1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * IPv4 specific functions 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 */ 18 19 /* 20 * Changes: 21 * David S. Miller : New socket lookup architecture. 22 * This code is dedicated to John Dyson. 23 * David S. Miller : Change semantics of established hash, 24 * half is devoted to TIME_WAIT sockets 25 * and the rest go in the other half. 26 * Andi Kleen : Add support for syncookies and fixed 27 * some bugs: ip options weren't passed to 28 * the TCP layer, missed a check for an 29 * ACK bit. 30 * Andi Kleen : Implemented fast path mtu discovery. 31 * Fixed many serious bugs in the 32 * request_sock handling and moved 33 * most of it into the af independent code. 34 * Added tail drop and some other bugfixes. 35 * Added new listen semantics. 36 * Mike McLagan : Routing by source 37 * Juan Jose Ciarlante: ip_dynaddr bits 38 * Andi Kleen: various fixes. 39 * Vitaly E. Lavrov : Transparent proxy revived after year 40 * coma. 41 * Andi Kleen : Fix new listen. 42 * Andi Kleen : Fix accept error reporting. 43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 45 * a single port at the same time. 46 */ 47 48 #define pr_fmt(fmt) "TCP: " fmt 49 50 #include <linux/bottom_half.h> 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/module.h> 54 #include <linux/random.h> 55 #include <linux/cache.h> 56 #include <linux/jhash.h> 57 #include <linux/init.h> 58 #include <linux/times.h> 59 #include <linux/slab.h> 60 #include <linux/sched.h> 61 62 #include <net/net_namespace.h> 63 #include <net/icmp.h> 64 #include <net/inet_hashtables.h> 65 #include <net/tcp.h> 66 #include <net/transp_v6.h> 67 #include <net/ipv6.h> 68 #include <net/inet_common.h> 69 #include <net/timewait_sock.h> 70 #include <net/xfrm.h> 71 #include <net/secure_seq.h> 72 #include <net/busy_poll.h> 73 74 #include <linux/inet.h> 75 #include <linux/ipv6.h> 76 #include <linux/stddef.h> 77 #include <linux/proc_fs.h> 78 #include <linux/seq_file.h> 79 #include <linux/inetdevice.h> 80 #include <linux/btf_ids.h> 81 82 #include <crypto/hash.h> 83 #include <linux/scatterlist.h> 84 85 #include <trace/events/tcp.h> 86 87 #ifdef CONFIG_TCP_MD5SIG 88 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 89 __be32 daddr, __be32 saddr, const struct tcphdr *th); 90 #endif 91 92 struct inet_hashinfo tcp_hashinfo; 93 EXPORT_SYMBOL(tcp_hashinfo); 94 95 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk); 96 97 static u32 tcp_v4_init_seq(const struct sk_buff *skb) 98 { 99 return secure_tcp_seq(ip_hdr(skb)->daddr, 100 ip_hdr(skb)->saddr, 101 tcp_hdr(skb)->dest, 102 tcp_hdr(skb)->source); 103 } 104 105 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) 106 { 107 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); 108 } 109 110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 111 { 112 int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse); 113 const struct inet_timewait_sock *tw = inet_twsk(sktw); 114 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 115 struct tcp_sock *tp = tcp_sk(sk); 116 117 if (reuse == 2) { 118 /* Still does not detect *everything* that goes through 119 * lo, since we require a loopback src or dst address 120 * or direct binding to 'lo' interface. 121 */ 122 bool loopback = false; 123 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX) 124 loopback = true; 125 #if IS_ENABLED(CONFIG_IPV6) 126 if (tw->tw_family == AF_INET6) { 127 if (ipv6_addr_loopback(&tw->tw_v6_daddr) || 128 ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) || 129 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) || 130 ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr)) 131 loopback = true; 132 } else 133 #endif 134 { 135 if (ipv4_is_loopback(tw->tw_daddr) || 136 ipv4_is_loopback(tw->tw_rcv_saddr)) 137 loopback = true; 138 } 139 if (!loopback) 140 reuse = 0; 141 } 142 143 /* With PAWS, it is safe from the viewpoint 144 of data integrity. Even without PAWS it is safe provided sequence 145 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 146 147 Actually, the idea is close to VJ's one, only timestamp cache is 148 held not per host, but per port pair and TW bucket is used as state 149 holder. 150 151 If TW bucket has been already destroyed we fall back to VJ's scheme 152 and use initial timestamp retrieved from peer table. 153 */ 154 if (tcptw->tw_ts_recent_stamp && 155 (!twp || (reuse && time_after32(ktime_get_seconds(), 156 tcptw->tw_ts_recent_stamp)))) { 157 /* In case of repair and re-using TIME-WAIT sockets we still 158 * want to be sure that it is safe as above but honor the 159 * sequence numbers and time stamps set as part of the repair 160 * process. 161 * 162 * Without this check re-using a TIME-WAIT socket with TCP 163 * repair would accumulate a -1 on the repair assigned 164 * sequence number. The first time it is reused the sequence 165 * is -1, the second time -2, etc. This fixes that issue 166 * without appearing to create any others. 167 */ 168 if (likely(!tp->repair)) { 169 u32 seq = tcptw->tw_snd_nxt + 65535 + 2; 170 171 if (!seq) 172 seq = 1; 173 WRITE_ONCE(tp->write_seq, seq); 174 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 175 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 176 } 177 sock_hold(sktw); 178 return 1; 179 } 180 181 return 0; 182 } 183 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 184 185 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, 186 int addr_len) 187 { 188 /* This check is replicated from tcp_v4_connect() and intended to 189 * prevent BPF program called below from accessing bytes that are out 190 * of the bound specified by user in addr_len. 191 */ 192 if (addr_len < sizeof(struct sockaddr_in)) 193 return -EINVAL; 194 195 sock_owned_by_me(sk); 196 197 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len); 198 } 199 200 /* This will initiate an outgoing connection. */ 201 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 202 { 203 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 204 struct inet_timewait_death_row *tcp_death_row; 205 struct inet_sock *inet = inet_sk(sk); 206 struct tcp_sock *tp = tcp_sk(sk); 207 struct ip_options_rcu *inet_opt; 208 struct net *net = sock_net(sk); 209 __be16 orig_sport, orig_dport; 210 __be32 daddr, nexthop; 211 struct flowi4 *fl4; 212 struct rtable *rt; 213 int err; 214 215 if (addr_len < sizeof(struct sockaddr_in)) 216 return -EINVAL; 217 218 if (usin->sin_family != AF_INET) 219 return -EAFNOSUPPORT; 220 221 nexthop = daddr = usin->sin_addr.s_addr; 222 inet_opt = rcu_dereference_protected(inet->inet_opt, 223 lockdep_sock_is_held(sk)); 224 if (inet_opt && inet_opt->opt.srr) { 225 if (!daddr) 226 return -EINVAL; 227 nexthop = inet_opt->opt.faddr; 228 } 229 230 orig_sport = inet->inet_sport; 231 orig_dport = usin->sin_port; 232 fl4 = &inet->cork.fl.u.ip4; 233 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 234 sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport, 235 orig_dport, sk); 236 if (IS_ERR(rt)) { 237 err = PTR_ERR(rt); 238 if (err == -ENETUNREACH) 239 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 240 return err; 241 } 242 243 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 244 ip_rt_put(rt); 245 return -ENETUNREACH; 246 } 247 248 if (!inet_opt || !inet_opt->opt.srr) 249 daddr = fl4->daddr; 250 251 tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; 252 253 if (!inet->inet_saddr) { 254 err = inet_bhash2_update_saddr(sk, &fl4->saddr, AF_INET); 255 if (err) { 256 ip_rt_put(rt); 257 return err; 258 } 259 } else { 260 sk_rcv_saddr_set(sk, inet->inet_saddr); 261 } 262 263 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 264 /* Reset inherited state */ 265 tp->rx_opt.ts_recent = 0; 266 tp->rx_opt.ts_recent_stamp = 0; 267 if (likely(!tp->repair)) 268 WRITE_ONCE(tp->write_seq, 0); 269 } 270 271 inet->inet_dport = usin->sin_port; 272 sk_daddr_set(sk, daddr); 273 274 inet_csk(sk)->icsk_ext_hdr_len = 0; 275 if (inet_opt) 276 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 277 278 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 279 280 /* Socket identity is still unknown (sport may be zero). 281 * However we set state to SYN-SENT and not releasing socket 282 * lock select source port, enter ourselves into the hash tables and 283 * complete initialization after this. 284 */ 285 tcp_set_state(sk, TCP_SYN_SENT); 286 err = inet_hash_connect(tcp_death_row, sk); 287 if (err) 288 goto failure; 289 290 sk_set_txhash(sk); 291 292 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 293 inet->inet_sport, inet->inet_dport, sk); 294 if (IS_ERR(rt)) { 295 err = PTR_ERR(rt); 296 rt = NULL; 297 goto failure; 298 } 299 tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst); 300 /* OK, now commit destination to socket. */ 301 sk->sk_gso_type = SKB_GSO_TCPV4; 302 sk_setup_caps(sk, &rt->dst); 303 rt = NULL; 304 305 if (likely(!tp->repair)) { 306 if (!tp->write_seq) 307 WRITE_ONCE(tp->write_seq, 308 secure_tcp_seq(inet->inet_saddr, 309 inet->inet_daddr, 310 inet->inet_sport, 311 usin->sin_port)); 312 WRITE_ONCE(tp->tsoffset, 313 secure_tcp_ts_off(net, inet->inet_saddr, 314 inet->inet_daddr)); 315 } 316 317 atomic_set(&inet->inet_id, get_random_u16()); 318 319 if (tcp_fastopen_defer_connect(sk, &err)) 320 return err; 321 if (err) 322 goto failure; 323 324 err = tcp_connect(sk); 325 326 if (err) 327 goto failure; 328 329 return 0; 330 331 failure: 332 /* 333 * This unhashes the socket and releases the local port, 334 * if necessary. 335 */ 336 tcp_set_state(sk, TCP_CLOSE); 337 inet_bhash2_reset_saddr(sk); 338 ip_rt_put(rt); 339 sk->sk_route_caps = 0; 340 inet->inet_dport = 0; 341 return err; 342 } 343 EXPORT_SYMBOL(tcp_v4_connect); 344 345 /* 346 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 347 * It can be called through tcp_release_cb() if socket was owned by user 348 * at the time tcp_v4_err() was called to handle ICMP message. 349 */ 350 void tcp_v4_mtu_reduced(struct sock *sk) 351 { 352 struct inet_sock *inet = inet_sk(sk); 353 struct dst_entry *dst; 354 u32 mtu; 355 356 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 357 return; 358 mtu = READ_ONCE(tcp_sk(sk)->mtu_info); 359 dst = inet_csk_update_pmtu(sk, mtu); 360 if (!dst) 361 return; 362 363 /* Something is about to be wrong... Remember soft error 364 * for the case, if this connection will not able to recover. 365 */ 366 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 367 WRITE_ONCE(sk->sk_err_soft, EMSGSIZE); 368 369 mtu = dst_mtu(dst); 370 371 if (inet->pmtudisc != IP_PMTUDISC_DONT && 372 ip_sk_accept_pmtu(sk) && 373 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 374 tcp_sync_mss(sk, mtu); 375 376 /* Resend the TCP packet because it's 377 * clear that the old packet has been 378 * dropped. This is the new "fast" path mtu 379 * discovery. 380 */ 381 tcp_simple_retransmit(sk); 382 } /* else let the usual retransmit timer handle it */ 383 } 384 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 385 386 static void do_redirect(struct sk_buff *skb, struct sock *sk) 387 { 388 struct dst_entry *dst = __sk_dst_check(sk, 0); 389 390 if (dst) 391 dst->ops->redirect(dst, sk, skb); 392 } 393 394 395 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 396 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 397 { 398 struct request_sock *req = inet_reqsk(sk); 399 struct net *net = sock_net(sk); 400 401 /* ICMPs are not backlogged, hence we cannot get 402 * an established socket here. 403 */ 404 if (seq != tcp_rsk(req)->snt_isn) { 405 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 406 } else if (abort) { 407 /* 408 * Still in SYN_RECV, just remove it silently. 409 * There is no good way to pass the error to the newly 410 * created socket, and POSIX does not want network 411 * errors returned from accept(). 412 */ 413 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 414 tcp_listendrop(req->rsk_listener); 415 } 416 reqsk_put(req); 417 } 418 EXPORT_SYMBOL(tcp_req_err); 419 420 /* TCP-LD (RFC 6069) logic */ 421 void tcp_ld_RTO_revert(struct sock *sk, u32 seq) 422 { 423 struct inet_connection_sock *icsk = inet_csk(sk); 424 struct tcp_sock *tp = tcp_sk(sk); 425 struct sk_buff *skb; 426 s32 remaining; 427 u32 delta_us; 428 429 if (sock_owned_by_user(sk)) 430 return; 431 432 if (seq != tp->snd_una || !icsk->icsk_retransmits || 433 !icsk->icsk_backoff) 434 return; 435 436 skb = tcp_rtx_queue_head(sk); 437 if (WARN_ON_ONCE(!skb)) 438 return; 439 440 icsk->icsk_backoff--; 441 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT; 442 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 443 444 tcp_mstamp_refresh(tp); 445 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb)); 446 remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us); 447 448 if (remaining > 0) { 449 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 450 remaining, TCP_RTO_MAX); 451 } else { 452 /* RTO revert clocked out retransmission. 453 * Will retransmit now. 454 */ 455 tcp_retransmit_timer(sk); 456 } 457 } 458 EXPORT_SYMBOL(tcp_ld_RTO_revert); 459 460 /* 461 * This routine is called by the ICMP module when it gets some 462 * sort of error condition. If err < 0 then the socket should 463 * be closed and the error returned to the user. If err > 0 464 * it's just the icmp type << 8 | icmp code. After adjustment 465 * header points to the first 8 bytes of the tcp header. We need 466 * to find the appropriate port. 467 * 468 * The locking strategy used here is very "optimistic". When 469 * someone else accesses the socket the ICMP is just dropped 470 * and for some paths there is no check at all. 471 * A more general error queue to queue errors for later handling 472 * is probably better. 473 * 474 */ 475 476 int tcp_v4_err(struct sk_buff *skb, u32 info) 477 { 478 const struct iphdr *iph = (const struct iphdr *)skb->data; 479 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2)); 480 struct tcp_sock *tp; 481 const int type = icmp_hdr(skb)->type; 482 const int code = icmp_hdr(skb)->code; 483 struct sock *sk; 484 struct request_sock *fastopen; 485 u32 seq, snd_una; 486 int err; 487 struct net *net = dev_net(skb->dev); 488 489 sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, 490 iph->daddr, th->dest, iph->saddr, 491 ntohs(th->source), inet_iif(skb), 0); 492 if (!sk) { 493 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 494 return -ENOENT; 495 } 496 if (sk->sk_state == TCP_TIME_WAIT) { 497 /* To increase the counter of ignored icmps for TCP-AO */ 498 tcp_ao_ignore_icmp(sk, AF_INET, type, code); 499 inet_twsk_put(inet_twsk(sk)); 500 return 0; 501 } 502 seq = ntohl(th->seq); 503 if (sk->sk_state == TCP_NEW_SYN_RECV) { 504 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB || 505 type == ICMP_TIME_EXCEEDED || 506 (type == ICMP_DEST_UNREACH && 507 (code == ICMP_NET_UNREACH || 508 code == ICMP_HOST_UNREACH))); 509 return 0; 510 } 511 512 if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) { 513 sock_put(sk); 514 return 0; 515 } 516 517 bh_lock_sock(sk); 518 /* If too many ICMPs get dropped on busy 519 * servers this needs to be solved differently. 520 * We do take care of PMTU discovery (RFC1191) special case : 521 * we can receive locally generated ICMP messages while socket is held. 522 */ 523 if (sock_owned_by_user(sk)) { 524 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 525 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 526 } 527 if (sk->sk_state == TCP_CLOSE) 528 goto out; 529 530 if (static_branch_unlikely(&ip4_min_ttl)) { 531 /* min_ttl can be changed concurrently from do_ip_setsockopt() */ 532 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) { 533 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 534 goto out; 535 } 536 } 537 538 tp = tcp_sk(sk); 539 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 540 fastopen = rcu_dereference(tp->fastopen_rsk); 541 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 542 if (sk->sk_state != TCP_LISTEN && 543 !between(seq, snd_una, tp->snd_nxt)) { 544 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 545 goto out; 546 } 547 548 switch (type) { 549 case ICMP_REDIRECT: 550 if (!sock_owned_by_user(sk)) 551 do_redirect(skb, sk); 552 goto out; 553 case ICMP_SOURCE_QUENCH: 554 /* Just silently ignore these. */ 555 goto out; 556 case ICMP_PARAMETERPROB: 557 err = EPROTO; 558 break; 559 case ICMP_DEST_UNREACH: 560 if (code > NR_ICMP_UNREACH) 561 goto out; 562 563 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 564 /* We are not interested in TCP_LISTEN and open_requests 565 * (SYN-ACKs send out by Linux are always <576bytes so 566 * they should go through unfragmented). 567 */ 568 if (sk->sk_state == TCP_LISTEN) 569 goto out; 570 571 WRITE_ONCE(tp->mtu_info, info); 572 if (!sock_owned_by_user(sk)) { 573 tcp_v4_mtu_reduced(sk); 574 } else { 575 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) 576 sock_hold(sk); 577 } 578 goto out; 579 } 580 581 err = icmp_err_convert[code].errno; 582 /* check if this ICMP message allows revert of backoff. 583 * (see RFC 6069) 584 */ 585 if (!fastopen && 586 (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH)) 587 tcp_ld_RTO_revert(sk, seq); 588 break; 589 case ICMP_TIME_EXCEEDED: 590 err = EHOSTUNREACH; 591 break; 592 default: 593 goto out; 594 } 595 596 switch (sk->sk_state) { 597 case TCP_SYN_SENT: 598 case TCP_SYN_RECV: 599 /* Only in fast or simultaneous open. If a fast open socket is 600 * already accepted it is treated as a connected one below. 601 */ 602 if (fastopen && !fastopen->sk) 603 break; 604 605 ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th); 606 607 if (!sock_owned_by_user(sk)) { 608 WRITE_ONCE(sk->sk_err, err); 609 610 sk_error_report(sk); 611 612 tcp_done(sk); 613 } else { 614 WRITE_ONCE(sk->sk_err_soft, err); 615 } 616 goto out; 617 } 618 619 /* If we've already connected we will keep trying 620 * until we time out, or the user gives up. 621 * 622 * rfc1122 4.2.3.9 allows to consider as hard errors 623 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 624 * but it is obsoleted by pmtu discovery). 625 * 626 * Note, that in modern internet, where routing is unreliable 627 * and in each dark corner broken firewalls sit, sending random 628 * errors ordered by their masters even this two messages finally lose 629 * their original sense (even Linux sends invalid PORT_UNREACHs) 630 * 631 * Now we are in compliance with RFCs. 632 * --ANK (980905) 633 */ 634 635 if (!sock_owned_by_user(sk) && 636 inet_test_bit(RECVERR, sk)) { 637 WRITE_ONCE(sk->sk_err, err); 638 sk_error_report(sk); 639 } else { /* Only an error on timeout */ 640 WRITE_ONCE(sk->sk_err_soft, err); 641 } 642 643 out: 644 bh_unlock_sock(sk); 645 sock_put(sk); 646 return 0; 647 } 648 649 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 650 { 651 struct tcphdr *th = tcp_hdr(skb); 652 653 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 654 skb->csum_start = skb_transport_header(skb) - skb->head; 655 skb->csum_offset = offsetof(struct tcphdr, check); 656 } 657 658 /* This routine computes an IPv4 TCP checksum. */ 659 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 660 { 661 const struct inet_sock *inet = inet_sk(sk); 662 663 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 664 } 665 EXPORT_SYMBOL(tcp_v4_send_check); 666 667 #define REPLY_OPTIONS_LEN (MAX_TCP_OPTION_SPACE / sizeof(__be32)) 668 669 static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb, 670 const struct tcp_ao_hdr *aoh, 671 struct ip_reply_arg *arg, struct tcphdr *reply, 672 __be32 reply_options[REPLY_OPTIONS_LEN]) 673 { 674 #ifdef CONFIG_TCP_AO 675 int sdif = tcp_v4_sdif(skb); 676 int dif = inet_iif(skb); 677 int l3index = sdif ? dif : 0; 678 bool allocated_traffic_key; 679 struct tcp_ao_key *key; 680 char *traffic_key; 681 bool drop = true; 682 u32 ao_sne = 0; 683 u8 keyid; 684 685 rcu_read_lock(); 686 if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq), 687 &key, &traffic_key, &allocated_traffic_key, 688 &keyid, &ao_sne)) 689 goto out; 690 691 reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) | 692 (aoh->rnext_keyid << 8) | keyid); 693 arg->iov[0].iov_len += tcp_ao_len_aligned(key); 694 reply->doff = arg->iov[0].iov_len / 4; 695 696 if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1], 697 key, traffic_key, 698 (union tcp_ao_addr *)&ip_hdr(skb)->saddr, 699 (union tcp_ao_addr *)&ip_hdr(skb)->daddr, 700 reply, ao_sne)) 701 goto out; 702 drop = false; 703 out: 704 rcu_read_unlock(); 705 if (allocated_traffic_key) 706 kfree(traffic_key); 707 return drop; 708 #else 709 return true; 710 #endif 711 } 712 713 /* 714 * This routine will send an RST to the other tcp. 715 * 716 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 717 * for reset. 718 * Answer: if a packet caused RST, it is not for a socket 719 * existing in our system, if it is matched to a socket, 720 * it is just duplicate segment or bug in other side's TCP. 721 * So that we build reply only basing on parameters 722 * arrived with segment. 723 * Exception: precedence violation. We do not implement it in any case. 724 */ 725 726 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 727 { 728 const struct tcphdr *th = tcp_hdr(skb); 729 struct { 730 struct tcphdr th; 731 __be32 opt[REPLY_OPTIONS_LEN]; 732 } rep; 733 const __u8 *md5_hash_location = NULL; 734 const struct tcp_ao_hdr *aoh; 735 struct ip_reply_arg arg; 736 #ifdef CONFIG_TCP_MD5SIG 737 struct tcp_md5sig_key *key = NULL; 738 unsigned char newhash[16]; 739 struct sock *sk1 = NULL; 740 int genhash; 741 #endif 742 u64 transmit_time = 0; 743 struct sock *ctl_sk; 744 struct net *net; 745 u32 txhash = 0; 746 747 /* Never send a reset in response to a reset. */ 748 if (th->rst) 749 return; 750 751 /* If sk not NULL, it means we did a successful lookup and incoming 752 * route had to be correct. prequeue might have dropped our dst. 753 */ 754 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 755 return; 756 757 /* Swap the send and the receive. */ 758 memset(&rep, 0, sizeof(rep)); 759 rep.th.dest = th->source; 760 rep.th.source = th->dest; 761 rep.th.doff = sizeof(struct tcphdr) / 4; 762 rep.th.rst = 1; 763 764 if (th->ack) { 765 rep.th.seq = th->ack_seq; 766 } else { 767 rep.th.ack = 1; 768 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 769 skb->len - (th->doff << 2)); 770 } 771 772 memset(&arg, 0, sizeof(arg)); 773 arg.iov[0].iov_base = (unsigned char *)&rep; 774 arg.iov[0].iov_len = sizeof(rep.th); 775 776 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 777 778 /* Invalid TCP option size or twice included auth */ 779 if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh)) 780 return; 781 782 if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt)) 783 return; 784 785 #ifdef CONFIG_TCP_MD5SIG 786 rcu_read_lock(); 787 if (sk && sk_fullsock(sk)) { 788 const union tcp_md5_addr *addr; 789 int l3index; 790 791 /* sdif set, means packet ingressed via a device 792 * in an L3 domain and inet_iif is set to it. 793 */ 794 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 795 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 796 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 797 } else if (md5_hash_location) { 798 const union tcp_md5_addr *addr; 799 int sdif = tcp_v4_sdif(skb); 800 int dif = inet_iif(skb); 801 int l3index; 802 803 /* 804 * active side is lost. Try to find listening socket through 805 * source port, and then find md5 key through listening socket. 806 * we are not loose security here: 807 * Incoming packet is checked with md5 hash with finding key, 808 * no RST generated if md5 hash doesn't match. 809 */ 810 sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo, 811 NULL, 0, ip_hdr(skb)->saddr, 812 th->source, ip_hdr(skb)->daddr, 813 ntohs(th->source), dif, sdif); 814 /* don't send rst if it can't find key */ 815 if (!sk1) 816 goto out; 817 818 /* sdif set, means packet ingressed via a device 819 * in an L3 domain and dif is set to it. 820 */ 821 l3index = sdif ? dif : 0; 822 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 823 key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET); 824 if (!key) 825 goto out; 826 827 828 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 829 if (genhash || memcmp(md5_hash_location, newhash, 16) != 0) 830 goto out; 831 832 } 833 834 if (key) { 835 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 836 (TCPOPT_NOP << 16) | 837 (TCPOPT_MD5SIG << 8) | 838 TCPOLEN_MD5SIG); 839 /* Update length and the length the header thinks exists */ 840 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 841 rep.th.doff = arg.iov[0].iov_len / 4; 842 843 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 844 key, ip_hdr(skb)->saddr, 845 ip_hdr(skb)->daddr, &rep.th); 846 } 847 #endif 848 /* Can't co-exist with TCPMD5, hence check rep.opt[0] */ 849 if (rep.opt[0] == 0) { 850 __be32 mrst = mptcp_reset_option(skb); 851 852 if (mrst) { 853 rep.opt[0] = mrst; 854 arg.iov[0].iov_len += sizeof(mrst); 855 rep.th.doff = arg.iov[0].iov_len / 4; 856 } 857 } 858 859 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 860 ip_hdr(skb)->saddr, /* XXX */ 861 arg.iov[0].iov_len, IPPROTO_TCP, 0); 862 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 863 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 864 865 /* When socket is gone, all binding information is lost. 866 * routing might fail in this case. No choice here, if we choose to force 867 * input interface, we will misroute in case of asymmetric route. 868 */ 869 if (sk) 870 arg.bound_dev_if = sk->sk_bound_dev_if; 871 872 trace_tcp_send_reset(sk, skb); 873 874 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 875 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 876 877 arg.tos = ip_hdr(skb)->tos; 878 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); 879 local_bh_disable(); 880 ctl_sk = this_cpu_read(ipv4_tcp_sk); 881 sock_net_set(ctl_sk, net); 882 if (sk) { 883 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 884 inet_twsk(sk)->tw_mark : sk->sk_mark; 885 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 886 inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority); 887 transmit_time = tcp_transmit_time(sk); 888 xfrm_sk_clone_policy(ctl_sk, sk); 889 txhash = (sk->sk_state == TCP_TIME_WAIT) ? 890 inet_twsk(sk)->tw_txhash : sk->sk_txhash; 891 } else { 892 ctl_sk->sk_mark = 0; 893 ctl_sk->sk_priority = 0; 894 } 895 ip_send_unicast_reply(ctl_sk, 896 skb, &TCP_SKB_CB(skb)->header.h4.opt, 897 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 898 &arg, arg.iov[0].iov_len, 899 transmit_time, txhash); 900 901 xfrm_sk_free_policy(ctl_sk); 902 sock_net_set(ctl_sk, &init_net); 903 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 904 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 905 local_bh_enable(); 906 907 #ifdef CONFIG_TCP_MD5SIG 908 out: 909 rcu_read_unlock(); 910 #endif 911 } 912 913 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 914 outside socket context is ugly, certainly. What can I do? 915 */ 916 917 static void tcp_v4_send_ack(const struct sock *sk, 918 struct sk_buff *skb, u32 seq, u32 ack, 919 u32 win, u32 tsval, u32 tsecr, int oif, 920 struct tcp_key *key, 921 int reply_flags, u8 tos, u32 txhash) 922 { 923 const struct tcphdr *th = tcp_hdr(skb); 924 struct { 925 struct tcphdr th; 926 __be32 opt[(MAX_TCP_OPTION_SPACE >> 2)]; 927 } rep; 928 struct net *net = sock_net(sk); 929 struct ip_reply_arg arg; 930 struct sock *ctl_sk; 931 u64 transmit_time; 932 933 memset(&rep.th, 0, sizeof(struct tcphdr)); 934 memset(&arg, 0, sizeof(arg)); 935 936 arg.iov[0].iov_base = (unsigned char *)&rep; 937 arg.iov[0].iov_len = sizeof(rep.th); 938 if (tsecr) { 939 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 940 (TCPOPT_TIMESTAMP << 8) | 941 TCPOLEN_TIMESTAMP); 942 rep.opt[1] = htonl(tsval); 943 rep.opt[2] = htonl(tsecr); 944 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 945 } 946 947 /* Swap the send and the receive. */ 948 rep.th.dest = th->source; 949 rep.th.source = th->dest; 950 rep.th.doff = arg.iov[0].iov_len / 4; 951 rep.th.seq = htonl(seq); 952 rep.th.ack_seq = htonl(ack); 953 rep.th.ack = 1; 954 rep.th.window = htons(win); 955 956 #ifdef CONFIG_TCP_MD5SIG 957 if (tcp_key_is_md5(key)) { 958 int offset = (tsecr) ? 3 : 0; 959 960 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 961 (TCPOPT_NOP << 16) | 962 (TCPOPT_MD5SIG << 8) | 963 TCPOLEN_MD5SIG); 964 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 965 rep.th.doff = arg.iov[0].iov_len/4; 966 967 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 968 key->md5_key, ip_hdr(skb)->saddr, 969 ip_hdr(skb)->daddr, &rep.th); 970 } 971 #endif 972 #ifdef CONFIG_TCP_AO 973 if (tcp_key_is_ao(key)) { 974 int offset = (tsecr) ? 3 : 0; 975 976 rep.opt[offset++] = htonl((TCPOPT_AO << 24) | 977 (tcp_ao_len(key->ao_key) << 16) | 978 (key->ao_key->sndid << 8) | 979 key->rcv_next); 980 arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key); 981 rep.th.doff = arg.iov[0].iov_len / 4; 982 983 tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset], 984 key->ao_key, key->traffic_key, 985 (union tcp_ao_addr *)&ip_hdr(skb)->saddr, 986 (union tcp_ao_addr *)&ip_hdr(skb)->daddr, 987 &rep.th, key->sne); 988 } 989 #endif 990 arg.flags = reply_flags; 991 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 992 ip_hdr(skb)->saddr, /* XXX */ 993 arg.iov[0].iov_len, IPPROTO_TCP, 0); 994 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 995 if (oif) 996 arg.bound_dev_if = oif; 997 arg.tos = tos; 998 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); 999 local_bh_disable(); 1000 ctl_sk = this_cpu_read(ipv4_tcp_sk); 1001 sock_net_set(ctl_sk, net); 1002 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 1003 inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark); 1004 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 1005 inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority); 1006 transmit_time = tcp_transmit_time(sk); 1007 ip_send_unicast_reply(ctl_sk, 1008 skb, &TCP_SKB_CB(skb)->header.h4.opt, 1009 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 1010 &arg, arg.iov[0].iov_len, 1011 transmit_time, txhash); 1012 1013 sock_net_set(ctl_sk, &init_net); 1014 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 1015 local_bh_enable(); 1016 } 1017 1018 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 1019 { 1020 struct inet_timewait_sock *tw = inet_twsk(sk); 1021 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 1022 struct tcp_key key = {}; 1023 #ifdef CONFIG_TCP_AO 1024 struct tcp_ao_info *ao_info; 1025 1026 if (static_branch_unlikely(&tcp_ao_needed.key)) { 1027 /* FIXME: the segment to-be-acked is not verified yet */ 1028 ao_info = rcu_dereference(tcptw->ao_info); 1029 if (ao_info) { 1030 const struct tcp_ao_hdr *aoh; 1031 1032 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) { 1033 inet_twsk_put(tw); 1034 return; 1035 } 1036 1037 if (aoh) 1038 key.ao_key = tcp_ao_established_key(ao_info, aoh->rnext_keyid, -1); 1039 } 1040 } 1041 if (key.ao_key) { 1042 struct tcp_ao_key *rnext_key; 1043 1044 key.traffic_key = snd_other_key(key.ao_key); 1045 key.sne = READ_ONCE(ao_info->snd_sne); 1046 rnext_key = READ_ONCE(ao_info->rnext_key); 1047 key.rcv_next = rnext_key->rcvid; 1048 key.type = TCP_KEY_AO; 1049 #else 1050 if (0) { 1051 #endif 1052 #ifdef CONFIG_TCP_MD5SIG 1053 } else if (static_branch_unlikely(&tcp_md5_needed.key)) { 1054 key.md5_key = tcp_twsk_md5_key(tcptw); 1055 if (key.md5_key) 1056 key.type = TCP_KEY_MD5; 1057 #endif 1058 } 1059 1060 tcp_v4_send_ack(sk, skb, 1061 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 1062 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 1063 tcp_tw_tsval(tcptw), 1064 tcptw->tw_ts_recent, 1065 tw->tw_bound_dev_if, &key, 1066 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 1067 tw->tw_tos, 1068 tw->tw_txhash); 1069 1070 inet_twsk_put(tw); 1071 } 1072 1073 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 1074 struct request_sock *req) 1075 { 1076 struct tcp_key key = {}; 1077 1078 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 1079 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 1080 */ 1081 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 1082 tcp_sk(sk)->snd_nxt; 1083 1084 #ifdef CONFIG_TCP_AO 1085 if (static_branch_unlikely(&tcp_ao_needed.key) && 1086 tcp_rsk_used_ao(req)) { 1087 const union tcp_md5_addr *addr; 1088 const struct tcp_ao_hdr *aoh; 1089 int l3index; 1090 1091 /* Invalid TCP option size or twice included auth */ 1092 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 1093 return; 1094 if (!aoh) 1095 return; 1096 1097 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 1098 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 1099 key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, 1100 aoh->rnext_keyid, -1); 1101 if (unlikely(!key.ao_key)) { 1102 /* Send ACK with any matching MKT for the peer */ 1103 key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1); 1104 /* Matching key disappeared (user removed the key?) 1105 * let the handshake timeout. 1106 */ 1107 if (!key.ao_key) { 1108 net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n", 1109 addr, 1110 ntohs(tcp_hdr(skb)->source), 1111 &ip_hdr(skb)->daddr, 1112 ntohs(tcp_hdr(skb)->dest)); 1113 return; 1114 } 1115 } 1116 key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC); 1117 if (!key.traffic_key) 1118 return; 1119 1120 key.type = TCP_KEY_AO; 1121 key.rcv_next = aoh->keyid; 1122 tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req); 1123 #else 1124 if (0) { 1125 #endif 1126 #ifdef CONFIG_TCP_MD5SIG 1127 } else if (static_branch_unlikely(&tcp_md5_needed.key)) { 1128 const union tcp_md5_addr *addr; 1129 int l3index; 1130 1131 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 1132 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 1133 key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1134 if (key.md5_key) 1135 key.type = TCP_KEY_MD5; 1136 #endif 1137 } 1138 1139 /* RFC 7323 2.3 1140 * The window field (SEG.WND) of every outgoing segment, with the 1141 * exception of <SYN> segments, MUST be right-shifted by 1142 * Rcv.Wind.Shift bits: 1143 */ 1144 tcp_v4_send_ack(sk, skb, seq, 1145 tcp_rsk(req)->rcv_nxt, 1146 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 1147 tcp_rsk_tsval(tcp_rsk(req)), 1148 READ_ONCE(req->ts_recent), 1149 0, &key, 1150 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 1151 ip_hdr(skb)->tos, 1152 READ_ONCE(tcp_rsk(req)->txhash)); 1153 if (tcp_key_is_ao(&key)) 1154 kfree(key.traffic_key); 1155 } 1156 1157 /* 1158 * Send a SYN-ACK after having received a SYN. 1159 * This still operates on a request_sock only, not on a big 1160 * socket. 1161 */ 1162 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 1163 struct flowi *fl, 1164 struct request_sock *req, 1165 struct tcp_fastopen_cookie *foc, 1166 enum tcp_synack_type synack_type, 1167 struct sk_buff *syn_skb) 1168 { 1169 const struct inet_request_sock *ireq = inet_rsk(req); 1170 struct flowi4 fl4; 1171 int err = -1; 1172 struct sk_buff *skb; 1173 u8 tos; 1174 1175 /* First, grab a route. */ 1176 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 1177 return -1; 1178 1179 skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb); 1180 1181 if (skb) { 1182 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 1183 1184 tos = READ_ONCE(inet_sk(sk)->tos); 1185 1186 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)) 1187 tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) | 1188 (tos & INET_ECN_MASK); 1189 1190 if (!INET_ECN_is_capable(tos) && 1191 tcp_bpf_ca_needs_ecn((struct sock *)req)) 1192 tos |= INET_ECN_ECT_0; 1193 1194 rcu_read_lock(); 1195 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 1196 ireq->ir_rmt_addr, 1197 rcu_dereference(ireq->ireq_opt), 1198 tos); 1199 rcu_read_unlock(); 1200 err = net_xmit_eval(err); 1201 } 1202 1203 return err; 1204 } 1205 1206 /* 1207 * IPv4 request_sock destructor. 1208 */ 1209 static void tcp_v4_reqsk_destructor(struct request_sock *req) 1210 { 1211 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); 1212 } 1213 1214 #ifdef CONFIG_TCP_MD5SIG 1215 /* 1216 * RFC2385 MD5 checksumming requires a mapping of 1217 * IP address->MD5 Key. 1218 * We need to maintain these in the sk structure. 1219 */ 1220 1221 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ); 1222 EXPORT_SYMBOL(tcp_md5_needed); 1223 1224 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new) 1225 { 1226 if (!old) 1227 return true; 1228 1229 /* l3index always overrides non-l3index */ 1230 if (old->l3index && new->l3index == 0) 1231 return false; 1232 if (old->l3index == 0 && new->l3index) 1233 return true; 1234 1235 return old->prefixlen < new->prefixlen; 1236 } 1237 1238 /* Find the Key structure for an address. */ 1239 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1240 const union tcp_md5_addr *addr, 1241 int family, bool any_l3index) 1242 { 1243 const struct tcp_sock *tp = tcp_sk(sk); 1244 struct tcp_md5sig_key *key; 1245 const struct tcp_md5sig_info *md5sig; 1246 __be32 mask; 1247 struct tcp_md5sig_key *best_match = NULL; 1248 bool match; 1249 1250 /* caller either holds rcu_read_lock() or socket lock */ 1251 md5sig = rcu_dereference_check(tp->md5sig_info, 1252 lockdep_sock_is_held(sk)); 1253 if (!md5sig) 1254 return NULL; 1255 1256 hlist_for_each_entry_rcu(key, &md5sig->head, node, 1257 lockdep_sock_is_held(sk)) { 1258 if (key->family != family) 1259 continue; 1260 if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX && 1261 key->l3index != l3index) 1262 continue; 1263 if (family == AF_INET) { 1264 mask = inet_make_mask(key->prefixlen); 1265 match = (key->addr.a4.s_addr & mask) == 1266 (addr->a4.s_addr & mask); 1267 #if IS_ENABLED(CONFIG_IPV6) 1268 } else if (family == AF_INET6) { 1269 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, 1270 key->prefixlen); 1271 #endif 1272 } else { 1273 match = false; 1274 } 1275 1276 if (match && better_md5_match(best_match, key)) 1277 best_match = key; 1278 } 1279 return best_match; 1280 } 1281 EXPORT_SYMBOL(__tcp_md5_do_lookup); 1282 1283 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, 1284 const union tcp_md5_addr *addr, 1285 int family, u8 prefixlen, 1286 int l3index, u8 flags) 1287 { 1288 const struct tcp_sock *tp = tcp_sk(sk); 1289 struct tcp_md5sig_key *key; 1290 unsigned int size = sizeof(struct in_addr); 1291 const struct tcp_md5sig_info *md5sig; 1292 1293 /* caller either holds rcu_read_lock() or socket lock */ 1294 md5sig = rcu_dereference_check(tp->md5sig_info, 1295 lockdep_sock_is_held(sk)); 1296 if (!md5sig) 1297 return NULL; 1298 #if IS_ENABLED(CONFIG_IPV6) 1299 if (family == AF_INET6) 1300 size = sizeof(struct in6_addr); 1301 #endif 1302 hlist_for_each_entry_rcu(key, &md5sig->head, node, 1303 lockdep_sock_is_held(sk)) { 1304 if (key->family != family) 1305 continue; 1306 if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX)) 1307 continue; 1308 if (key->l3index != l3index) 1309 continue; 1310 if (!memcmp(&key->addr, addr, size) && 1311 key->prefixlen == prefixlen) 1312 return key; 1313 } 1314 return NULL; 1315 } 1316 1317 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1318 const struct sock *addr_sk) 1319 { 1320 const union tcp_md5_addr *addr; 1321 int l3index; 1322 1323 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), 1324 addr_sk->sk_bound_dev_if); 1325 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 1326 return tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1327 } 1328 EXPORT_SYMBOL(tcp_v4_md5_lookup); 1329 1330 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp) 1331 { 1332 struct tcp_sock *tp = tcp_sk(sk); 1333 struct tcp_md5sig_info *md5sig; 1334 1335 md5sig = kmalloc(sizeof(*md5sig), gfp); 1336 if (!md5sig) 1337 return -ENOMEM; 1338 1339 sk_gso_disable(sk); 1340 INIT_HLIST_HEAD(&md5sig->head); 1341 rcu_assign_pointer(tp->md5sig_info, md5sig); 1342 return 0; 1343 } 1344 1345 /* This can be called on a newly created socket, from other files */ 1346 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1347 int family, u8 prefixlen, int l3index, u8 flags, 1348 const u8 *newkey, u8 newkeylen, gfp_t gfp) 1349 { 1350 /* Add Key to the list */ 1351 struct tcp_md5sig_key *key; 1352 struct tcp_sock *tp = tcp_sk(sk); 1353 struct tcp_md5sig_info *md5sig; 1354 1355 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags); 1356 if (key) { 1357 /* Pre-existing entry - just update that one. 1358 * Note that the key might be used concurrently. 1359 * data_race() is telling kcsan that we do not care of 1360 * key mismatches, since changing MD5 key on live flows 1361 * can lead to packet drops. 1362 */ 1363 data_race(memcpy(key->key, newkey, newkeylen)); 1364 1365 /* Pairs with READ_ONCE() in tcp_md5_hash_key(). 1366 * Also note that a reader could catch new key->keylen value 1367 * but old key->key[], this is the reason we use __GFP_ZERO 1368 * at sock_kmalloc() time below these lines. 1369 */ 1370 WRITE_ONCE(key->keylen, newkeylen); 1371 1372 return 0; 1373 } 1374 1375 md5sig = rcu_dereference_protected(tp->md5sig_info, 1376 lockdep_sock_is_held(sk)); 1377 1378 key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO); 1379 if (!key) 1380 return -ENOMEM; 1381 1382 memcpy(key->key, newkey, newkeylen); 1383 key->keylen = newkeylen; 1384 key->family = family; 1385 key->prefixlen = prefixlen; 1386 key->l3index = l3index; 1387 key->flags = flags; 1388 memcpy(&key->addr, addr, 1389 (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) : 1390 sizeof(struct in_addr)); 1391 hlist_add_head_rcu(&key->node, &md5sig->head); 1392 return 0; 1393 } 1394 1395 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1396 int family, u8 prefixlen, int l3index, u8 flags, 1397 const u8 *newkey, u8 newkeylen) 1398 { 1399 struct tcp_sock *tp = tcp_sk(sk); 1400 1401 if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) { 1402 if (tcp_md5_alloc_sigpool()) 1403 return -ENOMEM; 1404 1405 if (tcp_md5sig_info_add(sk, GFP_KERNEL)) { 1406 tcp_md5_release_sigpool(); 1407 return -ENOMEM; 1408 } 1409 1410 if (!static_branch_inc(&tcp_md5_needed.key)) { 1411 struct tcp_md5sig_info *md5sig; 1412 1413 md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk)); 1414 rcu_assign_pointer(tp->md5sig_info, NULL); 1415 kfree_rcu(md5sig, rcu); 1416 tcp_md5_release_sigpool(); 1417 return -EUSERS; 1418 } 1419 } 1420 1421 return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags, 1422 newkey, newkeylen, GFP_KERNEL); 1423 } 1424 EXPORT_SYMBOL(tcp_md5_do_add); 1425 1426 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1427 int family, u8 prefixlen, int l3index, 1428 struct tcp_md5sig_key *key) 1429 { 1430 struct tcp_sock *tp = tcp_sk(sk); 1431 1432 if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) { 1433 tcp_md5_add_sigpool(); 1434 1435 if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) { 1436 tcp_md5_release_sigpool(); 1437 return -ENOMEM; 1438 } 1439 1440 if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) { 1441 struct tcp_md5sig_info *md5sig; 1442 1443 md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk)); 1444 net_warn_ratelimited("Too many TCP-MD5 keys in the system\n"); 1445 rcu_assign_pointer(tp->md5sig_info, NULL); 1446 kfree_rcu(md5sig, rcu); 1447 tcp_md5_release_sigpool(); 1448 return -EUSERS; 1449 } 1450 } 1451 1452 return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, 1453 key->flags, key->key, key->keylen, 1454 sk_gfp_mask(sk, GFP_ATOMIC)); 1455 } 1456 EXPORT_SYMBOL(tcp_md5_key_copy); 1457 1458 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, 1459 u8 prefixlen, int l3index, u8 flags) 1460 { 1461 struct tcp_md5sig_key *key; 1462 1463 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags); 1464 if (!key) 1465 return -ENOENT; 1466 hlist_del_rcu(&key->node); 1467 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1468 kfree_rcu(key, rcu); 1469 return 0; 1470 } 1471 EXPORT_SYMBOL(tcp_md5_do_del); 1472 1473 void tcp_clear_md5_list(struct sock *sk) 1474 { 1475 struct tcp_sock *tp = tcp_sk(sk); 1476 struct tcp_md5sig_key *key; 1477 struct hlist_node *n; 1478 struct tcp_md5sig_info *md5sig; 1479 1480 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1481 1482 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1483 hlist_del_rcu(&key->node); 1484 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1485 kfree_rcu(key, rcu); 1486 } 1487 } 1488 1489 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, 1490 sockptr_t optval, int optlen) 1491 { 1492 struct tcp_md5sig cmd; 1493 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1494 const union tcp_md5_addr *addr; 1495 u8 prefixlen = 32; 1496 int l3index = 0; 1497 bool l3flag; 1498 u8 flags; 1499 1500 if (optlen < sizeof(cmd)) 1501 return -EINVAL; 1502 1503 if (copy_from_sockptr(&cmd, optval, sizeof(cmd))) 1504 return -EFAULT; 1505 1506 if (sin->sin_family != AF_INET) 1507 return -EINVAL; 1508 1509 flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX; 1510 l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX; 1511 1512 if (optname == TCP_MD5SIG_EXT && 1513 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { 1514 prefixlen = cmd.tcpm_prefixlen; 1515 if (prefixlen > 32) 1516 return -EINVAL; 1517 } 1518 1519 if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex && 1520 cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) { 1521 struct net_device *dev; 1522 1523 rcu_read_lock(); 1524 dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex); 1525 if (dev && netif_is_l3_master(dev)) 1526 l3index = dev->ifindex; 1527 1528 rcu_read_unlock(); 1529 1530 /* ok to reference set/not set outside of rcu; 1531 * right now device MUST be an L3 master 1532 */ 1533 if (!dev || !l3index) 1534 return -EINVAL; 1535 } 1536 1537 addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr; 1538 1539 if (!cmd.tcpm_keylen) 1540 return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags); 1541 1542 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1543 return -EINVAL; 1544 1545 /* Don't allow keys for peers that have a matching TCP-AO key. 1546 * See the comment in tcp_ao_add_cmd() 1547 */ 1548 if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false)) 1549 return -EKEYREJECTED; 1550 1551 return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags, 1552 cmd.tcpm_key, cmd.tcpm_keylen); 1553 } 1554 1555 static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp, 1556 __be32 daddr, __be32 saddr, 1557 const struct tcphdr *th, int nbytes) 1558 { 1559 struct tcp4_pseudohdr *bp; 1560 struct scatterlist sg; 1561 struct tcphdr *_th; 1562 1563 bp = hp->scratch; 1564 bp->saddr = saddr; 1565 bp->daddr = daddr; 1566 bp->pad = 0; 1567 bp->protocol = IPPROTO_TCP; 1568 bp->len = cpu_to_be16(nbytes); 1569 1570 _th = (struct tcphdr *)(bp + 1); 1571 memcpy(_th, th, sizeof(*th)); 1572 _th->check = 0; 1573 1574 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1575 ahash_request_set_crypt(hp->req, &sg, NULL, 1576 sizeof(*bp) + sizeof(*th)); 1577 return crypto_ahash_update(hp->req); 1578 } 1579 1580 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1581 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1582 { 1583 struct tcp_sigpool hp; 1584 1585 if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp)) 1586 goto clear_hash_nostart; 1587 1588 if (crypto_ahash_init(hp.req)) 1589 goto clear_hash; 1590 if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2)) 1591 goto clear_hash; 1592 if (tcp_md5_hash_key(&hp, key)) 1593 goto clear_hash; 1594 ahash_request_set_crypt(hp.req, NULL, md5_hash, 0); 1595 if (crypto_ahash_final(hp.req)) 1596 goto clear_hash; 1597 1598 tcp_sigpool_end(&hp); 1599 return 0; 1600 1601 clear_hash: 1602 tcp_sigpool_end(&hp); 1603 clear_hash_nostart: 1604 memset(md5_hash, 0, 16); 1605 return 1; 1606 } 1607 1608 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1609 const struct sock *sk, 1610 const struct sk_buff *skb) 1611 { 1612 const struct tcphdr *th = tcp_hdr(skb); 1613 struct tcp_sigpool hp; 1614 __be32 saddr, daddr; 1615 1616 if (sk) { /* valid for establish/request sockets */ 1617 saddr = sk->sk_rcv_saddr; 1618 daddr = sk->sk_daddr; 1619 } else { 1620 const struct iphdr *iph = ip_hdr(skb); 1621 saddr = iph->saddr; 1622 daddr = iph->daddr; 1623 } 1624 1625 if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp)) 1626 goto clear_hash_nostart; 1627 1628 if (crypto_ahash_init(hp.req)) 1629 goto clear_hash; 1630 1631 if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len)) 1632 goto clear_hash; 1633 if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2)) 1634 goto clear_hash; 1635 if (tcp_md5_hash_key(&hp, key)) 1636 goto clear_hash; 1637 ahash_request_set_crypt(hp.req, NULL, md5_hash, 0); 1638 if (crypto_ahash_final(hp.req)) 1639 goto clear_hash; 1640 1641 tcp_sigpool_end(&hp); 1642 return 0; 1643 1644 clear_hash: 1645 tcp_sigpool_end(&hp); 1646 clear_hash_nostart: 1647 memset(md5_hash, 0, 16); 1648 return 1; 1649 } 1650 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1651 1652 #endif 1653 1654 static void tcp_v4_init_req(struct request_sock *req, 1655 const struct sock *sk_listener, 1656 struct sk_buff *skb) 1657 { 1658 struct inet_request_sock *ireq = inet_rsk(req); 1659 struct net *net = sock_net(sk_listener); 1660 1661 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1662 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1663 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); 1664 } 1665 1666 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1667 struct sk_buff *skb, 1668 struct flowi *fl, 1669 struct request_sock *req) 1670 { 1671 tcp_v4_init_req(req, sk, skb); 1672 1673 if (security_inet_conn_request(sk, skb, req)) 1674 return NULL; 1675 1676 return inet_csk_route_req(sk, &fl->u.ip4, req); 1677 } 1678 1679 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1680 .family = PF_INET, 1681 .obj_size = sizeof(struct tcp_request_sock), 1682 .rtx_syn_ack = tcp_rtx_synack, 1683 .send_ack = tcp_v4_reqsk_send_ack, 1684 .destructor = tcp_v4_reqsk_destructor, 1685 .send_reset = tcp_v4_send_reset, 1686 .syn_ack_timeout = tcp_syn_ack_timeout, 1687 }; 1688 1689 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1690 .mss_clamp = TCP_MSS_DEFAULT, 1691 #ifdef CONFIG_TCP_MD5SIG 1692 .req_md5_lookup = tcp_v4_md5_lookup, 1693 .calc_md5_hash = tcp_v4_md5_hash_skb, 1694 #endif 1695 #ifdef CONFIG_TCP_AO 1696 .ao_lookup = tcp_v4_ao_lookup_rsk, 1697 .ao_calc_key = tcp_v4_ao_calc_key_rsk, 1698 .ao_synack_hash = tcp_v4_ao_synack_hash, 1699 #endif 1700 #ifdef CONFIG_SYN_COOKIES 1701 .cookie_init_seq = cookie_v4_init_sequence, 1702 #endif 1703 .route_req = tcp_v4_route_req, 1704 .init_seq = tcp_v4_init_seq, 1705 .init_ts_off = tcp_v4_init_ts_off, 1706 .send_synack = tcp_v4_send_synack, 1707 }; 1708 1709 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1710 { 1711 /* Never answer to SYNs send to broadcast or multicast */ 1712 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1713 goto drop; 1714 1715 return tcp_conn_request(&tcp_request_sock_ops, 1716 &tcp_request_sock_ipv4_ops, sk, skb); 1717 1718 drop: 1719 tcp_listendrop(sk); 1720 return 0; 1721 } 1722 EXPORT_SYMBOL(tcp_v4_conn_request); 1723 1724 1725 /* 1726 * The three way handshake has completed - we got a valid synack - 1727 * now create the new socket. 1728 */ 1729 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1730 struct request_sock *req, 1731 struct dst_entry *dst, 1732 struct request_sock *req_unhash, 1733 bool *own_req) 1734 { 1735 struct inet_request_sock *ireq; 1736 bool found_dup_sk = false; 1737 struct inet_sock *newinet; 1738 struct tcp_sock *newtp; 1739 struct sock *newsk; 1740 #ifdef CONFIG_TCP_MD5SIG 1741 const union tcp_md5_addr *addr; 1742 struct tcp_md5sig_key *key; 1743 int l3index; 1744 #endif 1745 struct ip_options_rcu *inet_opt; 1746 1747 if (sk_acceptq_is_full(sk)) 1748 goto exit_overflow; 1749 1750 newsk = tcp_create_openreq_child(sk, req, skb); 1751 if (!newsk) 1752 goto exit_nonewsk; 1753 1754 newsk->sk_gso_type = SKB_GSO_TCPV4; 1755 inet_sk_rx_dst_set(newsk, skb); 1756 1757 newtp = tcp_sk(newsk); 1758 newinet = inet_sk(newsk); 1759 ireq = inet_rsk(req); 1760 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1761 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1762 newsk->sk_bound_dev_if = ireq->ir_iif; 1763 newinet->inet_saddr = ireq->ir_loc_addr; 1764 inet_opt = rcu_dereference(ireq->ireq_opt); 1765 RCU_INIT_POINTER(newinet->inet_opt, inet_opt); 1766 newinet->mc_index = inet_iif(skb); 1767 newinet->mc_ttl = ip_hdr(skb)->ttl; 1768 newinet->rcv_tos = ip_hdr(skb)->tos; 1769 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1770 if (inet_opt) 1771 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1772 atomic_set(&newinet->inet_id, get_random_u16()); 1773 1774 /* Set ToS of the new socket based upon the value of incoming SYN. 1775 * ECT bits are set later in tcp_init_transfer(). 1776 */ 1777 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)) 1778 newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK; 1779 1780 if (!dst) { 1781 dst = inet_csk_route_child_sock(sk, newsk, req); 1782 if (!dst) 1783 goto put_and_exit; 1784 } else { 1785 /* syncookie case : see end of cookie_v4_check() */ 1786 } 1787 sk_setup_caps(newsk, dst); 1788 1789 tcp_ca_openreq_child(newsk, dst); 1790 1791 tcp_sync_mss(newsk, dst_mtu(dst)); 1792 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); 1793 1794 tcp_initialize_rcv_mss(newsk); 1795 1796 #ifdef CONFIG_TCP_MD5SIG 1797 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif); 1798 /* Copy over the MD5 key from the original socket */ 1799 addr = (union tcp_md5_addr *)&newinet->inet_daddr; 1800 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1801 if (key && !tcp_rsk_used_ao(req)) { 1802 if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key)) 1803 goto put_and_exit; 1804 sk_gso_disable(newsk); 1805 } 1806 #endif 1807 #ifdef CONFIG_TCP_AO 1808 if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET)) 1809 goto put_and_exit; /* OOM, release back memory */ 1810 #endif 1811 1812 if (__inet_inherit_port(sk, newsk) < 0) 1813 goto put_and_exit; 1814 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash), 1815 &found_dup_sk); 1816 if (likely(*own_req)) { 1817 tcp_move_syn(newtp, req); 1818 ireq->ireq_opt = NULL; 1819 } else { 1820 newinet->inet_opt = NULL; 1821 1822 if (!req_unhash && found_dup_sk) { 1823 /* This code path should only be executed in the 1824 * syncookie case only 1825 */ 1826 bh_unlock_sock(newsk); 1827 sock_put(newsk); 1828 newsk = NULL; 1829 } 1830 } 1831 return newsk; 1832 1833 exit_overflow: 1834 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1835 exit_nonewsk: 1836 dst_release(dst); 1837 exit: 1838 tcp_listendrop(sk); 1839 return NULL; 1840 put_and_exit: 1841 newinet->inet_opt = NULL; 1842 inet_csk_prepare_forced_close(newsk); 1843 tcp_done(newsk); 1844 goto exit; 1845 } 1846 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1847 1848 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1849 { 1850 #ifdef CONFIG_SYN_COOKIES 1851 const struct tcphdr *th = tcp_hdr(skb); 1852 1853 if (!th->syn) 1854 sk = cookie_v4_check(sk, skb); 1855 #endif 1856 return sk; 1857 } 1858 1859 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 1860 struct tcphdr *th, u32 *cookie) 1861 { 1862 u16 mss = 0; 1863 #ifdef CONFIG_SYN_COOKIES 1864 mss = tcp_get_syncookie_mss(&tcp_request_sock_ops, 1865 &tcp_request_sock_ipv4_ops, sk, th); 1866 if (mss) { 1867 *cookie = __cookie_v4_init_sequence(iph, th, &mss); 1868 tcp_synq_overflow(sk); 1869 } 1870 #endif 1871 return mss; 1872 } 1873 1874 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 1875 u32)); 1876 /* The socket must have it's spinlock held when we get 1877 * here, unless it is a TCP_LISTEN socket. 1878 * 1879 * We have a potential double-lock case here, so even when 1880 * doing backlog processing we use the BH locking scheme. 1881 * This is because we cannot sleep with the original spinlock 1882 * held. 1883 */ 1884 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1885 { 1886 enum skb_drop_reason reason; 1887 struct sock *rsk; 1888 1889 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1890 struct dst_entry *dst; 1891 1892 dst = rcu_dereference_protected(sk->sk_rx_dst, 1893 lockdep_sock_is_held(sk)); 1894 1895 sock_rps_save_rxhash(sk, skb); 1896 sk_mark_napi_id(sk, skb); 1897 if (dst) { 1898 if (sk->sk_rx_dst_ifindex != skb->skb_iif || 1899 !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check, 1900 dst, 0)) { 1901 RCU_INIT_POINTER(sk->sk_rx_dst, NULL); 1902 dst_release(dst); 1903 } 1904 } 1905 tcp_rcv_established(sk, skb); 1906 return 0; 1907 } 1908 1909 if (tcp_checksum_complete(skb)) 1910 goto csum_err; 1911 1912 if (sk->sk_state == TCP_LISTEN) { 1913 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1914 1915 if (!nsk) 1916 return 0; 1917 if (nsk != sk) { 1918 reason = tcp_child_process(sk, nsk, skb); 1919 if (reason) { 1920 rsk = nsk; 1921 goto reset; 1922 } 1923 return 0; 1924 } 1925 } else 1926 sock_rps_save_rxhash(sk, skb); 1927 1928 reason = tcp_rcv_state_process(sk, skb); 1929 if (reason) { 1930 rsk = sk; 1931 goto reset; 1932 } 1933 return 0; 1934 1935 reset: 1936 tcp_v4_send_reset(rsk, skb); 1937 discard: 1938 kfree_skb_reason(skb, reason); 1939 /* Be careful here. If this function gets more complicated and 1940 * gcc suffers from register pressure on the x86, sk (in %ebx) 1941 * might be destroyed here. This current version compiles correctly, 1942 * but you have been warned. 1943 */ 1944 return 0; 1945 1946 csum_err: 1947 reason = SKB_DROP_REASON_TCP_CSUM; 1948 trace_tcp_bad_csum(skb); 1949 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1950 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1951 goto discard; 1952 } 1953 EXPORT_SYMBOL(tcp_v4_do_rcv); 1954 1955 int tcp_v4_early_demux(struct sk_buff *skb) 1956 { 1957 struct net *net = dev_net(skb->dev); 1958 const struct iphdr *iph; 1959 const struct tcphdr *th; 1960 struct sock *sk; 1961 1962 if (skb->pkt_type != PACKET_HOST) 1963 return 0; 1964 1965 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1966 return 0; 1967 1968 iph = ip_hdr(skb); 1969 th = tcp_hdr(skb); 1970 1971 if (th->doff < sizeof(struct tcphdr) / 4) 1972 return 0; 1973 1974 sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, 1975 iph->saddr, th->source, 1976 iph->daddr, ntohs(th->dest), 1977 skb->skb_iif, inet_sdif(skb)); 1978 if (sk) { 1979 skb->sk = sk; 1980 skb->destructor = sock_edemux; 1981 if (sk_fullsock(sk)) { 1982 struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst); 1983 1984 if (dst) 1985 dst = dst_check(dst, 0); 1986 if (dst && 1987 sk->sk_rx_dst_ifindex == skb->skb_iif) 1988 skb_dst_set_noref(skb, dst); 1989 } 1990 } 1991 return 0; 1992 } 1993 1994 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1995 enum skb_drop_reason *reason) 1996 { 1997 u32 limit, tail_gso_size, tail_gso_segs; 1998 struct skb_shared_info *shinfo; 1999 const struct tcphdr *th; 2000 struct tcphdr *thtail; 2001 struct sk_buff *tail; 2002 unsigned int hdrlen; 2003 bool fragstolen; 2004 u32 gso_segs; 2005 u32 gso_size; 2006 int delta; 2007 2008 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 2009 * we can fix skb->truesize to its real value to avoid future drops. 2010 * This is valid because skb is not yet charged to the socket. 2011 * It has been noticed pure SACK packets were sometimes dropped 2012 * (if cooked by drivers without copybreak feature). 2013 */ 2014 skb_condense(skb); 2015 2016 skb_dst_drop(skb); 2017 2018 if (unlikely(tcp_checksum_complete(skb))) { 2019 bh_unlock_sock(sk); 2020 trace_tcp_bad_csum(skb); 2021 *reason = SKB_DROP_REASON_TCP_CSUM; 2022 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 2023 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 2024 return true; 2025 } 2026 2027 /* Attempt coalescing to last skb in backlog, even if we are 2028 * above the limits. 2029 * This is okay because skb capacity is limited to MAX_SKB_FRAGS. 2030 */ 2031 th = (const struct tcphdr *)skb->data; 2032 hdrlen = th->doff * 4; 2033 2034 tail = sk->sk_backlog.tail; 2035 if (!tail) 2036 goto no_coalesce; 2037 thtail = (struct tcphdr *)tail->data; 2038 2039 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq || 2040 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield || 2041 ((TCP_SKB_CB(tail)->tcp_flags | 2042 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) || 2043 !((TCP_SKB_CB(tail)->tcp_flags & 2044 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) || 2045 ((TCP_SKB_CB(tail)->tcp_flags ^ 2046 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) || 2047 !mptcp_skb_can_collapse(tail, skb) || 2048 skb_cmp_decrypted(tail, skb) || 2049 thtail->doff != th->doff || 2050 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th))) 2051 goto no_coalesce; 2052 2053 __skb_pull(skb, hdrlen); 2054 2055 shinfo = skb_shinfo(skb); 2056 gso_size = shinfo->gso_size ?: skb->len; 2057 gso_segs = shinfo->gso_segs ?: 1; 2058 2059 shinfo = skb_shinfo(tail); 2060 tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen); 2061 tail_gso_segs = shinfo->gso_segs ?: 1; 2062 2063 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) { 2064 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq; 2065 2066 if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) { 2067 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq; 2068 thtail->window = th->window; 2069 } 2070 2071 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and 2072 * thtail->fin, so that the fast path in tcp_rcv_established() 2073 * is not entered if we append a packet with a FIN. 2074 * SYN, RST, URG are not present. 2075 * ACK is set on both packets. 2076 * PSH : we do not really care in TCP stack, 2077 * at least for 'GRO' packets. 2078 */ 2079 thtail->fin |= th->fin; 2080 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2081 2082 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2083 TCP_SKB_CB(tail)->has_rxtstamp = true; 2084 tail->tstamp = skb->tstamp; 2085 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 2086 } 2087 2088 /* Not as strict as GRO. We only need to carry mss max value */ 2089 shinfo->gso_size = max(gso_size, tail_gso_size); 2090 shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF); 2091 2092 sk->sk_backlog.len += delta; 2093 __NET_INC_STATS(sock_net(sk), 2094 LINUX_MIB_TCPBACKLOGCOALESCE); 2095 kfree_skb_partial(skb, fragstolen); 2096 return false; 2097 } 2098 __skb_push(skb, hdrlen); 2099 2100 no_coalesce: 2101 limit = (u32)READ_ONCE(sk->sk_rcvbuf) + (u32)(READ_ONCE(sk->sk_sndbuf) >> 1); 2102 2103 /* Only socket owner can try to collapse/prune rx queues 2104 * to reduce memory overhead, so add a little headroom here. 2105 * Few sockets backlog are possibly concurrently non empty. 2106 */ 2107 limit += 64 * 1024; 2108 2109 if (unlikely(sk_add_backlog(sk, skb, limit))) { 2110 bh_unlock_sock(sk); 2111 *reason = SKB_DROP_REASON_SOCKET_BACKLOG; 2112 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 2113 return true; 2114 } 2115 return false; 2116 } 2117 EXPORT_SYMBOL(tcp_add_backlog); 2118 2119 int tcp_filter(struct sock *sk, struct sk_buff *skb) 2120 { 2121 struct tcphdr *th = (struct tcphdr *)skb->data; 2122 2123 return sk_filter_trim_cap(sk, skb, th->doff * 4); 2124 } 2125 EXPORT_SYMBOL(tcp_filter); 2126 2127 static void tcp_v4_restore_cb(struct sk_buff *skb) 2128 { 2129 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, 2130 sizeof(struct inet_skb_parm)); 2131 } 2132 2133 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, 2134 const struct tcphdr *th) 2135 { 2136 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 2137 * barrier() makes sure compiler wont play fool^Waliasing games. 2138 */ 2139 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 2140 sizeof(struct inet_skb_parm)); 2141 barrier(); 2142 2143 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 2144 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 2145 skb->len - th->doff * 4); 2146 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 2147 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 2148 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 2149 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 2150 TCP_SKB_CB(skb)->sacked = 0; 2151 TCP_SKB_CB(skb)->has_rxtstamp = 2152 skb->tstamp || skb_hwtstamps(skb)->hwtstamp; 2153 } 2154 2155 /* 2156 * From tcp_input.c 2157 */ 2158 2159 int tcp_v4_rcv(struct sk_buff *skb) 2160 { 2161 struct net *net = dev_net(skb->dev); 2162 enum skb_drop_reason drop_reason; 2163 int sdif = inet_sdif(skb); 2164 int dif = inet_iif(skb); 2165 const struct iphdr *iph; 2166 const struct tcphdr *th; 2167 bool refcounted; 2168 struct sock *sk; 2169 int ret; 2170 2171 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2172 if (skb->pkt_type != PACKET_HOST) 2173 goto discard_it; 2174 2175 /* Count it even if it's bad */ 2176 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 2177 2178 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 2179 goto discard_it; 2180 2181 th = (const struct tcphdr *)skb->data; 2182 2183 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) { 2184 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2185 goto bad_packet; 2186 } 2187 if (!pskb_may_pull(skb, th->doff * 4)) 2188 goto discard_it; 2189 2190 /* An explanation is required here, I think. 2191 * Packet length and doff are validated by header prediction, 2192 * provided case of th->doff==0 is eliminated. 2193 * So, we defer the checks. */ 2194 2195 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 2196 goto csum_error; 2197 2198 th = (const struct tcphdr *)skb->data; 2199 iph = ip_hdr(skb); 2200 lookup: 2201 sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo, 2202 skb, __tcp_hdrlen(th), th->source, 2203 th->dest, sdif, &refcounted); 2204 if (!sk) 2205 goto no_tcp_socket; 2206 2207 process: 2208 if (sk->sk_state == TCP_TIME_WAIT) 2209 goto do_time_wait; 2210 2211 if (sk->sk_state == TCP_NEW_SYN_RECV) { 2212 struct request_sock *req = inet_reqsk(sk); 2213 bool req_stolen = false; 2214 struct sock *nsk; 2215 2216 sk = req->rsk_listener; 2217 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 2218 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2219 else 2220 drop_reason = tcp_inbound_hash(sk, req, skb, 2221 &iph->saddr, &iph->daddr, 2222 AF_INET, dif, sdif); 2223 if (unlikely(drop_reason)) { 2224 sk_drops_add(sk, skb); 2225 reqsk_put(req); 2226 goto discard_it; 2227 } 2228 if (tcp_checksum_complete(skb)) { 2229 reqsk_put(req); 2230 goto csum_error; 2231 } 2232 if (unlikely(sk->sk_state != TCP_LISTEN)) { 2233 nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb); 2234 if (!nsk) { 2235 inet_csk_reqsk_queue_drop_and_put(sk, req); 2236 goto lookup; 2237 } 2238 sk = nsk; 2239 /* reuseport_migrate_sock() has already held one sk_refcnt 2240 * before returning. 2241 */ 2242 } else { 2243 /* We own a reference on the listener, increase it again 2244 * as we might lose it too soon. 2245 */ 2246 sock_hold(sk); 2247 } 2248 refcounted = true; 2249 nsk = NULL; 2250 if (!tcp_filter(sk, skb)) { 2251 th = (const struct tcphdr *)skb->data; 2252 iph = ip_hdr(skb); 2253 tcp_v4_fill_cb(skb, iph, th); 2254 nsk = tcp_check_req(sk, skb, req, false, &req_stolen); 2255 } else { 2256 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2257 } 2258 if (!nsk) { 2259 reqsk_put(req); 2260 if (req_stolen) { 2261 /* Another cpu got exclusive access to req 2262 * and created a full blown socket. 2263 * Try to feed this packet to this socket 2264 * instead of discarding it. 2265 */ 2266 tcp_v4_restore_cb(skb); 2267 sock_put(sk); 2268 goto lookup; 2269 } 2270 goto discard_and_relse; 2271 } 2272 nf_reset_ct(skb); 2273 if (nsk == sk) { 2274 reqsk_put(req); 2275 tcp_v4_restore_cb(skb); 2276 } else { 2277 drop_reason = tcp_child_process(sk, nsk, skb); 2278 if (drop_reason) { 2279 tcp_v4_send_reset(nsk, skb); 2280 goto discard_and_relse; 2281 } 2282 sock_put(sk); 2283 return 0; 2284 } 2285 } 2286 2287 if (static_branch_unlikely(&ip4_min_ttl)) { 2288 /* min_ttl can be changed concurrently from do_ip_setsockopt() */ 2289 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) { 2290 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 2291 drop_reason = SKB_DROP_REASON_TCP_MINTTL; 2292 goto discard_and_relse; 2293 } 2294 } 2295 2296 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2297 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2298 goto discard_and_relse; 2299 } 2300 2301 drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr, 2302 AF_INET, dif, sdif); 2303 if (drop_reason) 2304 goto discard_and_relse; 2305 2306 nf_reset_ct(skb); 2307 2308 if (tcp_filter(sk, skb)) { 2309 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2310 goto discard_and_relse; 2311 } 2312 th = (const struct tcphdr *)skb->data; 2313 iph = ip_hdr(skb); 2314 tcp_v4_fill_cb(skb, iph, th); 2315 2316 skb->dev = NULL; 2317 2318 if (sk->sk_state == TCP_LISTEN) { 2319 ret = tcp_v4_do_rcv(sk, skb); 2320 goto put_and_return; 2321 } 2322 2323 sk_incoming_cpu_update(sk); 2324 2325 bh_lock_sock_nested(sk); 2326 tcp_segs_in(tcp_sk(sk), skb); 2327 ret = 0; 2328 if (!sock_owned_by_user(sk)) { 2329 ret = tcp_v4_do_rcv(sk, skb); 2330 } else { 2331 if (tcp_add_backlog(sk, skb, &drop_reason)) 2332 goto discard_and_relse; 2333 } 2334 bh_unlock_sock(sk); 2335 2336 put_and_return: 2337 if (refcounted) 2338 sock_put(sk); 2339 2340 return ret; 2341 2342 no_tcp_socket: 2343 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2344 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2345 goto discard_it; 2346 2347 tcp_v4_fill_cb(skb, iph, th); 2348 2349 if (tcp_checksum_complete(skb)) { 2350 csum_error: 2351 drop_reason = SKB_DROP_REASON_TCP_CSUM; 2352 trace_tcp_bad_csum(skb); 2353 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 2354 bad_packet: 2355 __TCP_INC_STATS(net, TCP_MIB_INERRS); 2356 } else { 2357 tcp_v4_send_reset(NULL, skb); 2358 } 2359 2360 discard_it: 2361 SKB_DR_OR(drop_reason, NOT_SPECIFIED); 2362 /* Discard frame. */ 2363 kfree_skb_reason(skb, drop_reason); 2364 return 0; 2365 2366 discard_and_relse: 2367 sk_drops_add(sk, skb); 2368 if (refcounted) 2369 sock_put(sk); 2370 goto discard_it; 2371 2372 do_time_wait: 2373 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 2374 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2375 inet_twsk_put(inet_twsk(sk)); 2376 goto discard_it; 2377 } 2378 2379 tcp_v4_fill_cb(skb, iph, th); 2380 2381 if (tcp_checksum_complete(skb)) { 2382 inet_twsk_put(inet_twsk(sk)); 2383 goto csum_error; 2384 } 2385 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 2386 case TCP_TW_SYN: { 2387 struct sock *sk2 = inet_lookup_listener(net, 2388 net->ipv4.tcp_death_row.hashinfo, 2389 skb, __tcp_hdrlen(th), 2390 iph->saddr, th->source, 2391 iph->daddr, th->dest, 2392 inet_iif(skb), 2393 sdif); 2394 if (sk2) { 2395 inet_twsk_deschedule_put(inet_twsk(sk)); 2396 sk = sk2; 2397 tcp_v4_restore_cb(skb); 2398 refcounted = false; 2399 goto process; 2400 } 2401 } 2402 /* to ACK */ 2403 fallthrough; 2404 case TCP_TW_ACK: 2405 tcp_v4_timewait_ack(sk, skb); 2406 break; 2407 case TCP_TW_RST: 2408 tcp_v4_send_reset(sk, skb); 2409 inet_twsk_deschedule_put(inet_twsk(sk)); 2410 goto discard_it; 2411 case TCP_TW_SUCCESS:; 2412 } 2413 goto discard_it; 2414 } 2415 2416 static struct timewait_sock_ops tcp_timewait_sock_ops = { 2417 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 2418 .twsk_unique = tcp_twsk_unique, 2419 .twsk_destructor= tcp_twsk_destructor, 2420 }; 2421 2422 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 2423 { 2424 struct dst_entry *dst = skb_dst(skb); 2425 2426 if (dst && dst_hold_safe(dst)) { 2427 rcu_assign_pointer(sk->sk_rx_dst, dst); 2428 sk->sk_rx_dst_ifindex = skb->skb_iif; 2429 } 2430 } 2431 EXPORT_SYMBOL(inet_sk_rx_dst_set); 2432 2433 const struct inet_connection_sock_af_ops ipv4_specific = { 2434 .queue_xmit = ip_queue_xmit, 2435 .send_check = tcp_v4_send_check, 2436 .rebuild_header = inet_sk_rebuild_header, 2437 .sk_rx_dst_set = inet_sk_rx_dst_set, 2438 .conn_request = tcp_v4_conn_request, 2439 .syn_recv_sock = tcp_v4_syn_recv_sock, 2440 .net_header_len = sizeof(struct iphdr), 2441 .setsockopt = ip_setsockopt, 2442 .getsockopt = ip_getsockopt, 2443 .addr2sockaddr = inet_csk_addr2sockaddr, 2444 .sockaddr_len = sizeof(struct sockaddr_in), 2445 .mtu_reduced = tcp_v4_mtu_reduced, 2446 }; 2447 EXPORT_SYMBOL(ipv4_specific); 2448 2449 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 2450 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 2451 #ifdef CONFIG_TCP_MD5SIG 2452 .md5_lookup = tcp_v4_md5_lookup, 2453 .calc_md5_hash = tcp_v4_md5_hash_skb, 2454 .md5_parse = tcp_v4_parse_md5_keys, 2455 #endif 2456 #ifdef CONFIG_TCP_AO 2457 .ao_lookup = tcp_v4_ao_lookup, 2458 .calc_ao_hash = tcp_v4_ao_hash_skb, 2459 .ao_parse = tcp_v4_parse_ao, 2460 .ao_calc_key_sk = tcp_v4_ao_calc_key_sk, 2461 #endif 2462 }; 2463 #endif 2464 2465 /* NOTE: A lot of things set to zero explicitly by call to 2466 * sk_alloc() so need not be done here. 2467 */ 2468 static int tcp_v4_init_sock(struct sock *sk) 2469 { 2470 struct inet_connection_sock *icsk = inet_csk(sk); 2471 2472 tcp_init_sock(sk); 2473 2474 icsk->icsk_af_ops = &ipv4_specific; 2475 2476 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 2477 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 2478 #endif 2479 2480 return 0; 2481 } 2482 2483 #ifdef CONFIG_TCP_MD5SIG 2484 static void tcp_md5sig_info_free_rcu(struct rcu_head *head) 2485 { 2486 struct tcp_md5sig_info *md5sig; 2487 2488 md5sig = container_of(head, struct tcp_md5sig_info, rcu); 2489 kfree(md5sig); 2490 static_branch_slow_dec_deferred(&tcp_md5_needed); 2491 tcp_md5_release_sigpool(); 2492 } 2493 #endif 2494 2495 void tcp_v4_destroy_sock(struct sock *sk) 2496 { 2497 struct tcp_sock *tp = tcp_sk(sk); 2498 2499 trace_tcp_destroy_sock(sk); 2500 2501 tcp_clear_xmit_timers(sk); 2502 2503 tcp_cleanup_congestion_control(sk); 2504 2505 tcp_cleanup_ulp(sk); 2506 2507 /* Cleanup up the write buffer. */ 2508 tcp_write_queue_purge(sk); 2509 2510 /* Check if we want to disable active TFO */ 2511 tcp_fastopen_active_disable_ofo_check(sk); 2512 2513 /* Cleans up our, hopefully empty, out_of_order_queue. */ 2514 skb_rbtree_purge(&tp->out_of_order_queue); 2515 2516 #ifdef CONFIG_TCP_MD5SIG 2517 /* Clean up the MD5 key list, if any */ 2518 if (tp->md5sig_info) { 2519 struct tcp_md5sig_info *md5sig; 2520 2521 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 2522 tcp_clear_md5_list(sk); 2523 call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu); 2524 rcu_assign_pointer(tp->md5sig_info, NULL); 2525 } 2526 #endif 2527 tcp_ao_destroy_sock(sk, false); 2528 2529 /* Clean up a referenced TCP bind bucket. */ 2530 if (inet_csk(sk)->icsk_bind_hash) 2531 inet_put_port(sk); 2532 2533 BUG_ON(rcu_access_pointer(tp->fastopen_rsk)); 2534 2535 /* If socket is aborted during connect operation */ 2536 tcp_free_fastopen_req(tp); 2537 tcp_fastopen_destroy_cipher(sk); 2538 tcp_saved_syn_free(tp); 2539 2540 sk_sockets_allocated_dec(sk); 2541 } 2542 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2543 2544 #ifdef CONFIG_PROC_FS 2545 /* Proc filesystem TCP sock list dumping. */ 2546 2547 static unsigned short seq_file_family(const struct seq_file *seq); 2548 2549 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2550 { 2551 unsigned short family = seq_file_family(seq); 2552 2553 /* AF_UNSPEC is used as a match all */ 2554 return ((family == AF_UNSPEC || family == sk->sk_family) && 2555 net_eq(sock_net(sk), seq_file_net(seq))); 2556 } 2557 2558 /* Find a non empty bucket (starting from st->bucket) 2559 * and return the first sk from it. 2560 */ 2561 static void *listening_get_first(struct seq_file *seq) 2562 { 2563 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2564 struct tcp_iter_state *st = seq->private; 2565 2566 st->offset = 0; 2567 for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) { 2568 struct inet_listen_hashbucket *ilb2; 2569 struct hlist_nulls_node *node; 2570 struct sock *sk; 2571 2572 ilb2 = &hinfo->lhash2[st->bucket]; 2573 if (hlist_nulls_empty(&ilb2->nulls_head)) 2574 continue; 2575 2576 spin_lock(&ilb2->lock); 2577 sk_nulls_for_each(sk, node, &ilb2->nulls_head) { 2578 if (seq_sk_match(seq, sk)) 2579 return sk; 2580 } 2581 spin_unlock(&ilb2->lock); 2582 } 2583 2584 return NULL; 2585 } 2586 2587 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket). 2588 * If "cur" is the last one in the st->bucket, 2589 * call listening_get_first() to return the first sk of the next 2590 * non empty bucket. 2591 */ 2592 static void *listening_get_next(struct seq_file *seq, void *cur) 2593 { 2594 struct tcp_iter_state *st = seq->private; 2595 struct inet_listen_hashbucket *ilb2; 2596 struct hlist_nulls_node *node; 2597 struct inet_hashinfo *hinfo; 2598 struct sock *sk = cur; 2599 2600 ++st->num; 2601 ++st->offset; 2602 2603 sk = sk_nulls_next(sk); 2604 sk_nulls_for_each_from(sk, node) { 2605 if (seq_sk_match(seq, sk)) 2606 return sk; 2607 } 2608 2609 hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2610 ilb2 = &hinfo->lhash2[st->bucket]; 2611 spin_unlock(&ilb2->lock); 2612 ++st->bucket; 2613 return listening_get_first(seq); 2614 } 2615 2616 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2617 { 2618 struct tcp_iter_state *st = seq->private; 2619 void *rc; 2620 2621 st->bucket = 0; 2622 st->offset = 0; 2623 rc = listening_get_first(seq); 2624 2625 while (rc && *pos) { 2626 rc = listening_get_next(seq, rc); 2627 --*pos; 2628 } 2629 return rc; 2630 } 2631 2632 static inline bool empty_bucket(struct inet_hashinfo *hinfo, 2633 const struct tcp_iter_state *st) 2634 { 2635 return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain); 2636 } 2637 2638 /* 2639 * Get first established socket starting from bucket given in st->bucket. 2640 * If st->bucket is zero, the very first socket in the hash is returned. 2641 */ 2642 static void *established_get_first(struct seq_file *seq) 2643 { 2644 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2645 struct tcp_iter_state *st = seq->private; 2646 2647 st->offset = 0; 2648 for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) { 2649 struct sock *sk; 2650 struct hlist_nulls_node *node; 2651 spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket); 2652 2653 cond_resched(); 2654 2655 /* Lockless fast path for the common case of empty buckets */ 2656 if (empty_bucket(hinfo, st)) 2657 continue; 2658 2659 spin_lock_bh(lock); 2660 sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) { 2661 if (seq_sk_match(seq, sk)) 2662 return sk; 2663 } 2664 spin_unlock_bh(lock); 2665 } 2666 2667 return NULL; 2668 } 2669 2670 static void *established_get_next(struct seq_file *seq, void *cur) 2671 { 2672 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2673 struct tcp_iter_state *st = seq->private; 2674 struct hlist_nulls_node *node; 2675 struct sock *sk = cur; 2676 2677 ++st->num; 2678 ++st->offset; 2679 2680 sk = sk_nulls_next(sk); 2681 2682 sk_nulls_for_each_from(sk, node) { 2683 if (seq_sk_match(seq, sk)) 2684 return sk; 2685 } 2686 2687 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 2688 ++st->bucket; 2689 return established_get_first(seq); 2690 } 2691 2692 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2693 { 2694 struct tcp_iter_state *st = seq->private; 2695 void *rc; 2696 2697 st->bucket = 0; 2698 rc = established_get_first(seq); 2699 2700 while (rc && pos) { 2701 rc = established_get_next(seq, rc); 2702 --pos; 2703 } 2704 return rc; 2705 } 2706 2707 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2708 { 2709 void *rc; 2710 struct tcp_iter_state *st = seq->private; 2711 2712 st->state = TCP_SEQ_STATE_LISTENING; 2713 rc = listening_get_idx(seq, &pos); 2714 2715 if (!rc) { 2716 st->state = TCP_SEQ_STATE_ESTABLISHED; 2717 rc = established_get_idx(seq, pos); 2718 } 2719 2720 return rc; 2721 } 2722 2723 static void *tcp_seek_last_pos(struct seq_file *seq) 2724 { 2725 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2726 struct tcp_iter_state *st = seq->private; 2727 int bucket = st->bucket; 2728 int offset = st->offset; 2729 int orig_num = st->num; 2730 void *rc = NULL; 2731 2732 switch (st->state) { 2733 case TCP_SEQ_STATE_LISTENING: 2734 if (st->bucket > hinfo->lhash2_mask) 2735 break; 2736 rc = listening_get_first(seq); 2737 while (offset-- && rc && bucket == st->bucket) 2738 rc = listening_get_next(seq, rc); 2739 if (rc) 2740 break; 2741 st->bucket = 0; 2742 st->state = TCP_SEQ_STATE_ESTABLISHED; 2743 fallthrough; 2744 case TCP_SEQ_STATE_ESTABLISHED: 2745 if (st->bucket > hinfo->ehash_mask) 2746 break; 2747 rc = established_get_first(seq); 2748 while (offset-- && rc && bucket == st->bucket) 2749 rc = established_get_next(seq, rc); 2750 } 2751 2752 st->num = orig_num; 2753 2754 return rc; 2755 } 2756 2757 void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2758 { 2759 struct tcp_iter_state *st = seq->private; 2760 void *rc; 2761 2762 if (*pos && *pos == st->last_pos) { 2763 rc = tcp_seek_last_pos(seq); 2764 if (rc) 2765 goto out; 2766 } 2767 2768 st->state = TCP_SEQ_STATE_LISTENING; 2769 st->num = 0; 2770 st->bucket = 0; 2771 st->offset = 0; 2772 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2773 2774 out: 2775 st->last_pos = *pos; 2776 return rc; 2777 } 2778 EXPORT_SYMBOL(tcp_seq_start); 2779 2780 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2781 { 2782 struct tcp_iter_state *st = seq->private; 2783 void *rc = NULL; 2784 2785 if (v == SEQ_START_TOKEN) { 2786 rc = tcp_get_idx(seq, 0); 2787 goto out; 2788 } 2789 2790 switch (st->state) { 2791 case TCP_SEQ_STATE_LISTENING: 2792 rc = listening_get_next(seq, v); 2793 if (!rc) { 2794 st->state = TCP_SEQ_STATE_ESTABLISHED; 2795 st->bucket = 0; 2796 st->offset = 0; 2797 rc = established_get_first(seq); 2798 } 2799 break; 2800 case TCP_SEQ_STATE_ESTABLISHED: 2801 rc = established_get_next(seq, v); 2802 break; 2803 } 2804 out: 2805 ++*pos; 2806 st->last_pos = *pos; 2807 return rc; 2808 } 2809 EXPORT_SYMBOL(tcp_seq_next); 2810 2811 void tcp_seq_stop(struct seq_file *seq, void *v) 2812 { 2813 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2814 struct tcp_iter_state *st = seq->private; 2815 2816 switch (st->state) { 2817 case TCP_SEQ_STATE_LISTENING: 2818 if (v != SEQ_START_TOKEN) 2819 spin_unlock(&hinfo->lhash2[st->bucket].lock); 2820 break; 2821 case TCP_SEQ_STATE_ESTABLISHED: 2822 if (v) 2823 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 2824 break; 2825 } 2826 } 2827 EXPORT_SYMBOL(tcp_seq_stop); 2828 2829 static void get_openreq4(const struct request_sock *req, 2830 struct seq_file *f, int i) 2831 { 2832 const struct inet_request_sock *ireq = inet_rsk(req); 2833 long delta = req->rsk_timer.expires - jiffies; 2834 2835 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2836 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2837 i, 2838 ireq->ir_loc_addr, 2839 ireq->ir_num, 2840 ireq->ir_rmt_addr, 2841 ntohs(ireq->ir_rmt_port), 2842 TCP_SYN_RECV, 2843 0, 0, /* could print option size, but that is af dependent. */ 2844 1, /* timers active (only the expire timer) */ 2845 jiffies_delta_to_clock_t(delta), 2846 req->num_timeout, 2847 from_kuid_munged(seq_user_ns(f), 2848 sock_i_uid(req->rsk_listener)), 2849 0, /* non standard timer */ 2850 0, /* open_requests have no inode */ 2851 0, 2852 req); 2853 } 2854 2855 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2856 { 2857 int timer_active; 2858 unsigned long timer_expires; 2859 const struct tcp_sock *tp = tcp_sk(sk); 2860 const struct inet_connection_sock *icsk = inet_csk(sk); 2861 const struct inet_sock *inet = inet_sk(sk); 2862 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2863 __be32 dest = inet->inet_daddr; 2864 __be32 src = inet->inet_rcv_saddr; 2865 __u16 destp = ntohs(inet->inet_dport); 2866 __u16 srcp = ntohs(inet->inet_sport); 2867 int rx_queue; 2868 int state; 2869 2870 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2871 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2872 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2873 timer_active = 1; 2874 timer_expires = icsk->icsk_timeout; 2875 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2876 timer_active = 4; 2877 timer_expires = icsk->icsk_timeout; 2878 } else if (timer_pending(&sk->sk_timer)) { 2879 timer_active = 2; 2880 timer_expires = sk->sk_timer.expires; 2881 } else { 2882 timer_active = 0; 2883 timer_expires = jiffies; 2884 } 2885 2886 state = inet_sk_state_load(sk); 2887 if (state == TCP_LISTEN) 2888 rx_queue = READ_ONCE(sk->sk_ack_backlog); 2889 else 2890 /* Because we don't lock the socket, 2891 * we might find a transient negative value. 2892 */ 2893 rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) - 2894 READ_ONCE(tp->copied_seq), 0); 2895 2896 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2897 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2898 i, src, srcp, dest, destp, state, 2899 READ_ONCE(tp->write_seq) - tp->snd_una, 2900 rx_queue, 2901 timer_active, 2902 jiffies_delta_to_clock_t(timer_expires - jiffies), 2903 icsk->icsk_retransmits, 2904 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2905 icsk->icsk_probes_out, 2906 sock_i_ino(sk), 2907 refcount_read(&sk->sk_refcnt), sk, 2908 jiffies_to_clock_t(icsk->icsk_rto), 2909 jiffies_to_clock_t(icsk->icsk_ack.ato), 2910 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk), 2911 tcp_snd_cwnd(tp), 2912 state == TCP_LISTEN ? 2913 fastopenq->max_qlen : 2914 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2915 } 2916 2917 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2918 struct seq_file *f, int i) 2919 { 2920 long delta = tw->tw_timer.expires - jiffies; 2921 __be32 dest, src; 2922 __u16 destp, srcp; 2923 2924 dest = tw->tw_daddr; 2925 src = tw->tw_rcv_saddr; 2926 destp = ntohs(tw->tw_dport); 2927 srcp = ntohs(tw->tw_sport); 2928 2929 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2930 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2931 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2932 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2933 refcount_read(&tw->tw_refcnt), tw); 2934 } 2935 2936 #define TMPSZ 150 2937 2938 static int tcp4_seq_show(struct seq_file *seq, void *v) 2939 { 2940 struct tcp_iter_state *st; 2941 struct sock *sk = v; 2942 2943 seq_setwidth(seq, TMPSZ - 1); 2944 if (v == SEQ_START_TOKEN) { 2945 seq_puts(seq, " sl local_address rem_address st tx_queue " 2946 "rx_queue tr tm->when retrnsmt uid timeout " 2947 "inode"); 2948 goto out; 2949 } 2950 st = seq->private; 2951 2952 if (sk->sk_state == TCP_TIME_WAIT) 2953 get_timewait4_sock(v, seq, st->num); 2954 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2955 get_openreq4(v, seq, st->num); 2956 else 2957 get_tcp4_sock(v, seq, st->num); 2958 out: 2959 seq_pad(seq, '\n'); 2960 return 0; 2961 } 2962 2963 #ifdef CONFIG_BPF_SYSCALL 2964 struct bpf_tcp_iter_state { 2965 struct tcp_iter_state state; 2966 unsigned int cur_sk; 2967 unsigned int end_sk; 2968 unsigned int max_sk; 2969 struct sock **batch; 2970 bool st_bucket_done; 2971 }; 2972 2973 struct bpf_iter__tcp { 2974 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2975 __bpf_md_ptr(struct sock_common *, sk_common); 2976 uid_t uid __aligned(8); 2977 }; 2978 2979 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 2980 struct sock_common *sk_common, uid_t uid) 2981 { 2982 struct bpf_iter__tcp ctx; 2983 2984 meta->seq_num--; /* skip SEQ_START_TOKEN */ 2985 ctx.meta = meta; 2986 ctx.sk_common = sk_common; 2987 ctx.uid = uid; 2988 return bpf_iter_run_prog(prog, &ctx); 2989 } 2990 2991 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter) 2992 { 2993 while (iter->cur_sk < iter->end_sk) 2994 sock_gen_put(iter->batch[iter->cur_sk++]); 2995 } 2996 2997 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter, 2998 unsigned int new_batch_sz) 2999 { 3000 struct sock **new_batch; 3001 3002 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 3003 GFP_USER | __GFP_NOWARN); 3004 if (!new_batch) 3005 return -ENOMEM; 3006 3007 bpf_iter_tcp_put_batch(iter); 3008 kvfree(iter->batch); 3009 iter->batch = new_batch; 3010 iter->max_sk = new_batch_sz; 3011 3012 return 0; 3013 } 3014 3015 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq, 3016 struct sock *start_sk) 3017 { 3018 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 3019 struct bpf_tcp_iter_state *iter = seq->private; 3020 struct tcp_iter_state *st = &iter->state; 3021 struct hlist_nulls_node *node; 3022 unsigned int expected = 1; 3023 struct sock *sk; 3024 3025 sock_hold(start_sk); 3026 iter->batch[iter->end_sk++] = start_sk; 3027 3028 sk = sk_nulls_next(start_sk); 3029 sk_nulls_for_each_from(sk, node) { 3030 if (seq_sk_match(seq, sk)) { 3031 if (iter->end_sk < iter->max_sk) { 3032 sock_hold(sk); 3033 iter->batch[iter->end_sk++] = sk; 3034 } 3035 expected++; 3036 } 3037 } 3038 spin_unlock(&hinfo->lhash2[st->bucket].lock); 3039 3040 return expected; 3041 } 3042 3043 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq, 3044 struct sock *start_sk) 3045 { 3046 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 3047 struct bpf_tcp_iter_state *iter = seq->private; 3048 struct tcp_iter_state *st = &iter->state; 3049 struct hlist_nulls_node *node; 3050 unsigned int expected = 1; 3051 struct sock *sk; 3052 3053 sock_hold(start_sk); 3054 iter->batch[iter->end_sk++] = start_sk; 3055 3056 sk = sk_nulls_next(start_sk); 3057 sk_nulls_for_each_from(sk, node) { 3058 if (seq_sk_match(seq, sk)) { 3059 if (iter->end_sk < iter->max_sk) { 3060 sock_hold(sk); 3061 iter->batch[iter->end_sk++] = sk; 3062 } 3063 expected++; 3064 } 3065 } 3066 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 3067 3068 return expected; 3069 } 3070 3071 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq) 3072 { 3073 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 3074 struct bpf_tcp_iter_state *iter = seq->private; 3075 struct tcp_iter_state *st = &iter->state; 3076 unsigned int expected; 3077 bool resized = false; 3078 struct sock *sk; 3079 3080 /* The st->bucket is done. Directly advance to the next 3081 * bucket instead of having the tcp_seek_last_pos() to skip 3082 * one by one in the current bucket and eventually find out 3083 * it has to advance to the next bucket. 3084 */ 3085 if (iter->st_bucket_done) { 3086 st->offset = 0; 3087 st->bucket++; 3088 if (st->state == TCP_SEQ_STATE_LISTENING && 3089 st->bucket > hinfo->lhash2_mask) { 3090 st->state = TCP_SEQ_STATE_ESTABLISHED; 3091 st->bucket = 0; 3092 } 3093 } 3094 3095 again: 3096 /* Get a new batch */ 3097 iter->cur_sk = 0; 3098 iter->end_sk = 0; 3099 iter->st_bucket_done = false; 3100 3101 sk = tcp_seek_last_pos(seq); 3102 if (!sk) 3103 return NULL; /* Done */ 3104 3105 if (st->state == TCP_SEQ_STATE_LISTENING) 3106 expected = bpf_iter_tcp_listening_batch(seq, sk); 3107 else 3108 expected = bpf_iter_tcp_established_batch(seq, sk); 3109 3110 if (iter->end_sk == expected) { 3111 iter->st_bucket_done = true; 3112 return sk; 3113 } 3114 3115 if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) { 3116 resized = true; 3117 goto again; 3118 } 3119 3120 return sk; 3121 } 3122 3123 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos) 3124 { 3125 /* bpf iter does not support lseek, so it always 3126 * continue from where it was stop()-ped. 3127 */ 3128 if (*pos) 3129 return bpf_iter_tcp_batch(seq); 3130 3131 return SEQ_START_TOKEN; 3132 } 3133 3134 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3135 { 3136 struct bpf_tcp_iter_state *iter = seq->private; 3137 struct tcp_iter_state *st = &iter->state; 3138 struct sock *sk; 3139 3140 /* Whenever seq_next() is called, the iter->cur_sk is 3141 * done with seq_show(), so advance to the next sk in 3142 * the batch. 3143 */ 3144 if (iter->cur_sk < iter->end_sk) { 3145 /* Keeping st->num consistent in tcp_iter_state. 3146 * bpf_iter_tcp does not use st->num. 3147 * meta.seq_num is used instead. 3148 */ 3149 st->num++; 3150 /* Move st->offset to the next sk in the bucket such that 3151 * the future start() will resume at st->offset in 3152 * st->bucket. See tcp_seek_last_pos(). 3153 */ 3154 st->offset++; 3155 sock_gen_put(iter->batch[iter->cur_sk++]); 3156 } 3157 3158 if (iter->cur_sk < iter->end_sk) 3159 sk = iter->batch[iter->cur_sk]; 3160 else 3161 sk = bpf_iter_tcp_batch(seq); 3162 3163 ++*pos; 3164 /* Keeping st->last_pos consistent in tcp_iter_state. 3165 * bpf iter does not do lseek, so st->last_pos always equals to *pos. 3166 */ 3167 st->last_pos = *pos; 3168 return sk; 3169 } 3170 3171 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v) 3172 { 3173 struct bpf_iter_meta meta; 3174 struct bpf_prog *prog; 3175 struct sock *sk = v; 3176 uid_t uid; 3177 int ret; 3178 3179 if (v == SEQ_START_TOKEN) 3180 return 0; 3181 3182 if (sk_fullsock(sk)) 3183 lock_sock(sk); 3184 3185 if (unlikely(sk_unhashed(sk))) { 3186 ret = SEQ_SKIP; 3187 goto unlock; 3188 } 3189 3190 if (sk->sk_state == TCP_TIME_WAIT) { 3191 uid = 0; 3192 } else if (sk->sk_state == TCP_NEW_SYN_RECV) { 3193 const struct request_sock *req = v; 3194 3195 uid = from_kuid_munged(seq_user_ns(seq), 3196 sock_i_uid(req->rsk_listener)); 3197 } else { 3198 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3199 } 3200 3201 meta.seq = seq; 3202 prog = bpf_iter_get_info(&meta, false); 3203 ret = tcp_prog_seq_show(prog, &meta, v, uid); 3204 3205 unlock: 3206 if (sk_fullsock(sk)) 3207 release_sock(sk); 3208 return ret; 3209 3210 } 3211 3212 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v) 3213 { 3214 struct bpf_tcp_iter_state *iter = seq->private; 3215 struct bpf_iter_meta meta; 3216 struct bpf_prog *prog; 3217 3218 if (!v) { 3219 meta.seq = seq; 3220 prog = bpf_iter_get_info(&meta, true); 3221 if (prog) 3222 (void)tcp_prog_seq_show(prog, &meta, v, 0); 3223 } 3224 3225 if (iter->cur_sk < iter->end_sk) { 3226 bpf_iter_tcp_put_batch(iter); 3227 iter->st_bucket_done = false; 3228 } 3229 } 3230 3231 static const struct seq_operations bpf_iter_tcp_seq_ops = { 3232 .show = bpf_iter_tcp_seq_show, 3233 .start = bpf_iter_tcp_seq_start, 3234 .next = bpf_iter_tcp_seq_next, 3235 .stop = bpf_iter_tcp_seq_stop, 3236 }; 3237 #endif 3238 static unsigned short seq_file_family(const struct seq_file *seq) 3239 { 3240 const struct tcp_seq_afinfo *afinfo; 3241 3242 #ifdef CONFIG_BPF_SYSCALL 3243 /* Iterated from bpf_iter. Let the bpf prog to filter instead. */ 3244 if (seq->op == &bpf_iter_tcp_seq_ops) 3245 return AF_UNSPEC; 3246 #endif 3247 3248 /* Iterated from proc fs */ 3249 afinfo = pde_data(file_inode(seq->file)); 3250 return afinfo->family; 3251 } 3252 3253 static const struct seq_operations tcp4_seq_ops = { 3254 .show = tcp4_seq_show, 3255 .start = tcp_seq_start, 3256 .next = tcp_seq_next, 3257 .stop = tcp_seq_stop, 3258 }; 3259 3260 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 3261 .family = AF_INET, 3262 }; 3263 3264 static int __net_init tcp4_proc_init_net(struct net *net) 3265 { 3266 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, 3267 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) 3268 return -ENOMEM; 3269 return 0; 3270 } 3271 3272 static void __net_exit tcp4_proc_exit_net(struct net *net) 3273 { 3274 remove_proc_entry("tcp", net->proc_net); 3275 } 3276 3277 static struct pernet_operations tcp4_net_ops = { 3278 .init = tcp4_proc_init_net, 3279 .exit = tcp4_proc_exit_net, 3280 }; 3281 3282 int __init tcp4_proc_init(void) 3283 { 3284 return register_pernet_subsys(&tcp4_net_ops); 3285 } 3286 3287 void tcp4_proc_exit(void) 3288 { 3289 unregister_pernet_subsys(&tcp4_net_ops); 3290 } 3291 #endif /* CONFIG_PROC_FS */ 3292 3293 /* @wake is one when sk_stream_write_space() calls us. 3294 * This sends EPOLLOUT only if notsent_bytes is half the limit. 3295 * This mimics the strategy used in sock_def_write_space(). 3296 */ 3297 bool tcp_stream_memory_free(const struct sock *sk, int wake) 3298 { 3299 const struct tcp_sock *tp = tcp_sk(sk); 3300 u32 notsent_bytes = READ_ONCE(tp->write_seq) - 3301 READ_ONCE(tp->snd_nxt); 3302 3303 return (notsent_bytes << wake) < tcp_notsent_lowat(tp); 3304 } 3305 EXPORT_SYMBOL(tcp_stream_memory_free); 3306 3307 struct proto tcp_prot = { 3308 .name = "TCP", 3309 .owner = THIS_MODULE, 3310 .close = tcp_close, 3311 .pre_connect = tcp_v4_pre_connect, 3312 .connect = tcp_v4_connect, 3313 .disconnect = tcp_disconnect, 3314 .accept = inet_csk_accept, 3315 .ioctl = tcp_ioctl, 3316 .init = tcp_v4_init_sock, 3317 .destroy = tcp_v4_destroy_sock, 3318 .shutdown = tcp_shutdown, 3319 .setsockopt = tcp_setsockopt, 3320 .getsockopt = tcp_getsockopt, 3321 .bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt, 3322 .keepalive = tcp_set_keepalive, 3323 .recvmsg = tcp_recvmsg, 3324 .sendmsg = tcp_sendmsg, 3325 .splice_eof = tcp_splice_eof, 3326 .backlog_rcv = tcp_v4_do_rcv, 3327 .release_cb = tcp_release_cb, 3328 .hash = inet_hash, 3329 .unhash = inet_unhash, 3330 .get_port = inet_csk_get_port, 3331 .put_port = inet_put_port, 3332 #ifdef CONFIG_BPF_SYSCALL 3333 .psock_update_sk_prot = tcp_bpf_update_proto, 3334 #endif 3335 .enter_memory_pressure = tcp_enter_memory_pressure, 3336 .leave_memory_pressure = tcp_leave_memory_pressure, 3337 .stream_memory_free = tcp_stream_memory_free, 3338 .sockets_allocated = &tcp_sockets_allocated, 3339 .orphan_count = &tcp_orphan_count, 3340 3341 .memory_allocated = &tcp_memory_allocated, 3342 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3343 3344 .memory_pressure = &tcp_memory_pressure, 3345 .sysctl_mem = sysctl_tcp_mem, 3346 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3347 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3348 .max_header = MAX_TCP_HEADER, 3349 .obj_size = sizeof(struct tcp_sock), 3350 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3351 .twsk_prot = &tcp_timewait_sock_ops, 3352 .rsk_prot = &tcp_request_sock_ops, 3353 .h.hashinfo = NULL, 3354 .no_autobind = true, 3355 .diag_destroy = tcp_abort, 3356 }; 3357 EXPORT_SYMBOL(tcp_prot); 3358 3359 static void __net_exit tcp_sk_exit(struct net *net) 3360 { 3361 if (net->ipv4.tcp_congestion_control) 3362 bpf_module_put(net->ipv4.tcp_congestion_control, 3363 net->ipv4.tcp_congestion_control->owner); 3364 } 3365 3366 static void __net_init tcp_set_hashinfo(struct net *net) 3367 { 3368 struct inet_hashinfo *hinfo; 3369 unsigned int ehash_entries; 3370 struct net *old_net; 3371 3372 if (net_eq(net, &init_net)) 3373 goto fallback; 3374 3375 old_net = current->nsproxy->net_ns; 3376 ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries); 3377 if (!ehash_entries) 3378 goto fallback; 3379 3380 ehash_entries = roundup_pow_of_two(ehash_entries); 3381 hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries); 3382 if (!hinfo) { 3383 pr_warn("Failed to allocate TCP ehash (entries: %u) " 3384 "for a netns, fallback to the global one\n", 3385 ehash_entries); 3386 fallback: 3387 hinfo = &tcp_hashinfo; 3388 ehash_entries = tcp_hashinfo.ehash_mask + 1; 3389 } 3390 3391 net->ipv4.tcp_death_row.hashinfo = hinfo; 3392 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2; 3393 net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128); 3394 } 3395 3396 static int __net_init tcp_sk_init(struct net *net) 3397 { 3398 net->ipv4.sysctl_tcp_ecn = 2; 3399 net->ipv4.sysctl_tcp_ecn_fallback = 1; 3400 3401 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 3402 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS; 3403 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 3404 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 3405 net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS; 3406 3407 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 3408 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 3409 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 3410 3411 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 3412 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 3413 net->ipv4.sysctl_tcp_syncookies = 1; 3414 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 3415 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 3416 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 3417 net->ipv4.sysctl_tcp_orphan_retries = 0; 3418 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 3419 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 3420 net->ipv4.sysctl_tcp_tw_reuse = 2; 3421 net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1; 3422 3423 refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1); 3424 tcp_set_hashinfo(net); 3425 3426 net->ipv4.sysctl_tcp_sack = 1; 3427 net->ipv4.sysctl_tcp_window_scaling = 1; 3428 net->ipv4.sysctl_tcp_timestamps = 1; 3429 net->ipv4.sysctl_tcp_early_retrans = 3; 3430 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; 3431 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ 3432 net->ipv4.sysctl_tcp_retrans_collapse = 1; 3433 net->ipv4.sysctl_tcp_max_reordering = 300; 3434 net->ipv4.sysctl_tcp_dsack = 1; 3435 net->ipv4.sysctl_tcp_app_win = 31; 3436 net->ipv4.sysctl_tcp_adv_win_scale = 1; 3437 net->ipv4.sysctl_tcp_frto = 2; 3438 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; 3439 /* This limits the percentage of the congestion window which we 3440 * will allow a single TSO frame to consume. Building TSO frames 3441 * which are too large can cause TCP streams to be bursty. 3442 */ 3443 net->ipv4.sysctl_tcp_tso_win_divisor = 3; 3444 /* Default TSQ limit of 16 TSO segments */ 3445 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536; 3446 3447 /* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */ 3448 net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX; 3449 3450 net->ipv4.sysctl_tcp_min_tso_segs = 2; 3451 net->ipv4.sysctl_tcp_tso_rtt_log = 9; /* 2^9 = 512 usec */ 3452 net->ipv4.sysctl_tcp_min_rtt_wlen = 300; 3453 net->ipv4.sysctl_tcp_autocorking = 1; 3454 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; 3455 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; 3456 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; 3457 if (net != &init_net) { 3458 memcpy(net->ipv4.sysctl_tcp_rmem, 3459 init_net.ipv4.sysctl_tcp_rmem, 3460 sizeof(init_net.ipv4.sysctl_tcp_rmem)); 3461 memcpy(net->ipv4.sysctl_tcp_wmem, 3462 init_net.ipv4.sysctl_tcp_wmem, 3463 sizeof(init_net.ipv4.sysctl_tcp_wmem)); 3464 } 3465 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC; 3466 net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC; 3467 net->ipv4.sysctl_tcp_comp_sack_nr = 44; 3468 net->ipv4.sysctl_tcp_backlog_ack_defer = 1; 3469 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; 3470 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0; 3471 atomic_set(&net->ipv4.tfo_active_disable_times, 0); 3472 3473 /* Set default values for PLB */ 3474 net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */ 3475 net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3; 3476 net->ipv4.sysctl_tcp_plb_rehash_rounds = 12; 3477 net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60; 3478 /* Default congestion threshold for PLB to mark a round is 50% */ 3479 net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2; 3480 3481 /* Reno is always built in */ 3482 if (!net_eq(net, &init_net) && 3483 bpf_try_module_get(init_net.ipv4.tcp_congestion_control, 3484 init_net.ipv4.tcp_congestion_control->owner)) 3485 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; 3486 else 3487 net->ipv4.tcp_congestion_control = &tcp_reno; 3488 3489 net->ipv4.sysctl_tcp_syn_linear_timeouts = 4; 3490 net->ipv4.sysctl_tcp_shrink_window = 0; 3491 3492 net->ipv4.sysctl_tcp_pingpong_thresh = 1; 3493 3494 return 0; 3495 } 3496 3497 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 3498 { 3499 struct net *net; 3500 3501 tcp_twsk_purge(net_exit_list); 3502 3503 list_for_each_entry(net, net_exit_list, exit_list) { 3504 inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo); 3505 WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount)); 3506 tcp_fastopen_ctx_destroy(net); 3507 } 3508 } 3509 3510 static struct pernet_operations __net_initdata tcp_sk_ops = { 3511 .init = tcp_sk_init, 3512 .exit = tcp_sk_exit, 3513 .exit_batch = tcp_sk_exit_batch, 3514 }; 3515 3516 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3517 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta, 3518 struct sock_common *sk_common, uid_t uid) 3519 3520 #define INIT_BATCH_SZ 16 3521 3522 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux) 3523 { 3524 struct bpf_tcp_iter_state *iter = priv_data; 3525 int err; 3526 3527 err = bpf_iter_init_seq_net(priv_data, aux); 3528 if (err) 3529 return err; 3530 3531 err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ); 3532 if (err) { 3533 bpf_iter_fini_seq_net(priv_data); 3534 return err; 3535 } 3536 3537 return 0; 3538 } 3539 3540 static void bpf_iter_fini_tcp(void *priv_data) 3541 { 3542 struct bpf_tcp_iter_state *iter = priv_data; 3543 3544 bpf_iter_fini_seq_net(priv_data); 3545 kvfree(iter->batch); 3546 } 3547 3548 static const struct bpf_iter_seq_info tcp_seq_info = { 3549 .seq_ops = &bpf_iter_tcp_seq_ops, 3550 .init_seq_private = bpf_iter_init_tcp, 3551 .fini_seq_private = bpf_iter_fini_tcp, 3552 .seq_priv_size = sizeof(struct bpf_tcp_iter_state), 3553 }; 3554 3555 static const struct bpf_func_proto * 3556 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id, 3557 const struct bpf_prog *prog) 3558 { 3559 switch (func_id) { 3560 case BPF_FUNC_setsockopt: 3561 return &bpf_sk_setsockopt_proto; 3562 case BPF_FUNC_getsockopt: 3563 return &bpf_sk_getsockopt_proto; 3564 default: 3565 return NULL; 3566 } 3567 } 3568 3569 static struct bpf_iter_reg tcp_reg_info = { 3570 .target = "tcp", 3571 .ctx_arg_info_size = 1, 3572 .ctx_arg_info = { 3573 { offsetof(struct bpf_iter__tcp, sk_common), 3574 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3575 }, 3576 .get_func_proto = bpf_iter_tcp_get_func_proto, 3577 .seq_info = &tcp_seq_info, 3578 }; 3579 3580 static void __init bpf_iter_register(void) 3581 { 3582 tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON]; 3583 if (bpf_iter_reg_target(&tcp_reg_info)) 3584 pr_warn("Warning: could not register bpf iterator tcp\n"); 3585 } 3586 3587 #endif 3588 3589 void __init tcp_v4_init(void) 3590 { 3591 int cpu, res; 3592 3593 for_each_possible_cpu(cpu) { 3594 struct sock *sk; 3595 3596 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 3597 IPPROTO_TCP, &init_net); 3598 if (res) 3599 panic("Failed to create the TCP control socket.\n"); 3600 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 3601 3602 /* Please enforce IP_DF and IPID==0 for RST and 3603 * ACK sent in SYN-RECV and TIME-WAIT state. 3604 */ 3605 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO; 3606 3607 per_cpu(ipv4_tcp_sk, cpu) = sk; 3608 } 3609 if (register_pernet_subsys(&tcp_sk_ops)) 3610 panic("Failed to create the TCP control socket.\n"); 3611 3612 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3613 bpf_iter_register(); 3614 #endif 3615 } 3616