xref: /linux/net/ipv4/tcp_ipv4.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  *		IPv4 specific functions
9  *
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  *
18  *	This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23 
24 /*
25  * Changes:
26  *		David S. Miller	:	New socket lookup architecture.
27  *					This code is dedicated to John Dyson.
28  *		David S. Miller :	Change semantics of established hash,
29  *					half is devoted to TIME_WAIT sockets
30  *					and the rest go in the other half.
31  *		Andi Kleen :		Add support for syncookies and fixed
32  *					some bugs: ip options weren't passed to
33  *					the TCP layer, missed a check for an
34  *					ACK bit.
35  *		Andi Kleen :		Implemented fast path mtu discovery.
36  *	     				Fixed many serious bugs in the
37  *					request_sock handling and moved
38  *					most of it into the af independent code.
39  *					Added tail drop and some other bugfixes.
40  *					Added new listen semantics.
41  *		Mike McLagan	:	Routing by source
42  *	Juan Jose Ciarlante:		ip_dynaddr bits
43  *		Andi Kleen:		various fixes.
44  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
45  *					coma.
46  *	Andi Kleen		:	Fix new listen.
47  *	Andi Kleen		:	Fix accept error reporting.
48  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
49  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
50  *					a single port at the same time.
51  */
52 
53 #define pr_fmt(fmt) "TCP: " fmt
54 
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78 
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84 
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87 
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91 
92 
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97 
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100 
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 					  ip_hdr(skb)->saddr,
105 					  tcp_hdr(skb)->dest,
106 					  tcp_hdr(skb)->source);
107 }
108 
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 	struct tcp_sock *tp = tcp_sk(sk);
113 
114 	/* With PAWS, it is safe from the viewpoint
115 	   of data integrity. Even without PAWS it is safe provided sequence
116 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117 
118 	   Actually, the idea is close to VJ's one, only timestamp cache is
119 	   held not per host, but per port pair and TW bucket is used as state
120 	   holder.
121 
122 	   If TW bucket has been already destroyed we fall back to VJ's scheme
123 	   and use initial timestamp retrieved from peer table.
124 	 */
125 	if (tcptw->tw_ts_recent_stamp &&
126 	    (twp == NULL || (sysctl_tcp_tw_reuse &&
127 			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 		if (tp->write_seq == 0)
130 			tp->write_seq = 1;
131 		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
132 		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 		sock_hold(sktw);
134 		return 1;
135 	}
136 
137 	return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140 
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145 	struct inet_sock *inet = inet_sk(sk);
146 	struct tcp_sock *tp = tcp_sk(sk);
147 	__be16 orig_sport, orig_dport;
148 	__be32 daddr, nexthop;
149 	struct flowi4 *fl4;
150 	struct rtable *rt;
151 	int err;
152 	struct ip_options_rcu *inet_opt;
153 
154 	if (addr_len < sizeof(struct sockaddr_in))
155 		return -EINVAL;
156 
157 	if (usin->sin_family != AF_INET)
158 		return -EAFNOSUPPORT;
159 
160 	nexthop = daddr = usin->sin_addr.s_addr;
161 	inet_opt = rcu_dereference_protected(inet->inet_opt,
162 					     sock_owned_by_user(sk));
163 	if (inet_opt && inet_opt->opt.srr) {
164 		if (!daddr)
165 			return -EINVAL;
166 		nexthop = inet_opt->opt.faddr;
167 	}
168 
169 	orig_sport = inet->inet_sport;
170 	orig_dport = usin->sin_port;
171 	fl4 = &inet->cork.fl.u.ip4;
172 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173 			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 			      IPPROTO_TCP,
175 			      orig_sport, orig_dport, sk, true);
176 	if (IS_ERR(rt)) {
177 		err = PTR_ERR(rt);
178 		if (err == -ENETUNREACH)
179 			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180 		return err;
181 	}
182 
183 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184 		ip_rt_put(rt);
185 		return -ENETUNREACH;
186 	}
187 
188 	if (!inet_opt || !inet_opt->opt.srr)
189 		daddr = fl4->daddr;
190 
191 	if (!inet->inet_saddr)
192 		inet->inet_saddr = fl4->saddr;
193 	inet->inet_rcv_saddr = inet->inet_saddr;
194 
195 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196 		/* Reset inherited state */
197 		tp->rx_opt.ts_recent	   = 0;
198 		tp->rx_opt.ts_recent_stamp = 0;
199 		if (likely(!tp->repair))
200 			tp->write_seq	   = 0;
201 	}
202 
203 	if (tcp_death_row.sysctl_tw_recycle &&
204 	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205 		tcp_fetch_timewait_stamp(sk, &rt->dst);
206 
207 	inet->inet_dport = usin->sin_port;
208 	inet->inet_daddr = daddr;
209 
210 	inet_csk(sk)->icsk_ext_hdr_len = 0;
211 	if (inet_opt)
212 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
213 
214 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
215 
216 	/* Socket identity is still unknown (sport may be zero).
217 	 * However we set state to SYN-SENT and not releasing socket
218 	 * lock select source port, enter ourselves into the hash tables and
219 	 * complete initialization after this.
220 	 */
221 	tcp_set_state(sk, TCP_SYN_SENT);
222 	err = inet_hash_connect(&tcp_death_row, sk);
223 	if (err)
224 		goto failure;
225 
226 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
227 			       inet->inet_sport, inet->inet_dport, sk);
228 	if (IS_ERR(rt)) {
229 		err = PTR_ERR(rt);
230 		rt = NULL;
231 		goto failure;
232 	}
233 	/* OK, now commit destination to socket.  */
234 	sk->sk_gso_type = SKB_GSO_TCPV4;
235 	sk_setup_caps(sk, &rt->dst);
236 
237 	if (!tp->write_seq && likely(!tp->repair))
238 		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
239 							   inet->inet_daddr,
240 							   inet->inet_sport,
241 							   usin->sin_port);
242 
243 	inet->inet_id = tp->write_seq ^ jiffies;
244 
245 	err = tcp_connect(sk);
246 
247 	rt = NULL;
248 	if (err)
249 		goto failure;
250 
251 	return 0;
252 
253 failure:
254 	/*
255 	 * This unhashes the socket and releases the local port,
256 	 * if necessary.
257 	 */
258 	tcp_set_state(sk, TCP_CLOSE);
259 	ip_rt_put(rt);
260 	sk->sk_route_caps = 0;
261 	inet->inet_dport = 0;
262 	return err;
263 }
264 EXPORT_SYMBOL(tcp_v4_connect);
265 
266 /*
267  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
268  * It can be called through tcp_release_cb() if socket was owned by user
269  * at the time tcp_v4_err() was called to handle ICMP message.
270  */
271 static void tcp_v4_mtu_reduced(struct sock *sk)
272 {
273 	struct dst_entry *dst;
274 	struct inet_sock *inet = inet_sk(sk);
275 	u32 mtu = tcp_sk(sk)->mtu_info;
276 
277 	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
278 	 * send out by Linux are always <576bytes so they should go through
279 	 * unfragmented).
280 	 */
281 	if (sk->sk_state == TCP_LISTEN)
282 		return;
283 
284 	dst = inet_csk_update_pmtu(sk, mtu);
285 	if (!dst)
286 		return;
287 
288 	/* Something is about to be wrong... Remember soft error
289 	 * for the case, if this connection will not able to recover.
290 	 */
291 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
292 		sk->sk_err_soft = EMSGSIZE;
293 
294 	mtu = dst_mtu(dst);
295 
296 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
297 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
298 		tcp_sync_mss(sk, mtu);
299 
300 		/* Resend the TCP packet because it's
301 		 * clear that the old packet has been
302 		 * dropped. This is the new "fast" path mtu
303 		 * discovery.
304 		 */
305 		tcp_simple_retransmit(sk);
306 	} /* else let the usual retransmit timer handle it */
307 }
308 
309 static void do_redirect(struct sk_buff *skb, struct sock *sk)
310 {
311 	struct dst_entry *dst = __sk_dst_check(sk, 0);
312 
313 	if (dst)
314 		dst->ops->redirect(dst, sk, skb);
315 }
316 
317 /*
318  * This routine is called by the ICMP module when it gets some
319  * sort of error condition.  If err < 0 then the socket should
320  * be closed and the error returned to the user.  If err > 0
321  * it's just the icmp type << 8 | icmp code.  After adjustment
322  * header points to the first 8 bytes of the tcp header.  We need
323  * to find the appropriate port.
324  *
325  * The locking strategy used here is very "optimistic". When
326  * someone else accesses the socket the ICMP is just dropped
327  * and for some paths there is no check at all.
328  * A more general error queue to queue errors for later handling
329  * is probably better.
330  *
331  */
332 
333 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
334 {
335 	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
336 	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
337 	struct inet_connection_sock *icsk;
338 	struct tcp_sock *tp;
339 	struct inet_sock *inet;
340 	const int type = icmp_hdr(icmp_skb)->type;
341 	const int code = icmp_hdr(icmp_skb)->code;
342 	struct sock *sk;
343 	struct sk_buff *skb;
344 	struct request_sock *req;
345 	__u32 seq;
346 	__u32 remaining;
347 	int err;
348 	struct net *net = dev_net(icmp_skb->dev);
349 
350 	if (icmp_skb->len < (iph->ihl << 2) + 8) {
351 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352 		return;
353 	}
354 
355 	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
356 			iph->saddr, th->source, inet_iif(icmp_skb));
357 	if (!sk) {
358 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
359 		return;
360 	}
361 	if (sk->sk_state == TCP_TIME_WAIT) {
362 		inet_twsk_put(inet_twsk(sk));
363 		return;
364 	}
365 
366 	bh_lock_sock(sk);
367 	/* If too many ICMPs get dropped on busy
368 	 * servers this needs to be solved differently.
369 	 * We do take care of PMTU discovery (RFC1191) special case :
370 	 * we can receive locally generated ICMP messages while socket is held.
371 	 */
372 	if (sock_owned_by_user(sk) &&
373 	    type != ICMP_DEST_UNREACH &&
374 	    code != ICMP_FRAG_NEEDED)
375 		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
376 
377 	if (sk->sk_state == TCP_CLOSE)
378 		goto out;
379 
380 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
381 		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
382 		goto out;
383 	}
384 
385 	icsk = inet_csk(sk);
386 	tp = tcp_sk(sk);
387 	req = tp->fastopen_rsk;
388 	seq = ntohl(th->seq);
389 	if (sk->sk_state != TCP_LISTEN &&
390 	    !between(seq, tp->snd_una, tp->snd_nxt) &&
391 	    (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
392 		/* For a Fast Open socket, allow seq to be snt_isn. */
393 		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
394 		goto out;
395 	}
396 
397 	switch (type) {
398 	case ICMP_REDIRECT:
399 		do_redirect(icmp_skb, sk);
400 		goto out;
401 	case ICMP_SOURCE_QUENCH:
402 		/* Just silently ignore these. */
403 		goto out;
404 	case ICMP_PARAMETERPROB:
405 		err = EPROTO;
406 		break;
407 	case ICMP_DEST_UNREACH:
408 		if (code > NR_ICMP_UNREACH)
409 			goto out;
410 
411 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
412 			tp->mtu_info = info;
413 			if (!sock_owned_by_user(sk)) {
414 				tcp_v4_mtu_reduced(sk);
415 			} else {
416 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
417 					sock_hold(sk);
418 			}
419 			goto out;
420 		}
421 
422 		err = icmp_err_convert[code].errno;
423 		/* check if icmp_skb allows revert of backoff
424 		 * (see draft-zimmermann-tcp-lcd) */
425 		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
426 			break;
427 		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
428 		    !icsk->icsk_backoff)
429 			break;
430 
431 		/* XXX (TFO) - revisit the following logic for TFO */
432 
433 		if (sock_owned_by_user(sk))
434 			break;
435 
436 		icsk->icsk_backoff--;
437 		inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
438 			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
439 		tcp_bound_rto(sk);
440 
441 		skb = tcp_write_queue_head(sk);
442 		BUG_ON(!skb);
443 
444 		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
445 				tcp_time_stamp - TCP_SKB_CB(skb)->when);
446 
447 		if (remaining) {
448 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
449 						  remaining, TCP_RTO_MAX);
450 		} else {
451 			/* RTO revert clocked out retransmission.
452 			 * Will retransmit now */
453 			tcp_retransmit_timer(sk);
454 		}
455 
456 		break;
457 	case ICMP_TIME_EXCEEDED:
458 		err = EHOSTUNREACH;
459 		break;
460 	default:
461 		goto out;
462 	}
463 
464 	/* XXX (TFO) - if it's a TFO socket and has been accepted, rather
465 	 * than following the TCP_SYN_RECV case and closing the socket,
466 	 * we ignore the ICMP error and keep trying like a fully established
467 	 * socket. Is this the right thing to do?
468 	 */
469 	if (req && req->sk == NULL)
470 		goto out;
471 
472 	switch (sk->sk_state) {
473 		struct request_sock *req, **prev;
474 	case TCP_LISTEN:
475 		if (sock_owned_by_user(sk))
476 			goto out;
477 
478 		req = inet_csk_search_req(sk, &prev, th->dest,
479 					  iph->daddr, iph->saddr);
480 		if (!req)
481 			goto out;
482 
483 		/* ICMPs are not backlogged, hence we cannot get
484 		   an established socket here.
485 		 */
486 		WARN_ON(req->sk);
487 
488 		if (seq != tcp_rsk(req)->snt_isn) {
489 			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
490 			goto out;
491 		}
492 
493 		/*
494 		 * Still in SYN_RECV, just remove it silently.
495 		 * There is no good way to pass the error to the newly
496 		 * created socket, and POSIX does not want network
497 		 * errors returned from accept().
498 		 */
499 		inet_csk_reqsk_queue_drop(sk, req, prev);
500 		goto out;
501 
502 	case TCP_SYN_SENT:
503 	case TCP_SYN_RECV:  /* Cannot happen.
504 			       It can f.e. if SYNs crossed,
505 			       or Fast Open.
506 			     */
507 		if (!sock_owned_by_user(sk)) {
508 			sk->sk_err = err;
509 
510 			sk->sk_error_report(sk);
511 
512 			tcp_done(sk);
513 		} else {
514 			sk->sk_err_soft = err;
515 		}
516 		goto out;
517 	}
518 
519 	/* If we've already connected we will keep trying
520 	 * until we time out, or the user gives up.
521 	 *
522 	 * rfc1122 4.2.3.9 allows to consider as hard errors
523 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
524 	 * but it is obsoleted by pmtu discovery).
525 	 *
526 	 * Note, that in modern internet, where routing is unreliable
527 	 * and in each dark corner broken firewalls sit, sending random
528 	 * errors ordered by their masters even this two messages finally lose
529 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
530 	 *
531 	 * Now we are in compliance with RFCs.
532 	 *							--ANK (980905)
533 	 */
534 
535 	inet = inet_sk(sk);
536 	if (!sock_owned_by_user(sk) && inet->recverr) {
537 		sk->sk_err = err;
538 		sk->sk_error_report(sk);
539 	} else	{ /* Only an error on timeout */
540 		sk->sk_err_soft = err;
541 	}
542 
543 out:
544 	bh_unlock_sock(sk);
545 	sock_put(sk);
546 }
547 
548 static void __tcp_v4_send_check(struct sk_buff *skb,
549 				__be32 saddr, __be32 daddr)
550 {
551 	struct tcphdr *th = tcp_hdr(skb);
552 
553 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
554 		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555 		skb->csum_start = skb_transport_header(skb) - skb->head;
556 		skb->csum_offset = offsetof(struct tcphdr, check);
557 	} else {
558 		th->check = tcp_v4_check(skb->len, saddr, daddr,
559 					 csum_partial(th,
560 						      th->doff << 2,
561 						      skb->csum));
562 	}
563 }
564 
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568 	const struct inet_sock *inet = inet_sk(sk);
569 
570 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573 
574 int tcp_v4_gso_send_check(struct sk_buff *skb)
575 {
576 	const struct iphdr *iph;
577 	struct tcphdr *th;
578 
579 	if (!pskb_may_pull(skb, sizeof(*th)))
580 		return -EINVAL;
581 
582 	iph = ip_hdr(skb);
583 	th = tcp_hdr(skb);
584 
585 	th->check = 0;
586 	skb->ip_summed = CHECKSUM_PARTIAL;
587 	__tcp_v4_send_check(skb, iph->saddr, iph->daddr);
588 	return 0;
589 }
590 
591 /*
592  *	This routine will send an RST to the other tcp.
593  *
594  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
595  *		      for reset.
596  *	Answer: if a packet caused RST, it is not for a socket
597  *		existing in our system, if it is matched to a socket,
598  *		it is just duplicate segment or bug in other side's TCP.
599  *		So that we build reply only basing on parameters
600  *		arrived with segment.
601  *	Exception: precedence violation. We do not implement it in any case.
602  */
603 
604 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
605 {
606 	const struct tcphdr *th = tcp_hdr(skb);
607 	struct {
608 		struct tcphdr th;
609 #ifdef CONFIG_TCP_MD5SIG
610 		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
611 #endif
612 	} rep;
613 	struct ip_reply_arg arg;
614 #ifdef CONFIG_TCP_MD5SIG
615 	struct tcp_md5sig_key *key;
616 	const __u8 *hash_location = NULL;
617 	unsigned char newhash[16];
618 	int genhash;
619 	struct sock *sk1 = NULL;
620 #endif
621 	struct net *net;
622 
623 	/* Never send a reset in response to a reset. */
624 	if (th->rst)
625 		return;
626 
627 	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
628 		return;
629 
630 	/* Swap the send and the receive. */
631 	memset(&rep, 0, sizeof(rep));
632 	rep.th.dest   = th->source;
633 	rep.th.source = th->dest;
634 	rep.th.doff   = sizeof(struct tcphdr) / 4;
635 	rep.th.rst    = 1;
636 
637 	if (th->ack) {
638 		rep.th.seq = th->ack_seq;
639 	} else {
640 		rep.th.ack = 1;
641 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
642 				       skb->len - (th->doff << 2));
643 	}
644 
645 	memset(&arg, 0, sizeof(arg));
646 	arg.iov[0].iov_base = (unsigned char *)&rep;
647 	arg.iov[0].iov_len  = sizeof(rep.th);
648 
649 #ifdef CONFIG_TCP_MD5SIG
650 	hash_location = tcp_parse_md5sig_option(th);
651 	if (!sk && hash_location) {
652 		/*
653 		 * active side is lost. Try to find listening socket through
654 		 * source port, and then find md5 key through listening socket.
655 		 * we are not loose security here:
656 		 * Incoming packet is checked with md5 hash with finding key,
657 		 * no RST generated if md5 hash doesn't match.
658 		 */
659 		sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
660 					     &tcp_hashinfo, ip_hdr(skb)->daddr,
661 					     ntohs(th->source), inet_iif(skb));
662 		/* don't send rst if it can't find key */
663 		if (!sk1)
664 			return;
665 		rcu_read_lock();
666 		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
667 					&ip_hdr(skb)->saddr, AF_INET);
668 		if (!key)
669 			goto release_sk1;
670 
671 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
672 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
673 			goto release_sk1;
674 	} else {
675 		key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
676 					     &ip_hdr(skb)->saddr,
677 					     AF_INET) : NULL;
678 	}
679 
680 	if (key) {
681 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
682 				   (TCPOPT_NOP << 16) |
683 				   (TCPOPT_MD5SIG << 8) |
684 				   TCPOLEN_MD5SIG);
685 		/* Update length and the length the header thinks exists */
686 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
687 		rep.th.doff = arg.iov[0].iov_len / 4;
688 
689 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
690 				     key, ip_hdr(skb)->saddr,
691 				     ip_hdr(skb)->daddr, &rep.th);
692 	}
693 #endif
694 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
695 				      ip_hdr(skb)->saddr, /* XXX */
696 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
697 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
698 	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
699 	/* When socket is gone, all binding information is lost.
700 	 * routing might fail in this case. No choice here, if we choose to force
701 	 * input interface, we will misroute in case of asymmetric route.
702 	 */
703 	if (sk)
704 		arg.bound_dev_if = sk->sk_bound_dev_if;
705 
706 	net = dev_net(skb_dst(skb)->dev);
707 	arg.tos = ip_hdr(skb)->tos;
708 	ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
709 			      ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
710 
711 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
712 	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
713 
714 #ifdef CONFIG_TCP_MD5SIG
715 release_sk1:
716 	if (sk1) {
717 		rcu_read_unlock();
718 		sock_put(sk1);
719 	}
720 #endif
721 }
722 
723 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
724    outside socket context is ugly, certainly. What can I do?
725  */
726 
727 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
728 			    u32 win, u32 ts, int oif,
729 			    struct tcp_md5sig_key *key,
730 			    int reply_flags, u8 tos)
731 {
732 	const struct tcphdr *th = tcp_hdr(skb);
733 	struct {
734 		struct tcphdr th;
735 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
736 #ifdef CONFIG_TCP_MD5SIG
737 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
738 #endif
739 			];
740 	} rep;
741 	struct ip_reply_arg arg;
742 	struct net *net = dev_net(skb_dst(skb)->dev);
743 
744 	memset(&rep.th, 0, sizeof(struct tcphdr));
745 	memset(&arg, 0, sizeof(arg));
746 
747 	arg.iov[0].iov_base = (unsigned char *)&rep;
748 	arg.iov[0].iov_len  = sizeof(rep.th);
749 	if (ts) {
750 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
751 				   (TCPOPT_TIMESTAMP << 8) |
752 				   TCPOLEN_TIMESTAMP);
753 		rep.opt[1] = htonl(tcp_time_stamp);
754 		rep.opt[2] = htonl(ts);
755 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
756 	}
757 
758 	/* Swap the send and the receive. */
759 	rep.th.dest    = th->source;
760 	rep.th.source  = th->dest;
761 	rep.th.doff    = arg.iov[0].iov_len / 4;
762 	rep.th.seq     = htonl(seq);
763 	rep.th.ack_seq = htonl(ack);
764 	rep.th.ack     = 1;
765 	rep.th.window  = htons(win);
766 
767 #ifdef CONFIG_TCP_MD5SIG
768 	if (key) {
769 		int offset = (ts) ? 3 : 0;
770 
771 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
772 					  (TCPOPT_NOP << 16) |
773 					  (TCPOPT_MD5SIG << 8) |
774 					  TCPOLEN_MD5SIG);
775 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
776 		rep.th.doff = arg.iov[0].iov_len/4;
777 
778 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
779 				    key, ip_hdr(skb)->saddr,
780 				    ip_hdr(skb)->daddr, &rep.th);
781 	}
782 #endif
783 	arg.flags = reply_flags;
784 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
785 				      ip_hdr(skb)->saddr, /* XXX */
786 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
787 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
788 	if (oif)
789 		arg.bound_dev_if = oif;
790 	arg.tos = tos;
791 	ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
792 			      ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
793 
794 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
795 }
796 
797 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
798 {
799 	struct inet_timewait_sock *tw = inet_twsk(sk);
800 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
801 
802 	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
803 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
804 			tcptw->tw_ts_recent,
805 			tw->tw_bound_dev_if,
806 			tcp_twsk_md5_key(tcptw),
807 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
808 			tw->tw_tos
809 			);
810 
811 	inet_twsk_put(tw);
812 }
813 
814 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
815 				  struct request_sock *req)
816 {
817 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
818 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
819 	 */
820 	tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
821 			tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
822 			tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
823 			req->ts_recent,
824 			0,
825 			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
826 					  AF_INET),
827 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
828 			ip_hdr(skb)->tos);
829 }
830 
831 /*
832  *	Send a SYN-ACK after having received a SYN.
833  *	This still operates on a request_sock only, not on a big
834  *	socket.
835  */
836 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
837 			      struct request_sock *req,
838 			      struct request_values *rvp,
839 			      u16 queue_mapping,
840 			      bool nocache)
841 {
842 	const struct inet_request_sock *ireq = inet_rsk(req);
843 	struct flowi4 fl4;
844 	int err = -1;
845 	struct sk_buff * skb;
846 
847 	/* First, grab a route. */
848 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
849 		return -1;
850 
851 	skb = tcp_make_synack(sk, dst, req, rvp, NULL);
852 
853 	if (skb) {
854 		__tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
855 
856 		skb_set_queue_mapping(skb, queue_mapping);
857 		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
858 					    ireq->rmt_addr,
859 					    ireq->opt);
860 		err = net_xmit_eval(err);
861 		if (!tcp_rsk(req)->snt_synack && !err)
862 			tcp_rsk(req)->snt_synack = tcp_time_stamp;
863 	}
864 
865 	return err;
866 }
867 
868 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
869 			     struct request_values *rvp)
870 {
871 	int res = tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
872 
873 	if (!res)
874 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
875 	return res;
876 }
877 
878 /*
879  *	IPv4 request_sock destructor.
880  */
881 static void tcp_v4_reqsk_destructor(struct request_sock *req)
882 {
883 	kfree(inet_rsk(req)->opt);
884 }
885 
886 /*
887  * Return true if a syncookie should be sent
888  */
889 bool tcp_syn_flood_action(struct sock *sk,
890 			 const struct sk_buff *skb,
891 			 const char *proto)
892 {
893 	const char *msg = "Dropping request";
894 	bool want_cookie = false;
895 	struct listen_sock *lopt;
896 
897 
898 
899 #ifdef CONFIG_SYN_COOKIES
900 	if (sysctl_tcp_syncookies) {
901 		msg = "Sending cookies";
902 		want_cookie = true;
903 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
904 	} else
905 #endif
906 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
907 
908 	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
909 	if (!lopt->synflood_warned) {
910 		lopt->synflood_warned = 1;
911 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
912 			proto, ntohs(tcp_hdr(skb)->dest), msg);
913 	}
914 	return want_cookie;
915 }
916 EXPORT_SYMBOL(tcp_syn_flood_action);
917 
918 /*
919  * Save and compile IPv4 options into the request_sock if needed.
920  */
921 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
922 {
923 	const struct ip_options *opt = &(IPCB(skb)->opt);
924 	struct ip_options_rcu *dopt = NULL;
925 
926 	if (opt && opt->optlen) {
927 		int opt_size = sizeof(*dopt) + opt->optlen;
928 
929 		dopt = kmalloc(opt_size, GFP_ATOMIC);
930 		if (dopt) {
931 			if (ip_options_echo(&dopt->opt, skb)) {
932 				kfree(dopt);
933 				dopt = NULL;
934 			}
935 		}
936 	}
937 	return dopt;
938 }
939 
940 #ifdef CONFIG_TCP_MD5SIG
941 /*
942  * RFC2385 MD5 checksumming requires a mapping of
943  * IP address->MD5 Key.
944  * We need to maintain these in the sk structure.
945  */
946 
947 /* Find the Key structure for an address.  */
948 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
949 					 const union tcp_md5_addr *addr,
950 					 int family)
951 {
952 	struct tcp_sock *tp = tcp_sk(sk);
953 	struct tcp_md5sig_key *key;
954 	struct hlist_node *pos;
955 	unsigned int size = sizeof(struct in_addr);
956 	struct tcp_md5sig_info *md5sig;
957 
958 	/* caller either holds rcu_read_lock() or socket lock */
959 	md5sig = rcu_dereference_check(tp->md5sig_info,
960 				       sock_owned_by_user(sk) ||
961 				       lockdep_is_held(&sk->sk_lock.slock));
962 	if (!md5sig)
963 		return NULL;
964 #if IS_ENABLED(CONFIG_IPV6)
965 	if (family == AF_INET6)
966 		size = sizeof(struct in6_addr);
967 #endif
968 	hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
969 		if (key->family != family)
970 			continue;
971 		if (!memcmp(&key->addr, addr, size))
972 			return key;
973 	}
974 	return NULL;
975 }
976 EXPORT_SYMBOL(tcp_md5_do_lookup);
977 
978 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
979 					 struct sock *addr_sk)
980 {
981 	union tcp_md5_addr *addr;
982 
983 	addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
984 	return tcp_md5_do_lookup(sk, addr, AF_INET);
985 }
986 EXPORT_SYMBOL(tcp_v4_md5_lookup);
987 
988 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
989 						      struct request_sock *req)
990 {
991 	union tcp_md5_addr *addr;
992 
993 	addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
994 	return tcp_md5_do_lookup(sk, addr, AF_INET);
995 }
996 
997 /* This can be called on a newly created socket, from other files */
998 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
999 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1000 {
1001 	/* Add Key to the list */
1002 	struct tcp_md5sig_key *key;
1003 	struct tcp_sock *tp = tcp_sk(sk);
1004 	struct tcp_md5sig_info *md5sig;
1005 
1006 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1007 	if (key) {
1008 		/* Pre-existing entry - just update that one. */
1009 		memcpy(key->key, newkey, newkeylen);
1010 		key->keylen = newkeylen;
1011 		return 0;
1012 	}
1013 
1014 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1015 					   sock_owned_by_user(sk));
1016 	if (!md5sig) {
1017 		md5sig = kmalloc(sizeof(*md5sig), gfp);
1018 		if (!md5sig)
1019 			return -ENOMEM;
1020 
1021 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1022 		INIT_HLIST_HEAD(&md5sig->head);
1023 		rcu_assign_pointer(tp->md5sig_info, md5sig);
1024 	}
1025 
1026 	key = sock_kmalloc(sk, sizeof(*key), gfp);
1027 	if (!key)
1028 		return -ENOMEM;
1029 	if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1030 		sock_kfree_s(sk, key, sizeof(*key));
1031 		return -ENOMEM;
1032 	}
1033 
1034 	memcpy(key->key, newkey, newkeylen);
1035 	key->keylen = newkeylen;
1036 	key->family = family;
1037 	memcpy(&key->addr, addr,
1038 	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1039 				      sizeof(struct in_addr));
1040 	hlist_add_head_rcu(&key->node, &md5sig->head);
1041 	return 0;
1042 }
1043 EXPORT_SYMBOL(tcp_md5_do_add);
1044 
1045 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1046 {
1047 	struct tcp_sock *tp = tcp_sk(sk);
1048 	struct tcp_md5sig_key *key;
1049 	struct tcp_md5sig_info *md5sig;
1050 
1051 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1052 	if (!key)
1053 		return -ENOENT;
1054 	hlist_del_rcu(&key->node);
1055 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1056 	kfree_rcu(key, rcu);
1057 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1058 					   sock_owned_by_user(sk));
1059 	if (hlist_empty(&md5sig->head))
1060 		tcp_free_md5sig_pool();
1061 	return 0;
1062 }
1063 EXPORT_SYMBOL(tcp_md5_do_del);
1064 
1065 static void tcp_clear_md5_list(struct sock *sk)
1066 {
1067 	struct tcp_sock *tp = tcp_sk(sk);
1068 	struct tcp_md5sig_key *key;
1069 	struct hlist_node *pos, *n;
1070 	struct tcp_md5sig_info *md5sig;
1071 
1072 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1073 
1074 	if (!hlist_empty(&md5sig->head))
1075 		tcp_free_md5sig_pool();
1076 	hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1077 		hlist_del_rcu(&key->node);
1078 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1079 		kfree_rcu(key, rcu);
1080 	}
1081 }
1082 
1083 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1084 				 int optlen)
1085 {
1086 	struct tcp_md5sig cmd;
1087 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1088 
1089 	if (optlen < sizeof(cmd))
1090 		return -EINVAL;
1091 
1092 	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1093 		return -EFAULT;
1094 
1095 	if (sin->sin_family != AF_INET)
1096 		return -EINVAL;
1097 
1098 	if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1099 		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1100 				      AF_INET);
1101 
1102 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1103 		return -EINVAL;
1104 
1105 	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1106 			      AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1107 			      GFP_KERNEL);
1108 }
1109 
1110 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1111 					__be32 daddr, __be32 saddr, int nbytes)
1112 {
1113 	struct tcp4_pseudohdr *bp;
1114 	struct scatterlist sg;
1115 
1116 	bp = &hp->md5_blk.ip4;
1117 
1118 	/*
1119 	 * 1. the TCP pseudo-header (in the order: source IP address,
1120 	 * destination IP address, zero-padded protocol number, and
1121 	 * segment length)
1122 	 */
1123 	bp->saddr = saddr;
1124 	bp->daddr = daddr;
1125 	bp->pad = 0;
1126 	bp->protocol = IPPROTO_TCP;
1127 	bp->len = cpu_to_be16(nbytes);
1128 
1129 	sg_init_one(&sg, bp, sizeof(*bp));
1130 	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1131 }
1132 
1133 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1134 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1135 {
1136 	struct tcp_md5sig_pool *hp;
1137 	struct hash_desc *desc;
1138 
1139 	hp = tcp_get_md5sig_pool();
1140 	if (!hp)
1141 		goto clear_hash_noput;
1142 	desc = &hp->md5_desc;
1143 
1144 	if (crypto_hash_init(desc))
1145 		goto clear_hash;
1146 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1147 		goto clear_hash;
1148 	if (tcp_md5_hash_header(hp, th))
1149 		goto clear_hash;
1150 	if (tcp_md5_hash_key(hp, key))
1151 		goto clear_hash;
1152 	if (crypto_hash_final(desc, md5_hash))
1153 		goto clear_hash;
1154 
1155 	tcp_put_md5sig_pool();
1156 	return 0;
1157 
1158 clear_hash:
1159 	tcp_put_md5sig_pool();
1160 clear_hash_noput:
1161 	memset(md5_hash, 0, 16);
1162 	return 1;
1163 }
1164 
1165 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1166 			const struct sock *sk, const struct request_sock *req,
1167 			const struct sk_buff *skb)
1168 {
1169 	struct tcp_md5sig_pool *hp;
1170 	struct hash_desc *desc;
1171 	const struct tcphdr *th = tcp_hdr(skb);
1172 	__be32 saddr, daddr;
1173 
1174 	if (sk) {
1175 		saddr = inet_sk(sk)->inet_saddr;
1176 		daddr = inet_sk(sk)->inet_daddr;
1177 	} else if (req) {
1178 		saddr = inet_rsk(req)->loc_addr;
1179 		daddr = inet_rsk(req)->rmt_addr;
1180 	} else {
1181 		const struct iphdr *iph = ip_hdr(skb);
1182 		saddr = iph->saddr;
1183 		daddr = iph->daddr;
1184 	}
1185 
1186 	hp = tcp_get_md5sig_pool();
1187 	if (!hp)
1188 		goto clear_hash_noput;
1189 	desc = &hp->md5_desc;
1190 
1191 	if (crypto_hash_init(desc))
1192 		goto clear_hash;
1193 
1194 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1195 		goto clear_hash;
1196 	if (tcp_md5_hash_header(hp, th))
1197 		goto clear_hash;
1198 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1199 		goto clear_hash;
1200 	if (tcp_md5_hash_key(hp, key))
1201 		goto clear_hash;
1202 	if (crypto_hash_final(desc, md5_hash))
1203 		goto clear_hash;
1204 
1205 	tcp_put_md5sig_pool();
1206 	return 0;
1207 
1208 clear_hash:
1209 	tcp_put_md5sig_pool();
1210 clear_hash_noput:
1211 	memset(md5_hash, 0, 16);
1212 	return 1;
1213 }
1214 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1215 
1216 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1217 {
1218 	/*
1219 	 * This gets called for each TCP segment that arrives
1220 	 * so we want to be efficient.
1221 	 * We have 3 drop cases:
1222 	 * o No MD5 hash and one expected.
1223 	 * o MD5 hash and we're not expecting one.
1224 	 * o MD5 hash and its wrong.
1225 	 */
1226 	const __u8 *hash_location = NULL;
1227 	struct tcp_md5sig_key *hash_expected;
1228 	const struct iphdr *iph = ip_hdr(skb);
1229 	const struct tcphdr *th = tcp_hdr(skb);
1230 	int genhash;
1231 	unsigned char newhash[16];
1232 
1233 	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1234 					  AF_INET);
1235 	hash_location = tcp_parse_md5sig_option(th);
1236 
1237 	/* We've parsed the options - do we have a hash? */
1238 	if (!hash_expected && !hash_location)
1239 		return false;
1240 
1241 	if (hash_expected && !hash_location) {
1242 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1243 		return true;
1244 	}
1245 
1246 	if (!hash_expected && hash_location) {
1247 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1248 		return true;
1249 	}
1250 
1251 	/* Okay, so this is hash_expected and hash_location -
1252 	 * so we need to calculate the checksum.
1253 	 */
1254 	genhash = tcp_v4_md5_hash_skb(newhash,
1255 				      hash_expected,
1256 				      NULL, NULL, skb);
1257 
1258 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1259 		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1260 				     &iph->saddr, ntohs(th->source),
1261 				     &iph->daddr, ntohs(th->dest),
1262 				     genhash ? " tcp_v4_calc_md5_hash failed"
1263 				     : "");
1264 		return true;
1265 	}
1266 	return false;
1267 }
1268 
1269 #endif
1270 
1271 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1272 	.family		=	PF_INET,
1273 	.obj_size	=	sizeof(struct tcp_request_sock),
1274 	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1275 	.send_ack	=	tcp_v4_reqsk_send_ack,
1276 	.destructor	=	tcp_v4_reqsk_destructor,
1277 	.send_reset	=	tcp_v4_send_reset,
1278 	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1279 };
1280 
1281 #ifdef CONFIG_TCP_MD5SIG
1282 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1283 	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1284 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1285 };
1286 #endif
1287 
1288 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1289 			       struct request_sock *req,
1290 			       struct tcp_fastopen_cookie *foc,
1291 			       struct tcp_fastopen_cookie *valid_foc)
1292 {
1293 	bool skip_cookie = false;
1294 	struct fastopen_queue *fastopenq;
1295 
1296 	if (likely(!fastopen_cookie_present(foc))) {
1297 		/* See include/net/tcp.h for the meaning of these knobs */
1298 		if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1299 		    ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1300 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1301 			skip_cookie = true; /* no cookie to validate */
1302 		else
1303 			return false;
1304 	}
1305 	fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1306 	/* A FO option is present; bump the counter. */
1307 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1308 
1309 	/* Make sure the listener has enabled fastopen, and we don't
1310 	 * exceed the max # of pending TFO requests allowed before trying
1311 	 * to validating the cookie in order to avoid burning CPU cycles
1312 	 * unnecessarily.
1313 	 *
1314 	 * XXX (TFO) - The implication of checking the max_qlen before
1315 	 * processing a cookie request is that clients can't differentiate
1316 	 * between qlen overflow causing Fast Open to be disabled
1317 	 * temporarily vs a server not supporting Fast Open at all.
1318 	 */
1319 	if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1320 	    fastopenq == NULL || fastopenq->max_qlen == 0)
1321 		return false;
1322 
1323 	if (fastopenq->qlen >= fastopenq->max_qlen) {
1324 		struct request_sock *req1;
1325 		spin_lock(&fastopenq->lock);
1326 		req1 = fastopenq->rskq_rst_head;
1327 		if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1328 			spin_unlock(&fastopenq->lock);
1329 			NET_INC_STATS_BH(sock_net(sk),
1330 			    LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1331 			/* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1332 			foc->len = -1;
1333 			return false;
1334 		}
1335 		fastopenq->rskq_rst_head = req1->dl_next;
1336 		fastopenq->qlen--;
1337 		spin_unlock(&fastopenq->lock);
1338 		reqsk_free(req1);
1339 	}
1340 	if (skip_cookie) {
1341 		tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1342 		return true;
1343 	}
1344 	if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1345 		if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1346 			tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1347 			if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1348 			    memcmp(&foc->val[0], &valid_foc->val[0],
1349 			    TCP_FASTOPEN_COOKIE_SIZE) != 0)
1350 				return false;
1351 			valid_foc->len = -1;
1352 		}
1353 		/* Acknowledge the data received from the peer. */
1354 		tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1355 		return true;
1356 	} else if (foc->len == 0) { /* Client requesting a cookie */
1357 		tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1358 		NET_INC_STATS_BH(sock_net(sk),
1359 		    LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1360 	} else {
1361 		/* Client sent a cookie with wrong size. Treat it
1362 		 * the same as invalid and return a valid one.
1363 		 */
1364 		tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1365 	}
1366 	return false;
1367 }
1368 
1369 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1370 				    struct sk_buff *skb,
1371 				    struct sk_buff *skb_synack,
1372 				    struct request_sock *req,
1373 				    struct request_values *rvp)
1374 {
1375 	struct tcp_sock *tp = tcp_sk(sk);
1376 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1377 	const struct inet_request_sock *ireq = inet_rsk(req);
1378 	struct sock *child;
1379 	int err;
1380 
1381 	req->num_retrans = 0;
1382 	req->num_timeout = 0;
1383 	req->sk = NULL;
1384 
1385 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1386 	if (child == NULL) {
1387 		NET_INC_STATS_BH(sock_net(sk),
1388 				 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1389 		kfree_skb(skb_synack);
1390 		return -1;
1391 	}
1392 	err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1393 				    ireq->rmt_addr, ireq->opt);
1394 	err = net_xmit_eval(err);
1395 	if (!err)
1396 		tcp_rsk(req)->snt_synack = tcp_time_stamp;
1397 	/* XXX (TFO) - is it ok to ignore error and continue? */
1398 
1399 	spin_lock(&queue->fastopenq->lock);
1400 	queue->fastopenq->qlen++;
1401 	spin_unlock(&queue->fastopenq->lock);
1402 
1403 	/* Initialize the child socket. Have to fix some values to take
1404 	 * into account the child is a Fast Open socket and is created
1405 	 * only out of the bits carried in the SYN packet.
1406 	 */
1407 	tp = tcp_sk(child);
1408 
1409 	tp->fastopen_rsk = req;
1410 	/* Do a hold on the listner sk so that if the listener is being
1411 	 * closed, the child that has been accepted can live on and still
1412 	 * access listen_lock.
1413 	 */
1414 	sock_hold(sk);
1415 	tcp_rsk(req)->listener = sk;
1416 
1417 	/* RFC1323: The window in SYN & SYN/ACK segments is never
1418 	 * scaled. So correct it appropriately.
1419 	 */
1420 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1421 
1422 	/* Activate the retrans timer so that SYNACK can be retransmitted.
1423 	 * The request socket is not added to the SYN table of the parent
1424 	 * because it's been added to the accept queue directly.
1425 	 */
1426 	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1427 	    TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1428 
1429 	/* Add the child socket directly into the accept queue */
1430 	inet_csk_reqsk_queue_add(sk, req, child);
1431 
1432 	/* Now finish processing the fastopen child socket. */
1433 	inet_csk(child)->icsk_af_ops->rebuild_header(child);
1434 	tcp_init_congestion_control(child);
1435 	tcp_mtup_init(child);
1436 	tcp_init_buffer_space(child);
1437 	tcp_init_metrics(child);
1438 
1439 	/* Queue the data carried in the SYN packet. We need to first
1440 	 * bump skb's refcnt because the caller will attempt to free it.
1441 	 *
1442 	 * XXX (TFO) - we honor a zero-payload TFO request for now.
1443 	 * (Any reason not to?)
1444 	 */
1445 	if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1446 		/* Don't queue the skb if there is no payload in SYN.
1447 		 * XXX (TFO) - How about SYN+FIN?
1448 		 */
1449 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1450 	} else {
1451 		skb = skb_get(skb);
1452 		skb_dst_drop(skb);
1453 		__skb_pull(skb, tcp_hdr(skb)->doff * 4);
1454 		skb_set_owner_r(skb, child);
1455 		__skb_queue_tail(&child->sk_receive_queue, skb);
1456 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1457 		tp->syn_data_acked = 1;
1458 	}
1459 	sk->sk_data_ready(sk, 0);
1460 	bh_unlock_sock(child);
1461 	sock_put(child);
1462 	WARN_ON(req->sk == NULL);
1463 	return 0;
1464 }
1465 
1466 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1467 {
1468 	struct tcp_extend_values tmp_ext;
1469 	struct tcp_options_received tmp_opt;
1470 	const u8 *hash_location;
1471 	struct request_sock *req;
1472 	struct inet_request_sock *ireq;
1473 	struct tcp_sock *tp = tcp_sk(sk);
1474 	struct dst_entry *dst = NULL;
1475 	__be32 saddr = ip_hdr(skb)->saddr;
1476 	__be32 daddr = ip_hdr(skb)->daddr;
1477 	__u32 isn = TCP_SKB_CB(skb)->when;
1478 	bool want_cookie = false;
1479 	struct flowi4 fl4;
1480 	struct tcp_fastopen_cookie foc = { .len = -1 };
1481 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1482 	struct sk_buff *skb_synack;
1483 	int do_fastopen;
1484 
1485 	/* Never answer to SYNs send to broadcast or multicast */
1486 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1487 		goto drop;
1488 
1489 	/* TW buckets are converted to open requests without
1490 	 * limitations, they conserve resources and peer is
1491 	 * evidently real one.
1492 	 */
1493 	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1494 		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1495 		if (!want_cookie)
1496 			goto drop;
1497 	}
1498 
1499 	/* Accept backlog is full. If we have already queued enough
1500 	 * of warm entries in syn queue, drop request. It is better than
1501 	 * clogging syn queue with openreqs with exponentially increasing
1502 	 * timeout.
1503 	 */
1504 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1505 		goto drop;
1506 
1507 	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1508 	if (!req)
1509 		goto drop;
1510 
1511 #ifdef CONFIG_TCP_MD5SIG
1512 	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1513 #endif
1514 
1515 	tcp_clear_options(&tmp_opt);
1516 	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1517 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1518 	tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1519 	    want_cookie ? NULL : &foc);
1520 
1521 	if (tmp_opt.cookie_plus > 0 &&
1522 	    tmp_opt.saw_tstamp &&
1523 	    !tp->rx_opt.cookie_out_never &&
1524 	    (sysctl_tcp_cookie_size > 0 ||
1525 	     (tp->cookie_values != NULL &&
1526 	      tp->cookie_values->cookie_desired > 0))) {
1527 		u8 *c;
1528 		u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1529 		int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1530 
1531 		if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1532 			goto drop_and_release;
1533 
1534 		/* Secret recipe starts with IP addresses */
1535 		*mess++ ^= (__force u32)daddr;
1536 		*mess++ ^= (__force u32)saddr;
1537 
1538 		/* plus variable length Initiator Cookie */
1539 		c = (u8 *)mess;
1540 		while (l-- > 0)
1541 			*c++ ^= *hash_location++;
1542 
1543 		want_cookie = false;	/* not our kind of cookie */
1544 		tmp_ext.cookie_out_never = 0; /* false */
1545 		tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1546 	} else if (!tp->rx_opt.cookie_in_always) {
1547 		/* redundant indications, but ensure initialization. */
1548 		tmp_ext.cookie_out_never = 1; /* true */
1549 		tmp_ext.cookie_plus = 0;
1550 	} else {
1551 		goto drop_and_release;
1552 	}
1553 	tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1554 
1555 	if (want_cookie && !tmp_opt.saw_tstamp)
1556 		tcp_clear_options(&tmp_opt);
1557 
1558 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1559 	tcp_openreq_init(req, &tmp_opt, skb);
1560 
1561 	ireq = inet_rsk(req);
1562 	ireq->loc_addr = daddr;
1563 	ireq->rmt_addr = saddr;
1564 	ireq->no_srccheck = inet_sk(sk)->transparent;
1565 	ireq->opt = tcp_v4_save_options(skb);
1566 
1567 	if (security_inet_conn_request(sk, skb, req))
1568 		goto drop_and_free;
1569 
1570 	if (!want_cookie || tmp_opt.tstamp_ok)
1571 		TCP_ECN_create_request(req, skb);
1572 
1573 	if (want_cookie) {
1574 		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1575 		req->cookie_ts = tmp_opt.tstamp_ok;
1576 	} else if (!isn) {
1577 		/* VJ's idea. We save last timestamp seen
1578 		 * from the destination in peer table, when entering
1579 		 * state TIME-WAIT, and check against it before
1580 		 * accepting new connection request.
1581 		 *
1582 		 * If "isn" is not zero, this request hit alive
1583 		 * timewait bucket, so that all the necessary checks
1584 		 * are made in the function processing timewait state.
1585 		 */
1586 		if (tmp_opt.saw_tstamp &&
1587 		    tcp_death_row.sysctl_tw_recycle &&
1588 		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1589 		    fl4.daddr == saddr) {
1590 			if (!tcp_peer_is_proven(req, dst, true)) {
1591 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1592 				goto drop_and_release;
1593 			}
1594 		}
1595 		/* Kill the following clause, if you dislike this way. */
1596 		else if (!sysctl_tcp_syncookies &&
1597 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1598 			  (sysctl_max_syn_backlog >> 2)) &&
1599 			 !tcp_peer_is_proven(req, dst, false)) {
1600 			/* Without syncookies last quarter of
1601 			 * backlog is filled with destinations,
1602 			 * proven to be alive.
1603 			 * It means that we continue to communicate
1604 			 * to destinations, already remembered
1605 			 * to the moment of synflood.
1606 			 */
1607 			LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1608 				       &saddr, ntohs(tcp_hdr(skb)->source));
1609 			goto drop_and_release;
1610 		}
1611 
1612 		isn = tcp_v4_init_sequence(skb);
1613 	}
1614 	tcp_rsk(req)->snt_isn = isn;
1615 
1616 	if (dst == NULL) {
1617 		dst = inet_csk_route_req(sk, &fl4, req);
1618 		if (dst == NULL)
1619 			goto drop_and_free;
1620 	}
1621 	do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1622 
1623 	/* We don't call tcp_v4_send_synack() directly because we need
1624 	 * to make sure a child socket can be created successfully before
1625 	 * sending back synack!
1626 	 *
1627 	 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1628 	 * (or better yet, call tcp_send_synack() in the child context
1629 	 * directly, but will have to fix bunch of other code first)
1630 	 * after syn_recv_sock() except one will need to first fix the
1631 	 * latter to remove its dependency on the current implementation
1632 	 * of tcp_v4_send_synack()->tcp_select_initial_window().
1633 	 */
1634 	skb_synack = tcp_make_synack(sk, dst, req,
1635 	    (struct request_values *)&tmp_ext,
1636 	    fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1637 
1638 	if (skb_synack) {
1639 		__tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1640 		skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1641 	} else
1642 		goto drop_and_free;
1643 
1644 	if (likely(!do_fastopen)) {
1645 		int err;
1646 		err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1647 		     ireq->rmt_addr, ireq->opt);
1648 		err = net_xmit_eval(err);
1649 		if (err || want_cookie)
1650 			goto drop_and_free;
1651 
1652 		tcp_rsk(req)->snt_synack = tcp_time_stamp;
1653 		tcp_rsk(req)->listener = NULL;
1654 		/* Add the request_sock to the SYN table */
1655 		inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1656 		if (fastopen_cookie_present(&foc) && foc.len != 0)
1657 			NET_INC_STATS_BH(sock_net(sk),
1658 			    LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1659 	} else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1660 	    (struct request_values *)&tmp_ext))
1661 		goto drop_and_free;
1662 
1663 	return 0;
1664 
1665 drop_and_release:
1666 	dst_release(dst);
1667 drop_and_free:
1668 	reqsk_free(req);
1669 drop:
1670 	return 0;
1671 }
1672 EXPORT_SYMBOL(tcp_v4_conn_request);
1673 
1674 
1675 /*
1676  * The three way handshake has completed - we got a valid synack -
1677  * now create the new socket.
1678  */
1679 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1680 				  struct request_sock *req,
1681 				  struct dst_entry *dst)
1682 {
1683 	struct inet_request_sock *ireq;
1684 	struct inet_sock *newinet;
1685 	struct tcp_sock *newtp;
1686 	struct sock *newsk;
1687 #ifdef CONFIG_TCP_MD5SIG
1688 	struct tcp_md5sig_key *key;
1689 #endif
1690 	struct ip_options_rcu *inet_opt;
1691 
1692 	if (sk_acceptq_is_full(sk))
1693 		goto exit_overflow;
1694 
1695 	newsk = tcp_create_openreq_child(sk, req, skb);
1696 	if (!newsk)
1697 		goto exit_nonewsk;
1698 
1699 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1700 	inet_sk_rx_dst_set(newsk, skb);
1701 
1702 	newtp		      = tcp_sk(newsk);
1703 	newinet		      = inet_sk(newsk);
1704 	ireq		      = inet_rsk(req);
1705 	newinet->inet_daddr   = ireq->rmt_addr;
1706 	newinet->inet_rcv_saddr = ireq->loc_addr;
1707 	newinet->inet_saddr	      = ireq->loc_addr;
1708 	inet_opt	      = ireq->opt;
1709 	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1710 	ireq->opt	      = NULL;
1711 	newinet->mc_index     = inet_iif(skb);
1712 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1713 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1714 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1715 	if (inet_opt)
1716 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1717 	newinet->inet_id = newtp->write_seq ^ jiffies;
1718 
1719 	if (!dst) {
1720 		dst = inet_csk_route_child_sock(sk, newsk, req);
1721 		if (!dst)
1722 			goto put_and_exit;
1723 	} else {
1724 		/* syncookie case : see end of cookie_v4_check() */
1725 	}
1726 	sk_setup_caps(newsk, dst);
1727 
1728 	tcp_mtup_init(newsk);
1729 	tcp_sync_mss(newsk, dst_mtu(dst));
1730 	newtp->advmss = dst_metric_advmss(dst);
1731 	if (tcp_sk(sk)->rx_opt.user_mss &&
1732 	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1733 		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1734 
1735 	tcp_initialize_rcv_mss(newsk);
1736 	tcp_synack_rtt_meas(newsk, req);
1737 	newtp->total_retrans = req->num_retrans;
1738 
1739 #ifdef CONFIG_TCP_MD5SIG
1740 	/* Copy over the MD5 key from the original socket */
1741 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1742 				AF_INET);
1743 	if (key != NULL) {
1744 		/*
1745 		 * We're using one, so create a matching key
1746 		 * on the newsk structure. If we fail to get
1747 		 * memory, then we end up not copying the key
1748 		 * across. Shucks.
1749 		 */
1750 		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1751 			       AF_INET, key->key, key->keylen, GFP_ATOMIC);
1752 		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1753 	}
1754 #endif
1755 
1756 	if (__inet_inherit_port(sk, newsk) < 0)
1757 		goto put_and_exit;
1758 	__inet_hash_nolisten(newsk, NULL);
1759 
1760 	return newsk;
1761 
1762 exit_overflow:
1763 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1764 exit_nonewsk:
1765 	dst_release(dst);
1766 exit:
1767 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1768 	return NULL;
1769 put_and_exit:
1770 	inet_csk_prepare_forced_close(newsk);
1771 	tcp_done(newsk);
1772 	goto exit;
1773 }
1774 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1775 
1776 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1777 {
1778 	struct tcphdr *th = tcp_hdr(skb);
1779 	const struct iphdr *iph = ip_hdr(skb);
1780 	struct sock *nsk;
1781 	struct request_sock **prev;
1782 	/* Find possible connection requests. */
1783 	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1784 						       iph->saddr, iph->daddr);
1785 	if (req)
1786 		return tcp_check_req(sk, skb, req, prev, false);
1787 
1788 	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1789 			th->source, iph->daddr, th->dest, inet_iif(skb));
1790 
1791 	if (nsk) {
1792 		if (nsk->sk_state != TCP_TIME_WAIT) {
1793 			bh_lock_sock(nsk);
1794 			return nsk;
1795 		}
1796 		inet_twsk_put(inet_twsk(nsk));
1797 		return NULL;
1798 	}
1799 
1800 #ifdef CONFIG_SYN_COOKIES
1801 	if (!th->syn)
1802 		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1803 #endif
1804 	return sk;
1805 }
1806 
1807 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1808 {
1809 	const struct iphdr *iph = ip_hdr(skb);
1810 
1811 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1812 		if (!tcp_v4_check(skb->len, iph->saddr,
1813 				  iph->daddr, skb->csum)) {
1814 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1815 			return 0;
1816 		}
1817 	}
1818 
1819 	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1820 				       skb->len, IPPROTO_TCP, 0);
1821 
1822 	if (skb->len <= 76) {
1823 		return __skb_checksum_complete(skb);
1824 	}
1825 	return 0;
1826 }
1827 
1828 
1829 /* The socket must have it's spinlock held when we get
1830  * here.
1831  *
1832  * We have a potential double-lock case here, so even when
1833  * doing backlog processing we use the BH locking scheme.
1834  * This is because we cannot sleep with the original spinlock
1835  * held.
1836  */
1837 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1838 {
1839 	struct sock *rsk;
1840 #ifdef CONFIG_TCP_MD5SIG
1841 	/*
1842 	 * We really want to reject the packet as early as possible
1843 	 * if:
1844 	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1845 	 *  o There is an MD5 option and we're not expecting one
1846 	 */
1847 	if (tcp_v4_inbound_md5_hash(sk, skb))
1848 		goto discard;
1849 #endif
1850 
1851 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1852 		struct dst_entry *dst = sk->sk_rx_dst;
1853 
1854 		sock_rps_save_rxhash(sk, skb);
1855 		if (dst) {
1856 			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1857 			    dst->ops->check(dst, 0) == NULL) {
1858 				dst_release(dst);
1859 				sk->sk_rx_dst = NULL;
1860 			}
1861 		}
1862 		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1863 			rsk = sk;
1864 			goto reset;
1865 		}
1866 		return 0;
1867 	}
1868 
1869 	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1870 		goto csum_err;
1871 
1872 	if (sk->sk_state == TCP_LISTEN) {
1873 		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1874 		if (!nsk)
1875 			goto discard;
1876 
1877 		if (nsk != sk) {
1878 			sock_rps_save_rxhash(nsk, skb);
1879 			if (tcp_child_process(sk, nsk, skb)) {
1880 				rsk = nsk;
1881 				goto reset;
1882 			}
1883 			return 0;
1884 		}
1885 	} else
1886 		sock_rps_save_rxhash(sk, skb);
1887 
1888 	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1889 		rsk = sk;
1890 		goto reset;
1891 	}
1892 	return 0;
1893 
1894 reset:
1895 	tcp_v4_send_reset(rsk, skb);
1896 discard:
1897 	kfree_skb(skb);
1898 	/* Be careful here. If this function gets more complicated and
1899 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1900 	 * might be destroyed here. This current version compiles correctly,
1901 	 * but you have been warned.
1902 	 */
1903 	return 0;
1904 
1905 csum_err:
1906 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1907 	goto discard;
1908 }
1909 EXPORT_SYMBOL(tcp_v4_do_rcv);
1910 
1911 void tcp_v4_early_demux(struct sk_buff *skb)
1912 {
1913 	const struct iphdr *iph;
1914 	const struct tcphdr *th;
1915 	struct sock *sk;
1916 
1917 	if (skb->pkt_type != PACKET_HOST)
1918 		return;
1919 
1920 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1921 		return;
1922 
1923 	iph = ip_hdr(skb);
1924 	th = tcp_hdr(skb);
1925 
1926 	if (th->doff < sizeof(struct tcphdr) / 4)
1927 		return;
1928 
1929 	sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1930 				       iph->saddr, th->source,
1931 				       iph->daddr, ntohs(th->dest),
1932 				       skb->skb_iif);
1933 	if (sk) {
1934 		skb->sk = sk;
1935 		skb->destructor = sock_edemux;
1936 		if (sk->sk_state != TCP_TIME_WAIT) {
1937 			struct dst_entry *dst = sk->sk_rx_dst;
1938 
1939 			if (dst)
1940 				dst = dst_check(dst, 0);
1941 			if (dst &&
1942 			    inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1943 				skb_dst_set_noref(skb, dst);
1944 		}
1945 	}
1946 }
1947 
1948 /*
1949  *	From tcp_input.c
1950  */
1951 
1952 int tcp_v4_rcv(struct sk_buff *skb)
1953 {
1954 	const struct iphdr *iph;
1955 	const struct tcphdr *th;
1956 	struct sock *sk;
1957 	int ret;
1958 	struct net *net = dev_net(skb->dev);
1959 
1960 	if (skb->pkt_type != PACKET_HOST)
1961 		goto discard_it;
1962 
1963 	/* Count it even if it's bad */
1964 	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1965 
1966 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1967 		goto discard_it;
1968 
1969 	th = tcp_hdr(skb);
1970 
1971 	if (th->doff < sizeof(struct tcphdr) / 4)
1972 		goto bad_packet;
1973 	if (!pskb_may_pull(skb, th->doff * 4))
1974 		goto discard_it;
1975 
1976 	/* An explanation is required here, I think.
1977 	 * Packet length and doff are validated by header prediction,
1978 	 * provided case of th->doff==0 is eliminated.
1979 	 * So, we defer the checks. */
1980 	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1981 		goto bad_packet;
1982 
1983 	th = tcp_hdr(skb);
1984 	iph = ip_hdr(skb);
1985 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1986 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1987 				    skb->len - th->doff * 4);
1988 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1989 	TCP_SKB_CB(skb)->when	 = 0;
1990 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1991 	TCP_SKB_CB(skb)->sacked	 = 0;
1992 
1993 	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1994 	if (!sk)
1995 		goto no_tcp_socket;
1996 
1997 process:
1998 	if (sk->sk_state == TCP_TIME_WAIT)
1999 		goto do_time_wait;
2000 
2001 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2002 		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2003 		goto discard_and_relse;
2004 	}
2005 
2006 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2007 		goto discard_and_relse;
2008 	nf_reset(skb);
2009 
2010 	if (sk_filter(sk, skb))
2011 		goto discard_and_relse;
2012 
2013 	skb->dev = NULL;
2014 
2015 	bh_lock_sock_nested(sk);
2016 	ret = 0;
2017 	if (!sock_owned_by_user(sk)) {
2018 #ifdef CONFIG_NET_DMA
2019 		struct tcp_sock *tp = tcp_sk(sk);
2020 		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2021 			tp->ucopy.dma_chan = net_dma_find_channel();
2022 		if (tp->ucopy.dma_chan)
2023 			ret = tcp_v4_do_rcv(sk, skb);
2024 		else
2025 #endif
2026 		{
2027 			if (!tcp_prequeue(sk, skb))
2028 				ret = tcp_v4_do_rcv(sk, skb);
2029 		}
2030 	} else if (unlikely(sk_add_backlog(sk, skb,
2031 					   sk->sk_rcvbuf + sk->sk_sndbuf))) {
2032 		bh_unlock_sock(sk);
2033 		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2034 		goto discard_and_relse;
2035 	}
2036 	bh_unlock_sock(sk);
2037 
2038 	sock_put(sk);
2039 
2040 	return ret;
2041 
2042 no_tcp_socket:
2043 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2044 		goto discard_it;
2045 
2046 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2047 bad_packet:
2048 		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2049 	} else {
2050 		tcp_v4_send_reset(NULL, skb);
2051 	}
2052 
2053 discard_it:
2054 	/* Discard frame. */
2055 	kfree_skb(skb);
2056 	return 0;
2057 
2058 discard_and_relse:
2059 	sock_put(sk);
2060 	goto discard_it;
2061 
2062 do_time_wait:
2063 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2064 		inet_twsk_put(inet_twsk(sk));
2065 		goto discard_it;
2066 	}
2067 
2068 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2069 		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2070 		inet_twsk_put(inet_twsk(sk));
2071 		goto discard_it;
2072 	}
2073 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2074 	case TCP_TW_SYN: {
2075 		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2076 							&tcp_hashinfo,
2077 							iph->daddr, th->dest,
2078 							inet_iif(skb));
2079 		if (sk2) {
2080 			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2081 			inet_twsk_put(inet_twsk(sk));
2082 			sk = sk2;
2083 			goto process;
2084 		}
2085 		/* Fall through to ACK */
2086 	}
2087 	case TCP_TW_ACK:
2088 		tcp_v4_timewait_ack(sk, skb);
2089 		break;
2090 	case TCP_TW_RST:
2091 		goto no_tcp_socket;
2092 	case TCP_TW_SUCCESS:;
2093 	}
2094 	goto discard_it;
2095 }
2096 
2097 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2098 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2099 	.twsk_unique	= tcp_twsk_unique,
2100 	.twsk_destructor= tcp_twsk_destructor,
2101 };
2102 
2103 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2104 {
2105 	struct dst_entry *dst = skb_dst(skb);
2106 
2107 	dst_hold(dst);
2108 	sk->sk_rx_dst = dst;
2109 	inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2110 }
2111 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2112 
2113 const struct inet_connection_sock_af_ops ipv4_specific = {
2114 	.queue_xmit	   = ip_queue_xmit,
2115 	.send_check	   = tcp_v4_send_check,
2116 	.rebuild_header	   = inet_sk_rebuild_header,
2117 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2118 	.conn_request	   = tcp_v4_conn_request,
2119 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2120 	.net_header_len	   = sizeof(struct iphdr),
2121 	.setsockopt	   = ip_setsockopt,
2122 	.getsockopt	   = ip_getsockopt,
2123 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2124 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2125 	.bind_conflict	   = inet_csk_bind_conflict,
2126 #ifdef CONFIG_COMPAT
2127 	.compat_setsockopt = compat_ip_setsockopt,
2128 	.compat_getsockopt = compat_ip_getsockopt,
2129 #endif
2130 };
2131 EXPORT_SYMBOL(ipv4_specific);
2132 
2133 #ifdef CONFIG_TCP_MD5SIG
2134 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2135 	.md5_lookup		= tcp_v4_md5_lookup,
2136 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2137 	.md5_parse		= tcp_v4_parse_md5_keys,
2138 };
2139 #endif
2140 
2141 /* NOTE: A lot of things set to zero explicitly by call to
2142  *       sk_alloc() so need not be done here.
2143  */
2144 static int tcp_v4_init_sock(struct sock *sk)
2145 {
2146 	struct inet_connection_sock *icsk = inet_csk(sk);
2147 
2148 	tcp_init_sock(sk);
2149 
2150 	icsk->icsk_af_ops = &ipv4_specific;
2151 
2152 #ifdef CONFIG_TCP_MD5SIG
2153 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2154 #endif
2155 
2156 	return 0;
2157 }
2158 
2159 void tcp_v4_destroy_sock(struct sock *sk)
2160 {
2161 	struct tcp_sock *tp = tcp_sk(sk);
2162 
2163 	tcp_clear_xmit_timers(sk);
2164 
2165 	tcp_cleanup_congestion_control(sk);
2166 
2167 	/* Cleanup up the write buffer. */
2168 	tcp_write_queue_purge(sk);
2169 
2170 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2171 	__skb_queue_purge(&tp->out_of_order_queue);
2172 
2173 #ifdef CONFIG_TCP_MD5SIG
2174 	/* Clean up the MD5 key list, if any */
2175 	if (tp->md5sig_info) {
2176 		tcp_clear_md5_list(sk);
2177 		kfree_rcu(tp->md5sig_info, rcu);
2178 		tp->md5sig_info = NULL;
2179 	}
2180 #endif
2181 
2182 #ifdef CONFIG_NET_DMA
2183 	/* Cleans up our sk_async_wait_queue */
2184 	__skb_queue_purge(&sk->sk_async_wait_queue);
2185 #endif
2186 
2187 	/* Clean prequeue, it must be empty really */
2188 	__skb_queue_purge(&tp->ucopy.prequeue);
2189 
2190 	/* Clean up a referenced TCP bind bucket. */
2191 	if (inet_csk(sk)->icsk_bind_hash)
2192 		inet_put_port(sk);
2193 
2194 	/* TCP Cookie Transactions */
2195 	if (tp->cookie_values != NULL) {
2196 		kref_put(&tp->cookie_values->kref,
2197 			 tcp_cookie_values_release);
2198 		tp->cookie_values = NULL;
2199 	}
2200 	BUG_ON(tp->fastopen_rsk != NULL);
2201 
2202 	/* If socket is aborted during connect operation */
2203 	tcp_free_fastopen_req(tp);
2204 
2205 	sk_sockets_allocated_dec(sk);
2206 	sock_release_memcg(sk);
2207 }
2208 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2209 
2210 #ifdef CONFIG_PROC_FS
2211 /* Proc filesystem TCP sock list dumping. */
2212 
2213 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2214 {
2215 	return hlist_nulls_empty(head) ? NULL :
2216 		list_entry(head->first, struct inet_timewait_sock, tw_node);
2217 }
2218 
2219 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2220 {
2221 	return !is_a_nulls(tw->tw_node.next) ?
2222 		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2223 }
2224 
2225 /*
2226  * Get next listener socket follow cur.  If cur is NULL, get first socket
2227  * starting from bucket given in st->bucket; when st->bucket is zero the
2228  * very first socket in the hash table is returned.
2229  */
2230 static void *listening_get_next(struct seq_file *seq, void *cur)
2231 {
2232 	struct inet_connection_sock *icsk;
2233 	struct hlist_nulls_node *node;
2234 	struct sock *sk = cur;
2235 	struct inet_listen_hashbucket *ilb;
2236 	struct tcp_iter_state *st = seq->private;
2237 	struct net *net = seq_file_net(seq);
2238 
2239 	if (!sk) {
2240 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2241 		spin_lock_bh(&ilb->lock);
2242 		sk = sk_nulls_head(&ilb->head);
2243 		st->offset = 0;
2244 		goto get_sk;
2245 	}
2246 	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2247 	++st->num;
2248 	++st->offset;
2249 
2250 	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2251 		struct request_sock *req = cur;
2252 
2253 		icsk = inet_csk(st->syn_wait_sk);
2254 		req = req->dl_next;
2255 		while (1) {
2256 			while (req) {
2257 				if (req->rsk_ops->family == st->family) {
2258 					cur = req;
2259 					goto out;
2260 				}
2261 				req = req->dl_next;
2262 			}
2263 			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2264 				break;
2265 get_req:
2266 			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2267 		}
2268 		sk	  = sk_nulls_next(st->syn_wait_sk);
2269 		st->state = TCP_SEQ_STATE_LISTENING;
2270 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2271 	} else {
2272 		icsk = inet_csk(sk);
2273 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2274 		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2275 			goto start_req;
2276 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2277 		sk = sk_nulls_next(sk);
2278 	}
2279 get_sk:
2280 	sk_nulls_for_each_from(sk, node) {
2281 		if (!net_eq(sock_net(sk), net))
2282 			continue;
2283 		if (sk->sk_family == st->family) {
2284 			cur = sk;
2285 			goto out;
2286 		}
2287 		icsk = inet_csk(sk);
2288 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2289 		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2290 start_req:
2291 			st->uid		= sock_i_uid(sk);
2292 			st->syn_wait_sk = sk;
2293 			st->state	= TCP_SEQ_STATE_OPENREQ;
2294 			st->sbucket	= 0;
2295 			goto get_req;
2296 		}
2297 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2298 	}
2299 	spin_unlock_bh(&ilb->lock);
2300 	st->offset = 0;
2301 	if (++st->bucket < INET_LHTABLE_SIZE) {
2302 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2303 		spin_lock_bh(&ilb->lock);
2304 		sk = sk_nulls_head(&ilb->head);
2305 		goto get_sk;
2306 	}
2307 	cur = NULL;
2308 out:
2309 	return cur;
2310 }
2311 
2312 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2313 {
2314 	struct tcp_iter_state *st = seq->private;
2315 	void *rc;
2316 
2317 	st->bucket = 0;
2318 	st->offset = 0;
2319 	rc = listening_get_next(seq, NULL);
2320 
2321 	while (rc && *pos) {
2322 		rc = listening_get_next(seq, rc);
2323 		--*pos;
2324 	}
2325 	return rc;
2326 }
2327 
2328 static inline bool empty_bucket(struct tcp_iter_state *st)
2329 {
2330 	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2331 		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2332 }
2333 
2334 /*
2335  * Get first established socket starting from bucket given in st->bucket.
2336  * If st->bucket is zero, the very first socket in the hash is returned.
2337  */
2338 static void *established_get_first(struct seq_file *seq)
2339 {
2340 	struct tcp_iter_state *st = seq->private;
2341 	struct net *net = seq_file_net(seq);
2342 	void *rc = NULL;
2343 
2344 	st->offset = 0;
2345 	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2346 		struct sock *sk;
2347 		struct hlist_nulls_node *node;
2348 		struct inet_timewait_sock *tw;
2349 		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2350 
2351 		/* Lockless fast path for the common case of empty buckets */
2352 		if (empty_bucket(st))
2353 			continue;
2354 
2355 		spin_lock_bh(lock);
2356 		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2357 			if (sk->sk_family != st->family ||
2358 			    !net_eq(sock_net(sk), net)) {
2359 				continue;
2360 			}
2361 			rc = sk;
2362 			goto out;
2363 		}
2364 		st->state = TCP_SEQ_STATE_TIME_WAIT;
2365 		inet_twsk_for_each(tw, node,
2366 				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2367 			if (tw->tw_family != st->family ||
2368 			    !net_eq(twsk_net(tw), net)) {
2369 				continue;
2370 			}
2371 			rc = tw;
2372 			goto out;
2373 		}
2374 		spin_unlock_bh(lock);
2375 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2376 	}
2377 out:
2378 	return rc;
2379 }
2380 
2381 static void *established_get_next(struct seq_file *seq, void *cur)
2382 {
2383 	struct sock *sk = cur;
2384 	struct inet_timewait_sock *tw;
2385 	struct hlist_nulls_node *node;
2386 	struct tcp_iter_state *st = seq->private;
2387 	struct net *net = seq_file_net(seq);
2388 
2389 	++st->num;
2390 	++st->offset;
2391 
2392 	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2393 		tw = cur;
2394 		tw = tw_next(tw);
2395 get_tw:
2396 		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2397 			tw = tw_next(tw);
2398 		}
2399 		if (tw) {
2400 			cur = tw;
2401 			goto out;
2402 		}
2403 		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2404 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2405 
2406 		/* Look for next non empty bucket */
2407 		st->offset = 0;
2408 		while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2409 				empty_bucket(st))
2410 			;
2411 		if (st->bucket > tcp_hashinfo.ehash_mask)
2412 			return NULL;
2413 
2414 		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2415 		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2416 	} else
2417 		sk = sk_nulls_next(sk);
2418 
2419 	sk_nulls_for_each_from(sk, node) {
2420 		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2421 			goto found;
2422 	}
2423 
2424 	st->state = TCP_SEQ_STATE_TIME_WAIT;
2425 	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2426 	goto get_tw;
2427 found:
2428 	cur = sk;
2429 out:
2430 	return cur;
2431 }
2432 
2433 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2434 {
2435 	struct tcp_iter_state *st = seq->private;
2436 	void *rc;
2437 
2438 	st->bucket = 0;
2439 	rc = established_get_first(seq);
2440 
2441 	while (rc && pos) {
2442 		rc = established_get_next(seq, rc);
2443 		--pos;
2444 	}
2445 	return rc;
2446 }
2447 
2448 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2449 {
2450 	void *rc;
2451 	struct tcp_iter_state *st = seq->private;
2452 
2453 	st->state = TCP_SEQ_STATE_LISTENING;
2454 	rc	  = listening_get_idx(seq, &pos);
2455 
2456 	if (!rc) {
2457 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2458 		rc	  = established_get_idx(seq, pos);
2459 	}
2460 
2461 	return rc;
2462 }
2463 
2464 static void *tcp_seek_last_pos(struct seq_file *seq)
2465 {
2466 	struct tcp_iter_state *st = seq->private;
2467 	int offset = st->offset;
2468 	int orig_num = st->num;
2469 	void *rc = NULL;
2470 
2471 	switch (st->state) {
2472 	case TCP_SEQ_STATE_OPENREQ:
2473 	case TCP_SEQ_STATE_LISTENING:
2474 		if (st->bucket >= INET_LHTABLE_SIZE)
2475 			break;
2476 		st->state = TCP_SEQ_STATE_LISTENING;
2477 		rc = listening_get_next(seq, NULL);
2478 		while (offset-- && rc)
2479 			rc = listening_get_next(seq, rc);
2480 		if (rc)
2481 			break;
2482 		st->bucket = 0;
2483 		/* Fallthrough */
2484 	case TCP_SEQ_STATE_ESTABLISHED:
2485 	case TCP_SEQ_STATE_TIME_WAIT:
2486 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2487 		if (st->bucket > tcp_hashinfo.ehash_mask)
2488 			break;
2489 		rc = established_get_first(seq);
2490 		while (offset-- && rc)
2491 			rc = established_get_next(seq, rc);
2492 	}
2493 
2494 	st->num = orig_num;
2495 
2496 	return rc;
2497 }
2498 
2499 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2500 {
2501 	struct tcp_iter_state *st = seq->private;
2502 	void *rc;
2503 
2504 	if (*pos && *pos == st->last_pos) {
2505 		rc = tcp_seek_last_pos(seq);
2506 		if (rc)
2507 			goto out;
2508 	}
2509 
2510 	st->state = TCP_SEQ_STATE_LISTENING;
2511 	st->num = 0;
2512 	st->bucket = 0;
2513 	st->offset = 0;
2514 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2515 
2516 out:
2517 	st->last_pos = *pos;
2518 	return rc;
2519 }
2520 
2521 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2522 {
2523 	struct tcp_iter_state *st = seq->private;
2524 	void *rc = NULL;
2525 
2526 	if (v == SEQ_START_TOKEN) {
2527 		rc = tcp_get_idx(seq, 0);
2528 		goto out;
2529 	}
2530 
2531 	switch (st->state) {
2532 	case TCP_SEQ_STATE_OPENREQ:
2533 	case TCP_SEQ_STATE_LISTENING:
2534 		rc = listening_get_next(seq, v);
2535 		if (!rc) {
2536 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2537 			st->bucket = 0;
2538 			st->offset = 0;
2539 			rc	  = established_get_first(seq);
2540 		}
2541 		break;
2542 	case TCP_SEQ_STATE_ESTABLISHED:
2543 	case TCP_SEQ_STATE_TIME_WAIT:
2544 		rc = established_get_next(seq, v);
2545 		break;
2546 	}
2547 out:
2548 	++*pos;
2549 	st->last_pos = *pos;
2550 	return rc;
2551 }
2552 
2553 static void tcp_seq_stop(struct seq_file *seq, void *v)
2554 {
2555 	struct tcp_iter_state *st = seq->private;
2556 
2557 	switch (st->state) {
2558 	case TCP_SEQ_STATE_OPENREQ:
2559 		if (v) {
2560 			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2561 			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2562 		}
2563 	case TCP_SEQ_STATE_LISTENING:
2564 		if (v != SEQ_START_TOKEN)
2565 			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2566 		break;
2567 	case TCP_SEQ_STATE_TIME_WAIT:
2568 	case TCP_SEQ_STATE_ESTABLISHED:
2569 		if (v)
2570 			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2571 		break;
2572 	}
2573 }
2574 
2575 int tcp_seq_open(struct inode *inode, struct file *file)
2576 {
2577 	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2578 	struct tcp_iter_state *s;
2579 	int err;
2580 
2581 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2582 			  sizeof(struct tcp_iter_state));
2583 	if (err < 0)
2584 		return err;
2585 
2586 	s = ((struct seq_file *)file->private_data)->private;
2587 	s->family		= afinfo->family;
2588 	s->last_pos 		= 0;
2589 	return 0;
2590 }
2591 EXPORT_SYMBOL(tcp_seq_open);
2592 
2593 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2594 {
2595 	int rc = 0;
2596 	struct proc_dir_entry *p;
2597 
2598 	afinfo->seq_ops.start		= tcp_seq_start;
2599 	afinfo->seq_ops.next		= tcp_seq_next;
2600 	afinfo->seq_ops.stop		= tcp_seq_stop;
2601 
2602 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2603 			     afinfo->seq_fops, afinfo);
2604 	if (!p)
2605 		rc = -ENOMEM;
2606 	return rc;
2607 }
2608 EXPORT_SYMBOL(tcp_proc_register);
2609 
2610 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2611 {
2612 	proc_net_remove(net, afinfo->name);
2613 }
2614 EXPORT_SYMBOL(tcp_proc_unregister);
2615 
2616 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2617 			 struct seq_file *f, int i, kuid_t uid, int *len)
2618 {
2619 	const struct inet_request_sock *ireq = inet_rsk(req);
2620 	long delta = req->expires - jiffies;
2621 
2622 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2623 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2624 		i,
2625 		ireq->loc_addr,
2626 		ntohs(inet_sk(sk)->inet_sport),
2627 		ireq->rmt_addr,
2628 		ntohs(ireq->rmt_port),
2629 		TCP_SYN_RECV,
2630 		0, 0, /* could print option size, but that is af dependent. */
2631 		1,    /* timers active (only the expire timer) */
2632 		jiffies_delta_to_clock_t(delta),
2633 		req->num_timeout,
2634 		from_kuid_munged(seq_user_ns(f), uid),
2635 		0,  /* non standard timer */
2636 		0, /* open_requests have no inode */
2637 		atomic_read(&sk->sk_refcnt),
2638 		req,
2639 		len);
2640 }
2641 
2642 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2643 {
2644 	int timer_active;
2645 	unsigned long timer_expires;
2646 	const struct tcp_sock *tp = tcp_sk(sk);
2647 	const struct inet_connection_sock *icsk = inet_csk(sk);
2648 	const struct inet_sock *inet = inet_sk(sk);
2649 	struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2650 	__be32 dest = inet->inet_daddr;
2651 	__be32 src = inet->inet_rcv_saddr;
2652 	__u16 destp = ntohs(inet->inet_dport);
2653 	__u16 srcp = ntohs(inet->inet_sport);
2654 	int rx_queue;
2655 
2656 	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2657 		timer_active	= 1;
2658 		timer_expires	= icsk->icsk_timeout;
2659 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2660 		timer_active	= 4;
2661 		timer_expires	= icsk->icsk_timeout;
2662 	} else if (timer_pending(&sk->sk_timer)) {
2663 		timer_active	= 2;
2664 		timer_expires	= sk->sk_timer.expires;
2665 	} else {
2666 		timer_active	= 0;
2667 		timer_expires = jiffies;
2668 	}
2669 
2670 	if (sk->sk_state == TCP_LISTEN)
2671 		rx_queue = sk->sk_ack_backlog;
2672 	else
2673 		/*
2674 		 * because we dont lock socket, we might find a transient negative value
2675 		 */
2676 		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2677 
2678 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2679 			"%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2680 		i, src, srcp, dest, destp, sk->sk_state,
2681 		tp->write_seq - tp->snd_una,
2682 		rx_queue,
2683 		timer_active,
2684 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2685 		icsk->icsk_retransmits,
2686 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2687 		icsk->icsk_probes_out,
2688 		sock_i_ino(sk),
2689 		atomic_read(&sk->sk_refcnt), sk,
2690 		jiffies_to_clock_t(icsk->icsk_rto),
2691 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2692 		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2693 		tp->snd_cwnd,
2694 		sk->sk_state == TCP_LISTEN ?
2695 		    (fastopenq ? fastopenq->max_qlen : 0) :
2696 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2697 		len);
2698 }
2699 
2700 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2701 			       struct seq_file *f, int i, int *len)
2702 {
2703 	__be32 dest, src;
2704 	__u16 destp, srcp;
2705 	long delta = tw->tw_ttd - jiffies;
2706 
2707 	dest  = tw->tw_daddr;
2708 	src   = tw->tw_rcv_saddr;
2709 	destp = ntohs(tw->tw_dport);
2710 	srcp  = ntohs(tw->tw_sport);
2711 
2712 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2713 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2714 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2715 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2716 		atomic_read(&tw->tw_refcnt), tw, len);
2717 }
2718 
2719 #define TMPSZ 150
2720 
2721 static int tcp4_seq_show(struct seq_file *seq, void *v)
2722 {
2723 	struct tcp_iter_state *st;
2724 	int len;
2725 
2726 	if (v == SEQ_START_TOKEN) {
2727 		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2728 			   "  sl  local_address rem_address   st tx_queue "
2729 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2730 			   "inode");
2731 		goto out;
2732 	}
2733 	st = seq->private;
2734 
2735 	switch (st->state) {
2736 	case TCP_SEQ_STATE_LISTENING:
2737 	case TCP_SEQ_STATE_ESTABLISHED:
2738 		get_tcp4_sock(v, seq, st->num, &len);
2739 		break;
2740 	case TCP_SEQ_STATE_OPENREQ:
2741 		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2742 		break;
2743 	case TCP_SEQ_STATE_TIME_WAIT:
2744 		get_timewait4_sock(v, seq, st->num, &len);
2745 		break;
2746 	}
2747 	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2748 out:
2749 	return 0;
2750 }
2751 
2752 static const struct file_operations tcp_afinfo_seq_fops = {
2753 	.owner   = THIS_MODULE,
2754 	.open    = tcp_seq_open,
2755 	.read    = seq_read,
2756 	.llseek  = seq_lseek,
2757 	.release = seq_release_net
2758 };
2759 
2760 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2761 	.name		= "tcp",
2762 	.family		= AF_INET,
2763 	.seq_fops	= &tcp_afinfo_seq_fops,
2764 	.seq_ops	= {
2765 		.show		= tcp4_seq_show,
2766 	},
2767 };
2768 
2769 static int __net_init tcp4_proc_init_net(struct net *net)
2770 {
2771 	return tcp_proc_register(net, &tcp4_seq_afinfo);
2772 }
2773 
2774 static void __net_exit tcp4_proc_exit_net(struct net *net)
2775 {
2776 	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2777 }
2778 
2779 static struct pernet_operations tcp4_net_ops = {
2780 	.init = tcp4_proc_init_net,
2781 	.exit = tcp4_proc_exit_net,
2782 };
2783 
2784 int __init tcp4_proc_init(void)
2785 {
2786 	return register_pernet_subsys(&tcp4_net_ops);
2787 }
2788 
2789 void tcp4_proc_exit(void)
2790 {
2791 	unregister_pernet_subsys(&tcp4_net_ops);
2792 }
2793 #endif /* CONFIG_PROC_FS */
2794 
2795 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2796 {
2797 	const struct iphdr *iph = skb_gro_network_header(skb);
2798 	__wsum wsum;
2799 	__sum16 sum;
2800 
2801 	switch (skb->ip_summed) {
2802 	case CHECKSUM_COMPLETE:
2803 		if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2804 				  skb->csum)) {
2805 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2806 			break;
2807 		}
2808 flush:
2809 		NAPI_GRO_CB(skb)->flush = 1;
2810 		return NULL;
2811 
2812 	case CHECKSUM_NONE:
2813 		wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2814 					  skb_gro_len(skb), IPPROTO_TCP, 0);
2815 		sum = csum_fold(skb_checksum(skb,
2816 					     skb_gro_offset(skb),
2817 					     skb_gro_len(skb),
2818 					     wsum));
2819 		if (sum)
2820 			goto flush;
2821 
2822 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2823 		break;
2824 	}
2825 
2826 	return tcp_gro_receive(head, skb);
2827 }
2828 
2829 int tcp4_gro_complete(struct sk_buff *skb)
2830 {
2831 	const struct iphdr *iph = ip_hdr(skb);
2832 	struct tcphdr *th = tcp_hdr(skb);
2833 
2834 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2835 				  iph->saddr, iph->daddr, 0);
2836 	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2837 
2838 	return tcp_gro_complete(skb);
2839 }
2840 
2841 struct proto tcp_prot = {
2842 	.name			= "TCP",
2843 	.owner			= THIS_MODULE,
2844 	.close			= tcp_close,
2845 	.connect		= tcp_v4_connect,
2846 	.disconnect		= tcp_disconnect,
2847 	.accept			= inet_csk_accept,
2848 	.ioctl			= tcp_ioctl,
2849 	.init			= tcp_v4_init_sock,
2850 	.destroy		= tcp_v4_destroy_sock,
2851 	.shutdown		= tcp_shutdown,
2852 	.setsockopt		= tcp_setsockopt,
2853 	.getsockopt		= tcp_getsockopt,
2854 	.recvmsg		= tcp_recvmsg,
2855 	.sendmsg		= tcp_sendmsg,
2856 	.sendpage		= tcp_sendpage,
2857 	.backlog_rcv		= tcp_v4_do_rcv,
2858 	.release_cb		= tcp_release_cb,
2859 	.mtu_reduced		= tcp_v4_mtu_reduced,
2860 	.hash			= inet_hash,
2861 	.unhash			= inet_unhash,
2862 	.get_port		= inet_csk_get_port,
2863 	.enter_memory_pressure	= tcp_enter_memory_pressure,
2864 	.sockets_allocated	= &tcp_sockets_allocated,
2865 	.orphan_count		= &tcp_orphan_count,
2866 	.memory_allocated	= &tcp_memory_allocated,
2867 	.memory_pressure	= &tcp_memory_pressure,
2868 	.sysctl_wmem		= sysctl_tcp_wmem,
2869 	.sysctl_rmem		= sysctl_tcp_rmem,
2870 	.max_header		= MAX_TCP_HEADER,
2871 	.obj_size		= sizeof(struct tcp_sock),
2872 	.slab_flags		= SLAB_DESTROY_BY_RCU,
2873 	.twsk_prot		= &tcp_timewait_sock_ops,
2874 	.rsk_prot		= &tcp_request_sock_ops,
2875 	.h.hashinfo		= &tcp_hashinfo,
2876 	.no_autobind		= true,
2877 #ifdef CONFIG_COMPAT
2878 	.compat_setsockopt	= compat_tcp_setsockopt,
2879 	.compat_getsockopt	= compat_tcp_getsockopt,
2880 #endif
2881 #ifdef CONFIG_MEMCG_KMEM
2882 	.init_cgroup		= tcp_init_cgroup,
2883 	.destroy_cgroup		= tcp_destroy_cgroup,
2884 	.proto_cgroup		= tcp_proto_cgroup,
2885 #endif
2886 };
2887 EXPORT_SYMBOL(tcp_prot);
2888 
2889 static int __net_init tcp_sk_init(struct net *net)
2890 {
2891 	return 0;
2892 }
2893 
2894 static void __net_exit tcp_sk_exit(struct net *net)
2895 {
2896 }
2897 
2898 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2899 {
2900 	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2901 }
2902 
2903 static struct pernet_operations __net_initdata tcp_sk_ops = {
2904        .init	   = tcp_sk_init,
2905        .exit	   = tcp_sk_exit,
2906        .exit_batch = tcp_sk_exit_batch,
2907 };
2908 
2909 void __init tcp_v4_init(void)
2910 {
2911 	inet_hashinfo_init(&tcp_hashinfo);
2912 	if (register_pernet_subsys(&tcp_sk_ops))
2913 		panic("Failed to create the TCP control socket.\n");
2914 }
2915