1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * IPv4 specific functions 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 */ 18 19 /* 20 * Changes: 21 * David S. Miller : New socket lookup architecture. 22 * This code is dedicated to John Dyson. 23 * David S. Miller : Change semantics of established hash, 24 * half is devoted to TIME_WAIT sockets 25 * and the rest go in the other half. 26 * Andi Kleen : Add support for syncookies and fixed 27 * some bugs: ip options weren't passed to 28 * the TCP layer, missed a check for an 29 * ACK bit. 30 * Andi Kleen : Implemented fast path mtu discovery. 31 * Fixed many serious bugs in the 32 * request_sock handling and moved 33 * most of it into the af independent code. 34 * Added tail drop and some other bugfixes. 35 * Added new listen semantics. 36 * Mike McLagan : Routing by source 37 * Juan Jose Ciarlante: ip_dynaddr bits 38 * Andi Kleen: various fixes. 39 * Vitaly E. Lavrov : Transparent proxy revived after year 40 * coma. 41 * Andi Kleen : Fix new listen. 42 * Andi Kleen : Fix accept error reporting. 43 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 44 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 45 * a single port at the same time. 46 */ 47 48 #define pr_fmt(fmt) "TCP: " fmt 49 50 #include <linux/bottom_half.h> 51 #include <linux/types.h> 52 #include <linux/fcntl.h> 53 #include <linux/module.h> 54 #include <linux/random.h> 55 #include <linux/cache.h> 56 #include <linux/jhash.h> 57 #include <linux/init.h> 58 #include <linux/times.h> 59 #include <linux/slab.h> 60 #include <linux/sched.h> 61 62 #include <net/net_namespace.h> 63 #include <net/icmp.h> 64 #include <net/inet_hashtables.h> 65 #include <net/tcp.h> 66 #include <net/transp_v6.h> 67 #include <net/ipv6.h> 68 #include <net/inet_common.h> 69 #include <net/timewait_sock.h> 70 #include <net/xfrm.h> 71 #include <net/secure_seq.h> 72 #include <net/busy_poll.h> 73 #include <net/rstreason.h> 74 75 #include <linux/inet.h> 76 #include <linux/ipv6.h> 77 #include <linux/stddef.h> 78 #include <linux/proc_fs.h> 79 #include <linux/seq_file.h> 80 #include <linux/inetdevice.h> 81 #include <linux/btf_ids.h> 82 #include <linux/skbuff_ref.h> 83 84 #include <crypto/hash.h> 85 #include <linux/scatterlist.h> 86 87 #include <trace/events/tcp.h> 88 89 #ifdef CONFIG_TCP_MD5SIG 90 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 91 __be32 daddr, __be32 saddr, const struct tcphdr *th); 92 #endif 93 94 struct inet_hashinfo tcp_hashinfo; 95 EXPORT_SYMBOL(tcp_hashinfo); 96 97 static DEFINE_PER_CPU(struct sock_bh_locked, ipv4_tcp_sk) = { 98 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 99 }; 100 101 static DEFINE_MUTEX(tcp_exit_batch_mutex); 102 103 static u32 tcp_v4_init_seq(const struct sk_buff *skb) 104 { 105 return secure_tcp_seq(ip_hdr(skb)->daddr, 106 ip_hdr(skb)->saddr, 107 tcp_hdr(skb)->dest, 108 tcp_hdr(skb)->source); 109 } 110 111 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) 112 { 113 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); 114 } 115 116 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 117 { 118 int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse); 119 const struct inet_timewait_sock *tw = inet_twsk(sktw); 120 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 121 struct tcp_sock *tp = tcp_sk(sk); 122 int ts_recent_stamp; 123 124 if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) 125 reuse = 0; 126 127 if (reuse == 2) { 128 /* Still does not detect *everything* that goes through 129 * lo, since we require a loopback src or dst address 130 * or direct binding to 'lo' interface. 131 */ 132 bool loopback = false; 133 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX) 134 loopback = true; 135 #if IS_ENABLED(CONFIG_IPV6) 136 if (tw->tw_family == AF_INET6) { 137 if (ipv6_addr_loopback(&tw->tw_v6_daddr) || 138 ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) || 139 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) || 140 ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr)) 141 loopback = true; 142 } else 143 #endif 144 { 145 if (ipv4_is_loopback(tw->tw_daddr) || 146 ipv4_is_loopback(tw->tw_rcv_saddr)) 147 loopback = true; 148 } 149 if (!loopback) 150 reuse = 0; 151 } 152 153 /* With PAWS, it is safe from the viewpoint 154 of data integrity. Even without PAWS it is safe provided sequence 155 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 156 157 Actually, the idea is close to VJ's one, only timestamp cache is 158 held not per host, but per port pair and TW bucket is used as state 159 holder. 160 161 If TW bucket has been already destroyed we fall back to VJ's scheme 162 and use initial timestamp retrieved from peer table. 163 */ 164 ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp); 165 if (ts_recent_stamp && 166 (!twp || (reuse && time_after32(ktime_get_seconds(), 167 ts_recent_stamp)))) { 168 /* inet_twsk_hashdance_schedule() sets sk_refcnt after putting twsk 169 * and releasing the bucket lock. 170 */ 171 if (unlikely(!refcount_inc_not_zero(&sktw->sk_refcnt))) 172 return 0; 173 174 /* In case of repair and re-using TIME-WAIT sockets we still 175 * want to be sure that it is safe as above but honor the 176 * sequence numbers and time stamps set as part of the repair 177 * process. 178 * 179 * Without this check re-using a TIME-WAIT socket with TCP 180 * repair would accumulate a -1 on the repair assigned 181 * sequence number. The first time it is reused the sequence 182 * is -1, the second time -2, etc. This fixes that issue 183 * without appearing to create any others. 184 */ 185 if (likely(!tp->repair)) { 186 u32 seq = tcptw->tw_snd_nxt + 65535 + 2; 187 188 if (!seq) 189 seq = 1; 190 WRITE_ONCE(tp->write_seq, seq); 191 tp->rx_opt.ts_recent = READ_ONCE(tcptw->tw_ts_recent); 192 tp->rx_opt.ts_recent_stamp = ts_recent_stamp; 193 } 194 195 return 1; 196 } 197 198 return 0; 199 } 200 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 201 202 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, 203 int addr_len) 204 { 205 /* This check is replicated from tcp_v4_connect() and intended to 206 * prevent BPF program called below from accessing bytes that are out 207 * of the bound specified by user in addr_len. 208 */ 209 if (addr_len < sizeof(struct sockaddr_in)) 210 return -EINVAL; 211 212 sock_owned_by_me(sk); 213 214 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len); 215 } 216 217 /* This will initiate an outgoing connection. */ 218 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 219 { 220 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 221 struct inet_timewait_death_row *tcp_death_row; 222 struct inet_sock *inet = inet_sk(sk); 223 struct tcp_sock *tp = tcp_sk(sk); 224 struct ip_options_rcu *inet_opt; 225 struct net *net = sock_net(sk); 226 __be16 orig_sport, orig_dport; 227 __be32 daddr, nexthop; 228 struct flowi4 *fl4; 229 struct rtable *rt; 230 int err; 231 232 if (addr_len < sizeof(struct sockaddr_in)) 233 return -EINVAL; 234 235 if (usin->sin_family != AF_INET) 236 return -EAFNOSUPPORT; 237 238 nexthop = daddr = usin->sin_addr.s_addr; 239 inet_opt = rcu_dereference_protected(inet->inet_opt, 240 lockdep_sock_is_held(sk)); 241 if (inet_opt && inet_opt->opt.srr) { 242 if (!daddr) 243 return -EINVAL; 244 nexthop = inet_opt->opt.faddr; 245 } 246 247 orig_sport = inet->inet_sport; 248 orig_dport = usin->sin_port; 249 fl4 = &inet->cork.fl.u.ip4; 250 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 251 sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport, 252 orig_dport, sk); 253 if (IS_ERR(rt)) { 254 err = PTR_ERR(rt); 255 if (err == -ENETUNREACH) 256 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 257 return err; 258 } 259 260 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 261 ip_rt_put(rt); 262 return -ENETUNREACH; 263 } 264 265 if (!inet_opt || !inet_opt->opt.srr) 266 daddr = fl4->daddr; 267 268 tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; 269 270 if (!inet->inet_saddr) { 271 err = inet_bhash2_update_saddr(sk, &fl4->saddr, AF_INET); 272 if (err) { 273 ip_rt_put(rt); 274 return err; 275 } 276 } else { 277 sk_rcv_saddr_set(sk, inet->inet_saddr); 278 } 279 280 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 281 /* Reset inherited state */ 282 tp->rx_opt.ts_recent = 0; 283 tp->rx_opt.ts_recent_stamp = 0; 284 if (likely(!tp->repair)) 285 WRITE_ONCE(tp->write_seq, 0); 286 } 287 288 inet->inet_dport = usin->sin_port; 289 sk_daddr_set(sk, daddr); 290 291 inet_csk(sk)->icsk_ext_hdr_len = 0; 292 if (inet_opt) 293 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 294 295 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 296 297 /* Socket identity is still unknown (sport may be zero). 298 * However we set state to SYN-SENT and not releasing socket 299 * lock select source port, enter ourselves into the hash tables and 300 * complete initialization after this. 301 */ 302 tcp_set_state(sk, TCP_SYN_SENT); 303 err = inet_hash_connect(tcp_death_row, sk); 304 if (err) 305 goto failure; 306 307 sk_set_txhash(sk); 308 309 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 310 inet->inet_sport, inet->inet_dport, sk); 311 if (IS_ERR(rt)) { 312 err = PTR_ERR(rt); 313 rt = NULL; 314 goto failure; 315 } 316 tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst); 317 /* OK, now commit destination to socket. */ 318 sk->sk_gso_type = SKB_GSO_TCPV4; 319 sk_setup_caps(sk, &rt->dst); 320 rt = NULL; 321 322 if (likely(!tp->repair)) { 323 if (!tp->write_seq) 324 WRITE_ONCE(tp->write_seq, 325 secure_tcp_seq(inet->inet_saddr, 326 inet->inet_daddr, 327 inet->inet_sport, 328 usin->sin_port)); 329 WRITE_ONCE(tp->tsoffset, 330 secure_tcp_ts_off(net, inet->inet_saddr, 331 inet->inet_daddr)); 332 } 333 334 atomic_set(&inet->inet_id, get_random_u16()); 335 336 if (tcp_fastopen_defer_connect(sk, &err)) 337 return err; 338 if (err) 339 goto failure; 340 341 err = tcp_connect(sk); 342 343 if (err) 344 goto failure; 345 346 return 0; 347 348 failure: 349 /* 350 * This unhashes the socket and releases the local port, 351 * if necessary. 352 */ 353 tcp_set_state(sk, TCP_CLOSE); 354 inet_bhash2_reset_saddr(sk); 355 ip_rt_put(rt); 356 sk->sk_route_caps = 0; 357 inet->inet_dport = 0; 358 return err; 359 } 360 EXPORT_SYMBOL(tcp_v4_connect); 361 362 /* 363 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 364 * It can be called through tcp_release_cb() if socket was owned by user 365 * at the time tcp_v4_err() was called to handle ICMP message. 366 */ 367 void tcp_v4_mtu_reduced(struct sock *sk) 368 { 369 struct inet_sock *inet = inet_sk(sk); 370 struct dst_entry *dst; 371 u32 mtu; 372 373 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 374 return; 375 mtu = READ_ONCE(tcp_sk(sk)->mtu_info); 376 dst = inet_csk_update_pmtu(sk, mtu); 377 if (!dst) 378 return; 379 380 /* Something is about to be wrong... Remember soft error 381 * for the case, if this connection will not able to recover. 382 */ 383 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 384 WRITE_ONCE(sk->sk_err_soft, EMSGSIZE); 385 386 mtu = dst_mtu(dst); 387 388 if (inet->pmtudisc != IP_PMTUDISC_DONT && 389 ip_sk_accept_pmtu(sk) && 390 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 391 tcp_sync_mss(sk, mtu); 392 393 /* Resend the TCP packet because it's 394 * clear that the old packet has been 395 * dropped. This is the new "fast" path mtu 396 * discovery. 397 */ 398 tcp_simple_retransmit(sk); 399 } /* else let the usual retransmit timer handle it */ 400 } 401 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 402 403 static void do_redirect(struct sk_buff *skb, struct sock *sk) 404 { 405 struct dst_entry *dst = __sk_dst_check(sk, 0); 406 407 if (dst) 408 dst->ops->redirect(dst, sk, skb); 409 } 410 411 412 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 413 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 414 { 415 struct request_sock *req = inet_reqsk(sk); 416 struct net *net = sock_net(sk); 417 418 /* ICMPs are not backlogged, hence we cannot get 419 * an established socket here. 420 */ 421 if (seq != tcp_rsk(req)->snt_isn) { 422 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 423 } else if (abort) { 424 /* 425 * Still in SYN_RECV, just remove it silently. 426 * There is no good way to pass the error to the newly 427 * created socket, and POSIX does not want network 428 * errors returned from accept(). 429 */ 430 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 431 tcp_listendrop(req->rsk_listener); 432 } 433 reqsk_put(req); 434 } 435 EXPORT_SYMBOL(tcp_req_err); 436 437 /* TCP-LD (RFC 6069) logic */ 438 void tcp_ld_RTO_revert(struct sock *sk, u32 seq) 439 { 440 struct inet_connection_sock *icsk = inet_csk(sk); 441 struct tcp_sock *tp = tcp_sk(sk); 442 struct sk_buff *skb; 443 s32 remaining; 444 u32 delta_us; 445 446 if (sock_owned_by_user(sk)) 447 return; 448 449 if (seq != tp->snd_una || !icsk->icsk_retransmits || 450 !icsk->icsk_backoff) 451 return; 452 453 skb = tcp_rtx_queue_head(sk); 454 if (WARN_ON_ONCE(!skb)) 455 return; 456 457 icsk->icsk_backoff--; 458 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT; 459 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 460 461 tcp_mstamp_refresh(tp); 462 delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb)); 463 remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us); 464 465 if (remaining > 0) { 466 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 467 remaining, TCP_RTO_MAX); 468 } else { 469 /* RTO revert clocked out retransmission. 470 * Will retransmit now. 471 */ 472 tcp_retransmit_timer(sk); 473 } 474 } 475 EXPORT_SYMBOL(tcp_ld_RTO_revert); 476 477 /* 478 * This routine is called by the ICMP module when it gets some 479 * sort of error condition. If err < 0 then the socket should 480 * be closed and the error returned to the user. If err > 0 481 * it's just the icmp type << 8 | icmp code. After adjustment 482 * header points to the first 8 bytes of the tcp header. We need 483 * to find the appropriate port. 484 * 485 * The locking strategy used here is very "optimistic". When 486 * someone else accesses the socket the ICMP is just dropped 487 * and for some paths there is no check at all. 488 * A more general error queue to queue errors for later handling 489 * is probably better. 490 * 491 */ 492 493 int tcp_v4_err(struct sk_buff *skb, u32 info) 494 { 495 const struct iphdr *iph = (const struct iphdr *)skb->data; 496 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2)); 497 struct tcp_sock *tp; 498 const int type = icmp_hdr(skb)->type; 499 const int code = icmp_hdr(skb)->code; 500 struct sock *sk; 501 struct request_sock *fastopen; 502 u32 seq, snd_una; 503 int err; 504 struct net *net = dev_net(skb->dev); 505 506 sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, 507 iph->daddr, th->dest, iph->saddr, 508 ntohs(th->source), inet_iif(skb), 0); 509 if (!sk) { 510 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 511 return -ENOENT; 512 } 513 if (sk->sk_state == TCP_TIME_WAIT) { 514 /* To increase the counter of ignored icmps for TCP-AO */ 515 tcp_ao_ignore_icmp(sk, AF_INET, type, code); 516 inet_twsk_put(inet_twsk(sk)); 517 return 0; 518 } 519 seq = ntohl(th->seq); 520 if (sk->sk_state == TCP_NEW_SYN_RECV) { 521 tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB || 522 type == ICMP_TIME_EXCEEDED || 523 (type == ICMP_DEST_UNREACH && 524 (code == ICMP_NET_UNREACH || 525 code == ICMP_HOST_UNREACH))); 526 return 0; 527 } 528 529 if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) { 530 sock_put(sk); 531 return 0; 532 } 533 534 bh_lock_sock(sk); 535 /* If too many ICMPs get dropped on busy 536 * servers this needs to be solved differently. 537 * We do take care of PMTU discovery (RFC1191) special case : 538 * we can receive locally generated ICMP messages while socket is held. 539 */ 540 if (sock_owned_by_user(sk)) { 541 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 542 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 543 } 544 if (sk->sk_state == TCP_CLOSE) 545 goto out; 546 547 if (static_branch_unlikely(&ip4_min_ttl)) { 548 /* min_ttl can be changed concurrently from do_ip_setsockopt() */ 549 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) { 550 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 551 goto out; 552 } 553 } 554 555 tp = tcp_sk(sk); 556 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 557 fastopen = rcu_dereference(tp->fastopen_rsk); 558 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 559 if (sk->sk_state != TCP_LISTEN && 560 !between(seq, snd_una, tp->snd_nxt)) { 561 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 562 goto out; 563 } 564 565 switch (type) { 566 case ICMP_REDIRECT: 567 if (!sock_owned_by_user(sk)) 568 do_redirect(skb, sk); 569 goto out; 570 case ICMP_SOURCE_QUENCH: 571 /* Just silently ignore these. */ 572 goto out; 573 case ICMP_PARAMETERPROB: 574 err = EPROTO; 575 break; 576 case ICMP_DEST_UNREACH: 577 if (code > NR_ICMP_UNREACH) 578 goto out; 579 580 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 581 /* We are not interested in TCP_LISTEN and open_requests 582 * (SYN-ACKs send out by Linux are always <576bytes so 583 * they should go through unfragmented). 584 */ 585 if (sk->sk_state == TCP_LISTEN) 586 goto out; 587 588 WRITE_ONCE(tp->mtu_info, info); 589 if (!sock_owned_by_user(sk)) { 590 tcp_v4_mtu_reduced(sk); 591 } else { 592 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) 593 sock_hold(sk); 594 } 595 goto out; 596 } 597 598 err = icmp_err_convert[code].errno; 599 /* check if this ICMP message allows revert of backoff. 600 * (see RFC 6069) 601 */ 602 if (!fastopen && 603 (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH)) 604 tcp_ld_RTO_revert(sk, seq); 605 break; 606 case ICMP_TIME_EXCEEDED: 607 err = EHOSTUNREACH; 608 break; 609 default: 610 goto out; 611 } 612 613 switch (sk->sk_state) { 614 case TCP_SYN_SENT: 615 case TCP_SYN_RECV: 616 /* Only in fast or simultaneous open. If a fast open socket is 617 * already accepted it is treated as a connected one below. 618 */ 619 if (fastopen && !fastopen->sk) 620 break; 621 622 ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th); 623 624 if (!sock_owned_by_user(sk)) 625 tcp_done_with_error(sk, err); 626 else 627 WRITE_ONCE(sk->sk_err_soft, err); 628 goto out; 629 } 630 631 /* If we've already connected we will keep trying 632 * until we time out, or the user gives up. 633 * 634 * rfc1122 4.2.3.9 allows to consider as hard errors 635 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 636 * but it is obsoleted by pmtu discovery). 637 * 638 * Note, that in modern internet, where routing is unreliable 639 * and in each dark corner broken firewalls sit, sending random 640 * errors ordered by their masters even this two messages finally lose 641 * their original sense (even Linux sends invalid PORT_UNREACHs) 642 * 643 * Now we are in compliance with RFCs. 644 * --ANK (980905) 645 */ 646 647 if (!sock_owned_by_user(sk) && 648 inet_test_bit(RECVERR, sk)) { 649 WRITE_ONCE(sk->sk_err, err); 650 sk_error_report(sk); 651 } else { /* Only an error on timeout */ 652 WRITE_ONCE(sk->sk_err_soft, err); 653 } 654 655 out: 656 bh_unlock_sock(sk); 657 sock_put(sk); 658 return 0; 659 } 660 661 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 662 { 663 struct tcphdr *th = tcp_hdr(skb); 664 665 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 666 skb->csum_start = skb_transport_header(skb) - skb->head; 667 skb->csum_offset = offsetof(struct tcphdr, check); 668 } 669 670 /* This routine computes an IPv4 TCP checksum. */ 671 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 672 { 673 const struct inet_sock *inet = inet_sk(sk); 674 675 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 676 } 677 EXPORT_SYMBOL(tcp_v4_send_check); 678 679 #define REPLY_OPTIONS_LEN (MAX_TCP_OPTION_SPACE / sizeof(__be32)) 680 681 static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb, 682 const struct tcp_ao_hdr *aoh, 683 struct ip_reply_arg *arg, struct tcphdr *reply, 684 __be32 reply_options[REPLY_OPTIONS_LEN]) 685 { 686 #ifdef CONFIG_TCP_AO 687 int sdif = tcp_v4_sdif(skb); 688 int dif = inet_iif(skb); 689 int l3index = sdif ? dif : 0; 690 bool allocated_traffic_key; 691 struct tcp_ao_key *key; 692 char *traffic_key; 693 bool drop = true; 694 u32 ao_sne = 0; 695 u8 keyid; 696 697 rcu_read_lock(); 698 if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq), 699 &key, &traffic_key, &allocated_traffic_key, 700 &keyid, &ao_sne)) 701 goto out; 702 703 reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) | 704 (aoh->rnext_keyid << 8) | keyid); 705 arg->iov[0].iov_len += tcp_ao_len_aligned(key); 706 reply->doff = arg->iov[0].iov_len / 4; 707 708 if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1], 709 key, traffic_key, 710 (union tcp_ao_addr *)&ip_hdr(skb)->saddr, 711 (union tcp_ao_addr *)&ip_hdr(skb)->daddr, 712 reply, ao_sne)) 713 goto out; 714 drop = false; 715 out: 716 rcu_read_unlock(); 717 if (allocated_traffic_key) 718 kfree(traffic_key); 719 return drop; 720 #else 721 return true; 722 #endif 723 } 724 725 /* 726 * This routine will send an RST to the other tcp. 727 * 728 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 729 * for reset. 730 * Answer: if a packet caused RST, it is not for a socket 731 * existing in our system, if it is matched to a socket, 732 * it is just duplicate segment or bug in other side's TCP. 733 * So that we build reply only basing on parameters 734 * arrived with segment. 735 * Exception: precedence violation. We do not implement it in any case. 736 */ 737 738 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb, 739 enum sk_rst_reason reason) 740 { 741 const struct tcphdr *th = tcp_hdr(skb); 742 struct { 743 struct tcphdr th; 744 __be32 opt[REPLY_OPTIONS_LEN]; 745 } rep; 746 const __u8 *md5_hash_location = NULL; 747 const struct tcp_ao_hdr *aoh; 748 struct ip_reply_arg arg; 749 #ifdef CONFIG_TCP_MD5SIG 750 struct tcp_md5sig_key *key = NULL; 751 unsigned char newhash[16]; 752 struct sock *sk1 = NULL; 753 int genhash; 754 #endif 755 u64 transmit_time = 0; 756 struct sock *ctl_sk; 757 struct net *net; 758 u32 txhash = 0; 759 760 /* Never send a reset in response to a reset. */ 761 if (th->rst) 762 return; 763 764 /* If sk not NULL, it means we did a successful lookup and incoming 765 * route had to be correct. prequeue might have dropped our dst. 766 */ 767 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 768 return; 769 770 /* Swap the send and the receive. */ 771 memset(&rep, 0, sizeof(rep)); 772 rep.th.dest = th->source; 773 rep.th.source = th->dest; 774 rep.th.doff = sizeof(struct tcphdr) / 4; 775 rep.th.rst = 1; 776 777 if (th->ack) { 778 rep.th.seq = th->ack_seq; 779 } else { 780 rep.th.ack = 1; 781 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 782 skb->len - (th->doff << 2)); 783 } 784 785 memset(&arg, 0, sizeof(arg)); 786 arg.iov[0].iov_base = (unsigned char *)&rep; 787 arg.iov[0].iov_len = sizeof(rep.th); 788 789 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 790 791 /* Invalid TCP option size or twice included auth */ 792 if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh)) 793 return; 794 795 if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt)) 796 return; 797 798 #ifdef CONFIG_TCP_MD5SIG 799 rcu_read_lock(); 800 if (sk && sk_fullsock(sk)) { 801 const union tcp_md5_addr *addr; 802 int l3index; 803 804 /* sdif set, means packet ingressed via a device 805 * in an L3 domain and inet_iif is set to it. 806 */ 807 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 808 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 809 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 810 } else if (md5_hash_location) { 811 const union tcp_md5_addr *addr; 812 int sdif = tcp_v4_sdif(skb); 813 int dif = inet_iif(skb); 814 int l3index; 815 816 /* 817 * active side is lost. Try to find listening socket through 818 * source port, and then find md5 key through listening socket. 819 * we are not loose security here: 820 * Incoming packet is checked with md5 hash with finding key, 821 * no RST generated if md5 hash doesn't match. 822 */ 823 sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo, 824 NULL, 0, ip_hdr(skb)->saddr, 825 th->source, ip_hdr(skb)->daddr, 826 ntohs(th->source), dif, sdif); 827 /* don't send rst if it can't find key */ 828 if (!sk1) 829 goto out; 830 831 /* sdif set, means packet ingressed via a device 832 * in an L3 domain and dif is set to it. 833 */ 834 l3index = sdif ? dif : 0; 835 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 836 key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET); 837 if (!key) 838 goto out; 839 840 841 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 842 if (genhash || memcmp(md5_hash_location, newhash, 16) != 0) 843 goto out; 844 845 } 846 847 if (key) { 848 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 849 (TCPOPT_NOP << 16) | 850 (TCPOPT_MD5SIG << 8) | 851 TCPOLEN_MD5SIG); 852 /* Update length and the length the header thinks exists */ 853 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 854 rep.th.doff = arg.iov[0].iov_len / 4; 855 856 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 857 key, ip_hdr(skb)->saddr, 858 ip_hdr(skb)->daddr, &rep.th); 859 } 860 #endif 861 /* Can't co-exist with TCPMD5, hence check rep.opt[0] */ 862 if (rep.opt[0] == 0) { 863 __be32 mrst = mptcp_reset_option(skb); 864 865 if (mrst) { 866 rep.opt[0] = mrst; 867 arg.iov[0].iov_len += sizeof(mrst); 868 rep.th.doff = arg.iov[0].iov_len / 4; 869 } 870 } 871 872 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 873 ip_hdr(skb)->saddr, /* XXX */ 874 arg.iov[0].iov_len, IPPROTO_TCP, 0); 875 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 876 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 877 878 /* When socket is gone, all binding information is lost. 879 * routing might fail in this case. No choice here, if we choose to force 880 * input interface, we will misroute in case of asymmetric route. 881 */ 882 if (sk) 883 arg.bound_dev_if = sk->sk_bound_dev_if; 884 885 trace_tcp_send_reset(sk, skb, reason); 886 887 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 888 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 889 890 arg.tos = ip_hdr(skb)->tos; 891 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); 892 local_bh_disable(); 893 local_lock_nested_bh(&ipv4_tcp_sk.bh_lock); 894 ctl_sk = this_cpu_read(ipv4_tcp_sk.sock); 895 896 sock_net_set(ctl_sk, net); 897 if (sk) { 898 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 899 inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark); 900 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 901 inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority); 902 transmit_time = tcp_transmit_time(sk); 903 xfrm_sk_clone_policy(ctl_sk, sk); 904 txhash = (sk->sk_state == TCP_TIME_WAIT) ? 905 inet_twsk(sk)->tw_txhash : sk->sk_txhash; 906 } else { 907 ctl_sk->sk_mark = 0; 908 ctl_sk->sk_priority = 0; 909 } 910 ip_send_unicast_reply(ctl_sk, sk, 911 skb, &TCP_SKB_CB(skb)->header.h4.opt, 912 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 913 &arg, arg.iov[0].iov_len, 914 transmit_time, txhash); 915 916 xfrm_sk_free_policy(ctl_sk); 917 sock_net_set(ctl_sk, &init_net); 918 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 919 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 920 local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock); 921 local_bh_enable(); 922 923 #ifdef CONFIG_TCP_MD5SIG 924 out: 925 rcu_read_unlock(); 926 #endif 927 } 928 929 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 930 outside socket context is ugly, certainly. What can I do? 931 */ 932 933 static void tcp_v4_send_ack(const struct sock *sk, 934 struct sk_buff *skb, u32 seq, u32 ack, 935 u32 win, u32 tsval, u32 tsecr, int oif, 936 struct tcp_key *key, 937 int reply_flags, u8 tos, u32 txhash) 938 { 939 const struct tcphdr *th = tcp_hdr(skb); 940 struct { 941 struct tcphdr th; 942 __be32 opt[(MAX_TCP_OPTION_SPACE >> 2)]; 943 } rep; 944 struct net *net = sock_net(sk); 945 struct ip_reply_arg arg; 946 struct sock *ctl_sk; 947 u64 transmit_time; 948 949 memset(&rep.th, 0, sizeof(struct tcphdr)); 950 memset(&arg, 0, sizeof(arg)); 951 952 arg.iov[0].iov_base = (unsigned char *)&rep; 953 arg.iov[0].iov_len = sizeof(rep.th); 954 if (tsecr) { 955 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 956 (TCPOPT_TIMESTAMP << 8) | 957 TCPOLEN_TIMESTAMP); 958 rep.opt[1] = htonl(tsval); 959 rep.opt[2] = htonl(tsecr); 960 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 961 } 962 963 /* Swap the send and the receive. */ 964 rep.th.dest = th->source; 965 rep.th.source = th->dest; 966 rep.th.doff = arg.iov[0].iov_len / 4; 967 rep.th.seq = htonl(seq); 968 rep.th.ack_seq = htonl(ack); 969 rep.th.ack = 1; 970 rep.th.window = htons(win); 971 972 #ifdef CONFIG_TCP_MD5SIG 973 if (tcp_key_is_md5(key)) { 974 int offset = (tsecr) ? 3 : 0; 975 976 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 977 (TCPOPT_NOP << 16) | 978 (TCPOPT_MD5SIG << 8) | 979 TCPOLEN_MD5SIG); 980 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 981 rep.th.doff = arg.iov[0].iov_len/4; 982 983 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 984 key->md5_key, ip_hdr(skb)->saddr, 985 ip_hdr(skb)->daddr, &rep.th); 986 } 987 #endif 988 #ifdef CONFIG_TCP_AO 989 if (tcp_key_is_ao(key)) { 990 int offset = (tsecr) ? 3 : 0; 991 992 rep.opt[offset++] = htonl((TCPOPT_AO << 24) | 993 (tcp_ao_len(key->ao_key) << 16) | 994 (key->ao_key->sndid << 8) | 995 key->rcv_next); 996 arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key); 997 rep.th.doff = arg.iov[0].iov_len / 4; 998 999 tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset], 1000 key->ao_key, key->traffic_key, 1001 (union tcp_ao_addr *)&ip_hdr(skb)->saddr, 1002 (union tcp_ao_addr *)&ip_hdr(skb)->daddr, 1003 &rep.th, key->sne); 1004 } 1005 #endif 1006 arg.flags = reply_flags; 1007 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 1008 ip_hdr(skb)->saddr, /* XXX */ 1009 arg.iov[0].iov_len, IPPROTO_TCP, 0); 1010 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 1011 if (oif) 1012 arg.bound_dev_if = oif; 1013 arg.tos = tos; 1014 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); 1015 local_bh_disable(); 1016 local_lock_nested_bh(&ipv4_tcp_sk.bh_lock); 1017 ctl_sk = this_cpu_read(ipv4_tcp_sk.sock); 1018 sock_net_set(ctl_sk, net); 1019 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 1020 inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark); 1021 ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? 1022 inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority); 1023 transmit_time = tcp_transmit_time(sk); 1024 ip_send_unicast_reply(ctl_sk, sk, 1025 skb, &TCP_SKB_CB(skb)->header.h4.opt, 1026 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 1027 &arg, arg.iov[0].iov_len, 1028 transmit_time, txhash); 1029 1030 sock_net_set(ctl_sk, &init_net); 1031 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 1032 local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock); 1033 local_bh_enable(); 1034 } 1035 1036 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 1037 { 1038 struct inet_timewait_sock *tw = inet_twsk(sk); 1039 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 1040 struct tcp_key key = {}; 1041 #ifdef CONFIG_TCP_AO 1042 struct tcp_ao_info *ao_info; 1043 1044 if (static_branch_unlikely(&tcp_ao_needed.key)) { 1045 /* FIXME: the segment to-be-acked is not verified yet */ 1046 ao_info = rcu_dereference(tcptw->ao_info); 1047 if (ao_info) { 1048 const struct tcp_ao_hdr *aoh; 1049 1050 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) { 1051 inet_twsk_put(tw); 1052 return; 1053 } 1054 1055 if (aoh) 1056 key.ao_key = tcp_ao_established_key(sk, ao_info, 1057 aoh->rnext_keyid, -1); 1058 } 1059 } 1060 if (key.ao_key) { 1061 struct tcp_ao_key *rnext_key; 1062 1063 key.traffic_key = snd_other_key(key.ao_key); 1064 key.sne = READ_ONCE(ao_info->snd_sne); 1065 rnext_key = READ_ONCE(ao_info->rnext_key); 1066 key.rcv_next = rnext_key->rcvid; 1067 key.type = TCP_KEY_AO; 1068 #else 1069 if (0) { 1070 #endif 1071 } else if (static_branch_tcp_md5()) { 1072 key.md5_key = tcp_twsk_md5_key(tcptw); 1073 if (key.md5_key) 1074 key.type = TCP_KEY_MD5; 1075 } 1076 1077 tcp_v4_send_ack(sk, skb, 1078 tcptw->tw_snd_nxt, READ_ONCE(tcptw->tw_rcv_nxt), 1079 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 1080 tcp_tw_tsval(tcptw), 1081 READ_ONCE(tcptw->tw_ts_recent), 1082 tw->tw_bound_dev_if, &key, 1083 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 1084 tw->tw_tos, 1085 tw->tw_txhash); 1086 1087 inet_twsk_put(tw); 1088 } 1089 1090 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 1091 struct request_sock *req) 1092 { 1093 struct tcp_key key = {}; 1094 1095 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 1096 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 1097 */ 1098 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 1099 tcp_sk(sk)->snd_nxt; 1100 1101 #ifdef CONFIG_TCP_AO 1102 if (static_branch_unlikely(&tcp_ao_needed.key) && 1103 tcp_rsk_used_ao(req)) { 1104 const union tcp_md5_addr *addr; 1105 const struct tcp_ao_hdr *aoh; 1106 int l3index; 1107 1108 /* Invalid TCP option size or twice included auth */ 1109 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 1110 return; 1111 if (!aoh) 1112 return; 1113 1114 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 1115 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 1116 key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, 1117 aoh->rnext_keyid, -1); 1118 if (unlikely(!key.ao_key)) { 1119 /* Send ACK with any matching MKT for the peer */ 1120 key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1); 1121 /* Matching key disappeared (user removed the key?) 1122 * let the handshake timeout. 1123 */ 1124 if (!key.ao_key) { 1125 net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n", 1126 addr, 1127 ntohs(tcp_hdr(skb)->source), 1128 &ip_hdr(skb)->daddr, 1129 ntohs(tcp_hdr(skb)->dest)); 1130 return; 1131 } 1132 } 1133 key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC); 1134 if (!key.traffic_key) 1135 return; 1136 1137 key.type = TCP_KEY_AO; 1138 key.rcv_next = aoh->keyid; 1139 tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req); 1140 #else 1141 if (0) { 1142 #endif 1143 } else if (static_branch_tcp_md5()) { 1144 const union tcp_md5_addr *addr; 1145 int l3index; 1146 1147 addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; 1148 l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; 1149 key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1150 if (key.md5_key) 1151 key.type = TCP_KEY_MD5; 1152 } 1153 1154 tcp_v4_send_ack(sk, skb, seq, 1155 tcp_rsk(req)->rcv_nxt, 1156 tcp_synack_window(req) >> inet_rsk(req)->rcv_wscale, 1157 tcp_rsk_tsval(tcp_rsk(req)), 1158 READ_ONCE(req->ts_recent), 1159 0, &key, 1160 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 1161 ip_hdr(skb)->tos, 1162 READ_ONCE(tcp_rsk(req)->txhash)); 1163 if (tcp_key_is_ao(&key)) 1164 kfree(key.traffic_key); 1165 } 1166 1167 /* 1168 * Send a SYN-ACK after having received a SYN. 1169 * This still operates on a request_sock only, not on a big 1170 * socket. 1171 */ 1172 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 1173 struct flowi *fl, 1174 struct request_sock *req, 1175 struct tcp_fastopen_cookie *foc, 1176 enum tcp_synack_type synack_type, 1177 struct sk_buff *syn_skb) 1178 { 1179 const struct inet_request_sock *ireq = inet_rsk(req); 1180 struct flowi4 fl4; 1181 int err = -1; 1182 struct sk_buff *skb; 1183 u8 tos; 1184 1185 /* First, grab a route. */ 1186 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 1187 return -1; 1188 1189 skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb); 1190 1191 if (skb) { 1192 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 1193 1194 tos = READ_ONCE(inet_sk(sk)->tos); 1195 1196 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)) 1197 tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) | 1198 (tos & INET_ECN_MASK); 1199 1200 if (!INET_ECN_is_capable(tos) && 1201 tcp_bpf_ca_needs_ecn((struct sock *)req)) 1202 tos |= INET_ECN_ECT_0; 1203 1204 rcu_read_lock(); 1205 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 1206 ireq->ir_rmt_addr, 1207 rcu_dereference(ireq->ireq_opt), 1208 tos); 1209 rcu_read_unlock(); 1210 err = net_xmit_eval(err); 1211 } 1212 1213 return err; 1214 } 1215 1216 /* 1217 * IPv4 request_sock destructor. 1218 */ 1219 static void tcp_v4_reqsk_destructor(struct request_sock *req) 1220 { 1221 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); 1222 } 1223 1224 #ifdef CONFIG_TCP_MD5SIG 1225 /* 1226 * RFC2385 MD5 checksumming requires a mapping of 1227 * IP address->MD5 Key. 1228 * We need to maintain these in the sk structure. 1229 */ 1230 1231 DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ); 1232 EXPORT_SYMBOL(tcp_md5_needed); 1233 1234 static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new) 1235 { 1236 if (!old) 1237 return true; 1238 1239 /* l3index always overrides non-l3index */ 1240 if (old->l3index && new->l3index == 0) 1241 return false; 1242 if (old->l3index == 0 && new->l3index) 1243 return true; 1244 1245 return old->prefixlen < new->prefixlen; 1246 } 1247 1248 /* Find the Key structure for an address. */ 1249 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1250 const union tcp_md5_addr *addr, 1251 int family, bool any_l3index) 1252 { 1253 const struct tcp_sock *tp = tcp_sk(sk); 1254 struct tcp_md5sig_key *key; 1255 const struct tcp_md5sig_info *md5sig; 1256 __be32 mask; 1257 struct tcp_md5sig_key *best_match = NULL; 1258 bool match; 1259 1260 /* caller either holds rcu_read_lock() or socket lock */ 1261 md5sig = rcu_dereference_check(tp->md5sig_info, 1262 lockdep_sock_is_held(sk)); 1263 if (!md5sig) 1264 return NULL; 1265 1266 hlist_for_each_entry_rcu(key, &md5sig->head, node, 1267 lockdep_sock_is_held(sk)) { 1268 if (key->family != family) 1269 continue; 1270 if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX && 1271 key->l3index != l3index) 1272 continue; 1273 if (family == AF_INET) { 1274 mask = inet_make_mask(key->prefixlen); 1275 match = (key->addr.a4.s_addr & mask) == 1276 (addr->a4.s_addr & mask); 1277 #if IS_ENABLED(CONFIG_IPV6) 1278 } else if (family == AF_INET6) { 1279 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, 1280 key->prefixlen); 1281 #endif 1282 } else { 1283 match = false; 1284 } 1285 1286 if (match && better_md5_match(best_match, key)) 1287 best_match = key; 1288 } 1289 return best_match; 1290 } 1291 EXPORT_SYMBOL(__tcp_md5_do_lookup); 1292 1293 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, 1294 const union tcp_md5_addr *addr, 1295 int family, u8 prefixlen, 1296 int l3index, u8 flags) 1297 { 1298 const struct tcp_sock *tp = tcp_sk(sk); 1299 struct tcp_md5sig_key *key; 1300 unsigned int size = sizeof(struct in_addr); 1301 const struct tcp_md5sig_info *md5sig; 1302 1303 /* caller either holds rcu_read_lock() or socket lock */ 1304 md5sig = rcu_dereference_check(tp->md5sig_info, 1305 lockdep_sock_is_held(sk)); 1306 if (!md5sig) 1307 return NULL; 1308 #if IS_ENABLED(CONFIG_IPV6) 1309 if (family == AF_INET6) 1310 size = sizeof(struct in6_addr); 1311 #endif 1312 hlist_for_each_entry_rcu(key, &md5sig->head, node, 1313 lockdep_sock_is_held(sk)) { 1314 if (key->family != family) 1315 continue; 1316 if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX)) 1317 continue; 1318 if (key->l3index != l3index) 1319 continue; 1320 if (!memcmp(&key->addr, addr, size) && 1321 key->prefixlen == prefixlen) 1322 return key; 1323 } 1324 return NULL; 1325 } 1326 1327 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1328 const struct sock *addr_sk) 1329 { 1330 const union tcp_md5_addr *addr; 1331 int l3index; 1332 1333 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), 1334 addr_sk->sk_bound_dev_if); 1335 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 1336 return tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1337 } 1338 EXPORT_SYMBOL(tcp_v4_md5_lookup); 1339 1340 static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp) 1341 { 1342 struct tcp_sock *tp = tcp_sk(sk); 1343 struct tcp_md5sig_info *md5sig; 1344 1345 md5sig = kmalloc(sizeof(*md5sig), gfp); 1346 if (!md5sig) 1347 return -ENOMEM; 1348 1349 sk_gso_disable(sk); 1350 INIT_HLIST_HEAD(&md5sig->head); 1351 rcu_assign_pointer(tp->md5sig_info, md5sig); 1352 return 0; 1353 } 1354 1355 /* This can be called on a newly created socket, from other files */ 1356 static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1357 int family, u8 prefixlen, int l3index, u8 flags, 1358 const u8 *newkey, u8 newkeylen, gfp_t gfp) 1359 { 1360 /* Add Key to the list */ 1361 struct tcp_md5sig_key *key; 1362 struct tcp_sock *tp = tcp_sk(sk); 1363 struct tcp_md5sig_info *md5sig; 1364 1365 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags); 1366 if (key) { 1367 /* Pre-existing entry - just update that one. 1368 * Note that the key might be used concurrently. 1369 * data_race() is telling kcsan that we do not care of 1370 * key mismatches, since changing MD5 key on live flows 1371 * can lead to packet drops. 1372 */ 1373 data_race(memcpy(key->key, newkey, newkeylen)); 1374 1375 /* Pairs with READ_ONCE() in tcp_md5_hash_key(). 1376 * Also note that a reader could catch new key->keylen value 1377 * but old key->key[], this is the reason we use __GFP_ZERO 1378 * at sock_kmalloc() time below these lines. 1379 */ 1380 WRITE_ONCE(key->keylen, newkeylen); 1381 1382 return 0; 1383 } 1384 1385 md5sig = rcu_dereference_protected(tp->md5sig_info, 1386 lockdep_sock_is_held(sk)); 1387 1388 key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO); 1389 if (!key) 1390 return -ENOMEM; 1391 1392 memcpy(key->key, newkey, newkeylen); 1393 key->keylen = newkeylen; 1394 key->family = family; 1395 key->prefixlen = prefixlen; 1396 key->l3index = l3index; 1397 key->flags = flags; 1398 memcpy(&key->addr, addr, 1399 (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) : 1400 sizeof(struct in_addr)); 1401 hlist_add_head_rcu(&key->node, &md5sig->head); 1402 return 0; 1403 } 1404 1405 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1406 int family, u8 prefixlen, int l3index, u8 flags, 1407 const u8 *newkey, u8 newkeylen) 1408 { 1409 struct tcp_sock *tp = tcp_sk(sk); 1410 1411 if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) { 1412 if (tcp_md5_alloc_sigpool()) 1413 return -ENOMEM; 1414 1415 if (tcp_md5sig_info_add(sk, GFP_KERNEL)) { 1416 tcp_md5_release_sigpool(); 1417 return -ENOMEM; 1418 } 1419 1420 if (!static_branch_inc(&tcp_md5_needed.key)) { 1421 struct tcp_md5sig_info *md5sig; 1422 1423 md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk)); 1424 rcu_assign_pointer(tp->md5sig_info, NULL); 1425 kfree_rcu(md5sig, rcu); 1426 tcp_md5_release_sigpool(); 1427 return -EUSERS; 1428 } 1429 } 1430 1431 return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags, 1432 newkey, newkeylen, GFP_KERNEL); 1433 } 1434 EXPORT_SYMBOL(tcp_md5_do_add); 1435 1436 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1437 int family, u8 prefixlen, int l3index, 1438 struct tcp_md5sig_key *key) 1439 { 1440 struct tcp_sock *tp = tcp_sk(sk); 1441 1442 if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) { 1443 tcp_md5_add_sigpool(); 1444 1445 if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) { 1446 tcp_md5_release_sigpool(); 1447 return -ENOMEM; 1448 } 1449 1450 if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) { 1451 struct tcp_md5sig_info *md5sig; 1452 1453 md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk)); 1454 net_warn_ratelimited("Too many TCP-MD5 keys in the system\n"); 1455 rcu_assign_pointer(tp->md5sig_info, NULL); 1456 kfree_rcu(md5sig, rcu); 1457 tcp_md5_release_sigpool(); 1458 return -EUSERS; 1459 } 1460 } 1461 1462 return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, 1463 key->flags, key->key, key->keylen, 1464 sk_gfp_mask(sk, GFP_ATOMIC)); 1465 } 1466 EXPORT_SYMBOL(tcp_md5_key_copy); 1467 1468 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, 1469 u8 prefixlen, int l3index, u8 flags) 1470 { 1471 struct tcp_md5sig_key *key; 1472 1473 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags); 1474 if (!key) 1475 return -ENOENT; 1476 hlist_del_rcu(&key->node); 1477 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1478 kfree_rcu(key, rcu); 1479 return 0; 1480 } 1481 EXPORT_SYMBOL(tcp_md5_do_del); 1482 1483 void tcp_clear_md5_list(struct sock *sk) 1484 { 1485 struct tcp_sock *tp = tcp_sk(sk); 1486 struct tcp_md5sig_key *key; 1487 struct hlist_node *n; 1488 struct tcp_md5sig_info *md5sig; 1489 1490 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1491 1492 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1493 hlist_del_rcu(&key->node); 1494 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1495 kfree_rcu(key, rcu); 1496 } 1497 } 1498 1499 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, 1500 sockptr_t optval, int optlen) 1501 { 1502 struct tcp_md5sig cmd; 1503 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1504 const union tcp_md5_addr *addr; 1505 u8 prefixlen = 32; 1506 int l3index = 0; 1507 bool l3flag; 1508 u8 flags; 1509 1510 if (optlen < sizeof(cmd)) 1511 return -EINVAL; 1512 1513 if (copy_from_sockptr(&cmd, optval, sizeof(cmd))) 1514 return -EFAULT; 1515 1516 if (sin->sin_family != AF_INET) 1517 return -EINVAL; 1518 1519 flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX; 1520 l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX; 1521 1522 if (optname == TCP_MD5SIG_EXT && 1523 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { 1524 prefixlen = cmd.tcpm_prefixlen; 1525 if (prefixlen > 32) 1526 return -EINVAL; 1527 } 1528 1529 if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex && 1530 cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) { 1531 struct net_device *dev; 1532 1533 rcu_read_lock(); 1534 dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex); 1535 if (dev && netif_is_l3_master(dev)) 1536 l3index = dev->ifindex; 1537 1538 rcu_read_unlock(); 1539 1540 /* ok to reference set/not set outside of rcu; 1541 * right now device MUST be an L3 master 1542 */ 1543 if (!dev || !l3index) 1544 return -EINVAL; 1545 } 1546 1547 addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr; 1548 1549 if (!cmd.tcpm_keylen) 1550 return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags); 1551 1552 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1553 return -EINVAL; 1554 1555 /* Don't allow keys for peers that have a matching TCP-AO key. 1556 * See the comment in tcp_ao_add_cmd() 1557 */ 1558 if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false)) 1559 return -EKEYREJECTED; 1560 1561 return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags, 1562 cmd.tcpm_key, cmd.tcpm_keylen); 1563 } 1564 1565 static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp, 1566 __be32 daddr, __be32 saddr, 1567 const struct tcphdr *th, int nbytes) 1568 { 1569 struct tcp4_pseudohdr *bp; 1570 struct scatterlist sg; 1571 struct tcphdr *_th; 1572 1573 bp = hp->scratch; 1574 bp->saddr = saddr; 1575 bp->daddr = daddr; 1576 bp->pad = 0; 1577 bp->protocol = IPPROTO_TCP; 1578 bp->len = cpu_to_be16(nbytes); 1579 1580 _th = (struct tcphdr *)(bp + 1); 1581 memcpy(_th, th, sizeof(*th)); 1582 _th->check = 0; 1583 1584 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1585 ahash_request_set_crypt(hp->req, &sg, NULL, 1586 sizeof(*bp) + sizeof(*th)); 1587 return crypto_ahash_update(hp->req); 1588 } 1589 1590 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1591 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1592 { 1593 struct tcp_sigpool hp; 1594 1595 if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp)) 1596 goto clear_hash_nostart; 1597 1598 if (crypto_ahash_init(hp.req)) 1599 goto clear_hash; 1600 if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2)) 1601 goto clear_hash; 1602 if (tcp_md5_hash_key(&hp, key)) 1603 goto clear_hash; 1604 ahash_request_set_crypt(hp.req, NULL, md5_hash, 0); 1605 if (crypto_ahash_final(hp.req)) 1606 goto clear_hash; 1607 1608 tcp_sigpool_end(&hp); 1609 return 0; 1610 1611 clear_hash: 1612 tcp_sigpool_end(&hp); 1613 clear_hash_nostart: 1614 memset(md5_hash, 0, 16); 1615 return 1; 1616 } 1617 1618 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1619 const struct sock *sk, 1620 const struct sk_buff *skb) 1621 { 1622 const struct tcphdr *th = tcp_hdr(skb); 1623 struct tcp_sigpool hp; 1624 __be32 saddr, daddr; 1625 1626 if (sk) { /* valid for establish/request sockets */ 1627 saddr = sk->sk_rcv_saddr; 1628 daddr = sk->sk_daddr; 1629 } else { 1630 const struct iphdr *iph = ip_hdr(skb); 1631 saddr = iph->saddr; 1632 daddr = iph->daddr; 1633 } 1634 1635 if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp)) 1636 goto clear_hash_nostart; 1637 1638 if (crypto_ahash_init(hp.req)) 1639 goto clear_hash; 1640 1641 if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len)) 1642 goto clear_hash; 1643 if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2)) 1644 goto clear_hash; 1645 if (tcp_md5_hash_key(&hp, key)) 1646 goto clear_hash; 1647 ahash_request_set_crypt(hp.req, NULL, md5_hash, 0); 1648 if (crypto_ahash_final(hp.req)) 1649 goto clear_hash; 1650 1651 tcp_sigpool_end(&hp); 1652 return 0; 1653 1654 clear_hash: 1655 tcp_sigpool_end(&hp); 1656 clear_hash_nostart: 1657 memset(md5_hash, 0, 16); 1658 return 1; 1659 } 1660 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1661 1662 #endif 1663 1664 static void tcp_v4_init_req(struct request_sock *req, 1665 const struct sock *sk_listener, 1666 struct sk_buff *skb) 1667 { 1668 struct inet_request_sock *ireq = inet_rsk(req); 1669 struct net *net = sock_net(sk_listener); 1670 1671 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1672 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1673 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); 1674 } 1675 1676 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1677 struct sk_buff *skb, 1678 struct flowi *fl, 1679 struct request_sock *req, 1680 u32 tw_isn) 1681 { 1682 tcp_v4_init_req(req, sk, skb); 1683 1684 if (security_inet_conn_request(sk, skb, req)) 1685 return NULL; 1686 1687 return inet_csk_route_req(sk, &fl->u.ip4, req); 1688 } 1689 1690 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1691 .family = PF_INET, 1692 .obj_size = sizeof(struct tcp_request_sock), 1693 .rtx_syn_ack = tcp_rtx_synack, 1694 .send_ack = tcp_v4_reqsk_send_ack, 1695 .destructor = tcp_v4_reqsk_destructor, 1696 .send_reset = tcp_v4_send_reset, 1697 .syn_ack_timeout = tcp_syn_ack_timeout, 1698 }; 1699 1700 const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1701 .mss_clamp = TCP_MSS_DEFAULT, 1702 #ifdef CONFIG_TCP_MD5SIG 1703 .req_md5_lookup = tcp_v4_md5_lookup, 1704 .calc_md5_hash = tcp_v4_md5_hash_skb, 1705 #endif 1706 #ifdef CONFIG_TCP_AO 1707 .ao_lookup = tcp_v4_ao_lookup_rsk, 1708 .ao_calc_key = tcp_v4_ao_calc_key_rsk, 1709 .ao_synack_hash = tcp_v4_ao_synack_hash, 1710 #endif 1711 #ifdef CONFIG_SYN_COOKIES 1712 .cookie_init_seq = cookie_v4_init_sequence, 1713 #endif 1714 .route_req = tcp_v4_route_req, 1715 .init_seq = tcp_v4_init_seq, 1716 .init_ts_off = tcp_v4_init_ts_off, 1717 .send_synack = tcp_v4_send_synack, 1718 }; 1719 1720 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1721 { 1722 /* Never answer to SYNs send to broadcast or multicast */ 1723 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1724 goto drop; 1725 1726 return tcp_conn_request(&tcp_request_sock_ops, 1727 &tcp_request_sock_ipv4_ops, sk, skb); 1728 1729 drop: 1730 tcp_listendrop(sk); 1731 return 0; 1732 } 1733 EXPORT_SYMBOL(tcp_v4_conn_request); 1734 1735 1736 /* 1737 * The three way handshake has completed - we got a valid synack - 1738 * now create the new socket. 1739 */ 1740 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1741 struct request_sock *req, 1742 struct dst_entry *dst, 1743 struct request_sock *req_unhash, 1744 bool *own_req) 1745 { 1746 struct inet_request_sock *ireq; 1747 bool found_dup_sk = false; 1748 struct inet_sock *newinet; 1749 struct tcp_sock *newtp; 1750 struct sock *newsk; 1751 #ifdef CONFIG_TCP_MD5SIG 1752 const union tcp_md5_addr *addr; 1753 struct tcp_md5sig_key *key; 1754 int l3index; 1755 #endif 1756 struct ip_options_rcu *inet_opt; 1757 1758 if (sk_acceptq_is_full(sk)) 1759 goto exit_overflow; 1760 1761 newsk = tcp_create_openreq_child(sk, req, skb); 1762 if (!newsk) 1763 goto exit_nonewsk; 1764 1765 newsk->sk_gso_type = SKB_GSO_TCPV4; 1766 inet_sk_rx_dst_set(newsk, skb); 1767 1768 newtp = tcp_sk(newsk); 1769 newinet = inet_sk(newsk); 1770 ireq = inet_rsk(req); 1771 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1772 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1773 newsk->sk_bound_dev_if = ireq->ir_iif; 1774 newinet->inet_saddr = ireq->ir_loc_addr; 1775 inet_opt = rcu_dereference(ireq->ireq_opt); 1776 RCU_INIT_POINTER(newinet->inet_opt, inet_opt); 1777 newinet->mc_index = inet_iif(skb); 1778 newinet->mc_ttl = ip_hdr(skb)->ttl; 1779 newinet->rcv_tos = ip_hdr(skb)->tos; 1780 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1781 if (inet_opt) 1782 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1783 atomic_set(&newinet->inet_id, get_random_u16()); 1784 1785 /* Set ToS of the new socket based upon the value of incoming SYN. 1786 * ECT bits are set later in tcp_init_transfer(). 1787 */ 1788 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos)) 1789 newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK; 1790 1791 if (!dst) { 1792 dst = inet_csk_route_child_sock(sk, newsk, req); 1793 if (!dst) 1794 goto put_and_exit; 1795 } else { 1796 /* syncookie case : see end of cookie_v4_check() */ 1797 } 1798 sk_setup_caps(newsk, dst); 1799 1800 tcp_ca_openreq_child(newsk, dst); 1801 1802 tcp_sync_mss(newsk, dst_mtu(dst)); 1803 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); 1804 1805 tcp_initialize_rcv_mss(newsk); 1806 1807 #ifdef CONFIG_TCP_MD5SIG 1808 l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif); 1809 /* Copy over the MD5 key from the original socket */ 1810 addr = (union tcp_md5_addr *)&newinet->inet_daddr; 1811 key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); 1812 if (key && !tcp_rsk_used_ao(req)) { 1813 if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key)) 1814 goto put_and_exit; 1815 sk_gso_disable(newsk); 1816 } 1817 #endif 1818 #ifdef CONFIG_TCP_AO 1819 if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET)) 1820 goto put_and_exit; /* OOM, release back memory */ 1821 #endif 1822 1823 if (__inet_inherit_port(sk, newsk) < 0) 1824 goto put_and_exit; 1825 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash), 1826 &found_dup_sk); 1827 if (likely(*own_req)) { 1828 tcp_move_syn(newtp, req); 1829 ireq->ireq_opt = NULL; 1830 } else { 1831 newinet->inet_opt = NULL; 1832 1833 if (!req_unhash && found_dup_sk) { 1834 /* This code path should only be executed in the 1835 * syncookie case only 1836 */ 1837 bh_unlock_sock(newsk); 1838 sock_put(newsk); 1839 newsk = NULL; 1840 } 1841 } 1842 return newsk; 1843 1844 exit_overflow: 1845 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1846 exit_nonewsk: 1847 dst_release(dst); 1848 exit: 1849 tcp_listendrop(sk); 1850 return NULL; 1851 put_and_exit: 1852 newinet->inet_opt = NULL; 1853 inet_csk_prepare_forced_close(newsk); 1854 tcp_done(newsk); 1855 goto exit; 1856 } 1857 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1858 1859 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1860 { 1861 #ifdef CONFIG_SYN_COOKIES 1862 const struct tcphdr *th = tcp_hdr(skb); 1863 1864 if (!th->syn) 1865 sk = cookie_v4_check(sk, skb); 1866 #endif 1867 return sk; 1868 } 1869 1870 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 1871 struct tcphdr *th, u32 *cookie) 1872 { 1873 u16 mss = 0; 1874 #ifdef CONFIG_SYN_COOKIES 1875 mss = tcp_get_syncookie_mss(&tcp_request_sock_ops, 1876 &tcp_request_sock_ipv4_ops, sk, th); 1877 if (mss) { 1878 *cookie = __cookie_v4_init_sequence(iph, th, &mss); 1879 tcp_synq_overflow(sk); 1880 } 1881 #endif 1882 return mss; 1883 } 1884 1885 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *, 1886 u32)); 1887 /* The socket must have it's spinlock held when we get 1888 * here, unless it is a TCP_LISTEN socket. 1889 * 1890 * We have a potential double-lock case here, so even when 1891 * doing backlog processing we use the BH locking scheme. 1892 * This is because we cannot sleep with the original spinlock 1893 * held. 1894 */ 1895 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1896 { 1897 enum skb_drop_reason reason; 1898 struct sock *rsk; 1899 1900 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1901 struct dst_entry *dst; 1902 1903 dst = rcu_dereference_protected(sk->sk_rx_dst, 1904 lockdep_sock_is_held(sk)); 1905 1906 sock_rps_save_rxhash(sk, skb); 1907 sk_mark_napi_id(sk, skb); 1908 if (dst) { 1909 if (sk->sk_rx_dst_ifindex != skb->skb_iif || 1910 !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check, 1911 dst, 0)) { 1912 RCU_INIT_POINTER(sk->sk_rx_dst, NULL); 1913 dst_release(dst); 1914 } 1915 } 1916 tcp_rcv_established(sk, skb); 1917 return 0; 1918 } 1919 1920 if (tcp_checksum_complete(skb)) 1921 goto csum_err; 1922 1923 if (sk->sk_state == TCP_LISTEN) { 1924 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1925 1926 if (!nsk) 1927 return 0; 1928 if (nsk != sk) { 1929 reason = tcp_child_process(sk, nsk, skb); 1930 if (reason) { 1931 rsk = nsk; 1932 goto reset; 1933 } 1934 return 0; 1935 } 1936 } else 1937 sock_rps_save_rxhash(sk, skb); 1938 1939 reason = tcp_rcv_state_process(sk, skb); 1940 if (reason) { 1941 rsk = sk; 1942 goto reset; 1943 } 1944 return 0; 1945 1946 reset: 1947 tcp_v4_send_reset(rsk, skb, sk_rst_convert_drop_reason(reason)); 1948 discard: 1949 sk_skb_reason_drop(sk, skb, reason); 1950 /* Be careful here. If this function gets more complicated and 1951 * gcc suffers from register pressure on the x86, sk (in %ebx) 1952 * might be destroyed here. This current version compiles correctly, 1953 * but you have been warned. 1954 */ 1955 return 0; 1956 1957 csum_err: 1958 reason = SKB_DROP_REASON_TCP_CSUM; 1959 trace_tcp_bad_csum(skb); 1960 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1961 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1962 goto discard; 1963 } 1964 EXPORT_SYMBOL(tcp_v4_do_rcv); 1965 1966 int tcp_v4_early_demux(struct sk_buff *skb) 1967 { 1968 struct net *net = dev_net(skb->dev); 1969 const struct iphdr *iph; 1970 const struct tcphdr *th; 1971 struct sock *sk; 1972 1973 if (skb->pkt_type != PACKET_HOST) 1974 return 0; 1975 1976 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1977 return 0; 1978 1979 iph = ip_hdr(skb); 1980 th = tcp_hdr(skb); 1981 1982 if (th->doff < sizeof(struct tcphdr) / 4) 1983 return 0; 1984 1985 sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo, 1986 iph->saddr, th->source, 1987 iph->daddr, ntohs(th->dest), 1988 skb->skb_iif, inet_sdif(skb)); 1989 if (sk) { 1990 skb->sk = sk; 1991 skb->destructor = sock_edemux; 1992 if (sk_fullsock(sk)) { 1993 struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst); 1994 1995 if (dst) 1996 dst = dst_check(dst, 0); 1997 if (dst && 1998 sk->sk_rx_dst_ifindex == skb->skb_iif) 1999 skb_dst_set_noref(skb, dst); 2000 } 2001 } 2002 return 0; 2003 } 2004 2005 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 2006 enum skb_drop_reason *reason) 2007 { 2008 u32 tail_gso_size, tail_gso_segs; 2009 struct skb_shared_info *shinfo; 2010 const struct tcphdr *th; 2011 struct tcphdr *thtail; 2012 struct sk_buff *tail; 2013 unsigned int hdrlen; 2014 bool fragstolen; 2015 u32 gso_segs; 2016 u32 gso_size; 2017 u64 limit; 2018 int delta; 2019 2020 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 2021 * we can fix skb->truesize to its real value to avoid future drops. 2022 * This is valid because skb is not yet charged to the socket. 2023 * It has been noticed pure SACK packets were sometimes dropped 2024 * (if cooked by drivers without copybreak feature). 2025 */ 2026 skb_condense(skb); 2027 2028 skb_dst_drop(skb); 2029 2030 if (unlikely(tcp_checksum_complete(skb))) { 2031 bh_unlock_sock(sk); 2032 trace_tcp_bad_csum(skb); 2033 *reason = SKB_DROP_REASON_TCP_CSUM; 2034 __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 2035 __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 2036 return true; 2037 } 2038 2039 /* Attempt coalescing to last skb in backlog, even if we are 2040 * above the limits. 2041 * This is okay because skb capacity is limited to MAX_SKB_FRAGS. 2042 */ 2043 th = (const struct tcphdr *)skb->data; 2044 hdrlen = th->doff * 4; 2045 2046 tail = sk->sk_backlog.tail; 2047 if (!tail) 2048 goto no_coalesce; 2049 thtail = (struct tcphdr *)tail->data; 2050 2051 if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq || 2052 TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield || 2053 ((TCP_SKB_CB(tail)->tcp_flags | 2054 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) || 2055 !((TCP_SKB_CB(tail)->tcp_flags & 2056 TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) || 2057 ((TCP_SKB_CB(tail)->tcp_flags ^ 2058 TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) || 2059 !tcp_skb_can_collapse_rx(tail, skb) || 2060 thtail->doff != th->doff || 2061 memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th))) 2062 goto no_coalesce; 2063 2064 __skb_pull(skb, hdrlen); 2065 2066 shinfo = skb_shinfo(skb); 2067 gso_size = shinfo->gso_size ?: skb->len; 2068 gso_segs = shinfo->gso_segs ?: 1; 2069 2070 shinfo = skb_shinfo(tail); 2071 tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen); 2072 tail_gso_segs = shinfo->gso_segs ?: 1; 2073 2074 if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) { 2075 TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq; 2076 2077 if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) { 2078 TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq; 2079 thtail->window = th->window; 2080 } 2081 2082 /* We have to update both TCP_SKB_CB(tail)->tcp_flags and 2083 * thtail->fin, so that the fast path in tcp_rcv_established() 2084 * is not entered if we append a packet with a FIN. 2085 * SYN, RST, URG are not present. 2086 * ACK is set on both packets. 2087 * PSH : we do not really care in TCP stack, 2088 * at least for 'GRO' packets. 2089 */ 2090 thtail->fin |= th->fin; 2091 TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 2092 2093 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2094 TCP_SKB_CB(tail)->has_rxtstamp = true; 2095 tail->tstamp = skb->tstamp; 2096 skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 2097 } 2098 2099 /* Not as strict as GRO. We only need to carry mss max value */ 2100 shinfo->gso_size = max(gso_size, tail_gso_size); 2101 shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF); 2102 2103 sk->sk_backlog.len += delta; 2104 __NET_INC_STATS(sock_net(sk), 2105 LINUX_MIB_TCPBACKLOGCOALESCE); 2106 kfree_skb_partial(skb, fragstolen); 2107 return false; 2108 } 2109 __skb_push(skb, hdrlen); 2110 2111 no_coalesce: 2112 /* sk->sk_backlog.len is reset only at the end of __release_sock(). 2113 * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach 2114 * sk_rcvbuf in normal conditions. 2115 */ 2116 limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1; 2117 2118 limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1; 2119 2120 /* Only socket owner can try to collapse/prune rx queues 2121 * to reduce memory overhead, so add a little headroom here. 2122 * Few sockets backlog are possibly concurrently non empty. 2123 */ 2124 limit += 64 * 1024; 2125 2126 limit = min_t(u64, limit, UINT_MAX); 2127 2128 if (unlikely(sk_add_backlog(sk, skb, limit))) { 2129 bh_unlock_sock(sk); 2130 *reason = SKB_DROP_REASON_SOCKET_BACKLOG; 2131 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 2132 return true; 2133 } 2134 return false; 2135 } 2136 EXPORT_SYMBOL(tcp_add_backlog); 2137 2138 int tcp_filter(struct sock *sk, struct sk_buff *skb) 2139 { 2140 struct tcphdr *th = (struct tcphdr *)skb->data; 2141 2142 return sk_filter_trim_cap(sk, skb, th->doff * 4); 2143 } 2144 EXPORT_SYMBOL(tcp_filter); 2145 2146 static void tcp_v4_restore_cb(struct sk_buff *skb) 2147 { 2148 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, 2149 sizeof(struct inet_skb_parm)); 2150 } 2151 2152 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, 2153 const struct tcphdr *th) 2154 { 2155 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 2156 * barrier() makes sure compiler wont play fool^Waliasing games. 2157 */ 2158 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 2159 sizeof(struct inet_skb_parm)); 2160 barrier(); 2161 2162 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 2163 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 2164 skb->len - th->doff * 4); 2165 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 2166 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 2167 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 2168 TCP_SKB_CB(skb)->sacked = 0; 2169 TCP_SKB_CB(skb)->has_rxtstamp = 2170 skb->tstamp || skb_hwtstamps(skb)->hwtstamp; 2171 } 2172 2173 /* 2174 * From tcp_input.c 2175 */ 2176 2177 int tcp_v4_rcv(struct sk_buff *skb) 2178 { 2179 struct net *net = dev_net(skb->dev); 2180 enum skb_drop_reason drop_reason; 2181 int sdif = inet_sdif(skb); 2182 int dif = inet_iif(skb); 2183 const struct iphdr *iph; 2184 const struct tcphdr *th; 2185 struct sock *sk = NULL; 2186 bool refcounted; 2187 int ret; 2188 u32 isn; 2189 2190 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; 2191 if (skb->pkt_type != PACKET_HOST) 2192 goto discard_it; 2193 2194 /* Count it even if it's bad */ 2195 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 2196 2197 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 2198 goto discard_it; 2199 2200 th = (const struct tcphdr *)skb->data; 2201 2202 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) { 2203 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; 2204 goto bad_packet; 2205 } 2206 if (!pskb_may_pull(skb, th->doff * 4)) 2207 goto discard_it; 2208 2209 /* An explanation is required here, I think. 2210 * Packet length and doff are validated by header prediction, 2211 * provided case of th->doff==0 is eliminated. 2212 * So, we defer the checks. */ 2213 2214 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 2215 goto csum_error; 2216 2217 th = (const struct tcphdr *)skb->data; 2218 iph = ip_hdr(skb); 2219 lookup: 2220 sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo, 2221 skb, __tcp_hdrlen(th), th->source, 2222 th->dest, sdif, &refcounted); 2223 if (!sk) 2224 goto no_tcp_socket; 2225 2226 if (sk->sk_state == TCP_TIME_WAIT) 2227 goto do_time_wait; 2228 2229 if (sk->sk_state == TCP_NEW_SYN_RECV) { 2230 struct request_sock *req = inet_reqsk(sk); 2231 bool req_stolen = false; 2232 struct sock *nsk; 2233 2234 sk = req->rsk_listener; 2235 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 2236 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2237 else 2238 drop_reason = tcp_inbound_hash(sk, req, skb, 2239 &iph->saddr, &iph->daddr, 2240 AF_INET, dif, sdif); 2241 if (unlikely(drop_reason)) { 2242 sk_drops_add(sk, skb); 2243 reqsk_put(req); 2244 goto discard_it; 2245 } 2246 if (tcp_checksum_complete(skb)) { 2247 reqsk_put(req); 2248 goto csum_error; 2249 } 2250 if (unlikely(sk->sk_state != TCP_LISTEN)) { 2251 nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb); 2252 if (!nsk) { 2253 inet_csk_reqsk_queue_drop_and_put(sk, req); 2254 goto lookup; 2255 } 2256 sk = nsk; 2257 /* reuseport_migrate_sock() has already held one sk_refcnt 2258 * before returning. 2259 */ 2260 } else { 2261 /* We own a reference on the listener, increase it again 2262 * as we might lose it too soon. 2263 */ 2264 sock_hold(sk); 2265 } 2266 refcounted = true; 2267 nsk = NULL; 2268 if (!tcp_filter(sk, skb)) { 2269 th = (const struct tcphdr *)skb->data; 2270 iph = ip_hdr(skb); 2271 tcp_v4_fill_cb(skb, iph, th); 2272 nsk = tcp_check_req(sk, skb, req, false, &req_stolen); 2273 } else { 2274 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2275 } 2276 if (!nsk) { 2277 reqsk_put(req); 2278 if (req_stolen) { 2279 /* Another cpu got exclusive access to req 2280 * and created a full blown socket. 2281 * Try to feed this packet to this socket 2282 * instead of discarding it. 2283 */ 2284 tcp_v4_restore_cb(skb); 2285 sock_put(sk); 2286 goto lookup; 2287 } 2288 goto discard_and_relse; 2289 } 2290 nf_reset_ct(skb); 2291 if (nsk == sk) { 2292 reqsk_put(req); 2293 tcp_v4_restore_cb(skb); 2294 } else { 2295 drop_reason = tcp_child_process(sk, nsk, skb); 2296 if (drop_reason) { 2297 enum sk_rst_reason rst_reason; 2298 2299 rst_reason = sk_rst_convert_drop_reason(drop_reason); 2300 tcp_v4_send_reset(nsk, skb, rst_reason); 2301 goto discard_and_relse; 2302 } 2303 sock_put(sk); 2304 return 0; 2305 } 2306 } 2307 2308 process: 2309 if (static_branch_unlikely(&ip4_min_ttl)) { 2310 /* min_ttl can be changed concurrently from do_ip_setsockopt() */ 2311 if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) { 2312 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 2313 drop_reason = SKB_DROP_REASON_TCP_MINTTL; 2314 goto discard_and_relse; 2315 } 2316 } 2317 2318 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 2319 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2320 goto discard_and_relse; 2321 } 2322 2323 drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr, 2324 AF_INET, dif, sdif); 2325 if (drop_reason) 2326 goto discard_and_relse; 2327 2328 nf_reset_ct(skb); 2329 2330 if (tcp_filter(sk, skb)) { 2331 drop_reason = SKB_DROP_REASON_SOCKET_FILTER; 2332 goto discard_and_relse; 2333 } 2334 th = (const struct tcphdr *)skb->data; 2335 iph = ip_hdr(skb); 2336 tcp_v4_fill_cb(skb, iph, th); 2337 2338 skb->dev = NULL; 2339 2340 if (sk->sk_state == TCP_LISTEN) { 2341 ret = tcp_v4_do_rcv(sk, skb); 2342 goto put_and_return; 2343 } 2344 2345 sk_incoming_cpu_update(sk); 2346 2347 bh_lock_sock_nested(sk); 2348 tcp_segs_in(tcp_sk(sk), skb); 2349 ret = 0; 2350 if (!sock_owned_by_user(sk)) { 2351 ret = tcp_v4_do_rcv(sk, skb); 2352 } else { 2353 if (tcp_add_backlog(sk, skb, &drop_reason)) 2354 goto discard_and_relse; 2355 } 2356 bh_unlock_sock(sk); 2357 2358 put_and_return: 2359 if (refcounted) 2360 sock_put(sk); 2361 2362 return ret; 2363 2364 no_tcp_socket: 2365 drop_reason = SKB_DROP_REASON_NO_SOCKET; 2366 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2367 goto discard_it; 2368 2369 tcp_v4_fill_cb(skb, iph, th); 2370 2371 if (tcp_checksum_complete(skb)) { 2372 csum_error: 2373 drop_reason = SKB_DROP_REASON_TCP_CSUM; 2374 trace_tcp_bad_csum(skb); 2375 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 2376 bad_packet: 2377 __TCP_INC_STATS(net, TCP_MIB_INERRS); 2378 } else { 2379 tcp_v4_send_reset(NULL, skb, sk_rst_convert_drop_reason(drop_reason)); 2380 } 2381 2382 discard_it: 2383 SKB_DR_OR(drop_reason, NOT_SPECIFIED); 2384 /* Discard frame. */ 2385 sk_skb_reason_drop(sk, skb, drop_reason); 2386 return 0; 2387 2388 discard_and_relse: 2389 sk_drops_add(sk, skb); 2390 if (refcounted) 2391 sock_put(sk); 2392 goto discard_it; 2393 2394 do_time_wait: 2395 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 2396 drop_reason = SKB_DROP_REASON_XFRM_POLICY; 2397 inet_twsk_put(inet_twsk(sk)); 2398 goto discard_it; 2399 } 2400 2401 tcp_v4_fill_cb(skb, iph, th); 2402 2403 if (tcp_checksum_complete(skb)) { 2404 inet_twsk_put(inet_twsk(sk)); 2405 goto csum_error; 2406 } 2407 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn)) { 2408 case TCP_TW_SYN: { 2409 struct sock *sk2 = inet_lookup_listener(net, 2410 net->ipv4.tcp_death_row.hashinfo, 2411 skb, __tcp_hdrlen(th), 2412 iph->saddr, th->source, 2413 iph->daddr, th->dest, 2414 inet_iif(skb), 2415 sdif); 2416 if (sk2) { 2417 inet_twsk_deschedule_put(inet_twsk(sk)); 2418 sk = sk2; 2419 tcp_v4_restore_cb(skb); 2420 refcounted = false; 2421 __this_cpu_write(tcp_tw_isn, isn); 2422 goto process; 2423 } 2424 } 2425 /* to ACK */ 2426 fallthrough; 2427 case TCP_TW_ACK: 2428 tcp_v4_timewait_ack(sk, skb); 2429 break; 2430 case TCP_TW_RST: 2431 tcp_v4_send_reset(sk, skb, SK_RST_REASON_TCP_TIMEWAIT_SOCKET); 2432 inet_twsk_deschedule_put(inet_twsk(sk)); 2433 goto discard_it; 2434 case TCP_TW_SUCCESS:; 2435 } 2436 goto discard_it; 2437 } 2438 2439 static struct timewait_sock_ops tcp_timewait_sock_ops = { 2440 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 2441 .twsk_destructor= tcp_twsk_destructor, 2442 }; 2443 2444 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 2445 { 2446 struct dst_entry *dst = skb_dst(skb); 2447 2448 if (dst && dst_hold_safe(dst)) { 2449 rcu_assign_pointer(sk->sk_rx_dst, dst); 2450 sk->sk_rx_dst_ifindex = skb->skb_iif; 2451 } 2452 } 2453 EXPORT_SYMBOL(inet_sk_rx_dst_set); 2454 2455 const struct inet_connection_sock_af_ops ipv4_specific = { 2456 .queue_xmit = ip_queue_xmit, 2457 .send_check = tcp_v4_send_check, 2458 .rebuild_header = inet_sk_rebuild_header, 2459 .sk_rx_dst_set = inet_sk_rx_dst_set, 2460 .conn_request = tcp_v4_conn_request, 2461 .syn_recv_sock = tcp_v4_syn_recv_sock, 2462 .net_header_len = sizeof(struct iphdr), 2463 .setsockopt = ip_setsockopt, 2464 .getsockopt = ip_getsockopt, 2465 .addr2sockaddr = inet_csk_addr2sockaddr, 2466 .sockaddr_len = sizeof(struct sockaddr_in), 2467 .mtu_reduced = tcp_v4_mtu_reduced, 2468 }; 2469 EXPORT_SYMBOL(ipv4_specific); 2470 2471 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 2472 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 2473 #ifdef CONFIG_TCP_MD5SIG 2474 .md5_lookup = tcp_v4_md5_lookup, 2475 .calc_md5_hash = tcp_v4_md5_hash_skb, 2476 .md5_parse = tcp_v4_parse_md5_keys, 2477 #endif 2478 #ifdef CONFIG_TCP_AO 2479 .ao_lookup = tcp_v4_ao_lookup, 2480 .calc_ao_hash = tcp_v4_ao_hash_skb, 2481 .ao_parse = tcp_v4_parse_ao, 2482 .ao_calc_key_sk = tcp_v4_ao_calc_key_sk, 2483 #endif 2484 }; 2485 #endif 2486 2487 /* NOTE: A lot of things set to zero explicitly by call to 2488 * sk_alloc() so need not be done here. 2489 */ 2490 static int tcp_v4_init_sock(struct sock *sk) 2491 { 2492 struct inet_connection_sock *icsk = inet_csk(sk); 2493 2494 tcp_init_sock(sk); 2495 2496 icsk->icsk_af_ops = &ipv4_specific; 2497 2498 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 2499 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 2500 #endif 2501 2502 return 0; 2503 } 2504 2505 #ifdef CONFIG_TCP_MD5SIG 2506 static void tcp_md5sig_info_free_rcu(struct rcu_head *head) 2507 { 2508 struct tcp_md5sig_info *md5sig; 2509 2510 md5sig = container_of(head, struct tcp_md5sig_info, rcu); 2511 kfree(md5sig); 2512 static_branch_slow_dec_deferred(&tcp_md5_needed); 2513 tcp_md5_release_sigpool(); 2514 } 2515 #endif 2516 2517 static void tcp_release_user_frags(struct sock *sk) 2518 { 2519 #ifdef CONFIG_PAGE_POOL 2520 unsigned long index; 2521 void *netmem; 2522 2523 xa_for_each(&sk->sk_user_frags, index, netmem) 2524 WARN_ON_ONCE(!napi_pp_put_page((__force netmem_ref)netmem)); 2525 #endif 2526 } 2527 2528 void tcp_v4_destroy_sock(struct sock *sk) 2529 { 2530 struct tcp_sock *tp = tcp_sk(sk); 2531 2532 tcp_release_user_frags(sk); 2533 2534 xa_destroy(&sk->sk_user_frags); 2535 2536 trace_tcp_destroy_sock(sk); 2537 2538 tcp_clear_xmit_timers(sk); 2539 2540 tcp_cleanup_congestion_control(sk); 2541 2542 tcp_cleanup_ulp(sk); 2543 2544 /* Cleanup up the write buffer. */ 2545 tcp_write_queue_purge(sk); 2546 2547 /* Check if we want to disable active TFO */ 2548 tcp_fastopen_active_disable_ofo_check(sk); 2549 2550 /* Cleans up our, hopefully empty, out_of_order_queue. */ 2551 skb_rbtree_purge(&tp->out_of_order_queue); 2552 2553 #ifdef CONFIG_TCP_MD5SIG 2554 /* Clean up the MD5 key list, if any */ 2555 if (tp->md5sig_info) { 2556 struct tcp_md5sig_info *md5sig; 2557 2558 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 2559 tcp_clear_md5_list(sk); 2560 call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu); 2561 rcu_assign_pointer(tp->md5sig_info, NULL); 2562 } 2563 #endif 2564 tcp_ao_destroy_sock(sk, false); 2565 2566 /* Clean up a referenced TCP bind bucket. */ 2567 if (inet_csk(sk)->icsk_bind_hash) 2568 inet_put_port(sk); 2569 2570 BUG_ON(rcu_access_pointer(tp->fastopen_rsk)); 2571 2572 /* If socket is aborted during connect operation */ 2573 tcp_free_fastopen_req(tp); 2574 tcp_fastopen_destroy_cipher(sk); 2575 tcp_saved_syn_free(tp); 2576 2577 sk_sockets_allocated_dec(sk); 2578 } 2579 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2580 2581 #ifdef CONFIG_PROC_FS 2582 /* Proc filesystem TCP sock list dumping. */ 2583 2584 static unsigned short seq_file_family(const struct seq_file *seq); 2585 2586 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) 2587 { 2588 unsigned short family = seq_file_family(seq); 2589 2590 /* AF_UNSPEC is used as a match all */ 2591 return ((family == AF_UNSPEC || family == sk->sk_family) && 2592 net_eq(sock_net(sk), seq_file_net(seq))); 2593 } 2594 2595 /* Find a non empty bucket (starting from st->bucket) 2596 * and return the first sk from it. 2597 */ 2598 static void *listening_get_first(struct seq_file *seq) 2599 { 2600 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2601 struct tcp_iter_state *st = seq->private; 2602 2603 st->offset = 0; 2604 for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) { 2605 struct inet_listen_hashbucket *ilb2; 2606 struct hlist_nulls_node *node; 2607 struct sock *sk; 2608 2609 ilb2 = &hinfo->lhash2[st->bucket]; 2610 if (hlist_nulls_empty(&ilb2->nulls_head)) 2611 continue; 2612 2613 spin_lock(&ilb2->lock); 2614 sk_nulls_for_each(sk, node, &ilb2->nulls_head) { 2615 if (seq_sk_match(seq, sk)) 2616 return sk; 2617 } 2618 spin_unlock(&ilb2->lock); 2619 } 2620 2621 return NULL; 2622 } 2623 2624 /* Find the next sk of "cur" within the same bucket (i.e. st->bucket). 2625 * If "cur" is the last one in the st->bucket, 2626 * call listening_get_first() to return the first sk of the next 2627 * non empty bucket. 2628 */ 2629 static void *listening_get_next(struct seq_file *seq, void *cur) 2630 { 2631 struct tcp_iter_state *st = seq->private; 2632 struct inet_listen_hashbucket *ilb2; 2633 struct hlist_nulls_node *node; 2634 struct inet_hashinfo *hinfo; 2635 struct sock *sk = cur; 2636 2637 ++st->num; 2638 ++st->offset; 2639 2640 sk = sk_nulls_next(sk); 2641 sk_nulls_for_each_from(sk, node) { 2642 if (seq_sk_match(seq, sk)) 2643 return sk; 2644 } 2645 2646 hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2647 ilb2 = &hinfo->lhash2[st->bucket]; 2648 spin_unlock(&ilb2->lock); 2649 ++st->bucket; 2650 return listening_get_first(seq); 2651 } 2652 2653 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2654 { 2655 struct tcp_iter_state *st = seq->private; 2656 void *rc; 2657 2658 st->bucket = 0; 2659 st->offset = 0; 2660 rc = listening_get_first(seq); 2661 2662 while (rc && *pos) { 2663 rc = listening_get_next(seq, rc); 2664 --*pos; 2665 } 2666 return rc; 2667 } 2668 2669 static inline bool empty_bucket(struct inet_hashinfo *hinfo, 2670 const struct tcp_iter_state *st) 2671 { 2672 return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain); 2673 } 2674 2675 /* 2676 * Get first established socket starting from bucket given in st->bucket. 2677 * If st->bucket is zero, the very first socket in the hash is returned. 2678 */ 2679 static void *established_get_first(struct seq_file *seq) 2680 { 2681 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2682 struct tcp_iter_state *st = seq->private; 2683 2684 st->offset = 0; 2685 for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) { 2686 struct sock *sk; 2687 struct hlist_nulls_node *node; 2688 spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket); 2689 2690 cond_resched(); 2691 2692 /* Lockless fast path for the common case of empty buckets */ 2693 if (empty_bucket(hinfo, st)) 2694 continue; 2695 2696 spin_lock_bh(lock); 2697 sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) { 2698 if (seq_sk_match(seq, sk)) 2699 return sk; 2700 } 2701 spin_unlock_bh(lock); 2702 } 2703 2704 return NULL; 2705 } 2706 2707 static void *established_get_next(struct seq_file *seq, void *cur) 2708 { 2709 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2710 struct tcp_iter_state *st = seq->private; 2711 struct hlist_nulls_node *node; 2712 struct sock *sk = cur; 2713 2714 ++st->num; 2715 ++st->offset; 2716 2717 sk = sk_nulls_next(sk); 2718 2719 sk_nulls_for_each_from(sk, node) { 2720 if (seq_sk_match(seq, sk)) 2721 return sk; 2722 } 2723 2724 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 2725 ++st->bucket; 2726 return established_get_first(seq); 2727 } 2728 2729 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2730 { 2731 struct tcp_iter_state *st = seq->private; 2732 void *rc; 2733 2734 st->bucket = 0; 2735 rc = established_get_first(seq); 2736 2737 while (rc && pos) { 2738 rc = established_get_next(seq, rc); 2739 --pos; 2740 } 2741 return rc; 2742 } 2743 2744 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2745 { 2746 void *rc; 2747 struct tcp_iter_state *st = seq->private; 2748 2749 st->state = TCP_SEQ_STATE_LISTENING; 2750 rc = listening_get_idx(seq, &pos); 2751 2752 if (!rc) { 2753 st->state = TCP_SEQ_STATE_ESTABLISHED; 2754 rc = established_get_idx(seq, pos); 2755 } 2756 2757 return rc; 2758 } 2759 2760 static void *tcp_seek_last_pos(struct seq_file *seq) 2761 { 2762 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2763 struct tcp_iter_state *st = seq->private; 2764 int bucket = st->bucket; 2765 int offset = st->offset; 2766 int orig_num = st->num; 2767 void *rc = NULL; 2768 2769 switch (st->state) { 2770 case TCP_SEQ_STATE_LISTENING: 2771 if (st->bucket > hinfo->lhash2_mask) 2772 break; 2773 rc = listening_get_first(seq); 2774 while (offset-- && rc && bucket == st->bucket) 2775 rc = listening_get_next(seq, rc); 2776 if (rc) 2777 break; 2778 st->bucket = 0; 2779 st->state = TCP_SEQ_STATE_ESTABLISHED; 2780 fallthrough; 2781 case TCP_SEQ_STATE_ESTABLISHED: 2782 if (st->bucket > hinfo->ehash_mask) 2783 break; 2784 rc = established_get_first(seq); 2785 while (offset-- && rc && bucket == st->bucket) 2786 rc = established_get_next(seq, rc); 2787 } 2788 2789 st->num = orig_num; 2790 2791 return rc; 2792 } 2793 2794 void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2795 { 2796 struct tcp_iter_state *st = seq->private; 2797 void *rc; 2798 2799 if (*pos && *pos == st->last_pos) { 2800 rc = tcp_seek_last_pos(seq); 2801 if (rc) 2802 goto out; 2803 } 2804 2805 st->state = TCP_SEQ_STATE_LISTENING; 2806 st->num = 0; 2807 st->bucket = 0; 2808 st->offset = 0; 2809 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2810 2811 out: 2812 st->last_pos = *pos; 2813 return rc; 2814 } 2815 EXPORT_SYMBOL(tcp_seq_start); 2816 2817 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2818 { 2819 struct tcp_iter_state *st = seq->private; 2820 void *rc = NULL; 2821 2822 if (v == SEQ_START_TOKEN) { 2823 rc = tcp_get_idx(seq, 0); 2824 goto out; 2825 } 2826 2827 switch (st->state) { 2828 case TCP_SEQ_STATE_LISTENING: 2829 rc = listening_get_next(seq, v); 2830 if (!rc) { 2831 st->state = TCP_SEQ_STATE_ESTABLISHED; 2832 st->bucket = 0; 2833 st->offset = 0; 2834 rc = established_get_first(seq); 2835 } 2836 break; 2837 case TCP_SEQ_STATE_ESTABLISHED: 2838 rc = established_get_next(seq, v); 2839 break; 2840 } 2841 out: 2842 ++*pos; 2843 st->last_pos = *pos; 2844 return rc; 2845 } 2846 EXPORT_SYMBOL(tcp_seq_next); 2847 2848 void tcp_seq_stop(struct seq_file *seq, void *v) 2849 { 2850 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 2851 struct tcp_iter_state *st = seq->private; 2852 2853 switch (st->state) { 2854 case TCP_SEQ_STATE_LISTENING: 2855 if (v != SEQ_START_TOKEN) 2856 spin_unlock(&hinfo->lhash2[st->bucket].lock); 2857 break; 2858 case TCP_SEQ_STATE_ESTABLISHED: 2859 if (v) 2860 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 2861 break; 2862 } 2863 } 2864 EXPORT_SYMBOL(tcp_seq_stop); 2865 2866 static void get_openreq4(const struct request_sock *req, 2867 struct seq_file *f, int i) 2868 { 2869 const struct inet_request_sock *ireq = inet_rsk(req); 2870 long delta = req->rsk_timer.expires - jiffies; 2871 2872 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2873 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2874 i, 2875 ireq->ir_loc_addr, 2876 ireq->ir_num, 2877 ireq->ir_rmt_addr, 2878 ntohs(ireq->ir_rmt_port), 2879 TCP_SYN_RECV, 2880 0, 0, /* could print option size, but that is af dependent. */ 2881 1, /* timers active (only the expire timer) */ 2882 jiffies_delta_to_clock_t(delta), 2883 req->num_timeout, 2884 from_kuid_munged(seq_user_ns(f), 2885 sock_i_uid(req->rsk_listener)), 2886 0, /* non standard timer */ 2887 0, /* open_requests have no inode */ 2888 0, 2889 req); 2890 } 2891 2892 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2893 { 2894 int timer_active; 2895 unsigned long timer_expires; 2896 const struct tcp_sock *tp = tcp_sk(sk); 2897 const struct inet_connection_sock *icsk = inet_csk(sk); 2898 const struct inet_sock *inet = inet_sk(sk); 2899 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2900 __be32 dest = inet->inet_daddr; 2901 __be32 src = inet->inet_rcv_saddr; 2902 __u16 destp = ntohs(inet->inet_dport); 2903 __u16 srcp = ntohs(inet->inet_sport); 2904 u8 icsk_pending; 2905 int rx_queue; 2906 int state; 2907 2908 icsk_pending = smp_load_acquire(&icsk->icsk_pending); 2909 if (icsk_pending == ICSK_TIME_RETRANS || 2910 icsk_pending == ICSK_TIME_REO_TIMEOUT || 2911 icsk_pending == ICSK_TIME_LOSS_PROBE) { 2912 timer_active = 1; 2913 timer_expires = icsk->icsk_timeout; 2914 } else if (icsk_pending == ICSK_TIME_PROBE0) { 2915 timer_active = 4; 2916 timer_expires = icsk->icsk_timeout; 2917 } else if (timer_pending(&sk->sk_timer)) { 2918 timer_active = 2; 2919 timer_expires = sk->sk_timer.expires; 2920 } else { 2921 timer_active = 0; 2922 timer_expires = jiffies; 2923 } 2924 2925 state = inet_sk_state_load(sk); 2926 if (state == TCP_LISTEN) 2927 rx_queue = READ_ONCE(sk->sk_ack_backlog); 2928 else 2929 /* Because we don't lock the socket, 2930 * we might find a transient negative value. 2931 */ 2932 rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) - 2933 READ_ONCE(tp->copied_seq), 0); 2934 2935 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2936 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2937 i, src, srcp, dest, destp, state, 2938 READ_ONCE(tp->write_seq) - tp->snd_una, 2939 rx_queue, 2940 timer_active, 2941 jiffies_delta_to_clock_t(timer_expires - jiffies), 2942 icsk->icsk_retransmits, 2943 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2944 icsk->icsk_probes_out, 2945 sock_i_ino(sk), 2946 refcount_read(&sk->sk_refcnt), sk, 2947 jiffies_to_clock_t(icsk->icsk_rto), 2948 jiffies_to_clock_t(icsk->icsk_ack.ato), 2949 (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk), 2950 tcp_snd_cwnd(tp), 2951 state == TCP_LISTEN ? 2952 fastopenq->max_qlen : 2953 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2954 } 2955 2956 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2957 struct seq_file *f, int i) 2958 { 2959 long delta = tw->tw_timer.expires - jiffies; 2960 __be32 dest, src; 2961 __u16 destp, srcp; 2962 2963 dest = tw->tw_daddr; 2964 src = tw->tw_rcv_saddr; 2965 destp = ntohs(tw->tw_dport); 2966 srcp = ntohs(tw->tw_sport); 2967 2968 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2969 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2970 i, src, srcp, dest, destp, READ_ONCE(tw->tw_substate), 0, 0, 2971 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2972 refcount_read(&tw->tw_refcnt), tw); 2973 } 2974 2975 #define TMPSZ 150 2976 2977 static int tcp4_seq_show(struct seq_file *seq, void *v) 2978 { 2979 struct tcp_iter_state *st; 2980 struct sock *sk = v; 2981 2982 seq_setwidth(seq, TMPSZ - 1); 2983 if (v == SEQ_START_TOKEN) { 2984 seq_puts(seq, " sl local_address rem_address st tx_queue " 2985 "rx_queue tr tm->when retrnsmt uid timeout " 2986 "inode"); 2987 goto out; 2988 } 2989 st = seq->private; 2990 2991 if (sk->sk_state == TCP_TIME_WAIT) 2992 get_timewait4_sock(v, seq, st->num); 2993 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2994 get_openreq4(v, seq, st->num); 2995 else 2996 get_tcp4_sock(v, seq, st->num); 2997 out: 2998 seq_pad(seq, '\n'); 2999 return 0; 3000 } 3001 3002 #ifdef CONFIG_BPF_SYSCALL 3003 struct bpf_tcp_iter_state { 3004 struct tcp_iter_state state; 3005 unsigned int cur_sk; 3006 unsigned int end_sk; 3007 unsigned int max_sk; 3008 struct sock **batch; 3009 bool st_bucket_done; 3010 }; 3011 3012 struct bpf_iter__tcp { 3013 __bpf_md_ptr(struct bpf_iter_meta *, meta); 3014 __bpf_md_ptr(struct sock_common *, sk_common); 3015 uid_t uid __aligned(8); 3016 }; 3017 3018 static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, 3019 struct sock_common *sk_common, uid_t uid) 3020 { 3021 struct bpf_iter__tcp ctx; 3022 3023 meta->seq_num--; /* skip SEQ_START_TOKEN */ 3024 ctx.meta = meta; 3025 ctx.sk_common = sk_common; 3026 ctx.uid = uid; 3027 return bpf_iter_run_prog(prog, &ctx); 3028 } 3029 3030 static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter) 3031 { 3032 while (iter->cur_sk < iter->end_sk) 3033 sock_gen_put(iter->batch[iter->cur_sk++]); 3034 } 3035 3036 static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter, 3037 unsigned int new_batch_sz) 3038 { 3039 struct sock **new_batch; 3040 3041 new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz, 3042 GFP_USER | __GFP_NOWARN); 3043 if (!new_batch) 3044 return -ENOMEM; 3045 3046 bpf_iter_tcp_put_batch(iter); 3047 kvfree(iter->batch); 3048 iter->batch = new_batch; 3049 iter->max_sk = new_batch_sz; 3050 3051 return 0; 3052 } 3053 3054 static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq, 3055 struct sock *start_sk) 3056 { 3057 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 3058 struct bpf_tcp_iter_state *iter = seq->private; 3059 struct tcp_iter_state *st = &iter->state; 3060 struct hlist_nulls_node *node; 3061 unsigned int expected = 1; 3062 struct sock *sk; 3063 3064 sock_hold(start_sk); 3065 iter->batch[iter->end_sk++] = start_sk; 3066 3067 sk = sk_nulls_next(start_sk); 3068 sk_nulls_for_each_from(sk, node) { 3069 if (seq_sk_match(seq, sk)) { 3070 if (iter->end_sk < iter->max_sk) { 3071 sock_hold(sk); 3072 iter->batch[iter->end_sk++] = sk; 3073 } 3074 expected++; 3075 } 3076 } 3077 spin_unlock(&hinfo->lhash2[st->bucket].lock); 3078 3079 return expected; 3080 } 3081 3082 static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq, 3083 struct sock *start_sk) 3084 { 3085 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 3086 struct bpf_tcp_iter_state *iter = seq->private; 3087 struct tcp_iter_state *st = &iter->state; 3088 struct hlist_nulls_node *node; 3089 unsigned int expected = 1; 3090 struct sock *sk; 3091 3092 sock_hold(start_sk); 3093 iter->batch[iter->end_sk++] = start_sk; 3094 3095 sk = sk_nulls_next(start_sk); 3096 sk_nulls_for_each_from(sk, node) { 3097 if (seq_sk_match(seq, sk)) { 3098 if (iter->end_sk < iter->max_sk) { 3099 sock_hold(sk); 3100 iter->batch[iter->end_sk++] = sk; 3101 } 3102 expected++; 3103 } 3104 } 3105 spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket)); 3106 3107 return expected; 3108 } 3109 3110 static struct sock *bpf_iter_tcp_batch(struct seq_file *seq) 3111 { 3112 struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo; 3113 struct bpf_tcp_iter_state *iter = seq->private; 3114 struct tcp_iter_state *st = &iter->state; 3115 unsigned int expected; 3116 bool resized = false; 3117 struct sock *sk; 3118 3119 /* The st->bucket is done. Directly advance to the next 3120 * bucket instead of having the tcp_seek_last_pos() to skip 3121 * one by one in the current bucket and eventually find out 3122 * it has to advance to the next bucket. 3123 */ 3124 if (iter->st_bucket_done) { 3125 st->offset = 0; 3126 st->bucket++; 3127 if (st->state == TCP_SEQ_STATE_LISTENING && 3128 st->bucket > hinfo->lhash2_mask) { 3129 st->state = TCP_SEQ_STATE_ESTABLISHED; 3130 st->bucket = 0; 3131 } 3132 } 3133 3134 again: 3135 /* Get a new batch */ 3136 iter->cur_sk = 0; 3137 iter->end_sk = 0; 3138 iter->st_bucket_done = false; 3139 3140 sk = tcp_seek_last_pos(seq); 3141 if (!sk) 3142 return NULL; /* Done */ 3143 3144 if (st->state == TCP_SEQ_STATE_LISTENING) 3145 expected = bpf_iter_tcp_listening_batch(seq, sk); 3146 else 3147 expected = bpf_iter_tcp_established_batch(seq, sk); 3148 3149 if (iter->end_sk == expected) { 3150 iter->st_bucket_done = true; 3151 return sk; 3152 } 3153 3154 if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) { 3155 resized = true; 3156 goto again; 3157 } 3158 3159 return sk; 3160 } 3161 3162 static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos) 3163 { 3164 /* bpf iter does not support lseek, so it always 3165 * continue from where it was stop()-ped. 3166 */ 3167 if (*pos) 3168 return bpf_iter_tcp_batch(seq); 3169 3170 return SEQ_START_TOKEN; 3171 } 3172 3173 static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3174 { 3175 struct bpf_tcp_iter_state *iter = seq->private; 3176 struct tcp_iter_state *st = &iter->state; 3177 struct sock *sk; 3178 3179 /* Whenever seq_next() is called, the iter->cur_sk is 3180 * done with seq_show(), so advance to the next sk in 3181 * the batch. 3182 */ 3183 if (iter->cur_sk < iter->end_sk) { 3184 /* Keeping st->num consistent in tcp_iter_state. 3185 * bpf_iter_tcp does not use st->num. 3186 * meta.seq_num is used instead. 3187 */ 3188 st->num++; 3189 /* Move st->offset to the next sk in the bucket such that 3190 * the future start() will resume at st->offset in 3191 * st->bucket. See tcp_seek_last_pos(). 3192 */ 3193 st->offset++; 3194 sock_gen_put(iter->batch[iter->cur_sk++]); 3195 } 3196 3197 if (iter->cur_sk < iter->end_sk) 3198 sk = iter->batch[iter->cur_sk]; 3199 else 3200 sk = bpf_iter_tcp_batch(seq); 3201 3202 ++*pos; 3203 /* Keeping st->last_pos consistent in tcp_iter_state. 3204 * bpf iter does not do lseek, so st->last_pos always equals to *pos. 3205 */ 3206 st->last_pos = *pos; 3207 return sk; 3208 } 3209 3210 static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v) 3211 { 3212 struct bpf_iter_meta meta; 3213 struct bpf_prog *prog; 3214 struct sock *sk = v; 3215 uid_t uid; 3216 int ret; 3217 3218 if (v == SEQ_START_TOKEN) 3219 return 0; 3220 3221 if (sk_fullsock(sk)) 3222 lock_sock(sk); 3223 3224 if (unlikely(sk_unhashed(sk))) { 3225 ret = SEQ_SKIP; 3226 goto unlock; 3227 } 3228 3229 if (sk->sk_state == TCP_TIME_WAIT) { 3230 uid = 0; 3231 } else if (sk->sk_state == TCP_NEW_SYN_RECV) { 3232 const struct request_sock *req = v; 3233 3234 uid = from_kuid_munged(seq_user_ns(seq), 3235 sock_i_uid(req->rsk_listener)); 3236 } else { 3237 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); 3238 } 3239 3240 meta.seq = seq; 3241 prog = bpf_iter_get_info(&meta, false); 3242 ret = tcp_prog_seq_show(prog, &meta, v, uid); 3243 3244 unlock: 3245 if (sk_fullsock(sk)) 3246 release_sock(sk); 3247 return ret; 3248 3249 } 3250 3251 static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v) 3252 { 3253 struct bpf_tcp_iter_state *iter = seq->private; 3254 struct bpf_iter_meta meta; 3255 struct bpf_prog *prog; 3256 3257 if (!v) { 3258 meta.seq = seq; 3259 prog = bpf_iter_get_info(&meta, true); 3260 if (prog) 3261 (void)tcp_prog_seq_show(prog, &meta, v, 0); 3262 } 3263 3264 if (iter->cur_sk < iter->end_sk) { 3265 bpf_iter_tcp_put_batch(iter); 3266 iter->st_bucket_done = false; 3267 } 3268 } 3269 3270 static const struct seq_operations bpf_iter_tcp_seq_ops = { 3271 .show = bpf_iter_tcp_seq_show, 3272 .start = bpf_iter_tcp_seq_start, 3273 .next = bpf_iter_tcp_seq_next, 3274 .stop = bpf_iter_tcp_seq_stop, 3275 }; 3276 #endif 3277 static unsigned short seq_file_family(const struct seq_file *seq) 3278 { 3279 const struct tcp_seq_afinfo *afinfo; 3280 3281 #ifdef CONFIG_BPF_SYSCALL 3282 /* Iterated from bpf_iter. Let the bpf prog to filter instead. */ 3283 if (seq->op == &bpf_iter_tcp_seq_ops) 3284 return AF_UNSPEC; 3285 #endif 3286 3287 /* Iterated from proc fs */ 3288 afinfo = pde_data(file_inode(seq->file)); 3289 return afinfo->family; 3290 } 3291 3292 static const struct seq_operations tcp4_seq_ops = { 3293 .show = tcp4_seq_show, 3294 .start = tcp_seq_start, 3295 .next = tcp_seq_next, 3296 .stop = tcp_seq_stop, 3297 }; 3298 3299 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 3300 .family = AF_INET, 3301 }; 3302 3303 static int __net_init tcp4_proc_init_net(struct net *net) 3304 { 3305 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, 3306 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) 3307 return -ENOMEM; 3308 return 0; 3309 } 3310 3311 static void __net_exit tcp4_proc_exit_net(struct net *net) 3312 { 3313 remove_proc_entry("tcp", net->proc_net); 3314 } 3315 3316 static struct pernet_operations tcp4_net_ops = { 3317 .init = tcp4_proc_init_net, 3318 .exit = tcp4_proc_exit_net, 3319 }; 3320 3321 int __init tcp4_proc_init(void) 3322 { 3323 return register_pernet_subsys(&tcp4_net_ops); 3324 } 3325 3326 void tcp4_proc_exit(void) 3327 { 3328 unregister_pernet_subsys(&tcp4_net_ops); 3329 } 3330 #endif /* CONFIG_PROC_FS */ 3331 3332 /* @wake is one when sk_stream_write_space() calls us. 3333 * This sends EPOLLOUT only if notsent_bytes is half the limit. 3334 * This mimics the strategy used in sock_def_write_space(). 3335 */ 3336 bool tcp_stream_memory_free(const struct sock *sk, int wake) 3337 { 3338 const struct tcp_sock *tp = tcp_sk(sk); 3339 u32 notsent_bytes = READ_ONCE(tp->write_seq) - 3340 READ_ONCE(tp->snd_nxt); 3341 3342 return (notsent_bytes << wake) < tcp_notsent_lowat(tp); 3343 } 3344 EXPORT_SYMBOL(tcp_stream_memory_free); 3345 3346 struct proto tcp_prot = { 3347 .name = "TCP", 3348 .owner = THIS_MODULE, 3349 .close = tcp_close, 3350 .pre_connect = tcp_v4_pre_connect, 3351 .connect = tcp_v4_connect, 3352 .disconnect = tcp_disconnect, 3353 .accept = inet_csk_accept, 3354 .ioctl = tcp_ioctl, 3355 .init = tcp_v4_init_sock, 3356 .destroy = tcp_v4_destroy_sock, 3357 .shutdown = tcp_shutdown, 3358 .setsockopt = tcp_setsockopt, 3359 .getsockopt = tcp_getsockopt, 3360 .bpf_bypass_getsockopt = tcp_bpf_bypass_getsockopt, 3361 .keepalive = tcp_set_keepalive, 3362 .recvmsg = tcp_recvmsg, 3363 .sendmsg = tcp_sendmsg, 3364 .splice_eof = tcp_splice_eof, 3365 .backlog_rcv = tcp_v4_do_rcv, 3366 .release_cb = tcp_release_cb, 3367 .hash = inet_hash, 3368 .unhash = inet_unhash, 3369 .get_port = inet_csk_get_port, 3370 .put_port = inet_put_port, 3371 #ifdef CONFIG_BPF_SYSCALL 3372 .psock_update_sk_prot = tcp_bpf_update_proto, 3373 #endif 3374 .enter_memory_pressure = tcp_enter_memory_pressure, 3375 .leave_memory_pressure = tcp_leave_memory_pressure, 3376 .stream_memory_free = tcp_stream_memory_free, 3377 .sockets_allocated = &tcp_sockets_allocated, 3378 .orphan_count = &tcp_orphan_count, 3379 3380 .memory_allocated = &tcp_memory_allocated, 3381 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3382 3383 .memory_pressure = &tcp_memory_pressure, 3384 .sysctl_mem = sysctl_tcp_mem, 3385 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3386 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3387 .max_header = MAX_TCP_HEADER, 3388 .obj_size = sizeof(struct tcp_sock), 3389 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3390 .twsk_prot = &tcp_timewait_sock_ops, 3391 .rsk_prot = &tcp_request_sock_ops, 3392 .h.hashinfo = NULL, 3393 .no_autobind = true, 3394 .diag_destroy = tcp_abort, 3395 }; 3396 EXPORT_SYMBOL(tcp_prot); 3397 3398 static void __net_exit tcp_sk_exit(struct net *net) 3399 { 3400 if (net->ipv4.tcp_congestion_control) 3401 bpf_module_put(net->ipv4.tcp_congestion_control, 3402 net->ipv4.tcp_congestion_control->owner); 3403 } 3404 3405 static void __net_init tcp_set_hashinfo(struct net *net) 3406 { 3407 struct inet_hashinfo *hinfo; 3408 unsigned int ehash_entries; 3409 struct net *old_net; 3410 3411 if (net_eq(net, &init_net)) 3412 goto fallback; 3413 3414 old_net = current->nsproxy->net_ns; 3415 ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries); 3416 if (!ehash_entries) 3417 goto fallback; 3418 3419 ehash_entries = roundup_pow_of_two(ehash_entries); 3420 hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries); 3421 if (!hinfo) { 3422 pr_warn("Failed to allocate TCP ehash (entries: %u) " 3423 "for a netns, fallback to the global one\n", 3424 ehash_entries); 3425 fallback: 3426 hinfo = &tcp_hashinfo; 3427 ehash_entries = tcp_hashinfo.ehash_mask + 1; 3428 } 3429 3430 net->ipv4.tcp_death_row.hashinfo = hinfo; 3431 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2; 3432 net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128); 3433 } 3434 3435 static int __net_init tcp_sk_init(struct net *net) 3436 { 3437 net->ipv4.sysctl_tcp_ecn = 2; 3438 net->ipv4.sysctl_tcp_ecn_fallback = 1; 3439 3440 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 3441 net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS; 3442 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 3443 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 3444 net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS; 3445 3446 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 3447 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 3448 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 3449 3450 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 3451 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 3452 net->ipv4.sysctl_tcp_syncookies = 1; 3453 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 3454 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 3455 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 3456 net->ipv4.sysctl_tcp_orphan_retries = 0; 3457 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 3458 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 3459 net->ipv4.sysctl_tcp_tw_reuse = 2; 3460 net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1; 3461 3462 refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1); 3463 tcp_set_hashinfo(net); 3464 3465 net->ipv4.sysctl_tcp_sack = 1; 3466 net->ipv4.sysctl_tcp_window_scaling = 1; 3467 net->ipv4.sysctl_tcp_timestamps = 1; 3468 net->ipv4.sysctl_tcp_early_retrans = 3; 3469 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; 3470 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ 3471 net->ipv4.sysctl_tcp_retrans_collapse = 1; 3472 net->ipv4.sysctl_tcp_max_reordering = 300; 3473 net->ipv4.sysctl_tcp_dsack = 1; 3474 net->ipv4.sysctl_tcp_app_win = 31; 3475 net->ipv4.sysctl_tcp_adv_win_scale = 1; 3476 net->ipv4.sysctl_tcp_frto = 2; 3477 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; 3478 /* This limits the percentage of the congestion window which we 3479 * will allow a single TSO frame to consume. Building TSO frames 3480 * which are too large can cause TCP streams to be bursty. 3481 */ 3482 net->ipv4.sysctl_tcp_tso_win_divisor = 3; 3483 /* Default TSQ limit of 16 TSO segments */ 3484 net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536; 3485 3486 /* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */ 3487 net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX; 3488 3489 net->ipv4.sysctl_tcp_min_tso_segs = 2; 3490 net->ipv4.sysctl_tcp_tso_rtt_log = 9; /* 2^9 = 512 usec */ 3491 net->ipv4.sysctl_tcp_min_rtt_wlen = 300; 3492 net->ipv4.sysctl_tcp_autocorking = 1; 3493 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; 3494 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; 3495 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; 3496 if (net != &init_net) { 3497 memcpy(net->ipv4.sysctl_tcp_rmem, 3498 init_net.ipv4.sysctl_tcp_rmem, 3499 sizeof(init_net.ipv4.sysctl_tcp_rmem)); 3500 memcpy(net->ipv4.sysctl_tcp_wmem, 3501 init_net.ipv4.sysctl_tcp_wmem, 3502 sizeof(init_net.ipv4.sysctl_tcp_wmem)); 3503 } 3504 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC; 3505 net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC; 3506 net->ipv4.sysctl_tcp_comp_sack_nr = 44; 3507 net->ipv4.sysctl_tcp_backlog_ack_defer = 1; 3508 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; 3509 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0; 3510 atomic_set(&net->ipv4.tfo_active_disable_times, 0); 3511 3512 /* Set default values for PLB */ 3513 net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */ 3514 net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3; 3515 net->ipv4.sysctl_tcp_plb_rehash_rounds = 12; 3516 net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60; 3517 /* Default congestion threshold for PLB to mark a round is 50% */ 3518 net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2; 3519 3520 /* Reno is always built in */ 3521 if (!net_eq(net, &init_net) && 3522 bpf_try_module_get(init_net.ipv4.tcp_congestion_control, 3523 init_net.ipv4.tcp_congestion_control->owner)) 3524 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; 3525 else 3526 net->ipv4.tcp_congestion_control = &tcp_reno; 3527 3528 net->ipv4.sysctl_tcp_syn_linear_timeouts = 4; 3529 net->ipv4.sysctl_tcp_shrink_window = 0; 3530 3531 net->ipv4.sysctl_tcp_pingpong_thresh = 1; 3532 net->ipv4.sysctl_tcp_rto_min_us = jiffies_to_usecs(TCP_RTO_MIN); 3533 3534 return 0; 3535 } 3536 3537 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 3538 { 3539 struct net *net; 3540 3541 /* make sure concurrent calls to tcp_sk_exit_batch from net_cleanup_work 3542 * and failed setup_net error unwinding path are serialized. 3543 * 3544 * tcp_twsk_purge() handles twsk in any dead netns, not just those in 3545 * net_exit_list, the thread that dismantles a particular twsk must 3546 * do so without other thread progressing to refcount_dec_and_test() of 3547 * tcp_death_row.tw_refcount. 3548 */ 3549 mutex_lock(&tcp_exit_batch_mutex); 3550 3551 tcp_twsk_purge(net_exit_list); 3552 3553 list_for_each_entry(net, net_exit_list, exit_list) { 3554 inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo); 3555 WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount)); 3556 tcp_fastopen_ctx_destroy(net); 3557 } 3558 3559 mutex_unlock(&tcp_exit_batch_mutex); 3560 } 3561 3562 static struct pernet_operations __net_initdata tcp_sk_ops = { 3563 .init = tcp_sk_init, 3564 .exit = tcp_sk_exit, 3565 .exit_batch = tcp_sk_exit_batch, 3566 }; 3567 3568 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3569 DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta, 3570 struct sock_common *sk_common, uid_t uid) 3571 3572 #define INIT_BATCH_SZ 16 3573 3574 static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux) 3575 { 3576 struct bpf_tcp_iter_state *iter = priv_data; 3577 int err; 3578 3579 err = bpf_iter_init_seq_net(priv_data, aux); 3580 if (err) 3581 return err; 3582 3583 err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ); 3584 if (err) { 3585 bpf_iter_fini_seq_net(priv_data); 3586 return err; 3587 } 3588 3589 return 0; 3590 } 3591 3592 static void bpf_iter_fini_tcp(void *priv_data) 3593 { 3594 struct bpf_tcp_iter_state *iter = priv_data; 3595 3596 bpf_iter_fini_seq_net(priv_data); 3597 kvfree(iter->batch); 3598 } 3599 3600 static const struct bpf_iter_seq_info tcp_seq_info = { 3601 .seq_ops = &bpf_iter_tcp_seq_ops, 3602 .init_seq_private = bpf_iter_init_tcp, 3603 .fini_seq_private = bpf_iter_fini_tcp, 3604 .seq_priv_size = sizeof(struct bpf_tcp_iter_state), 3605 }; 3606 3607 static const struct bpf_func_proto * 3608 bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id, 3609 const struct bpf_prog *prog) 3610 { 3611 switch (func_id) { 3612 case BPF_FUNC_setsockopt: 3613 return &bpf_sk_setsockopt_proto; 3614 case BPF_FUNC_getsockopt: 3615 return &bpf_sk_getsockopt_proto; 3616 default: 3617 return NULL; 3618 } 3619 } 3620 3621 static struct bpf_iter_reg tcp_reg_info = { 3622 .target = "tcp", 3623 .ctx_arg_info_size = 1, 3624 .ctx_arg_info = { 3625 { offsetof(struct bpf_iter__tcp, sk_common), 3626 PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, 3627 }, 3628 .get_func_proto = bpf_iter_tcp_get_func_proto, 3629 .seq_info = &tcp_seq_info, 3630 }; 3631 3632 static void __init bpf_iter_register(void) 3633 { 3634 tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON]; 3635 if (bpf_iter_reg_target(&tcp_reg_info)) 3636 pr_warn("Warning: could not register bpf iterator tcp\n"); 3637 } 3638 3639 #endif 3640 3641 void __init tcp_v4_init(void) 3642 { 3643 int cpu, res; 3644 3645 for_each_possible_cpu(cpu) { 3646 struct sock *sk; 3647 3648 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 3649 IPPROTO_TCP, &init_net); 3650 if (res) 3651 panic("Failed to create the TCP control socket.\n"); 3652 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 3653 3654 /* Please enforce IP_DF and IPID==0 for RST and 3655 * ACK sent in SYN-RECV and TIME-WAIT state. 3656 */ 3657 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO; 3658 3659 sk->sk_clockid = CLOCK_MONOTONIC; 3660 3661 per_cpu(ipv4_tcp_sk.sock, cpu) = sk; 3662 } 3663 if (register_pernet_subsys(&tcp_sk_ops)) 3664 panic("Failed to create the TCP control socket.\n"); 3665 3666 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 3667 bpf_iter_register(); 3668 #endif 3669 } 3670