1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 #define pr_fmt(fmt) "TCP: " fmt 54 55 #include <linux/bottom_half.h> 56 #include <linux/types.h> 57 #include <linux/fcntl.h> 58 #include <linux/module.h> 59 #include <linux/random.h> 60 #include <linux/cache.h> 61 #include <linux/jhash.h> 62 #include <linux/init.h> 63 #include <linux/times.h> 64 #include <linux/slab.h> 65 66 #include <net/net_namespace.h> 67 #include <net/icmp.h> 68 #include <net/inet_hashtables.h> 69 #include <net/tcp.h> 70 #include <net/transp_v6.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 #include <net/timewait_sock.h> 74 #include <net/xfrm.h> 75 #include <net/secure_seq.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/inet.h> 79 #include <linux/ipv6.h> 80 #include <linux/stddef.h> 81 #include <linux/proc_fs.h> 82 #include <linux/seq_file.h> 83 #include <linux/inetdevice.h> 84 85 #include <crypto/hash.h> 86 #include <linux/scatterlist.h> 87 88 #include <trace/events/tcp.h> 89 90 #ifdef CONFIG_TCP_MD5SIG 91 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 92 __be32 daddr, __be32 saddr, const struct tcphdr *th); 93 #endif 94 95 struct inet_hashinfo tcp_hashinfo; 96 EXPORT_SYMBOL(tcp_hashinfo); 97 98 static u32 tcp_v4_init_seq(const struct sk_buff *skb) 99 { 100 return secure_tcp_seq(ip_hdr(skb)->daddr, 101 ip_hdr(skb)->saddr, 102 tcp_hdr(skb)->dest, 103 tcp_hdr(skb)->source); 104 } 105 106 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) 107 { 108 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); 109 } 110 111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 112 { 113 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 114 struct tcp_sock *tp = tcp_sk(sk); 115 116 /* With PAWS, it is safe from the viewpoint 117 of data integrity. Even without PAWS it is safe provided sequence 118 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 119 120 Actually, the idea is close to VJ's one, only timestamp cache is 121 held not per host, but per port pair and TW bucket is used as state 122 holder. 123 124 If TW bucket has been already destroyed we fall back to VJ's scheme 125 and use initial timestamp retrieved from peer table. 126 */ 127 if (tcptw->tw_ts_recent_stamp && 128 (!twp || (sock_net(sk)->ipv4.sysctl_tcp_tw_reuse && 129 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) { 130 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 131 if (tp->write_seq == 0) 132 tp->write_seq = 1; 133 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 134 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 135 sock_hold(sktw); 136 return 1; 137 } 138 139 return 0; 140 } 141 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 142 143 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, 144 int addr_len) 145 { 146 /* This check is replicated from tcp_v4_connect() and intended to 147 * prevent BPF program called below from accessing bytes that are out 148 * of the bound specified by user in addr_len. 149 */ 150 if (addr_len < sizeof(struct sockaddr_in)) 151 return -EINVAL; 152 153 sock_owned_by_me(sk); 154 155 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr); 156 } 157 158 /* This will initiate an outgoing connection. */ 159 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 160 { 161 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 162 struct inet_sock *inet = inet_sk(sk); 163 struct tcp_sock *tp = tcp_sk(sk); 164 __be16 orig_sport, orig_dport; 165 __be32 daddr, nexthop; 166 struct flowi4 *fl4; 167 struct rtable *rt; 168 int err; 169 struct ip_options_rcu *inet_opt; 170 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; 171 172 if (addr_len < sizeof(struct sockaddr_in)) 173 return -EINVAL; 174 175 if (usin->sin_family != AF_INET) 176 return -EAFNOSUPPORT; 177 178 nexthop = daddr = usin->sin_addr.s_addr; 179 inet_opt = rcu_dereference_protected(inet->inet_opt, 180 lockdep_sock_is_held(sk)); 181 if (inet_opt && inet_opt->opt.srr) { 182 if (!daddr) 183 return -EINVAL; 184 nexthop = inet_opt->opt.faddr; 185 } 186 187 orig_sport = inet->inet_sport; 188 orig_dport = usin->sin_port; 189 fl4 = &inet->cork.fl.u.ip4; 190 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 191 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 192 IPPROTO_TCP, 193 orig_sport, orig_dport, sk); 194 if (IS_ERR(rt)) { 195 err = PTR_ERR(rt); 196 if (err == -ENETUNREACH) 197 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 198 return err; 199 } 200 201 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 202 ip_rt_put(rt); 203 return -ENETUNREACH; 204 } 205 206 if (!inet_opt || !inet_opt->opt.srr) 207 daddr = fl4->daddr; 208 209 if (!inet->inet_saddr) 210 inet->inet_saddr = fl4->saddr; 211 sk_rcv_saddr_set(sk, inet->inet_saddr); 212 213 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 214 /* Reset inherited state */ 215 tp->rx_opt.ts_recent = 0; 216 tp->rx_opt.ts_recent_stamp = 0; 217 if (likely(!tp->repair)) 218 tp->write_seq = 0; 219 } 220 221 inet->inet_dport = usin->sin_port; 222 sk_daddr_set(sk, daddr); 223 224 inet_csk(sk)->icsk_ext_hdr_len = 0; 225 if (inet_opt) 226 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 227 228 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 229 230 /* Socket identity is still unknown (sport may be zero). 231 * However we set state to SYN-SENT and not releasing socket 232 * lock select source port, enter ourselves into the hash tables and 233 * complete initialization after this. 234 */ 235 tcp_set_state(sk, TCP_SYN_SENT); 236 err = inet_hash_connect(tcp_death_row, sk); 237 if (err) 238 goto failure; 239 240 sk_set_txhash(sk); 241 242 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 243 inet->inet_sport, inet->inet_dport, sk); 244 if (IS_ERR(rt)) { 245 err = PTR_ERR(rt); 246 rt = NULL; 247 goto failure; 248 } 249 /* OK, now commit destination to socket. */ 250 sk->sk_gso_type = SKB_GSO_TCPV4; 251 sk_setup_caps(sk, &rt->dst); 252 rt = NULL; 253 254 if (likely(!tp->repair)) { 255 if (!tp->write_seq) 256 tp->write_seq = secure_tcp_seq(inet->inet_saddr, 257 inet->inet_daddr, 258 inet->inet_sport, 259 usin->sin_port); 260 tp->tsoffset = secure_tcp_ts_off(sock_net(sk), 261 inet->inet_saddr, 262 inet->inet_daddr); 263 } 264 265 inet->inet_id = tp->write_seq ^ jiffies; 266 267 if (tcp_fastopen_defer_connect(sk, &err)) 268 return err; 269 if (err) 270 goto failure; 271 272 err = tcp_connect(sk); 273 274 if (err) 275 goto failure; 276 277 return 0; 278 279 failure: 280 /* 281 * This unhashes the socket and releases the local port, 282 * if necessary. 283 */ 284 tcp_set_state(sk, TCP_CLOSE); 285 ip_rt_put(rt); 286 sk->sk_route_caps = 0; 287 inet->inet_dport = 0; 288 return err; 289 } 290 EXPORT_SYMBOL(tcp_v4_connect); 291 292 /* 293 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 294 * It can be called through tcp_release_cb() if socket was owned by user 295 * at the time tcp_v4_err() was called to handle ICMP message. 296 */ 297 void tcp_v4_mtu_reduced(struct sock *sk) 298 { 299 struct inet_sock *inet = inet_sk(sk); 300 struct dst_entry *dst; 301 u32 mtu; 302 303 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 304 return; 305 mtu = tcp_sk(sk)->mtu_info; 306 dst = inet_csk_update_pmtu(sk, mtu); 307 if (!dst) 308 return; 309 310 /* Something is about to be wrong... Remember soft error 311 * for the case, if this connection will not able to recover. 312 */ 313 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 314 sk->sk_err_soft = EMSGSIZE; 315 316 mtu = dst_mtu(dst); 317 318 if (inet->pmtudisc != IP_PMTUDISC_DONT && 319 ip_sk_accept_pmtu(sk) && 320 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 321 tcp_sync_mss(sk, mtu); 322 323 /* Resend the TCP packet because it's 324 * clear that the old packet has been 325 * dropped. This is the new "fast" path mtu 326 * discovery. 327 */ 328 tcp_simple_retransmit(sk); 329 } /* else let the usual retransmit timer handle it */ 330 } 331 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 332 333 static void do_redirect(struct sk_buff *skb, struct sock *sk) 334 { 335 struct dst_entry *dst = __sk_dst_check(sk, 0); 336 337 if (dst) 338 dst->ops->redirect(dst, sk, skb); 339 } 340 341 342 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 343 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 344 { 345 struct request_sock *req = inet_reqsk(sk); 346 struct net *net = sock_net(sk); 347 348 /* ICMPs are not backlogged, hence we cannot get 349 * an established socket here. 350 */ 351 if (seq != tcp_rsk(req)->snt_isn) { 352 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 353 } else if (abort) { 354 /* 355 * Still in SYN_RECV, just remove it silently. 356 * There is no good way to pass the error to the newly 357 * created socket, and POSIX does not want network 358 * errors returned from accept(). 359 */ 360 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 361 tcp_listendrop(req->rsk_listener); 362 } 363 reqsk_put(req); 364 } 365 EXPORT_SYMBOL(tcp_req_err); 366 367 /* 368 * This routine is called by the ICMP module when it gets some 369 * sort of error condition. If err < 0 then the socket should 370 * be closed and the error returned to the user. If err > 0 371 * it's just the icmp type << 8 | icmp code. After adjustment 372 * header points to the first 8 bytes of the tcp header. We need 373 * to find the appropriate port. 374 * 375 * The locking strategy used here is very "optimistic". When 376 * someone else accesses the socket the ICMP is just dropped 377 * and for some paths there is no check at all. 378 * A more general error queue to queue errors for later handling 379 * is probably better. 380 * 381 */ 382 383 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 384 { 385 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 386 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 387 struct inet_connection_sock *icsk; 388 struct tcp_sock *tp; 389 struct inet_sock *inet; 390 const int type = icmp_hdr(icmp_skb)->type; 391 const int code = icmp_hdr(icmp_skb)->code; 392 struct sock *sk; 393 struct sk_buff *skb; 394 struct request_sock *fastopen; 395 u32 seq, snd_una; 396 s32 remaining; 397 u32 delta_us; 398 int err; 399 struct net *net = dev_net(icmp_skb->dev); 400 401 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, 402 th->dest, iph->saddr, ntohs(th->source), 403 inet_iif(icmp_skb), 0); 404 if (!sk) { 405 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 406 return; 407 } 408 if (sk->sk_state == TCP_TIME_WAIT) { 409 inet_twsk_put(inet_twsk(sk)); 410 return; 411 } 412 seq = ntohl(th->seq); 413 if (sk->sk_state == TCP_NEW_SYN_RECV) 414 return tcp_req_err(sk, seq, 415 type == ICMP_PARAMETERPROB || 416 type == ICMP_TIME_EXCEEDED || 417 (type == ICMP_DEST_UNREACH && 418 (code == ICMP_NET_UNREACH || 419 code == ICMP_HOST_UNREACH))); 420 421 bh_lock_sock(sk); 422 /* If too many ICMPs get dropped on busy 423 * servers this needs to be solved differently. 424 * We do take care of PMTU discovery (RFC1191) special case : 425 * we can receive locally generated ICMP messages while socket is held. 426 */ 427 if (sock_owned_by_user(sk)) { 428 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 429 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 430 } 431 if (sk->sk_state == TCP_CLOSE) 432 goto out; 433 434 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 435 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 436 goto out; 437 } 438 439 icsk = inet_csk(sk); 440 tp = tcp_sk(sk); 441 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 442 fastopen = tp->fastopen_rsk; 443 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 444 if (sk->sk_state != TCP_LISTEN && 445 !between(seq, snd_una, tp->snd_nxt)) { 446 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 447 goto out; 448 } 449 450 switch (type) { 451 case ICMP_REDIRECT: 452 if (!sock_owned_by_user(sk)) 453 do_redirect(icmp_skb, sk); 454 goto out; 455 case ICMP_SOURCE_QUENCH: 456 /* Just silently ignore these. */ 457 goto out; 458 case ICMP_PARAMETERPROB: 459 err = EPROTO; 460 break; 461 case ICMP_DEST_UNREACH: 462 if (code > NR_ICMP_UNREACH) 463 goto out; 464 465 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 466 /* We are not interested in TCP_LISTEN and open_requests 467 * (SYN-ACKs send out by Linux are always <576bytes so 468 * they should go through unfragmented). 469 */ 470 if (sk->sk_state == TCP_LISTEN) 471 goto out; 472 473 tp->mtu_info = info; 474 if (!sock_owned_by_user(sk)) { 475 tcp_v4_mtu_reduced(sk); 476 } else { 477 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) 478 sock_hold(sk); 479 } 480 goto out; 481 } 482 483 err = icmp_err_convert[code].errno; 484 /* check if icmp_skb allows revert of backoff 485 * (see draft-zimmermann-tcp-lcd) */ 486 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 487 break; 488 if (seq != tp->snd_una || !icsk->icsk_retransmits || 489 !icsk->icsk_backoff || fastopen) 490 break; 491 492 if (sock_owned_by_user(sk)) 493 break; 494 495 icsk->icsk_backoff--; 496 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : 497 TCP_TIMEOUT_INIT; 498 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 499 500 skb = tcp_rtx_queue_head(sk); 501 BUG_ON(!skb); 502 503 tcp_mstamp_refresh(tp); 504 delta_us = (u32)(tp->tcp_mstamp - skb->skb_mstamp); 505 remaining = icsk->icsk_rto - 506 usecs_to_jiffies(delta_us); 507 508 if (remaining > 0) { 509 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 510 remaining, TCP_RTO_MAX); 511 } else { 512 /* RTO revert clocked out retransmission. 513 * Will retransmit now */ 514 tcp_retransmit_timer(sk); 515 } 516 517 break; 518 case ICMP_TIME_EXCEEDED: 519 err = EHOSTUNREACH; 520 break; 521 default: 522 goto out; 523 } 524 525 switch (sk->sk_state) { 526 case TCP_SYN_SENT: 527 case TCP_SYN_RECV: 528 /* Only in fast or simultaneous open. If a fast open socket is 529 * is already accepted it is treated as a connected one below. 530 */ 531 if (fastopen && !fastopen->sk) 532 break; 533 534 if (!sock_owned_by_user(sk)) { 535 sk->sk_err = err; 536 537 sk->sk_error_report(sk); 538 539 tcp_done(sk); 540 } else { 541 sk->sk_err_soft = err; 542 } 543 goto out; 544 } 545 546 /* If we've already connected we will keep trying 547 * until we time out, or the user gives up. 548 * 549 * rfc1122 4.2.3.9 allows to consider as hard errors 550 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 551 * but it is obsoleted by pmtu discovery). 552 * 553 * Note, that in modern internet, where routing is unreliable 554 * and in each dark corner broken firewalls sit, sending random 555 * errors ordered by their masters even this two messages finally lose 556 * their original sense (even Linux sends invalid PORT_UNREACHs) 557 * 558 * Now we are in compliance with RFCs. 559 * --ANK (980905) 560 */ 561 562 inet = inet_sk(sk); 563 if (!sock_owned_by_user(sk) && inet->recverr) { 564 sk->sk_err = err; 565 sk->sk_error_report(sk); 566 } else { /* Only an error on timeout */ 567 sk->sk_err_soft = err; 568 } 569 570 out: 571 bh_unlock_sock(sk); 572 sock_put(sk); 573 } 574 575 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 576 { 577 struct tcphdr *th = tcp_hdr(skb); 578 579 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 580 skb->csum_start = skb_transport_header(skb) - skb->head; 581 skb->csum_offset = offsetof(struct tcphdr, check); 582 } 583 584 /* This routine computes an IPv4 TCP checksum. */ 585 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 586 { 587 const struct inet_sock *inet = inet_sk(sk); 588 589 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 590 } 591 EXPORT_SYMBOL(tcp_v4_send_check); 592 593 /* 594 * This routine will send an RST to the other tcp. 595 * 596 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 597 * for reset. 598 * Answer: if a packet caused RST, it is not for a socket 599 * existing in our system, if it is matched to a socket, 600 * it is just duplicate segment or bug in other side's TCP. 601 * So that we build reply only basing on parameters 602 * arrived with segment. 603 * Exception: precedence violation. We do not implement it in any case. 604 */ 605 606 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 607 { 608 const struct tcphdr *th = tcp_hdr(skb); 609 struct { 610 struct tcphdr th; 611 #ifdef CONFIG_TCP_MD5SIG 612 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 613 #endif 614 } rep; 615 struct ip_reply_arg arg; 616 #ifdef CONFIG_TCP_MD5SIG 617 struct tcp_md5sig_key *key = NULL; 618 const __u8 *hash_location = NULL; 619 unsigned char newhash[16]; 620 int genhash; 621 struct sock *sk1 = NULL; 622 #endif 623 struct net *net; 624 625 /* Never send a reset in response to a reset. */ 626 if (th->rst) 627 return; 628 629 /* If sk not NULL, it means we did a successful lookup and incoming 630 * route had to be correct. prequeue might have dropped our dst. 631 */ 632 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 633 return; 634 635 /* Swap the send and the receive. */ 636 memset(&rep, 0, sizeof(rep)); 637 rep.th.dest = th->source; 638 rep.th.source = th->dest; 639 rep.th.doff = sizeof(struct tcphdr) / 4; 640 rep.th.rst = 1; 641 642 if (th->ack) { 643 rep.th.seq = th->ack_seq; 644 } else { 645 rep.th.ack = 1; 646 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 647 skb->len - (th->doff << 2)); 648 } 649 650 memset(&arg, 0, sizeof(arg)); 651 arg.iov[0].iov_base = (unsigned char *)&rep; 652 arg.iov[0].iov_len = sizeof(rep.th); 653 654 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 655 #ifdef CONFIG_TCP_MD5SIG 656 rcu_read_lock(); 657 hash_location = tcp_parse_md5sig_option(th); 658 if (sk && sk_fullsock(sk)) { 659 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 660 &ip_hdr(skb)->saddr, AF_INET); 661 } else if (hash_location) { 662 /* 663 * active side is lost. Try to find listening socket through 664 * source port, and then find md5 key through listening socket. 665 * we are not loose security here: 666 * Incoming packet is checked with md5 hash with finding key, 667 * no RST generated if md5 hash doesn't match. 668 */ 669 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0, 670 ip_hdr(skb)->saddr, 671 th->source, ip_hdr(skb)->daddr, 672 ntohs(th->source), inet_iif(skb), 673 tcp_v4_sdif(skb)); 674 /* don't send rst if it can't find key */ 675 if (!sk1) 676 goto out; 677 678 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 679 &ip_hdr(skb)->saddr, AF_INET); 680 if (!key) 681 goto out; 682 683 684 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 685 if (genhash || memcmp(hash_location, newhash, 16) != 0) 686 goto out; 687 688 } 689 690 if (key) { 691 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 692 (TCPOPT_NOP << 16) | 693 (TCPOPT_MD5SIG << 8) | 694 TCPOLEN_MD5SIG); 695 /* Update length and the length the header thinks exists */ 696 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 697 rep.th.doff = arg.iov[0].iov_len / 4; 698 699 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 700 key, ip_hdr(skb)->saddr, 701 ip_hdr(skb)->daddr, &rep.th); 702 } 703 #endif 704 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 705 ip_hdr(skb)->saddr, /* XXX */ 706 arg.iov[0].iov_len, IPPROTO_TCP, 0); 707 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 708 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 709 710 /* When socket is gone, all binding information is lost. 711 * routing might fail in this case. No choice here, if we choose to force 712 * input interface, we will misroute in case of asymmetric route. 713 */ 714 if (sk) { 715 arg.bound_dev_if = sk->sk_bound_dev_if; 716 if (sk_fullsock(sk)) 717 trace_tcp_send_reset(sk, skb); 718 } 719 720 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 721 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 722 723 arg.tos = ip_hdr(skb)->tos; 724 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); 725 local_bh_disable(); 726 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk), 727 skb, &TCP_SKB_CB(skb)->header.h4.opt, 728 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 729 &arg, arg.iov[0].iov_len); 730 731 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 732 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 733 local_bh_enable(); 734 735 #ifdef CONFIG_TCP_MD5SIG 736 out: 737 rcu_read_unlock(); 738 #endif 739 } 740 741 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 742 outside socket context is ugly, certainly. What can I do? 743 */ 744 745 static void tcp_v4_send_ack(const struct sock *sk, 746 struct sk_buff *skb, u32 seq, u32 ack, 747 u32 win, u32 tsval, u32 tsecr, int oif, 748 struct tcp_md5sig_key *key, 749 int reply_flags, u8 tos) 750 { 751 const struct tcphdr *th = tcp_hdr(skb); 752 struct { 753 struct tcphdr th; 754 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 755 #ifdef CONFIG_TCP_MD5SIG 756 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 757 #endif 758 ]; 759 } rep; 760 struct net *net = sock_net(sk); 761 struct ip_reply_arg arg; 762 763 memset(&rep.th, 0, sizeof(struct tcphdr)); 764 memset(&arg, 0, sizeof(arg)); 765 766 arg.iov[0].iov_base = (unsigned char *)&rep; 767 arg.iov[0].iov_len = sizeof(rep.th); 768 if (tsecr) { 769 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 770 (TCPOPT_TIMESTAMP << 8) | 771 TCPOLEN_TIMESTAMP); 772 rep.opt[1] = htonl(tsval); 773 rep.opt[2] = htonl(tsecr); 774 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 775 } 776 777 /* Swap the send and the receive. */ 778 rep.th.dest = th->source; 779 rep.th.source = th->dest; 780 rep.th.doff = arg.iov[0].iov_len / 4; 781 rep.th.seq = htonl(seq); 782 rep.th.ack_seq = htonl(ack); 783 rep.th.ack = 1; 784 rep.th.window = htons(win); 785 786 #ifdef CONFIG_TCP_MD5SIG 787 if (key) { 788 int offset = (tsecr) ? 3 : 0; 789 790 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 791 (TCPOPT_NOP << 16) | 792 (TCPOPT_MD5SIG << 8) | 793 TCPOLEN_MD5SIG); 794 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 795 rep.th.doff = arg.iov[0].iov_len/4; 796 797 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 798 key, ip_hdr(skb)->saddr, 799 ip_hdr(skb)->daddr, &rep.th); 800 } 801 #endif 802 arg.flags = reply_flags; 803 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 804 ip_hdr(skb)->saddr, /* XXX */ 805 arg.iov[0].iov_len, IPPROTO_TCP, 0); 806 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 807 if (oif) 808 arg.bound_dev_if = oif; 809 arg.tos = tos; 810 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); 811 local_bh_disable(); 812 ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk), 813 skb, &TCP_SKB_CB(skb)->header.h4.opt, 814 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 815 &arg, arg.iov[0].iov_len); 816 817 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 818 local_bh_enable(); 819 } 820 821 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 822 { 823 struct inet_timewait_sock *tw = inet_twsk(sk); 824 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 825 826 tcp_v4_send_ack(sk, skb, 827 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 828 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 829 tcp_time_stamp_raw() + tcptw->tw_ts_offset, 830 tcptw->tw_ts_recent, 831 tw->tw_bound_dev_if, 832 tcp_twsk_md5_key(tcptw), 833 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 834 tw->tw_tos 835 ); 836 837 inet_twsk_put(tw); 838 } 839 840 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 841 struct request_sock *req) 842 { 843 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 844 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 845 */ 846 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 847 tcp_sk(sk)->snd_nxt; 848 849 /* RFC 7323 2.3 850 * The window field (SEG.WND) of every outgoing segment, with the 851 * exception of <SYN> segments, MUST be right-shifted by 852 * Rcv.Wind.Shift bits: 853 */ 854 tcp_v4_send_ack(sk, skb, seq, 855 tcp_rsk(req)->rcv_nxt, 856 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 857 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off, 858 req->ts_recent, 859 0, 860 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->saddr, 861 AF_INET), 862 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 863 ip_hdr(skb)->tos); 864 } 865 866 /* 867 * Send a SYN-ACK after having received a SYN. 868 * This still operates on a request_sock only, not on a big 869 * socket. 870 */ 871 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 872 struct flowi *fl, 873 struct request_sock *req, 874 struct tcp_fastopen_cookie *foc, 875 enum tcp_synack_type synack_type) 876 { 877 const struct inet_request_sock *ireq = inet_rsk(req); 878 struct flowi4 fl4; 879 int err = -1; 880 struct sk_buff *skb; 881 882 /* First, grab a route. */ 883 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 884 return -1; 885 886 skb = tcp_make_synack(sk, dst, req, foc, synack_type); 887 888 if (skb) { 889 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 890 891 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 892 ireq->ir_rmt_addr, 893 ireq_opt_deref(ireq)); 894 err = net_xmit_eval(err); 895 } 896 897 return err; 898 } 899 900 /* 901 * IPv4 request_sock destructor. 902 */ 903 static void tcp_v4_reqsk_destructor(struct request_sock *req) 904 { 905 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); 906 } 907 908 #ifdef CONFIG_TCP_MD5SIG 909 /* 910 * RFC2385 MD5 checksumming requires a mapping of 911 * IP address->MD5 Key. 912 * We need to maintain these in the sk structure. 913 */ 914 915 /* Find the Key structure for an address. */ 916 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk, 917 const union tcp_md5_addr *addr, 918 int family) 919 { 920 const struct tcp_sock *tp = tcp_sk(sk); 921 struct tcp_md5sig_key *key; 922 const struct tcp_md5sig_info *md5sig; 923 __be32 mask; 924 struct tcp_md5sig_key *best_match = NULL; 925 bool match; 926 927 /* caller either holds rcu_read_lock() or socket lock */ 928 md5sig = rcu_dereference_check(tp->md5sig_info, 929 lockdep_sock_is_held(sk)); 930 if (!md5sig) 931 return NULL; 932 933 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 934 if (key->family != family) 935 continue; 936 937 if (family == AF_INET) { 938 mask = inet_make_mask(key->prefixlen); 939 match = (key->addr.a4.s_addr & mask) == 940 (addr->a4.s_addr & mask); 941 #if IS_ENABLED(CONFIG_IPV6) 942 } else if (family == AF_INET6) { 943 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, 944 key->prefixlen); 945 #endif 946 } else { 947 match = false; 948 } 949 950 if (match && (!best_match || 951 key->prefixlen > best_match->prefixlen)) 952 best_match = key; 953 } 954 return best_match; 955 } 956 EXPORT_SYMBOL(tcp_md5_do_lookup); 957 958 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, 959 const union tcp_md5_addr *addr, 960 int family, u8 prefixlen) 961 { 962 const struct tcp_sock *tp = tcp_sk(sk); 963 struct tcp_md5sig_key *key; 964 unsigned int size = sizeof(struct in_addr); 965 const struct tcp_md5sig_info *md5sig; 966 967 /* caller either holds rcu_read_lock() or socket lock */ 968 md5sig = rcu_dereference_check(tp->md5sig_info, 969 lockdep_sock_is_held(sk)); 970 if (!md5sig) 971 return NULL; 972 #if IS_ENABLED(CONFIG_IPV6) 973 if (family == AF_INET6) 974 size = sizeof(struct in6_addr); 975 #endif 976 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 977 if (key->family != family) 978 continue; 979 if (!memcmp(&key->addr, addr, size) && 980 key->prefixlen == prefixlen) 981 return key; 982 } 983 return NULL; 984 } 985 986 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 987 const struct sock *addr_sk) 988 { 989 const union tcp_md5_addr *addr; 990 991 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 992 return tcp_md5_do_lookup(sk, addr, AF_INET); 993 } 994 EXPORT_SYMBOL(tcp_v4_md5_lookup); 995 996 /* This can be called on a newly created socket, from other files */ 997 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 998 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen, 999 gfp_t gfp) 1000 { 1001 /* Add Key to the list */ 1002 struct tcp_md5sig_key *key; 1003 struct tcp_sock *tp = tcp_sk(sk); 1004 struct tcp_md5sig_info *md5sig; 1005 1006 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen); 1007 if (key) { 1008 /* Pre-existing entry - just update that one. */ 1009 memcpy(key->key, newkey, newkeylen); 1010 key->keylen = newkeylen; 1011 return 0; 1012 } 1013 1014 md5sig = rcu_dereference_protected(tp->md5sig_info, 1015 lockdep_sock_is_held(sk)); 1016 if (!md5sig) { 1017 md5sig = kmalloc(sizeof(*md5sig), gfp); 1018 if (!md5sig) 1019 return -ENOMEM; 1020 1021 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1022 INIT_HLIST_HEAD(&md5sig->head); 1023 rcu_assign_pointer(tp->md5sig_info, md5sig); 1024 } 1025 1026 key = sock_kmalloc(sk, sizeof(*key), gfp); 1027 if (!key) 1028 return -ENOMEM; 1029 if (!tcp_alloc_md5sig_pool()) { 1030 sock_kfree_s(sk, key, sizeof(*key)); 1031 return -ENOMEM; 1032 } 1033 1034 memcpy(key->key, newkey, newkeylen); 1035 key->keylen = newkeylen; 1036 key->family = family; 1037 key->prefixlen = prefixlen; 1038 memcpy(&key->addr, addr, 1039 (family == AF_INET6) ? sizeof(struct in6_addr) : 1040 sizeof(struct in_addr)); 1041 hlist_add_head_rcu(&key->node, &md5sig->head); 1042 return 0; 1043 } 1044 EXPORT_SYMBOL(tcp_md5_do_add); 1045 1046 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, 1047 u8 prefixlen) 1048 { 1049 struct tcp_md5sig_key *key; 1050 1051 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen); 1052 if (!key) 1053 return -ENOENT; 1054 hlist_del_rcu(&key->node); 1055 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1056 kfree_rcu(key, rcu); 1057 return 0; 1058 } 1059 EXPORT_SYMBOL(tcp_md5_do_del); 1060 1061 static void tcp_clear_md5_list(struct sock *sk) 1062 { 1063 struct tcp_sock *tp = tcp_sk(sk); 1064 struct tcp_md5sig_key *key; 1065 struct hlist_node *n; 1066 struct tcp_md5sig_info *md5sig; 1067 1068 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1069 1070 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1071 hlist_del_rcu(&key->node); 1072 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1073 kfree_rcu(key, rcu); 1074 } 1075 } 1076 1077 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, 1078 char __user *optval, int optlen) 1079 { 1080 struct tcp_md5sig cmd; 1081 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1082 u8 prefixlen = 32; 1083 1084 if (optlen < sizeof(cmd)) 1085 return -EINVAL; 1086 1087 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1088 return -EFAULT; 1089 1090 if (sin->sin_family != AF_INET) 1091 return -EINVAL; 1092 1093 if (optname == TCP_MD5SIG_EXT && 1094 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { 1095 prefixlen = cmd.tcpm_prefixlen; 1096 if (prefixlen > 32) 1097 return -EINVAL; 1098 } 1099 1100 if (!cmd.tcpm_keylen) 1101 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1102 AF_INET, prefixlen); 1103 1104 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1105 return -EINVAL; 1106 1107 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1108 AF_INET, prefixlen, cmd.tcpm_key, cmd.tcpm_keylen, 1109 GFP_KERNEL); 1110 } 1111 1112 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, 1113 __be32 daddr, __be32 saddr, 1114 const struct tcphdr *th, int nbytes) 1115 { 1116 struct tcp4_pseudohdr *bp; 1117 struct scatterlist sg; 1118 struct tcphdr *_th; 1119 1120 bp = hp->scratch; 1121 bp->saddr = saddr; 1122 bp->daddr = daddr; 1123 bp->pad = 0; 1124 bp->protocol = IPPROTO_TCP; 1125 bp->len = cpu_to_be16(nbytes); 1126 1127 _th = (struct tcphdr *)(bp + 1); 1128 memcpy(_th, th, sizeof(*th)); 1129 _th->check = 0; 1130 1131 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1132 ahash_request_set_crypt(hp->md5_req, &sg, NULL, 1133 sizeof(*bp) + sizeof(*th)); 1134 return crypto_ahash_update(hp->md5_req); 1135 } 1136 1137 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1138 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1139 { 1140 struct tcp_md5sig_pool *hp; 1141 struct ahash_request *req; 1142 1143 hp = tcp_get_md5sig_pool(); 1144 if (!hp) 1145 goto clear_hash_noput; 1146 req = hp->md5_req; 1147 1148 if (crypto_ahash_init(req)) 1149 goto clear_hash; 1150 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) 1151 goto clear_hash; 1152 if (tcp_md5_hash_key(hp, key)) 1153 goto clear_hash; 1154 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1155 if (crypto_ahash_final(req)) 1156 goto clear_hash; 1157 1158 tcp_put_md5sig_pool(); 1159 return 0; 1160 1161 clear_hash: 1162 tcp_put_md5sig_pool(); 1163 clear_hash_noput: 1164 memset(md5_hash, 0, 16); 1165 return 1; 1166 } 1167 1168 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1169 const struct sock *sk, 1170 const struct sk_buff *skb) 1171 { 1172 struct tcp_md5sig_pool *hp; 1173 struct ahash_request *req; 1174 const struct tcphdr *th = tcp_hdr(skb); 1175 __be32 saddr, daddr; 1176 1177 if (sk) { /* valid for establish/request sockets */ 1178 saddr = sk->sk_rcv_saddr; 1179 daddr = sk->sk_daddr; 1180 } else { 1181 const struct iphdr *iph = ip_hdr(skb); 1182 saddr = iph->saddr; 1183 daddr = iph->daddr; 1184 } 1185 1186 hp = tcp_get_md5sig_pool(); 1187 if (!hp) 1188 goto clear_hash_noput; 1189 req = hp->md5_req; 1190 1191 if (crypto_ahash_init(req)) 1192 goto clear_hash; 1193 1194 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) 1195 goto clear_hash; 1196 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1197 goto clear_hash; 1198 if (tcp_md5_hash_key(hp, key)) 1199 goto clear_hash; 1200 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1201 if (crypto_ahash_final(req)) 1202 goto clear_hash; 1203 1204 tcp_put_md5sig_pool(); 1205 return 0; 1206 1207 clear_hash: 1208 tcp_put_md5sig_pool(); 1209 clear_hash_noput: 1210 memset(md5_hash, 0, 16); 1211 return 1; 1212 } 1213 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1214 1215 #endif 1216 1217 /* Called with rcu_read_lock() */ 1218 static bool tcp_v4_inbound_md5_hash(const struct sock *sk, 1219 const struct sk_buff *skb) 1220 { 1221 #ifdef CONFIG_TCP_MD5SIG 1222 /* 1223 * This gets called for each TCP segment that arrives 1224 * so we want to be efficient. 1225 * We have 3 drop cases: 1226 * o No MD5 hash and one expected. 1227 * o MD5 hash and we're not expecting one. 1228 * o MD5 hash and its wrong. 1229 */ 1230 const __u8 *hash_location = NULL; 1231 struct tcp_md5sig_key *hash_expected; 1232 const struct iphdr *iph = ip_hdr(skb); 1233 const struct tcphdr *th = tcp_hdr(skb); 1234 int genhash; 1235 unsigned char newhash[16]; 1236 1237 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1238 AF_INET); 1239 hash_location = tcp_parse_md5sig_option(th); 1240 1241 /* We've parsed the options - do we have a hash? */ 1242 if (!hash_expected && !hash_location) 1243 return false; 1244 1245 if (hash_expected && !hash_location) { 1246 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1247 return true; 1248 } 1249 1250 if (!hash_expected && hash_location) { 1251 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1252 return true; 1253 } 1254 1255 /* Okay, so this is hash_expected and hash_location - 1256 * so we need to calculate the checksum. 1257 */ 1258 genhash = tcp_v4_md5_hash_skb(newhash, 1259 hash_expected, 1260 NULL, skb); 1261 1262 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1263 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 1264 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1265 &iph->saddr, ntohs(th->source), 1266 &iph->daddr, ntohs(th->dest), 1267 genhash ? " tcp_v4_calc_md5_hash failed" 1268 : ""); 1269 return true; 1270 } 1271 return false; 1272 #endif 1273 return false; 1274 } 1275 1276 static void tcp_v4_init_req(struct request_sock *req, 1277 const struct sock *sk_listener, 1278 struct sk_buff *skb) 1279 { 1280 struct inet_request_sock *ireq = inet_rsk(req); 1281 struct net *net = sock_net(sk_listener); 1282 1283 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1284 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1285 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); 1286 } 1287 1288 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1289 struct flowi *fl, 1290 const struct request_sock *req) 1291 { 1292 return inet_csk_route_req(sk, &fl->u.ip4, req); 1293 } 1294 1295 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1296 .family = PF_INET, 1297 .obj_size = sizeof(struct tcp_request_sock), 1298 .rtx_syn_ack = tcp_rtx_synack, 1299 .send_ack = tcp_v4_reqsk_send_ack, 1300 .destructor = tcp_v4_reqsk_destructor, 1301 .send_reset = tcp_v4_send_reset, 1302 .syn_ack_timeout = tcp_syn_ack_timeout, 1303 }; 1304 1305 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1306 .mss_clamp = TCP_MSS_DEFAULT, 1307 #ifdef CONFIG_TCP_MD5SIG 1308 .req_md5_lookup = tcp_v4_md5_lookup, 1309 .calc_md5_hash = tcp_v4_md5_hash_skb, 1310 #endif 1311 .init_req = tcp_v4_init_req, 1312 #ifdef CONFIG_SYN_COOKIES 1313 .cookie_init_seq = cookie_v4_init_sequence, 1314 #endif 1315 .route_req = tcp_v4_route_req, 1316 .init_seq = tcp_v4_init_seq, 1317 .init_ts_off = tcp_v4_init_ts_off, 1318 .send_synack = tcp_v4_send_synack, 1319 }; 1320 1321 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1322 { 1323 /* Never answer to SYNs send to broadcast or multicast */ 1324 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1325 goto drop; 1326 1327 return tcp_conn_request(&tcp_request_sock_ops, 1328 &tcp_request_sock_ipv4_ops, sk, skb); 1329 1330 drop: 1331 tcp_listendrop(sk); 1332 return 0; 1333 } 1334 EXPORT_SYMBOL(tcp_v4_conn_request); 1335 1336 1337 /* 1338 * The three way handshake has completed - we got a valid synack - 1339 * now create the new socket. 1340 */ 1341 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1342 struct request_sock *req, 1343 struct dst_entry *dst, 1344 struct request_sock *req_unhash, 1345 bool *own_req) 1346 { 1347 struct inet_request_sock *ireq; 1348 struct inet_sock *newinet; 1349 struct tcp_sock *newtp; 1350 struct sock *newsk; 1351 #ifdef CONFIG_TCP_MD5SIG 1352 struct tcp_md5sig_key *key; 1353 #endif 1354 struct ip_options_rcu *inet_opt; 1355 1356 if (sk_acceptq_is_full(sk)) 1357 goto exit_overflow; 1358 1359 newsk = tcp_create_openreq_child(sk, req, skb); 1360 if (!newsk) 1361 goto exit_nonewsk; 1362 1363 newsk->sk_gso_type = SKB_GSO_TCPV4; 1364 inet_sk_rx_dst_set(newsk, skb); 1365 1366 newtp = tcp_sk(newsk); 1367 newinet = inet_sk(newsk); 1368 ireq = inet_rsk(req); 1369 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1370 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1371 newsk->sk_bound_dev_if = ireq->ir_iif; 1372 newinet->inet_saddr = ireq->ir_loc_addr; 1373 inet_opt = rcu_dereference(ireq->ireq_opt); 1374 RCU_INIT_POINTER(newinet->inet_opt, inet_opt); 1375 newinet->mc_index = inet_iif(skb); 1376 newinet->mc_ttl = ip_hdr(skb)->ttl; 1377 newinet->rcv_tos = ip_hdr(skb)->tos; 1378 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1379 if (inet_opt) 1380 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1381 newinet->inet_id = newtp->write_seq ^ jiffies; 1382 1383 if (!dst) { 1384 dst = inet_csk_route_child_sock(sk, newsk, req); 1385 if (!dst) 1386 goto put_and_exit; 1387 } else { 1388 /* syncookie case : see end of cookie_v4_check() */ 1389 } 1390 sk_setup_caps(newsk, dst); 1391 1392 tcp_ca_openreq_child(newsk, dst); 1393 1394 tcp_sync_mss(newsk, dst_mtu(dst)); 1395 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); 1396 1397 tcp_initialize_rcv_mss(newsk); 1398 1399 #ifdef CONFIG_TCP_MD5SIG 1400 /* Copy over the MD5 key from the original socket */ 1401 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1402 AF_INET); 1403 if (key) { 1404 /* 1405 * We're using one, so create a matching key 1406 * on the newsk structure. If we fail to get 1407 * memory, then we end up not copying the key 1408 * across. Shucks. 1409 */ 1410 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1411 AF_INET, 32, key->key, key->keylen, GFP_ATOMIC); 1412 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1413 } 1414 #endif 1415 1416 if (__inet_inherit_port(sk, newsk) < 0) 1417 goto put_and_exit; 1418 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash)); 1419 if (likely(*own_req)) { 1420 tcp_move_syn(newtp, req); 1421 ireq->ireq_opt = NULL; 1422 } else { 1423 newinet->inet_opt = NULL; 1424 } 1425 return newsk; 1426 1427 exit_overflow: 1428 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1429 exit_nonewsk: 1430 dst_release(dst); 1431 exit: 1432 tcp_listendrop(sk); 1433 return NULL; 1434 put_and_exit: 1435 newinet->inet_opt = NULL; 1436 inet_csk_prepare_forced_close(newsk); 1437 tcp_done(newsk); 1438 goto exit; 1439 } 1440 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1441 1442 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1443 { 1444 #ifdef CONFIG_SYN_COOKIES 1445 const struct tcphdr *th = tcp_hdr(skb); 1446 1447 if (!th->syn) 1448 sk = cookie_v4_check(sk, skb); 1449 #endif 1450 return sk; 1451 } 1452 1453 /* The socket must have it's spinlock held when we get 1454 * here, unless it is a TCP_LISTEN socket. 1455 * 1456 * We have a potential double-lock case here, so even when 1457 * doing backlog processing we use the BH locking scheme. 1458 * This is because we cannot sleep with the original spinlock 1459 * held. 1460 */ 1461 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1462 { 1463 struct sock *rsk; 1464 1465 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1466 struct dst_entry *dst = sk->sk_rx_dst; 1467 1468 sock_rps_save_rxhash(sk, skb); 1469 sk_mark_napi_id(sk, skb); 1470 if (dst) { 1471 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1472 !dst->ops->check(dst, 0)) { 1473 dst_release(dst); 1474 sk->sk_rx_dst = NULL; 1475 } 1476 } 1477 tcp_rcv_established(sk, skb, tcp_hdr(skb)); 1478 return 0; 1479 } 1480 1481 if (tcp_checksum_complete(skb)) 1482 goto csum_err; 1483 1484 if (sk->sk_state == TCP_LISTEN) { 1485 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1486 1487 if (!nsk) 1488 goto discard; 1489 if (nsk != sk) { 1490 if (tcp_child_process(sk, nsk, skb)) { 1491 rsk = nsk; 1492 goto reset; 1493 } 1494 return 0; 1495 } 1496 } else 1497 sock_rps_save_rxhash(sk, skb); 1498 1499 if (tcp_rcv_state_process(sk, skb)) { 1500 rsk = sk; 1501 goto reset; 1502 } 1503 return 0; 1504 1505 reset: 1506 tcp_v4_send_reset(rsk, skb); 1507 discard: 1508 kfree_skb(skb); 1509 /* Be careful here. If this function gets more complicated and 1510 * gcc suffers from register pressure on the x86, sk (in %ebx) 1511 * might be destroyed here. This current version compiles correctly, 1512 * but you have been warned. 1513 */ 1514 return 0; 1515 1516 csum_err: 1517 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1518 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1519 goto discard; 1520 } 1521 EXPORT_SYMBOL(tcp_v4_do_rcv); 1522 1523 int tcp_v4_early_demux(struct sk_buff *skb) 1524 { 1525 const struct iphdr *iph; 1526 const struct tcphdr *th; 1527 struct sock *sk; 1528 1529 if (skb->pkt_type != PACKET_HOST) 1530 return 0; 1531 1532 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1533 return 0; 1534 1535 iph = ip_hdr(skb); 1536 th = tcp_hdr(skb); 1537 1538 if (th->doff < sizeof(struct tcphdr) / 4) 1539 return 0; 1540 1541 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1542 iph->saddr, th->source, 1543 iph->daddr, ntohs(th->dest), 1544 skb->skb_iif, inet_sdif(skb)); 1545 if (sk) { 1546 skb->sk = sk; 1547 skb->destructor = sock_edemux; 1548 if (sk_fullsock(sk)) { 1549 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst); 1550 1551 if (dst) 1552 dst = dst_check(dst, 0); 1553 if (dst && 1554 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1555 skb_dst_set_noref(skb, dst); 1556 } 1557 } 1558 return 0; 1559 } 1560 1561 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb) 1562 { 1563 u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf; 1564 1565 /* Only socket owner can try to collapse/prune rx queues 1566 * to reduce memory overhead, so add a little headroom here. 1567 * Few sockets backlog are possibly concurrently non empty. 1568 */ 1569 limit += 64*1024; 1570 1571 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 1572 * we can fix skb->truesize to its real value to avoid future drops. 1573 * This is valid because skb is not yet charged to the socket. 1574 * It has been noticed pure SACK packets were sometimes dropped 1575 * (if cooked by drivers without copybreak feature). 1576 */ 1577 skb_condense(skb); 1578 1579 if (unlikely(sk_add_backlog(sk, skb, limit))) { 1580 bh_unlock_sock(sk); 1581 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 1582 return true; 1583 } 1584 return false; 1585 } 1586 EXPORT_SYMBOL(tcp_add_backlog); 1587 1588 int tcp_filter(struct sock *sk, struct sk_buff *skb) 1589 { 1590 struct tcphdr *th = (struct tcphdr *)skb->data; 1591 unsigned int eaten = skb->len; 1592 int err; 1593 1594 err = sk_filter_trim_cap(sk, skb, th->doff * 4); 1595 if (!err) { 1596 eaten -= skb->len; 1597 TCP_SKB_CB(skb)->end_seq -= eaten; 1598 } 1599 return err; 1600 } 1601 EXPORT_SYMBOL(tcp_filter); 1602 1603 static void tcp_v4_restore_cb(struct sk_buff *skb) 1604 { 1605 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, 1606 sizeof(struct inet_skb_parm)); 1607 } 1608 1609 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, 1610 const struct tcphdr *th) 1611 { 1612 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1613 * barrier() makes sure compiler wont play fool^Waliasing games. 1614 */ 1615 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1616 sizeof(struct inet_skb_parm)); 1617 barrier(); 1618 1619 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1620 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1621 skb->len - th->doff * 4); 1622 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1623 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1624 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1625 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1626 TCP_SKB_CB(skb)->sacked = 0; 1627 TCP_SKB_CB(skb)->has_rxtstamp = 1628 skb->tstamp || skb_hwtstamps(skb)->hwtstamp; 1629 } 1630 1631 /* 1632 * From tcp_input.c 1633 */ 1634 1635 int tcp_v4_rcv(struct sk_buff *skb) 1636 { 1637 struct net *net = dev_net(skb->dev); 1638 int sdif = inet_sdif(skb); 1639 const struct iphdr *iph; 1640 const struct tcphdr *th; 1641 bool refcounted; 1642 struct sock *sk; 1643 int ret; 1644 1645 if (skb->pkt_type != PACKET_HOST) 1646 goto discard_it; 1647 1648 /* Count it even if it's bad */ 1649 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 1650 1651 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1652 goto discard_it; 1653 1654 th = (const struct tcphdr *)skb->data; 1655 1656 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) 1657 goto bad_packet; 1658 if (!pskb_may_pull(skb, th->doff * 4)) 1659 goto discard_it; 1660 1661 /* An explanation is required here, I think. 1662 * Packet length and doff are validated by header prediction, 1663 * provided case of th->doff==0 is eliminated. 1664 * So, we defer the checks. */ 1665 1666 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 1667 goto csum_error; 1668 1669 th = (const struct tcphdr *)skb->data; 1670 iph = ip_hdr(skb); 1671 lookup: 1672 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source, 1673 th->dest, sdif, &refcounted); 1674 if (!sk) 1675 goto no_tcp_socket; 1676 1677 process: 1678 if (sk->sk_state == TCP_TIME_WAIT) 1679 goto do_time_wait; 1680 1681 if (sk->sk_state == TCP_NEW_SYN_RECV) { 1682 struct request_sock *req = inet_reqsk(sk); 1683 bool req_stolen = false; 1684 struct sock *nsk; 1685 1686 sk = req->rsk_listener; 1687 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) { 1688 sk_drops_add(sk, skb); 1689 reqsk_put(req); 1690 goto discard_it; 1691 } 1692 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1693 inet_csk_reqsk_queue_drop_and_put(sk, req); 1694 goto lookup; 1695 } 1696 /* We own a reference on the listener, increase it again 1697 * as we might lose it too soon. 1698 */ 1699 sock_hold(sk); 1700 refcounted = true; 1701 nsk = NULL; 1702 if (!tcp_filter(sk, skb)) { 1703 th = (const struct tcphdr *)skb->data; 1704 iph = ip_hdr(skb); 1705 tcp_v4_fill_cb(skb, iph, th); 1706 nsk = tcp_check_req(sk, skb, req, false, &req_stolen); 1707 } 1708 if (!nsk) { 1709 reqsk_put(req); 1710 if (req_stolen) { 1711 /* Another cpu got exclusive access to req 1712 * and created a full blown socket. 1713 * Try to feed this packet to this socket 1714 * instead of discarding it. 1715 */ 1716 tcp_v4_restore_cb(skb); 1717 sock_put(sk); 1718 goto lookup; 1719 } 1720 goto discard_and_relse; 1721 } 1722 if (nsk == sk) { 1723 reqsk_put(req); 1724 tcp_v4_restore_cb(skb); 1725 } else if (tcp_child_process(sk, nsk, skb)) { 1726 tcp_v4_send_reset(nsk, skb); 1727 goto discard_and_relse; 1728 } else { 1729 sock_put(sk); 1730 return 0; 1731 } 1732 } 1733 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1734 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 1735 goto discard_and_relse; 1736 } 1737 1738 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1739 goto discard_and_relse; 1740 1741 if (tcp_v4_inbound_md5_hash(sk, skb)) 1742 goto discard_and_relse; 1743 1744 nf_reset(skb); 1745 1746 if (tcp_filter(sk, skb)) 1747 goto discard_and_relse; 1748 th = (const struct tcphdr *)skb->data; 1749 iph = ip_hdr(skb); 1750 tcp_v4_fill_cb(skb, iph, th); 1751 1752 skb->dev = NULL; 1753 1754 if (sk->sk_state == TCP_LISTEN) { 1755 ret = tcp_v4_do_rcv(sk, skb); 1756 goto put_and_return; 1757 } 1758 1759 sk_incoming_cpu_update(sk); 1760 1761 bh_lock_sock_nested(sk); 1762 tcp_segs_in(tcp_sk(sk), skb); 1763 ret = 0; 1764 if (!sock_owned_by_user(sk)) { 1765 ret = tcp_v4_do_rcv(sk, skb); 1766 } else if (tcp_add_backlog(sk, skb)) { 1767 goto discard_and_relse; 1768 } 1769 bh_unlock_sock(sk); 1770 1771 put_and_return: 1772 if (refcounted) 1773 sock_put(sk); 1774 1775 return ret; 1776 1777 no_tcp_socket: 1778 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1779 goto discard_it; 1780 1781 tcp_v4_fill_cb(skb, iph, th); 1782 1783 if (tcp_checksum_complete(skb)) { 1784 csum_error: 1785 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 1786 bad_packet: 1787 __TCP_INC_STATS(net, TCP_MIB_INERRS); 1788 } else { 1789 tcp_v4_send_reset(NULL, skb); 1790 } 1791 1792 discard_it: 1793 /* Discard frame. */ 1794 kfree_skb(skb); 1795 return 0; 1796 1797 discard_and_relse: 1798 sk_drops_add(sk, skb); 1799 if (refcounted) 1800 sock_put(sk); 1801 goto discard_it; 1802 1803 do_time_wait: 1804 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 1805 inet_twsk_put(inet_twsk(sk)); 1806 goto discard_it; 1807 } 1808 1809 tcp_v4_fill_cb(skb, iph, th); 1810 1811 if (tcp_checksum_complete(skb)) { 1812 inet_twsk_put(inet_twsk(sk)); 1813 goto csum_error; 1814 } 1815 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 1816 case TCP_TW_SYN: { 1817 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 1818 &tcp_hashinfo, skb, 1819 __tcp_hdrlen(th), 1820 iph->saddr, th->source, 1821 iph->daddr, th->dest, 1822 inet_iif(skb), 1823 sdif); 1824 if (sk2) { 1825 inet_twsk_deschedule_put(inet_twsk(sk)); 1826 sk = sk2; 1827 tcp_v4_restore_cb(skb); 1828 refcounted = false; 1829 goto process; 1830 } 1831 } 1832 /* to ACK */ 1833 /* fall through */ 1834 case TCP_TW_ACK: 1835 tcp_v4_timewait_ack(sk, skb); 1836 break; 1837 case TCP_TW_RST: 1838 tcp_v4_send_reset(sk, skb); 1839 inet_twsk_deschedule_put(inet_twsk(sk)); 1840 goto discard_it; 1841 case TCP_TW_SUCCESS:; 1842 } 1843 goto discard_it; 1844 } 1845 1846 static struct timewait_sock_ops tcp_timewait_sock_ops = { 1847 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 1848 .twsk_unique = tcp_twsk_unique, 1849 .twsk_destructor= tcp_twsk_destructor, 1850 }; 1851 1852 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 1853 { 1854 struct dst_entry *dst = skb_dst(skb); 1855 1856 if (dst && dst_hold_safe(dst)) { 1857 sk->sk_rx_dst = dst; 1858 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 1859 } 1860 } 1861 EXPORT_SYMBOL(inet_sk_rx_dst_set); 1862 1863 const struct inet_connection_sock_af_ops ipv4_specific = { 1864 .queue_xmit = ip_queue_xmit, 1865 .send_check = tcp_v4_send_check, 1866 .rebuild_header = inet_sk_rebuild_header, 1867 .sk_rx_dst_set = inet_sk_rx_dst_set, 1868 .conn_request = tcp_v4_conn_request, 1869 .syn_recv_sock = tcp_v4_syn_recv_sock, 1870 .net_header_len = sizeof(struct iphdr), 1871 .setsockopt = ip_setsockopt, 1872 .getsockopt = ip_getsockopt, 1873 .addr2sockaddr = inet_csk_addr2sockaddr, 1874 .sockaddr_len = sizeof(struct sockaddr_in), 1875 #ifdef CONFIG_COMPAT 1876 .compat_setsockopt = compat_ip_setsockopt, 1877 .compat_getsockopt = compat_ip_getsockopt, 1878 #endif 1879 .mtu_reduced = tcp_v4_mtu_reduced, 1880 }; 1881 EXPORT_SYMBOL(ipv4_specific); 1882 1883 #ifdef CONFIG_TCP_MD5SIG 1884 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 1885 .md5_lookup = tcp_v4_md5_lookup, 1886 .calc_md5_hash = tcp_v4_md5_hash_skb, 1887 .md5_parse = tcp_v4_parse_md5_keys, 1888 }; 1889 #endif 1890 1891 /* NOTE: A lot of things set to zero explicitly by call to 1892 * sk_alloc() so need not be done here. 1893 */ 1894 static int tcp_v4_init_sock(struct sock *sk) 1895 { 1896 struct inet_connection_sock *icsk = inet_csk(sk); 1897 1898 tcp_init_sock(sk); 1899 1900 icsk->icsk_af_ops = &ipv4_specific; 1901 1902 #ifdef CONFIG_TCP_MD5SIG 1903 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 1904 #endif 1905 1906 return 0; 1907 } 1908 1909 void tcp_v4_destroy_sock(struct sock *sk) 1910 { 1911 struct tcp_sock *tp = tcp_sk(sk); 1912 1913 trace_tcp_destroy_sock(sk); 1914 1915 tcp_clear_xmit_timers(sk); 1916 1917 tcp_cleanup_congestion_control(sk); 1918 1919 tcp_cleanup_ulp(sk); 1920 1921 /* Cleanup up the write buffer. */ 1922 tcp_write_queue_purge(sk); 1923 1924 /* Check if we want to disable active TFO */ 1925 tcp_fastopen_active_disable_ofo_check(sk); 1926 1927 /* Cleans up our, hopefully empty, out_of_order_queue. */ 1928 skb_rbtree_purge(&tp->out_of_order_queue); 1929 1930 #ifdef CONFIG_TCP_MD5SIG 1931 /* Clean up the MD5 key list, if any */ 1932 if (tp->md5sig_info) { 1933 tcp_clear_md5_list(sk); 1934 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu); 1935 tp->md5sig_info = NULL; 1936 } 1937 #endif 1938 1939 /* Clean up a referenced TCP bind bucket. */ 1940 if (inet_csk(sk)->icsk_bind_hash) 1941 inet_put_port(sk); 1942 1943 BUG_ON(tp->fastopen_rsk); 1944 1945 /* If socket is aborted during connect operation */ 1946 tcp_free_fastopen_req(tp); 1947 tcp_fastopen_destroy_cipher(sk); 1948 tcp_saved_syn_free(tp); 1949 1950 sk_sockets_allocated_dec(sk); 1951 } 1952 EXPORT_SYMBOL(tcp_v4_destroy_sock); 1953 1954 #ifdef CONFIG_PROC_FS 1955 /* Proc filesystem TCP sock list dumping. */ 1956 1957 /* 1958 * Get next listener socket follow cur. If cur is NULL, get first socket 1959 * starting from bucket given in st->bucket; when st->bucket is zero the 1960 * very first socket in the hash table is returned. 1961 */ 1962 static void *listening_get_next(struct seq_file *seq, void *cur) 1963 { 1964 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 1965 struct tcp_iter_state *st = seq->private; 1966 struct net *net = seq_file_net(seq); 1967 struct inet_listen_hashbucket *ilb; 1968 struct sock *sk = cur; 1969 1970 if (!sk) { 1971 get_head: 1972 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1973 spin_lock(&ilb->lock); 1974 sk = sk_head(&ilb->head); 1975 st->offset = 0; 1976 goto get_sk; 1977 } 1978 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 1979 ++st->num; 1980 ++st->offset; 1981 1982 sk = sk_next(sk); 1983 get_sk: 1984 sk_for_each_from(sk) { 1985 if (!net_eq(sock_net(sk), net)) 1986 continue; 1987 if (sk->sk_family == afinfo->family) 1988 return sk; 1989 } 1990 spin_unlock(&ilb->lock); 1991 st->offset = 0; 1992 if (++st->bucket < INET_LHTABLE_SIZE) 1993 goto get_head; 1994 return NULL; 1995 } 1996 1997 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 1998 { 1999 struct tcp_iter_state *st = seq->private; 2000 void *rc; 2001 2002 st->bucket = 0; 2003 st->offset = 0; 2004 rc = listening_get_next(seq, NULL); 2005 2006 while (rc && *pos) { 2007 rc = listening_get_next(seq, rc); 2008 --*pos; 2009 } 2010 return rc; 2011 } 2012 2013 static inline bool empty_bucket(const struct tcp_iter_state *st) 2014 { 2015 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); 2016 } 2017 2018 /* 2019 * Get first established socket starting from bucket given in st->bucket. 2020 * If st->bucket is zero, the very first socket in the hash is returned. 2021 */ 2022 static void *established_get_first(struct seq_file *seq) 2023 { 2024 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2025 struct tcp_iter_state *st = seq->private; 2026 struct net *net = seq_file_net(seq); 2027 void *rc = NULL; 2028 2029 st->offset = 0; 2030 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 2031 struct sock *sk; 2032 struct hlist_nulls_node *node; 2033 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 2034 2035 /* Lockless fast path for the common case of empty buckets */ 2036 if (empty_bucket(st)) 2037 continue; 2038 2039 spin_lock_bh(lock); 2040 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 2041 if (sk->sk_family != afinfo->family || 2042 !net_eq(sock_net(sk), net)) { 2043 continue; 2044 } 2045 rc = sk; 2046 goto out; 2047 } 2048 spin_unlock_bh(lock); 2049 } 2050 out: 2051 return rc; 2052 } 2053 2054 static void *established_get_next(struct seq_file *seq, void *cur) 2055 { 2056 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2057 struct sock *sk = cur; 2058 struct hlist_nulls_node *node; 2059 struct tcp_iter_state *st = seq->private; 2060 struct net *net = seq_file_net(seq); 2061 2062 ++st->num; 2063 ++st->offset; 2064 2065 sk = sk_nulls_next(sk); 2066 2067 sk_nulls_for_each_from(sk, node) { 2068 if (sk->sk_family == afinfo->family && 2069 net_eq(sock_net(sk), net)) 2070 return sk; 2071 } 2072 2073 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2074 ++st->bucket; 2075 return established_get_first(seq); 2076 } 2077 2078 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2079 { 2080 struct tcp_iter_state *st = seq->private; 2081 void *rc; 2082 2083 st->bucket = 0; 2084 rc = established_get_first(seq); 2085 2086 while (rc && pos) { 2087 rc = established_get_next(seq, rc); 2088 --pos; 2089 } 2090 return rc; 2091 } 2092 2093 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2094 { 2095 void *rc; 2096 struct tcp_iter_state *st = seq->private; 2097 2098 st->state = TCP_SEQ_STATE_LISTENING; 2099 rc = listening_get_idx(seq, &pos); 2100 2101 if (!rc) { 2102 st->state = TCP_SEQ_STATE_ESTABLISHED; 2103 rc = established_get_idx(seq, pos); 2104 } 2105 2106 return rc; 2107 } 2108 2109 static void *tcp_seek_last_pos(struct seq_file *seq) 2110 { 2111 struct tcp_iter_state *st = seq->private; 2112 int offset = st->offset; 2113 int orig_num = st->num; 2114 void *rc = NULL; 2115 2116 switch (st->state) { 2117 case TCP_SEQ_STATE_LISTENING: 2118 if (st->bucket >= INET_LHTABLE_SIZE) 2119 break; 2120 st->state = TCP_SEQ_STATE_LISTENING; 2121 rc = listening_get_next(seq, NULL); 2122 while (offset-- && rc) 2123 rc = listening_get_next(seq, rc); 2124 if (rc) 2125 break; 2126 st->bucket = 0; 2127 st->state = TCP_SEQ_STATE_ESTABLISHED; 2128 /* Fallthrough */ 2129 case TCP_SEQ_STATE_ESTABLISHED: 2130 if (st->bucket > tcp_hashinfo.ehash_mask) 2131 break; 2132 rc = established_get_first(seq); 2133 while (offset-- && rc) 2134 rc = established_get_next(seq, rc); 2135 } 2136 2137 st->num = orig_num; 2138 2139 return rc; 2140 } 2141 2142 void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2143 { 2144 struct tcp_iter_state *st = seq->private; 2145 void *rc; 2146 2147 if (*pos && *pos == st->last_pos) { 2148 rc = tcp_seek_last_pos(seq); 2149 if (rc) 2150 goto out; 2151 } 2152 2153 st->state = TCP_SEQ_STATE_LISTENING; 2154 st->num = 0; 2155 st->bucket = 0; 2156 st->offset = 0; 2157 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2158 2159 out: 2160 st->last_pos = *pos; 2161 return rc; 2162 } 2163 EXPORT_SYMBOL(tcp_seq_start); 2164 2165 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2166 { 2167 struct tcp_iter_state *st = seq->private; 2168 void *rc = NULL; 2169 2170 if (v == SEQ_START_TOKEN) { 2171 rc = tcp_get_idx(seq, 0); 2172 goto out; 2173 } 2174 2175 switch (st->state) { 2176 case TCP_SEQ_STATE_LISTENING: 2177 rc = listening_get_next(seq, v); 2178 if (!rc) { 2179 st->state = TCP_SEQ_STATE_ESTABLISHED; 2180 st->bucket = 0; 2181 st->offset = 0; 2182 rc = established_get_first(seq); 2183 } 2184 break; 2185 case TCP_SEQ_STATE_ESTABLISHED: 2186 rc = established_get_next(seq, v); 2187 break; 2188 } 2189 out: 2190 ++*pos; 2191 st->last_pos = *pos; 2192 return rc; 2193 } 2194 EXPORT_SYMBOL(tcp_seq_next); 2195 2196 void tcp_seq_stop(struct seq_file *seq, void *v) 2197 { 2198 struct tcp_iter_state *st = seq->private; 2199 2200 switch (st->state) { 2201 case TCP_SEQ_STATE_LISTENING: 2202 if (v != SEQ_START_TOKEN) 2203 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock); 2204 break; 2205 case TCP_SEQ_STATE_ESTABLISHED: 2206 if (v) 2207 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2208 break; 2209 } 2210 } 2211 EXPORT_SYMBOL(tcp_seq_stop); 2212 2213 static void get_openreq4(const struct request_sock *req, 2214 struct seq_file *f, int i) 2215 { 2216 const struct inet_request_sock *ireq = inet_rsk(req); 2217 long delta = req->rsk_timer.expires - jiffies; 2218 2219 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2220 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2221 i, 2222 ireq->ir_loc_addr, 2223 ireq->ir_num, 2224 ireq->ir_rmt_addr, 2225 ntohs(ireq->ir_rmt_port), 2226 TCP_SYN_RECV, 2227 0, 0, /* could print option size, but that is af dependent. */ 2228 1, /* timers active (only the expire timer) */ 2229 jiffies_delta_to_clock_t(delta), 2230 req->num_timeout, 2231 from_kuid_munged(seq_user_ns(f), 2232 sock_i_uid(req->rsk_listener)), 2233 0, /* non standard timer */ 2234 0, /* open_requests have no inode */ 2235 0, 2236 req); 2237 } 2238 2239 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2240 { 2241 int timer_active; 2242 unsigned long timer_expires; 2243 const struct tcp_sock *tp = tcp_sk(sk); 2244 const struct inet_connection_sock *icsk = inet_csk(sk); 2245 const struct inet_sock *inet = inet_sk(sk); 2246 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2247 __be32 dest = inet->inet_daddr; 2248 __be32 src = inet->inet_rcv_saddr; 2249 __u16 destp = ntohs(inet->inet_dport); 2250 __u16 srcp = ntohs(inet->inet_sport); 2251 int rx_queue; 2252 int state; 2253 2254 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2255 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2256 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2257 timer_active = 1; 2258 timer_expires = icsk->icsk_timeout; 2259 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2260 timer_active = 4; 2261 timer_expires = icsk->icsk_timeout; 2262 } else if (timer_pending(&sk->sk_timer)) { 2263 timer_active = 2; 2264 timer_expires = sk->sk_timer.expires; 2265 } else { 2266 timer_active = 0; 2267 timer_expires = jiffies; 2268 } 2269 2270 state = inet_sk_state_load(sk); 2271 if (state == TCP_LISTEN) 2272 rx_queue = sk->sk_ack_backlog; 2273 else 2274 /* Because we don't lock the socket, 2275 * we might find a transient negative value. 2276 */ 2277 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2278 2279 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2280 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2281 i, src, srcp, dest, destp, state, 2282 tp->write_seq - tp->snd_una, 2283 rx_queue, 2284 timer_active, 2285 jiffies_delta_to_clock_t(timer_expires - jiffies), 2286 icsk->icsk_retransmits, 2287 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2288 icsk->icsk_probes_out, 2289 sock_i_ino(sk), 2290 refcount_read(&sk->sk_refcnt), sk, 2291 jiffies_to_clock_t(icsk->icsk_rto), 2292 jiffies_to_clock_t(icsk->icsk_ack.ato), 2293 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2294 tp->snd_cwnd, 2295 state == TCP_LISTEN ? 2296 fastopenq->max_qlen : 2297 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2298 } 2299 2300 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2301 struct seq_file *f, int i) 2302 { 2303 long delta = tw->tw_timer.expires - jiffies; 2304 __be32 dest, src; 2305 __u16 destp, srcp; 2306 2307 dest = tw->tw_daddr; 2308 src = tw->tw_rcv_saddr; 2309 destp = ntohs(tw->tw_dport); 2310 srcp = ntohs(tw->tw_sport); 2311 2312 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2313 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2314 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2315 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2316 refcount_read(&tw->tw_refcnt), tw); 2317 } 2318 2319 #define TMPSZ 150 2320 2321 static int tcp4_seq_show(struct seq_file *seq, void *v) 2322 { 2323 struct tcp_iter_state *st; 2324 struct sock *sk = v; 2325 2326 seq_setwidth(seq, TMPSZ - 1); 2327 if (v == SEQ_START_TOKEN) { 2328 seq_puts(seq, " sl local_address rem_address st tx_queue " 2329 "rx_queue tr tm->when retrnsmt uid timeout " 2330 "inode"); 2331 goto out; 2332 } 2333 st = seq->private; 2334 2335 if (sk->sk_state == TCP_TIME_WAIT) 2336 get_timewait4_sock(v, seq, st->num); 2337 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2338 get_openreq4(v, seq, st->num); 2339 else 2340 get_tcp4_sock(v, seq, st->num); 2341 out: 2342 seq_pad(seq, '\n'); 2343 return 0; 2344 } 2345 2346 static const struct seq_operations tcp4_seq_ops = { 2347 .show = tcp4_seq_show, 2348 .start = tcp_seq_start, 2349 .next = tcp_seq_next, 2350 .stop = tcp_seq_stop, 2351 }; 2352 2353 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2354 .family = AF_INET, 2355 }; 2356 2357 static int __net_init tcp4_proc_init_net(struct net *net) 2358 { 2359 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, 2360 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) 2361 return -ENOMEM; 2362 return 0; 2363 } 2364 2365 static void __net_exit tcp4_proc_exit_net(struct net *net) 2366 { 2367 remove_proc_entry("tcp", net->proc_net); 2368 } 2369 2370 static struct pernet_operations tcp4_net_ops = { 2371 .init = tcp4_proc_init_net, 2372 .exit = tcp4_proc_exit_net, 2373 }; 2374 2375 int __init tcp4_proc_init(void) 2376 { 2377 return register_pernet_subsys(&tcp4_net_ops); 2378 } 2379 2380 void tcp4_proc_exit(void) 2381 { 2382 unregister_pernet_subsys(&tcp4_net_ops); 2383 } 2384 #endif /* CONFIG_PROC_FS */ 2385 2386 struct proto tcp_prot = { 2387 .name = "TCP", 2388 .owner = THIS_MODULE, 2389 .close = tcp_close, 2390 .pre_connect = tcp_v4_pre_connect, 2391 .connect = tcp_v4_connect, 2392 .disconnect = tcp_disconnect, 2393 .accept = inet_csk_accept, 2394 .ioctl = tcp_ioctl, 2395 .init = tcp_v4_init_sock, 2396 .destroy = tcp_v4_destroy_sock, 2397 .shutdown = tcp_shutdown, 2398 .setsockopt = tcp_setsockopt, 2399 .getsockopt = tcp_getsockopt, 2400 .keepalive = tcp_set_keepalive, 2401 .recvmsg = tcp_recvmsg, 2402 .sendmsg = tcp_sendmsg, 2403 .sendpage = tcp_sendpage, 2404 .backlog_rcv = tcp_v4_do_rcv, 2405 .release_cb = tcp_release_cb, 2406 .hash = inet_hash, 2407 .unhash = inet_unhash, 2408 .get_port = inet_csk_get_port, 2409 .enter_memory_pressure = tcp_enter_memory_pressure, 2410 .leave_memory_pressure = tcp_leave_memory_pressure, 2411 .stream_memory_free = tcp_stream_memory_free, 2412 .sockets_allocated = &tcp_sockets_allocated, 2413 .orphan_count = &tcp_orphan_count, 2414 .memory_allocated = &tcp_memory_allocated, 2415 .memory_pressure = &tcp_memory_pressure, 2416 .sysctl_mem = sysctl_tcp_mem, 2417 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 2418 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 2419 .max_header = MAX_TCP_HEADER, 2420 .obj_size = sizeof(struct tcp_sock), 2421 .slab_flags = SLAB_TYPESAFE_BY_RCU, 2422 .twsk_prot = &tcp_timewait_sock_ops, 2423 .rsk_prot = &tcp_request_sock_ops, 2424 .h.hashinfo = &tcp_hashinfo, 2425 .no_autobind = true, 2426 #ifdef CONFIG_COMPAT 2427 .compat_setsockopt = compat_tcp_setsockopt, 2428 .compat_getsockopt = compat_tcp_getsockopt, 2429 #endif 2430 .diag_destroy = tcp_abort, 2431 }; 2432 EXPORT_SYMBOL(tcp_prot); 2433 2434 static void __net_exit tcp_sk_exit(struct net *net) 2435 { 2436 int cpu; 2437 2438 module_put(net->ipv4.tcp_congestion_control->owner); 2439 2440 for_each_possible_cpu(cpu) 2441 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu)); 2442 free_percpu(net->ipv4.tcp_sk); 2443 } 2444 2445 static int __net_init tcp_sk_init(struct net *net) 2446 { 2447 int res, cpu, cnt; 2448 2449 net->ipv4.tcp_sk = alloc_percpu(struct sock *); 2450 if (!net->ipv4.tcp_sk) 2451 return -ENOMEM; 2452 2453 for_each_possible_cpu(cpu) { 2454 struct sock *sk; 2455 2456 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 2457 IPPROTO_TCP, net); 2458 if (res) 2459 goto fail; 2460 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 2461 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk; 2462 } 2463 2464 net->ipv4.sysctl_tcp_ecn = 2; 2465 net->ipv4.sysctl_tcp_ecn_fallback = 1; 2466 2467 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 2468 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 2469 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 2470 2471 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 2472 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 2473 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 2474 2475 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 2476 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 2477 net->ipv4.sysctl_tcp_syncookies = 1; 2478 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 2479 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 2480 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 2481 net->ipv4.sysctl_tcp_orphan_retries = 0; 2482 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 2483 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 2484 net->ipv4.sysctl_tcp_tw_reuse = 0; 2485 2486 cnt = tcp_hashinfo.ehash_mask + 1; 2487 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = (cnt + 1) / 2; 2488 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo; 2489 2490 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 256); 2491 net->ipv4.sysctl_tcp_sack = 1; 2492 net->ipv4.sysctl_tcp_window_scaling = 1; 2493 net->ipv4.sysctl_tcp_timestamps = 1; 2494 net->ipv4.sysctl_tcp_early_retrans = 3; 2495 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; 2496 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ 2497 net->ipv4.sysctl_tcp_retrans_collapse = 1; 2498 net->ipv4.sysctl_tcp_max_reordering = 300; 2499 net->ipv4.sysctl_tcp_dsack = 1; 2500 net->ipv4.sysctl_tcp_app_win = 31; 2501 net->ipv4.sysctl_tcp_adv_win_scale = 1; 2502 net->ipv4.sysctl_tcp_frto = 2; 2503 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; 2504 /* This limits the percentage of the congestion window which we 2505 * will allow a single TSO frame to consume. Building TSO frames 2506 * which are too large can cause TCP streams to be bursty. 2507 */ 2508 net->ipv4.sysctl_tcp_tso_win_divisor = 3; 2509 /* Default TSQ limit of four TSO segments */ 2510 net->ipv4.sysctl_tcp_limit_output_bytes = 262144; 2511 /* rfc5961 challenge ack rate limiting */ 2512 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000; 2513 net->ipv4.sysctl_tcp_min_tso_segs = 2; 2514 net->ipv4.sysctl_tcp_min_rtt_wlen = 300; 2515 net->ipv4.sysctl_tcp_autocorking = 1; 2516 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; 2517 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; 2518 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; 2519 if (net != &init_net) { 2520 memcpy(net->ipv4.sysctl_tcp_rmem, 2521 init_net.ipv4.sysctl_tcp_rmem, 2522 sizeof(init_net.ipv4.sysctl_tcp_rmem)); 2523 memcpy(net->ipv4.sysctl_tcp_wmem, 2524 init_net.ipv4.sysctl_tcp_wmem, 2525 sizeof(init_net.ipv4.sysctl_tcp_wmem)); 2526 } 2527 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; 2528 spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock); 2529 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60; 2530 atomic_set(&net->ipv4.tfo_active_disable_times, 0); 2531 2532 /* Reno is always built in */ 2533 if (!net_eq(net, &init_net) && 2534 try_module_get(init_net.ipv4.tcp_congestion_control->owner)) 2535 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; 2536 else 2537 net->ipv4.tcp_congestion_control = &tcp_reno; 2538 2539 return 0; 2540 fail: 2541 tcp_sk_exit(net); 2542 2543 return res; 2544 } 2545 2546 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2547 { 2548 struct net *net; 2549 2550 inet_twsk_purge(&tcp_hashinfo, AF_INET); 2551 2552 list_for_each_entry(net, net_exit_list, exit_list) 2553 tcp_fastopen_ctx_destroy(net); 2554 } 2555 2556 static struct pernet_operations __net_initdata tcp_sk_ops = { 2557 .init = tcp_sk_init, 2558 .exit = tcp_sk_exit, 2559 .exit_batch = tcp_sk_exit_batch, 2560 }; 2561 2562 void __init tcp_v4_init(void) 2563 { 2564 if (register_pernet_subsys(&tcp_sk_ops)) 2565 panic("Failed to create the TCP control socket.\n"); 2566 } 2567