1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 #define pr_fmt(fmt) "TCP: " fmt 54 55 #include <linux/bottom_half.h> 56 #include <linux/types.h> 57 #include <linux/fcntl.h> 58 #include <linux/module.h> 59 #include <linux/random.h> 60 #include <linux/cache.h> 61 #include <linux/jhash.h> 62 #include <linux/init.h> 63 #include <linux/times.h> 64 #include <linux/slab.h> 65 66 #include <net/net_namespace.h> 67 #include <net/icmp.h> 68 #include <net/inet_hashtables.h> 69 #include <net/tcp.h> 70 #include <net/transp_v6.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 #include <net/timewait_sock.h> 74 #include <net/xfrm.h> 75 #include <net/secure_seq.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/inet.h> 79 #include <linux/ipv6.h> 80 #include <linux/stddef.h> 81 #include <linux/proc_fs.h> 82 #include <linux/seq_file.h> 83 #include <linux/inetdevice.h> 84 85 #include <crypto/hash.h> 86 #include <linux/scatterlist.h> 87 88 #include <trace/events/tcp.h> 89 90 #ifdef CONFIG_TCP_MD5SIG 91 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 92 __be32 daddr, __be32 saddr, const struct tcphdr *th); 93 #endif 94 95 struct inet_hashinfo tcp_hashinfo; 96 EXPORT_SYMBOL(tcp_hashinfo); 97 98 static u32 tcp_v4_init_seq(const struct sk_buff *skb) 99 { 100 return secure_tcp_seq(ip_hdr(skb)->daddr, 101 ip_hdr(skb)->saddr, 102 tcp_hdr(skb)->dest, 103 tcp_hdr(skb)->source); 104 } 105 106 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) 107 { 108 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); 109 } 110 111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 112 { 113 const struct inet_timewait_sock *tw = inet_twsk(sktw); 114 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 115 struct tcp_sock *tp = tcp_sk(sk); 116 int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse; 117 118 if (reuse == 2) { 119 /* Still does not detect *everything* that goes through 120 * lo, since we require a loopback src or dst address 121 * or direct binding to 'lo' interface. 122 */ 123 bool loopback = false; 124 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX) 125 loopback = true; 126 #if IS_ENABLED(CONFIG_IPV6) 127 if (tw->tw_family == AF_INET6) { 128 if (ipv6_addr_loopback(&tw->tw_v6_daddr) || 129 (ipv6_addr_v4mapped(&tw->tw_v6_daddr) && 130 (tw->tw_v6_daddr.s6_addr[12] == 127)) || 131 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) || 132 (ipv6_addr_v4mapped(&tw->tw_v6_rcv_saddr) && 133 (tw->tw_v6_rcv_saddr.s6_addr[12] == 127))) 134 loopback = true; 135 } else 136 #endif 137 { 138 if (ipv4_is_loopback(tw->tw_daddr) || 139 ipv4_is_loopback(tw->tw_rcv_saddr)) 140 loopback = true; 141 } 142 if (!loopback) 143 reuse = 0; 144 } 145 146 /* With PAWS, it is safe from the viewpoint 147 of data integrity. Even without PAWS it is safe provided sequence 148 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 149 150 Actually, the idea is close to VJ's one, only timestamp cache is 151 held not per host, but per port pair and TW bucket is used as state 152 holder. 153 154 If TW bucket has been already destroyed we fall back to VJ's scheme 155 and use initial timestamp retrieved from peer table. 156 */ 157 if (tcptw->tw_ts_recent_stamp && 158 (!twp || (reuse && time_after32(ktime_get_seconds(), 159 tcptw->tw_ts_recent_stamp)))) { 160 /* In case of repair and re-using TIME-WAIT sockets we still 161 * want to be sure that it is safe as above but honor the 162 * sequence numbers and time stamps set as part of the repair 163 * process. 164 * 165 * Without this check re-using a TIME-WAIT socket with TCP 166 * repair would accumulate a -1 on the repair assigned 167 * sequence number. The first time it is reused the sequence 168 * is -1, the second time -2, etc. This fixes that issue 169 * without appearing to create any others. 170 */ 171 if (likely(!tp->repair)) { 172 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 173 if (tp->write_seq == 0) 174 tp->write_seq = 1; 175 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 176 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 177 } 178 sock_hold(sktw); 179 return 1; 180 } 181 182 return 0; 183 } 184 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 185 186 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, 187 int addr_len) 188 { 189 /* This check is replicated from tcp_v4_connect() and intended to 190 * prevent BPF program called below from accessing bytes that are out 191 * of the bound specified by user in addr_len. 192 */ 193 if (addr_len < sizeof(struct sockaddr_in)) 194 return -EINVAL; 195 196 sock_owned_by_me(sk); 197 198 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr); 199 } 200 201 /* This will initiate an outgoing connection. */ 202 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 203 { 204 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 205 struct inet_sock *inet = inet_sk(sk); 206 struct tcp_sock *tp = tcp_sk(sk); 207 __be16 orig_sport, orig_dport; 208 __be32 daddr, nexthop; 209 struct flowi4 *fl4; 210 struct rtable *rt; 211 int err; 212 struct ip_options_rcu *inet_opt; 213 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; 214 215 if (addr_len < sizeof(struct sockaddr_in)) 216 return -EINVAL; 217 218 if (usin->sin_family != AF_INET) 219 return -EAFNOSUPPORT; 220 221 nexthop = daddr = usin->sin_addr.s_addr; 222 inet_opt = rcu_dereference_protected(inet->inet_opt, 223 lockdep_sock_is_held(sk)); 224 if (inet_opt && inet_opt->opt.srr) { 225 if (!daddr) 226 return -EINVAL; 227 nexthop = inet_opt->opt.faddr; 228 } 229 230 orig_sport = inet->inet_sport; 231 orig_dport = usin->sin_port; 232 fl4 = &inet->cork.fl.u.ip4; 233 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 234 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 235 IPPROTO_TCP, 236 orig_sport, orig_dport, sk); 237 if (IS_ERR(rt)) { 238 err = PTR_ERR(rt); 239 if (err == -ENETUNREACH) 240 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 241 return err; 242 } 243 244 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 245 ip_rt_put(rt); 246 return -ENETUNREACH; 247 } 248 249 if (!inet_opt || !inet_opt->opt.srr) 250 daddr = fl4->daddr; 251 252 if (!inet->inet_saddr) 253 inet->inet_saddr = fl4->saddr; 254 sk_rcv_saddr_set(sk, inet->inet_saddr); 255 256 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 257 /* Reset inherited state */ 258 tp->rx_opt.ts_recent = 0; 259 tp->rx_opt.ts_recent_stamp = 0; 260 if (likely(!tp->repair)) 261 tp->write_seq = 0; 262 } 263 264 inet->inet_dport = usin->sin_port; 265 sk_daddr_set(sk, daddr); 266 267 inet_csk(sk)->icsk_ext_hdr_len = 0; 268 if (inet_opt) 269 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 270 271 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 272 273 /* Socket identity is still unknown (sport may be zero). 274 * However we set state to SYN-SENT and not releasing socket 275 * lock select source port, enter ourselves into the hash tables and 276 * complete initialization after this. 277 */ 278 tcp_set_state(sk, TCP_SYN_SENT); 279 err = inet_hash_connect(tcp_death_row, sk); 280 if (err) 281 goto failure; 282 283 sk_set_txhash(sk); 284 285 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 286 inet->inet_sport, inet->inet_dport, sk); 287 if (IS_ERR(rt)) { 288 err = PTR_ERR(rt); 289 rt = NULL; 290 goto failure; 291 } 292 /* OK, now commit destination to socket. */ 293 sk->sk_gso_type = SKB_GSO_TCPV4; 294 sk_setup_caps(sk, &rt->dst); 295 rt = NULL; 296 297 if (likely(!tp->repair)) { 298 if (!tp->write_seq) 299 tp->write_seq = secure_tcp_seq(inet->inet_saddr, 300 inet->inet_daddr, 301 inet->inet_sport, 302 usin->sin_port); 303 tp->tsoffset = secure_tcp_ts_off(sock_net(sk), 304 inet->inet_saddr, 305 inet->inet_daddr); 306 } 307 308 inet->inet_id = tp->write_seq ^ jiffies; 309 310 if (tcp_fastopen_defer_connect(sk, &err)) 311 return err; 312 if (err) 313 goto failure; 314 315 err = tcp_connect(sk); 316 317 if (err) 318 goto failure; 319 320 return 0; 321 322 failure: 323 /* 324 * This unhashes the socket and releases the local port, 325 * if necessary. 326 */ 327 tcp_set_state(sk, TCP_CLOSE); 328 ip_rt_put(rt); 329 sk->sk_route_caps = 0; 330 inet->inet_dport = 0; 331 return err; 332 } 333 EXPORT_SYMBOL(tcp_v4_connect); 334 335 /* 336 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 337 * It can be called through tcp_release_cb() if socket was owned by user 338 * at the time tcp_v4_err() was called to handle ICMP message. 339 */ 340 void tcp_v4_mtu_reduced(struct sock *sk) 341 { 342 struct inet_sock *inet = inet_sk(sk); 343 struct dst_entry *dst; 344 u32 mtu; 345 346 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 347 return; 348 mtu = tcp_sk(sk)->mtu_info; 349 dst = inet_csk_update_pmtu(sk, mtu); 350 if (!dst) 351 return; 352 353 /* Something is about to be wrong... Remember soft error 354 * for the case, if this connection will not able to recover. 355 */ 356 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 357 sk->sk_err_soft = EMSGSIZE; 358 359 mtu = dst_mtu(dst); 360 361 if (inet->pmtudisc != IP_PMTUDISC_DONT && 362 ip_sk_accept_pmtu(sk) && 363 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 364 tcp_sync_mss(sk, mtu); 365 366 /* Resend the TCP packet because it's 367 * clear that the old packet has been 368 * dropped. This is the new "fast" path mtu 369 * discovery. 370 */ 371 tcp_simple_retransmit(sk); 372 } /* else let the usual retransmit timer handle it */ 373 } 374 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 375 376 static void do_redirect(struct sk_buff *skb, struct sock *sk) 377 { 378 struct dst_entry *dst = __sk_dst_check(sk, 0); 379 380 if (dst) 381 dst->ops->redirect(dst, sk, skb); 382 } 383 384 385 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 386 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 387 { 388 struct request_sock *req = inet_reqsk(sk); 389 struct net *net = sock_net(sk); 390 391 /* ICMPs are not backlogged, hence we cannot get 392 * an established socket here. 393 */ 394 if (seq != tcp_rsk(req)->snt_isn) { 395 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 396 } else if (abort) { 397 /* 398 * Still in SYN_RECV, just remove it silently. 399 * There is no good way to pass the error to the newly 400 * created socket, and POSIX does not want network 401 * errors returned from accept(). 402 */ 403 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 404 tcp_listendrop(req->rsk_listener); 405 } 406 reqsk_put(req); 407 } 408 EXPORT_SYMBOL(tcp_req_err); 409 410 /* 411 * This routine is called by the ICMP module when it gets some 412 * sort of error condition. If err < 0 then the socket should 413 * be closed and the error returned to the user. If err > 0 414 * it's just the icmp type << 8 | icmp code. After adjustment 415 * header points to the first 8 bytes of the tcp header. We need 416 * to find the appropriate port. 417 * 418 * The locking strategy used here is very "optimistic". When 419 * someone else accesses the socket the ICMP is just dropped 420 * and for some paths there is no check at all. 421 * A more general error queue to queue errors for later handling 422 * is probably better. 423 * 424 */ 425 426 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 427 { 428 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 429 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 430 struct inet_connection_sock *icsk; 431 struct tcp_sock *tp; 432 struct inet_sock *inet; 433 const int type = icmp_hdr(icmp_skb)->type; 434 const int code = icmp_hdr(icmp_skb)->code; 435 struct sock *sk; 436 struct sk_buff *skb; 437 struct request_sock *fastopen; 438 u32 seq, snd_una; 439 s32 remaining; 440 u32 delta_us; 441 int err; 442 struct net *net = dev_net(icmp_skb->dev); 443 444 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, 445 th->dest, iph->saddr, ntohs(th->source), 446 inet_iif(icmp_skb), 0); 447 if (!sk) { 448 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 449 return; 450 } 451 if (sk->sk_state == TCP_TIME_WAIT) { 452 inet_twsk_put(inet_twsk(sk)); 453 return; 454 } 455 seq = ntohl(th->seq); 456 if (sk->sk_state == TCP_NEW_SYN_RECV) 457 return tcp_req_err(sk, seq, 458 type == ICMP_PARAMETERPROB || 459 type == ICMP_TIME_EXCEEDED || 460 (type == ICMP_DEST_UNREACH && 461 (code == ICMP_NET_UNREACH || 462 code == ICMP_HOST_UNREACH))); 463 464 bh_lock_sock(sk); 465 /* If too many ICMPs get dropped on busy 466 * servers this needs to be solved differently. 467 * We do take care of PMTU discovery (RFC1191) special case : 468 * we can receive locally generated ICMP messages while socket is held. 469 */ 470 if (sock_owned_by_user(sk)) { 471 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 472 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 473 } 474 if (sk->sk_state == TCP_CLOSE) 475 goto out; 476 477 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 478 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 479 goto out; 480 } 481 482 icsk = inet_csk(sk); 483 tp = tcp_sk(sk); 484 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 485 fastopen = tp->fastopen_rsk; 486 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 487 if (sk->sk_state != TCP_LISTEN && 488 !between(seq, snd_una, tp->snd_nxt)) { 489 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 490 goto out; 491 } 492 493 switch (type) { 494 case ICMP_REDIRECT: 495 if (!sock_owned_by_user(sk)) 496 do_redirect(icmp_skb, sk); 497 goto out; 498 case ICMP_SOURCE_QUENCH: 499 /* Just silently ignore these. */ 500 goto out; 501 case ICMP_PARAMETERPROB: 502 err = EPROTO; 503 break; 504 case ICMP_DEST_UNREACH: 505 if (code > NR_ICMP_UNREACH) 506 goto out; 507 508 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 509 /* We are not interested in TCP_LISTEN and open_requests 510 * (SYN-ACKs send out by Linux are always <576bytes so 511 * they should go through unfragmented). 512 */ 513 if (sk->sk_state == TCP_LISTEN) 514 goto out; 515 516 tp->mtu_info = info; 517 if (!sock_owned_by_user(sk)) { 518 tcp_v4_mtu_reduced(sk); 519 } else { 520 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) 521 sock_hold(sk); 522 } 523 goto out; 524 } 525 526 err = icmp_err_convert[code].errno; 527 /* check if icmp_skb allows revert of backoff 528 * (see draft-zimmermann-tcp-lcd) */ 529 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 530 break; 531 if (seq != tp->snd_una || !icsk->icsk_retransmits || 532 !icsk->icsk_backoff || fastopen) 533 break; 534 535 if (sock_owned_by_user(sk)) 536 break; 537 538 icsk->icsk_backoff--; 539 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : 540 TCP_TIMEOUT_INIT; 541 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 542 543 skb = tcp_rtx_queue_head(sk); 544 BUG_ON(!skb); 545 546 tcp_mstamp_refresh(tp); 547 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb)); 548 remaining = icsk->icsk_rto - 549 usecs_to_jiffies(delta_us); 550 551 if (remaining > 0) { 552 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 553 remaining, TCP_RTO_MAX); 554 } else { 555 /* RTO revert clocked out retransmission. 556 * Will retransmit now */ 557 tcp_retransmit_timer(sk); 558 } 559 560 break; 561 case ICMP_TIME_EXCEEDED: 562 err = EHOSTUNREACH; 563 break; 564 default: 565 goto out; 566 } 567 568 switch (sk->sk_state) { 569 case TCP_SYN_SENT: 570 case TCP_SYN_RECV: 571 /* Only in fast or simultaneous open. If a fast open socket is 572 * is already accepted it is treated as a connected one below. 573 */ 574 if (fastopen && !fastopen->sk) 575 break; 576 577 if (!sock_owned_by_user(sk)) { 578 sk->sk_err = err; 579 580 sk->sk_error_report(sk); 581 582 tcp_done(sk); 583 } else { 584 sk->sk_err_soft = err; 585 } 586 goto out; 587 } 588 589 /* If we've already connected we will keep trying 590 * until we time out, or the user gives up. 591 * 592 * rfc1122 4.2.3.9 allows to consider as hard errors 593 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 594 * but it is obsoleted by pmtu discovery). 595 * 596 * Note, that in modern internet, where routing is unreliable 597 * and in each dark corner broken firewalls sit, sending random 598 * errors ordered by their masters even this two messages finally lose 599 * their original sense (even Linux sends invalid PORT_UNREACHs) 600 * 601 * Now we are in compliance with RFCs. 602 * --ANK (980905) 603 */ 604 605 inet = inet_sk(sk); 606 if (!sock_owned_by_user(sk) && inet->recverr) { 607 sk->sk_err = err; 608 sk->sk_error_report(sk); 609 } else { /* Only an error on timeout */ 610 sk->sk_err_soft = err; 611 } 612 613 out: 614 bh_unlock_sock(sk); 615 sock_put(sk); 616 } 617 618 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 619 { 620 struct tcphdr *th = tcp_hdr(skb); 621 622 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 623 skb->csum_start = skb_transport_header(skb) - skb->head; 624 skb->csum_offset = offsetof(struct tcphdr, check); 625 } 626 627 /* This routine computes an IPv4 TCP checksum. */ 628 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 629 { 630 const struct inet_sock *inet = inet_sk(sk); 631 632 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 633 } 634 EXPORT_SYMBOL(tcp_v4_send_check); 635 636 /* 637 * This routine will send an RST to the other tcp. 638 * 639 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 640 * for reset. 641 * Answer: if a packet caused RST, it is not for a socket 642 * existing in our system, if it is matched to a socket, 643 * it is just duplicate segment or bug in other side's TCP. 644 * So that we build reply only basing on parameters 645 * arrived with segment. 646 * Exception: precedence violation. We do not implement it in any case. 647 */ 648 649 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 650 { 651 const struct tcphdr *th = tcp_hdr(skb); 652 struct { 653 struct tcphdr th; 654 #ifdef CONFIG_TCP_MD5SIG 655 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 656 #endif 657 } rep; 658 struct ip_reply_arg arg; 659 #ifdef CONFIG_TCP_MD5SIG 660 struct tcp_md5sig_key *key = NULL; 661 const __u8 *hash_location = NULL; 662 unsigned char newhash[16]; 663 int genhash; 664 struct sock *sk1 = NULL; 665 #endif 666 struct net *net; 667 struct sock *ctl_sk; 668 669 /* Never send a reset in response to a reset. */ 670 if (th->rst) 671 return; 672 673 /* If sk not NULL, it means we did a successful lookup and incoming 674 * route had to be correct. prequeue might have dropped our dst. 675 */ 676 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 677 return; 678 679 /* Swap the send and the receive. */ 680 memset(&rep, 0, sizeof(rep)); 681 rep.th.dest = th->source; 682 rep.th.source = th->dest; 683 rep.th.doff = sizeof(struct tcphdr) / 4; 684 rep.th.rst = 1; 685 686 if (th->ack) { 687 rep.th.seq = th->ack_seq; 688 } else { 689 rep.th.ack = 1; 690 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 691 skb->len - (th->doff << 2)); 692 } 693 694 memset(&arg, 0, sizeof(arg)); 695 arg.iov[0].iov_base = (unsigned char *)&rep; 696 arg.iov[0].iov_len = sizeof(rep.th); 697 698 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 699 #ifdef CONFIG_TCP_MD5SIG 700 rcu_read_lock(); 701 hash_location = tcp_parse_md5sig_option(th); 702 if (sk && sk_fullsock(sk)) { 703 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 704 &ip_hdr(skb)->saddr, AF_INET); 705 } else if (hash_location) { 706 /* 707 * active side is lost. Try to find listening socket through 708 * source port, and then find md5 key through listening socket. 709 * we are not loose security here: 710 * Incoming packet is checked with md5 hash with finding key, 711 * no RST generated if md5 hash doesn't match. 712 */ 713 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0, 714 ip_hdr(skb)->saddr, 715 th->source, ip_hdr(skb)->daddr, 716 ntohs(th->source), inet_iif(skb), 717 tcp_v4_sdif(skb)); 718 /* don't send rst if it can't find key */ 719 if (!sk1) 720 goto out; 721 722 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 723 &ip_hdr(skb)->saddr, AF_INET); 724 if (!key) 725 goto out; 726 727 728 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 729 if (genhash || memcmp(hash_location, newhash, 16) != 0) 730 goto out; 731 732 } 733 734 if (key) { 735 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 736 (TCPOPT_NOP << 16) | 737 (TCPOPT_MD5SIG << 8) | 738 TCPOLEN_MD5SIG); 739 /* Update length and the length the header thinks exists */ 740 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 741 rep.th.doff = arg.iov[0].iov_len / 4; 742 743 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 744 key, ip_hdr(skb)->saddr, 745 ip_hdr(skb)->daddr, &rep.th); 746 } 747 #endif 748 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 749 ip_hdr(skb)->saddr, /* XXX */ 750 arg.iov[0].iov_len, IPPROTO_TCP, 0); 751 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 752 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 753 754 /* When socket is gone, all binding information is lost. 755 * routing might fail in this case. No choice here, if we choose to force 756 * input interface, we will misroute in case of asymmetric route. 757 */ 758 if (sk) { 759 arg.bound_dev_if = sk->sk_bound_dev_if; 760 if (sk_fullsock(sk)) 761 trace_tcp_send_reset(sk, skb); 762 } 763 764 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 765 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 766 767 arg.tos = ip_hdr(skb)->tos; 768 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); 769 local_bh_disable(); 770 ctl_sk = *this_cpu_ptr(net->ipv4.tcp_sk); 771 if (sk) 772 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 773 inet_twsk(sk)->tw_mark : sk->sk_mark; 774 ip_send_unicast_reply(ctl_sk, 775 skb, &TCP_SKB_CB(skb)->header.h4.opt, 776 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 777 &arg, arg.iov[0].iov_len); 778 779 ctl_sk->sk_mark = 0; 780 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 781 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 782 local_bh_enable(); 783 784 #ifdef CONFIG_TCP_MD5SIG 785 out: 786 rcu_read_unlock(); 787 #endif 788 } 789 790 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 791 outside socket context is ugly, certainly. What can I do? 792 */ 793 794 static void tcp_v4_send_ack(const struct sock *sk, 795 struct sk_buff *skb, u32 seq, u32 ack, 796 u32 win, u32 tsval, u32 tsecr, int oif, 797 struct tcp_md5sig_key *key, 798 int reply_flags, u8 tos) 799 { 800 const struct tcphdr *th = tcp_hdr(skb); 801 struct { 802 struct tcphdr th; 803 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 804 #ifdef CONFIG_TCP_MD5SIG 805 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 806 #endif 807 ]; 808 } rep; 809 struct net *net = sock_net(sk); 810 struct ip_reply_arg arg; 811 struct sock *ctl_sk; 812 813 memset(&rep.th, 0, sizeof(struct tcphdr)); 814 memset(&arg, 0, sizeof(arg)); 815 816 arg.iov[0].iov_base = (unsigned char *)&rep; 817 arg.iov[0].iov_len = sizeof(rep.th); 818 if (tsecr) { 819 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 820 (TCPOPT_TIMESTAMP << 8) | 821 TCPOLEN_TIMESTAMP); 822 rep.opt[1] = htonl(tsval); 823 rep.opt[2] = htonl(tsecr); 824 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 825 } 826 827 /* Swap the send and the receive. */ 828 rep.th.dest = th->source; 829 rep.th.source = th->dest; 830 rep.th.doff = arg.iov[0].iov_len / 4; 831 rep.th.seq = htonl(seq); 832 rep.th.ack_seq = htonl(ack); 833 rep.th.ack = 1; 834 rep.th.window = htons(win); 835 836 #ifdef CONFIG_TCP_MD5SIG 837 if (key) { 838 int offset = (tsecr) ? 3 : 0; 839 840 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 841 (TCPOPT_NOP << 16) | 842 (TCPOPT_MD5SIG << 8) | 843 TCPOLEN_MD5SIG); 844 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 845 rep.th.doff = arg.iov[0].iov_len/4; 846 847 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 848 key, ip_hdr(skb)->saddr, 849 ip_hdr(skb)->daddr, &rep.th); 850 } 851 #endif 852 arg.flags = reply_flags; 853 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 854 ip_hdr(skb)->saddr, /* XXX */ 855 arg.iov[0].iov_len, IPPROTO_TCP, 0); 856 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 857 if (oif) 858 arg.bound_dev_if = oif; 859 arg.tos = tos; 860 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); 861 local_bh_disable(); 862 ctl_sk = *this_cpu_ptr(net->ipv4.tcp_sk); 863 if (sk) 864 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 865 inet_twsk(sk)->tw_mark : sk->sk_mark; 866 ip_send_unicast_reply(ctl_sk, 867 skb, &TCP_SKB_CB(skb)->header.h4.opt, 868 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 869 &arg, arg.iov[0].iov_len); 870 871 ctl_sk->sk_mark = 0; 872 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 873 local_bh_enable(); 874 } 875 876 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 877 { 878 struct inet_timewait_sock *tw = inet_twsk(sk); 879 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 880 881 tcp_v4_send_ack(sk, skb, 882 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 883 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 884 tcp_time_stamp_raw() + tcptw->tw_ts_offset, 885 tcptw->tw_ts_recent, 886 tw->tw_bound_dev_if, 887 tcp_twsk_md5_key(tcptw), 888 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 889 tw->tw_tos 890 ); 891 892 inet_twsk_put(tw); 893 } 894 895 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 896 struct request_sock *req) 897 { 898 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 899 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 900 */ 901 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 902 tcp_sk(sk)->snd_nxt; 903 904 /* RFC 7323 2.3 905 * The window field (SEG.WND) of every outgoing segment, with the 906 * exception of <SYN> segments, MUST be right-shifted by 907 * Rcv.Wind.Shift bits: 908 */ 909 tcp_v4_send_ack(sk, skb, seq, 910 tcp_rsk(req)->rcv_nxt, 911 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 912 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off, 913 req->ts_recent, 914 0, 915 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->saddr, 916 AF_INET), 917 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 918 ip_hdr(skb)->tos); 919 } 920 921 /* 922 * Send a SYN-ACK after having received a SYN. 923 * This still operates on a request_sock only, not on a big 924 * socket. 925 */ 926 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 927 struct flowi *fl, 928 struct request_sock *req, 929 struct tcp_fastopen_cookie *foc, 930 enum tcp_synack_type synack_type) 931 { 932 const struct inet_request_sock *ireq = inet_rsk(req); 933 struct flowi4 fl4; 934 int err = -1; 935 struct sk_buff *skb; 936 937 /* First, grab a route. */ 938 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 939 return -1; 940 941 skb = tcp_make_synack(sk, dst, req, foc, synack_type); 942 943 if (skb) { 944 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 945 946 rcu_read_lock(); 947 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 948 ireq->ir_rmt_addr, 949 rcu_dereference(ireq->ireq_opt)); 950 rcu_read_unlock(); 951 err = net_xmit_eval(err); 952 } 953 954 return err; 955 } 956 957 /* 958 * IPv4 request_sock destructor. 959 */ 960 static void tcp_v4_reqsk_destructor(struct request_sock *req) 961 { 962 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); 963 } 964 965 #ifdef CONFIG_TCP_MD5SIG 966 /* 967 * RFC2385 MD5 checksumming requires a mapping of 968 * IP address->MD5 Key. 969 * We need to maintain these in the sk structure. 970 */ 971 972 /* Find the Key structure for an address. */ 973 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk, 974 const union tcp_md5_addr *addr, 975 int family) 976 { 977 const struct tcp_sock *tp = tcp_sk(sk); 978 struct tcp_md5sig_key *key; 979 const struct tcp_md5sig_info *md5sig; 980 __be32 mask; 981 struct tcp_md5sig_key *best_match = NULL; 982 bool match; 983 984 /* caller either holds rcu_read_lock() or socket lock */ 985 md5sig = rcu_dereference_check(tp->md5sig_info, 986 lockdep_sock_is_held(sk)); 987 if (!md5sig) 988 return NULL; 989 990 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 991 if (key->family != family) 992 continue; 993 994 if (family == AF_INET) { 995 mask = inet_make_mask(key->prefixlen); 996 match = (key->addr.a4.s_addr & mask) == 997 (addr->a4.s_addr & mask); 998 #if IS_ENABLED(CONFIG_IPV6) 999 } else if (family == AF_INET6) { 1000 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, 1001 key->prefixlen); 1002 #endif 1003 } else { 1004 match = false; 1005 } 1006 1007 if (match && (!best_match || 1008 key->prefixlen > best_match->prefixlen)) 1009 best_match = key; 1010 } 1011 return best_match; 1012 } 1013 EXPORT_SYMBOL(tcp_md5_do_lookup); 1014 1015 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, 1016 const union tcp_md5_addr *addr, 1017 int family, u8 prefixlen) 1018 { 1019 const struct tcp_sock *tp = tcp_sk(sk); 1020 struct tcp_md5sig_key *key; 1021 unsigned int size = sizeof(struct in_addr); 1022 const struct tcp_md5sig_info *md5sig; 1023 1024 /* caller either holds rcu_read_lock() or socket lock */ 1025 md5sig = rcu_dereference_check(tp->md5sig_info, 1026 lockdep_sock_is_held(sk)); 1027 if (!md5sig) 1028 return NULL; 1029 #if IS_ENABLED(CONFIG_IPV6) 1030 if (family == AF_INET6) 1031 size = sizeof(struct in6_addr); 1032 #endif 1033 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 1034 if (key->family != family) 1035 continue; 1036 if (!memcmp(&key->addr, addr, size) && 1037 key->prefixlen == prefixlen) 1038 return key; 1039 } 1040 return NULL; 1041 } 1042 1043 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1044 const struct sock *addr_sk) 1045 { 1046 const union tcp_md5_addr *addr; 1047 1048 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 1049 return tcp_md5_do_lookup(sk, addr, AF_INET); 1050 } 1051 EXPORT_SYMBOL(tcp_v4_md5_lookup); 1052 1053 /* This can be called on a newly created socket, from other files */ 1054 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1055 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen, 1056 gfp_t gfp) 1057 { 1058 /* Add Key to the list */ 1059 struct tcp_md5sig_key *key; 1060 struct tcp_sock *tp = tcp_sk(sk); 1061 struct tcp_md5sig_info *md5sig; 1062 1063 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen); 1064 if (key) { 1065 /* Pre-existing entry - just update that one. */ 1066 memcpy(key->key, newkey, newkeylen); 1067 key->keylen = newkeylen; 1068 return 0; 1069 } 1070 1071 md5sig = rcu_dereference_protected(tp->md5sig_info, 1072 lockdep_sock_is_held(sk)); 1073 if (!md5sig) { 1074 md5sig = kmalloc(sizeof(*md5sig), gfp); 1075 if (!md5sig) 1076 return -ENOMEM; 1077 1078 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1079 INIT_HLIST_HEAD(&md5sig->head); 1080 rcu_assign_pointer(tp->md5sig_info, md5sig); 1081 } 1082 1083 key = sock_kmalloc(sk, sizeof(*key), gfp); 1084 if (!key) 1085 return -ENOMEM; 1086 if (!tcp_alloc_md5sig_pool()) { 1087 sock_kfree_s(sk, key, sizeof(*key)); 1088 return -ENOMEM; 1089 } 1090 1091 memcpy(key->key, newkey, newkeylen); 1092 key->keylen = newkeylen; 1093 key->family = family; 1094 key->prefixlen = prefixlen; 1095 memcpy(&key->addr, addr, 1096 (family == AF_INET6) ? sizeof(struct in6_addr) : 1097 sizeof(struct in_addr)); 1098 hlist_add_head_rcu(&key->node, &md5sig->head); 1099 return 0; 1100 } 1101 EXPORT_SYMBOL(tcp_md5_do_add); 1102 1103 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, 1104 u8 prefixlen) 1105 { 1106 struct tcp_md5sig_key *key; 1107 1108 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen); 1109 if (!key) 1110 return -ENOENT; 1111 hlist_del_rcu(&key->node); 1112 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1113 kfree_rcu(key, rcu); 1114 return 0; 1115 } 1116 EXPORT_SYMBOL(tcp_md5_do_del); 1117 1118 static void tcp_clear_md5_list(struct sock *sk) 1119 { 1120 struct tcp_sock *tp = tcp_sk(sk); 1121 struct tcp_md5sig_key *key; 1122 struct hlist_node *n; 1123 struct tcp_md5sig_info *md5sig; 1124 1125 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1126 1127 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1128 hlist_del_rcu(&key->node); 1129 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1130 kfree_rcu(key, rcu); 1131 } 1132 } 1133 1134 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, 1135 char __user *optval, int optlen) 1136 { 1137 struct tcp_md5sig cmd; 1138 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1139 u8 prefixlen = 32; 1140 1141 if (optlen < sizeof(cmd)) 1142 return -EINVAL; 1143 1144 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1145 return -EFAULT; 1146 1147 if (sin->sin_family != AF_INET) 1148 return -EINVAL; 1149 1150 if (optname == TCP_MD5SIG_EXT && 1151 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { 1152 prefixlen = cmd.tcpm_prefixlen; 1153 if (prefixlen > 32) 1154 return -EINVAL; 1155 } 1156 1157 if (!cmd.tcpm_keylen) 1158 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1159 AF_INET, prefixlen); 1160 1161 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1162 return -EINVAL; 1163 1164 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1165 AF_INET, prefixlen, cmd.tcpm_key, cmd.tcpm_keylen, 1166 GFP_KERNEL); 1167 } 1168 1169 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, 1170 __be32 daddr, __be32 saddr, 1171 const struct tcphdr *th, int nbytes) 1172 { 1173 struct tcp4_pseudohdr *bp; 1174 struct scatterlist sg; 1175 struct tcphdr *_th; 1176 1177 bp = hp->scratch; 1178 bp->saddr = saddr; 1179 bp->daddr = daddr; 1180 bp->pad = 0; 1181 bp->protocol = IPPROTO_TCP; 1182 bp->len = cpu_to_be16(nbytes); 1183 1184 _th = (struct tcphdr *)(bp + 1); 1185 memcpy(_th, th, sizeof(*th)); 1186 _th->check = 0; 1187 1188 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1189 ahash_request_set_crypt(hp->md5_req, &sg, NULL, 1190 sizeof(*bp) + sizeof(*th)); 1191 return crypto_ahash_update(hp->md5_req); 1192 } 1193 1194 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1195 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1196 { 1197 struct tcp_md5sig_pool *hp; 1198 struct ahash_request *req; 1199 1200 hp = tcp_get_md5sig_pool(); 1201 if (!hp) 1202 goto clear_hash_noput; 1203 req = hp->md5_req; 1204 1205 if (crypto_ahash_init(req)) 1206 goto clear_hash; 1207 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) 1208 goto clear_hash; 1209 if (tcp_md5_hash_key(hp, key)) 1210 goto clear_hash; 1211 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1212 if (crypto_ahash_final(req)) 1213 goto clear_hash; 1214 1215 tcp_put_md5sig_pool(); 1216 return 0; 1217 1218 clear_hash: 1219 tcp_put_md5sig_pool(); 1220 clear_hash_noput: 1221 memset(md5_hash, 0, 16); 1222 return 1; 1223 } 1224 1225 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1226 const struct sock *sk, 1227 const struct sk_buff *skb) 1228 { 1229 struct tcp_md5sig_pool *hp; 1230 struct ahash_request *req; 1231 const struct tcphdr *th = tcp_hdr(skb); 1232 __be32 saddr, daddr; 1233 1234 if (sk) { /* valid for establish/request sockets */ 1235 saddr = sk->sk_rcv_saddr; 1236 daddr = sk->sk_daddr; 1237 } else { 1238 const struct iphdr *iph = ip_hdr(skb); 1239 saddr = iph->saddr; 1240 daddr = iph->daddr; 1241 } 1242 1243 hp = tcp_get_md5sig_pool(); 1244 if (!hp) 1245 goto clear_hash_noput; 1246 req = hp->md5_req; 1247 1248 if (crypto_ahash_init(req)) 1249 goto clear_hash; 1250 1251 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) 1252 goto clear_hash; 1253 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1254 goto clear_hash; 1255 if (tcp_md5_hash_key(hp, key)) 1256 goto clear_hash; 1257 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1258 if (crypto_ahash_final(req)) 1259 goto clear_hash; 1260 1261 tcp_put_md5sig_pool(); 1262 return 0; 1263 1264 clear_hash: 1265 tcp_put_md5sig_pool(); 1266 clear_hash_noput: 1267 memset(md5_hash, 0, 16); 1268 return 1; 1269 } 1270 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1271 1272 #endif 1273 1274 /* Called with rcu_read_lock() */ 1275 static bool tcp_v4_inbound_md5_hash(const struct sock *sk, 1276 const struct sk_buff *skb) 1277 { 1278 #ifdef CONFIG_TCP_MD5SIG 1279 /* 1280 * This gets called for each TCP segment that arrives 1281 * so we want to be efficient. 1282 * We have 3 drop cases: 1283 * o No MD5 hash and one expected. 1284 * o MD5 hash and we're not expecting one. 1285 * o MD5 hash and its wrong. 1286 */ 1287 const __u8 *hash_location = NULL; 1288 struct tcp_md5sig_key *hash_expected; 1289 const struct iphdr *iph = ip_hdr(skb); 1290 const struct tcphdr *th = tcp_hdr(skb); 1291 int genhash; 1292 unsigned char newhash[16]; 1293 1294 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1295 AF_INET); 1296 hash_location = tcp_parse_md5sig_option(th); 1297 1298 /* We've parsed the options - do we have a hash? */ 1299 if (!hash_expected && !hash_location) 1300 return false; 1301 1302 if (hash_expected && !hash_location) { 1303 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1304 return true; 1305 } 1306 1307 if (!hash_expected && hash_location) { 1308 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1309 return true; 1310 } 1311 1312 /* Okay, so this is hash_expected and hash_location - 1313 * so we need to calculate the checksum. 1314 */ 1315 genhash = tcp_v4_md5_hash_skb(newhash, 1316 hash_expected, 1317 NULL, skb); 1318 1319 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1320 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 1321 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1322 &iph->saddr, ntohs(th->source), 1323 &iph->daddr, ntohs(th->dest), 1324 genhash ? " tcp_v4_calc_md5_hash failed" 1325 : ""); 1326 return true; 1327 } 1328 return false; 1329 #endif 1330 return false; 1331 } 1332 1333 static void tcp_v4_init_req(struct request_sock *req, 1334 const struct sock *sk_listener, 1335 struct sk_buff *skb) 1336 { 1337 struct inet_request_sock *ireq = inet_rsk(req); 1338 struct net *net = sock_net(sk_listener); 1339 1340 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1341 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1342 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); 1343 } 1344 1345 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1346 struct flowi *fl, 1347 const struct request_sock *req) 1348 { 1349 return inet_csk_route_req(sk, &fl->u.ip4, req); 1350 } 1351 1352 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1353 .family = PF_INET, 1354 .obj_size = sizeof(struct tcp_request_sock), 1355 .rtx_syn_ack = tcp_rtx_synack, 1356 .send_ack = tcp_v4_reqsk_send_ack, 1357 .destructor = tcp_v4_reqsk_destructor, 1358 .send_reset = tcp_v4_send_reset, 1359 .syn_ack_timeout = tcp_syn_ack_timeout, 1360 }; 1361 1362 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1363 .mss_clamp = TCP_MSS_DEFAULT, 1364 #ifdef CONFIG_TCP_MD5SIG 1365 .req_md5_lookup = tcp_v4_md5_lookup, 1366 .calc_md5_hash = tcp_v4_md5_hash_skb, 1367 #endif 1368 .init_req = tcp_v4_init_req, 1369 #ifdef CONFIG_SYN_COOKIES 1370 .cookie_init_seq = cookie_v4_init_sequence, 1371 #endif 1372 .route_req = tcp_v4_route_req, 1373 .init_seq = tcp_v4_init_seq, 1374 .init_ts_off = tcp_v4_init_ts_off, 1375 .send_synack = tcp_v4_send_synack, 1376 }; 1377 1378 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1379 { 1380 /* Never answer to SYNs send to broadcast or multicast */ 1381 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1382 goto drop; 1383 1384 return tcp_conn_request(&tcp_request_sock_ops, 1385 &tcp_request_sock_ipv4_ops, sk, skb); 1386 1387 drop: 1388 tcp_listendrop(sk); 1389 return 0; 1390 } 1391 EXPORT_SYMBOL(tcp_v4_conn_request); 1392 1393 1394 /* 1395 * The three way handshake has completed - we got a valid synack - 1396 * now create the new socket. 1397 */ 1398 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1399 struct request_sock *req, 1400 struct dst_entry *dst, 1401 struct request_sock *req_unhash, 1402 bool *own_req) 1403 { 1404 struct inet_request_sock *ireq; 1405 struct inet_sock *newinet; 1406 struct tcp_sock *newtp; 1407 struct sock *newsk; 1408 #ifdef CONFIG_TCP_MD5SIG 1409 struct tcp_md5sig_key *key; 1410 #endif 1411 struct ip_options_rcu *inet_opt; 1412 1413 if (sk_acceptq_is_full(sk)) 1414 goto exit_overflow; 1415 1416 newsk = tcp_create_openreq_child(sk, req, skb); 1417 if (!newsk) 1418 goto exit_nonewsk; 1419 1420 newsk->sk_gso_type = SKB_GSO_TCPV4; 1421 inet_sk_rx_dst_set(newsk, skb); 1422 1423 newtp = tcp_sk(newsk); 1424 newinet = inet_sk(newsk); 1425 ireq = inet_rsk(req); 1426 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1427 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1428 newsk->sk_bound_dev_if = ireq->ir_iif; 1429 newinet->inet_saddr = ireq->ir_loc_addr; 1430 inet_opt = rcu_dereference(ireq->ireq_opt); 1431 RCU_INIT_POINTER(newinet->inet_opt, inet_opt); 1432 newinet->mc_index = inet_iif(skb); 1433 newinet->mc_ttl = ip_hdr(skb)->ttl; 1434 newinet->rcv_tos = ip_hdr(skb)->tos; 1435 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1436 if (inet_opt) 1437 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1438 newinet->inet_id = newtp->write_seq ^ jiffies; 1439 1440 if (!dst) { 1441 dst = inet_csk_route_child_sock(sk, newsk, req); 1442 if (!dst) 1443 goto put_and_exit; 1444 } else { 1445 /* syncookie case : see end of cookie_v4_check() */ 1446 } 1447 sk_setup_caps(newsk, dst); 1448 1449 tcp_ca_openreq_child(newsk, dst); 1450 1451 tcp_sync_mss(newsk, dst_mtu(dst)); 1452 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); 1453 1454 tcp_initialize_rcv_mss(newsk); 1455 1456 #ifdef CONFIG_TCP_MD5SIG 1457 /* Copy over the MD5 key from the original socket */ 1458 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1459 AF_INET); 1460 if (key) { 1461 /* 1462 * We're using one, so create a matching key 1463 * on the newsk structure. If we fail to get 1464 * memory, then we end up not copying the key 1465 * across. Shucks. 1466 */ 1467 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1468 AF_INET, 32, key->key, key->keylen, GFP_ATOMIC); 1469 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1470 } 1471 #endif 1472 1473 if (__inet_inherit_port(sk, newsk) < 0) 1474 goto put_and_exit; 1475 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash)); 1476 if (likely(*own_req)) { 1477 tcp_move_syn(newtp, req); 1478 ireq->ireq_opt = NULL; 1479 } else { 1480 newinet->inet_opt = NULL; 1481 } 1482 return newsk; 1483 1484 exit_overflow: 1485 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1486 exit_nonewsk: 1487 dst_release(dst); 1488 exit: 1489 tcp_listendrop(sk); 1490 return NULL; 1491 put_and_exit: 1492 newinet->inet_opt = NULL; 1493 inet_csk_prepare_forced_close(newsk); 1494 tcp_done(newsk); 1495 goto exit; 1496 } 1497 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1498 1499 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1500 { 1501 #ifdef CONFIG_SYN_COOKIES 1502 const struct tcphdr *th = tcp_hdr(skb); 1503 1504 if (!th->syn) 1505 sk = cookie_v4_check(sk, skb); 1506 #endif 1507 return sk; 1508 } 1509 1510 /* The socket must have it's spinlock held when we get 1511 * here, unless it is a TCP_LISTEN socket. 1512 * 1513 * We have a potential double-lock case here, so even when 1514 * doing backlog processing we use the BH locking scheme. 1515 * This is because we cannot sleep with the original spinlock 1516 * held. 1517 */ 1518 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1519 { 1520 struct sock *rsk; 1521 1522 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1523 struct dst_entry *dst = sk->sk_rx_dst; 1524 1525 sock_rps_save_rxhash(sk, skb); 1526 sk_mark_napi_id(sk, skb); 1527 if (dst) { 1528 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1529 !dst->ops->check(dst, 0)) { 1530 dst_release(dst); 1531 sk->sk_rx_dst = NULL; 1532 } 1533 } 1534 tcp_rcv_established(sk, skb); 1535 return 0; 1536 } 1537 1538 if (tcp_checksum_complete(skb)) 1539 goto csum_err; 1540 1541 if (sk->sk_state == TCP_LISTEN) { 1542 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1543 1544 if (!nsk) 1545 goto discard; 1546 if (nsk != sk) { 1547 if (tcp_child_process(sk, nsk, skb)) { 1548 rsk = nsk; 1549 goto reset; 1550 } 1551 return 0; 1552 } 1553 } else 1554 sock_rps_save_rxhash(sk, skb); 1555 1556 if (tcp_rcv_state_process(sk, skb)) { 1557 rsk = sk; 1558 goto reset; 1559 } 1560 return 0; 1561 1562 reset: 1563 tcp_v4_send_reset(rsk, skb); 1564 discard: 1565 kfree_skb(skb); 1566 /* Be careful here. If this function gets more complicated and 1567 * gcc suffers from register pressure on the x86, sk (in %ebx) 1568 * might be destroyed here. This current version compiles correctly, 1569 * but you have been warned. 1570 */ 1571 return 0; 1572 1573 csum_err: 1574 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1575 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1576 goto discard; 1577 } 1578 EXPORT_SYMBOL(tcp_v4_do_rcv); 1579 1580 int tcp_v4_early_demux(struct sk_buff *skb) 1581 { 1582 const struct iphdr *iph; 1583 const struct tcphdr *th; 1584 struct sock *sk; 1585 1586 if (skb->pkt_type != PACKET_HOST) 1587 return 0; 1588 1589 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1590 return 0; 1591 1592 iph = ip_hdr(skb); 1593 th = tcp_hdr(skb); 1594 1595 if (th->doff < sizeof(struct tcphdr) / 4) 1596 return 0; 1597 1598 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1599 iph->saddr, th->source, 1600 iph->daddr, ntohs(th->dest), 1601 skb->skb_iif, inet_sdif(skb)); 1602 if (sk) { 1603 skb->sk = sk; 1604 skb->destructor = sock_edemux; 1605 if (sk_fullsock(sk)) { 1606 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst); 1607 1608 if (dst) 1609 dst = dst_check(dst, 0); 1610 if (dst && 1611 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1612 skb_dst_set_noref(skb, dst); 1613 } 1614 } 1615 return 0; 1616 } 1617 1618 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb) 1619 { 1620 u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf; 1621 1622 /* Only socket owner can try to collapse/prune rx queues 1623 * to reduce memory overhead, so add a little headroom here. 1624 * Few sockets backlog are possibly concurrently non empty. 1625 */ 1626 limit += 64*1024; 1627 1628 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 1629 * we can fix skb->truesize to its real value to avoid future drops. 1630 * This is valid because skb is not yet charged to the socket. 1631 * It has been noticed pure SACK packets were sometimes dropped 1632 * (if cooked by drivers without copybreak feature). 1633 */ 1634 skb_condense(skb); 1635 1636 if (unlikely(sk_add_backlog(sk, skb, limit))) { 1637 bh_unlock_sock(sk); 1638 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 1639 return true; 1640 } 1641 return false; 1642 } 1643 EXPORT_SYMBOL(tcp_add_backlog); 1644 1645 int tcp_filter(struct sock *sk, struct sk_buff *skb) 1646 { 1647 struct tcphdr *th = (struct tcphdr *)skb->data; 1648 unsigned int eaten = skb->len; 1649 int err; 1650 1651 err = sk_filter_trim_cap(sk, skb, th->doff * 4); 1652 if (!err) { 1653 eaten -= skb->len; 1654 TCP_SKB_CB(skb)->end_seq -= eaten; 1655 } 1656 return err; 1657 } 1658 EXPORT_SYMBOL(tcp_filter); 1659 1660 static void tcp_v4_restore_cb(struct sk_buff *skb) 1661 { 1662 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, 1663 sizeof(struct inet_skb_parm)); 1664 } 1665 1666 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, 1667 const struct tcphdr *th) 1668 { 1669 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1670 * barrier() makes sure compiler wont play fool^Waliasing games. 1671 */ 1672 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1673 sizeof(struct inet_skb_parm)); 1674 barrier(); 1675 1676 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1677 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1678 skb->len - th->doff * 4); 1679 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1680 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1681 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1682 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1683 TCP_SKB_CB(skb)->sacked = 0; 1684 TCP_SKB_CB(skb)->has_rxtstamp = 1685 skb->tstamp || skb_hwtstamps(skb)->hwtstamp; 1686 } 1687 1688 /* 1689 * From tcp_input.c 1690 */ 1691 1692 int tcp_v4_rcv(struct sk_buff *skb) 1693 { 1694 struct net *net = dev_net(skb->dev); 1695 int sdif = inet_sdif(skb); 1696 const struct iphdr *iph; 1697 const struct tcphdr *th; 1698 bool refcounted; 1699 struct sock *sk; 1700 int ret; 1701 1702 if (skb->pkt_type != PACKET_HOST) 1703 goto discard_it; 1704 1705 /* Count it even if it's bad */ 1706 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 1707 1708 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1709 goto discard_it; 1710 1711 th = (const struct tcphdr *)skb->data; 1712 1713 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) 1714 goto bad_packet; 1715 if (!pskb_may_pull(skb, th->doff * 4)) 1716 goto discard_it; 1717 1718 /* An explanation is required here, I think. 1719 * Packet length and doff are validated by header prediction, 1720 * provided case of th->doff==0 is eliminated. 1721 * So, we defer the checks. */ 1722 1723 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 1724 goto csum_error; 1725 1726 th = (const struct tcphdr *)skb->data; 1727 iph = ip_hdr(skb); 1728 lookup: 1729 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source, 1730 th->dest, sdif, &refcounted); 1731 if (!sk) 1732 goto no_tcp_socket; 1733 1734 process: 1735 if (sk->sk_state == TCP_TIME_WAIT) 1736 goto do_time_wait; 1737 1738 if (sk->sk_state == TCP_NEW_SYN_RECV) { 1739 struct request_sock *req = inet_reqsk(sk); 1740 bool req_stolen = false; 1741 struct sock *nsk; 1742 1743 sk = req->rsk_listener; 1744 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) { 1745 sk_drops_add(sk, skb); 1746 reqsk_put(req); 1747 goto discard_it; 1748 } 1749 if (tcp_checksum_complete(skb)) { 1750 reqsk_put(req); 1751 goto csum_error; 1752 } 1753 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1754 inet_csk_reqsk_queue_drop_and_put(sk, req); 1755 goto lookup; 1756 } 1757 /* We own a reference on the listener, increase it again 1758 * as we might lose it too soon. 1759 */ 1760 sock_hold(sk); 1761 refcounted = true; 1762 nsk = NULL; 1763 if (!tcp_filter(sk, skb)) { 1764 th = (const struct tcphdr *)skb->data; 1765 iph = ip_hdr(skb); 1766 tcp_v4_fill_cb(skb, iph, th); 1767 nsk = tcp_check_req(sk, skb, req, false, &req_stolen); 1768 } 1769 if (!nsk) { 1770 reqsk_put(req); 1771 if (req_stolen) { 1772 /* Another cpu got exclusive access to req 1773 * and created a full blown socket. 1774 * Try to feed this packet to this socket 1775 * instead of discarding it. 1776 */ 1777 tcp_v4_restore_cb(skb); 1778 sock_put(sk); 1779 goto lookup; 1780 } 1781 goto discard_and_relse; 1782 } 1783 if (nsk == sk) { 1784 reqsk_put(req); 1785 tcp_v4_restore_cb(skb); 1786 } else if (tcp_child_process(sk, nsk, skb)) { 1787 tcp_v4_send_reset(nsk, skb); 1788 goto discard_and_relse; 1789 } else { 1790 sock_put(sk); 1791 return 0; 1792 } 1793 } 1794 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1795 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 1796 goto discard_and_relse; 1797 } 1798 1799 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1800 goto discard_and_relse; 1801 1802 if (tcp_v4_inbound_md5_hash(sk, skb)) 1803 goto discard_and_relse; 1804 1805 nf_reset(skb); 1806 1807 if (tcp_filter(sk, skb)) 1808 goto discard_and_relse; 1809 th = (const struct tcphdr *)skb->data; 1810 iph = ip_hdr(skb); 1811 tcp_v4_fill_cb(skb, iph, th); 1812 1813 skb->dev = NULL; 1814 1815 if (sk->sk_state == TCP_LISTEN) { 1816 ret = tcp_v4_do_rcv(sk, skb); 1817 goto put_and_return; 1818 } 1819 1820 sk_incoming_cpu_update(sk); 1821 1822 bh_lock_sock_nested(sk); 1823 tcp_segs_in(tcp_sk(sk), skb); 1824 ret = 0; 1825 if (!sock_owned_by_user(sk)) { 1826 ret = tcp_v4_do_rcv(sk, skb); 1827 } else if (tcp_add_backlog(sk, skb)) { 1828 goto discard_and_relse; 1829 } 1830 bh_unlock_sock(sk); 1831 1832 put_and_return: 1833 if (refcounted) 1834 sock_put(sk); 1835 1836 return ret; 1837 1838 no_tcp_socket: 1839 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1840 goto discard_it; 1841 1842 tcp_v4_fill_cb(skb, iph, th); 1843 1844 if (tcp_checksum_complete(skb)) { 1845 csum_error: 1846 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 1847 bad_packet: 1848 __TCP_INC_STATS(net, TCP_MIB_INERRS); 1849 } else { 1850 tcp_v4_send_reset(NULL, skb); 1851 } 1852 1853 discard_it: 1854 /* Discard frame. */ 1855 kfree_skb(skb); 1856 return 0; 1857 1858 discard_and_relse: 1859 sk_drops_add(sk, skb); 1860 if (refcounted) 1861 sock_put(sk); 1862 goto discard_it; 1863 1864 do_time_wait: 1865 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 1866 inet_twsk_put(inet_twsk(sk)); 1867 goto discard_it; 1868 } 1869 1870 tcp_v4_fill_cb(skb, iph, th); 1871 1872 if (tcp_checksum_complete(skb)) { 1873 inet_twsk_put(inet_twsk(sk)); 1874 goto csum_error; 1875 } 1876 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 1877 case TCP_TW_SYN: { 1878 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 1879 &tcp_hashinfo, skb, 1880 __tcp_hdrlen(th), 1881 iph->saddr, th->source, 1882 iph->daddr, th->dest, 1883 inet_iif(skb), 1884 sdif); 1885 if (sk2) { 1886 inet_twsk_deschedule_put(inet_twsk(sk)); 1887 sk = sk2; 1888 tcp_v4_restore_cb(skb); 1889 refcounted = false; 1890 goto process; 1891 } 1892 } 1893 /* to ACK */ 1894 /* fall through */ 1895 case TCP_TW_ACK: 1896 tcp_v4_timewait_ack(sk, skb); 1897 break; 1898 case TCP_TW_RST: 1899 tcp_v4_send_reset(sk, skb); 1900 inet_twsk_deschedule_put(inet_twsk(sk)); 1901 goto discard_it; 1902 case TCP_TW_SUCCESS:; 1903 } 1904 goto discard_it; 1905 } 1906 1907 static struct timewait_sock_ops tcp_timewait_sock_ops = { 1908 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 1909 .twsk_unique = tcp_twsk_unique, 1910 .twsk_destructor= tcp_twsk_destructor, 1911 }; 1912 1913 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 1914 { 1915 struct dst_entry *dst = skb_dst(skb); 1916 1917 if (dst && dst_hold_safe(dst)) { 1918 sk->sk_rx_dst = dst; 1919 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 1920 } 1921 } 1922 EXPORT_SYMBOL(inet_sk_rx_dst_set); 1923 1924 const struct inet_connection_sock_af_ops ipv4_specific = { 1925 .queue_xmit = ip_queue_xmit, 1926 .send_check = tcp_v4_send_check, 1927 .rebuild_header = inet_sk_rebuild_header, 1928 .sk_rx_dst_set = inet_sk_rx_dst_set, 1929 .conn_request = tcp_v4_conn_request, 1930 .syn_recv_sock = tcp_v4_syn_recv_sock, 1931 .net_header_len = sizeof(struct iphdr), 1932 .setsockopt = ip_setsockopt, 1933 .getsockopt = ip_getsockopt, 1934 .addr2sockaddr = inet_csk_addr2sockaddr, 1935 .sockaddr_len = sizeof(struct sockaddr_in), 1936 #ifdef CONFIG_COMPAT 1937 .compat_setsockopt = compat_ip_setsockopt, 1938 .compat_getsockopt = compat_ip_getsockopt, 1939 #endif 1940 .mtu_reduced = tcp_v4_mtu_reduced, 1941 }; 1942 EXPORT_SYMBOL(ipv4_specific); 1943 1944 #ifdef CONFIG_TCP_MD5SIG 1945 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 1946 .md5_lookup = tcp_v4_md5_lookup, 1947 .calc_md5_hash = tcp_v4_md5_hash_skb, 1948 .md5_parse = tcp_v4_parse_md5_keys, 1949 }; 1950 #endif 1951 1952 /* NOTE: A lot of things set to zero explicitly by call to 1953 * sk_alloc() so need not be done here. 1954 */ 1955 static int tcp_v4_init_sock(struct sock *sk) 1956 { 1957 struct inet_connection_sock *icsk = inet_csk(sk); 1958 1959 tcp_init_sock(sk); 1960 1961 icsk->icsk_af_ops = &ipv4_specific; 1962 1963 #ifdef CONFIG_TCP_MD5SIG 1964 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 1965 #endif 1966 1967 return 0; 1968 } 1969 1970 void tcp_v4_destroy_sock(struct sock *sk) 1971 { 1972 struct tcp_sock *tp = tcp_sk(sk); 1973 1974 trace_tcp_destroy_sock(sk); 1975 1976 tcp_clear_xmit_timers(sk); 1977 1978 tcp_cleanup_congestion_control(sk); 1979 1980 tcp_cleanup_ulp(sk); 1981 1982 /* Cleanup up the write buffer. */ 1983 tcp_write_queue_purge(sk); 1984 1985 /* Check if we want to disable active TFO */ 1986 tcp_fastopen_active_disable_ofo_check(sk); 1987 1988 /* Cleans up our, hopefully empty, out_of_order_queue. */ 1989 skb_rbtree_purge(&tp->out_of_order_queue); 1990 1991 #ifdef CONFIG_TCP_MD5SIG 1992 /* Clean up the MD5 key list, if any */ 1993 if (tp->md5sig_info) { 1994 tcp_clear_md5_list(sk); 1995 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu); 1996 tp->md5sig_info = NULL; 1997 } 1998 #endif 1999 2000 /* Clean up a referenced TCP bind bucket. */ 2001 if (inet_csk(sk)->icsk_bind_hash) 2002 inet_put_port(sk); 2003 2004 BUG_ON(tp->fastopen_rsk); 2005 2006 /* If socket is aborted during connect operation */ 2007 tcp_free_fastopen_req(tp); 2008 tcp_fastopen_destroy_cipher(sk); 2009 tcp_saved_syn_free(tp); 2010 2011 sk_sockets_allocated_dec(sk); 2012 } 2013 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2014 2015 #ifdef CONFIG_PROC_FS 2016 /* Proc filesystem TCP sock list dumping. */ 2017 2018 /* 2019 * Get next listener socket follow cur. If cur is NULL, get first socket 2020 * starting from bucket given in st->bucket; when st->bucket is zero the 2021 * very first socket in the hash table is returned. 2022 */ 2023 static void *listening_get_next(struct seq_file *seq, void *cur) 2024 { 2025 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2026 struct tcp_iter_state *st = seq->private; 2027 struct net *net = seq_file_net(seq); 2028 struct inet_listen_hashbucket *ilb; 2029 struct sock *sk = cur; 2030 2031 if (!sk) { 2032 get_head: 2033 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2034 spin_lock(&ilb->lock); 2035 sk = sk_head(&ilb->head); 2036 st->offset = 0; 2037 goto get_sk; 2038 } 2039 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2040 ++st->num; 2041 ++st->offset; 2042 2043 sk = sk_next(sk); 2044 get_sk: 2045 sk_for_each_from(sk) { 2046 if (!net_eq(sock_net(sk), net)) 2047 continue; 2048 if (sk->sk_family == afinfo->family) 2049 return sk; 2050 } 2051 spin_unlock(&ilb->lock); 2052 st->offset = 0; 2053 if (++st->bucket < INET_LHTABLE_SIZE) 2054 goto get_head; 2055 return NULL; 2056 } 2057 2058 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2059 { 2060 struct tcp_iter_state *st = seq->private; 2061 void *rc; 2062 2063 st->bucket = 0; 2064 st->offset = 0; 2065 rc = listening_get_next(seq, NULL); 2066 2067 while (rc && *pos) { 2068 rc = listening_get_next(seq, rc); 2069 --*pos; 2070 } 2071 return rc; 2072 } 2073 2074 static inline bool empty_bucket(const struct tcp_iter_state *st) 2075 { 2076 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); 2077 } 2078 2079 /* 2080 * Get first established socket starting from bucket given in st->bucket. 2081 * If st->bucket is zero, the very first socket in the hash is returned. 2082 */ 2083 static void *established_get_first(struct seq_file *seq) 2084 { 2085 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2086 struct tcp_iter_state *st = seq->private; 2087 struct net *net = seq_file_net(seq); 2088 void *rc = NULL; 2089 2090 st->offset = 0; 2091 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 2092 struct sock *sk; 2093 struct hlist_nulls_node *node; 2094 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 2095 2096 /* Lockless fast path for the common case of empty buckets */ 2097 if (empty_bucket(st)) 2098 continue; 2099 2100 spin_lock_bh(lock); 2101 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 2102 if (sk->sk_family != afinfo->family || 2103 !net_eq(sock_net(sk), net)) { 2104 continue; 2105 } 2106 rc = sk; 2107 goto out; 2108 } 2109 spin_unlock_bh(lock); 2110 } 2111 out: 2112 return rc; 2113 } 2114 2115 static void *established_get_next(struct seq_file *seq, void *cur) 2116 { 2117 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2118 struct sock *sk = cur; 2119 struct hlist_nulls_node *node; 2120 struct tcp_iter_state *st = seq->private; 2121 struct net *net = seq_file_net(seq); 2122 2123 ++st->num; 2124 ++st->offset; 2125 2126 sk = sk_nulls_next(sk); 2127 2128 sk_nulls_for_each_from(sk, node) { 2129 if (sk->sk_family == afinfo->family && 2130 net_eq(sock_net(sk), net)) 2131 return sk; 2132 } 2133 2134 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2135 ++st->bucket; 2136 return established_get_first(seq); 2137 } 2138 2139 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2140 { 2141 struct tcp_iter_state *st = seq->private; 2142 void *rc; 2143 2144 st->bucket = 0; 2145 rc = established_get_first(seq); 2146 2147 while (rc && pos) { 2148 rc = established_get_next(seq, rc); 2149 --pos; 2150 } 2151 return rc; 2152 } 2153 2154 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2155 { 2156 void *rc; 2157 struct tcp_iter_state *st = seq->private; 2158 2159 st->state = TCP_SEQ_STATE_LISTENING; 2160 rc = listening_get_idx(seq, &pos); 2161 2162 if (!rc) { 2163 st->state = TCP_SEQ_STATE_ESTABLISHED; 2164 rc = established_get_idx(seq, pos); 2165 } 2166 2167 return rc; 2168 } 2169 2170 static void *tcp_seek_last_pos(struct seq_file *seq) 2171 { 2172 struct tcp_iter_state *st = seq->private; 2173 int offset = st->offset; 2174 int orig_num = st->num; 2175 void *rc = NULL; 2176 2177 switch (st->state) { 2178 case TCP_SEQ_STATE_LISTENING: 2179 if (st->bucket >= INET_LHTABLE_SIZE) 2180 break; 2181 st->state = TCP_SEQ_STATE_LISTENING; 2182 rc = listening_get_next(seq, NULL); 2183 while (offset-- && rc) 2184 rc = listening_get_next(seq, rc); 2185 if (rc) 2186 break; 2187 st->bucket = 0; 2188 st->state = TCP_SEQ_STATE_ESTABLISHED; 2189 /* Fallthrough */ 2190 case TCP_SEQ_STATE_ESTABLISHED: 2191 if (st->bucket > tcp_hashinfo.ehash_mask) 2192 break; 2193 rc = established_get_first(seq); 2194 while (offset-- && rc) 2195 rc = established_get_next(seq, rc); 2196 } 2197 2198 st->num = orig_num; 2199 2200 return rc; 2201 } 2202 2203 void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2204 { 2205 struct tcp_iter_state *st = seq->private; 2206 void *rc; 2207 2208 if (*pos && *pos == st->last_pos) { 2209 rc = tcp_seek_last_pos(seq); 2210 if (rc) 2211 goto out; 2212 } 2213 2214 st->state = TCP_SEQ_STATE_LISTENING; 2215 st->num = 0; 2216 st->bucket = 0; 2217 st->offset = 0; 2218 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2219 2220 out: 2221 st->last_pos = *pos; 2222 return rc; 2223 } 2224 EXPORT_SYMBOL(tcp_seq_start); 2225 2226 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2227 { 2228 struct tcp_iter_state *st = seq->private; 2229 void *rc = NULL; 2230 2231 if (v == SEQ_START_TOKEN) { 2232 rc = tcp_get_idx(seq, 0); 2233 goto out; 2234 } 2235 2236 switch (st->state) { 2237 case TCP_SEQ_STATE_LISTENING: 2238 rc = listening_get_next(seq, v); 2239 if (!rc) { 2240 st->state = TCP_SEQ_STATE_ESTABLISHED; 2241 st->bucket = 0; 2242 st->offset = 0; 2243 rc = established_get_first(seq); 2244 } 2245 break; 2246 case TCP_SEQ_STATE_ESTABLISHED: 2247 rc = established_get_next(seq, v); 2248 break; 2249 } 2250 out: 2251 ++*pos; 2252 st->last_pos = *pos; 2253 return rc; 2254 } 2255 EXPORT_SYMBOL(tcp_seq_next); 2256 2257 void tcp_seq_stop(struct seq_file *seq, void *v) 2258 { 2259 struct tcp_iter_state *st = seq->private; 2260 2261 switch (st->state) { 2262 case TCP_SEQ_STATE_LISTENING: 2263 if (v != SEQ_START_TOKEN) 2264 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock); 2265 break; 2266 case TCP_SEQ_STATE_ESTABLISHED: 2267 if (v) 2268 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2269 break; 2270 } 2271 } 2272 EXPORT_SYMBOL(tcp_seq_stop); 2273 2274 static void get_openreq4(const struct request_sock *req, 2275 struct seq_file *f, int i) 2276 { 2277 const struct inet_request_sock *ireq = inet_rsk(req); 2278 long delta = req->rsk_timer.expires - jiffies; 2279 2280 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2281 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2282 i, 2283 ireq->ir_loc_addr, 2284 ireq->ir_num, 2285 ireq->ir_rmt_addr, 2286 ntohs(ireq->ir_rmt_port), 2287 TCP_SYN_RECV, 2288 0, 0, /* could print option size, but that is af dependent. */ 2289 1, /* timers active (only the expire timer) */ 2290 jiffies_delta_to_clock_t(delta), 2291 req->num_timeout, 2292 from_kuid_munged(seq_user_ns(f), 2293 sock_i_uid(req->rsk_listener)), 2294 0, /* non standard timer */ 2295 0, /* open_requests have no inode */ 2296 0, 2297 req); 2298 } 2299 2300 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2301 { 2302 int timer_active; 2303 unsigned long timer_expires; 2304 const struct tcp_sock *tp = tcp_sk(sk); 2305 const struct inet_connection_sock *icsk = inet_csk(sk); 2306 const struct inet_sock *inet = inet_sk(sk); 2307 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2308 __be32 dest = inet->inet_daddr; 2309 __be32 src = inet->inet_rcv_saddr; 2310 __u16 destp = ntohs(inet->inet_dport); 2311 __u16 srcp = ntohs(inet->inet_sport); 2312 int rx_queue; 2313 int state; 2314 2315 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2316 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2317 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2318 timer_active = 1; 2319 timer_expires = icsk->icsk_timeout; 2320 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2321 timer_active = 4; 2322 timer_expires = icsk->icsk_timeout; 2323 } else if (timer_pending(&sk->sk_timer)) { 2324 timer_active = 2; 2325 timer_expires = sk->sk_timer.expires; 2326 } else { 2327 timer_active = 0; 2328 timer_expires = jiffies; 2329 } 2330 2331 state = inet_sk_state_load(sk); 2332 if (state == TCP_LISTEN) 2333 rx_queue = sk->sk_ack_backlog; 2334 else 2335 /* Because we don't lock the socket, 2336 * we might find a transient negative value. 2337 */ 2338 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2339 2340 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2341 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2342 i, src, srcp, dest, destp, state, 2343 tp->write_seq - tp->snd_una, 2344 rx_queue, 2345 timer_active, 2346 jiffies_delta_to_clock_t(timer_expires - jiffies), 2347 icsk->icsk_retransmits, 2348 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2349 icsk->icsk_probes_out, 2350 sock_i_ino(sk), 2351 refcount_read(&sk->sk_refcnt), sk, 2352 jiffies_to_clock_t(icsk->icsk_rto), 2353 jiffies_to_clock_t(icsk->icsk_ack.ato), 2354 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2355 tp->snd_cwnd, 2356 state == TCP_LISTEN ? 2357 fastopenq->max_qlen : 2358 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2359 } 2360 2361 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2362 struct seq_file *f, int i) 2363 { 2364 long delta = tw->tw_timer.expires - jiffies; 2365 __be32 dest, src; 2366 __u16 destp, srcp; 2367 2368 dest = tw->tw_daddr; 2369 src = tw->tw_rcv_saddr; 2370 destp = ntohs(tw->tw_dport); 2371 srcp = ntohs(tw->tw_sport); 2372 2373 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2374 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2375 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2376 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2377 refcount_read(&tw->tw_refcnt), tw); 2378 } 2379 2380 #define TMPSZ 150 2381 2382 static int tcp4_seq_show(struct seq_file *seq, void *v) 2383 { 2384 struct tcp_iter_state *st; 2385 struct sock *sk = v; 2386 2387 seq_setwidth(seq, TMPSZ - 1); 2388 if (v == SEQ_START_TOKEN) { 2389 seq_puts(seq, " sl local_address rem_address st tx_queue " 2390 "rx_queue tr tm->when retrnsmt uid timeout " 2391 "inode"); 2392 goto out; 2393 } 2394 st = seq->private; 2395 2396 if (sk->sk_state == TCP_TIME_WAIT) 2397 get_timewait4_sock(v, seq, st->num); 2398 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2399 get_openreq4(v, seq, st->num); 2400 else 2401 get_tcp4_sock(v, seq, st->num); 2402 out: 2403 seq_pad(seq, '\n'); 2404 return 0; 2405 } 2406 2407 static const struct seq_operations tcp4_seq_ops = { 2408 .show = tcp4_seq_show, 2409 .start = tcp_seq_start, 2410 .next = tcp_seq_next, 2411 .stop = tcp_seq_stop, 2412 }; 2413 2414 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2415 .family = AF_INET, 2416 }; 2417 2418 static int __net_init tcp4_proc_init_net(struct net *net) 2419 { 2420 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, 2421 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) 2422 return -ENOMEM; 2423 return 0; 2424 } 2425 2426 static void __net_exit tcp4_proc_exit_net(struct net *net) 2427 { 2428 remove_proc_entry("tcp", net->proc_net); 2429 } 2430 2431 static struct pernet_operations tcp4_net_ops = { 2432 .init = tcp4_proc_init_net, 2433 .exit = tcp4_proc_exit_net, 2434 }; 2435 2436 int __init tcp4_proc_init(void) 2437 { 2438 return register_pernet_subsys(&tcp4_net_ops); 2439 } 2440 2441 void tcp4_proc_exit(void) 2442 { 2443 unregister_pernet_subsys(&tcp4_net_ops); 2444 } 2445 #endif /* CONFIG_PROC_FS */ 2446 2447 struct proto tcp_prot = { 2448 .name = "TCP", 2449 .owner = THIS_MODULE, 2450 .close = tcp_close, 2451 .pre_connect = tcp_v4_pre_connect, 2452 .connect = tcp_v4_connect, 2453 .disconnect = tcp_disconnect, 2454 .accept = inet_csk_accept, 2455 .ioctl = tcp_ioctl, 2456 .init = tcp_v4_init_sock, 2457 .destroy = tcp_v4_destroy_sock, 2458 .shutdown = tcp_shutdown, 2459 .setsockopt = tcp_setsockopt, 2460 .getsockopt = tcp_getsockopt, 2461 .keepalive = tcp_set_keepalive, 2462 .recvmsg = tcp_recvmsg, 2463 .sendmsg = tcp_sendmsg, 2464 .sendpage = tcp_sendpage, 2465 .backlog_rcv = tcp_v4_do_rcv, 2466 .release_cb = tcp_release_cb, 2467 .hash = inet_hash, 2468 .unhash = inet_unhash, 2469 .get_port = inet_csk_get_port, 2470 .enter_memory_pressure = tcp_enter_memory_pressure, 2471 .leave_memory_pressure = tcp_leave_memory_pressure, 2472 .stream_memory_free = tcp_stream_memory_free, 2473 .sockets_allocated = &tcp_sockets_allocated, 2474 .orphan_count = &tcp_orphan_count, 2475 .memory_allocated = &tcp_memory_allocated, 2476 .memory_pressure = &tcp_memory_pressure, 2477 .sysctl_mem = sysctl_tcp_mem, 2478 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 2479 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 2480 .max_header = MAX_TCP_HEADER, 2481 .obj_size = sizeof(struct tcp_sock), 2482 .slab_flags = SLAB_TYPESAFE_BY_RCU, 2483 .twsk_prot = &tcp_timewait_sock_ops, 2484 .rsk_prot = &tcp_request_sock_ops, 2485 .h.hashinfo = &tcp_hashinfo, 2486 .no_autobind = true, 2487 #ifdef CONFIG_COMPAT 2488 .compat_setsockopt = compat_tcp_setsockopt, 2489 .compat_getsockopt = compat_tcp_getsockopt, 2490 #endif 2491 .diag_destroy = tcp_abort, 2492 }; 2493 EXPORT_SYMBOL(tcp_prot); 2494 2495 static void __net_exit tcp_sk_exit(struct net *net) 2496 { 2497 int cpu; 2498 2499 module_put(net->ipv4.tcp_congestion_control->owner); 2500 2501 for_each_possible_cpu(cpu) 2502 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu)); 2503 free_percpu(net->ipv4.tcp_sk); 2504 } 2505 2506 static int __net_init tcp_sk_init(struct net *net) 2507 { 2508 int res, cpu, cnt; 2509 2510 net->ipv4.tcp_sk = alloc_percpu(struct sock *); 2511 if (!net->ipv4.tcp_sk) 2512 return -ENOMEM; 2513 2514 for_each_possible_cpu(cpu) { 2515 struct sock *sk; 2516 2517 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 2518 IPPROTO_TCP, net); 2519 if (res) 2520 goto fail; 2521 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 2522 2523 /* Please enforce IP_DF and IPID==0 for RST and 2524 * ACK sent in SYN-RECV and TIME-WAIT state. 2525 */ 2526 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO; 2527 2528 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk; 2529 } 2530 2531 net->ipv4.sysctl_tcp_ecn = 2; 2532 net->ipv4.sysctl_tcp_ecn_fallback = 1; 2533 2534 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 2535 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 2536 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 2537 2538 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 2539 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 2540 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 2541 2542 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 2543 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 2544 net->ipv4.sysctl_tcp_syncookies = 1; 2545 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 2546 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 2547 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 2548 net->ipv4.sysctl_tcp_orphan_retries = 0; 2549 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 2550 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 2551 net->ipv4.sysctl_tcp_tw_reuse = 2; 2552 2553 cnt = tcp_hashinfo.ehash_mask + 1; 2554 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 2555 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo; 2556 2557 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 256); 2558 net->ipv4.sysctl_tcp_sack = 1; 2559 net->ipv4.sysctl_tcp_window_scaling = 1; 2560 net->ipv4.sysctl_tcp_timestamps = 1; 2561 net->ipv4.sysctl_tcp_early_retrans = 3; 2562 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; 2563 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ 2564 net->ipv4.sysctl_tcp_retrans_collapse = 1; 2565 net->ipv4.sysctl_tcp_max_reordering = 300; 2566 net->ipv4.sysctl_tcp_dsack = 1; 2567 net->ipv4.sysctl_tcp_app_win = 31; 2568 net->ipv4.sysctl_tcp_adv_win_scale = 1; 2569 net->ipv4.sysctl_tcp_frto = 2; 2570 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; 2571 /* This limits the percentage of the congestion window which we 2572 * will allow a single TSO frame to consume. Building TSO frames 2573 * which are too large can cause TCP streams to be bursty. 2574 */ 2575 net->ipv4.sysctl_tcp_tso_win_divisor = 3; 2576 /* Default TSQ limit of four TSO segments */ 2577 net->ipv4.sysctl_tcp_limit_output_bytes = 262144; 2578 /* rfc5961 challenge ack rate limiting */ 2579 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000; 2580 net->ipv4.sysctl_tcp_min_tso_segs = 2; 2581 net->ipv4.sysctl_tcp_min_rtt_wlen = 300; 2582 net->ipv4.sysctl_tcp_autocorking = 1; 2583 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; 2584 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; 2585 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; 2586 if (net != &init_net) { 2587 memcpy(net->ipv4.sysctl_tcp_rmem, 2588 init_net.ipv4.sysctl_tcp_rmem, 2589 sizeof(init_net.ipv4.sysctl_tcp_rmem)); 2590 memcpy(net->ipv4.sysctl_tcp_wmem, 2591 init_net.ipv4.sysctl_tcp_wmem, 2592 sizeof(init_net.ipv4.sysctl_tcp_wmem)); 2593 } 2594 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC; 2595 net->ipv4.sysctl_tcp_comp_sack_nr = 44; 2596 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; 2597 spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock); 2598 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60; 2599 atomic_set(&net->ipv4.tfo_active_disable_times, 0); 2600 2601 /* Reno is always built in */ 2602 if (!net_eq(net, &init_net) && 2603 try_module_get(init_net.ipv4.tcp_congestion_control->owner)) 2604 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; 2605 else 2606 net->ipv4.tcp_congestion_control = &tcp_reno; 2607 2608 return 0; 2609 fail: 2610 tcp_sk_exit(net); 2611 2612 return res; 2613 } 2614 2615 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2616 { 2617 struct net *net; 2618 2619 inet_twsk_purge(&tcp_hashinfo, AF_INET); 2620 2621 list_for_each_entry(net, net_exit_list, exit_list) 2622 tcp_fastopen_ctx_destroy(net); 2623 } 2624 2625 static struct pernet_operations __net_initdata tcp_sk_ops = { 2626 .init = tcp_sk_init, 2627 .exit = tcp_sk_exit, 2628 .exit_batch = tcp_sk_exit_batch, 2629 }; 2630 2631 void __init tcp_v4_init(void) 2632 { 2633 if (register_pernet_subsys(&tcp_sk_ops)) 2634 panic("Failed to create the TCP control socket.\n"); 2635 } 2636