xref: /linux/net/ipv4/tcp_ipv4.c (revision b4db9f840283caca0d904436f187ef56a9126eaa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 #include <linux/sched.h>
61 
62 #include <net/net_namespace.h>
63 #include <net/icmp.h>
64 #include <net/inet_hashtables.h>
65 #include <net/tcp.h>
66 #include <net/transp_v6.h>
67 #include <net/ipv6.h>
68 #include <net/inet_common.h>
69 #include <net/timewait_sock.h>
70 #include <net/xfrm.h>
71 #include <net/secure_seq.h>
72 #include <net/busy_poll.h>
73 
74 #include <linux/inet.h>
75 #include <linux/ipv6.h>
76 #include <linux/stddef.h>
77 #include <linux/proc_fs.h>
78 #include <linux/seq_file.h>
79 #include <linux/inetdevice.h>
80 #include <linux/btf_ids.h>
81 
82 #include <crypto/hash.h>
83 #include <linux/scatterlist.h>
84 
85 #include <trace/events/tcp.h>
86 
87 #ifdef CONFIG_TCP_MD5SIG
88 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
89 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
90 #endif
91 
92 struct inet_hashinfo tcp_hashinfo;
93 EXPORT_SYMBOL(tcp_hashinfo);
94 
95 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
96 
97 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
98 {
99 	return secure_tcp_seq(ip_hdr(skb)->daddr,
100 			      ip_hdr(skb)->saddr,
101 			      tcp_hdr(skb)->dest,
102 			      tcp_hdr(skb)->source);
103 }
104 
105 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
106 {
107 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
108 }
109 
110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 {
112 	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
113 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
114 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
115 	struct tcp_sock *tp = tcp_sk(sk);
116 
117 	if (reuse == 2) {
118 		/* Still does not detect *everything* that goes through
119 		 * lo, since we require a loopback src or dst address
120 		 * or direct binding to 'lo' interface.
121 		 */
122 		bool loopback = false;
123 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
124 			loopback = true;
125 #if IS_ENABLED(CONFIG_IPV6)
126 		if (tw->tw_family == AF_INET6) {
127 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
128 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
129 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
130 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
131 				loopback = true;
132 		} else
133 #endif
134 		{
135 			if (ipv4_is_loopback(tw->tw_daddr) ||
136 			    ipv4_is_loopback(tw->tw_rcv_saddr))
137 				loopback = true;
138 		}
139 		if (!loopback)
140 			reuse = 0;
141 	}
142 
143 	/* With PAWS, it is safe from the viewpoint
144 	   of data integrity. Even without PAWS it is safe provided sequence
145 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
146 
147 	   Actually, the idea is close to VJ's one, only timestamp cache is
148 	   held not per host, but per port pair and TW bucket is used as state
149 	   holder.
150 
151 	   If TW bucket has been already destroyed we fall back to VJ's scheme
152 	   and use initial timestamp retrieved from peer table.
153 	 */
154 	if (tcptw->tw_ts_recent_stamp &&
155 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
156 					    tcptw->tw_ts_recent_stamp)))) {
157 		/* In case of repair and re-using TIME-WAIT sockets we still
158 		 * want to be sure that it is safe as above but honor the
159 		 * sequence numbers and time stamps set as part of the repair
160 		 * process.
161 		 *
162 		 * Without this check re-using a TIME-WAIT socket with TCP
163 		 * repair would accumulate a -1 on the repair assigned
164 		 * sequence number. The first time it is reused the sequence
165 		 * is -1, the second time -2, etc. This fixes that issue
166 		 * without appearing to create any others.
167 		 */
168 		if (likely(!tp->repair)) {
169 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
170 
171 			if (!seq)
172 				seq = 1;
173 			WRITE_ONCE(tp->write_seq, seq);
174 			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
175 			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
176 		}
177 		sock_hold(sktw);
178 		return 1;
179 	}
180 
181 	return 0;
182 }
183 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
184 
185 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
186 			      int addr_len)
187 {
188 	/* This check is replicated from tcp_v4_connect() and intended to
189 	 * prevent BPF program called below from accessing bytes that are out
190 	 * of the bound specified by user in addr_len.
191 	 */
192 	if (addr_len < sizeof(struct sockaddr_in))
193 		return -EINVAL;
194 
195 	sock_owned_by_me(sk);
196 
197 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
198 }
199 
200 /* This will initiate an outgoing connection. */
201 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
202 {
203 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
204 	struct inet_timewait_death_row *tcp_death_row;
205 	struct inet_sock *inet = inet_sk(sk);
206 	struct tcp_sock *tp = tcp_sk(sk);
207 	struct ip_options_rcu *inet_opt;
208 	struct net *net = sock_net(sk);
209 	__be16 orig_sport, orig_dport;
210 	__be32 daddr, nexthop;
211 	struct flowi4 *fl4;
212 	struct rtable *rt;
213 	int err;
214 
215 	if (addr_len < sizeof(struct sockaddr_in))
216 		return -EINVAL;
217 
218 	if (usin->sin_family != AF_INET)
219 		return -EAFNOSUPPORT;
220 
221 	nexthop = daddr = usin->sin_addr.s_addr;
222 	inet_opt = rcu_dereference_protected(inet->inet_opt,
223 					     lockdep_sock_is_held(sk));
224 	if (inet_opt && inet_opt->opt.srr) {
225 		if (!daddr)
226 			return -EINVAL;
227 		nexthop = inet_opt->opt.faddr;
228 	}
229 
230 	orig_sport = inet->inet_sport;
231 	orig_dport = usin->sin_port;
232 	fl4 = &inet->cork.fl.u.ip4;
233 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
234 			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
235 			      orig_dport, sk);
236 	if (IS_ERR(rt)) {
237 		err = PTR_ERR(rt);
238 		if (err == -ENETUNREACH)
239 			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
240 		return err;
241 	}
242 
243 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
244 		ip_rt_put(rt);
245 		return -ENETUNREACH;
246 	}
247 
248 	if (!inet_opt || !inet_opt->opt.srr)
249 		daddr = fl4->daddr;
250 
251 	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
252 
253 	if (!inet->inet_saddr) {
254 		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
255 		if (err) {
256 			ip_rt_put(rt);
257 			return err;
258 		}
259 	} else {
260 		sk_rcv_saddr_set(sk, inet->inet_saddr);
261 	}
262 
263 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
264 		/* Reset inherited state */
265 		tp->rx_opt.ts_recent	   = 0;
266 		tp->rx_opt.ts_recent_stamp = 0;
267 		if (likely(!tp->repair))
268 			WRITE_ONCE(tp->write_seq, 0);
269 	}
270 
271 	inet->inet_dport = usin->sin_port;
272 	sk_daddr_set(sk, daddr);
273 
274 	inet_csk(sk)->icsk_ext_hdr_len = 0;
275 	if (inet_opt)
276 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
277 
278 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
279 
280 	/* Socket identity is still unknown (sport may be zero).
281 	 * However we set state to SYN-SENT and not releasing socket
282 	 * lock select source port, enter ourselves into the hash tables and
283 	 * complete initialization after this.
284 	 */
285 	tcp_set_state(sk, TCP_SYN_SENT);
286 	err = inet_hash_connect(tcp_death_row, sk);
287 	if (err)
288 		goto failure;
289 
290 	sk_set_txhash(sk);
291 
292 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
293 			       inet->inet_sport, inet->inet_dport, sk);
294 	if (IS_ERR(rt)) {
295 		err = PTR_ERR(rt);
296 		rt = NULL;
297 		goto failure;
298 	}
299 	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
300 	/* OK, now commit destination to socket.  */
301 	sk->sk_gso_type = SKB_GSO_TCPV4;
302 	sk_setup_caps(sk, &rt->dst);
303 	rt = NULL;
304 
305 	if (likely(!tp->repair)) {
306 		if (!tp->write_seq)
307 			WRITE_ONCE(tp->write_seq,
308 				   secure_tcp_seq(inet->inet_saddr,
309 						  inet->inet_daddr,
310 						  inet->inet_sport,
311 						  usin->sin_port));
312 		WRITE_ONCE(tp->tsoffset,
313 			   secure_tcp_ts_off(net, inet->inet_saddr,
314 					     inet->inet_daddr));
315 	}
316 
317 	atomic_set(&inet->inet_id, get_random_u16());
318 
319 	if (tcp_fastopen_defer_connect(sk, &err))
320 		return err;
321 	if (err)
322 		goto failure;
323 
324 	err = tcp_connect(sk);
325 
326 	if (err)
327 		goto failure;
328 
329 	return 0;
330 
331 failure:
332 	/*
333 	 * This unhashes the socket and releases the local port,
334 	 * if necessary.
335 	 */
336 	tcp_set_state(sk, TCP_CLOSE);
337 	inet_bhash2_reset_saddr(sk);
338 	ip_rt_put(rt);
339 	sk->sk_route_caps = 0;
340 	inet->inet_dport = 0;
341 	return err;
342 }
343 EXPORT_SYMBOL(tcp_v4_connect);
344 
345 /*
346  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
347  * It can be called through tcp_release_cb() if socket was owned by user
348  * at the time tcp_v4_err() was called to handle ICMP message.
349  */
350 void tcp_v4_mtu_reduced(struct sock *sk)
351 {
352 	struct inet_sock *inet = inet_sk(sk);
353 	struct dst_entry *dst;
354 	u32 mtu;
355 
356 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
357 		return;
358 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
359 	dst = inet_csk_update_pmtu(sk, mtu);
360 	if (!dst)
361 		return;
362 
363 	/* Something is about to be wrong... Remember soft error
364 	 * for the case, if this connection will not able to recover.
365 	 */
366 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
367 		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
368 
369 	mtu = dst_mtu(dst);
370 
371 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
372 	    ip_sk_accept_pmtu(sk) &&
373 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
374 		tcp_sync_mss(sk, mtu);
375 
376 		/* Resend the TCP packet because it's
377 		 * clear that the old packet has been
378 		 * dropped. This is the new "fast" path mtu
379 		 * discovery.
380 		 */
381 		tcp_simple_retransmit(sk);
382 	} /* else let the usual retransmit timer handle it */
383 }
384 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
385 
386 static void do_redirect(struct sk_buff *skb, struct sock *sk)
387 {
388 	struct dst_entry *dst = __sk_dst_check(sk, 0);
389 
390 	if (dst)
391 		dst->ops->redirect(dst, sk, skb);
392 }
393 
394 
395 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
396 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
397 {
398 	struct request_sock *req = inet_reqsk(sk);
399 	struct net *net = sock_net(sk);
400 
401 	/* ICMPs are not backlogged, hence we cannot get
402 	 * an established socket here.
403 	 */
404 	if (seq != tcp_rsk(req)->snt_isn) {
405 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
406 	} else if (abort) {
407 		/*
408 		 * Still in SYN_RECV, just remove it silently.
409 		 * There is no good way to pass the error to the newly
410 		 * created socket, and POSIX does not want network
411 		 * errors returned from accept().
412 		 */
413 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
414 		tcp_listendrop(req->rsk_listener);
415 	}
416 	reqsk_put(req);
417 }
418 EXPORT_SYMBOL(tcp_req_err);
419 
420 /* TCP-LD (RFC 6069) logic */
421 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
422 {
423 	struct inet_connection_sock *icsk = inet_csk(sk);
424 	struct tcp_sock *tp = tcp_sk(sk);
425 	struct sk_buff *skb;
426 	s32 remaining;
427 	u32 delta_us;
428 
429 	if (sock_owned_by_user(sk))
430 		return;
431 
432 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
433 	    !icsk->icsk_backoff)
434 		return;
435 
436 	skb = tcp_rtx_queue_head(sk);
437 	if (WARN_ON_ONCE(!skb))
438 		return;
439 
440 	icsk->icsk_backoff--;
441 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
442 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
443 
444 	tcp_mstamp_refresh(tp);
445 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
446 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
447 
448 	if (remaining > 0) {
449 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
450 					  remaining, TCP_RTO_MAX);
451 	} else {
452 		/* RTO revert clocked out retransmission.
453 		 * Will retransmit now.
454 		 */
455 		tcp_retransmit_timer(sk);
456 	}
457 }
458 EXPORT_SYMBOL(tcp_ld_RTO_revert);
459 
460 /*
461  * This routine is called by the ICMP module when it gets some
462  * sort of error condition.  If err < 0 then the socket should
463  * be closed and the error returned to the user.  If err > 0
464  * it's just the icmp type << 8 | icmp code.  After adjustment
465  * header points to the first 8 bytes of the tcp header.  We need
466  * to find the appropriate port.
467  *
468  * The locking strategy used here is very "optimistic". When
469  * someone else accesses the socket the ICMP is just dropped
470  * and for some paths there is no check at all.
471  * A more general error queue to queue errors for later handling
472  * is probably better.
473  *
474  */
475 
476 int tcp_v4_err(struct sk_buff *skb, u32 info)
477 {
478 	const struct iphdr *iph = (const struct iphdr *)skb->data;
479 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
480 	struct tcp_sock *tp;
481 	const int type = icmp_hdr(skb)->type;
482 	const int code = icmp_hdr(skb)->code;
483 	struct sock *sk;
484 	struct request_sock *fastopen;
485 	u32 seq, snd_una;
486 	int err;
487 	struct net *net = dev_net(skb->dev);
488 
489 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
490 				       iph->daddr, th->dest, iph->saddr,
491 				       ntohs(th->source), inet_iif(skb), 0);
492 	if (!sk) {
493 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
494 		return -ENOENT;
495 	}
496 	if (sk->sk_state == TCP_TIME_WAIT) {
497 		/* To increase the counter of ignored icmps for TCP-AO */
498 		tcp_ao_ignore_icmp(sk, AF_INET, type, code);
499 		inet_twsk_put(inet_twsk(sk));
500 		return 0;
501 	}
502 	seq = ntohl(th->seq);
503 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
504 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
505 				     type == ICMP_TIME_EXCEEDED ||
506 				     (type == ICMP_DEST_UNREACH &&
507 				      (code == ICMP_NET_UNREACH ||
508 				       code == ICMP_HOST_UNREACH)));
509 		return 0;
510 	}
511 
512 	if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
513 		sock_put(sk);
514 		return 0;
515 	}
516 
517 	bh_lock_sock(sk);
518 	/* If too many ICMPs get dropped on busy
519 	 * servers this needs to be solved differently.
520 	 * We do take care of PMTU discovery (RFC1191) special case :
521 	 * we can receive locally generated ICMP messages while socket is held.
522 	 */
523 	if (sock_owned_by_user(sk)) {
524 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
525 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
526 	}
527 	if (sk->sk_state == TCP_CLOSE)
528 		goto out;
529 
530 	if (static_branch_unlikely(&ip4_min_ttl)) {
531 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
532 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
533 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
534 			goto out;
535 		}
536 	}
537 
538 	tp = tcp_sk(sk);
539 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
540 	fastopen = rcu_dereference(tp->fastopen_rsk);
541 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
542 	if (sk->sk_state != TCP_LISTEN &&
543 	    !between(seq, snd_una, tp->snd_nxt)) {
544 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
545 		goto out;
546 	}
547 
548 	switch (type) {
549 	case ICMP_REDIRECT:
550 		if (!sock_owned_by_user(sk))
551 			do_redirect(skb, sk);
552 		goto out;
553 	case ICMP_SOURCE_QUENCH:
554 		/* Just silently ignore these. */
555 		goto out;
556 	case ICMP_PARAMETERPROB:
557 		err = EPROTO;
558 		break;
559 	case ICMP_DEST_UNREACH:
560 		if (code > NR_ICMP_UNREACH)
561 			goto out;
562 
563 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
564 			/* We are not interested in TCP_LISTEN and open_requests
565 			 * (SYN-ACKs send out by Linux are always <576bytes so
566 			 * they should go through unfragmented).
567 			 */
568 			if (sk->sk_state == TCP_LISTEN)
569 				goto out;
570 
571 			WRITE_ONCE(tp->mtu_info, info);
572 			if (!sock_owned_by_user(sk)) {
573 				tcp_v4_mtu_reduced(sk);
574 			} else {
575 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
576 					sock_hold(sk);
577 			}
578 			goto out;
579 		}
580 
581 		err = icmp_err_convert[code].errno;
582 		/* check if this ICMP message allows revert of backoff.
583 		 * (see RFC 6069)
584 		 */
585 		if (!fastopen &&
586 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
587 			tcp_ld_RTO_revert(sk, seq);
588 		break;
589 	case ICMP_TIME_EXCEEDED:
590 		err = EHOSTUNREACH;
591 		break;
592 	default:
593 		goto out;
594 	}
595 
596 	switch (sk->sk_state) {
597 	case TCP_SYN_SENT:
598 	case TCP_SYN_RECV:
599 		/* Only in fast or simultaneous open. If a fast open socket is
600 		 * already accepted it is treated as a connected one below.
601 		 */
602 		if (fastopen && !fastopen->sk)
603 			break;
604 
605 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
606 
607 		if (!sock_owned_by_user(sk)) {
608 			WRITE_ONCE(sk->sk_err, err);
609 
610 			sk_error_report(sk);
611 
612 			tcp_done(sk);
613 		} else {
614 			WRITE_ONCE(sk->sk_err_soft, err);
615 		}
616 		goto out;
617 	}
618 
619 	/* If we've already connected we will keep trying
620 	 * until we time out, or the user gives up.
621 	 *
622 	 * rfc1122 4.2.3.9 allows to consider as hard errors
623 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
624 	 * but it is obsoleted by pmtu discovery).
625 	 *
626 	 * Note, that in modern internet, where routing is unreliable
627 	 * and in each dark corner broken firewalls sit, sending random
628 	 * errors ordered by their masters even this two messages finally lose
629 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
630 	 *
631 	 * Now we are in compliance with RFCs.
632 	 *							--ANK (980905)
633 	 */
634 
635 	if (!sock_owned_by_user(sk) &&
636 	    inet_test_bit(RECVERR, sk)) {
637 		WRITE_ONCE(sk->sk_err, err);
638 		sk_error_report(sk);
639 	} else	{ /* Only an error on timeout */
640 		WRITE_ONCE(sk->sk_err_soft, err);
641 	}
642 
643 out:
644 	bh_unlock_sock(sk);
645 	sock_put(sk);
646 	return 0;
647 }
648 
649 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
650 {
651 	struct tcphdr *th = tcp_hdr(skb);
652 
653 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
654 	skb->csum_start = skb_transport_header(skb) - skb->head;
655 	skb->csum_offset = offsetof(struct tcphdr, check);
656 }
657 
658 /* This routine computes an IPv4 TCP checksum. */
659 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
660 {
661 	const struct inet_sock *inet = inet_sk(sk);
662 
663 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
664 }
665 EXPORT_SYMBOL(tcp_v4_send_check);
666 
667 #define REPLY_OPTIONS_LEN      (MAX_TCP_OPTION_SPACE / sizeof(__be32))
668 
669 static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
670 				 const struct tcp_ao_hdr *aoh,
671 				 struct ip_reply_arg *arg, struct tcphdr *reply,
672 				 __be32 reply_options[REPLY_OPTIONS_LEN])
673 {
674 #ifdef CONFIG_TCP_AO
675 	int sdif = tcp_v4_sdif(skb);
676 	int dif = inet_iif(skb);
677 	int l3index = sdif ? dif : 0;
678 	bool allocated_traffic_key;
679 	struct tcp_ao_key *key;
680 	char *traffic_key;
681 	bool drop = true;
682 	u32 ao_sne = 0;
683 	u8 keyid;
684 
685 	rcu_read_lock();
686 	if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
687 				 &key, &traffic_key, &allocated_traffic_key,
688 				 &keyid, &ao_sne))
689 		goto out;
690 
691 	reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
692 				 (aoh->rnext_keyid << 8) | keyid);
693 	arg->iov[0].iov_len += tcp_ao_len_aligned(key);
694 	reply->doff = arg->iov[0].iov_len / 4;
695 
696 	if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
697 			    key, traffic_key,
698 			    (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
699 			    (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
700 			    reply, ao_sne))
701 		goto out;
702 	drop = false;
703 out:
704 	rcu_read_unlock();
705 	if (allocated_traffic_key)
706 		kfree(traffic_key);
707 	return drop;
708 #else
709 	return true;
710 #endif
711 }
712 
713 /*
714  *	This routine will send an RST to the other tcp.
715  *
716  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
717  *		      for reset.
718  *	Answer: if a packet caused RST, it is not for a socket
719  *		existing in our system, if it is matched to a socket,
720  *		it is just duplicate segment or bug in other side's TCP.
721  *		So that we build reply only basing on parameters
722  *		arrived with segment.
723  *	Exception: precedence violation. We do not implement it in any case.
724  */
725 
726 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
727 {
728 	const struct tcphdr *th = tcp_hdr(skb);
729 	struct {
730 		struct tcphdr th;
731 		__be32 opt[REPLY_OPTIONS_LEN];
732 	} rep;
733 	const __u8 *md5_hash_location = NULL;
734 	const struct tcp_ao_hdr *aoh;
735 	struct ip_reply_arg arg;
736 #ifdef CONFIG_TCP_MD5SIG
737 	struct tcp_md5sig_key *key = NULL;
738 	unsigned char newhash[16];
739 	struct sock *sk1 = NULL;
740 	int genhash;
741 #endif
742 	u64 transmit_time = 0;
743 	struct sock *ctl_sk;
744 	struct net *net;
745 	u32 txhash = 0;
746 
747 	/* Never send a reset in response to a reset. */
748 	if (th->rst)
749 		return;
750 
751 	/* If sk not NULL, it means we did a successful lookup and incoming
752 	 * route had to be correct. prequeue might have dropped our dst.
753 	 */
754 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
755 		return;
756 
757 	/* Swap the send and the receive. */
758 	memset(&rep, 0, sizeof(rep));
759 	rep.th.dest   = th->source;
760 	rep.th.source = th->dest;
761 	rep.th.doff   = sizeof(struct tcphdr) / 4;
762 	rep.th.rst    = 1;
763 
764 	if (th->ack) {
765 		rep.th.seq = th->ack_seq;
766 	} else {
767 		rep.th.ack = 1;
768 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
769 				       skb->len - (th->doff << 2));
770 	}
771 
772 	memset(&arg, 0, sizeof(arg));
773 	arg.iov[0].iov_base = (unsigned char *)&rep;
774 	arg.iov[0].iov_len  = sizeof(rep.th);
775 
776 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
777 
778 	/* Invalid TCP option size or twice included auth */
779 	if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
780 		return;
781 
782 	if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
783 		return;
784 
785 #ifdef CONFIG_TCP_MD5SIG
786 	rcu_read_lock();
787 	if (sk && sk_fullsock(sk)) {
788 		const union tcp_md5_addr *addr;
789 		int l3index;
790 
791 		/* sdif set, means packet ingressed via a device
792 		 * in an L3 domain and inet_iif is set to it.
793 		 */
794 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
795 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
796 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
797 	} else if (md5_hash_location) {
798 		const union tcp_md5_addr *addr;
799 		int sdif = tcp_v4_sdif(skb);
800 		int dif = inet_iif(skb);
801 		int l3index;
802 
803 		/*
804 		 * active side is lost. Try to find listening socket through
805 		 * source port, and then find md5 key through listening socket.
806 		 * we are not loose security here:
807 		 * Incoming packet is checked with md5 hash with finding key,
808 		 * no RST generated if md5 hash doesn't match.
809 		 */
810 		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
811 					     NULL, 0, ip_hdr(skb)->saddr,
812 					     th->source, ip_hdr(skb)->daddr,
813 					     ntohs(th->source), dif, sdif);
814 		/* don't send rst if it can't find key */
815 		if (!sk1)
816 			goto out;
817 
818 		/* sdif set, means packet ingressed via a device
819 		 * in an L3 domain and dif is set to it.
820 		 */
821 		l3index = sdif ? dif : 0;
822 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
823 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
824 		if (!key)
825 			goto out;
826 
827 
828 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
829 		if (genhash || memcmp(md5_hash_location, newhash, 16) != 0)
830 			goto out;
831 
832 	}
833 
834 	if (key) {
835 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
836 				   (TCPOPT_NOP << 16) |
837 				   (TCPOPT_MD5SIG << 8) |
838 				   TCPOLEN_MD5SIG);
839 		/* Update length and the length the header thinks exists */
840 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
841 		rep.th.doff = arg.iov[0].iov_len / 4;
842 
843 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
844 				     key, ip_hdr(skb)->saddr,
845 				     ip_hdr(skb)->daddr, &rep.th);
846 	}
847 #endif
848 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
849 	if (rep.opt[0] == 0) {
850 		__be32 mrst = mptcp_reset_option(skb);
851 
852 		if (mrst) {
853 			rep.opt[0] = mrst;
854 			arg.iov[0].iov_len += sizeof(mrst);
855 			rep.th.doff = arg.iov[0].iov_len / 4;
856 		}
857 	}
858 
859 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
860 				      ip_hdr(skb)->saddr, /* XXX */
861 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
862 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
863 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
864 
865 	/* When socket is gone, all binding information is lost.
866 	 * routing might fail in this case. No choice here, if we choose to force
867 	 * input interface, we will misroute in case of asymmetric route.
868 	 */
869 	if (sk)
870 		arg.bound_dev_if = sk->sk_bound_dev_if;
871 
872 	trace_tcp_send_reset(sk, skb);
873 
874 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
875 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
876 
877 	arg.tos = ip_hdr(skb)->tos;
878 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
879 	local_bh_disable();
880 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
881 	sock_net_set(ctl_sk, net);
882 	if (sk) {
883 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
884 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
885 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
886 				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
887 		transmit_time = tcp_transmit_time(sk);
888 		xfrm_sk_clone_policy(ctl_sk, sk);
889 		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
890 			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
891 	} else {
892 		ctl_sk->sk_mark = 0;
893 		ctl_sk->sk_priority = 0;
894 	}
895 	ip_send_unicast_reply(ctl_sk,
896 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
897 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
898 			      &arg, arg.iov[0].iov_len,
899 			      transmit_time, txhash);
900 
901 	xfrm_sk_free_policy(ctl_sk);
902 	sock_net_set(ctl_sk, &init_net);
903 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
904 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
905 	local_bh_enable();
906 
907 #ifdef CONFIG_TCP_MD5SIG
908 out:
909 	rcu_read_unlock();
910 #endif
911 }
912 
913 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
914    outside socket context is ugly, certainly. What can I do?
915  */
916 
917 static void tcp_v4_send_ack(const struct sock *sk,
918 			    struct sk_buff *skb, u32 seq, u32 ack,
919 			    u32 win, u32 tsval, u32 tsecr, int oif,
920 			    struct tcp_key *key,
921 			    int reply_flags, u8 tos, u32 txhash)
922 {
923 	const struct tcphdr *th = tcp_hdr(skb);
924 	struct {
925 		struct tcphdr th;
926 		__be32 opt[(MAX_TCP_OPTION_SPACE  >> 2)];
927 	} rep;
928 	struct net *net = sock_net(sk);
929 	struct ip_reply_arg arg;
930 	struct sock *ctl_sk;
931 	u64 transmit_time;
932 
933 	memset(&rep.th, 0, sizeof(struct tcphdr));
934 	memset(&arg, 0, sizeof(arg));
935 
936 	arg.iov[0].iov_base = (unsigned char *)&rep;
937 	arg.iov[0].iov_len  = sizeof(rep.th);
938 	if (tsecr) {
939 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
940 				   (TCPOPT_TIMESTAMP << 8) |
941 				   TCPOLEN_TIMESTAMP);
942 		rep.opt[1] = htonl(tsval);
943 		rep.opt[2] = htonl(tsecr);
944 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
945 	}
946 
947 	/* Swap the send and the receive. */
948 	rep.th.dest    = th->source;
949 	rep.th.source  = th->dest;
950 	rep.th.doff    = arg.iov[0].iov_len / 4;
951 	rep.th.seq     = htonl(seq);
952 	rep.th.ack_seq = htonl(ack);
953 	rep.th.ack     = 1;
954 	rep.th.window  = htons(win);
955 
956 #ifdef CONFIG_TCP_MD5SIG
957 	if (tcp_key_is_md5(key)) {
958 		int offset = (tsecr) ? 3 : 0;
959 
960 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
961 					  (TCPOPT_NOP << 16) |
962 					  (TCPOPT_MD5SIG << 8) |
963 					  TCPOLEN_MD5SIG);
964 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
965 		rep.th.doff = arg.iov[0].iov_len/4;
966 
967 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
968 				    key->md5_key, ip_hdr(skb)->saddr,
969 				    ip_hdr(skb)->daddr, &rep.th);
970 	}
971 #endif
972 #ifdef CONFIG_TCP_AO
973 	if (tcp_key_is_ao(key)) {
974 		int offset = (tsecr) ? 3 : 0;
975 
976 		rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
977 					  (tcp_ao_len(key->ao_key) << 16) |
978 					  (key->ao_key->sndid << 8) |
979 					  key->rcv_next);
980 		arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
981 		rep.th.doff = arg.iov[0].iov_len / 4;
982 
983 		tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
984 				key->ao_key, key->traffic_key,
985 				(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
986 				(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
987 				&rep.th, key->sne);
988 	}
989 #endif
990 	arg.flags = reply_flags;
991 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
992 				      ip_hdr(skb)->saddr, /* XXX */
993 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
994 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
995 	if (oif)
996 		arg.bound_dev_if = oif;
997 	arg.tos = tos;
998 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
999 	local_bh_disable();
1000 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
1001 	sock_net_set(ctl_sk, net);
1002 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1003 			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1004 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1005 			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1006 	transmit_time = tcp_transmit_time(sk);
1007 	ip_send_unicast_reply(ctl_sk,
1008 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
1009 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1010 			      &arg, arg.iov[0].iov_len,
1011 			      transmit_time, txhash);
1012 
1013 	sock_net_set(ctl_sk, &init_net);
1014 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1015 	local_bh_enable();
1016 }
1017 
1018 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
1019 {
1020 	struct inet_timewait_sock *tw = inet_twsk(sk);
1021 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1022 	struct tcp_key key = {};
1023 #ifdef CONFIG_TCP_AO
1024 	struct tcp_ao_info *ao_info;
1025 
1026 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
1027 		/* FIXME: the segment to-be-acked is not verified yet */
1028 		ao_info = rcu_dereference(tcptw->ao_info);
1029 		if (ao_info) {
1030 			const struct tcp_ao_hdr *aoh;
1031 
1032 			if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1033 				inet_twsk_put(tw);
1034 				return;
1035 			}
1036 
1037 			if (aoh)
1038 				key.ao_key = tcp_ao_established_key(ao_info, aoh->rnext_keyid, -1);
1039 		}
1040 	}
1041 	if (key.ao_key) {
1042 		struct tcp_ao_key *rnext_key;
1043 
1044 		key.traffic_key = snd_other_key(key.ao_key);
1045 		key.sne = READ_ONCE(ao_info->snd_sne);
1046 		rnext_key = READ_ONCE(ao_info->rnext_key);
1047 		key.rcv_next = rnext_key->rcvid;
1048 		key.type = TCP_KEY_AO;
1049 #else
1050 	if (0) {
1051 #endif
1052 #ifdef CONFIG_TCP_MD5SIG
1053 	} else if (static_branch_unlikely(&tcp_md5_needed.key)) {
1054 		key.md5_key = tcp_twsk_md5_key(tcptw);
1055 		if (key.md5_key)
1056 			key.type = TCP_KEY_MD5;
1057 #endif
1058 	}
1059 
1060 	tcp_v4_send_ack(sk, skb,
1061 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
1062 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1063 			tcp_tw_tsval(tcptw),
1064 			tcptw->tw_ts_recent,
1065 			tw->tw_bound_dev_if, &key,
1066 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1067 			tw->tw_tos,
1068 			tw->tw_txhash);
1069 
1070 	inet_twsk_put(tw);
1071 }
1072 
1073 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1074 				  struct request_sock *req)
1075 {
1076 	struct tcp_key key = {};
1077 
1078 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1079 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1080 	 */
1081 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1082 					     tcp_sk(sk)->snd_nxt;
1083 
1084 #ifdef CONFIG_TCP_AO
1085 	if (static_branch_unlikely(&tcp_ao_needed.key) &&
1086 	    tcp_rsk_used_ao(req)) {
1087 		const union tcp_md5_addr *addr;
1088 		const struct tcp_ao_hdr *aoh;
1089 		int l3index;
1090 
1091 		/* Invalid TCP option size or twice included auth */
1092 		if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1093 			return;
1094 		if (!aoh)
1095 			return;
1096 
1097 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1098 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1099 		key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1100 					      aoh->rnext_keyid, -1);
1101 		if (unlikely(!key.ao_key)) {
1102 			/* Send ACK with any matching MKT for the peer */
1103 			key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1104 			/* Matching key disappeared (user removed the key?)
1105 			 * let the handshake timeout.
1106 			 */
1107 			if (!key.ao_key) {
1108 				net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1109 						     addr,
1110 						     ntohs(tcp_hdr(skb)->source),
1111 						     &ip_hdr(skb)->daddr,
1112 						     ntohs(tcp_hdr(skb)->dest));
1113 				return;
1114 			}
1115 		}
1116 		key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1117 		if (!key.traffic_key)
1118 			return;
1119 
1120 		key.type = TCP_KEY_AO;
1121 		key.rcv_next = aoh->keyid;
1122 		tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1123 #else
1124 	if (0) {
1125 #endif
1126 #ifdef CONFIG_TCP_MD5SIG
1127 	} else if (static_branch_unlikely(&tcp_md5_needed.key)) {
1128 		const union tcp_md5_addr *addr;
1129 		int l3index;
1130 
1131 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1132 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1133 		key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1134 		if (key.md5_key)
1135 			key.type = TCP_KEY_MD5;
1136 #endif
1137 	}
1138 
1139 	/* RFC 7323 2.3
1140 	 * The window field (SEG.WND) of every outgoing segment, with the
1141 	 * exception of <SYN> segments, MUST be right-shifted by
1142 	 * Rcv.Wind.Shift bits:
1143 	 */
1144 	tcp_v4_send_ack(sk, skb, seq,
1145 			tcp_rsk(req)->rcv_nxt,
1146 			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
1147 			tcp_rsk_tsval(tcp_rsk(req)),
1148 			READ_ONCE(req->ts_recent),
1149 			0, &key,
1150 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1151 			ip_hdr(skb)->tos,
1152 			READ_ONCE(tcp_rsk(req)->txhash));
1153 	if (tcp_key_is_ao(&key))
1154 		kfree(key.traffic_key);
1155 }
1156 
1157 /*
1158  *	Send a SYN-ACK after having received a SYN.
1159  *	This still operates on a request_sock only, not on a big
1160  *	socket.
1161  */
1162 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1163 			      struct flowi *fl,
1164 			      struct request_sock *req,
1165 			      struct tcp_fastopen_cookie *foc,
1166 			      enum tcp_synack_type synack_type,
1167 			      struct sk_buff *syn_skb)
1168 {
1169 	const struct inet_request_sock *ireq = inet_rsk(req);
1170 	struct flowi4 fl4;
1171 	int err = -1;
1172 	struct sk_buff *skb;
1173 	u8 tos;
1174 
1175 	/* First, grab a route. */
1176 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1177 		return -1;
1178 
1179 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1180 
1181 	if (skb) {
1182 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1183 
1184 		tos = READ_ONCE(inet_sk(sk)->tos);
1185 
1186 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1187 			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1188 			      (tos & INET_ECN_MASK);
1189 
1190 		if (!INET_ECN_is_capable(tos) &&
1191 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1192 			tos |= INET_ECN_ECT_0;
1193 
1194 		rcu_read_lock();
1195 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1196 					    ireq->ir_rmt_addr,
1197 					    rcu_dereference(ireq->ireq_opt),
1198 					    tos);
1199 		rcu_read_unlock();
1200 		err = net_xmit_eval(err);
1201 	}
1202 
1203 	return err;
1204 }
1205 
1206 /*
1207  *	IPv4 request_sock destructor.
1208  */
1209 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1210 {
1211 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1212 }
1213 
1214 #ifdef CONFIG_TCP_MD5SIG
1215 /*
1216  * RFC2385 MD5 checksumming requires a mapping of
1217  * IP address->MD5 Key.
1218  * We need to maintain these in the sk structure.
1219  */
1220 
1221 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1222 EXPORT_SYMBOL(tcp_md5_needed);
1223 
1224 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1225 {
1226 	if (!old)
1227 		return true;
1228 
1229 	/* l3index always overrides non-l3index */
1230 	if (old->l3index && new->l3index == 0)
1231 		return false;
1232 	if (old->l3index == 0 && new->l3index)
1233 		return true;
1234 
1235 	return old->prefixlen < new->prefixlen;
1236 }
1237 
1238 /* Find the Key structure for an address.  */
1239 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1240 					   const union tcp_md5_addr *addr,
1241 					   int family, bool any_l3index)
1242 {
1243 	const struct tcp_sock *tp = tcp_sk(sk);
1244 	struct tcp_md5sig_key *key;
1245 	const struct tcp_md5sig_info *md5sig;
1246 	__be32 mask;
1247 	struct tcp_md5sig_key *best_match = NULL;
1248 	bool match;
1249 
1250 	/* caller either holds rcu_read_lock() or socket lock */
1251 	md5sig = rcu_dereference_check(tp->md5sig_info,
1252 				       lockdep_sock_is_held(sk));
1253 	if (!md5sig)
1254 		return NULL;
1255 
1256 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1257 				 lockdep_sock_is_held(sk)) {
1258 		if (key->family != family)
1259 			continue;
1260 		if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1261 		    key->l3index != l3index)
1262 			continue;
1263 		if (family == AF_INET) {
1264 			mask = inet_make_mask(key->prefixlen);
1265 			match = (key->addr.a4.s_addr & mask) ==
1266 				(addr->a4.s_addr & mask);
1267 #if IS_ENABLED(CONFIG_IPV6)
1268 		} else if (family == AF_INET6) {
1269 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1270 						  key->prefixlen);
1271 #endif
1272 		} else {
1273 			match = false;
1274 		}
1275 
1276 		if (match && better_md5_match(best_match, key))
1277 			best_match = key;
1278 	}
1279 	return best_match;
1280 }
1281 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1282 
1283 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1284 						      const union tcp_md5_addr *addr,
1285 						      int family, u8 prefixlen,
1286 						      int l3index, u8 flags)
1287 {
1288 	const struct tcp_sock *tp = tcp_sk(sk);
1289 	struct tcp_md5sig_key *key;
1290 	unsigned int size = sizeof(struct in_addr);
1291 	const struct tcp_md5sig_info *md5sig;
1292 
1293 	/* caller either holds rcu_read_lock() or socket lock */
1294 	md5sig = rcu_dereference_check(tp->md5sig_info,
1295 				       lockdep_sock_is_held(sk));
1296 	if (!md5sig)
1297 		return NULL;
1298 #if IS_ENABLED(CONFIG_IPV6)
1299 	if (family == AF_INET6)
1300 		size = sizeof(struct in6_addr);
1301 #endif
1302 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1303 				 lockdep_sock_is_held(sk)) {
1304 		if (key->family != family)
1305 			continue;
1306 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1307 			continue;
1308 		if (key->l3index != l3index)
1309 			continue;
1310 		if (!memcmp(&key->addr, addr, size) &&
1311 		    key->prefixlen == prefixlen)
1312 			return key;
1313 	}
1314 	return NULL;
1315 }
1316 
1317 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1318 					 const struct sock *addr_sk)
1319 {
1320 	const union tcp_md5_addr *addr;
1321 	int l3index;
1322 
1323 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1324 						 addr_sk->sk_bound_dev_if);
1325 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1326 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1327 }
1328 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1329 
1330 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1331 {
1332 	struct tcp_sock *tp = tcp_sk(sk);
1333 	struct tcp_md5sig_info *md5sig;
1334 
1335 	md5sig = kmalloc(sizeof(*md5sig), gfp);
1336 	if (!md5sig)
1337 		return -ENOMEM;
1338 
1339 	sk_gso_disable(sk);
1340 	INIT_HLIST_HEAD(&md5sig->head);
1341 	rcu_assign_pointer(tp->md5sig_info, md5sig);
1342 	return 0;
1343 }
1344 
1345 /* This can be called on a newly created socket, from other files */
1346 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1347 			    int family, u8 prefixlen, int l3index, u8 flags,
1348 			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1349 {
1350 	/* Add Key to the list */
1351 	struct tcp_md5sig_key *key;
1352 	struct tcp_sock *tp = tcp_sk(sk);
1353 	struct tcp_md5sig_info *md5sig;
1354 
1355 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1356 	if (key) {
1357 		/* Pre-existing entry - just update that one.
1358 		 * Note that the key might be used concurrently.
1359 		 * data_race() is telling kcsan that we do not care of
1360 		 * key mismatches, since changing MD5 key on live flows
1361 		 * can lead to packet drops.
1362 		 */
1363 		data_race(memcpy(key->key, newkey, newkeylen));
1364 
1365 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1366 		 * Also note that a reader could catch new key->keylen value
1367 		 * but old key->key[], this is the reason we use __GFP_ZERO
1368 		 * at sock_kmalloc() time below these lines.
1369 		 */
1370 		WRITE_ONCE(key->keylen, newkeylen);
1371 
1372 		return 0;
1373 	}
1374 
1375 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1376 					   lockdep_sock_is_held(sk));
1377 
1378 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1379 	if (!key)
1380 		return -ENOMEM;
1381 
1382 	memcpy(key->key, newkey, newkeylen);
1383 	key->keylen = newkeylen;
1384 	key->family = family;
1385 	key->prefixlen = prefixlen;
1386 	key->l3index = l3index;
1387 	key->flags = flags;
1388 	memcpy(&key->addr, addr,
1389 	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1390 								 sizeof(struct in_addr));
1391 	hlist_add_head_rcu(&key->node, &md5sig->head);
1392 	return 0;
1393 }
1394 
1395 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1396 		   int family, u8 prefixlen, int l3index, u8 flags,
1397 		   const u8 *newkey, u8 newkeylen)
1398 {
1399 	struct tcp_sock *tp = tcp_sk(sk);
1400 
1401 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1402 		if (tcp_md5_alloc_sigpool())
1403 			return -ENOMEM;
1404 
1405 		if (tcp_md5sig_info_add(sk, GFP_KERNEL)) {
1406 			tcp_md5_release_sigpool();
1407 			return -ENOMEM;
1408 		}
1409 
1410 		if (!static_branch_inc(&tcp_md5_needed.key)) {
1411 			struct tcp_md5sig_info *md5sig;
1412 
1413 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1414 			rcu_assign_pointer(tp->md5sig_info, NULL);
1415 			kfree_rcu(md5sig, rcu);
1416 			tcp_md5_release_sigpool();
1417 			return -EUSERS;
1418 		}
1419 	}
1420 
1421 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1422 				newkey, newkeylen, GFP_KERNEL);
1423 }
1424 EXPORT_SYMBOL(tcp_md5_do_add);
1425 
1426 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1427 		     int family, u8 prefixlen, int l3index,
1428 		     struct tcp_md5sig_key *key)
1429 {
1430 	struct tcp_sock *tp = tcp_sk(sk);
1431 
1432 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1433 		tcp_md5_add_sigpool();
1434 
1435 		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) {
1436 			tcp_md5_release_sigpool();
1437 			return -ENOMEM;
1438 		}
1439 
1440 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1441 			struct tcp_md5sig_info *md5sig;
1442 
1443 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1444 			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1445 			rcu_assign_pointer(tp->md5sig_info, NULL);
1446 			kfree_rcu(md5sig, rcu);
1447 			tcp_md5_release_sigpool();
1448 			return -EUSERS;
1449 		}
1450 	}
1451 
1452 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1453 				key->flags, key->key, key->keylen,
1454 				sk_gfp_mask(sk, GFP_ATOMIC));
1455 }
1456 EXPORT_SYMBOL(tcp_md5_key_copy);
1457 
1458 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1459 		   u8 prefixlen, int l3index, u8 flags)
1460 {
1461 	struct tcp_md5sig_key *key;
1462 
1463 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1464 	if (!key)
1465 		return -ENOENT;
1466 	hlist_del_rcu(&key->node);
1467 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1468 	kfree_rcu(key, rcu);
1469 	return 0;
1470 }
1471 EXPORT_SYMBOL(tcp_md5_do_del);
1472 
1473 void tcp_clear_md5_list(struct sock *sk)
1474 {
1475 	struct tcp_sock *tp = tcp_sk(sk);
1476 	struct tcp_md5sig_key *key;
1477 	struct hlist_node *n;
1478 	struct tcp_md5sig_info *md5sig;
1479 
1480 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1481 
1482 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1483 		hlist_del_rcu(&key->node);
1484 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1485 		kfree_rcu(key, rcu);
1486 	}
1487 }
1488 
1489 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1490 				 sockptr_t optval, int optlen)
1491 {
1492 	struct tcp_md5sig cmd;
1493 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1494 	const union tcp_md5_addr *addr;
1495 	u8 prefixlen = 32;
1496 	int l3index = 0;
1497 	bool l3flag;
1498 	u8 flags;
1499 
1500 	if (optlen < sizeof(cmd))
1501 		return -EINVAL;
1502 
1503 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1504 		return -EFAULT;
1505 
1506 	if (sin->sin_family != AF_INET)
1507 		return -EINVAL;
1508 
1509 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1510 	l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1511 
1512 	if (optname == TCP_MD5SIG_EXT &&
1513 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1514 		prefixlen = cmd.tcpm_prefixlen;
1515 		if (prefixlen > 32)
1516 			return -EINVAL;
1517 	}
1518 
1519 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1520 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1521 		struct net_device *dev;
1522 
1523 		rcu_read_lock();
1524 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1525 		if (dev && netif_is_l3_master(dev))
1526 			l3index = dev->ifindex;
1527 
1528 		rcu_read_unlock();
1529 
1530 		/* ok to reference set/not set outside of rcu;
1531 		 * right now device MUST be an L3 master
1532 		 */
1533 		if (!dev || !l3index)
1534 			return -EINVAL;
1535 	}
1536 
1537 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1538 
1539 	if (!cmd.tcpm_keylen)
1540 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1541 
1542 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1543 		return -EINVAL;
1544 
1545 	/* Don't allow keys for peers that have a matching TCP-AO key.
1546 	 * See the comment in tcp_ao_add_cmd()
1547 	 */
1548 	if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1549 		return -EKEYREJECTED;
1550 
1551 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1552 			      cmd.tcpm_key, cmd.tcpm_keylen);
1553 }
1554 
1555 static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp,
1556 				   __be32 daddr, __be32 saddr,
1557 				   const struct tcphdr *th, int nbytes)
1558 {
1559 	struct tcp4_pseudohdr *bp;
1560 	struct scatterlist sg;
1561 	struct tcphdr *_th;
1562 
1563 	bp = hp->scratch;
1564 	bp->saddr = saddr;
1565 	bp->daddr = daddr;
1566 	bp->pad = 0;
1567 	bp->protocol = IPPROTO_TCP;
1568 	bp->len = cpu_to_be16(nbytes);
1569 
1570 	_th = (struct tcphdr *)(bp + 1);
1571 	memcpy(_th, th, sizeof(*th));
1572 	_th->check = 0;
1573 
1574 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1575 	ahash_request_set_crypt(hp->req, &sg, NULL,
1576 				sizeof(*bp) + sizeof(*th));
1577 	return crypto_ahash_update(hp->req);
1578 }
1579 
1580 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1581 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1582 {
1583 	struct tcp_sigpool hp;
1584 
1585 	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1586 		goto clear_hash_nostart;
1587 
1588 	if (crypto_ahash_init(hp.req))
1589 		goto clear_hash;
1590 	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2))
1591 		goto clear_hash;
1592 	if (tcp_md5_hash_key(&hp, key))
1593 		goto clear_hash;
1594 	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1595 	if (crypto_ahash_final(hp.req))
1596 		goto clear_hash;
1597 
1598 	tcp_sigpool_end(&hp);
1599 	return 0;
1600 
1601 clear_hash:
1602 	tcp_sigpool_end(&hp);
1603 clear_hash_nostart:
1604 	memset(md5_hash, 0, 16);
1605 	return 1;
1606 }
1607 
1608 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1609 			const struct sock *sk,
1610 			const struct sk_buff *skb)
1611 {
1612 	const struct tcphdr *th = tcp_hdr(skb);
1613 	struct tcp_sigpool hp;
1614 	__be32 saddr, daddr;
1615 
1616 	if (sk) { /* valid for establish/request sockets */
1617 		saddr = sk->sk_rcv_saddr;
1618 		daddr = sk->sk_daddr;
1619 	} else {
1620 		const struct iphdr *iph = ip_hdr(skb);
1621 		saddr = iph->saddr;
1622 		daddr = iph->daddr;
1623 	}
1624 
1625 	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1626 		goto clear_hash_nostart;
1627 
1628 	if (crypto_ahash_init(hp.req))
1629 		goto clear_hash;
1630 
1631 	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len))
1632 		goto clear_hash;
1633 	if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
1634 		goto clear_hash;
1635 	if (tcp_md5_hash_key(&hp, key))
1636 		goto clear_hash;
1637 	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1638 	if (crypto_ahash_final(hp.req))
1639 		goto clear_hash;
1640 
1641 	tcp_sigpool_end(&hp);
1642 	return 0;
1643 
1644 clear_hash:
1645 	tcp_sigpool_end(&hp);
1646 clear_hash_nostart:
1647 	memset(md5_hash, 0, 16);
1648 	return 1;
1649 }
1650 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1651 
1652 #endif
1653 
1654 static void tcp_v4_init_req(struct request_sock *req,
1655 			    const struct sock *sk_listener,
1656 			    struct sk_buff *skb)
1657 {
1658 	struct inet_request_sock *ireq = inet_rsk(req);
1659 	struct net *net = sock_net(sk_listener);
1660 
1661 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1662 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1663 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1664 }
1665 
1666 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1667 					  struct sk_buff *skb,
1668 					  struct flowi *fl,
1669 					  struct request_sock *req)
1670 {
1671 	tcp_v4_init_req(req, sk, skb);
1672 
1673 	if (security_inet_conn_request(sk, skb, req))
1674 		return NULL;
1675 
1676 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1677 }
1678 
1679 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1680 	.family		=	PF_INET,
1681 	.obj_size	=	sizeof(struct tcp_request_sock),
1682 	.rtx_syn_ack	=	tcp_rtx_synack,
1683 	.send_ack	=	tcp_v4_reqsk_send_ack,
1684 	.destructor	=	tcp_v4_reqsk_destructor,
1685 	.send_reset	=	tcp_v4_send_reset,
1686 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1687 };
1688 
1689 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1690 	.mss_clamp	=	TCP_MSS_DEFAULT,
1691 #ifdef CONFIG_TCP_MD5SIG
1692 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1693 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1694 #endif
1695 #ifdef CONFIG_TCP_AO
1696 	.ao_lookup	=	tcp_v4_ao_lookup_rsk,
1697 	.ao_calc_key	=	tcp_v4_ao_calc_key_rsk,
1698 	.ao_synack_hash	=	tcp_v4_ao_synack_hash,
1699 #endif
1700 #ifdef CONFIG_SYN_COOKIES
1701 	.cookie_init_seq =	cookie_v4_init_sequence,
1702 #endif
1703 	.route_req	=	tcp_v4_route_req,
1704 	.init_seq	=	tcp_v4_init_seq,
1705 	.init_ts_off	=	tcp_v4_init_ts_off,
1706 	.send_synack	=	tcp_v4_send_synack,
1707 };
1708 
1709 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1710 {
1711 	/* Never answer to SYNs send to broadcast or multicast */
1712 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1713 		goto drop;
1714 
1715 	return tcp_conn_request(&tcp_request_sock_ops,
1716 				&tcp_request_sock_ipv4_ops, sk, skb);
1717 
1718 drop:
1719 	tcp_listendrop(sk);
1720 	return 0;
1721 }
1722 EXPORT_SYMBOL(tcp_v4_conn_request);
1723 
1724 
1725 /*
1726  * The three way handshake has completed - we got a valid synack -
1727  * now create the new socket.
1728  */
1729 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1730 				  struct request_sock *req,
1731 				  struct dst_entry *dst,
1732 				  struct request_sock *req_unhash,
1733 				  bool *own_req)
1734 {
1735 	struct inet_request_sock *ireq;
1736 	bool found_dup_sk = false;
1737 	struct inet_sock *newinet;
1738 	struct tcp_sock *newtp;
1739 	struct sock *newsk;
1740 #ifdef CONFIG_TCP_MD5SIG
1741 	const union tcp_md5_addr *addr;
1742 	struct tcp_md5sig_key *key;
1743 	int l3index;
1744 #endif
1745 	struct ip_options_rcu *inet_opt;
1746 
1747 	if (sk_acceptq_is_full(sk))
1748 		goto exit_overflow;
1749 
1750 	newsk = tcp_create_openreq_child(sk, req, skb);
1751 	if (!newsk)
1752 		goto exit_nonewsk;
1753 
1754 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1755 	inet_sk_rx_dst_set(newsk, skb);
1756 
1757 	newtp		      = tcp_sk(newsk);
1758 	newinet		      = inet_sk(newsk);
1759 	ireq		      = inet_rsk(req);
1760 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1761 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1762 	newsk->sk_bound_dev_if = ireq->ir_iif;
1763 	newinet->inet_saddr   = ireq->ir_loc_addr;
1764 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1765 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1766 	newinet->mc_index     = inet_iif(skb);
1767 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1768 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1769 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1770 	if (inet_opt)
1771 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1772 	atomic_set(&newinet->inet_id, get_random_u16());
1773 
1774 	/* Set ToS of the new socket based upon the value of incoming SYN.
1775 	 * ECT bits are set later in tcp_init_transfer().
1776 	 */
1777 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1778 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1779 
1780 	if (!dst) {
1781 		dst = inet_csk_route_child_sock(sk, newsk, req);
1782 		if (!dst)
1783 			goto put_and_exit;
1784 	} else {
1785 		/* syncookie case : see end of cookie_v4_check() */
1786 	}
1787 	sk_setup_caps(newsk, dst);
1788 
1789 	tcp_ca_openreq_child(newsk, dst);
1790 
1791 	tcp_sync_mss(newsk, dst_mtu(dst));
1792 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1793 
1794 	tcp_initialize_rcv_mss(newsk);
1795 
1796 #ifdef CONFIG_TCP_MD5SIG
1797 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1798 	/* Copy over the MD5 key from the original socket */
1799 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1800 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1801 	if (key && !tcp_rsk_used_ao(req)) {
1802 		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1803 			goto put_and_exit;
1804 		sk_gso_disable(newsk);
1805 	}
1806 #endif
1807 #ifdef CONFIG_TCP_AO
1808 	if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1809 		goto put_and_exit; /* OOM, release back memory */
1810 #endif
1811 
1812 	if (__inet_inherit_port(sk, newsk) < 0)
1813 		goto put_and_exit;
1814 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1815 				       &found_dup_sk);
1816 	if (likely(*own_req)) {
1817 		tcp_move_syn(newtp, req);
1818 		ireq->ireq_opt = NULL;
1819 	} else {
1820 		newinet->inet_opt = NULL;
1821 
1822 		if (!req_unhash && found_dup_sk) {
1823 			/* This code path should only be executed in the
1824 			 * syncookie case only
1825 			 */
1826 			bh_unlock_sock(newsk);
1827 			sock_put(newsk);
1828 			newsk = NULL;
1829 		}
1830 	}
1831 	return newsk;
1832 
1833 exit_overflow:
1834 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1835 exit_nonewsk:
1836 	dst_release(dst);
1837 exit:
1838 	tcp_listendrop(sk);
1839 	return NULL;
1840 put_and_exit:
1841 	newinet->inet_opt = NULL;
1842 	inet_csk_prepare_forced_close(newsk);
1843 	tcp_done(newsk);
1844 	goto exit;
1845 }
1846 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1847 
1848 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1849 {
1850 #ifdef CONFIG_SYN_COOKIES
1851 	const struct tcphdr *th = tcp_hdr(skb);
1852 
1853 	if (!th->syn)
1854 		sk = cookie_v4_check(sk, skb);
1855 #endif
1856 	return sk;
1857 }
1858 
1859 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1860 			 struct tcphdr *th, u32 *cookie)
1861 {
1862 	u16 mss = 0;
1863 #ifdef CONFIG_SYN_COOKIES
1864 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1865 				    &tcp_request_sock_ipv4_ops, sk, th);
1866 	if (mss) {
1867 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1868 		tcp_synq_overflow(sk);
1869 	}
1870 #endif
1871 	return mss;
1872 }
1873 
1874 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1875 							   u32));
1876 /* The socket must have it's spinlock held when we get
1877  * here, unless it is a TCP_LISTEN socket.
1878  *
1879  * We have a potential double-lock case here, so even when
1880  * doing backlog processing we use the BH locking scheme.
1881  * This is because we cannot sleep with the original spinlock
1882  * held.
1883  */
1884 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1885 {
1886 	enum skb_drop_reason reason;
1887 	struct sock *rsk;
1888 
1889 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1890 		struct dst_entry *dst;
1891 
1892 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1893 						lockdep_sock_is_held(sk));
1894 
1895 		sock_rps_save_rxhash(sk, skb);
1896 		sk_mark_napi_id(sk, skb);
1897 		if (dst) {
1898 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1899 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1900 					     dst, 0)) {
1901 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1902 				dst_release(dst);
1903 			}
1904 		}
1905 		tcp_rcv_established(sk, skb);
1906 		return 0;
1907 	}
1908 
1909 	if (tcp_checksum_complete(skb))
1910 		goto csum_err;
1911 
1912 	if (sk->sk_state == TCP_LISTEN) {
1913 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1914 
1915 		if (!nsk)
1916 			return 0;
1917 		if (nsk != sk) {
1918 			reason = tcp_child_process(sk, nsk, skb);
1919 			if (reason) {
1920 				rsk = nsk;
1921 				goto reset;
1922 			}
1923 			return 0;
1924 		}
1925 	} else
1926 		sock_rps_save_rxhash(sk, skb);
1927 
1928 	reason = tcp_rcv_state_process(sk, skb);
1929 	if (reason) {
1930 		rsk = sk;
1931 		goto reset;
1932 	}
1933 	return 0;
1934 
1935 reset:
1936 	tcp_v4_send_reset(rsk, skb);
1937 discard:
1938 	kfree_skb_reason(skb, reason);
1939 	/* Be careful here. If this function gets more complicated and
1940 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1941 	 * might be destroyed here. This current version compiles correctly,
1942 	 * but you have been warned.
1943 	 */
1944 	return 0;
1945 
1946 csum_err:
1947 	reason = SKB_DROP_REASON_TCP_CSUM;
1948 	trace_tcp_bad_csum(skb);
1949 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1950 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1951 	goto discard;
1952 }
1953 EXPORT_SYMBOL(tcp_v4_do_rcv);
1954 
1955 int tcp_v4_early_demux(struct sk_buff *skb)
1956 {
1957 	struct net *net = dev_net(skb->dev);
1958 	const struct iphdr *iph;
1959 	const struct tcphdr *th;
1960 	struct sock *sk;
1961 
1962 	if (skb->pkt_type != PACKET_HOST)
1963 		return 0;
1964 
1965 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1966 		return 0;
1967 
1968 	iph = ip_hdr(skb);
1969 	th = tcp_hdr(skb);
1970 
1971 	if (th->doff < sizeof(struct tcphdr) / 4)
1972 		return 0;
1973 
1974 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1975 				       iph->saddr, th->source,
1976 				       iph->daddr, ntohs(th->dest),
1977 				       skb->skb_iif, inet_sdif(skb));
1978 	if (sk) {
1979 		skb->sk = sk;
1980 		skb->destructor = sock_edemux;
1981 		if (sk_fullsock(sk)) {
1982 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1983 
1984 			if (dst)
1985 				dst = dst_check(dst, 0);
1986 			if (dst &&
1987 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1988 				skb_dst_set_noref(skb, dst);
1989 		}
1990 	}
1991 	return 0;
1992 }
1993 
1994 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1995 		     enum skb_drop_reason *reason)
1996 {
1997 	u32 limit, tail_gso_size, tail_gso_segs;
1998 	struct skb_shared_info *shinfo;
1999 	const struct tcphdr *th;
2000 	struct tcphdr *thtail;
2001 	struct sk_buff *tail;
2002 	unsigned int hdrlen;
2003 	bool fragstolen;
2004 	u32 gso_segs;
2005 	u32 gso_size;
2006 	int delta;
2007 
2008 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
2009 	 * we can fix skb->truesize to its real value to avoid future drops.
2010 	 * This is valid because skb is not yet charged to the socket.
2011 	 * It has been noticed pure SACK packets were sometimes dropped
2012 	 * (if cooked by drivers without copybreak feature).
2013 	 */
2014 	skb_condense(skb);
2015 
2016 	skb_dst_drop(skb);
2017 
2018 	if (unlikely(tcp_checksum_complete(skb))) {
2019 		bh_unlock_sock(sk);
2020 		trace_tcp_bad_csum(skb);
2021 		*reason = SKB_DROP_REASON_TCP_CSUM;
2022 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2023 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2024 		return true;
2025 	}
2026 
2027 	/* Attempt coalescing to last skb in backlog, even if we are
2028 	 * above the limits.
2029 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2030 	 */
2031 	th = (const struct tcphdr *)skb->data;
2032 	hdrlen = th->doff * 4;
2033 
2034 	tail = sk->sk_backlog.tail;
2035 	if (!tail)
2036 		goto no_coalesce;
2037 	thtail = (struct tcphdr *)tail->data;
2038 
2039 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2040 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2041 	    ((TCP_SKB_CB(tail)->tcp_flags |
2042 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2043 	    !((TCP_SKB_CB(tail)->tcp_flags &
2044 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2045 	    ((TCP_SKB_CB(tail)->tcp_flags ^
2046 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
2047 	    !mptcp_skb_can_collapse(tail, skb) ||
2048 	    skb_cmp_decrypted(tail, skb) ||
2049 	    thtail->doff != th->doff ||
2050 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
2051 		goto no_coalesce;
2052 
2053 	__skb_pull(skb, hdrlen);
2054 
2055 	shinfo = skb_shinfo(skb);
2056 	gso_size = shinfo->gso_size ?: skb->len;
2057 	gso_segs = shinfo->gso_segs ?: 1;
2058 
2059 	shinfo = skb_shinfo(tail);
2060 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2061 	tail_gso_segs = shinfo->gso_segs ?: 1;
2062 
2063 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2064 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2065 
2066 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2067 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2068 			thtail->window = th->window;
2069 		}
2070 
2071 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2072 		 * thtail->fin, so that the fast path in tcp_rcv_established()
2073 		 * is not entered if we append a packet with a FIN.
2074 		 * SYN, RST, URG are not present.
2075 		 * ACK is set on both packets.
2076 		 * PSH : we do not really care in TCP stack,
2077 		 *       at least for 'GRO' packets.
2078 		 */
2079 		thtail->fin |= th->fin;
2080 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2081 
2082 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2083 			TCP_SKB_CB(tail)->has_rxtstamp = true;
2084 			tail->tstamp = skb->tstamp;
2085 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2086 		}
2087 
2088 		/* Not as strict as GRO. We only need to carry mss max value */
2089 		shinfo->gso_size = max(gso_size, tail_gso_size);
2090 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2091 
2092 		sk->sk_backlog.len += delta;
2093 		__NET_INC_STATS(sock_net(sk),
2094 				LINUX_MIB_TCPBACKLOGCOALESCE);
2095 		kfree_skb_partial(skb, fragstolen);
2096 		return false;
2097 	}
2098 	__skb_push(skb, hdrlen);
2099 
2100 no_coalesce:
2101 	limit = (u32)READ_ONCE(sk->sk_rcvbuf) + (u32)(READ_ONCE(sk->sk_sndbuf) >> 1);
2102 
2103 	/* Only socket owner can try to collapse/prune rx queues
2104 	 * to reduce memory overhead, so add a little headroom here.
2105 	 * Few sockets backlog are possibly concurrently non empty.
2106 	 */
2107 	limit += 64 * 1024;
2108 
2109 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
2110 		bh_unlock_sock(sk);
2111 		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2112 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2113 		return true;
2114 	}
2115 	return false;
2116 }
2117 EXPORT_SYMBOL(tcp_add_backlog);
2118 
2119 int tcp_filter(struct sock *sk, struct sk_buff *skb)
2120 {
2121 	struct tcphdr *th = (struct tcphdr *)skb->data;
2122 
2123 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
2124 }
2125 EXPORT_SYMBOL(tcp_filter);
2126 
2127 static void tcp_v4_restore_cb(struct sk_buff *skb)
2128 {
2129 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2130 		sizeof(struct inet_skb_parm));
2131 }
2132 
2133 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2134 			   const struct tcphdr *th)
2135 {
2136 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2137 	 * barrier() makes sure compiler wont play fool^Waliasing games.
2138 	 */
2139 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2140 		sizeof(struct inet_skb_parm));
2141 	barrier();
2142 
2143 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2144 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2145 				    skb->len - th->doff * 4);
2146 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2147 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
2148 	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
2149 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2150 	TCP_SKB_CB(skb)->sacked	 = 0;
2151 	TCP_SKB_CB(skb)->has_rxtstamp =
2152 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2153 }
2154 
2155 /*
2156  *	From tcp_input.c
2157  */
2158 
2159 int tcp_v4_rcv(struct sk_buff *skb)
2160 {
2161 	struct net *net = dev_net(skb->dev);
2162 	enum skb_drop_reason drop_reason;
2163 	int sdif = inet_sdif(skb);
2164 	int dif = inet_iif(skb);
2165 	const struct iphdr *iph;
2166 	const struct tcphdr *th;
2167 	bool refcounted;
2168 	struct sock *sk;
2169 	int ret;
2170 
2171 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2172 	if (skb->pkt_type != PACKET_HOST)
2173 		goto discard_it;
2174 
2175 	/* Count it even if it's bad */
2176 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2177 
2178 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2179 		goto discard_it;
2180 
2181 	th = (const struct tcphdr *)skb->data;
2182 
2183 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2184 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2185 		goto bad_packet;
2186 	}
2187 	if (!pskb_may_pull(skb, th->doff * 4))
2188 		goto discard_it;
2189 
2190 	/* An explanation is required here, I think.
2191 	 * Packet length and doff are validated by header prediction,
2192 	 * provided case of th->doff==0 is eliminated.
2193 	 * So, we defer the checks. */
2194 
2195 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2196 		goto csum_error;
2197 
2198 	th = (const struct tcphdr *)skb->data;
2199 	iph = ip_hdr(skb);
2200 lookup:
2201 	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2202 			       skb, __tcp_hdrlen(th), th->source,
2203 			       th->dest, sdif, &refcounted);
2204 	if (!sk)
2205 		goto no_tcp_socket;
2206 
2207 process:
2208 	if (sk->sk_state == TCP_TIME_WAIT)
2209 		goto do_time_wait;
2210 
2211 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2212 		struct request_sock *req = inet_reqsk(sk);
2213 		bool req_stolen = false;
2214 		struct sock *nsk;
2215 
2216 		sk = req->rsk_listener;
2217 		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2218 			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2219 		else
2220 			drop_reason = tcp_inbound_hash(sk, req, skb,
2221 						       &iph->saddr, &iph->daddr,
2222 						       AF_INET, dif, sdif);
2223 		if (unlikely(drop_reason)) {
2224 			sk_drops_add(sk, skb);
2225 			reqsk_put(req);
2226 			goto discard_it;
2227 		}
2228 		if (tcp_checksum_complete(skb)) {
2229 			reqsk_put(req);
2230 			goto csum_error;
2231 		}
2232 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2233 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2234 			if (!nsk) {
2235 				inet_csk_reqsk_queue_drop_and_put(sk, req);
2236 				goto lookup;
2237 			}
2238 			sk = nsk;
2239 			/* reuseport_migrate_sock() has already held one sk_refcnt
2240 			 * before returning.
2241 			 */
2242 		} else {
2243 			/* We own a reference on the listener, increase it again
2244 			 * as we might lose it too soon.
2245 			 */
2246 			sock_hold(sk);
2247 		}
2248 		refcounted = true;
2249 		nsk = NULL;
2250 		if (!tcp_filter(sk, skb)) {
2251 			th = (const struct tcphdr *)skb->data;
2252 			iph = ip_hdr(skb);
2253 			tcp_v4_fill_cb(skb, iph, th);
2254 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2255 		} else {
2256 			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2257 		}
2258 		if (!nsk) {
2259 			reqsk_put(req);
2260 			if (req_stolen) {
2261 				/* Another cpu got exclusive access to req
2262 				 * and created a full blown socket.
2263 				 * Try to feed this packet to this socket
2264 				 * instead of discarding it.
2265 				 */
2266 				tcp_v4_restore_cb(skb);
2267 				sock_put(sk);
2268 				goto lookup;
2269 			}
2270 			goto discard_and_relse;
2271 		}
2272 		nf_reset_ct(skb);
2273 		if (nsk == sk) {
2274 			reqsk_put(req);
2275 			tcp_v4_restore_cb(skb);
2276 		} else {
2277 			drop_reason = tcp_child_process(sk, nsk, skb);
2278 			if (drop_reason) {
2279 				tcp_v4_send_reset(nsk, skb);
2280 				goto discard_and_relse;
2281 			}
2282 			sock_put(sk);
2283 			return 0;
2284 		}
2285 	}
2286 
2287 	if (static_branch_unlikely(&ip4_min_ttl)) {
2288 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2289 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2290 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2291 			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2292 			goto discard_and_relse;
2293 		}
2294 	}
2295 
2296 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2297 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2298 		goto discard_and_relse;
2299 	}
2300 
2301 	drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2302 				       AF_INET, dif, sdif);
2303 	if (drop_reason)
2304 		goto discard_and_relse;
2305 
2306 	nf_reset_ct(skb);
2307 
2308 	if (tcp_filter(sk, skb)) {
2309 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2310 		goto discard_and_relse;
2311 	}
2312 	th = (const struct tcphdr *)skb->data;
2313 	iph = ip_hdr(skb);
2314 	tcp_v4_fill_cb(skb, iph, th);
2315 
2316 	skb->dev = NULL;
2317 
2318 	if (sk->sk_state == TCP_LISTEN) {
2319 		ret = tcp_v4_do_rcv(sk, skb);
2320 		goto put_and_return;
2321 	}
2322 
2323 	sk_incoming_cpu_update(sk);
2324 
2325 	bh_lock_sock_nested(sk);
2326 	tcp_segs_in(tcp_sk(sk), skb);
2327 	ret = 0;
2328 	if (!sock_owned_by_user(sk)) {
2329 		ret = tcp_v4_do_rcv(sk, skb);
2330 	} else {
2331 		if (tcp_add_backlog(sk, skb, &drop_reason))
2332 			goto discard_and_relse;
2333 	}
2334 	bh_unlock_sock(sk);
2335 
2336 put_and_return:
2337 	if (refcounted)
2338 		sock_put(sk);
2339 
2340 	return ret;
2341 
2342 no_tcp_socket:
2343 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2344 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2345 		goto discard_it;
2346 
2347 	tcp_v4_fill_cb(skb, iph, th);
2348 
2349 	if (tcp_checksum_complete(skb)) {
2350 csum_error:
2351 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2352 		trace_tcp_bad_csum(skb);
2353 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2354 bad_packet:
2355 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2356 	} else {
2357 		tcp_v4_send_reset(NULL, skb);
2358 	}
2359 
2360 discard_it:
2361 	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2362 	/* Discard frame. */
2363 	kfree_skb_reason(skb, drop_reason);
2364 	return 0;
2365 
2366 discard_and_relse:
2367 	sk_drops_add(sk, skb);
2368 	if (refcounted)
2369 		sock_put(sk);
2370 	goto discard_it;
2371 
2372 do_time_wait:
2373 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2374 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2375 		inet_twsk_put(inet_twsk(sk));
2376 		goto discard_it;
2377 	}
2378 
2379 	tcp_v4_fill_cb(skb, iph, th);
2380 
2381 	if (tcp_checksum_complete(skb)) {
2382 		inet_twsk_put(inet_twsk(sk));
2383 		goto csum_error;
2384 	}
2385 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2386 	case TCP_TW_SYN: {
2387 		struct sock *sk2 = inet_lookup_listener(net,
2388 							net->ipv4.tcp_death_row.hashinfo,
2389 							skb, __tcp_hdrlen(th),
2390 							iph->saddr, th->source,
2391 							iph->daddr, th->dest,
2392 							inet_iif(skb),
2393 							sdif);
2394 		if (sk2) {
2395 			inet_twsk_deschedule_put(inet_twsk(sk));
2396 			sk = sk2;
2397 			tcp_v4_restore_cb(skb);
2398 			refcounted = false;
2399 			goto process;
2400 		}
2401 	}
2402 		/* to ACK */
2403 		fallthrough;
2404 	case TCP_TW_ACK:
2405 		tcp_v4_timewait_ack(sk, skb);
2406 		break;
2407 	case TCP_TW_RST:
2408 		tcp_v4_send_reset(sk, skb);
2409 		inet_twsk_deschedule_put(inet_twsk(sk));
2410 		goto discard_it;
2411 	case TCP_TW_SUCCESS:;
2412 	}
2413 	goto discard_it;
2414 }
2415 
2416 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2417 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2418 	.twsk_unique	= tcp_twsk_unique,
2419 	.twsk_destructor= tcp_twsk_destructor,
2420 };
2421 
2422 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2423 {
2424 	struct dst_entry *dst = skb_dst(skb);
2425 
2426 	if (dst && dst_hold_safe(dst)) {
2427 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2428 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2429 	}
2430 }
2431 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2432 
2433 const struct inet_connection_sock_af_ops ipv4_specific = {
2434 	.queue_xmit	   = ip_queue_xmit,
2435 	.send_check	   = tcp_v4_send_check,
2436 	.rebuild_header	   = inet_sk_rebuild_header,
2437 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2438 	.conn_request	   = tcp_v4_conn_request,
2439 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2440 	.net_header_len	   = sizeof(struct iphdr),
2441 	.setsockopt	   = ip_setsockopt,
2442 	.getsockopt	   = ip_getsockopt,
2443 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2444 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2445 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2446 };
2447 EXPORT_SYMBOL(ipv4_specific);
2448 
2449 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2450 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2451 #ifdef CONFIG_TCP_MD5SIG
2452 	.md5_lookup		= tcp_v4_md5_lookup,
2453 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2454 	.md5_parse		= tcp_v4_parse_md5_keys,
2455 #endif
2456 #ifdef CONFIG_TCP_AO
2457 	.ao_lookup		= tcp_v4_ao_lookup,
2458 	.calc_ao_hash		= tcp_v4_ao_hash_skb,
2459 	.ao_parse		= tcp_v4_parse_ao,
2460 	.ao_calc_key_sk		= tcp_v4_ao_calc_key_sk,
2461 #endif
2462 };
2463 #endif
2464 
2465 /* NOTE: A lot of things set to zero explicitly by call to
2466  *       sk_alloc() so need not be done here.
2467  */
2468 static int tcp_v4_init_sock(struct sock *sk)
2469 {
2470 	struct inet_connection_sock *icsk = inet_csk(sk);
2471 
2472 	tcp_init_sock(sk);
2473 
2474 	icsk->icsk_af_ops = &ipv4_specific;
2475 
2476 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2477 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2478 #endif
2479 
2480 	return 0;
2481 }
2482 
2483 #ifdef CONFIG_TCP_MD5SIG
2484 static void tcp_md5sig_info_free_rcu(struct rcu_head *head)
2485 {
2486 	struct tcp_md5sig_info *md5sig;
2487 
2488 	md5sig = container_of(head, struct tcp_md5sig_info, rcu);
2489 	kfree(md5sig);
2490 	static_branch_slow_dec_deferred(&tcp_md5_needed);
2491 	tcp_md5_release_sigpool();
2492 }
2493 #endif
2494 
2495 void tcp_v4_destroy_sock(struct sock *sk)
2496 {
2497 	struct tcp_sock *tp = tcp_sk(sk);
2498 
2499 	trace_tcp_destroy_sock(sk);
2500 
2501 	tcp_clear_xmit_timers(sk);
2502 
2503 	tcp_cleanup_congestion_control(sk);
2504 
2505 	tcp_cleanup_ulp(sk);
2506 
2507 	/* Cleanup up the write buffer. */
2508 	tcp_write_queue_purge(sk);
2509 
2510 	/* Check if we want to disable active TFO */
2511 	tcp_fastopen_active_disable_ofo_check(sk);
2512 
2513 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2514 	skb_rbtree_purge(&tp->out_of_order_queue);
2515 
2516 #ifdef CONFIG_TCP_MD5SIG
2517 	/* Clean up the MD5 key list, if any */
2518 	if (tp->md5sig_info) {
2519 		struct tcp_md5sig_info *md5sig;
2520 
2521 		md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
2522 		tcp_clear_md5_list(sk);
2523 		call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu);
2524 		rcu_assign_pointer(tp->md5sig_info, NULL);
2525 	}
2526 #endif
2527 	tcp_ao_destroy_sock(sk, false);
2528 
2529 	/* Clean up a referenced TCP bind bucket. */
2530 	if (inet_csk(sk)->icsk_bind_hash)
2531 		inet_put_port(sk);
2532 
2533 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2534 
2535 	/* If socket is aborted during connect operation */
2536 	tcp_free_fastopen_req(tp);
2537 	tcp_fastopen_destroy_cipher(sk);
2538 	tcp_saved_syn_free(tp);
2539 
2540 	sk_sockets_allocated_dec(sk);
2541 }
2542 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2543 
2544 #ifdef CONFIG_PROC_FS
2545 /* Proc filesystem TCP sock list dumping. */
2546 
2547 static unsigned short seq_file_family(const struct seq_file *seq);
2548 
2549 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2550 {
2551 	unsigned short family = seq_file_family(seq);
2552 
2553 	/* AF_UNSPEC is used as a match all */
2554 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2555 		net_eq(sock_net(sk), seq_file_net(seq)));
2556 }
2557 
2558 /* Find a non empty bucket (starting from st->bucket)
2559  * and return the first sk from it.
2560  */
2561 static void *listening_get_first(struct seq_file *seq)
2562 {
2563 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2564 	struct tcp_iter_state *st = seq->private;
2565 
2566 	st->offset = 0;
2567 	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2568 		struct inet_listen_hashbucket *ilb2;
2569 		struct hlist_nulls_node *node;
2570 		struct sock *sk;
2571 
2572 		ilb2 = &hinfo->lhash2[st->bucket];
2573 		if (hlist_nulls_empty(&ilb2->nulls_head))
2574 			continue;
2575 
2576 		spin_lock(&ilb2->lock);
2577 		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2578 			if (seq_sk_match(seq, sk))
2579 				return sk;
2580 		}
2581 		spin_unlock(&ilb2->lock);
2582 	}
2583 
2584 	return NULL;
2585 }
2586 
2587 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2588  * If "cur" is the last one in the st->bucket,
2589  * call listening_get_first() to return the first sk of the next
2590  * non empty bucket.
2591  */
2592 static void *listening_get_next(struct seq_file *seq, void *cur)
2593 {
2594 	struct tcp_iter_state *st = seq->private;
2595 	struct inet_listen_hashbucket *ilb2;
2596 	struct hlist_nulls_node *node;
2597 	struct inet_hashinfo *hinfo;
2598 	struct sock *sk = cur;
2599 
2600 	++st->num;
2601 	++st->offset;
2602 
2603 	sk = sk_nulls_next(sk);
2604 	sk_nulls_for_each_from(sk, node) {
2605 		if (seq_sk_match(seq, sk))
2606 			return sk;
2607 	}
2608 
2609 	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2610 	ilb2 = &hinfo->lhash2[st->bucket];
2611 	spin_unlock(&ilb2->lock);
2612 	++st->bucket;
2613 	return listening_get_first(seq);
2614 }
2615 
2616 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2617 {
2618 	struct tcp_iter_state *st = seq->private;
2619 	void *rc;
2620 
2621 	st->bucket = 0;
2622 	st->offset = 0;
2623 	rc = listening_get_first(seq);
2624 
2625 	while (rc && *pos) {
2626 		rc = listening_get_next(seq, rc);
2627 		--*pos;
2628 	}
2629 	return rc;
2630 }
2631 
2632 static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2633 				const struct tcp_iter_state *st)
2634 {
2635 	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2636 }
2637 
2638 /*
2639  * Get first established socket starting from bucket given in st->bucket.
2640  * If st->bucket is zero, the very first socket in the hash is returned.
2641  */
2642 static void *established_get_first(struct seq_file *seq)
2643 {
2644 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2645 	struct tcp_iter_state *st = seq->private;
2646 
2647 	st->offset = 0;
2648 	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2649 		struct sock *sk;
2650 		struct hlist_nulls_node *node;
2651 		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2652 
2653 		cond_resched();
2654 
2655 		/* Lockless fast path for the common case of empty buckets */
2656 		if (empty_bucket(hinfo, st))
2657 			continue;
2658 
2659 		spin_lock_bh(lock);
2660 		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2661 			if (seq_sk_match(seq, sk))
2662 				return sk;
2663 		}
2664 		spin_unlock_bh(lock);
2665 	}
2666 
2667 	return NULL;
2668 }
2669 
2670 static void *established_get_next(struct seq_file *seq, void *cur)
2671 {
2672 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2673 	struct tcp_iter_state *st = seq->private;
2674 	struct hlist_nulls_node *node;
2675 	struct sock *sk = cur;
2676 
2677 	++st->num;
2678 	++st->offset;
2679 
2680 	sk = sk_nulls_next(sk);
2681 
2682 	sk_nulls_for_each_from(sk, node) {
2683 		if (seq_sk_match(seq, sk))
2684 			return sk;
2685 	}
2686 
2687 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2688 	++st->bucket;
2689 	return established_get_first(seq);
2690 }
2691 
2692 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2693 {
2694 	struct tcp_iter_state *st = seq->private;
2695 	void *rc;
2696 
2697 	st->bucket = 0;
2698 	rc = established_get_first(seq);
2699 
2700 	while (rc && pos) {
2701 		rc = established_get_next(seq, rc);
2702 		--pos;
2703 	}
2704 	return rc;
2705 }
2706 
2707 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2708 {
2709 	void *rc;
2710 	struct tcp_iter_state *st = seq->private;
2711 
2712 	st->state = TCP_SEQ_STATE_LISTENING;
2713 	rc	  = listening_get_idx(seq, &pos);
2714 
2715 	if (!rc) {
2716 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2717 		rc	  = established_get_idx(seq, pos);
2718 	}
2719 
2720 	return rc;
2721 }
2722 
2723 static void *tcp_seek_last_pos(struct seq_file *seq)
2724 {
2725 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2726 	struct tcp_iter_state *st = seq->private;
2727 	int bucket = st->bucket;
2728 	int offset = st->offset;
2729 	int orig_num = st->num;
2730 	void *rc = NULL;
2731 
2732 	switch (st->state) {
2733 	case TCP_SEQ_STATE_LISTENING:
2734 		if (st->bucket > hinfo->lhash2_mask)
2735 			break;
2736 		rc = listening_get_first(seq);
2737 		while (offset-- && rc && bucket == st->bucket)
2738 			rc = listening_get_next(seq, rc);
2739 		if (rc)
2740 			break;
2741 		st->bucket = 0;
2742 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2743 		fallthrough;
2744 	case TCP_SEQ_STATE_ESTABLISHED:
2745 		if (st->bucket > hinfo->ehash_mask)
2746 			break;
2747 		rc = established_get_first(seq);
2748 		while (offset-- && rc && bucket == st->bucket)
2749 			rc = established_get_next(seq, rc);
2750 	}
2751 
2752 	st->num = orig_num;
2753 
2754 	return rc;
2755 }
2756 
2757 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2758 {
2759 	struct tcp_iter_state *st = seq->private;
2760 	void *rc;
2761 
2762 	if (*pos && *pos == st->last_pos) {
2763 		rc = tcp_seek_last_pos(seq);
2764 		if (rc)
2765 			goto out;
2766 	}
2767 
2768 	st->state = TCP_SEQ_STATE_LISTENING;
2769 	st->num = 0;
2770 	st->bucket = 0;
2771 	st->offset = 0;
2772 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2773 
2774 out:
2775 	st->last_pos = *pos;
2776 	return rc;
2777 }
2778 EXPORT_SYMBOL(tcp_seq_start);
2779 
2780 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2781 {
2782 	struct tcp_iter_state *st = seq->private;
2783 	void *rc = NULL;
2784 
2785 	if (v == SEQ_START_TOKEN) {
2786 		rc = tcp_get_idx(seq, 0);
2787 		goto out;
2788 	}
2789 
2790 	switch (st->state) {
2791 	case TCP_SEQ_STATE_LISTENING:
2792 		rc = listening_get_next(seq, v);
2793 		if (!rc) {
2794 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2795 			st->bucket = 0;
2796 			st->offset = 0;
2797 			rc	  = established_get_first(seq);
2798 		}
2799 		break;
2800 	case TCP_SEQ_STATE_ESTABLISHED:
2801 		rc = established_get_next(seq, v);
2802 		break;
2803 	}
2804 out:
2805 	++*pos;
2806 	st->last_pos = *pos;
2807 	return rc;
2808 }
2809 EXPORT_SYMBOL(tcp_seq_next);
2810 
2811 void tcp_seq_stop(struct seq_file *seq, void *v)
2812 {
2813 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2814 	struct tcp_iter_state *st = seq->private;
2815 
2816 	switch (st->state) {
2817 	case TCP_SEQ_STATE_LISTENING:
2818 		if (v != SEQ_START_TOKEN)
2819 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2820 		break;
2821 	case TCP_SEQ_STATE_ESTABLISHED:
2822 		if (v)
2823 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2824 		break;
2825 	}
2826 }
2827 EXPORT_SYMBOL(tcp_seq_stop);
2828 
2829 static void get_openreq4(const struct request_sock *req,
2830 			 struct seq_file *f, int i)
2831 {
2832 	const struct inet_request_sock *ireq = inet_rsk(req);
2833 	long delta = req->rsk_timer.expires - jiffies;
2834 
2835 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2836 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2837 		i,
2838 		ireq->ir_loc_addr,
2839 		ireq->ir_num,
2840 		ireq->ir_rmt_addr,
2841 		ntohs(ireq->ir_rmt_port),
2842 		TCP_SYN_RECV,
2843 		0, 0, /* could print option size, but that is af dependent. */
2844 		1,    /* timers active (only the expire timer) */
2845 		jiffies_delta_to_clock_t(delta),
2846 		req->num_timeout,
2847 		from_kuid_munged(seq_user_ns(f),
2848 				 sock_i_uid(req->rsk_listener)),
2849 		0,  /* non standard timer */
2850 		0, /* open_requests have no inode */
2851 		0,
2852 		req);
2853 }
2854 
2855 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2856 {
2857 	int timer_active;
2858 	unsigned long timer_expires;
2859 	const struct tcp_sock *tp = tcp_sk(sk);
2860 	const struct inet_connection_sock *icsk = inet_csk(sk);
2861 	const struct inet_sock *inet = inet_sk(sk);
2862 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2863 	__be32 dest = inet->inet_daddr;
2864 	__be32 src = inet->inet_rcv_saddr;
2865 	__u16 destp = ntohs(inet->inet_dport);
2866 	__u16 srcp = ntohs(inet->inet_sport);
2867 	int rx_queue;
2868 	int state;
2869 
2870 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2871 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2872 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2873 		timer_active	= 1;
2874 		timer_expires	= icsk->icsk_timeout;
2875 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2876 		timer_active	= 4;
2877 		timer_expires	= icsk->icsk_timeout;
2878 	} else if (timer_pending(&sk->sk_timer)) {
2879 		timer_active	= 2;
2880 		timer_expires	= sk->sk_timer.expires;
2881 	} else {
2882 		timer_active	= 0;
2883 		timer_expires = jiffies;
2884 	}
2885 
2886 	state = inet_sk_state_load(sk);
2887 	if (state == TCP_LISTEN)
2888 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2889 	else
2890 		/* Because we don't lock the socket,
2891 		 * we might find a transient negative value.
2892 		 */
2893 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2894 				      READ_ONCE(tp->copied_seq), 0);
2895 
2896 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2897 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2898 		i, src, srcp, dest, destp, state,
2899 		READ_ONCE(tp->write_seq) - tp->snd_una,
2900 		rx_queue,
2901 		timer_active,
2902 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2903 		icsk->icsk_retransmits,
2904 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2905 		icsk->icsk_probes_out,
2906 		sock_i_ino(sk),
2907 		refcount_read(&sk->sk_refcnt), sk,
2908 		jiffies_to_clock_t(icsk->icsk_rto),
2909 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2910 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2911 		tcp_snd_cwnd(tp),
2912 		state == TCP_LISTEN ?
2913 		    fastopenq->max_qlen :
2914 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2915 }
2916 
2917 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2918 			       struct seq_file *f, int i)
2919 {
2920 	long delta = tw->tw_timer.expires - jiffies;
2921 	__be32 dest, src;
2922 	__u16 destp, srcp;
2923 
2924 	dest  = tw->tw_daddr;
2925 	src   = tw->tw_rcv_saddr;
2926 	destp = ntohs(tw->tw_dport);
2927 	srcp  = ntohs(tw->tw_sport);
2928 
2929 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2930 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2931 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2932 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2933 		refcount_read(&tw->tw_refcnt), tw);
2934 }
2935 
2936 #define TMPSZ 150
2937 
2938 static int tcp4_seq_show(struct seq_file *seq, void *v)
2939 {
2940 	struct tcp_iter_state *st;
2941 	struct sock *sk = v;
2942 
2943 	seq_setwidth(seq, TMPSZ - 1);
2944 	if (v == SEQ_START_TOKEN) {
2945 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2946 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2947 			   "inode");
2948 		goto out;
2949 	}
2950 	st = seq->private;
2951 
2952 	if (sk->sk_state == TCP_TIME_WAIT)
2953 		get_timewait4_sock(v, seq, st->num);
2954 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2955 		get_openreq4(v, seq, st->num);
2956 	else
2957 		get_tcp4_sock(v, seq, st->num);
2958 out:
2959 	seq_pad(seq, '\n');
2960 	return 0;
2961 }
2962 
2963 #ifdef CONFIG_BPF_SYSCALL
2964 struct bpf_tcp_iter_state {
2965 	struct tcp_iter_state state;
2966 	unsigned int cur_sk;
2967 	unsigned int end_sk;
2968 	unsigned int max_sk;
2969 	struct sock **batch;
2970 	bool st_bucket_done;
2971 };
2972 
2973 struct bpf_iter__tcp {
2974 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2975 	__bpf_md_ptr(struct sock_common *, sk_common);
2976 	uid_t uid __aligned(8);
2977 };
2978 
2979 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2980 			     struct sock_common *sk_common, uid_t uid)
2981 {
2982 	struct bpf_iter__tcp ctx;
2983 
2984 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2985 	ctx.meta = meta;
2986 	ctx.sk_common = sk_common;
2987 	ctx.uid = uid;
2988 	return bpf_iter_run_prog(prog, &ctx);
2989 }
2990 
2991 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
2992 {
2993 	while (iter->cur_sk < iter->end_sk)
2994 		sock_gen_put(iter->batch[iter->cur_sk++]);
2995 }
2996 
2997 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
2998 				      unsigned int new_batch_sz)
2999 {
3000 	struct sock **new_batch;
3001 
3002 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3003 			     GFP_USER | __GFP_NOWARN);
3004 	if (!new_batch)
3005 		return -ENOMEM;
3006 
3007 	bpf_iter_tcp_put_batch(iter);
3008 	kvfree(iter->batch);
3009 	iter->batch = new_batch;
3010 	iter->max_sk = new_batch_sz;
3011 
3012 	return 0;
3013 }
3014 
3015 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3016 						 struct sock *start_sk)
3017 {
3018 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3019 	struct bpf_tcp_iter_state *iter = seq->private;
3020 	struct tcp_iter_state *st = &iter->state;
3021 	struct hlist_nulls_node *node;
3022 	unsigned int expected = 1;
3023 	struct sock *sk;
3024 
3025 	sock_hold(start_sk);
3026 	iter->batch[iter->end_sk++] = start_sk;
3027 
3028 	sk = sk_nulls_next(start_sk);
3029 	sk_nulls_for_each_from(sk, node) {
3030 		if (seq_sk_match(seq, sk)) {
3031 			if (iter->end_sk < iter->max_sk) {
3032 				sock_hold(sk);
3033 				iter->batch[iter->end_sk++] = sk;
3034 			}
3035 			expected++;
3036 		}
3037 	}
3038 	spin_unlock(&hinfo->lhash2[st->bucket].lock);
3039 
3040 	return expected;
3041 }
3042 
3043 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3044 						   struct sock *start_sk)
3045 {
3046 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3047 	struct bpf_tcp_iter_state *iter = seq->private;
3048 	struct tcp_iter_state *st = &iter->state;
3049 	struct hlist_nulls_node *node;
3050 	unsigned int expected = 1;
3051 	struct sock *sk;
3052 
3053 	sock_hold(start_sk);
3054 	iter->batch[iter->end_sk++] = start_sk;
3055 
3056 	sk = sk_nulls_next(start_sk);
3057 	sk_nulls_for_each_from(sk, node) {
3058 		if (seq_sk_match(seq, sk)) {
3059 			if (iter->end_sk < iter->max_sk) {
3060 				sock_hold(sk);
3061 				iter->batch[iter->end_sk++] = sk;
3062 			}
3063 			expected++;
3064 		}
3065 	}
3066 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3067 
3068 	return expected;
3069 }
3070 
3071 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3072 {
3073 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3074 	struct bpf_tcp_iter_state *iter = seq->private;
3075 	struct tcp_iter_state *st = &iter->state;
3076 	unsigned int expected;
3077 	bool resized = false;
3078 	struct sock *sk;
3079 
3080 	/* The st->bucket is done.  Directly advance to the next
3081 	 * bucket instead of having the tcp_seek_last_pos() to skip
3082 	 * one by one in the current bucket and eventually find out
3083 	 * it has to advance to the next bucket.
3084 	 */
3085 	if (iter->st_bucket_done) {
3086 		st->offset = 0;
3087 		st->bucket++;
3088 		if (st->state == TCP_SEQ_STATE_LISTENING &&
3089 		    st->bucket > hinfo->lhash2_mask) {
3090 			st->state = TCP_SEQ_STATE_ESTABLISHED;
3091 			st->bucket = 0;
3092 		}
3093 	}
3094 
3095 again:
3096 	/* Get a new batch */
3097 	iter->cur_sk = 0;
3098 	iter->end_sk = 0;
3099 	iter->st_bucket_done = false;
3100 
3101 	sk = tcp_seek_last_pos(seq);
3102 	if (!sk)
3103 		return NULL; /* Done */
3104 
3105 	if (st->state == TCP_SEQ_STATE_LISTENING)
3106 		expected = bpf_iter_tcp_listening_batch(seq, sk);
3107 	else
3108 		expected = bpf_iter_tcp_established_batch(seq, sk);
3109 
3110 	if (iter->end_sk == expected) {
3111 		iter->st_bucket_done = true;
3112 		return sk;
3113 	}
3114 
3115 	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
3116 		resized = true;
3117 		goto again;
3118 	}
3119 
3120 	return sk;
3121 }
3122 
3123 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3124 {
3125 	/* bpf iter does not support lseek, so it always
3126 	 * continue from where it was stop()-ped.
3127 	 */
3128 	if (*pos)
3129 		return bpf_iter_tcp_batch(seq);
3130 
3131 	return SEQ_START_TOKEN;
3132 }
3133 
3134 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3135 {
3136 	struct bpf_tcp_iter_state *iter = seq->private;
3137 	struct tcp_iter_state *st = &iter->state;
3138 	struct sock *sk;
3139 
3140 	/* Whenever seq_next() is called, the iter->cur_sk is
3141 	 * done with seq_show(), so advance to the next sk in
3142 	 * the batch.
3143 	 */
3144 	if (iter->cur_sk < iter->end_sk) {
3145 		/* Keeping st->num consistent in tcp_iter_state.
3146 		 * bpf_iter_tcp does not use st->num.
3147 		 * meta.seq_num is used instead.
3148 		 */
3149 		st->num++;
3150 		/* Move st->offset to the next sk in the bucket such that
3151 		 * the future start() will resume at st->offset in
3152 		 * st->bucket.  See tcp_seek_last_pos().
3153 		 */
3154 		st->offset++;
3155 		sock_gen_put(iter->batch[iter->cur_sk++]);
3156 	}
3157 
3158 	if (iter->cur_sk < iter->end_sk)
3159 		sk = iter->batch[iter->cur_sk];
3160 	else
3161 		sk = bpf_iter_tcp_batch(seq);
3162 
3163 	++*pos;
3164 	/* Keeping st->last_pos consistent in tcp_iter_state.
3165 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3166 	 */
3167 	st->last_pos = *pos;
3168 	return sk;
3169 }
3170 
3171 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3172 {
3173 	struct bpf_iter_meta meta;
3174 	struct bpf_prog *prog;
3175 	struct sock *sk = v;
3176 	uid_t uid;
3177 	int ret;
3178 
3179 	if (v == SEQ_START_TOKEN)
3180 		return 0;
3181 
3182 	if (sk_fullsock(sk))
3183 		lock_sock(sk);
3184 
3185 	if (unlikely(sk_unhashed(sk))) {
3186 		ret = SEQ_SKIP;
3187 		goto unlock;
3188 	}
3189 
3190 	if (sk->sk_state == TCP_TIME_WAIT) {
3191 		uid = 0;
3192 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3193 		const struct request_sock *req = v;
3194 
3195 		uid = from_kuid_munged(seq_user_ns(seq),
3196 				       sock_i_uid(req->rsk_listener));
3197 	} else {
3198 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3199 	}
3200 
3201 	meta.seq = seq;
3202 	prog = bpf_iter_get_info(&meta, false);
3203 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3204 
3205 unlock:
3206 	if (sk_fullsock(sk))
3207 		release_sock(sk);
3208 	return ret;
3209 
3210 }
3211 
3212 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3213 {
3214 	struct bpf_tcp_iter_state *iter = seq->private;
3215 	struct bpf_iter_meta meta;
3216 	struct bpf_prog *prog;
3217 
3218 	if (!v) {
3219 		meta.seq = seq;
3220 		prog = bpf_iter_get_info(&meta, true);
3221 		if (prog)
3222 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3223 	}
3224 
3225 	if (iter->cur_sk < iter->end_sk) {
3226 		bpf_iter_tcp_put_batch(iter);
3227 		iter->st_bucket_done = false;
3228 	}
3229 }
3230 
3231 static const struct seq_operations bpf_iter_tcp_seq_ops = {
3232 	.show		= bpf_iter_tcp_seq_show,
3233 	.start		= bpf_iter_tcp_seq_start,
3234 	.next		= bpf_iter_tcp_seq_next,
3235 	.stop		= bpf_iter_tcp_seq_stop,
3236 };
3237 #endif
3238 static unsigned short seq_file_family(const struct seq_file *seq)
3239 {
3240 	const struct tcp_seq_afinfo *afinfo;
3241 
3242 #ifdef CONFIG_BPF_SYSCALL
3243 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3244 	if (seq->op == &bpf_iter_tcp_seq_ops)
3245 		return AF_UNSPEC;
3246 #endif
3247 
3248 	/* Iterated from proc fs */
3249 	afinfo = pde_data(file_inode(seq->file));
3250 	return afinfo->family;
3251 }
3252 
3253 static const struct seq_operations tcp4_seq_ops = {
3254 	.show		= tcp4_seq_show,
3255 	.start		= tcp_seq_start,
3256 	.next		= tcp_seq_next,
3257 	.stop		= tcp_seq_stop,
3258 };
3259 
3260 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3261 	.family		= AF_INET,
3262 };
3263 
3264 static int __net_init tcp4_proc_init_net(struct net *net)
3265 {
3266 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3267 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3268 		return -ENOMEM;
3269 	return 0;
3270 }
3271 
3272 static void __net_exit tcp4_proc_exit_net(struct net *net)
3273 {
3274 	remove_proc_entry("tcp", net->proc_net);
3275 }
3276 
3277 static struct pernet_operations tcp4_net_ops = {
3278 	.init = tcp4_proc_init_net,
3279 	.exit = tcp4_proc_exit_net,
3280 };
3281 
3282 int __init tcp4_proc_init(void)
3283 {
3284 	return register_pernet_subsys(&tcp4_net_ops);
3285 }
3286 
3287 void tcp4_proc_exit(void)
3288 {
3289 	unregister_pernet_subsys(&tcp4_net_ops);
3290 }
3291 #endif /* CONFIG_PROC_FS */
3292 
3293 /* @wake is one when sk_stream_write_space() calls us.
3294  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3295  * This mimics the strategy used in sock_def_write_space().
3296  */
3297 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3298 {
3299 	const struct tcp_sock *tp = tcp_sk(sk);
3300 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3301 			    READ_ONCE(tp->snd_nxt);
3302 
3303 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3304 }
3305 EXPORT_SYMBOL(tcp_stream_memory_free);
3306 
3307 struct proto tcp_prot = {
3308 	.name			= "TCP",
3309 	.owner			= THIS_MODULE,
3310 	.close			= tcp_close,
3311 	.pre_connect		= tcp_v4_pre_connect,
3312 	.connect		= tcp_v4_connect,
3313 	.disconnect		= tcp_disconnect,
3314 	.accept			= inet_csk_accept,
3315 	.ioctl			= tcp_ioctl,
3316 	.init			= tcp_v4_init_sock,
3317 	.destroy		= tcp_v4_destroy_sock,
3318 	.shutdown		= tcp_shutdown,
3319 	.setsockopt		= tcp_setsockopt,
3320 	.getsockopt		= tcp_getsockopt,
3321 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3322 	.keepalive		= tcp_set_keepalive,
3323 	.recvmsg		= tcp_recvmsg,
3324 	.sendmsg		= tcp_sendmsg,
3325 	.splice_eof		= tcp_splice_eof,
3326 	.backlog_rcv		= tcp_v4_do_rcv,
3327 	.release_cb		= tcp_release_cb,
3328 	.hash			= inet_hash,
3329 	.unhash			= inet_unhash,
3330 	.get_port		= inet_csk_get_port,
3331 	.put_port		= inet_put_port,
3332 #ifdef CONFIG_BPF_SYSCALL
3333 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3334 #endif
3335 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3336 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3337 	.stream_memory_free	= tcp_stream_memory_free,
3338 	.sockets_allocated	= &tcp_sockets_allocated,
3339 	.orphan_count		= &tcp_orphan_count,
3340 
3341 	.memory_allocated	= &tcp_memory_allocated,
3342 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3343 
3344 	.memory_pressure	= &tcp_memory_pressure,
3345 	.sysctl_mem		= sysctl_tcp_mem,
3346 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3347 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3348 	.max_header		= MAX_TCP_HEADER,
3349 	.obj_size		= sizeof(struct tcp_sock),
3350 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3351 	.twsk_prot		= &tcp_timewait_sock_ops,
3352 	.rsk_prot		= &tcp_request_sock_ops,
3353 	.h.hashinfo		= NULL,
3354 	.no_autobind		= true,
3355 	.diag_destroy		= tcp_abort,
3356 };
3357 EXPORT_SYMBOL(tcp_prot);
3358 
3359 static void __net_exit tcp_sk_exit(struct net *net)
3360 {
3361 	if (net->ipv4.tcp_congestion_control)
3362 		bpf_module_put(net->ipv4.tcp_congestion_control,
3363 			       net->ipv4.tcp_congestion_control->owner);
3364 }
3365 
3366 static void __net_init tcp_set_hashinfo(struct net *net)
3367 {
3368 	struct inet_hashinfo *hinfo;
3369 	unsigned int ehash_entries;
3370 	struct net *old_net;
3371 
3372 	if (net_eq(net, &init_net))
3373 		goto fallback;
3374 
3375 	old_net = current->nsproxy->net_ns;
3376 	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3377 	if (!ehash_entries)
3378 		goto fallback;
3379 
3380 	ehash_entries = roundup_pow_of_two(ehash_entries);
3381 	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3382 	if (!hinfo) {
3383 		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3384 			"for a netns, fallback to the global one\n",
3385 			ehash_entries);
3386 fallback:
3387 		hinfo = &tcp_hashinfo;
3388 		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3389 	}
3390 
3391 	net->ipv4.tcp_death_row.hashinfo = hinfo;
3392 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3393 	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3394 }
3395 
3396 static int __net_init tcp_sk_init(struct net *net)
3397 {
3398 	net->ipv4.sysctl_tcp_ecn = 2;
3399 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3400 
3401 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3402 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3403 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3404 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3405 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3406 
3407 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3408 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3409 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3410 
3411 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3412 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3413 	net->ipv4.sysctl_tcp_syncookies = 1;
3414 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3415 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3416 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3417 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3418 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3419 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3420 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3421 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3422 
3423 	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3424 	tcp_set_hashinfo(net);
3425 
3426 	net->ipv4.sysctl_tcp_sack = 1;
3427 	net->ipv4.sysctl_tcp_window_scaling = 1;
3428 	net->ipv4.sysctl_tcp_timestamps = 1;
3429 	net->ipv4.sysctl_tcp_early_retrans = 3;
3430 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3431 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3432 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3433 	net->ipv4.sysctl_tcp_max_reordering = 300;
3434 	net->ipv4.sysctl_tcp_dsack = 1;
3435 	net->ipv4.sysctl_tcp_app_win = 31;
3436 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3437 	net->ipv4.sysctl_tcp_frto = 2;
3438 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3439 	/* This limits the percentage of the congestion window which we
3440 	 * will allow a single TSO frame to consume.  Building TSO frames
3441 	 * which are too large can cause TCP streams to be bursty.
3442 	 */
3443 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3444 	/* Default TSQ limit of 16 TSO segments */
3445 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3446 
3447 	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3448 	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3449 
3450 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3451 	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3452 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3453 	net->ipv4.sysctl_tcp_autocorking = 1;
3454 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3455 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3456 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3457 	if (net != &init_net) {
3458 		memcpy(net->ipv4.sysctl_tcp_rmem,
3459 		       init_net.ipv4.sysctl_tcp_rmem,
3460 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3461 		memcpy(net->ipv4.sysctl_tcp_wmem,
3462 		       init_net.ipv4.sysctl_tcp_wmem,
3463 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3464 	}
3465 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3466 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3467 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3468 	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3469 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3470 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3471 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3472 
3473 	/* Set default values for PLB */
3474 	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3475 	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3476 	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3477 	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3478 	/* Default congestion threshold for PLB to mark a round is 50% */
3479 	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3480 
3481 	/* Reno is always built in */
3482 	if (!net_eq(net, &init_net) &&
3483 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3484 			       init_net.ipv4.tcp_congestion_control->owner))
3485 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3486 	else
3487 		net->ipv4.tcp_congestion_control = &tcp_reno;
3488 
3489 	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3490 	net->ipv4.sysctl_tcp_shrink_window = 0;
3491 
3492 	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3493 
3494 	return 0;
3495 }
3496 
3497 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3498 {
3499 	struct net *net;
3500 
3501 	tcp_twsk_purge(net_exit_list);
3502 
3503 	list_for_each_entry(net, net_exit_list, exit_list) {
3504 		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3505 		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3506 		tcp_fastopen_ctx_destroy(net);
3507 	}
3508 }
3509 
3510 static struct pernet_operations __net_initdata tcp_sk_ops = {
3511        .init	   = tcp_sk_init,
3512        .exit	   = tcp_sk_exit,
3513        .exit_batch = tcp_sk_exit_batch,
3514 };
3515 
3516 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3517 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3518 		     struct sock_common *sk_common, uid_t uid)
3519 
3520 #define INIT_BATCH_SZ 16
3521 
3522 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3523 {
3524 	struct bpf_tcp_iter_state *iter = priv_data;
3525 	int err;
3526 
3527 	err = bpf_iter_init_seq_net(priv_data, aux);
3528 	if (err)
3529 		return err;
3530 
3531 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3532 	if (err) {
3533 		bpf_iter_fini_seq_net(priv_data);
3534 		return err;
3535 	}
3536 
3537 	return 0;
3538 }
3539 
3540 static void bpf_iter_fini_tcp(void *priv_data)
3541 {
3542 	struct bpf_tcp_iter_state *iter = priv_data;
3543 
3544 	bpf_iter_fini_seq_net(priv_data);
3545 	kvfree(iter->batch);
3546 }
3547 
3548 static const struct bpf_iter_seq_info tcp_seq_info = {
3549 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3550 	.init_seq_private	= bpf_iter_init_tcp,
3551 	.fini_seq_private	= bpf_iter_fini_tcp,
3552 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3553 };
3554 
3555 static const struct bpf_func_proto *
3556 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3557 			    const struct bpf_prog *prog)
3558 {
3559 	switch (func_id) {
3560 	case BPF_FUNC_setsockopt:
3561 		return &bpf_sk_setsockopt_proto;
3562 	case BPF_FUNC_getsockopt:
3563 		return &bpf_sk_getsockopt_proto;
3564 	default:
3565 		return NULL;
3566 	}
3567 }
3568 
3569 static struct bpf_iter_reg tcp_reg_info = {
3570 	.target			= "tcp",
3571 	.ctx_arg_info_size	= 1,
3572 	.ctx_arg_info		= {
3573 		{ offsetof(struct bpf_iter__tcp, sk_common),
3574 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3575 	},
3576 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3577 	.seq_info		= &tcp_seq_info,
3578 };
3579 
3580 static void __init bpf_iter_register(void)
3581 {
3582 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3583 	if (bpf_iter_reg_target(&tcp_reg_info))
3584 		pr_warn("Warning: could not register bpf iterator tcp\n");
3585 }
3586 
3587 #endif
3588 
3589 void __init tcp_v4_init(void)
3590 {
3591 	int cpu, res;
3592 
3593 	for_each_possible_cpu(cpu) {
3594 		struct sock *sk;
3595 
3596 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3597 					   IPPROTO_TCP, &init_net);
3598 		if (res)
3599 			panic("Failed to create the TCP control socket.\n");
3600 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3601 
3602 		/* Please enforce IP_DF and IPID==0 for RST and
3603 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3604 		 */
3605 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3606 
3607 		per_cpu(ipv4_tcp_sk, cpu) = sk;
3608 	}
3609 	if (register_pernet_subsys(&tcp_sk_ops))
3610 		panic("Failed to create the TCP control socket.\n");
3611 
3612 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3613 	bpf_iter_register();
3614 #endif
3615 }
3616