xref: /linux/net/ipv4/tcp_ipv4.c (revision 9e6d33937b42ca4867af3b341e5d09abca4a2746)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  *		IPv4 specific functions
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  */
18 
19 /*
20  * Changes:
21  *		David S. Miller	:	New socket lookup architecture.
22  *					This code is dedicated to John Dyson.
23  *		David S. Miller :	Change semantics of established hash,
24  *					half is devoted to TIME_WAIT sockets
25  *					and the rest go in the other half.
26  *		Andi Kleen :		Add support for syncookies and fixed
27  *					some bugs: ip options weren't passed to
28  *					the TCP layer, missed a check for an
29  *					ACK bit.
30  *		Andi Kleen :		Implemented fast path mtu discovery.
31  *	     				Fixed many serious bugs in the
32  *					request_sock handling and moved
33  *					most of it into the af independent code.
34  *					Added tail drop and some other bugfixes.
35  *					Added new listen semantics.
36  *		Mike McLagan	:	Routing by source
37  *	Juan Jose Ciarlante:		ip_dynaddr bits
38  *		Andi Kleen:		various fixes.
39  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
40  *					coma.
41  *	Andi Kleen		:	Fix new listen.
42  *	Andi Kleen		:	Fix accept error reporting.
43  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
44  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
45  *					a single port at the same time.
46  */
47 
48 #define pr_fmt(fmt) "TCP: " fmt
49 
50 #include <linux/bottom_half.h>
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/module.h>
54 #include <linux/random.h>
55 #include <linux/cache.h>
56 #include <linux/jhash.h>
57 #include <linux/init.h>
58 #include <linux/times.h>
59 #include <linux/slab.h>
60 #include <linux/sched.h>
61 
62 #include <net/net_namespace.h>
63 #include <net/icmp.h>
64 #include <net/inet_hashtables.h>
65 #include <net/tcp.h>
66 #include <net/transp_v6.h>
67 #include <net/ipv6.h>
68 #include <net/inet_common.h>
69 #include <net/timewait_sock.h>
70 #include <net/xfrm.h>
71 #include <net/secure_seq.h>
72 #include <net/busy_poll.h>
73 #include <net/rstreason.h>
74 
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
80 #include <linux/inetdevice.h>
81 #include <linux/btf_ids.h>
82 
83 #include <crypto/hash.h>
84 #include <linux/scatterlist.h>
85 
86 #include <trace/events/tcp.h>
87 
88 #ifdef CONFIG_TCP_MD5SIG
89 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
90 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
91 #endif
92 
93 struct inet_hashinfo tcp_hashinfo;
94 EXPORT_SYMBOL(tcp_hashinfo);
95 
96 static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
97 
98 static u32 tcp_v4_init_seq(const struct sk_buff *skb)
99 {
100 	return secure_tcp_seq(ip_hdr(skb)->daddr,
101 			      ip_hdr(skb)->saddr,
102 			      tcp_hdr(skb)->dest,
103 			      tcp_hdr(skb)->source);
104 }
105 
106 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
107 {
108 	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
109 }
110 
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
112 {
113 	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
114 	const struct inet_timewait_sock *tw = inet_twsk(sktw);
115 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
116 	struct tcp_sock *tp = tcp_sk(sk);
117 	int ts_recent_stamp;
118 
119 	if (reuse == 2) {
120 		/* Still does not detect *everything* that goes through
121 		 * lo, since we require a loopback src or dst address
122 		 * or direct binding to 'lo' interface.
123 		 */
124 		bool loopback = false;
125 		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
126 			loopback = true;
127 #if IS_ENABLED(CONFIG_IPV6)
128 		if (tw->tw_family == AF_INET6) {
129 			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
130 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
131 			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
132 			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
133 				loopback = true;
134 		} else
135 #endif
136 		{
137 			if (ipv4_is_loopback(tw->tw_daddr) ||
138 			    ipv4_is_loopback(tw->tw_rcv_saddr))
139 				loopback = true;
140 		}
141 		if (!loopback)
142 			reuse = 0;
143 	}
144 
145 	/* With PAWS, it is safe from the viewpoint
146 	   of data integrity. Even without PAWS it is safe provided sequence
147 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
148 
149 	   Actually, the idea is close to VJ's one, only timestamp cache is
150 	   held not per host, but per port pair and TW bucket is used as state
151 	   holder.
152 
153 	   If TW bucket has been already destroyed we fall back to VJ's scheme
154 	   and use initial timestamp retrieved from peer table.
155 	 */
156 	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
157 	if (ts_recent_stamp &&
158 	    (!twp || (reuse && time_after32(ktime_get_seconds(),
159 					    ts_recent_stamp)))) {
160 		/* inet_twsk_hashdance_schedule() sets sk_refcnt after putting twsk
161 		 * and releasing the bucket lock.
162 		 */
163 		if (unlikely(!refcount_inc_not_zero(&sktw->sk_refcnt)))
164 			return 0;
165 
166 		/* In case of repair and re-using TIME-WAIT sockets we still
167 		 * want to be sure that it is safe as above but honor the
168 		 * sequence numbers and time stamps set as part of the repair
169 		 * process.
170 		 *
171 		 * Without this check re-using a TIME-WAIT socket with TCP
172 		 * repair would accumulate a -1 on the repair assigned
173 		 * sequence number. The first time it is reused the sequence
174 		 * is -1, the second time -2, etc. This fixes that issue
175 		 * without appearing to create any others.
176 		 */
177 		if (likely(!tp->repair)) {
178 			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
179 
180 			if (!seq)
181 				seq = 1;
182 			WRITE_ONCE(tp->write_seq, seq);
183 			tp->rx_opt.ts_recent	   = READ_ONCE(tcptw->tw_ts_recent);
184 			tp->rx_opt.ts_recent_stamp = ts_recent_stamp;
185 		}
186 
187 		return 1;
188 	}
189 
190 	return 0;
191 }
192 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
193 
194 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
195 			      int addr_len)
196 {
197 	/* This check is replicated from tcp_v4_connect() and intended to
198 	 * prevent BPF program called below from accessing bytes that are out
199 	 * of the bound specified by user in addr_len.
200 	 */
201 	if (addr_len < sizeof(struct sockaddr_in))
202 		return -EINVAL;
203 
204 	sock_owned_by_me(sk);
205 
206 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
207 }
208 
209 /* This will initiate an outgoing connection. */
210 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
211 {
212 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
213 	struct inet_timewait_death_row *tcp_death_row;
214 	struct inet_sock *inet = inet_sk(sk);
215 	struct tcp_sock *tp = tcp_sk(sk);
216 	struct ip_options_rcu *inet_opt;
217 	struct net *net = sock_net(sk);
218 	__be16 orig_sport, orig_dport;
219 	__be32 daddr, nexthop;
220 	struct flowi4 *fl4;
221 	struct rtable *rt;
222 	int err;
223 
224 	if (addr_len < sizeof(struct sockaddr_in))
225 		return -EINVAL;
226 
227 	if (usin->sin_family != AF_INET)
228 		return -EAFNOSUPPORT;
229 
230 	nexthop = daddr = usin->sin_addr.s_addr;
231 	inet_opt = rcu_dereference_protected(inet->inet_opt,
232 					     lockdep_sock_is_held(sk));
233 	if (inet_opt && inet_opt->opt.srr) {
234 		if (!daddr)
235 			return -EINVAL;
236 		nexthop = inet_opt->opt.faddr;
237 	}
238 
239 	orig_sport = inet->inet_sport;
240 	orig_dport = usin->sin_port;
241 	fl4 = &inet->cork.fl.u.ip4;
242 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
243 			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
244 			      orig_dport, sk);
245 	if (IS_ERR(rt)) {
246 		err = PTR_ERR(rt);
247 		if (err == -ENETUNREACH)
248 			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
249 		return err;
250 	}
251 
252 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
253 		ip_rt_put(rt);
254 		return -ENETUNREACH;
255 	}
256 
257 	if (!inet_opt || !inet_opt->opt.srr)
258 		daddr = fl4->daddr;
259 
260 	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
261 
262 	if (!inet->inet_saddr) {
263 		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
264 		if (err) {
265 			ip_rt_put(rt);
266 			return err;
267 		}
268 	} else {
269 		sk_rcv_saddr_set(sk, inet->inet_saddr);
270 	}
271 
272 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
273 		/* Reset inherited state */
274 		tp->rx_opt.ts_recent	   = 0;
275 		tp->rx_opt.ts_recent_stamp = 0;
276 		if (likely(!tp->repair))
277 			WRITE_ONCE(tp->write_seq, 0);
278 	}
279 
280 	inet->inet_dport = usin->sin_port;
281 	sk_daddr_set(sk, daddr);
282 
283 	inet_csk(sk)->icsk_ext_hdr_len = 0;
284 	if (inet_opt)
285 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
286 
287 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
288 
289 	/* Socket identity is still unknown (sport may be zero).
290 	 * However we set state to SYN-SENT and not releasing socket
291 	 * lock select source port, enter ourselves into the hash tables and
292 	 * complete initialization after this.
293 	 */
294 	tcp_set_state(sk, TCP_SYN_SENT);
295 	err = inet_hash_connect(tcp_death_row, sk);
296 	if (err)
297 		goto failure;
298 
299 	sk_set_txhash(sk);
300 
301 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
302 			       inet->inet_sport, inet->inet_dport, sk);
303 	if (IS_ERR(rt)) {
304 		err = PTR_ERR(rt);
305 		rt = NULL;
306 		goto failure;
307 	}
308 	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
309 	/* OK, now commit destination to socket.  */
310 	sk->sk_gso_type = SKB_GSO_TCPV4;
311 	sk_setup_caps(sk, &rt->dst);
312 	rt = NULL;
313 
314 	if (likely(!tp->repair)) {
315 		if (!tp->write_seq)
316 			WRITE_ONCE(tp->write_seq,
317 				   secure_tcp_seq(inet->inet_saddr,
318 						  inet->inet_daddr,
319 						  inet->inet_sport,
320 						  usin->sin_port));
321 		WRITE_ONCE(tp->tsoffset,
322 			   secure_tcp_ts_off(net, inet->inet_saddr,
323 					     inet->inet_daddr));
324 	}
325 
326 	atomic_set(&inet->inet_id, get_random_u16());
327 
328 	if (tcp_fastopen_defer_connect(sk, &err))
329 		return err;
330 	if (err)
331 		goto failure;
332 
333 	err = tcp_connect(sk);
334 
335 	if (err)
336 		goto failure;
337 
338 	return 0;
339 
340 failure:
341 	/*
342 	 * This unhashes the socket and releases the local port,
343 	 * if necessary.
344 	 */
345 	tcp_set_state(sk, TCP_CLOSE);
346 	inet_bhash2_reset_saddr(sk);
347 	ip_rt_put(rt);
348 	sk->sk_route_caps = 0;
349 	inet->inet_dport = 0;
350 	return err;
351 }
352 EXPORT_SYMBOL(tcp_v4_connect);
353 
354 /*
355  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
356  * It can be called through tcp_release_cb() if socket was owned by user
357  * at the time tcp_v4_err() was called to handle ICMP message.
358  */
359 void tcp_v4_mtu_reduced(struct sock *sk)
360 {
361 	struct inet_sock *inet = inet_sk(sk);
362 	struct dst_entry *dst;
363 	u32 mtu;
364 
365 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
366 		return;
367 	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
368 	dst = inet_csk_update_pmtu(sk, mtu);
369 	if (!dst)
370 		return;
371 
372 	/* Something is about to be wrong... Remember soft error
373 	 * for the case, if this connection will not able to recover.
374 	 */
375 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
376 		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
377 
378 	mtu = dst_mtu(dst);
379 
380 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
381 	    ip_sk_accept_pmtu(sk) &&
382 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
383 		tcp_sync_mss(sk, mtu);
384 
385 		/* Resend the TCP packet because it's
386 		 * clear that the old packet has been
387 		 * dropped. This is the new "fast" path mtu
388 		 * discovery.
389 		 */
390 		tcp_simple_retransmit(sk);
391 	} /* else let the usual retransmit timer handle it */
392 }
393 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
394 
395 static void do_redirect(struct sk_buff *skb, struct sock *sk)
396 {
397 	struct dst_entry *dst = __sk_dst_check(sk, 0);
398 
399 	if (dst)
400 		dst->ops->redirect(dst, sk, skb);
401 }
402 
403 
404 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
405 void tcp_req_err(struct sock *sk, u32 seq, bool abort)
406 {
407 	struct request_sock *req = inet_reqsk(sk);
408 	struct net *net = sock_net(sk);
409 
410 	/* ICMPs are not backlogged, hence we cannot get
411 	 * an established socket here.
412 	 */
413 	if (seq != tcp_rsk(req)->snt_isn) {
414 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
415 	} else if (abort) {
416 		/*
417 		 * Still in SYN_RECV, just remove it silently.
418 		 * There is no good way to pass the error to the newly
419 		 * created socket, and POSIX does not want network
420 		 * errors returned from accept().
421 		 */
422 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
423 		tcp_listendrop(req->rsk_listener);
424 	}
425 	reqsk_put(req);
426 }
427 EXPORT_SYMBOL(tcp_req_err);
428 
429 /* TCP-LD (RFC 6069) logic */
430 void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
431 {
432 	struct inet_connection_sock *icsk = inet_csk(sk);
433 	struct tcp_sock *tp = tcp_sk(sk);
434 	struct sk_buff *skb;
435 	s32 remaining;
436 	u32 delta_us;
437 
438 	if (sock_owned_by_user(sk))
439 		return;
440 
441 	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
442 	    !icsk->icsk_backoff)
443 		return;
444 
445 	skb = tcp_rtx_queue_head(sk);
446 	if (WARN_ON_ONCE(!skb))
447 		return;
448 
449 	icsk->icsk_backoff--;
450 	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
451 	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
452 
453 	tcp_mstamp_refresh(tp);
454 	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
455 	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
456 
457 	if (remaining > 0) {
458 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
459 					  remaining, TCP_RTO_MAX);
460 	} else {
461 		/* RTO revert clocked out retransmission.
462 		 * Will retransmit now.
463 		 */
464 		tcp_retransmit_timer(sk);
465 	}
466 }
467 EXPORT_SYMBOL(tcp_ld_RTO_revert);
468 
469 /*
470  * This routine is called by the ICMP module when it gets some
471  * sort of error condition.  If err < 0 then the socket should
472  * be closed and the error returned to the user.  If err > 0
473  * it's just the icmp type << 8 | icmp code.  After adjustment
474  * header points to the first 8 bytes of the tcp header.  We need
475  * to find the appropriate port.
476  *
477  * The locking strategy used here is very "optimistic". When
478  * someone else accesses the socket the ICMP is just dropped
479  * and for some paths there is no check at all.
480  * A more general error queue to queue errors for later handling
481  * is probably better.
482  *
483  */
484 
485 int tcp_v4_err(struct sk_buff *skb, u32 info)
486 {
487 	const struct iphdr *iph = (const struct iphdr *)skb->data;
488 	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
489 	struct tcp_sock *tp;
490 	const int type = icmp_hdr(skb)->type;
491 	const int code = icmp_hdr(skb)->code;
492 	struct sock *sk;
493 	struct request_sock *fastopen;
494 	u32 seq, snd_una;
495 	int err;
496 	struct net *net = dev_net(skb->dev);
497 
498 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
499 				       iph->daddr, th->dest, iph->saddr,
500 				       ntohs(th->source), inet_iif(skb), 0);
501 	if (!sk) {
502 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
503 		return -ENOENT;
504 	}
505 	if (sk->sk_state == TCP_TIME_WAIT) {
506 		/* To increase the counter of ignored icmps for TCP-AO */
507 		tcp_ao_ignore_icmp(sk, AF_INET, type, code);
508 		inet_twsk_put(inet_twsk(sk));
509 		return 0;
510 	}
511 	seq = ntohl(th->seq);
512 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
513 		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
514 				     type == ICMP_TIME_EXCEEDED ||
515 				     (type == ICMP_DEST_UNREACH &&
516 				      (code == ICMP_NET_UNREACH ||
517 				       code == ICMP_HOST_UNREACH)));
518 		return 0;
519 	}
520 
521 	if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
522 		sock_put(sk);
523 		return 0;
524 	}
525 
526 	bh_lock_sock(sk);
527 	/* If too many ICMPs get dropped on busy
528 	 * servers this needs to be solved differently.
529 	 * We do take care of PMTU discovery (RFC1191) special case :
530 	 * we can receive locally generated ICMP messages while socket is held.
531 	 */
532 	if (sock_owned_by_user(sk)) {
533 		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
534 			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
535 	}
536 	if (sk->sk_state == TCP_CLOSE)
537 		goto out;
538 
539 	if (static_branch_unlikely(&ip4_min_ttl)) {
540 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
541 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
542 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
543 			goto out;
544 		}
545 	}
546 
547 	tp = tcp_sk(sk);
548 	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
549 	fastopen = rcu_dereference(tp->fastopen_rsk);
550 	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
551 	if (sk->sk_state != TCP_LISTEN &&
552 	    !between(seq, snd_una, tp->snd_nxt)) {
553 		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
554 		goto out;
555 	}
556 
557 	switch (type) {
558 	case ICMP_REDIRECT:
559 		if (!sock_owned_by_user(sk))
560 			do_redirect(skb, sk);
561 		goto out;
562 	case ICMP_SOURCE_QUENCH:
563 		/* Just silently ignore these. */
564 		goto out;
565 	case ICMP_PARAMETERPROB:
566 		err = EPROTO;
567 		break;
568 	case ICMP_DEST_UNREACH:
569 		if (code > NR_ICMP_UNREACH)
570 			goto out;
571 
572 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
573 			/* We are not interested in TCP_LISTEN and open_requests
574 			 * (SYN-ACKs send out by Linux are always <576bytes so
575 			 * they should go through unfragmented).
576 			 */
577 			if (sk->sk_state == TCP_LISTEN)
578 				goto out;
579 
580 			WRITE_ONCE(tp->mtu_info, info);
581 			if (!sock_owned_by_user(sk)) {
582 				tcp_v4_mtu_reduced(sk);
583 			} else {
584 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
585 					sock_hold(sk);
586 			}
587 			goto out;
588 		}
589 
590 		err = icmp_err_convert[code].errno;
591 		/* check if this ICMP message allows revert of backoff.
592 		 * (see RFC 6069)
593 		 */
594 		if (!fastopen &&
595 		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
596 			tcp_ld_RTO_revert(sk, seq);
597 		break;
598 	case ICMP_TIME_EXCEEDED:
599 		err = EHOSTUNREACH;
600 		break;
601 	default:
602 		goto out;
603 	}
604 
605 	switch (sk->sk_state) {
606 	case TCP_SYN_SENT:
607 	case TCP_SYN_RECV:
608 		/* Only in fast or simultaneous open. If a fast open socket is
609 		 * already accepted it is treated as a connected one below.
610 		 */
611 		if (fastopen && !fastopen->sk)
612 			break;
613 
614 		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
615 
616 		if (!sock_owned_by_user(sk))
617 			tcp_done_with_error(sk, err);
618 		else
619 			WRITE_ONCE(sk->sk_err_soft, err);
620 		goto out;
621 	}
622 
623 	/* If we've already connected we will keep trying
624 	 * until we time out, or the user gives up.
625 	 *
626 	 * rfc1122 4.2.3.9 allows to consider as hard errors
627 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
628 	 * but it is obsoleted by pmtu discovery).
629 	 *
630 	 * Note, that in modern internet, where routing is unreliable
631 	 * and in each dark corner broken firewalls sit, sending random
632 	 * errors ordered by their masters even this two messages finally lose
633 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
634 	 *
635 	 * Now we are in compliance with RFCs.
636 	 *							--ANK (980905)
637 	 */
638 
639 	if (!sock_owned_by_user(sk) &&
640 	    inet_test_bit(RECVERR, sk)) {
641 		WRITE_ONCE(sk->sk_err, err);
642 		sk_error_report(sk);
643 	} else	{ /* Only an error on timeout */
644 		WRITE_ONCE(sk->sk_err_soft, err);
645 	}
646 
647 out:
648 	bh_unlock_sock(sk);
649 	sock_put(sk);
650 	return 0;
651 }
652 
653 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
654 {
655 	struct tcphdr *th = tcp_hdr(skb);
656 
657 	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
658 	skb->csum_start = skb_transport_header(skb) - skb->head;
659 	skb->csum_offset = offsetof(struct tcphdr, check);
660 }
661 
662 /* This routine computes an IPv4 TCP checksum. */
663 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
664 {
665 	const struct inet_sock *inet = inet_sk(sk);
666 
667 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
668 }
669 EXPORT_SYMBOL(tcp_v4_send_check);
670 
671 #define REPLY_OPTIONS_LEN      (MAX_TCP_OPTION_SPACE / sizeof(__be32))
672 
673 static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
674 				 const struct tcp_ao_hdr *aoh,
675 				 struct ip_reply_arg *arg, struct tcphdr *reply,
676 				 __be32 reply_options[REPLY_OPTIONS_LEN])
677 {
678 #ifdef CONFIG_TCP_AO
679 	int sdif = tcp_v4_sdif(skb);
680 	int dif = inet_iif(skb);
681 	int l3index = sdif ? dif : 0;
682 	bool allocated_traffic_key;
683 	struct tcp_ao_key *key;
684 	char *traffic_key;
685 	bool drop = true;
686 	u32 ao_sne = 0;
687 	u8 keyid;
688 
689 	rcu_read_lock();
690 	if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
691 				 &key, &traffic_key, &allocated_traffic_key,
692 				 &keyid, &ao_sne))
693 		goto out;
694 
695 	reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
696 				 (aoh->rnext_keyid << 8) | keyid);
697 	arg->iov[0].iov_len += tcp_ao_len_aligned(key);
698 	reply->doff = arg->iov[0].iov_len / 4;
699 
700 	if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
701 			    key, traffic_key,
702 			    (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
703 			    (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
704 			    reply, ao_sne))
705 		goto out;
706 	drop = false;
707 out:
708 	rcu_read_unlock();
709 	if (allocated_traffic_key)
710 		kfree(traffic_key);
711 	return drop;
712 #else
713 	return true;
714 #endif
715 }
716 
717 /*
718  *	This routine will send an RST to the other tcp.
719  *
720  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
721  *		      for reset.
722  *	Answer: if a packet caused RST, it is not for a socket
723  *		existing in our system, if it is matched to a socket,
724  *		it is just duplicate segment or bug in other side's TCP.
725  *		So that we build reply only basing on parameters
726  *		arrived with segment.
727  *	Exception: precedence violation. We do not implement it in any case.
728  */
729 
730 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb,
731 			      enum sk_rst_reason reason)
732 {
733 	const struct tcphdr *th = tcp_hdr(skb);
734 	struct {
735 		struct tcphdr th;
736 		__be32 opt[REPLY_OPTIONS_LEN];
737 	} rep;
738 	const __u8 *md5_hash_location = NULL;
739 	const struct tcp_ao_hdr *aoh;
740 	struct ip_reply_arg arg;
741 #ifdef CONFIG_TCP_MD5SIG
742 	struct tcp_md5sig_key *key = NULL;
743 	unsigned char newhash[16];
744 	struct sock *sk1 = NULL;
745 	int genhash;
746 #endif
747 	u64 transmit_time = 0;
748 	struct sock *ctl_sk;
749 	struct net *net;
750 	u32 txhash = 0;
751 
752 	/* Never send a reset in response to a reset. */
753 	if (th->rst)
754 		return;
755 
756 	/* If sk not NULL, it means we did a successful lookup and incoming
757 	 * route had to be correct. prequeue might have dropped our dst.
758 	 */
759 	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
760 		return;
761 
762 	/* Swap the send and the receive. */
763 	memset(&rep, 0, sizeof(rep));
764 	rep.th.dest   = th->source;
765 	rep.th.source = th->dest;
766 	rep.th.doff   = sizeof(struct tcphdr) / 4;
767 	rep.th.rst    = 1;
768 
769 	if (th->ack) {
770 		rep.th.seq = th->ack_seq;
771 	} else {
772 		rep.th.ack = 1;
773 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
774 				       skb->len - (th->doff << 2));
775 	}
776 
777 	memset(&arg, 0, sizeof(arg));
778 	arg.iov[0].iov_base = (unsigned char *)&rep;
779 	arg.iov[0].iov_len  = sizeof(rep.th);
780 
781 	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
782 
783 	/* Invalid TCP option size or twice included auth */
784 	if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
785 		return;
786 
787 	if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
788 		return;
789 
790 #ifdef CONFIG_TCP_MD5SIG
791 	rcu_read_lock();
792 	if (sk && sk_fullsock(sk)) {
793 		const union tcp_md5_addr *addr;
794 		int l3index;
795 
796 		/* sdif set, means packet ingressed via a device
797 		 * in an L3 domain and inet_iif is set to it.
798 		 */
799 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
800 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
801 		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
802 	} else if (md5_hash_location) {
803 		const union tcp_md5_addr *addr;
804 		int sdif = tcp_v4_sdif(skb);
805 		int dif = inet_iif(skb);
806 		int l3index;
807 
808 		/*
809 		 * active side is lost. Try to find listening socket through
810 		 * source port, and then find md5 key through listening socket.
811 		 * we are not loose security here:
812 		 * Incoming packet is checked with md5 hash with finding key,
813 		 * no RST generated if md5 hash doesn't match.
814 		 */
815 		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
816 					     NULL, 0, ip_hdr(skb)->saddr,
817 					     th->source, ip_hdr(skb)->daddr,
818 					     ntohs(th->source), dif, sdif);
819 		/* don't send rst if it can't find key */
820 		if (!sk1)
821 			goto out;
822 
823 		/* sdif set, means packet ingressed via a device
824 		 * in an L3 domain and dif is set to it.
825 		 */
826 		l3index = sdif ? dif : 0;
827 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
828 		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
829 		if (!key)
830 			goto out;
831 
832 
833 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
834 		if (genhash || memcmp(md5_hash_location, newhash, 16) != 0)
835 			goto out;
836 
837 	}
838 
839 	if (key) {
840 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
841 				   (TCPOPT_NOP << 16) |
842 				   (TCPOPT_MD5SIG << 8) |
843 				   TCPOLEN_MD5SIG);
844 		/* Update length and the length the header thinks exists */
845 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
846 		rep.th.doff = arg.iov[0].iov_len / 4;
847 
848 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
849 				     key, ip_hdr(skb)->saddr,
850 				     ip_hdr(skb)->daddr, &rep.th);
851 	}
852 #endif
853 	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
854 	if (rep.opt[0] == 0) {
855 		__be32 mrst = mptcp_reset_option(skb);
856 
857 		if (mrst) {
858 			rep.opt[0] = mrst;
859 			arg.iov[0].iov_len += sizeof(mrst);
860 			rep.th.doff = arg.iov[0].iov_len / 4;
861 		}
862 	}
863 
864 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
865 				      ip_hdr(skb)->saddr, /* XXX */
866 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
867 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
868 	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
869 
870 	/* When socket is gone, all binding information is lost.
871 	 * routing might fail in this case. No choice here, if we choose to force
872 	 * input interface, we will misroute in case of asymmetric route.
873 	 */
874 	if (sk)
875 		arg.bound_dev_if = sk->sk_bound_dev_if;
876 
877 	trace_tcp_send_reset(sk, skb, reason);
878 
879 	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
880 		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
881 
882 	arg.tos = ip_hdr(skb)->tos;
883 	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
884 	local_bh_disable();
885 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
886 	sock_net_set(ctl_sk, net);
887 	if (sk) {
888 		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
889 				   inet_twsk(sk)->tw_mark : sk->sk_mark;
890 		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
891 				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
892 		transmit_time = tcp_transmit_time(sk);
893 		xfrm_sk_clone_policy(ctl_sk, sk);
894 		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
895 			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
896 	} else {
897 		ctl_sk->sk_mark = 0;
898 		ctl_sk->sk_priority = 0;
899 	}
900 	ip_send_unicast_reply(ctl_sk,
901 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
902 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
903 			      &arg, arg.iov[0].iov_len,
904 			      transmit_time, txhash);
905 
906 	xfrm_sk_free_policy(ctl_sk);
907 	sock_net_set(ctl_sk, &init_net);
908 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
909 	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
910 	local_bh_enable();
911 
912 #ifdef CONFIG_TCP_MD5SIG
913 out:
914 	rcu_read_unlock();
915 #endif
916 }
917 
918 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
919    outside socket context is ugly, certainly. What can I do?
920  */
921 
922 static void tcp_v4_send_ack(const struct sock *sk,
923 			    struct sk_buff *skb, u32 seq, u32 ack,
924 			    u32 win, u32 tsval, u32 tsecr, int oif,
925 			    struct tcp_key *key,
926 			    int reply_flags, u8 tos, u32 txhash)
927 {
928 	const struct tcphdr *th = tcp_hdr(skb);
929 	struct {
930 		struct tcphdr th;
931 		__be32 opt[(MAX_TCP_OPTION_SPACE  >> 2)];
932 	} rep;
933 	struct net *net = sock_net(sk);
934 	struct ip_reply_arg arg;
935 	struct sock *ctl_sk;
936 	u64 transmit_time;
937 
938 	memset(&rep.th, 0, sizeof(struct tcphdr));
939 	memset(&arg, 0, sizeof(arg));
940 
941 	arg.iov[0].iov_base = (unsigned char *)&rep;
942 	arg.iov[0].iov_len  = sizeof(rep.th);
943 	if (tsecr) {
944 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
945 				   (TCPOPT_TIMESTAMP << 8) |
946 				   TCPOLEN_TIMESTAMP);
947 		rep.opt[1] = htonl(tsval);
948 		rep.opt[2] = htonl(tsecr);
949 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
950 	}
951 
952 	/* Swap the send and the receive. */
953 	rep.th.dest    = th->source;
954 	rep.th.source  = th->dest;
955 	rep.th.doff    = arg.iov[0].iov_len / 4;
956 	rep.th.seq     = htonl(seq);
957 	rep.th.ack_seq = htonl(ack);
958 	rep.th.ack     = 1;
959 	rep.th.window  = htons(win);
960 
961 #ifdef CONFIG_TCP_MD5SIG
962 	if (tcp_key_is_md5(key)) {
963 		int offset = (tsecr) ? 3 : 0;
964 
965 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
966 					  (TCPOPT_NOP << 16) |
967 					  (TCPOPT_MD5SIG << 8) |
968 					  TCPOLEN_MD5SIG);
969 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
970 		rep.th.doff = arg.iov[0].iov_len/4;
971 
972 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
973 				    key->md5_key, ip_hdr(skb)->saddr,
974 				    ip_hdr(skb)->daddr, &rep.th);
975 	}
976 #endif
977 #ifdef CONFIG_TCP_AO
978 	if (tcp_key_is_ao(key)) {
979 		int offset = (tsecr) ? 3 : 0;
980 
981 		rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
982 					  (tcp_ao_len(key->ao_key) << 16) |
983 					  (key->ao_key->sndid << 8) |
984 					  key->rcv_next);
985 		arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
986 		rep.th.doff = arg.iov[0].iov_len / 4;
987 
988 		tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
989 				key->ao_key, key->traffic_key,
990 				(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
991 				(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
992 				&rep.th, key->sne);
993 	}
994 #endif
995 	arg.flags = reply_flags;
996 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
997 				      ip_hdr(skb)->saddr, /* XXX */
998 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
999 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
1000 	if (oif)
1001 		arg.bound_dev_if = oif;
1002 	arg.tos = tos;
1003 	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
1004 	local_bh_disable();
1005 	ctl_sk = this_cpu_read(ipv4_tcp_sk);
1006 	sock_net_set(ctl_sk, net);
1007 	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1008 			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1009 	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1010 			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1011 	transmit_time = tcp_transmit_time(sk);
1012 	ip_send_unicast_reply(ctl_sk,
1013 			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
1014 			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1015 			      &arg, arg.iov[0].iov_len,
1016 			      transmit_time, txhash);
1017 
1018 	sock_net_set(ctl_sk, &init_net);
1019 	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1020 	local_bh_enable();
1021 }
1022 
1023 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
1024 {
1025 	struct inet_timewait_sock *tw = inet_twsk(sk);
1026 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1027 	struct tcp_key key = {};
1028 #ifdef CONFIG_TCP_AO
1029 	struct tcp_ao_info *ao_info;
1030 
1031 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
1032 		/* FIXME: the segment to-be-acked is not verified yet */
1033 		ao_info = rcu_dereference(tcptw->ao_info);
1034 		if (ao_info) {
1035 			const struct tcp_ao_hdr *aoh;
1036 
1037 			if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1038 				inet_twsk_put(tw);
1039 				return;
1040 			}
1041 
1042 			if (aoh)
1043 				key.ao_key = tcp_ao_established_key(ao_info, aoh->rnext_keyid, -1);
1044 		}
1045 	}
1046 	if (key.ao_key) {
1047 		struct tcp_ao_key *rnext_key;
1048 
1049 		key.traffic_key = snd_other_key(key.ao_key);
1050 		key.sne = READ_ONCE(ao_info->snd_sne);
1051 		rnext_key = READ_ONCE(ao_info->rnext_key);
1052 		key.rcv_next = rnext_key->rcvid;
1053 		key.type = TCP_KEY_AO;
1054 #else
1055 	if (0) {
1056 #endif
1057 	} else if (static_branch_tcp_md5()) {
1058 		key.md5_key = tcp_twsk_md5_key(tcptw);
1059 		if (key.md5_key)
1060 			key.type = TCP_KEY_MD5;
1061 	}
1062 
1063 	tcp_v4_send_ack(sk, skb,
1064 			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
1065 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1066 			tcp_tw_tsval(tcptw),
1067 			READ_ONCE(tcptw->tw_ts_recent),
1068 			tw->tw_bound_dev_if, &key,
1069 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1070 			tw->tw_tos,
1071 			tw->tw_txhash);
1072 
1073 	inet_twsk_put(tw);
1074 }
1075 
1076 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1077 				  struct request_sock *req)
1078 {
1079 	struct tcp_key key = {};
1080 
1081 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1082 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1083 	 */
1084 	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1085 					     tcp_sk(sk)->snd_nxt;
1086 
1087 #ifdef CONFIG_TCP_AO
1088 	if (static_branch_unlikely(&tcp_ao_needed.key) &&
1089 	    tcp_rsk_used_ao(req)) {
1090 		const union tcp_md5_addr *addr;
1091 		const struct tcp_ao_hdr *aoh;
1092 		int l3index;
1093 
1094 		/* Invalid TCP option size or twice included auth */
1095 		if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1096 			return;
1097 		if (!aoh)
1098 			return;
1099 
1100 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1101 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1102 		key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1103 					      aoh->rnext_keyid, -1);
1104 		if (unlikely(!key.ao_key)) {
1105 			/* Send ACK with any matching MKT for the peer */
1106 			key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1107 			/* Matching key disappeared (user removed the key?)
1108 			 * let the handshake timeout.
1109 			 */
1110 			if (!key.ao_key) {
1111 				net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1112 						     addr,
1113 						     ntohs(tcp_hdr(skb)->source),
1114 						     &ip_hdr(skb)->daddr,
1115 						     ntohs(tcp_hdr(skb)->dest));
1116 				return;
1117 			}
1118 		}
1119 		key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1120 		if (!key.traffic_key)
1121 			return;
1122 
1123 		key.type = TCP_KEY_AO;
1124 		key.rcv_next = aoh->keyid;
1125 		tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1126 #else
1127 	if (0) {
1128 #endif
1129 	} else if (static_branch_tcp_md5()) {
1130 		const union tcp_md5_addr *addr;
1131 		int l3index;
1132 
1133 		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1134 		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1135 		key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1136 		if (key.md5_key)
1137 			key.type = TCP_KEY_MD5;
1138 	}
1139 
1140 	tcp_v4_send_ack(sk, skb, seq,
1141 			tcp_rsk(req)->rcv_nxt,
1142 			tcp_synack_window(req) >> inet_rsk(req)->rcv_wscale,
1143 			tcp_rsk_tsval(tcp_rsk(req)),
1144 			READ_ONCE(req->ts_recent),
1145 			0, &key,
1146 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1147 			ip_hdr(skb)->tos,
1148 			READ_ONCE(tcp_rsk(req)->txhash));
1149 	if (tcp_key_is_ao(&key))
1150 		kfree(key.traffic_key);
1151 }
1152 
1153 /*
1154  *	Send a SYN-ACK after having received a SYN.
1155  *	This still operates on a request_sock only, not on a big
1156  *	socket.
1157  */
1158 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1159 			      struct flowi *fl,
1160 			      struct request_sock *req,
1161 			      struct tcp_fastopen_cookie *foc,
1162 			      enum tcp_synack_type synack_type,
1163 			      struct sk_buff *syn_skb)
1164 {
1165 	const struct inet_request_sock *ireq = inet_rsk(req);
1166 	struct flowi4 fl4;
1167 	int err = -1;
1168 	struct sk_buff *skb;
1169 	u8 tos;
1170 
1171 	/* First, grab a route. */
1172 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1173 		return -1;
1174 
1175 	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1176 
1177 	if (skb) {
1178 		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1179 
1180 		tos = READ_ONCE(inet_sk(sk)->tos);
1181 
1182 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1183 			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1184 			      (tos & INET_ECN_MASK);
1185 
1186 		if (!INET_ECN_is_capable(tos) &&
1187 		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1188 			tos |= INET_ECN_ECT_0;
1189 
1190 		rcu_read_lock();
1191 		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1192 					    ireq->ir_rmt_addr,
1193 					    rcu_dereference(ireq->ireq_opt),
1194 					    tos);
1195 		rcu_read_unlock();
1196 		err = net_xmit_eval(err);
1197 	}
1198 
1199 	return err;
1200 }
1201 
1202 /*
1203  *	IPv4 request_sock destructor.
1204  */
1205 static void tcp_v4_reqsk_destructor(struct request_sock *req)
1206 {
1207 	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1208 }
1209 
1210 #ifdef CONFIG_TCP_MD5SIG
1211 /*
1212  * RFC2385 MD5 checksumming requires a mapping of
1213  * IP address->MD5 Key.
1214  * We need to maintain these in the sk structure.
1215  */
1216 
1217 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1218 EXPORT_SYMBOL(tcp_md5_needed);
1219 
1220 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1221 {
1222 	if (!old)
1223 		return true;
1224 
1225 	/* l3index always overrides non-l3index */
1226 	if (old->l3index && new->l3index == 0)
1227 		return false;
1228 	if (old->l3index == 0 && new->l3index)
1229 		return true;
1230 
1231 	return old->prefixlen < new->prefixlen;
1232 }
1233 
1234 /* Find the Key structure for an address.  */
1235 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1236 					   const union tcp_md5_addr *addr,
1237 					   int family, bool any_l3index)
1238 {
1239 	const struct tcp_sock *tp = tcp_sk(sk);
1240 	struct tcp_md5sig_key *key;
1241 	const struct tcp_md5sig_info *md5sig;
1242 	__be32 mask;
1243 	struct tcp_md5sig_key *best_match = NULL;
1244 	bool match;
1245 
1246 	/* caller either holds rcu_read_lock() or socket lock */
1247 	md5sig = rcu_dereference_check(tp->md5sig_info,
1248 				       lockdep_sock_is_held(sk));
1249 	if (!md5sig)
1250 		return NULL;
1251 
1252 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1253 				 lockdep_sock_is_held(sk)) {
1254 		if (key->family != family)
1255 			continue;
1256 		if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1257 		    key->l3index != l3index)
1258 			continue;
1259 		if (family == AF_INET) {
1260 			mask = inet_make_mask(key->prefixlen);
1261 			match = (key->addr.a4.s_addr & mask) ==
1262 				(addr->a4.s_addr & mask);
1263 #if IS_ENABLED(CONFIG_IPV6)
1264 		} else if (family == AF_INET6) {
1265 			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1266 						  key->prefixlen);
1267 #endif
1268 		} else {
1269 			match = false;
1270 		}
1271 
1272 		if (match && better_md5_match(best_match, key))
1273 			best_match = key;
1274 	}
1275 	return best_match;
1276 }
1277 EXPORT_SYMBOL(__tcp_md5_do_lookup);
1278 
1279 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1280 						      const union tcp_md5_addr *addr,
1281 						      int family, u8 prefixlen,
1282 						      int l3index, u8 flags)
1283 {
1284 	const struct tcp_sock *tp = tcp_sk(sk);
1285 	struct tcp_md5sig_key *key;
1286 	unsigned int size = sizeof(struct in_addr);
1287 	const struct tcp_md5sig_info *md5sig;
1288 
1289 	/* caller either holds rcu_read_lock() or socket lock */
1290 	md5sig = rcu_dereference_check(tp->md5sig_info,
1291 				       lockdep_sock_is_held(sk));
1292 	if (!md5sig)
1293 		return NULL;
1294 #if IS_ENABLED(CONFIG_IPV6)
1295 	if (family == AF_INET6)
1296 		size = sizeof(struct in6_addr);
1297 #endif
1298 	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1299 				 lockdep_sock_is_held(sk)) {
1300 		if (key->family != family)
1301 			continue;
1302 		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1303 			continue;
1304 		if (key->l3index != l3index)
1305 			continue;
1306 		if (!memcmp(&key->addr, addr, size) &&
1307 		    key->prefixlen == prefixlen)
1308 			return key;
1309 	}
1310 	return NULL;
1311 }
1312 
1313 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1314 					 const struct sock *addr_sk)
1315 {
1316 	const union tcp_md5_addr *addr;
1317 	int l3index;
1318 
1319 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1320 						 addr_sk->sk_bound_dev_if);
1321 	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1322 	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1323 }
1324 EXPORT_SYMBOL(tcp_v4_md5_lookup);
1325 
1326 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1327 {
1328 	struct tcp_sock *tp = tcp_sk(sk);
1329 	struct tcp_md5sig_info *md5sig;
1330 
1331 	md5sig = kmalloc(sizeof(*md5sig), gfp);
1332 	if (!md5sig)
1333 		return -ENOMEM;
1334 
1335 	sk_gso_disable(sk);
1336 	INIT_HLIST_HEAD(&md5sig->head);
1337 	rcu_assign_pointer(tp->md5sig_info, md5sig);
1338 	return 0;
1339 }
1340 
1341 /* This can be called on a newly created socket, from other files */
1342 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1343 			    int family, u8 prefixlen, int l3index, u8 flags,
1344 			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1345 {
1346 	/* Add Key to the list */
1347 	struct tcp_md5sig_key *key;
1348 	struct tcp_sock *tp = tcp_sk(sk);
1349 	struct tcp_md5sig_info *md5sig;
1350 
1351 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1352 	if (key) {
1353 		/* Pre-existing entry - just update that one.
1354 		 * Note that the key might be used concurrently.
1355 		 * data_race() is telling kcsan that we do not care of
1356 		 * key mismatches, since changing MD5 key on live flows
1357 		 * can lead to packet drops.
1358 		 */
1359 		data_race(memcpy(key->key, newkey, newkeylen));
1360 
1361 		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1362 		 * Also note that a reader could catch new key->keylen value
1363 		 * but old key->key[], this is the reason we use __GFP_ZERO
1364 		 * at sock_kmalloc() time below these lines.
1365 		 */
1366 		WRITE_ONCE(key->keylen, newkeylen);
1367 
1368 		return 0;
1369 	}
1370 
1371 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1372 					   lockdep_sock_is_held(sk));
1373 
1374 	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1375 	if (!key)
1376 		return -ENOMEM;
1377 
1378 	memcpy(key->key, newkey, newkeylen);
1379 	key->keylen = newkeylen;
1380 	key->family = family;
1381 	key->prefixlen = prefixlen;
1382 	key->l3index = l3index;
1383 	key->flags = flags;
1384 	memcpy(&key->addr, addr,
1385 	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1386 								 sizeof(struct in_addr));
1387 	hlist_add_head_rcu(&key->node, &md5sig->head);
1388 	return 0;
1389 }
1390 
1391 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1392 		   int family, u8 prefixlen, int l3index, u8 flags,
1393 		   const u8 *newkey, u8 newkeylen)
1394 {
1395 	struct tcp_sock *tp = tcp_sk(sk);
1396 
1397 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1398 		if (tcp_md5_alloc_sigpool())
1399 			return -ENOMEM;
1400 
1401 		if (tcp_md5sig_info_add(sk, GFP_KERNEL)) {
1402 			tcp_md5_release_sigpool();
1403 			return -ENOMEM;
1404 		}
1405 
1406 		if (!static_branch_inc(&tcp_md5_needed.key)) {
1407 			struct tcp_md5sig_info *md5sig;
1408 
1409 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1410 			rcu_assign_pointer(tp->md5sig_info, NULL);
1411 			kfree_rcu(md5sig, rcu);
1412 			tcp_md5_release_sigpool();
1413 			return -EUSERS;
1414 		}
1415 	}
1416 
1417 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1418 				newkey, newkeylen, GFP_KERNEL);
1419 }
1420 EXPORT_SYMBOL(tcp_md5_do_add);
1421 
1422 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1423 		     int family, u8 prefixlen, int l3index,
1424 		     struct tcp_md5sig_key *key)
1425 {
1426 	struct tcp_sock *tp = tcp_sk(sk);
1427 
1428 	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1429 		tcp_md5_add_sigpool();
1430 
1431 		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) {
1432 			tcp_md5_release_sigpool();
1433 			return -ENOMEM;
1434 		}
1435 
1436 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1437 			struct tcp_md5sig_info *md5sig;
1438 
1439 			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1440 			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1441 			rcu_assign_pointer(tp->md5sig_info, NULL);
1442 			kfree_rcu(md5sig, rcu);
1443 			tcp_md5_release_sigpool();
1444 			return -EUSERS;
1445 		}
1446 	}
1447 
1448 	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1449 				key->flags, key->key, key->keylen,
1450 				sk_gfp_mask(sk, GFP_ATOMIC));
1451 }
1452 EXPORT_SYMBOL(tcp_md5_key_copy);
1453 
1454 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1455 		   u8 prefixlen, int l3index, u8 flags)
1456 {
1457 	struct tcp_md5sig_key *key;
1458 
1459 	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1460 	if (!key)
1461 		return -ENOENT;
1462 	hlist_del_rcu(&key->node);
1463 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1464 	kfree_rcu(key, rcu);
1465 	return 0;
1466 }
1467 EXPORT_SYMBOL(tcp_md5_do_del);
1468 
1469 void tcp_clear_md5_list(struct sock *sk)
1470 {
1471 	struct tcp_sock *tp = tcp_sk(sk);
1472 	struct tcp_md5sig_key *key;
1473 	struct hlist_node *n;
1474 	struct tcp_md5sig_info *md5sig;
1475 
1476 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1477 
1478 	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1479 		hlist_del_rcu(&key->node);
1480 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1481 		kfree_rcu(key, rcu);
1482 	}
1483 }
1484 
1485 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1486 				 sockptr_t optval, int optlen)
1487 {
1488 	struct tcp_md5sig cmd;
1489 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1490 	const union tcp_md5_addr *addr;
1491 	u8 prefixlen = 32;
1492 	int l3index = 0;
1493 	bool l3flag;
1494 	u8 flags;
1495 
1496 	if (optlen < sizeof(cmd))
1497 		return -EINVAL;
1498 
1499 	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1500 		return -EFAULT;
1501 
1502 	if (sin->sin_family != AF_INET)
1503 		return -EINVAL;
1504 
1505 	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1506 	l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1507 
1508 	if (optname == TCP_MD5SIG_EXT &&
1509 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1510 		prefixlen = cmd.tcpm_prefixlen;
1511 		if (prefixlen > 32)
1512 			return -EINVAL;
1513 	}
1514 
1515 	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1516 	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1517 		struct net_device *dev;
1518 
1519 		rcu_read_lock();
1520 		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1521 		if (dev && netif_is_l3_master(dev))
1522 			l3index = dev->ifindex;
1523 
1524 		rcu_read_unlock();
1525 
1526 		/* ok to reference set/not set outside of rcu;
1527 		 * right now device MUST be an L3 master
1528 		 */
1529 		if (!dev || !l3index)
1530 			return -EINVAL;
1531 	}
1532 
1533 	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1534 
1535 	if (!cmd.tcpm_keylen)
1536 		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1537 
1538 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1539 		return -EINVAL;
1540 
1541 	/* Don't allow keys for peers that have a matching TCP-AO key.
1542 	 * See the comment in tcp_ao_add_cmd()
1543 	 */
1544 	if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1545 		return -EKEYREJECTED;
1546 
1547 	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1548 			      cmd.tcpm_key, cmd.tcpm_keylen);
1549 }
1550 
1551 static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp,
1552 				   __be32 daddr, __be32 saddr,
1553 				   const struct tcphdr *th, int nbytes)
1554 {
1555 	struct tcp4_pseudohdr *bp;
1556 	struct scatterlist sg;
1557 	struct tcphdr *_th;
1558 
1559 	bp = hp->scratch;
1560 	bp->saddr = saddr;
1561 	bp->daddr = daddr;
1562 	bp->pad = 0;
1563 	bp->protocol = IPPROTO_TCP;
1564 	bp->len = cpu_to_be16(nbytes);
1565 
1566 	_th = (struct tcphdr *)(bp + 1);
1567 	memcpy(_th, th, sizeof(*th));
1568 	_th->check = 0;
1569 
1570 	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1571 	ahash_request_set_crypt(hp->req, &sg, NULL,
1572 				sizeof(*bp) + sizeof(*th));
1573 	return crypto_ahash_update(hp->req);
1574 }
1575 
1576 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1577 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1578 {
1579 	struct tcp_sigpool hp;
1580 
1581 	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1582 		goto clear_hash_nostart;
1583 
1584 	if (crypto_ahash_init(hp.req))
1585 		goto clear_hash;
1586 	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2))
1587 		goto clear_hash;
1588 	if (tcp_md5_hash_key(&hp, key))
1589 		goto clear_hash;
1590 	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1591 	if (crypto_ahash_final(hp.req))
1592 		goto clear_hash;
1593 
1594 	tcp_sigpool_end(&hp);
1595 	return 0;
1596 
1597 clear_hash:
1598 	tcp_sigpool_end(&hp);
1599 clear_hash_nostart:
1600 	memset(md5_hash, 0, 16);
1601 	return 1;
1602 }
1603 
1604 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1605 			const struct sock *sk,
1606 			const struct sk_buff *skb)
1607 {
1608 	const struct tcphdr *th = tcp_hdr(skb);
1609 	struct tcp_sigpool hp;
1610 	__be32 saddr, daddr;
1611 
1612 	if (sk) { /* valid for establish/request sockets */
1613 		saddr = sk->sk_rcv_saddr;
1614 		daddr = sk->sk_daddr;
1615 	} else {
1616 		const struct iphdr *iph = ip_hdr(skb);
1617 		saddr = iph->saddr;
1618 		daddr = iph->daddr;
1619 	}
1620 
1621 	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1622 		goto clear_hash_nostart;
1623 
1624 	if (crypto_ahash_init(hp.req))
1625 		goto clear_hash;
1626 
1627 	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len))
1628 		goto clear_hash;
1629 	if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
1630 		goto clear_hash;
1631 	if (tcp_md5_hash_key(&hp, key))
1632 		goto clear_hash;
1633 	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1634 	if (crypto_ahash_final(hp.req))
1635 		goto clear_hash;
1636 
1637 	tcp_sigpool_end(&hp);
1638 	return 0;
1639 
1640 clear_hash:
1641 	tcp_sigpool_end(&hp);
1642 clear_hash_nostart:
1643 	memset(md5_hash, 0, 16);
1644 	return 1;
1645 }
1646 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1647 
1648 #endif
1649 
1650 static void tcp_v4_init_req(struct request_sock *req,
1651 			    const struct sock *sk_listener,
1652 			    struct sk_buff *skb)
1653 {
1654 	struct inet_request_sock *ireq = inet_rsk(req);
1655 	struct net *net = sock_net(sk_listener);
1656 
1657 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1658 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1659 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1660 }
1661 
1662 static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1663 					  struct sk_buff *skb,
1664 					  struct flowi *fl,
1665 					  struct request_sock *req,
1666 					  u32 tw_isn)
1667 {
1668 	tcp_v4_init_req(req, sk, skb);
1669 
1670 	if (security_inet_conn_request(sk, skb, req))
1671 		return NULL;
1672 
1673 	return inet_csk_route_req(sk, &fl->u.ip4, req);
1674 }
1675 
1676 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1677 	.family		=	PF_INET,
1678 	.obj_size	=	sizeof(struct tcp_request_sock),
1679 	.rtx_syn_ack	=	tcp_rtx_synack,
1680 	.send_ack	=	tcp_v4_reqsk_send_ack,
1681 	.destructor	=	tcp_v4_reqsk_destructor,
1682 	.send_reset	=	tcp_v4_send_reset,
1683 	.syn_ack_timeout =	tcp_syn_ack_timeout,
1684 };
1685 
1686 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1687 	.mss_clamp	=	TCP_MSS_DEFAULT,
1688 #ifdef CONFIG_TCP_MD5SIG
1689 	.req_md5_lookup	=	tcp_v4_md5_lookup,
1690 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1691 #endif
1692 #ifdef CONFIG_TCP_AO
1693 	.ao_lookup	=	tcp_v4_ao_lookup_rsk,
1694 	.ao_calc_key	=	tcp_v4_ao_calc_key_rsk,
1695 	.ao_synack_hash	=	tcp_v4_ao_synack_hash,
1696 #endif
1697 #ifdef CONFIG_SYN_COOKIES
1698 	.cookie_init_seq =	cookie_v4_init_sequence,
1699 #endif
1700 	.route_req	=	tcp_v4_route_req,
1701 	.init_seq	=	tcp_v4_init_seq,
1702 	.init_ts_off	=	tcp_v4_init_ts_off,
1703 	.send_synack	=	tcp_v4_send_synack,
1704 };
1705 
1706 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1707 {
1708 	/* Never answer to SYNs send to broadcast or multicast */
1709 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1710 		goto drop;
1711 
1712 	return tcp_conn_request(&tcp_request_sock_ops,
1713 				&tcp_request_sock_ipv4_ops, sk, skb);
1714 
1715 drop:
1716 	tcp_listendrop(sk);
1717 	return 0;
1718 }
1719 EXPORT_SYMBOL(tcp_v4_conn_request);
1720 
1721 
1722 /*
1723  * The three way handshake has completed - we got a valid synack -
1724  * now create the new socket.
1725  */
1726 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1727 				  struct request_sock *req,
1728 				  struct dst_entry *dst,
1729 				  struct request_sock *req_unhash,
1730 				  bool *own_req)
1731 {
1732 	struct inet_request_sock *ireq;
1733 	bool found_dup_sk = false;
1734 	struct inet_sock *newinet;
1735 	struct tcp_sock *newtp;
1736 	struct sock *newsk;
1737 #ifdef CONFIG_TCP_MD5SIG
1738 	const union tcp_md5_addr *addr;
1739 	struct tcp_md5sig_key *key;
1740 	int l3index;
1741 #endif
1742 	struct ip_options_rcu *inet_opt;
1743 
1744 	if (sk_acceptq_is_full(sk))
1745 		goto exit_overflow;
1746 
1747 	newsk = tcp_create_openreq_child(sk, req, skb);
1748 	if (!newsk)
1749 		goto exit_nonewsk;
1750 
1751 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1752 	inet_sk_rx_dst_set(newsk, skb);
1753 
1754 	newtp		      = tcp_sk(newsk);
1755 	newinet		      = inet_sk(newsk);
1756 	ireq		      = inet_rsk(req);
1757 	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1758 	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1759 	newsk->sk_bound_dev_if = ireq->ir_iif;
1760 	newinet->inet_saddr   = ireq->ir_loc_addr;
1761 	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1762 	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1763 	newinet->mc_index     = inet_iif(skb);
1764 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1765 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1766 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1767 	if (inet_opt)
1768 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1769 	atomic_set(&newinet->inet_id, get_random_u16());
1770 
1771 	/* Set ToS of the new socket based upon the value of incoming SYN.
1772 	 * ECT bits are set later in tcp_init_transfer().
1773 	 */
1774 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1775 		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1776 
1777 	if (!dst) {
1778 		dst = inet_csk_route_child_sock(sk, newsk, req);
1779 		if (!dst)
1780 			goto put_and_exit;
1781 	} else {
1782 		/* syncookie case : see end of cookie_v4_check() */
1783 	}
1784 	sk_setup_caps(newsk, dst);
1785 
1786 	tcp_ca_openreq_child(newsk, dst);
1787 
1788 	tcp_sync_mss(newsk, dst_mtu(dst));
1789 	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
1790 
1791 	tcp_initialize_rcv_mss(newsk);
1792 
1793 #ifdef CONFIG_TCP_MD5SIG
1794 	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1795 	/* Copy over the MD5 key from the original socket */
1796 	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1797 	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1798 	if (key && !tcp_rsk_used_ao(req)) {
1799 		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1800 			goto put_and_exit;
1801 		sk_gso_disable(newsk);
1802 	}
1803 #endif
1804 #ifdef CONFIG_TCP_AO
1805 	if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1806 		goto put_and_exit; /* OOM, release back memory */
1807 #endif
1808 
1809 	if (__inet_inherit_port(sk, newsk) < 0)
1810 		goto put_and_exit;
1811 	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1812 				       &found_dup_sk);
1813 	if (likely(*own_req)) {
1814 		tcp_move_syn(newtp, req);
1815 		ireq->ireq_opt = NULL;
1816 	} else {
1817 		newinet->inet_opt = NULL;
1818 
1819 		if (!req_unhash && found_dup_sk) {
1820 			/* This code path should only be executed in the
1821 			 * syncookie case only
1822 			 */
1823 			bh_unlock_sock(newsk);
1824 			sock_put(newsk);
1825 			newsk = NULL;
1826 		}
1827 	}
1828 	return newsk;
1829 
1830 exit_overflow:
1831 	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1832 exit_nonewsk:
1833 	dst_release(dst);
1834 exit:
1835 	tcp_listendrop(sk);
1836 	return NULL;
1837 put_and_exit:
1838 	newinet->inet_opt = NULL;
1839 	inet_csk_prepare_forced_close(newsk);
1840 	tcp_done(newsk);
1841 	goto exit;
1842 }
1843 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1844 
1845 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1846 {
1847 #ifdef CONFIG_SYN_COOKIES
1848 	const struct tcphdr *th = tcp_hdr(skb);
1849 
1850 	if (!th->syn)
1851 		sk = cookie_v4_check(sk, skb);
1852 #endif
1853 	return sk;
1854 }
1855 
1856 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1857 			 struct tcphdr *th, u32 *cookie)
1858 {
1859 	u16 mss = 0;
1860 #ifdef CONFIG_SYN_COOKIES
1861 	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1862 				    &tcp_request_sock_ipv4_ops, sk, th);
1863 	if (mss) {
1864 		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1865 		tcp_synq_overflow(sk);
1866 	}
1867 #endif
1868 	return mss;
1869 }
1870 
1871 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1872 							   u32));
1873 /* The socket must have it's spinlock held when we get
1874  * here, unless it is a TCP_LISTEN socket.
1875  *
1876  * We have a potential double-lock case here, so even when
1877  * doing backlog processing we use the BH locking scheme.
1878  * This is because we cannot sleep with the original spinlock
1879  * held.
1880  */
1881 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1882 {
1883 	enum skb_drop_reason reason;
1884 	struct sock *rsk;
1885 
1886 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1887 		struct dst_entry *dst;
1888 
1889 		dst = rcu_dereference_protected(sk->sk_rx_dst,
1890 						lockdep_sock_is_held(sk));
1891 
1892 		sock_rps_save_rxhash(sk, skb);
1893 		sk_mark_napi_id(sk, skb);
1894 		if (dst) {
1895 			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1896 			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1897 					     dst, 0)) {
1898 				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1899 				dst_release(dst);
1900 			}
1901 		}
1902 		tcp_rcv_established(sk, skb);
1903 		return 0;
1904 	}
1905 
1906 	if (tcp_checksum_complete(skb))
1907 		goto csum_err;
1908 
1909 	if (sk->sk_state == TCP_LISTEN) {
1910 		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1911 
1912 		if (!nsk)
1913 			return 0;
1914 		if (nsk != sk) {
1915 			reason = tcp_child_process(sk, nsk, skb);
1916 			if (reason) {
1917 				rsk = nsk;
1918 				goto reset;
1919 			}
1920 			return 0;
1921 		}
1922 	} else
1923 		sock_rps_save_rxhash(sk, skb);
1924 
1925 	reason = tcp_rcv_state_process(sk, skb);
1926 	if (reason) {
1927 		rsk = sk;
1928 		goto reset;
1929 	}
1930 	return 0;
1931 
1932 reset:
1933 	tcp_v4_send_reset(rsk, skb, sk_rst_convert_drop_reason(reason));
1934 discard:
1935 	sk_skb_reason_drop(sk, skb, reason);
1936 	/* Be careful here. If this function gets more complicated and
1937 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1938 	 * might be destroyed here. This current version compiles correctly,
1939 	 * but you have been warned.
1940 	 */
1941 	return 0;
1942 
1943 csum_err:
1944 	reason = SKB_DROP_REASON_TCP_CSUM;
1945 	trace_tcp_bad_csum(skb);
1946 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1947 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1948 	goto discard;
1949 }
1950 EXPORT_SYMBOL(tcp_v4_do_rcv);
1951 
1952 int tcp_v4_early_demux(struct sk_buff *skb)
1953 {
1954 	struct net *net = dev_net(skb->dev);
1955 	const struct iphdr *iph;
1956 	const struct tcphdr *th;
1957 	struct sock *sk;
1958 
1959 	if (skb->pkt_type != PACKET_HOST)
1960 		return 0;
1961 
1962 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1963 		return 0;
1964 
1965 	iph = ip_hdr(skb);
1966 	th = tcp_hdr(skb);
1967 
1968 	if (th->doff < sizeof(struct tcphdr) / 4)
1969 		return 0;
1970 
1971 	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1972 				       iph->saddr, th->source,
1973 				       iph->daddr, ntohs(th->dest),
1974 				       skb->skb_iif, inet_sdif(skb));
1975 	if (sk) {
1976 		skb->sk = sk;
1977 		skb->destructor = sock_edemux;
1978 		if (sk_fullsock(sk)) {
1979 			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1980 
1981 			if (dst)
1982 				dst = dst_check(dst, 0);
1983 			if (dst &&
1984 			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1985 				skb_dst_set_noref(skb, dst);
1986 		}
1987 	}
1988 	return 0;
1989 }
1990 
1991 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1992 		     enum skb_drop_reason *reason)
1993 {
1994 	u32 tail_gso_size, tail_gso_segs;
1995 	struct skb_shared_info *shinfo;
1996 	const struct tcphdr *th;
1997 	struct tcphdr *thtail;
1998 	struct sk_buff *tail;
1999 	unsigned int hdrlen;
2000 	bool fragstolen;
2001 	u32 gso_segs;
2002 	u32 gso_size;
2003 	u64 limit;
2004 	int delta;
2005 
2006 	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
2007 	 * we can fix skb->truesize to its real value to avoid future drops.
2008 	 * This is valid because skb is not yet charged to the socket.
2009 	 * It has been noticed pure SACK packets were sometimes dropped
2010 	 * (if cooked by drivers without copybreak feature).
2011 	 */
2012 	skb_condense(skb);
2013 
2014 	skb_dst_drop(skb);
2015 
2016 	if (unlikely(tcp_checksum_complete(skb))) {
2017 		bh_unlock_sock(sk);
2018 		trace_tcp_bad_csum(skb);
2019 		*reason = SKB_DROP_REASON_TCP_CSUM;
2020 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2021 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2022 		return true;
2023 	}
2024 
2025 	/* Attempt coalescing to last skb in backlog, even if we are
2026 	 * above the limits.
2027 	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2028 	 */
2029 	th = (const struct tcphdr *)skb->data;
2030 	hdrlen = th->doff * 4;
2031 
2032 	tail = sk->sk_backlog.tail;
2033 	if (!tail)
2034 		goto no_coalesce;
2035 	thtail = (struct tcphdr *)tail->data;
2036 
2037 	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2038 	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2039 	    ((TCP_SKB_CB(tail)->tcp_flags |
2040 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2041 	    !((TCP_SKB_CB(tail)->tcp_flags &
2042 	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2043 	    ((TCP_SKB_CB(tail)->tcp_flags ^
2044 	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
2045 	    !tcp_skb_can_collapse_rx(tail, skb) ||
2046 	    thtail->doff != th->doff ||
2047 	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
2048 		goto no_coalesce;
2049 
2050 	__skb_pull(skb, hdrlen);
2051 
2052 	shinfo = skb_shinfo(skb);
2053 	gso_size = shinfo->gso_size ?: skb->len;
2054 	gso_segs = shinfo->gso_segs ?: 1;
2055 
2056 	shinfo = skb_shinfo(tail);
2057 	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2058 	tail_gso_segs = shinfo->gso_segs ?: 1;
2059 
2060 	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2061 		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2062 
2063 		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2064 			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2065 			thtail->window = th->window;
2066 		}
2067 
2068 		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2069 		 * thtail->fin, so that the fast path in tcp_rcv_established()
2070 		 * is not entered if we append a packet with a FIN.
2071 		 * SYN, RST, URG are not present.
2072 		 * ACK is set on both packets.
2073 		 * PSH : we do not really care in TCP stack,
2074 		 *       at least for 'GRO' packets.
2075 		 */
2076 		thtail->fin |= th->fin;
2077 		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2078 
2079 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2080 			TCP_SKB_CB(tail)->has_rxtstamp = true;
2081 			tail->tstamp = skb->tstamp;
2082 			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2083 		}
2084 
2085 		/* Not as strict as GRO. We only need to carry mss max value */
2086 		shinfo->gso_size = max(gso_size, tail_gso_size);
2087 		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2088 
2089 		sk->sk_backlog.len += delta;
2090 		__NET_INC_STATS(sock_net(sk),
2091 				LINUX_MIB_TCPBACKLOGCOALESCE);
2092 		kfree_skb_partial(skb, fragstolen);
2093 		return false;
2094 	}
2095 	__skb_push(skb, hdrlen);
2096 
2097 no_coalesce:
2098 	/* sk->sk_backlog.len is reset only at the end of __release_sock().
2099 	 * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
2100 	 * sk_rcvbuf in normal conditions.
2101 	 */
2102 	limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1;
2103 
2104 	limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1;
2105 
2106 	/* Only socket owner can try to collapse/prune rx queues
2107 	 * to reduce memory overhead, so add a little headroom here.
2108 	 * Few sockets backlog are possibly concurrently non empty.
2109 	 */
2110 	limit += 64 * 1024;
2111 
2112 	limit = min_t(u64, limit, UINT_MAX);
2113 
2114 	if (unlikely(sk_add_backlog(sk, skb, limit))) {
2115 		bh_unlock_sock(sk);
2116 		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2117 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2118 		return true;
2119 	}
2120 	return false;
2121 }
2122 EXPORT_SYMBOL(tcp_add_backlog);
2123 
2124 int tcp_filter(struct sock *sk, struct sk_buff *skb)
2125 {
2126 	struct tcphdr *th = (struct tcphdr *)skb->data;
2127 
2128 	return sk_filter_trim_cap(sk, skb, th->doff * 4);
2129 }
2130 EXPORT_SYMBOL(tcp_filter);
2131 
2132 static void tcp_v4_restore_cb(struct sk_buff *skb)
2133 {
2134 	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2135 		sizeof(struct inet_skb_parm));
2136 }
2137 
2138 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2139 			   const struct tcphdr *th)
2140 {
2141 	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2142 	 * barrier() makes sure compiler wont play fool^Waliasing games.
2143 	 */
2144 	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2145 		sizeof(struct inet_skb_parm));
2146 	barrier();
2147 
2148 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2149 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2150 				    skb->len - th->doff * 4);
2151 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2152 	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
2153 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2154 	TCP_SKB_CB(skb)->sacked	 = 0;
2155 	TCP_SKB_CB(skb)->has_rxtstamp =
2156 			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2157 }
2158 
2159 /*
2160  *	From tcp_input.c
2161  */
2162 
2163 int tcp_v4_rcv(struct sk_buff *skb)
2164 {
2165 	struct net *net = dev_net(skb->dev);
2166 	enum skb_drop_reason drop_reason;
2167 	int sdif = inet_sdif(skb);
2168 	int dif = inet_iif(skb);
2169 	const struct iphdr *iph;
2170 	const struct tcphdr *th;
2171 	struct sock *sk = NULL;
2172 	bool refcounted;
2173 	int ret;
2174 	u32 isn;
2175 
2176 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2177 	if (skb->pkt_type != PACKET_HOST)
2178 		goto discard_it;
2179 
2180 	/* Count it even if it's bad */
2181 	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2182 
2183 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2184 		goto discard_it;
2185 
2186 	th = (const struct tcphdr *)skb->data;
2187 
2188 	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2189 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2190 		goto bad_packet;
2191 	}
2192 	if (!pskb_may_pull(skb, th->doff * 4))
2193 		goto discard_it;
2194 
2195 	/* An explanation is required here, I think.
2196 	 * Packet length and doff are validated by header prediction,
2197 	 * provided case of th->doff==0 is eliminated.
2198 	 * So, we defer the checks. */
2199 
2200 	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2201 		goto csum_error;
2202 
2203 	th = (const struct tcphdr *)skb->data;
2204 	iph = ip_hdr(skb);
2205 lookup:
2206 	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2207 			       skb, __tcp_hdrlen(th), th->source,
2208 			       th->dest, sdif, &refcounted);
2209 	if (!sk)
2210 		goto no_tcp_socket;
2211 
2212 	if (sk->sk_state == TCP_TIME_WAIT)
2213 		goto do_time_wait;
2214 
2215 	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2216 		struct request_sock *req = inet_reqsk(sk);
2217 		bool req_stolen = false;
2218 		struct sock *nsk;
2219 
2220 		sk = req->rsk_listener;
2221 		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2222 			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2223 		else
2224 			drop_reason = tcp_inbound_hash(sk, req, skb,
2225 						       &iph->saddr, &iph->daddr,
2226 						       AF_INET, dif, sdif);
2227 		if (unlikely(drop_reason)) {
2228 			sk_drops_add(sk, skb);
2229 			reqsk_put(req);
2230 			goto discard_it;
2231 		}
2232 		if (tcp_checksum_complete(skb)) {
2233 			reqsk_put(req);
2234 			goto csum_error;
2235 		}
2236 		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2237 			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2238 			if (!nsk) {
2239 				inet_csk_reqsk_queue_drop_and_put(sk, req);
2240 				goto lookup;
2241 			}
2242 			sk = nsk;
2243 			/* reuseport_migrate_sock() has already held one sk_refcnt
2244 			 * before returning.
2245 			 */
2246 		} else {
2247 			/* We own a reference on the listener, increase it again
2248 			 * as we might lose it too soon.
2249 			 */
2250 			sock_hold(sk);
2251 		}
2252 		refcounted = true;
2253 		nsk = NULL;
2254 		if (!tcp_filter(sk, skb)) {
2255 			th = (const struct tcphdr *)skb->data;
2256 			iph = ip_hdr(skb);
2257 			tcp_v4_fill_cb(skb, iph, th);
2258 			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2259 		} else {
2260 			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2261 		}
2262 		if (!nsk) {
2263 			reqsk_put(req);
2264 			if (req_stolen) {
2265 				/* Another cpu got exclusive access to req
2266 				 * and created a full blown socket.
2267 				 * Try to feed this packet to this socket
2268 				 * instead of discarding it.
2269 				 */
2270 				tcp_v4_restore_cb(skb);
2271 				sock_put(sk);
2272 				goto lookup;
2273 			}
2274 			goto discard_and_relse;
2275 		}
2276 		nf_reset_ct(skb);
2277 		if (nsk == sk) {
2278 			reqsk_put(req);
2279 			tcp_v4_restore_cb(skb);
2280 		} else {
2281 			drop_reason = tcp_child_process(sk, nsk, skb);
2282 			if (drop_reason) {
2283 				enum sk_rst_reason rst_reason;
2284 
2285 				rst_reason = sk_rst_convert_drop_reason(drop_reason);
2286 				tcp_v4_send_reset(nsk, skb, rst_reason);
2287 				goto discard_and_relse;
2288 			}
2289 			sock_put(sk);
2290 			return 0;
2291 		}
2292 	}
2293 
2294 process:
2295 	if (static_branch_unlikely(&ip4_min_ttl)) {
2296 		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2297 		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2298 			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2299 			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2300 			goto discard_and_relse;
2301 		}
2302 	}
2303 
2304 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2305 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2306 		goto discard_and_relse;
2307 	}
2308 
2309 	drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2310 				       AF_INET, dif, sdif);
2311 	if (drop_reason)
2312 		goto discard_and_relse;
2313 
2314 	nf_reset_ct(skb);
2315 
2316 	if (tcp_filter(sk, skb)) {
2317 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2318 		goto discard_and_relse;
2319 	}
2320 	th = (const struct tcphdr *)skb->data;
2321 	iph = ip_hdr(skb);
2322 	tcp_v4_fill_cb(skb, iph, th);
2323 
2324 	skb->dev = NULL;
2325 
2326 	if (sk->sk_state == TCP_LISTEN) {
2327 		ret = tcp_v4_do_rcv(sk, skb);
2328 		goto put_and_return;
2329 	}
2330 
2331 	sk_incoming_cpu_update(sk);
2332 
2333 	bh_lock_sock_nested(sk);
2334 	tcp_segs_in(tcp_sk(sk), skb);
2335 	ret = 0;
2336 	if (!sock_owned_by_user(sk)) {
2337 		ret = tcp_v4_do_rcv(sk, skb);
2338 	} else {
2339 		if (tcp_add_backlog(sk, skb, &drop_reason))
2340 			goto discard_and_relse;
2341 	}
2342 	bh_unlock_sock(sk);
2343 
2344 put_and_return:
2345 	if (refcounted)
2346 		sock_put(sk);
2347 
2348 	return ret;
2349 
2350 no_tcp_socket:
2351 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2352 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2353 		goto discard_it;
2354 
2355 	tcp_v4_fill_cb(skb, iph, th);
2356 
2357 	if (tcp_checksum_complete(skb)) {
2358 csum_error:
2359 		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2360 		trace_tcp_bad_csum(skb);
2361 		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2362 bad_packet:
2363 		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2364 	} else {
2365 		tcp_v4_send_reset(NULL, skb, sk_rst_convert_drop_reason(drop_reason));
2366 	}
2367 
2368 discard_it:
2369 	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2370 	/* Discard frame. */
2371 	sk_skb_reason_drop(sk, skb, drop_reason);
2372 	return 0;
2373 
2374 discard_and_relse:
2375 	sk_drops_add(sk, skb);
2376 	if (refcounted)
2377 		sock_put(sk);
2378 	goto discard_it;
2379 
2380 do_time_wait:
2381 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2382 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2383 		inet_twsk_put(inet_twsk(sk));
2384 		goto discard_it;
2385 	}
2386 
2387 	tcp_v4_fill_cb(skb, iph, th);
2388 
2389 	if (tcp_checksum_complete(skb)) {
2390 		inet_twsk_put(inet_twsk(sk));
2391 		goto csum_error;
2392 	}
2393 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn)) {
2394 	case TCP_TW_SYN: {
2395 		struct sock *sk2 = inet_lookup_listener(net,
2396 							net->ipv4.tcp_death_row.hashinfo,
2397 							skb, __tcp_hdrlen(th),
2398 							iph->saddr, th->source,
2399 							iph->daddr, th->dest,
2400 							inet_iif(skb),
2401 							sdif);
2402 		if (sk2) {
2403 			inet_twsk_deschedule_put(inet_twsk(sk));
2404 			sk = sk2;
2405 			tcp_v4_restore_cb(skb);
2406 			refcounted = false;
2407 			__this_cpu_write(tcp_tw_isn, isn);
2408 			goto process;
2409 		}
2410 	}
2411 		/* to ACK */
2412 		fallthrough;
2413 	case TCP_TW_ACK:
2414 		tcp_v4_timewait_ack(sk, skb);
2415 		break;
2416 	case TCP_TW_RST:
2417 		tcp_v4_send_reset(sk, skb, SK_RST_REASON_TCP_TIMEWAIT_SOCKET);
2418 		inet_twsk_deschedule_put(inet_twsk(sk));
2419 		goto discard_it;
2420 	case TCP_TW_SUCCESS:;
2421 	}
2422 	goto discard_it;
2423 }
2424 
2425 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2426 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2427 	.twsk_destructor= tcp_twsk_destructor,
2428 };
2429 
2430 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2431 {
2432 	struct dst_entry *dst = skb_dst(skb);
2433 
2434 	if (dst && dst_hold_safe(dst)) {
2435 		rcu_assign_pointer(sk->sk_rx_dst, dst);
2436 		sk->sk_rx_dst_ifindex = skb->skb_iif;
2437 	}
2438 }
2439 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2440 
2441 const struct inet_connection_sock_af_ops ipv4_specific = {
2442 	.queue_xmit	   = ip_queue_xmit,
2443 	.send_check	   = tcp_v4_send_check,
2444 	.rebuild_header	   = inet_sk_rebuild_header,
2445 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2446 	.conn_request	   = tcp_v4_conn_request,
2447 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2448 	.net_header_len	   = sizeof(struct iphdr),
2449 	.setsockopt	   = ip_setsockopt,
2450 	.getsockopt	   = ip_getsockopt,
2451 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2452 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2453 	.mtu_reduced	   = tcp_v4_mtu_reduced,
2454 };
2455 EXPORT_SYMBOL(ipv4_specific);
2456 
2457 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2458 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2459 #ifdef CONFIG_TCP_MD5SIG
2460 	.md5_lookup		= tcp_v4_md5_lookup,
2461 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2462 	.md5_parse		= tcp_v4_parse_md5_keys,
2463 #endif
2464 #ifdef CONFIG_TCP_AO
2465 	.ao_lookup		= tcp_v4_ao_lookup,
2466 	.calc_ao_hash		= tcp_v4_ao_hash_skb,
2467 	.ao_parse		= tcp_v4_parse_ao,
2468 	.ao_calc_key_sk		= tcp_v4_ao_calc_key_sk,
2469 #endif
2470 };
2471 #endif
2472 
2473 /* NOTE: A lot of things set to zero explicitly by call to
2474  *       sk_alloc() so need not be done here.
2475  */
2476 static int tcp_v4_init_sock(struct sock *sk)
2477 {
2478 	struct inet_connection_sock *icsk = inet_csk(sk);
2479 
2480 	tcp_init_sock(sk);
2481 
2482 	icsk->icsk_af_ops = &ipv4_specific;
2483 
2484 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2485 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2486 #endif
2487 
2488 	return 0;
2489 }
2490 
2491 #ifdef CONFIG_TCP_MD5SIG
2492 static void tcp_md5sig_info_free_rcu(struct rcu_head *head)
2493 {
2494 	struct tcp_md5sig_info *md5sig;
2495 
2496 	md5sig = container_of(head, struct tcp_md5sig_info, rcu);
2497 	kfree(md5sig);
2498 	static_branch_slow_dec_deferred(&tcp_md5_needed);
2499 	tcp_md5_release_sigpool();
2500 }
2501 #endif
2502 
2503 void tcp_v4_destroy_sock(struct sock *sk)
2504 {
2505 	struct tcp_sock *tp = tcp_sk(sk);
2506 
2507 	trace_tcp_destroy_sock(sk);
2508 
2509 	tcp_clear_xmit_timers(sk);
2510 
2511 	tcp_cleanup_congestion_control(sk);
2512 
2513 	tcp_cleanup_ulp(sk);
2514 
2515 	/* Cleanup up the write buffer. */
2516 	tcp_write_queue_purge(sk);
2517 
2518 	/* Check if we want to disable active TFO */
2519 	tcp_fastopen_active_disable_ofo_check(sk);
2520 
2521 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2522 	skb_rbtree_purge(&tp->out_of_order_queue);
2523 
2524 #ifdef CONFIG_TCP_MD5SIG
2525 	/* Clean up the MD5 key list, if any */
2526 	if (tp->md5sig_info) {
2527 		struct tcp_md5sig_info *md5sig;
2528 
2529 		md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
2530 		tcp_clear_md5_list(sk);
2531 		call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu);
2532 		rcu_assign_pointer(tp->md5sig_info, NULL);
2533 	}
2534 #endif
2535 	tcp_ao_destroy_sock(sk, false);
2536 
2537 	/* Clean up a referenced TCP bind bucket. */
2538 	if (inet_csk(sk)->icsk_bind_hash)
2539 		inet_put_port(sk);
2540 
2541 	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2542 
2543 	/* If socket is aborted during connect operation */
2544 	tcp_free_fastopen_req(tp);
2545 	tcp_fastopen_destroy_cipher(sk);
2546 	tcp_saved_syn_free(tp);
2547 
2548 	sk_sockets_allocated_dec(sk);
2549 }
2550 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2551 
2552 #ifdef CONFIG_PROC_FS
2553 /* Proc filesystem TCP sock list dumping. */
2554 
2555 static unsigned short seq_file_family(const struct seq_file *seq);
2556 
2557 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2558 {
2559 	unsigned short family = seq_file_family(seq);
2560 
2561 	/* AF_UNSPEC is used as a match all */
2562 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2563 		net_eq(sock_net(sk), seq_file_net(seq)));
2564 }
2565 
2566 /* Find a non empty bucket (starting from st->bucket)
2567  * and return the first sk from it.
2568  */
2569 static void *listening_get_first(struct seq_file *seq)
2570 {
2571 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2572 	struct tcp_iter_state *st = seq->private;
2573 
2574 	st->offset = 0;
2575 	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2576 		struct inet_listen_hashbucket *ilb2;
2577 		struct hlist_nulls_node *node;
2578 		struct sock *sk;
2579 
2580 		ilb2 = &hinfo->lhash2[st->bucket];
2581 		if (hlist_nulls_empty(&ilb2->nulls_head))
2582 			continue;
2583 
2584 		spin_lock(&ilb2->lock);
2585 		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2586 			if (seq_sk_match(seq, sk))
2587 				return sk;
2588 		}
2589 		spin_unlock(&ilb2->lock);
2590 	}
2591 
2592 	return NULL;
2593 }
2594 
2595 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2596  * If "cur" is the last one in the st->bucket,
2597  * call listening_get_first() to return the first sk of the next
2598  * non empty bucket.
2599  */
2600 static void *listening_get_next(struct seq_file *seq, void *cur)
2601 {
2602 	struct tcp_iter_state *st = seq->private;
2603 	struct inet_listen_hashbucket *ilb2;
2604 	struct hlist_nulls_node *node;
2605 	struct inet_hashinfo *hinfo;
2606 	struct sock *sk = cur;
2607 
2608 	++st->num;
2609 	++st->offset;
2610 
2611 	sk = sk_nulls_next(sk);
2612 	sk_nulls_for_each_from(sk, node) {
2613 		if (seq_sk_match(seq, sk))
2614 			return sk;
2615 	}
2616 
2617 	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2618 	ilb2 = &hinfo->lhash2[st->bucket];
2619 	spin_unlock(&ilb2->lock);
2620 	++st->bucket;
2621 	return listening_get_first(seq);
2622 }
2623 
2624 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2625 {
2626 	struct tcp_iter_state *st = seq->private;
2627 	void *rc;
2628 
2629 	st->bucket = 0;
2630 	st->offset = 0;
2631 	rc = listening_get_first(seq);
2632 
2633 	while (rc && *pos) {
2634 		rc = listening_get_next(seq, rc);
2635 		--*pos;
2636 	}
2637 	return rc;
2638 }
2639 
2640 static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2641 				const struct tcp_iter_state *st)
2642 {
2643 	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2644 }
2645 
2646 /*
2647  * Get first established socket starting from bucket given in st->bucket.
2648  * If st->bucket is zero, the very first socket in the hash is returned.
2649  */
2650 static void *established_get_first(struct seq_file *seq)
2651 {
2652 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2653 	struct tcp_iter_state *st = seq->private;
2654 
2655 	st->offset = 0;
2656 	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2657 		struct sock *sk;
2658 		struct hlist_nulls_node *node;
2659 		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2660 
2661 		cond_resched();
2662 
2663 		/* Lockless fast path for the common case of empty buckets */
2664 		if (empty_bucket(hinfo, st))
2665 			continue;
2666 
2667 		spin_lock_bh(lock);
2668 		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2669 			if (seq_sk_match(seq, sk))
2670 				return sk;
2671 		}
2672 		spin_unlock_bh(lock);
2673 	}
2674 
2675 	return NULL;
2676 }
2677 
2678 static void *established_get_next(struct seq_file *seq, void *cur)
2679 {
2680 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2681 	struct tcp_iter_state *st = seq->private;
2682 	struct hlist_nulls_node *node;
2683 	struct sock *sk = cur;
2684 
2685 	++st->num;
2686 	++st->offset;
2687 
2688 	sk = sk_nulls_next(sk);
2689 
2690 	sk_nulls_for_each_from(sk, node) {
2691 		if (seq_sk_match(seq, sk))
2692 			return sk;
2693 	}
2694 
2695 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2696 	++st->bucket;
2697 	return established_get_first(seq);
2698 }
2699 
2700 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2701 {
2702 	struct tcp_iter_state *st = seq->private;
2703 	void *rc;
2704 
2705 	st->bucket = 0;
2706 	rc = established_get_first(seq);
2707 
2708 	while (rc && pos) {
2709 		rc = established_get_next(seq, rc);
2710 		--pos;
2711 	}
2712 	return rc;
2713 }
2714 
2715 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2716 {
2717 	void *rc;
2718 	struct tcp_iter_state *st = seq->private;
2719 
2720 	st->state = TCP_SEQ_STATE_LISTENING;
2721 	rc	  = listening_get_idx(seq, &pos);
2722 
2723 	if (!rc) {
2724 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2725 		rc	  = established_get_idx(seq, pos);
2726 	}
2727 
2728 	return rc;
2729 }
2730 
2731 static void *tcp_seek_last_pos(struct seq_file *seq)
2732 {
2733 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2734 	struct tcp_iter_state *st = seq->private;
2735 	int bucket = st->bucket;
2736 	int offset = st->offset;
2737 	int orig_num = st->num;
2738 	void *rc = NULL;
2739 
2740 	switch (st->state) {
2741 	case TCP_SEQ_STATE_LISTENING:
2742 		if (st->bucket > hinfo->lhash2_mask)
2743 			break;
2744 		rc = listening_get_first(seq);
2745 		while (offset-- && rc && bucket == st->bucket)
2746 			rc = listening_get_next(seq, rc);
2747 		if (rc)
2748 			break;
2749 		st->bucket = 0;
2750 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2751 		fallthrough;
2752 	case TCP_SEQ_STATE_ESTABLISHED:
2753 		if (st->bucket > hinfo->ehash_mask)
2754 			break;
2755 		rc = established_get_first(seq);
2756 		while (offset-- && rc && bucket == st->bucket)
2757 			rc = established_get_next(seq, rc);
2758 	}
2759 
2760 	st->num = orig_num;
2761 
2762 	return rc;
2763 }
2764 
2765 void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2766 {
2767 	struct tcp_iter_state *st = seq->private;
2768 	void *rc;
2769 
2770 	if (*pos && *pos == st->last_pos) {
2771 		rc = tcp_seek_last_pos(seq);
2772 		if (rc)
2773 			goto out;
2774 	}
2775 
2776 	st->state = TCP_SEQ_STATE_LISTENING;
2777 	st->num = 0;
2778 	st->bucket = 0;
2779 	st->offset = 0;
2780 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2781 
2782 out:
2783 	st->last_pos = *pos;
2784 	return rc;
2785 }
2786 EXPORT_SYMBOL(tcp_seq_start);
2787 
2788 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2789 {
2790 	struct tcp_iter_state *st = seq->private;
2791 	void *rc = NULL;
2792 
2793 	if (v == SEQ_START_TOKEN) {
2794 		rc = tcp_get_idx(seq, 0);
2795 		goto out;
2796 	}
2797 
2798 	switch (st->state) {
2799 	case TCP_SEQ_STATE_LISTENING:
2800 		rc = listening_get_next(seq, v);
2801 		if (!rc) {
2802 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2803 			st->bucket = 0;
2804 			st->offset = 0;
2805 			rc	  = established_get_first(seq);
2806 		}
2807 		break;
2808 	case TCP_SEQ_STATE_ESTABLISHED:
2809 		rc = established_get_next(seq, v);
2810 		break;
2811 	}
2812 out:
2813 	++*pos;
2814 	st->last_pos = *pos;
2815 	return rc;
2816 }
2817 EXPORT_SYMBOL(tcp_seq_next);
2818 
2819 void tcp_seq_stop(struct seq_file *seq, void *v)
2820 {
2821 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2822 	struct tcp_iter_state *st = seq->private;
2823 
2824 	switch (st->state) {
2825 	case TCP_SEQ_STATE_LISTENING:
2826 		if (v != SEQ_START_TOKEN)
2827 			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2828 		break;
2829 	case TCP_SEQ_STATE_ESTABLISHED:
2830 		if (v)
2831 			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2832 		break;
2833 	}
2834 }
2835 EXPORT_SYMBOL(tcp_seq_stop);
2836 
2837 static void get_openreq4(const struct request_sock *req,
2838 			 struct seq_file *f, int i)
2839 {
2840 	const struct inet_request_sock *ireq = inet_rsk(req);
2841 	long delta = req->rsk_timer.expires - jiffies;
2842 
2843 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2844 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2845 		i,
2846 		ireq->ir_loc_addr,
2847 		ireq->ir_num,
2848 		ireq->ir_rmt_addr,
2849 		ntohs(ireq->ir_rmt_port),
2850 		TCP_SYN_RECV,
2851 		0, 0, /* could print option size, but that is af dependent. */
2852 		1,    /* timers active (only the expire timer) */
2853 		jiffies_delta_to_clock_t(delta),
2854 		req->num_timeout,
2855 		from_kuid_munged(seq_user_ns(f),
2856 				 sock_i_uid(req->rsk_listener)),
2857 		0,  /* non standard timer */
2858 		0, /* open_requests have no inode */
2859 		0,
2860 		req);
2861 }
2862 
2863 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2864 {
2865 	int timer_active;
2866 	unsigned long timer_expires;
2867 	const struct tcp_sock *tp = tcp_sk(sk);
2868 	const struct inet_connection_sock *icsk = inet_csk(sk);
2869 	const struct inet_sock *inet = inet_sk(sk);
2870 	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2871 	__be32 dest = inet->inet_daddr;
2872 	__be32 src = inet->inet_rcv_saddr;
2873 	__u16 destp = ntohs(inet->inet_dport);
2874 	__u16 srcp = ntohs(inet->inet_sport);
2875 	int rx_queue;
2876 	int state;
2877 
2878 	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2879 	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2880 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2881 		timer_active	= 1;
2882 		timer_expires	= icsk->icsk_timeout;
2883 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2884 		timer_active	= 4;
2885 		timer_expires	= icsk->icsk_timeout;
2886 	} else if (timer_pending(&sk->sk_timer)) {
2887 		timer_active	= 2;
2888 		timer_expires	= sk->sk_timer.expires;
2889 	} else {
2890 		timer_active	= 0;
2891 		timer_expires = jiffies;
2892 	}
2893 
2894 	state = inet_sk_state_load(sk);
2895 	if (state == TCP_LISTEN)
2896 		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2897 	else
2898 		/* Because we don't lock the socket,
2899 		 * we might find a transient negative value.
2900 		 */
2901 		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2902 				      READ_ONCE(tp->copied_seq), 0);
2903 
2904 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2905 			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2906 		i, src, srcp, dest, destp, state,
2907 		READ_ONCE(tp->write_seq) - tp->snd_una,
2908 		rx_queue,
2909 		timer_active,
2910 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2911 		icsk->icsk_retransmits,
2912 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2913 		icsk->icsk_probes_out,
2914 		sock_i_ino(sk),
2915 		refcount_read(&sk->sk_refcnt), sk,
2916 		jiffies_to_clock_t(icsk->icsk_rto),
2917 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2918 		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2919 		tcp_snd_cwnd(tp),
2920 		state == TCP_LISTEN ?
2921 		    fastopenq->max_qlen :
2922 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2923 }
2924 
2925 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2926 			       struct seq_file *f, int i)
2927 {
2928 	long delta = tw->tw_timer.expires - jiffies;
2929 	__be32 dest, src;
2930 	__u16 destp, srcp;
2931 
2932 	dest  = tw->tw_daddr;
2933 	src   = tw->tw_rcv_saddr;
2934 	destp = ntohs(tw->tw_dport);
2935 	srcp  = ntohs(tw->tw_sport);
2936 
2937 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2938 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2939 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2940 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2941 		refcount_read(&tw->tw_refcnt), tw);
2942 }
2943 
2944 #define TMPSZ 150
2945 
2946 static int tcp4_seq_show(struct seq_file *seq, void *v)
2947 {
2948 	struct tcp_iter_state *st;
2949 	struct sock *sk = v;
2950 
2951 	seq_setwidth(seq, TMPSZ - 1);
2952 	if (v == SEQ_START_TOKEN) {
2953 		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2954 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2955 			   "inode");
2956 		goto out;
2957 	}
2958 	st = seq->private;
2959 
2960 	if (sk->sk_state == TCP_TIME_WAIT)
2961 		get_timewait4_sock(v, seq, st->num);
2962 	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2963 		get_openreq4(v, seq, st->num);
2964 	else
2965 		get_tcp4_sock(v, seq, st->num);
2966 out:
2967 	seq_pad(seq, '\n');
2968 	return 0;
2969 }
2970 
2971 #ifdef CONFIG_BPF_SYSCALL
2972 struct bpf_tcp_iter_state {
2973 	struct tcp_iter_state state;
2974 	unsigned int cur_sk;
2975 	unsigned int end_sk;
2976 	unsigned int max_sk;
2977 	struct sock **batch;
2978 	bool st_bucket_done;
2979 };
2980 
2981 struct bpf_iter__tcp {
2982 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2983 	__bpf_md_ptr(struct sock_common *, sk_common);
2984 	uid_t uid __aligned(8);
2985 };
2986 
2987 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2988 			     struct sock_common *sk_common, uid_t uid)
2989 {
2990 	struct bpf_iter__tcp ctx;
2991 
2992 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2993 	ctx.meta = meta;
2994 	ctx.sk_common = sk_common;
2995 	ctx.uid = uid;
2996 	return bpf_iter_run_prog(prog, &ctx);
2997 }
2998 
2999 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
3000 {
3001 	while (iter->cur_sk < iter->end_sk)
3002 		sock_gen_put(iter->batch[iter->cur_sk++]);
3003 }
3004 
3005 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
3006 				      unsigned int new_batch_sz)
3007 {
3008 	struct sock **new_batch;
3009 
3010 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3011 			     GFP_USER | __GFP_NOWARN);
3012 	if (!new_batch)
3013 		return -ENOMEM;
3014 
3015 	bpf_iter_tcp_put_batch(iter);
3016 	kvfree(iter->batch);
3017 	iter->batch = new_batch;
3018 	iter->max_sk = new_batch_sz;
3019 
3020 	return 0;
3021 }
3022 
3023 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3024 						 struct sock *start_sk)
3025 {
3026 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3027 	struct bpf_tcp_iter_state *iter = seq->private;
3028 	struct tcp_iter_state *st = &iter->state;
3029 	struct hlist_nulls_node *node;
3030 	unsigned int expected = 1;
3031 	struct sock *sk;
3032 
3033 	sock_hold(start_sk);
3034 	iter->batch[iter->end_sk++] = start_sk;
3035 
3036 	sk = sk_nulls_next(start_sk);
3037 	sk_nulls_for_each_from(sk, node) {
3038 		if (seq_sk_match(seq, sk)) {
3039 			if (iter->end_sk < iter->max_sk) {
3040 				sock_hold(sk);
3041 				iter->batch[iter->end_sk++] = sk;
3042 			}
3043 			expected++;
3044 		}
3045 	}
3046 	spin_unlock(&hinfo->lhash2[st->bucket].lock);
3047 
3048 	return expected;
3049 }
3050 
3051 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3052 						   struct sock *start_sk)
3053 {
3054 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3055 	struct bpf_tcp_iter_state *iter = seq->private;
3056 	struct tcp_iter_state *st = &iter->state;
3057 	struct hlist_nulls_node *node;
3058 	unsigned int expected = 1;
3059 	struct sock *sk;
3060 
3061 	sock_hold(start_sk);
3062 	iter->batch[iter->end_sk++] = start_sk;
3063 
3064 	sk = sk_nulls_next(start_sk);
3065 	sk_nulls_for_each_from(sk, node) {
3066 		if (seq_sk_match(seq, sk)) {
3067 			if (iter->end_sk < iter->max_sk) {
3068 				sock_hold(sk);
3069 				iter->batch[iter->end_sk++] = sk;
3070 			}
3071 			expected++;
3072 		}
3073 	}
3074 	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3075 
3076 	return expected;
3077 }
3078 
3079 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3080 {
3081 	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3082 	struct bpf_tcp_iter_state *iter = seq->private;
3083 	struct tcp_iter_state *st = &iter->state;
3084 	unsigned int expected;
3085 	bool resized = false;
3086 	struct sock *sk;
3087 
3088 	/* The st->bucket is done.  Directly advance to the next
3089 	 * bucket instead of having the tcp_seek_last_pos() to skip
3090 	 * one by one in the current bucket and eventually find out
3091 	 * it has to advance to the next bucket.
3092 	 */
3093 	if (iter->st_bucket_done) {
3094 		st->offset = 0;
3095 		st->bucket++;
3096 		if (st->state == TCP_SEQ_STATE_LISTENING &&
3097 		    st->bucket > hinfo->lhash2_mask) {
3098 			st->state = TCP_SEQ_STATE_ESTABLISHED;
3099 			st->bucket = 0;
3100 		}
3101 	}
3102 
3103 again:
3104 	/* Get a new batch */
3105 	iter->cur_sk = 0;
3106 	iter->end_sk = 0;
3107 	iter->st_bucket_done = false;
3108 
3109 	sk = tcp_seek_last_pos(seq);
3110 	if (!sk)
3111 		return NULL; /* Done */
3112 
3113 	if (st->state == TCP_SEQ_STATE_LISTENING)
3114 		expected = bpf_iter_tcp_listening_batch(seq, sk);
3115 	else
3116 		expected = bpf_iter_tcp_established_batch(seq, sk);
3117 
3118 	if (iter->end_sk == expected) {
3119 		iter->st_bucket_done = true;
3120 		return sk;
3121 	}
3122 
3123 	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
3124 		resized = true;
3125 		goto again;
3126 	}
3127 
3128 	return sk;
3129 }
3130 
3131 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3132 {
3133 	/* bpf iter does not support lseek, so it always
3134 	 * continue from where it was stop()-ped.
3135 	 */
3136 	if (*pos)
3137 		return bpf_iter_tcp_batch(seq);
3138 
3139 	return SEQ_START_TOKEN;
3140 }
3141 
3142 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3143 {
3144 	struct bpf_tcp_iter_state *iter = seq->private;
3145 	struct tcp_iter_state *st = &iter->state;
3146 	struct sock *sk;
3147 
3148 	/* Whenever seq_next() is called, the iter->cur_sk is
3149 	 * done with seq_show(), so advance to the next sk in
3150 	 * the batch.
3151 	 */
3152 	if (iter->cur_sk < iter->end_sk) {
3153 		/* Keeping st->num consistent in tcp_iter_state.
3154 		 * bpf_iter_tcp does not use st->num.
3155 		 * meta.seq_num is used instead.
3156 		 */
3157 		st->num++;
3158 		/* Move st->offset to the next sk in the bucket such that
3159 		 * the future start() will resume at st->offset in
3160 		 * st->bucket.  See tcp_seek_last_pos().
3161 		 */
3162 		st->offset++;
3163 		sock_gen_put(iter->batch[iter->cur_sk++]);
3164 	}
3165 
3166 	if (iter->cur_sk < iter->end_sk)
3167 		sk = iter->batch[iter->cur_sk];
3168 	else
3169 		sk = bpf_iter_tcp_batch(seq);
3170 
3171 	++*pos;
3172 	/* Keeping st->last_pos consistent in tcp_iter_state.
3173 	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3174 	 */
3175 	st->last_pos = *pos;
3176 	return sk;
3177 }
3178 
3179 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3180 {
3181 	struct bpf_iter_meta meta;
3182 	struct bpf_prog *prog;
3183 	struct sock *sk = v;
3184 	uid_t uid;
3185 	int ret;
3186 
3187 	if (v == SEQ_START_TOKEN)
3188 		return 0;
3189 
3190 	if (sk_fullsock(sk))
3191 		lock_sock(sk);
3192 
3193 	if (unlikely(sk_unhashed(sk))) {
3194 		ret = SEQ_SKIP;
3195 		goto unlock;
3196 	}
3197 
3198 	if (sk->sk_state == TCP_TIME_WAIT) {
3199 		uid = 0;
3200 	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3201 		const struct request_sock *req = v;
3202 
3203 		uid = from_kuid_munged(seq_user_ns(seq),
3204 				       sock_i_uid(req->rsk_listener));
3205 	} else {
3206 		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3207 	}
3208 
3209 	meta.seq = seq;
3210 	prog = bpf_iter_get_info(&meta, false);
3211 	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3212 
3213 unlock:
3214 	if (sk_fullsock(sk))
3215 		release_sock(sk);
3216 	return ret;
3217 
3218 }
3219 
3220 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3221 {
3222 	struct bpf_tcp_iter_state *iter = seq->private;
3223 	struct bpf_iter_meta meta;
3224 	struct bpf_prog *prog;
3225 
3226 	if (!v) {
3227 		meta.seq = seq;
3228 		prog = bpf_iter_get_info(&meta, true);
3229 		if (prog)
3230 			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3231 	}
3232 
3233 	if (iter->cur_sk < iter->end_sk) {
3234 		bpf_iter_tcp_put_batch(iter);
3235 		iter->st_bucket_done = false;
3236 	}
3237 }
3238 
3239 static const struct seq_operations bpf_iter_tcp_seq_ops = {
3240 	.show		= bpf_iter_tcp_seq_show,
3241 	.start		= bpf_iter_tcp_seq_start,
3242 	.next		= bpf_iter_tcp_seq_next,
3243 	.stop		= bpf_iter_tcp_seq_stop,
3244 };
3245 #endif
3246 static unsigned short seq_file_family(const struct seq_file *seq)
3247 {
3248 	const struct tcp_seq_afinfo *afinfo;
3249 
3250 #ifdef CONFIG_BPF_SYSCALL
3251 	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3252 	if (seq->op == &bpf_iter_tcp_seq_ops)
3253 		return AF_UNSPEC;
3254 #endif
3255 
3256 	/* Iterated from proc fs */
3257 	afinfo = pde_data(file_inode(seq->file));
3258 	return afinfo->family;
3259 }
3260 
3261 static const struct seq_operations tcp4_seq_ops = {
3262 	.show		= tcp4_seq_show,
3263 	.start		= tcp_seq_start,
3264 	.next		= tcp_seq_next,
3265 	.stop		= tcp_seq_stop,
3266 };
3267 
3268 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
3269 	.family		= AF_INET,
3270 };
3271 
3272 static int __net_init tcp4_proc_init_net(struct net *net)
3273 {
3274 	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3275 			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3276 		return -ENOMEM;
3277 	return 0;
3278 }
3279 
3280 static void __net_exit tcp4_proc_exit_net(struct net *net)
3281 {
3282 	remove_proc_entry("tcp", net->proc_net);
3283 }
3284 
3285 static struct pernet_operations tcp4_net_ops = {
3286 	.init = tcp4_proc_init_net,
3287 	.exit = tcp4_proc_exit_net,
3288 };
3289 
3290 int __init tcp4_proc_init(void)
3291 {
3292 	return register_pernet_subsys(&tcp4_net_ops);
3293 }
3294 
3295 void tcp4_proc_exit(void)
3296 {
3297 	unregister_pernet_subsys(&tcp4_net_ops);
3298 }
3299 #endif /* CONFIG_PROC_FS */
3300 
3301 /* @wake is one when sk_stream_write_space() calls us.
3302  * This sends EPOLLOUT only if notsent_bytes is half the limit.
3303  * This mimics the strategy used in sock_def_write_space().
3304  */
3305 bool tcp_stream_memory_free(const struct sock *sk, int wake)
3306 {
3307 	const struct tcp_sock *tp = tcp_sk(sk);
3308 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3309 			    READ_ONCE(tp->snd_nxt);
3310 
3311 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3312 }
3313 EXPORT_SYMBOL(tcp_stream_memory_free);
3314 
3315 struct proto tcp_prot = {
3316 	.name			= "TCP",
3317 	.owner			= THIS_MODULE,
3318 	.close			= tcp_close,
3319 	.pre_connect		= tcp_v4_pre_connect,
3320 	.connect		= tcp_v4_connect,
3321 	.disconnect		= tcp_disconnect,
3322 	.accept			= inet_csk_accept,
3323 	.ioctl			= tcp_ioctl,
3324 	.init			= tcp_v4_init_sock,
3325 	.destroy		= tcp_v4_destroy_sock,
3326 	.shutdown		= tcp_shutdown,
3327 	.setsockopt		= tcp_setsockopt,
3328 	.getsockopt		= tcp_getsockopt,
3329 	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3330 	.keepalive		= tcp_set_keepalive,
3331 	.recvmsg		= tcp_recvmsg,
3332 	.sendmsg		= tcp_sendmsg,
3333 	.splice_eof		= tcp_splice_eof,
3334 	.backlog_rcv		= tcp_v4_do_rcv,
3335 	.release_cb		= tcp_release_cb,
3336 	.hash			= inet_hash,
3337 	.unhash			= inet_unhash,
3338 	.get_port		= inet_csk_get_port,
3339 	.put_port		= inet_put_port,
3340 #ifdef CONFIG_BPF_SYSCALL
3341 	.psock_update_sk_prot	= tcp_bpf_update_proto,
3342 #endif
3343 	.enter_memory_pressure	= tcp_enter_memory_pressure,
3344 	.leave_memory_pressure	= tcp_leave_memory_pressure,
3345 	.stream_memory_free	= tcp_stream_memory_free,
3346 	.sockets_allocated	= &tcp_sockets_allocated,
3347 	.orphan_count		= &tcp_orphan_count,
3348 
3349 	.memory_allocated	= &tcp_memory_allocated,
3350 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3351 
3352 	.memory_pressure	= &tcp_memory_pressure,
3353 	.sysctl_mem		= sysctl_tcp_mem,
3354 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3355 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3356 	.max_header		= MAX_TCP_HEADER,
3357 	.obj_size		= sizeof(struct tcp_sock),
3358 	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3359 	.twsk_prot		= &tcp_timewait_sock_ops,
3360 	.rsk_prot		= &tcp_request_sock_ops,
3361 	.h.hashinfo		= NULL,
3362 	.no_autobind		= true,
3363 	.diag_destroy		= tcp_abort,
3364 };
3365 EXPORT_SYMBOL(tcp_prot);
3366 
3367 static void __net_exit tcp_sk_exit(struct net *net)
3368 {
3369 	if (net->ipv4.tcp_congestion_control)
3370 		bpf_module_put(net->ipv4.tcp_congestion_control,
3371 			       net->ipv4.tcp_congestion_control->owner);
3372 }
3373 
3374 static void __net_init tcp_set_hashinfo(struct net *net)
3375 {
3376 	struct inet_hashinfo *hinfo;
3377 	unsigned int ehash_entries;
3378 	struct net *old_net;
3379 
3380 	if (net_eq(net, &init_net))
3381 		goto fallback;
3382 
3383 	old_net = current->nsproxy->net_ns;
3384 	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3385 	if (!ehash_entries)
3386 		goto fallback;
3387 
3388 	ehash_entries = roundup_pow_of_two(ehash_entries);
3389 	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3390 	if (!hinfo) {
3391 		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3392 			"for a netns, fallback to the global one\n",
3393 			ehash_entries);
3394 fallback:
3395 		hinfo = &tcp_hashinfo;
3396 		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3397 	}
3398 
3399 	net->ipv4.tcp_death_row.hashinfo = hinfo;
3400 	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3401 	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3402 }
3403 
3404 static int __net_init tcp_sk_init(struct net *net)
3405 {
3406 	net->ipv4.sysctl_tcp_ecn = 2;
3407 	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3408 
3409 	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3410 	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3411 	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3412 	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3413 	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3414 
3415 	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3416 	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3417 	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3418 
3419 	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3420 	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3421 	net->ipv4.sysctl_tcp_syncookies = 1;
3422 	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3423 	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3424 	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3425 	net->ipv4.sysctl_tcp_orphan_retries = 0;
3426 	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3427 	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3428 	net->ipv4.sysctl_tcp_tw_reuse = 2;
3429 	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3430 
3431 	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3432 	tcp_set_hashinfo(net);
3433 
3434 	net->ipv4.sysctl_tcp_sack = 1;
3435 	net->ipv4.sysctl_tcp_window_scaling = 1;
3436 	net->ipv4.sysctl_tcp_timestamps = 1;
3437 	net->ipv4.sysctl_tcp_early_retrans = 3;
3438 	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3439 	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3440 	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3441 	net->ipv4.sysctl_tcp_max_reordering = 300;
3442 	net->ipv4.sysctl_tcp_dsack = 1;
3443 	net->ipv4.sysctl_tcp_app_win = 31;
3444 	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3445 	net->ipv4.sysctl_tcp_frto = 2;
3446 	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3447 	/* This limits the percentage of the congestion window which we
3448 	 * will allow a single TSO frame to consume.  Building TSO frames
3449 	 * which are too large can cause TCP streams to be bursty.
3450 	 */
3451 	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3452 	/* Default TSQ limit of 16 TSO segments */
3453 	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3454 
3455 	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3456 	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3457 
3458 	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3459 	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3460 	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3461 	net->ipv4.sysctl_tcp_autocorking = 1;
3462 	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3463 	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3464 	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3465 	if (net != &init_net) {
3466 		memcpy(net->ipv4.sysctl_tcp_rmem,
3467 		       init_net.ipv4.sysctl_tcp_rmem,
3468 		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3469 		memcpy(net->ipv4.sysctl_tcp_wmem,
3470 		       init_net.ipv4.sysctl_tcp_wmem,
3471 		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3472 	}
3473 	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3474 	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3475 	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3476 	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3477 	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3478 	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3479 	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3480 
3481 	/* Set default values for PLB */
3482 	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3483 	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3484 	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3485 	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3486 	/* Default congestion threshold for PLB to mark a round is 50% */
3487 	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3488 
3489 	/* Reno is always built in */
3490 	if (!net_eq(net, &init_net) &&
3491 	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3492 			       init_net.ipv4.tcp_congestion_control->owner))
3493 		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3494 	else
3495 		net->ipv4.tcp_congestion_control = &tcp_reno;
3496 
3497 	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3498 	net->ipv4.sysctl_tcp_shrink_window = 0;
3499 
3500 	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3501 	net->ipv4.sysctl_tcp_rto_min_us = jiffies_to_usecs(TCP_RTO_MIN);
3502 
3503 	return 0;
3504 }
3505 
3506 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3507 {
3508 	struct net *net;
3509 
3510 	tcp_twsk_purge(net_exit_list);
3511 
3512 	list_for_each_entry(net, net_exit_list, exit_list) {
3513 		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3514 		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3515 		tcp_fastopen_ctx_destroy(net);
3516 	}
3517 }
3518 
3519 static struct pernet_operations __net_initdata tcp_sk_ops = {
3520        .init	   = tcp_sk_init,
3521        .exit	   = tcp_sk_exit,
3522        .exit_batch = tcp_sk_exit_batch,
3523 };
3524 
3525 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3526 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3527 		     struct sock_common *sk_common, uid_t uid)
3528 
3529 #define INIT_BATCH_SZ 16
3530 
3531 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3532 {
3533 	struct bpf_tcp_iter_state *iter = priv_data;
3534 	int err;
3535 
3536 	err = bpf_iter_init_seq_net(priv_data, aux);
3537 	if (err)
3538 		return err;
3539 
3540 	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3541 	if (err) {
3542 		bpf_iter_fini_seq_net(priv_data);
3543 		return err;
3544 	}
3545 
3546 	return 0;
3547 }
3548 
3549 static void bpf_iter_fini_tcp(void *priv_data)
3550 {
3551 	struct bpf_tcp_iter_state *iter = priv_data;
3552 
3553 	bpf_iter_fini_seq_net(priv_data);
3554 	kvfree(iter->batch);
3555 }
3556 
3557 static const struct bpf_iter_seq_info tcp_seq_info = {
3558 	.seq_ops		= &bpf_iter_tcp_seq_ops,
3559 	.init_seq_private	= bpf_iter_init_tcp,
3560 	.fini_seq_private	= bpf_iter_fini_tcp,
3561 	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3562 };
3563 
3564 static const struct bpf_func_proto *
3565 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3566 			    const struct bpf_prog *prog)
3567 {
3568 	switch (func_id) {
3569 	case BPF_FUNC_setsockopt:
3570 		return &bpf_sk_setsockopt_proto;
3571 	case BPF_FUNC_getsockopt:
3572 		return &bpf_sk_getsockopt_proto;
3573 	default:
3574 		return NULL;
3575 	}
3576 }
3577 
3578 static struct bpf_iter_reg tcp_reg_info = {
3579 	.target			= "tcp",
3580 	.ctx_arg_info_size	= 1,
3581 	.ctx_arg_info		= {
3582 		{ offsetof(struct bpf_iter__tcp, sk_common),
3583 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3584 	},
3585 	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3586 	.seq_info		= &tcp_seq_info,
3587 };
3588 
3589 static void __init bpf_iter_register(void)
3590 {
3591 	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3592 	if (bpf_iter_reg_target(&tcp_reg_info))
3593 		pr_warn("Warning: could not register bpf iterator tcp\n");
3594 }
3595 
3596 #endif
3597 
3598 void __init tcp_v4_init(void)
3599 {
3600 	int cpu, res;
3601 
3602 	for_each_possible_cpu(cpu) {
3603 		struct sock *sk;
3604 
3605 		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3606 					   IPPROTO_TCP, &init_net);
3607 		if (res)
3608 			panic("Failed to create the TCP control socket.\n");
3609 		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3610 
3611 		/* Please enforce IP_DF and IPID==0 for RST and
3612 		 * ACK sent in SYN-RECV and TIME-WAIT state.
3613 		 */
3614 		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3615 
3616 		sk->sk_clockid = CLOCK_MONOTONIC;
3617 
3618 		per_cpu(ipv4_tcp_sk, cpu) = sk;
3619 	}
3620 	if (register_pernet_subsys(&tcp_sk_ops))
3621 		panic("Failed to create the TCP control socket.\n");
3622 
3623 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3624 	bpf_iter_register();
3625 #endif
3626 }
3627