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1007 INIT_HLIST_HEAD(&md5sig->head); 1008 rcu_assign_pointer(tp->md5sig_info, md5sig); 1009 } 1010 1011 key = sock_kmalloc(sk, sizeof(*key), gfp); 1012 if (!key) 1013 return -ENOMEM; 1014 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) { 1015 sock_kfree_s(sk, key, sizeof(*key)); 1016 return -ENOMEM; 1017 } 1018 1019 memcpy(key->key, newkey, newkeylen); 1020 key->keylen = newkeylen; 1021 key->family = family; 1022 memcpy(&key->addr, addr, 1023 (family == AF_INET6) ? sizeof(struct in6_addr) : 1024 sizeof(struct in_addr)); 1025 hlist_add_head_rcu(&key->node, &md5sig->head); 1026 return 0; 1027 } 1028 EXPORT_SYMBOL(tcp_md5_do_add); 1029 1030 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family) 1031 { 1032 struct tcp_sock *tp = tcp_sk(sk); 1033 struct tcp_md5sig_key *key; 1034 struct tcp_md5sig_info *md5sig; 1035 1036 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET); 1037 if (!key) 1038 return -ENOENT; 1039 hlist_del_rcu(&key->node); 1040 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1041 kfree_rcu(key, rcu); 1042 md5sig = rcu_dereference_protected(tp->md5sig_info, 1043 sock_owned_by_user(sk)); 1044 if (hlist_empty(&md5sig->head)) 1045 tcp_free_md5sig_pool(); 1046 return 0; 1047 } 1048 EXPORT_SYMBOL(tcp_md5_do_del); 1049 1050 void tcp_clear_md5_list(struct sock *sk) 1051 { 1052 struct tcp_sock *tp = tcp_sk(sk); 1053 struct tcp_md5sig_key *key; 1054 struct hlist_node *pos, *n; 1055 struct tcp_md5sig_info *md5sig; 1056 1057 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1058 1059 if (!hlist_empty(&md5sig->head)) 1060 tcp_free_md5sig_pool(); 1061 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) { 1062 hlist_del_rcu(&key->node); 1063 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1064 kfree_rcu(key, rcu); 1065 } 1066 } 1067 1068 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval, 1069 int optlen) 1070 { 1071 struct tcp_md5sig cmd; 1072 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1073 1074 if (optlen < sizeof(cmd)) 1075 return -EINVAL; 1076 1077 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1078 return -EFAULT; 1079 1080 if (sin->sin_family != AF_INET) 1081 return -EINVAL; 1082 1083 if (!cmd.tcpm_key || !cmd.tcpm_keylen) 1084 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1085 AF_INET); 1086 1087 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1088 return -EINVAL; 1089 1090 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1091 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen, 1092 GFP_KERNEL); 1093 } 1094 1095 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp, 1096 __be32 daddr, __be32 saddr, int nbytes) 1097 { 1098 struct tcp4_pseudohdr *bp; 1099 struct scatterlist sg; 1100 1101 bp = &hp->md5_blk.ip4; 1102 1103 /* 1104 * 1. the TCP pseudo-header (in the order: source IP address, 1105 * destination IP address, zero-padded protocol number, and 1106 * segment length) 1107 */ 1108 bp->saddr = saddr; 1109 bp->daddr = daddr; 1110 bp->pad = 0; 1111 bp->protocol = IPPROTO_TCP; 1112 bp->len = cpu_to_be16(nbytes); 1113 1114 sg_init_one(&sg, bp, sizeof(*bp)); 1115 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp)); 1116 } 1117 1118 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1119 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1120 { 1121 struct tcp_md5sig_pool *hp; 1122 struct hash_desc *desc; 1123 1124 hp = tcp_get_md5sig_pool(); 1125 if (!hp) 1126 goto clear_hash_noput; 1127 desc = &hp->md5_desc; 1128 1129 if (crypto_hash_init(desc)) 1130 goto clear_hash; 1131 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2)) 1132 goto clear_hash; 1133 if (tcp_md5_hash_header(hp, th)) 1134 goto clear_hash; 1135 if (tcp_md5_hash_key(hp, key)) 1136 goto clear_hash; 1137 if (crypto_hash_final(desc, md5_hash)) 1138 goto clear_hash; 1139 1140 tcp_put_md5sig_pool(); 1141 return 0; 1142 1143 clear_hash: 1144 tcp_put_md5sig_pool(); 1145 clear_hash_noput: 1146 memset(md5_hash, 0, 16); 1147 return 1; 1148 } 1149 1150 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key, 1151 const struct sock *sk, const struct request_sock *req, 1152 const struct sk_buff *skb) 1153 { 1154 struct tcp_md5sig_pool *hp; 1155 struct hash_desc *desc; 1156 const struct tcphdr *th = tcp_hdr(skb); 1157 __be32 saddr, daddr; 1158 1159 if (sk) { 1160 saddr = inet_sk(sk)->inet_saddr; 1161 daddr = inet_sk(sk)->inet_daddr; 1162 } else if (req) { 1163 saddr = inet_rsk(req)->loc_addr; 1164 daddr = inet_rsk(req)->rmt_addr; 1165 } else { 1166 const struct iphdr *iph = ip_hdr(skb); 1167 saddr = iph->saddr; 1168 daddr = iph->daddr; 1169 } 1170 1171 hp = tcp_get_md5sig_pool(); 1172 if (!hp) 1173 goto clear_hash_noput; 1174 desc = &hp->md5_desc; 1175 1176 if (crypto_hash_init(desc)) 1177 goto clear_hash; 1178 1179 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len)) 1180 goto clear_hash; 1181 if (tcp_md5_hash_header(hp, th)) 1182 goto clear_hash; 1183 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1184 goto clear_hash; 1185 if (tcp_md5_hash_key(hp, key)) 1186 goto clear_hash; 1187 if (crypto_hash_final(desc, md5_hash)) 1188 goto clear_hash; 1189 1190 tcp_put_md5sig_pool(); 1191 return 0; 1192 1193 clear_hash: 1194 tcp_put_md5sig_pool(); 1195 clear_hash_noput: 1196 memset(md5_hash, 0, 16); 1197 return 1; 1198 } 1199 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1200 1201 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb) 1202 { 1203 /* 1204 * This gets called for each TCP segment that arrives 1205 * so we want to be efficient. 1206 * We have 3 drop cases: 1207 * o No MD5 hash and one expected. 1208 * o MD5 hash and we're not expecting one. 1209 * o MD5 hash and its wrong. 1210 */ 1211 const __u8 *hash_location = NULL; 1212 struct tcp_md5sig_key *hash_expected; 1213 const struct iphdr *iph = ip_hdr(skb); 1214 const struct tcphdr *th = tcp_hdr(skb); 1215 int genhash; 1216 unsigned char newhash[16]; 1217 1218 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1219 AF_INET); 1220 hash_location = tcp_parse_md5sig_option(th); 1221 1222 /* We've parsed the options - do we have a hash? */ 1223 if (!hash_expected && !hash_location) 1224 return false; 1225 1226 if (hash_expected && !hash_location) { 1227 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1228 return true; 1229 } 1230 1231 if (!hash_expected && hash_location) { 1232 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1233 return true; 1234 } 1235 1236 /* Okay, so this is hash_expected and hash_location - 1237 * so we need to calculate the checksum. 1238 */ 1239 genhash = tcp_v4_md5_hash_skb(newhash, 1240 hash_expected, 1241 NULL, NULL, skb); 1242 1243 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1244 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1245 &iph->saddr, ntohs(th->source), 1246 &iph->daddr, ntohs(th->dest), 1247 genhash ? " tcp_v4_calc_md5_hash failed" 1248 : ""); 1249 return true; 1250 } 1251 return false; 1252 } 1253 1254 #endif 1255 1256 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1257 .family = PF_INET, 1258 .obj_size = sizeof(struct tcp_request_sock), 1259 .rtx_syn_ack = tcp_v4_rtx_synack, 1260 .send_ack = tcp_v4_reqsk_send_ack, 1261 .destructor = tcp_v4_reqsk_destructor, 1262 .send_reset = tcp_v4_send_reset, 1263 .syn_ack_timeout = tcp_syn_ack_timeout, 1264 }; 1265 1266 #ifdef CONFIG_TCP_MD5SIG 1267 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1268 .md5_lookup = tcp_v4_reqsk_md5_lookup, 1269 .calc_md5_hash = tcp_v4_md5_hash_skb, 1270 }; 1271 #endif 1272 1273 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1274 { 1275 struct tcp_extend_values tmp_ext; 1276 struct tcp_options_received tmp_opt; 1277 const u8 *hash_location; 1278 struct request_sock *req; 1279 struct inet_request_sock *ireq; 1280 struct tcp_sock *tp = tcp_sk(sk); 1281 struct dst_entry *dst = NULL; 1282 __be32 saddr = ip_hdr(skb)->saddr; 1283 __be32 daddr = ip_hdr(skb)->daddr; 1284 __u32 isn = TCP_SKB_CB(skb)->when; 1285 bool want_cookie = false; 1286 1287 /* Never answer to SYNs send to broadcast or multicast */ 1288 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1289 goto drop; 1290 1291 /* TW buckets are converted to open requests without 1292 * limitations, they conserve resources and peer is 1293 * evidently real one. 1294 */ 1295 if (inet_csk_reqsk_queue_is_full(sk) && !isn) { 1296 want_cookie = tcp_syn_flood_action(sk, skb, "TCP"); 1297 if (!want_cookie) 1298 goto drop; 1299 } 1300 1301 /* Accept backlog is full. If we have already queued enough 1302 * of warm entries in syn queue, drop request. It is better than 1303 * clogging syn queue with openreqs with exponentially increasing 1304 * timeout. 1305 */ 1306 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) 1307 goto drop; 1308 1309 req = inet_reqsk_alloc(&tcp_request_sock_ops); 1310 if (!req) 1311 goto drop; 1312 1313 #ifdef CONFIG_TCP_MD5SIG 1314 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops; 1315 #endif 1316 1317 tcp_clear_options(&tmp_opt); 1318 tmp_opt.mss_clamp = TCP_MSS_DEFAULT; 1319 tmp_opt.user_mss = tp->rx_opt.user_mss; 1320 tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL); 1321 1322 if (tmp_opt.cookie_plus > 0 && 1323 tmp_opt.saw_tstamp && 1324 !tp->rx_opt.cookie_out_never && 1325 (sysctl_tcp_cookie_size > 0 || 1326 (tp->cookie_values != NULL && 1327 tp->cookie_values->cookie_desired > 0))) { 1328 u8 *c; 1329 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS]; 1330 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE; 1331 1332 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0) 1333 goto drop_and_release; 1334 1335 /* Secret recipe starts with IP addresses */ 1336 *mess++ ^= (__force u32)daddr; 1337 *mess++ ^= (__force u32)saddr; 1338 1339 /* plus variable length Initiator Cookie */ 1340 c = (u8 *)mess; 1341 while (l-- > 0) 1342 *c++ ^= *hash_location++; 1343 1344 want_cookie = false; /* not our kind of cookie */ 1345 tmp_ext.cookie_out_never = 0; /* false */ 1346 tmp_ext.cookie_plus = tmp_opt.cookie_plus; 1347 } else if (!tp->rx_opt.cookie_in_always) { 1348 /* redundant indications, but ensure initialization. */ 1349 tmp_ext.cookie_out_never = 1; /* true */ 1350 tmp_ext.cookie_plus = 0; 1351 } else { 1352 goto drop_and_release; 1353 } 1354 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always; 1355 1356 if (want_cookie && !tmp_opt.saw_tstamp) 1357 tcp_clear_options(&tmp_opt); 1358 1359 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 1360 tcp_openreq_init(req, &tmp_opt, skb); 1361 1362 ireq = inet_rsk(req); 1363 ireq->loc_addr = daddr; 1364 ireq->rmt_addr = saddr; 1365 ireq->no_srccheck = inet_sk(sk)->transparent; 1366 ireq->opt = tcp_v4_save_options(sk, skb); 1367 1368 if (security_inet_conn_request(sk, skb, req)) 1369 goto drop_and_free; 1370 1371 if (!want_cookie || tmp_opt.tstamp_ok) 1372 TCP_ECN_create_request(req, skb); 1373 1374 if (want_cookie) { 1375 isn = cookie_v4_init_sequence(sk, skb, &req->mss); 1376 req->cookie_ts = tmp_opt.tstamp_ok; 1377 } else if (!isn) { 1378 struct flowi4 fl4; 1379 1380 /* VJ's idea. We save last timestamp seen 1381 * from the destination in peer table, when entering 1382 * state TIME-WAIT, and check against it before 1383 * accepting new connection request. 1384 * 1385 * If "isn" is not zero, this request hit alive 1386 * timewait bucket, so that all the necessary checks 1387 * are made in the function processing timewait state. 1388 */ 1389 if (tmp_opt.saw_tstamp && 1390 tcp_death_row.sysctl_tw_recycle && 1391 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL && 1392 fl4.daddr == saddr) { 1393 if (!tcp_peer_is_proven(req, dst, true)) { 1394 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 1395 goto drop_and_release; 1396 } 1397 } 1398 /* Kill the following clause, if you dislike this way. */ 1399 else if (!sysctl_tcp_syncookies && 1400 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 1401 (sysctl_max_syn_backlog >> 2)) && 1402 !tcp_peer_is_proven(req, dst, false)) { 1403 /* Without syncookies last quarter of 1404 * backlog is filled with destinations, 1405 * proven to be alive. 1406 * It means that we continue to communicate 1407 * to destinations, already remembered 1408 * to the moment of synflood. 1409 */ 1410 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"), 1411 &saddr, ntohs(tcp_hdr(skb)->source)); 1412 goto drop_and_release; 1413 } 1414 1415 isn = tcp_v4_init_sequence(skb); 1416 } 1417 tcp_rsk(req)->snt_isn = isn; 1418 tcp_rsk(req)->snt_synack = tcp_time_stamp; 1419 1420 if (tcp_v4_send_synack(sk, dst, req, 1421 (struct request_values *)&tmp_ext, 1422 skb_get_queue_mapping(skb), 1423 want_cookie) || 1424 want_cookie) 1425 goto drop_and_free; 1426 1427 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 1428 return 0; 1429 1430 drop_and_release: 1431 dst_release(dst); 1432 drop_and_free: 1433 reqsk_free(req); 1434 drop: 1435 return 0; 1436 } 1437 EXPORT_SYMBOL(tcp_v4_conn_request); 1438 1439 1440 /* 1441 * The three way handshake has completed - we got a valid synack - 1442 * now create the new socket. 1443 */ 1444 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb, 1445 struct request_sock *req, 1446 struct dst_entry *dst) 1447 { 1448 struct inet_request_sock *ireq; 1449 struct inet_sock *newinet; 1450 struct tcp_sock *newtp; 1451 struct sock *newsk; 1452 #ifdef CONFIG_TCP_MD5SIG 1453 struct tcp_md5sig_key *key; 1454 #endif 1455 struct ip_options_rcu *inet_opt; 1456 1457 if (sk_acceptq_is_full(sk)) 1458 goto exit_overflow; 1459 1460 newsk = tcp_create_openreq_child(sk, req, skb); 1461 if (!newsk) 1462 goto exit_nonewsk; 1463 1464 newsk->sk_gso_type = SKB_GSO_TCPV4; 1465 1466 newtp = tcp_sk(newsk); 1467 newinet = inet_sk(newsk); 1468 ireq = inet_rsk(req); 1469 newinet->inet_daddr = ireq->rmt_addr; 1470 newinet->inet_rcv_saddr = ireq->loc_addr; 1471 newinet->inet_saddr = ireq->loc_addr; 1472 inet_opt = ireq->opt; 1473 rcu_assign_pointer(newinet->inet_opt, inet_opt); 1474 ireq->opt = NULL; 1475 newinet->mc_index = inet_iif(skb); 1476 newinet->mc_ttl = ip_hdr(skb)->ttl; 1477 newinet->rcv_tos = ip_hdr(skb)->tos; 1478 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1479 if (inet_opt) 1480 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1481 newinet->inet_id = newtp->write_seq ^ jiffies; 1482 1483 if (!dst) { 1484 dst = inet_csk_route_child_sock(sk, newsk, req); 1485 if (!dst) 1486 goto put_and_exit; 1487 } else { 1488 /* syncookie case : see end of cookie_v4_check() */ 1489 } 1490 sk_setup_caps(newsk, dst); 1491 1492 tcp_mtup_init(newsk); 1493 tcp_sync_mss(newsk, dst_mtu(dst)); 1494 newtp->advmss = dst_metric_advmss(dst); 1495 if (tcp_sk(sk)->rx_opt.user_mss && 1496 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss) 1497 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss; 1498 1499 tcp_initialize_rcv_mss(newsk); 1500 if (tcp_rsk(req)->snt_synack) 1501 tcp_valid_rtt_meas(newsk, 1502 tcp_time_stamp - tcp_rsk(req)->snt_synack); 1503 newtp->total_retrans = req->retrans; 1504 1505 #ifdef CONFIG_TCP_MD5SIG 1506 /* Copy over the MD5 key from the original socket */ 1507 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1508 AF_INET); 1509 if (key != NULL) { 1510 /* 1511 * We're using one, so create a matching key 1512 * on the newsk structure. If we fail to get 1513 * memory, then we end up not copying the key 1514 * across. Shucks. 1515 */ 1516 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1517 AF_INET, key->key, key->keylen, GFP_ATOMIC); 1518 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1519 } 1520 #endif 1521 1522 if (__inet_inherit_port(sk, newsk) < 0) 1523 goto put_and_exit; 1524 __inet_hash_nolisten(newsk, NULL); 1525 1526 return newsk; 1527 1528 exit_overflow: 1529 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1530 exit_nonewsk: 1531 dst_release(dst); 1532 exit: 1533 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 1534 return NULL; 1535 put_and_exit: 1536 tcp_clear_xmit_timers(newsk); 1537 tcp_cleanup_congestion_control(newsk); 1538 bh_unlock_sock(newsk); 1539 sock_put(newsk); 1540 goto exit; 1541 } 1542 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1543 1544 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb) 1545 { 1546 struct tcphdr *th = tcp_hdr(skb); 1547 const struct iphdr *iph = ip_hdr(skb); 1548 struct sock *nsk; 1549 struct request_sock **prev; 1550 /* Find possible connection requests. */ 1551 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source, 1552 iph->saddr, iph->daddr); 1553 if (req) 1554 return tcp_check_req(sk, skb, req, prev); 1555 1556 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr, 1557 th->source, iph->daddr, th->dest, inet_iif(skb)); 1558 1559 if (nsk) { 1560 if (nsk->sk_state != TCP_TIME_WAIT) { 1561 bh_lock_sock(nsk); 1562 return nsk; 1563 } 1564 inet_twsk_put(inet_twsk(nsk)); 1565 return NULL; 1566 } 1567 1568 #ifdef CONFIG_SYN_COOKIES 1569 if (!th->syn) 1570 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt)); 1571 #endif 1572 return sk; 1573 } 1574 1575 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb) 1576 { 1577 const struct iphdr *iph = ip_hdr(skb); 1578 1579 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1580 if (!tcp_v4_check(skb->len, iph->saddr, 1581 iph->daddr, skb->csum)) { 1582 skb->ip_summed = CHECKSUM_UNNECESSARY; 1583 return 0; 1584 } 1585 } 1586 1587 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr, 1588 skb->len, IPPROTO_TCP, 0); 1589 1590 if (skb->len <= 76) { 1591 return __skb_checksum_complete(skb); 1592 } 1593 return 0; 1594 } 1595 1596 1597 /* The socket must have it's spinlock held when we get 1598 * here. 1599 * 1600 * We have a potential double-lock case here, so even when 1601 * doing backlog processing we use the BH locking scheme. 1602 * This is because we cannot sleep with the original spinlock 1603 * held. 1604 */ 1605 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1606 { 1607 struct sock *rsk; 1608 #ifdef CONFIG_TCP_MD5SIG 1609 /* 1610 * We really want to reject the packet as early as possible 1611 * if: 1612 * o We're expecting an MD5'd packet and this is no MD5 tcp option 1613 * o There is an MD5 option and we're not expecting one 1614 */ 1615 if (tcp_v4_inbound_md5_hash(sk, skb)) 1616 goto discard; 1617 #endif 1618 1619 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1620 sock_rps_save_rxhash(sk, skb); 1621 if (sk->sk_rx_dst) { 1622 struct dst_entry *dst = sk->sk_rx_dst; 1623 if (dst->ops->check(dst, 0) == NULL) { 1624 dst_release(dst); 1625 sk->sk_rx_dst = NULL; 1626 } 1627 } 1628 if (unlikely(sk->sk_rx_dst == NULL)) { 1629 struct inet_sock *icsk = inet_sk(sk); 1630 struct rtable *rt = skb_rtable(skb); 1631 1632 sk->sk_rx_dst = dst_clone(&rt->dst); 1633 icsk->rx_dst_ifindex = inet_iif(skb); 1634 } 1635 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) { 1636 rsk = sk; 1637 goto reset; 1638 } 1639 return 0; 1640 } 1641 1642 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb)) 1643 goto csum_err; 1644 1645 if (sk->sk_state == TCP_LISTEN) { 1646 struct sock *nsk = tcp_v4_hnd_req(sk, skb); 1647 if (!nsk) 1648 goto discard; 1649 1650 if (nsk != sk) { 1651 sock_rps_save_rxhash(nsk, skb); 1652 if (tcp_child_process(sk, nsk, skb)) { 1653 rsk = nsk; 1654 goto reset; 1655 } 1656 return 0; 1657 } 1658 } else 1659 sock_rps_save_rxhash(sk, skb); 1660 1661 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) { 1662 rsk = sk; 1663 goto reset; 1664 } 1665 return 0; 1666 1667 reset: 1668 tcp_v4_send_reset(rsk, skb); 1669 discard: 1670 kfree_skb(skb); 1671 /* Be careful here. If this function gets more complicated and 1672 * gcc suffers from register pressure on the x86, sk (in %ebx) 1673 * might be destroyed here. This current version compiles correctly, 1674 * but you have been warned. 1675 */ 1676 return 0; 1677 1678 csum_err: 1679 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 1680 goto discard; 1681 } 1682 EXPORT_SYMBOL(tcp_v4_do_rcv); 1683 1684 void tcp_v4_early_demux(struct sk_buff *skb) 1685 { 1686 struct net *net = dev_net(skb->dev); 1687 const struct iphdr *iph; 1688 const struct tcphdr *th; 1689 struct net_device *dev; 1690 struct sock *sk; 1691 1692 if (skb->pkt_type != PACKET_HOST) 1693 return; 1694 1695 if (!pskb_may_pull(skb, ip_hdrlen(skb) + sizeof(struct tcphdr))) 1696 return; 1697 1698 iph = ip_hdr(skb); 1699 th = (struct tcphdr *) ((char *)iph + ip_hdrlen(skb)); 1700 1701 if (th->doff < sizeof(struct tcphdr) / 4) 1702 return; 1703 1704 if (!pskb_may_pull(skb, ip_hdrlen(skb) + th->doff * 4)) 1705 return; 1706 1707 dev = skb->dev; 1708 sk = __inet_lookup_established(net, &tcp_hashinfo, 1709 iph->saddr, th->source, 1710 iph->daddr, ntohs(th->dest), 1711 dev->ifindex); 1712 if (sk) { 1713 skb->sk = sk; 1714 skb->destructor = sock_edemux; 1715 if (sk->sk_state != TCP_TIME_WAIT) { 1716 struct dst_entry *dst = sk->sk_rx_dst; 1717 struct inet_sock *icsk = inet_sk(sk); 1718 if (dst) 1719 dst = dst_check(dst, 0); 1720 if (dst && 1721 icsk->rx_dst_ifindex == dev->ifindex) 1722 skb_dst_set_noref(skb, dst); 1723 } 1724 } 1725 } 1726 1727 /* 1728 * From tcp_input.c 1729 */ 1730 1731 int tcp_v4_rcv(struct sk_buff *skb) 1732 { 1733 const struct iphdr *iph; 1734 const struct tcphdr *th; 1735 struct sock *sk; 1736 int ret; 1737 struct net *net = dev_net(skb->dev); 1738 1739 if (skb->pkt_type != PACKET_HOST) 1740 goto discard_it; 1741 1742 /* Count it even if it's bad */ 1743 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS); 1744 1745 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1746 goto discard_it; 1747 1748 th = tcp_hdr(skb); 1749 1750 if (th->doff < sizeof(struct tcphdr) / 4) 1751 goto bad_packet; 1752 if (!pskb_may_pull(skb, th->doff * 4)) 1753 goto discard_it; 1754 1755 /* An explanation is required here, I think. 1756 * Packet length and doff are validated by header prediction, 1757 * provided case of th->doff==0 is eliminated. 1758 * So, we defer the checks. */ 1759 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb)) 1760 goto bad_packet; 1761 1762 th = tcp_hdr(skb); 1763 iph = ip_hdr(skb); 1764 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1765 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1766 skb->len - th->doff * 4); 1767 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1768 TCP_SKB_CB(skb)->when = 0; 1769 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1770 TCP_SKB_CB(skb)->sacked = 0; 1771 1772 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest); 1773 if (!sk) 1774 goto no_tcp_socket; 1775 1776 process: 1777 if (sk->sk_state == TCP_TIME_WAIT) 1778 goto do_time_wait; 1779 1780 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1781 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP); 1782 goto discard_and_relse; 1783 } 1784 1785 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1786 goto discard_and_relse; 1787 nf_reset(skb); 1788 1789 if (sk_filter(sk, skb)) 1790 goto discard_and_relse; 1791 1792 skb->dev = NULL; 1793 1794 bh_lock_sock_nested(sk); 1795 ret = 0; 1796 if (!sock_owned_by_user(sk)) { 1797 #ifdef CONFIG_NET_DMA 1798 struct tcp_sock *tp = tcp_sk(sk); 1799 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1800 tp->ucopy.dma_chan = net_dma_find_channel(); 1801 if (tp->ucopy.dma_chan) 1802 ret = tcp_v4_do_rcv(sk, skb); 1803 else 1804 #endif 1805 { 1806 if (!tcp_prequeue(sk, skb)) 1807 ret = tcp_v4_do_rcv(sk, skb); 1808 } 1809 } else if (unlikely(sk_add_backlog(sk, skb, 1810 sk->sk_rcvbuf + sk->sk_sndbuf))) { 1811 bh_unlock_sock(sk); 1812 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP); 1813 goto discard_and_relse; 1814 } 1815 bh_unlock_sock(sk); 1816 1817 sock_put(sk); 1818 1819 return ret; 1820 1821 no_tcp_socket: 1822 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1823 goto discard_it; 1824 1825 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { 1826 bad_packet: 1827 TCP_INC_STATS_BH(net, TCP_MIB_INERRS); 1828 } else { 1829 tcp_v4_send_reset(NULL, skb); 1830 } 1831 1832 discard_it: 1833 /* Discard frame. */ 1834 kfree_skb(skb); 1835 return 0; 1836 1837 discard_and_relse: 1838 sock_put(sk); 1839 goto discard_it; 1840 1841 do_time_wait: 1842 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 1843 inet_twsk_put(inet_twsk(sk)); 1844 goto discard_it; 1845 } 1846 1847 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { 1848 TCP_INC_STATS_BH(net, TCP_MIB_INERRS); 1849 inet_twsk_put(inet_twsk(sk)); 1850 goto discard_it; 1851 } 1852 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 1853 case TCP_TW_SYN: { 1854 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 1855 &tcp_hashinfo, 1856 iph->daddr, th->dest, 1857 inet_iif(skb)); 1858 if (sk2) { 1859 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row); 1860 inet_twsk_put(inet_twsk(sk)); 1861 sk = sk2; 1862 goto process; 1863 } 1864 /* Fall through to ACK */ 1865 } 1866 case TCP_TW_ACK: 1867 tcp_v4_timewait_ack(sk, skb); 1868 break; 1869 case TCP_TW_RST: 1870 goto no_tcp_socket; 1871 case TCP_TW_SUCCESS:; 1872 } 1873 goto discard_it; 1874 } 1875 1876 static struct timewait_sock_ops tcp_timewait_sock_ops = { 1877 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 1878 .twsk_unique = tcp_twsk_unique, 1879 .twsk_destructor= tcp_twsk_destructor, 1880 }; 1881 1882 const struct inet_connection_sock_af_ops ipv4_specific = { 1883 .queue_xmit = ip_queue_xmit, 1884 .send_check = tcp_v4_send_check, 1885 .rebuild_header = inet_sk_rebuild_header, 1886 .conn_request = tcp_v4_conn_request, 1887 .syn_recv_sock = tcp_v4_syn_recv_sock, 1888 .net_header_len = sizeof(struct iphdr), 1889 .setsockopt = ip_setsockopt, 1890 .getsockopt = ip_getsockopt, 1891 .addr2sockaddr = inet_csk_addr2sockaddr, 1892 .sockaddr_len = sizeof(struct sockaddr_in), 1893 .bind_conflict = inet_csk_bind_conflict, 1894 #ifdef CONFIG_COMPAT 1895 .compat_setsockopt = compat_ip_setsockopt, 1896 .compat_getsockopt = compat_ip_getsockopt, 1897 #endif 1898 }; 1899 EXPORT_SYMBOL(ipv4_specific); 1900 1901 #ifdef CONFIG_TCP_MD5SIG 1902 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 1903 .md5_lookup = tcp_v4_md5_lookup, 1904 .calc_md5_hash = tcp_v4_md5_hash_skb, 1905 .md5_parse = tcp_v4_parse_md5_keys, 1906 }; 1907 #endif 1908 1909 /* NOTE: A lot of things set to zero explicitly by call to 1910 * sk_alloc() so need not be done here. 1911 */ 1912 static int tcp_v4_init_sock(struct sock *sk) 1913 { 1914 struct inet_connection_sock *icsk = inet_csk(sk); 1915 1916 tcp_init_sock(sk); 1917 1918 icsk->icsk_af_ops = &ipv4_specific; 1919 1920 #ifdef CONFIG_TCP_MD5SIG 1921 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 1922 #endif 1923 1924 return 0; 1925 } 1926 1927 void tcp_v4_destroy_sock(struct sock *sk) 1928 { 1929 struct tcp_sock *tp = tcp_sk(sk); 1930 1931 tcp_clear_xmit_timers(sk); 1932 1933 tcp_cleanup_congestion_control(sk); 1934 1935 /* Cleanup up the write buffer. */ 1936 tcp_write_queue_purge(sk); 1937 1938 /* Cleans up our, hopefully empty, out_of_order_queue. */ 1939 __skb_queue_purge(&tp->out_of_order_queue); 1940 1941 #ifdef CONFIG_TCP_MD5SIG 1942 /* Clean up the MD5 key list, if any */ 1943 if (tp->md5sig_info) { 1944 tcp_clear_md5_list(sk); 1945 kfree_rcu(tp->md5sig_info, rcu); 1946 tp->md5sig_info = NULL; 1947 } 1948 #endif 1949 1950 #ifdef CONFIG_NET_DMA 1951 /* Cleans up our sk_async_wait_queue */ 1952 __skb_queue_purge(&sk->sk_async_wait_queue); 1953 #endif 1954 1955 /* Clean prequeue, it must be empty really */ 1956 __skb_queue_purge(&tp->ucopy.prequeue); 1957 1958 /* Clean up a referenced TCP bind bucket. */ 1959 if (inet_csk(sk)->icsk_bind_hash) 1960 inet_put_port(sk); 1961 1962 /* 1963 * If sendmsg cached page exists, toss it. 1964 */ 1965 if (sk->sk_sndmsg_page) { 1966 __free_page(sk->sk_sndmsg_page); 1967 sk->sk_sndmsg_page = NULL; 1968 } 1969 1970 /* TCP Cookie Transactions */ 1971 if (tp->cookie_values != NULL) { 1972 kref_put(&tp->cookie_values->kref, 1973 tcp_cookie_values_release); 1974 tp->cookie_values = NULL; 1975 } 1976 1977 /* If socket is aborted during connect operation */ 1978 tcp_free_fastopen_req(tp); 1979 1980 sk_sockets_allocated_dec(sk); 1981 sock_release_memcg(sk); 1982 } 1983 EXPORT_SYMBOL(tcp_v4_destroy_sock); 1984 1985 #ifdef CONFIG_PROC_FS 1986 /* Proc filesystem TCP sock list dumping. */ 1987 1988 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head) 1989 { 1990 return hlist_nulls_empty(head) ? NULL : 1991 list_entry(head->first, struct inet_timewait_sock, tw_node); 1992 } 1993 1994 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw) 1995 { 1996 return !is_a_nulls(tw->tw_node.next) ? 1997 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL; 1998 } 1999 2000 /* 2001 * Get next listener socket follow cur. If cur is NULL, get first socket 2002 * starting from bucket given in st->bucket; when st->bucket is zero the 2003 * very first socket in the hash table is returned. 2004 */ 2005 static void *listening_get_next(struct seq_file *seq, void *cur) 2006 { 2007 struct inet_connection_sock *icsk; 2008 struct hlist_nulls_node *node; 2009 struct sock *sk = cur; 2010 struct inet_listen_hashbucket *ilb; 2011 struct tcp_iter_state *st = seq->private; 2012 struct net *net = seq_file_net(seq); 2013 2014 if (!sk) { 2015 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2016 spin_lock_bh(&ilb->lock); 2017 sk = sk_nulls_head(&ilb->head); 2018 st->offset = 0; 2019 goto get_sk; 2020 } 2021 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2022 ++st->num; 2023 ++st->offset; 2024 2025 if (st->state == TCP_SEQ_STATE_OPENREQ) { 2026 struct request_sock *req = cur; 2027 2028 icsk = inet_csk(st->syn_wait_sk); 2029 req = req->dl_next; 2030 while (1) { 2031 while (req) { 2032 if (req->rsk_ops->family == st->family) { 2033 cur = req; 2034 goto out; 2035 } 2036 req = req->dl_next; 2037 } 2038 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries) 2039 break; 2040 get_req: 2041 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket]; 2042 } 2043 sk = sk_nulls_next(st->syn_wait_sk); 2044 st->state = TCP_SEQ_STATE_LISTENING; 2045 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2046 } else { 2047 icsk = inet_csk(sk); 2048 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2049 if (reqsk_queue_len(&icsk->icsk_accept_queue)) 2050 goto start_req; 2051 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2052 sk = sk_nulls_next(sk); 2053 } 2054 get_sk: 2055 sk_nulls_for_each_from(sk, node) { 2056 if (!net_eq(sock_net(sk), net)) 2057 continue; 2058 if (sk->sk_family == st->family) { 2059 cur = sk; 2060 goto out; 2061 } 2062 icsk = inet_csk(sk); 2063 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2064 if (reqsk_queue_len(&icsk->icsk_accept_queue)) { 2065 start_req: 2066 st->uid = sock_i_uid(sk); 2067 st->syn_wait_sk = sk; 2068 st->state = TCP_SEQ_STATE_OPENREQ; 2069 st->sbucket = 0; 2070 goto get_req; 2071 } 2072 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2073 } 2074 spin_unlock_bh(&ilb->lock); 2075 st->offset = 0; 2076 if (++st->bucket < INET_LHTABLE_SIZE) { 2077 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2078 spin_lock_bh(&ilb->lock); 2079 sk = sk_nulls_head(&ilb->head); 2080 goto get_sk; 2081 } 2082 cur = NULL; 2083 out: 2084 return cur; 2085 } 2086 2087 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2088 { 2089 struct tcp_iter_state *st = seq->private; 2090 void *rc; 2091 2092 st->bucket = 0; 2093 st->offset = 0; 2094 rc = listening_get_next(seq, NULL); 2095 2096 while (rc && *pos) { 2097 rc = listening_get_next(seq, rc); 2098 --*pos; 2099 } 2100 return rc; 2101 } 2102 2103 static inline bool empty_bucket(struct tcp_iter_state *st) 2104 { 2105 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) && 2106 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain); 2107 } 2108 2109 /* 2110 * Get first established socket starting from bucket given in st->bucket. 2111 * If st->bucket is zero, the very first socket in the hash is returned. 2112 */ 2113 static void *established_get_first(struct seq_file *seq) 2114 { 2115 struct tcp_iter_state *st = seq->private; 2116 struct net *net = seq_file_net(seq); 2117 void *rc = NULL; 2118 2119 st->offset = 0; 2120 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 2121 struct sock *sk; 2122 struct hlist_nulls_node *node; 2123 struct inet_timewait_sock *tw; 2124 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 2125 2126 /* Lockless fast path for the common case of empty buckets */ 2127 if (empty_bucket(st)) 2128 continue; 2129 2130 spin_lock_bh(lock); 2131 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 2132 if (sk->sk_family != st->family || 2133 !net_eq(sock_net(sk), net)) { 2134 continue; 2135 } 2136 rc = sk; 2137 goto out; 2138 } 2139 st->state = TCP_SEQ_STATE_TIME_WAIT; 2140 inet_twsk_for_each(tw, node, 2141 &tcp_hashinfo.ehash[st->bucket].twchain) { 2142 if (tw->tw_family != st->family || 2143 !net_eq(twsk_net(tw), net)) { 2144 continue; 2145 } 2146 rc = tw; 2147 goto out; 2148 } 2149 spin_unlock_bh(lock); 2150 st->state = TCP_SEQ_STATE_ESTABLISHED; 2151 } 2152 out: 2153 return rc; 2154 } 2155 2156 static void *established_get_next(struct seq_file *seq, void *cur) 2157 { 2158 struct sock *sk = cur; 2159 struct inet_timewait_sock *tw; 2160 struct hlist_nulls_node *node; 2161 struct tcp_iter_state *st = seq->private; 2162 struct net *net = seq_file_net(seq); 2163 2164 ++st->num; 2165 ++st->offset; 2166 2167 if (st->state == TCP_SEQ_STATE_TIME_WAIT) { 2168 tw = cur; 2169 tw = tw_next(tw); 2170 get_tw: 2171 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) { 2172 tw = tw_next(tw); 2173 } 2174 if (tw) { 2175 cur = tw; 2176 goto out; 2177 } 2178 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2179 st->state = TCP_SEQ_STATE_ESTABLISHED; 2180 2181 /* Look for next non empty bucket */ 2182 st->offset = 0; 2183 while (++st->bucket <= tcp_hashinfo.ehash_mask && 2184 empty_bucket(st)) 2185 ; 2186 if (st->bucket > tcp_hashinfo.ehash_mask) 2187 return NULL; 2188 2189 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2190 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain); 2191 } else 2192 sk = sk_nulls_next(sk); 2193 2194 sk_nulls_for_each_from(sk, node) { 2195 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) 2196 goto found; 2197 } 2198 2199 st->state = TCP_SEQ_STATE_TIME_WAIT; 2200 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain); 2201 goto get_tw; 2202 found: 2203 cur = sk; 2204 out: 2205 return cur; 2206 } 2207 2208 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2209 { 2210 struct tcp_iter_state *st = seq->private; 2211 void *rc; 2212 2213 st->bucket = 0; 2214 rc = established_get_first(seq); 2215 2216 while (rc && pos) { 2217 rc = established_get_next(seq, rc); 2218 --pos; 2219 } 2220 return rc; 2221 } 2222 2223 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2224 { 2225 void *rc; 2226 struct tcp_iter_state *st = seq->private; 2227 2228 st->state = TCP_SEQ_STATE_LISTENING; 2229 rc = listening_get_idx(seq, &pos); 2230 2231 if (!rc) { 2232 st->state = TCP_SEQ_STATE_ESTABLISHED; 2233 rc = established_get_idx(seq, pos); 2234 } 2235 2236 return rc; 2237 } 2238 2239 static void *tcp_seek_last_pos(struct seq_file *seq) 2240 { 2241 struct tcp_iter_state *st = seq->private; 2242 int offset = st->offset; 2243 int orig_num = st->num; 2244 void *rc = NULL; 2245 2246 switch (st->state) { 2247 case TCP_SEQ_STATE_OPENREQ: 2248 case TCP_SEQ_STATE_LISTENING: 2249 if (st->bucket >= INET_LHTABLE_SIZE) 2250 break; 2251 st->state = TCP_SEQ_STATE_LISTENING; 2252 rc = listening_get_next(seq, NULL); 2253 while (offset-- && rc) 2254 rc = listening_get_next(seq, rc); 2255 if (rc) 2256 break; 2257 st->bucket = 0; 2258 /* Fallthrough */ 2259 case TCP_SEQ_STATE_ESTABLISHED: 2260 case TCP_SEQ_STATE_TIME_WAIT: 2261 st->state = TCP_SEQ_STATE_ESTABLISHED; 2262 if (st->bucket > tcp_hashinfo.ehash_mask) 2263 break; 2264 rc = established_get_first(seq); 2265 while (offset-- && rc) 2266 rc = established_get_next(seq, rc); 2267 } 2268 2269 st->num = orig_num; 2270 2271 return rc; 2272 } 2273 2274 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2275 { 2276 struct tcp_iter_state *st = seq->private; 2277 void *rc; 2278 2279 if (*pos && *pos == st->last_pos) { 2280 rc = tcp_seek_last_pos(seq); 2281 if (rc) 2282 goto out; 2283 } 2284 2285 st->state = TCP_SEQ_STATE_LISTENING; 2286 st->num = 0; 2287 st->bucket = 0; 2288 st->offset = 0; 2289 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2290 2291 out: 2292 st->last_pos = *pos; 2293 return rc; 2294 } 2295 2296 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2297 { 2298 struct tcp_iter_state *st = seq->private; 2299 void *rc = NULL; 2300 2301 if (v == SEQ_START_TOKEN) { 2302 rc = tcp_get_idx(seq, 0); 2303 goto out; 2304 } 2305 2306 switch (st->state) { 2307 case TCP_SEQ_STATE_OPENREQ: 2308 case TCP_SEQ_STATE_LISTENING: 2309 rc = listening_get_next(seq, v); 2310 if (!rc) { 2311 st->state = TCP_SEQ_STATE_ESTABLISHED; 2312 st->bucket = 0; 2313 st->offset = 0; 2314 rc = established_get_first(seq); 2315 } 2316 break; 2317 case TCP_SEQ_STATE_ESTABLISHED: 2318 case TCP_SEQ_STATE_TIME_WAIT: 2319 rc = established_get_next(seq, v); 2320 break; 2321 } 2322 out: 2323 ++*pos; 2324 st->last_pos = *pos; 2325 return rc; 2326 } 2327 2328 static void tcp_seq_stop(struct seq_file *seq, void *v) 2329 { 2330 struct tcp_iter_state *st = seq->private; 2331 2332 switch (st->state) { 2333 case TCP_SEQ_STATE_OPENREQ: 2334 if (v) { 2335 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk); 2336 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2337 } 2338 case TCP_SEQ_STATE_LISTENING: 2339 if (v != SEQ_START_TOKEN) 2340 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock); 2341 break; 2342 case TCP_SEQ_STATE_TIME_WAIT: 2343 case TCP_SEQ_STATE_ESTABLISHED: 2344 if (v) 2345 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2346 break; 2347 } 2348 } 2349 2350 int tcp_seq_open(struct inode *inode, struct file *file) 2351 { 2352 struct tcp_seq_afinfo *afinfo = PDE(inode)->data; 2353 struct tcp_iter_state *s; 2354 int err; 2355 2356 err = seq_open_net(inode, file, &afinfo->seq_ops, 2357 sizeof(struct tcp_iter_state)); 2358 if (err < 0) 2359 return err; 2360 2361 s = ((struct seq_file *)file->private_data)->private; 2362 s->family = afinfo->family; 2363 s->last_pos = 0; 2364 return 0; 2365 } 2366 EXPORT_SYMBOL(tcp_seq_open); 2367 2368 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo) 2369 { 2370 int rc = 0; 2371 struct proc_dir_entry *p; 2372 2373 afinfo->seq_ops.start = tcp_seq_start; 2374 afinfo->seq_ops.next = tcp_seq_next; 2375 afinfo->seq_ops.stop = tcp_seq_stop; 2376 2377 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2378 afinfo->seq_fops, afinfo); 2379 if (!p) 2380 rc = -ENOMEM; 2381 return rc; 2382 } 2383 EXPORT_SYMBOL(tcp_proc_register); 2384 2385 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo) 2386 { 2387 proc_net_remove(net, afinfo->name); 2388 } 2389 EXPORT_SYMBOL(tcp_proc_unregister); 2390 2391 static void get_openreq4(const struct sock *sk, const struct request_sock *req, 2392 struct seq_file *f, int i, int uid, int *len) 2393 { 2394 const struct inet_request_sock *ireq = inet_rsk(req); 2395 int ttd = req->expires - jiffies; 2396 2397 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2398 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n", 2399 i, 2400 ireq->loc_addr, 2401 ntohs(inet_sk(sk)->inet_sport), 2402 ireq->rmt_addr, 2403 ntohs(ireq->rmt_port), 2404 TCP_SYN_RECV, 2405 0, 0, /* could print option size, but that is af dependent. */ 2406 1, /* timers active (only the expire timer) */ 2407 jiffies_to_clock_t(ttd), 2408 req->retrans, 2409 uid, 2410 0, /* non standard timer */ 2411 0, /* open_requests have no inode */ 2412 atomic_read(&sk->sk_refcnt), 2413 req, 2414 len); 2415 } 2416 2417 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len) 2418 { 2419 int timer_active; 2420 unsigned long timer_expires; 2421 const struct tcp_sock *tp = tcp_sk(sk); 2422 const struct inet_connection_sock *icsk = inet_csk(sk); 2423 const struct inet_sock *inet = inet_sk(sk); 2424 __be32 dest = inet->inet_daddr; 2425 __be32 src = inet->inet_rcv_saddr; 2426 __u16 destp = ntohs(inet->inet_dport); 2427 __u16 srcp = ntohs(inet->inet_sport); 2428 int rx_queue; 2429 2430 if (icsk->icsk_pending == ICSK_TIME_RETRANS) { 2431 timer_active = 1; 2432 timer_expires = icsk->icsk_timeout; 2433 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2434 timer_active = 4; 2435 timer_expires = icsk->icsk_timeout; 2436 } else if (timer_pending(&sk->sk_timer)) { 2437 timer_active = 2; 2438 timer_expires = sk->sk_timer.expires; 2439 } else { 2440 timer_active = 0; 2441 timer_expires = jiffies; 2442 } 2443 2444 if (sk->sk_state == TCP_LISTEN) 2445 rx_queue = sk->sk_ack_backlog; 2446 else 2447 /* 2448 * because we dont lock socket, we might find a transient negative value 2449 */ 2450 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2451 2452 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2453 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n", 2454 i, src, srcp, dest, destp, sk->sk_state, 2455 tp->write_seq - tp->snd_una, 2456 rx_queue, 2457 timer_active, 2458 jiffies_to_clock_t(timer_expires - jiffies), 2459 icsk->icsk_retransmits, 2460 sock_i_uid(sk), 2461 icsk->icsk_probes_out, 2462 sock_i_ino(sk), 2463 atomic_read(&sk->sk_refcnt), sk, 2464 jiffies_to_clock_t(icsk->icsk_rto), 2465 jiffies_to_clock_t(icsk->icsk_ack.ato), 2466 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2467 tp->snd_cwnd, 2468 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh, 2469 len); 2470 } 2471 2472 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2473 struct seq_file *f, int i, int *len) 2474 { 2475 __be32 dest, src; 2476 __u16 destp, srcp; 2477 int ttd = tw->tw_ttd - jiffies; 2478 2479 if (ttd < 0) 2480 ttd = 0; 2481 2482 dest = tw->tw_daddr; 2483 src = tw->tw_rcv_saddr; 2484 destp = ntohs(tw->tw_dport); 2485 srcp = ntohs(tw->tw_sport); 2486 2487 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2488 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n", 2489 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2490 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0, 2491 atomic_read(&tw->tw_refcnt), tw, len); 2492 } 2493 2494 #define TMPSZ 150 2495 2496 static int tcp4_seq_show(struct seq_file *seq, void *v) 2497 { 2498 struct tcp_iter_state *st; 2499 int len; 2500 2501 if (v == SEQ_START_TOKEN) { 2502 seq_printf(seq, "%-*s\n", TMPSZ - 1, 2503 " sl local_address rem_address st tx_queue " 2504 "rx_queue tr tm->when retrnsmt uid timeout " 2505 "inode"); 2506 goto out; 2507 } 2508 st = seq->private; 2509 2510 switch (st->state) { 2511 case TCP_SEQ_STATE_LISTENING: 2512 case TCP_SEQ_STATE_ESTABLISHED: 2513 get_tcp4_sock(v, seq, st->num, &len); 2514 break; 2515 case TCP_SEQ_STATE_OPENREQ: 2516 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len); 2517 break; 2518 case TCP_SEQ_STATE_TIME_WAIT: 2519 get_timewait4_sock(v, seq, st->num, &len); 2520 break; 2521 } 2522 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, ""); 2523 out: 2524 return 0; 2525 } 2526 2527 static const struct file_operations tcp_afinfo_seq_fops = { 2528 .owner = THIS_MODULE, 2529 .open = tcp_seq_open, 2530 .read = seq_read, 2531 .llseek = seq_lseek, 2532 .release = seq_release_net 2533 }; 2534 2535 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2536 .name = "tcp", 2537 .family = AF_INET, 2538 .seq_fops = &tcp_afinfo_seq_fops, 2539 .seq_ops = { 2540 .show = tcp4_seq_show, 2541 }, 2542 }; 2543 2544 static int __net_init tcp4_proc_init_net(struct net *net) 2545 { 2546 return tcp_proc_register(net, &tcp4_seq_afinfo); 2547 } 2548 2549 static void __net_exit tcp4_proc_exit_net(struct net *net) 2550 { 2551 tcp_proc_unregister(net, &tcp4_seq_afinfo); 2552 } 2553 2554 static struct pernet_operations tcp4_net_ops = { 2555 .init = tcp4_proc_init_net, 2556 .exit = tcp4_proc_exit_net, 2557 }; 2558 2559 int __init tcp4_proc_init(void) 2560 { 2561 return register_pernet_subsys(&tcp4_net_ops); 2562 } 2563 2564 void tcp4_proc_exit(void) 2565 { 2566 unregister_pernet_subsys(&tcp4_net_ops); 2567 } 2568 #endif /* CONFIG_PROC_FS */ 2569 2570 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2571 { 2572 const struct iphdr *iph = skb_gro_network_header(skb); 2573 2574 switch (skb->ip_summed) { 2575 case CHECKSUM_COMPLETE: 2576 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr, 2577 skb->csum)) { 2578 skb->ip_summed = CHECKSUM_UNNECESSARY; 2579 break; 2580 } 2581 2582 /* fall through */ 2583 case CHECKSUM_NONE: 2584 NAPI_GRO_CB(skb)->flush = 1; 2585 return NULL; 2586 } 2587 2588 return tcp_gro_receive(head, skb); 2589 } 2590 2591 int tcp4_gro_complete(struct sk_buff *skb) 2592 { 2593 const struct iphdr *iph = ip_hdr(skb); 2594 struct tcphdr *th = tcp_hdr(skb); 2595 2596 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 2597 iph->saddr, iph->daddr, 0); 2598 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 2599 2600 return tcp_gro_complete(skb); 2601 } 2602 2603 struct proto tcp_prot = { 2604 .name = "TCP", 2605 .owner = THIS_MODULE, 2606 .close = tcp_close, 2607 .connect = tcp_v4_connect, 2608 .disconnect = tcp_disconnect, 2609 .accept = inet_csk_accept, 2610 .ioctl = tcp_ioctl, 2611 .init = tcp_v4_init_sock, 2612 .destroy = tcp_v4_destroy_sock, 2613 .shutdown = tcp_shutdown, 2614 .setsockopt = tcp_setsockopt, 2615 .getsockopt = tcp_getsockopt, 2616 .recvmsg = tcp_recvmsg, 2617 .sendmsg = tcp_sendmsg, 2618 .sendpage = tcp_sendpage, 2619 .backlog_rcv = tcp_v4_do_rcv, 2620 .release_cb = tcp_release_cb, 2621 .mtu_reduced = tcp_v4_mtu_reduced, 2622 .hash = inet_hash, 2623 .unhash = inet_unhash, 2624 .get_port = inet_csk_get_port, 2625 .enter_memory_pressure = tcp_enter_memory_pressure, 2626 .sockets_allocated = &tcp_sockets_allocated, 2627 .orphan_count = &tcp_orphan_count, 2628 .memory_allocated = &tcp_memory_allocated, 2629 .memory_pressure = &tcp_memory_pressure, 2630 .sysctl_wmem = sysctl_tcp_wmem, 2631 .sysctl_rmem = sysctl_tcp_rmem, 2632 .max_header = MAX_TCP_HEADER, 2633 .obj_size = sizeof(struct tcp_sock), 2634 .slab_flags = SLAB_DESTROY_BY_RCU, 2635 .twsk_prot = &tcp_timewait_sock_ops, 2636 .rsk_prot = &tcp_request_sock_ops, 2637 .h.hashinfo = &tcp_hashinfo, 2638 .no_autobind = true, 2639 #ifdef CONFIG_COMPAT 2640 .compat_setsockopt = compat_tcp_setsockopt, 2641 .compat_getsockopt = compat_tcp_getsockopt, 2642 #endif 2643 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM 2644 .init_cgroup = tcp_init_cgroup, 2645 .destroy_cgroup = tcp_destroy_cgroup, 2646 .proto_cgroup = tcp_proto_cgroup, 2647 #endif 2648 }; 2649 EXPORT_SYMBOL(tcp_prot); 2650 2651 static int __net_init tcp_sk_init(struct net *net) 2652 { 2653 return 0; 2654 } 2655 2656 static void __net_exit tcp_sk_exit(struct net *net) 2657 { 2658 } 2659 2660 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2661 { 2662 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET); 2663 } 2664 2665 static struct pernet_operations __net_initdata tcp_sk_ops = { 2666 .init = tcp_sk_init, 2667 .exit = tcp_sk_exit, 2668 .exit_batch = tcp_sk_exit_batch, 2669 }; 2670 2671 void __init tcp_v4_init(void) 2672 { 2673 inet_hashinfo_init(&tcp_hashinfo); 2674 if (register_pernet_subsys(&tcp_sk_ops)) 2675 panic("Failed to create the TCP control socket.\n"); 2676 } 2677