1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 #define pr_fmt(fmt) "TCP: " fmt 54 55 #include <linux/bottom_half.h> 56 #include <linux/types.h> 57 #include <linux/fcntl.h> 58 #include <linux/module.h> 59 #include <linux/random.h> 60 #include <linux/cache.h> 61 #include <linux/jhash.h> 62 #include <linux/init.h> 63 #include <linux/times.h> 64 #include <linux/slab.h> 65 66 #include <net/net_namespace.h> 67 #include <net/icmp.h> 68 #include <net/inet_hashtables.h> 69 #include <net/tcp.h> 70 #include <net/transp_v6.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 #include <net/timewait_sock.h> 74 #include <net/xfrm.h> 75 #include <net/netdma.h> 76 #include <net/secure_seq.h> 77 #include <net/tcp_memcontrol.h> 78 79 #include <linux/inet.h> 80 #include <linux/ipv6.h> 81 #include <linux/stddef.h> 82 #include <linux/proc_fs.h> 83 #include <linux/seq_file.h> 84 85 #include <linux/crypto.h> 86 #include <linux/scatterlist.h> 87 88 int sysctl_tcp_tw_reuse __read_mostly; 89 int sysctl_tcp_low_latency __read_mostly; 90 EXPORT_SYMBOL(sysctl_tcp_low_latency); 91 92 93 #ifdef CONFIG_TCP_MD5SIG 94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 95 __be32 daddr, __be32 saddr, const struct tcphdr *th); 96 #endif 97 98 struct inet_hashinfo tcp_hashinfo; 99 EXPORT_SYMBOL(tcp_hashinfo); 100 101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb) 102 { 103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr, 104 ip_hdr(skb)->saddr, 105 tcp_hdr(skb)->dest, 106 tcp_hdr(skb)->source); 107 } 108 109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 110 { 111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 112 struct tcp_sock *tp = tcp_sk(sk); 113 114 /* With PAWS, it is safe from the viewpoint 115 of data integrity. Even without PAWS it is safe provided sequence 116 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 117 118 Actually, the idea is close to VJ's one, only timestamp cache is 119 held not per host, but per port pair and TW bucket is used as state 120 holder. 121 122 If TW bucket has been already destroyed we fall back to VJ's scheme 123 and use initial timestamp retrieved from peer table. 124 */ 125 if (tcptw->tw_ts_recent_stamp && 126 (twp == NULL || (sysctl_tcp_tw_reuse && 127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) { 128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 129 if (tp->write_seq == 0) 130 tp->write_seq = 1; 131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 133 sock_hold(sktw); 134 return 1; 135 } 136 137 return 0; 138 } 139 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 140 141 static int tcp_repair_connect(struct sock *sk) 142 { 143 tcp_connect_init(sk); 144 tcp_finish_connect(sk, NULL); 145 146 return 0; 147 } 148 149 /* This will initiate an outgoing connection. */ 150 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 151 { 152 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 153 struct inet_sock *inet = inet_sk(sk); 154 struct tcp_sock *tp = tcp_sk(sk); 155 __be16 orig_sport, orig_dport; 156 __be32 daddr, nexthop; 157 struct flowi4 *fl4; 158 struct rtable *rt; 159 int err; 160 struct ip_options_rcu *inet_opt; 161 162 if (addr_len < sizeof(struct sockaddr_in)) 163 return -EINVAL; 164 165 if (usin->sin_family != AF_INET) 166 return -EAFNOSUPPORT; 167 168 nexthop = daddr = usin->sin_addr.s_addr; 169 inet_opt = rcu_dereference_protected(inet->inet_opt, 170 sock_owned_by_user(sk)); 171 if (inet_opt && inet_opt->opt.srr) { 172 if (!daddr) 173 return -EINVAL; 174 nexthop = inet_opt->opt.faddr; 175 } 176 177 orig_sport = inet->inet_sport; 178 orig_dport = usin->sin_port; 179 fl4 = &inet->cork.fl.u.ip4; 180 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 181 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 182 IPPROTO_TCP, 183 orig_sport, orig_dport, sk, true); 184 if (IS_ERR(rt)) { 185 err = PTR_ERR(rt); 186 if (err == -ENETUNREACH) 187 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 188 return err; 189 } 190 191 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 192 ip_rt_put(rt); 193 return -ENETUNREACH; 194 } 195 196 if (!inet_opt || !inet_opt->opt.srr) 197 daddr = fl4->daddr; 198 199 if (!inet->inet_saddr) 200 inet->inet_saddr = fl4->saddr; 201 inet->inet_rcv_saddr = inet->inet_saddr; 202 203 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 204 /* Reset inherited state */ 205 tp->rx_opt.ts_recent = 0; 206 tp->rx_opt.ts_recent_stamp = 0; 207 if (likely(!tp->repair)) 208 tp->write_seq = 0; 209 } 210 211 if (tcp_death_row.sysctl_tw_recycle && 212 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) 213 tcp_fetch_timewait_stamp(sk, &rt->dst); 214 215 inet->inet_dport = usin->sin_port; 216 inet->inet_daddr = daddr; 217 218 inet_csk(sk)->icsk_ext_hdr_len = 0; 219 if (inet_opt) 220 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 221 222 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 223 224 /* Socket identity is still unknown (sport may be zero). 225 * However we set state to SYN-SENT and not releasing socket 226 * lock select source port, enter ourselves into the hash tables and 227 * complete initialization after this. 228 */ 229 tcp_set_state(sk, TCP_SYN_SENT); 230 err = inet_hash_connect(&tcp_death_row, sk); 231 if (err) 232 goto failure; 233 234 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 235 inet->inet_sport, inet->inet_dport, sk); 236 if (IS_ERR(rt)) { 237 err = PTR_ERR(rt); 238 rt = NULL; 239 goto failure; 240 } 241 /* OK, now commit destination to socket. */ 242 sk->sk_gso_type = SKB_GSO_TCPV4; 243 sk_setup_caps(sk, &rt->dst); 244 245 if (!tp->write_seq && likely(!tp->repair)) 246 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr, 247 inet->inet_daddr, 248 inet->inet_sport, 249 usin->sin_port); 250 251 inet->inet_id = tp->write_seq ^ jiffies; 252 253 if (likely(!tp->repair)) 254 err = tcp_connect(sk); 255 else 256 err = tcp_repair_connect(sk); 257 258 rt = NULL; 259 if (err) 260 goto failure; 261 262 return 0; 263 264 failure: 265 /* 266 * This unhashes the socket and releases the local port, 267 * if necessary. 268 */ 269 tcp_set_state(sk, TCP_CLOSE); 270 ip_rt_put(rt); 271 sk->sk_route_caps = 0; 272 inet->inet_dport = 0; 273 return err; 274 } 275 EXPORT_SYMBOL(tcp_v4_connect); 276 277 /* 278 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 279 * It can be called through tcp_release_cb() if socket was owned by user 280 * at the time tcp_v4_err() was called to handle ICMP message. 281 */ 282 static void tcp_v4_mtu_reduced(struct sock *sk) 283 { 284 struct dst_entry *dst; 285 struct inet_sock *inet = inet_sk(sk); 286 u32 mtu = tcp_sk(sk)->mtu_info; 287 288 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs 289 * send out by Linux are always <576bytes so they should go through 290 * unfragmented). 291 */ 292 if (sk->sk_state == TCP_LISTEN) 293 return; 294 295 dst = inet_csk_update_pmtu(sk, mtu); 296 if (!dst) 297 return; 298 299 /* Something is about to be wrong... Remember soft error 300 * for the case, if this connection will not able to recover. 301 */ 302 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 303 sk->sk_err_soft = EMSGSIZE; 304 305 mtu = dst_mtu(dst); 306 307 if (inet->pmtudisc != IP_PMTUDISC_DONT && 308 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 309 tcp_sync_mss(sk, mtu); 310 311 /* Resend the TCP packet because it's 312 * clear that the old packet has been 313 * dropped. This is the new "fast" path mtu 314 * discovery. 315 */ 316 tcp_simple_retransmit(sk); 317 } /* else let the usual retransmit timer handle it */ 318 } 319 320 static void do_redirect(struct sk_buff *skb, struct sock *sk) 321 { 322 struct dst_entry *dst = __sk_dst_check(sk, 0); 323 324 if (dst) 325 dst->ops->redirect(dst, sk, skb); 326 } 327 328 /* 329 * This routine is called by the ICMP module when it gets some 330 * sort of error condition. If err < 0 then the socket should 331 * be closed and the error returned to the user. If err > 0 332 * it's just the icmp type << 8 | icmp code. After adjustment 333 * header points to the first 8 bytes of the tcp header. We need 334 * to find the appropriate port. 335 * 336 * The locking strategy used here is very "optimistic". When 337 * someone else accesses the socket the ICMP is just dropped 338 * and for some paths there is no check at all. 339 * A more general error queue to queue errors for later handling 340 * is probably better. 341 * 342 */ 343 344 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 345 { 346 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 347 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 348 struct inet_connection_sock *icsk; 349 struct tcp_sock *tp; 350 struct inet_sock *inet; 351 const int type = icmp_hdr(icmp_skb)->type; 352 const int code = icmp_hdr(icmp_skb)->code; 353 struct sock *sk; 354 struct sk_buff *skb; 355 struct request_sock *req; 356 __u32 seq; 357 __u32 remaining; 358 int err; 359 struct net *net = dev_net(icmp_skb->dev); 360 361 if (icmp_skb->len < (iph->ihl << 2) + 8) { 362 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 363 return; 364 } 365 366 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest, 367 iph->saddr, th->source, inet_iif(icmp_skb)); 368 if (!sk) { 369 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 370 return; 371 } 372 if (sk->sk_state == TCP_TIME_WAIT) { 373 inet_twsk_put(inet_twsk(sk)); 374 return; 375 } 376 377 bh_lock_sock(sk); 378 /* If too many ICMPs get dropped on busy 379 * servers this needs to be solved differently. 380 * We do take care of PMTU discovery (RFC1191) special case : 381 * we can receive locally generated ICMP messages while socket is held. 382 */ 383 if (sock_owned_by_user(sk) && 384 type != ICMP_DEST_UNREACH && 385 code != ICMP_FRAG_NEEDED) 386 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS); 387 388 if (sk->sk_state == TCP_CLOSE) 389 goto out; 390 391 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 392 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP); 393 goto out; 394 } 395 396 icsk = inet_csk(sk); 397 tp = tcp_sk(sk); 398 req = tp->fastopen_rsk; 399 seq = ntohl(th->seq); 400 if (sk->sk_state != TCP_LISTEN && 401 !between(seq, tp->snd_una, tp->snd_nxt) && 402 (req == NULL || seq != tcp_rsk(req)->snt_isn)) { 403 /* For a Fast Open socket, allow seq to be snt_isn. */ 404 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 405 goto out; 406 } 407 408 switch (type) { 409 case ICMP_REDIRECT: 410 do_redirect(icmp_skb, sk); 411 goto out; 412 case ICMP_SOURCE_QUENCH: 413 /* Just silently ignore these. */ 414 goto out; 415 case ICMP_PARAMETERPROB: 416 err = EPROTO; 417 break; 418 case ICMP_DEST_UNREACH: 419 if (code > NR_ICMP_UNREACH) 420 goto out; 421 422 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 423 tp->mtu_info = info; 424 if (!sock_owned_by_user(sk)) { 425 tcp_v4_mtu_reduced(sk); 426 } else { 427 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags)) 428 sock_hold(sk); 429 } 430 goto out; 431 } 432 433 err = icmp_err_convert[code].errno; 434 /* check if icmp_skb allows revert of backoff 435 * (see draft-zimmermann-tcp-lcd) */ 436 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 437 break; 438 if (seq != tp->snd_una || !icsk->icsk_retransmits || 439 !icsk->icsk_backoff) 440 break; 441 442 /* XXX (TFO) - revisit the following logic for TFO */ 443 444 if (sock_owned_by_user(sk)) 445 break; 446 447 icsk->icsk_backoff--; 448 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) : 449 TCP_TIMEOUT_INIT) << icsk->icsk_backoff; 450 tcp_bound_rto(sk); 451 452 skb = tcp_write_queue_head(sk); 453 BUG_ON(!skb); 454 455 remaining = icsk->icsk_rto - min(icsk->icsk_rto, 456 tcp_time_stamp - TCP_SKB_CB(skb)->when); 457 458 if (remaining) { 459 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 460 remaining, TCP_RTO_MAX); 461 } else { 462 /* RTO revert clocked out retransmission. 463 * Will retransmit now */ 464 tcp_retransmit_timer(sk); 465 } 466 467 break; 468 case ICMP_TIME_EXCEEDED: 469 err = EHOSTUNREACH; 470 break; 471 default: 472 goto out; 473 } 474 475 /* XXX (TFO) - if it's a TFO socket and has been accepted, rather 476 * than following the TCP_SYN_RECV case and closing the socket, 477 * we ignore the ICMP error and keep trying like a fully established 478 * socket. Is this the right thing to do? 479 */ 480 if (req && req->sk == NULL) 481 goto out; 482 483 switch (sk->sk_state) { 484 struct request_sock *req, **prev; 485 case TCP_LISTEN: 486 if (sock_owned_by_user(sk)) 487 goto out; 488 489 req = inet_csk_search_req(sk, &prev, th->dest, 490 iph->daddr, iph->saddr); 491 if (!req) 492 goto out; 493 494 /* ICMPs are not backlogged, hence we cannot get 495 an established socket here. 496 */ 497 WARN_ON(req->sk); 498 499 if (seq != tcp_rsk(req)->snt_isn) { 500 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS); 501 goto out; 502 } 503 504 /* 505 * Still in SYN_RECV, just remove it silently. 506 * There is no good way to pass the error to the newly 507 * created socket, and POSIX does not want network 508 * errors returned from accept(). 509 */ 510 inet_csk_reqsk_queue_drop(sk, req, prev); 511 goto out; 512 513 case TCP_SYN_SENT: 514 case TCP_SYN_RECV: /* Cannot happen. 515 It can f.e. if SYNs crossed, 516 or Fast Open. 517 */ 518 if (!sock_owned_by_user(sk)) { 519 sk->sk_err = err; 520 521 sk->sk_error_report(sk); 522 523 tcp_done(sk); 524 } else { 525 sk->sk_err_soft = err; 526 } 527 goto out; 528 } 529 530 /* If we've already connected we will keep trying 531 * until we time out, or the user gives up. 532 * 533 * rfc1122 4.2.3.9 allows to consider as hard errors 534 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 535 * but it is obsoleted by pmtu discovery). 536 * 537 * Note, that in modern internet, where routing is unreliable 538 * and in each dark corner broken firewalls sit, sending random 539 * errors ordered by their masters even this two messages finally lose 540 * their original sense (even Linux sends invalid PORT_UNREACHs) 541 * 542 * Now we are in compliance with RFCs. 543 * --ANK (980905) 544 */ 545 546 inet = inet_sk(sk); 547 if (!sock_owned_by_user(sk) && inet->recverr) { 548 sk->sk_err = err; 549 sk->sk_error_report(sk); 550 } else { /* Only an error on timeout */ 551 sk->sk_err_soft = err; 552 } 553 554 out: 555 bh_unlock_sock(sk); 556 sock_put(sk); 557 } 558 559 static void __tcp_v4_send_check(struct sk_buff *skb, 560 __be32 saddr, __be32 daddr) 561 { 562 struct tcphdr *th = tcp_hdr(skb); 563 564 if (skb->ip_summed == CHECKSUM_PARTIAL) { 565 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 566 skb->csum_start = skb_transport_header(skb) - skb->head; 567 skb->csum_offset = offsetof(struct tcphdr, check); 568 } else { 569 th->check = tcp_v4_check(skb->len, saddr, daddr, 570 csum_partial(th, 571 th->doff << 2, 572 skb->csum)); 573 } 574 } 575 576 /* This routine computes an IPv4 TCP checksum. */ 577 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 578 { 579 const struct inet_sock *inet = inet_sk(sk); 580 581 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 582 } 583 EXPORT_SYMBOL(tcp_v4_send_check); 584 585 int tcp_v4_gso_send_check(struct sk_buff *skb) 586 { 587 const struct iphdr *iph; 588 struct tcphdr *th; 589 590 if (!pskb_may_pull(skb, sizeof(*th))) 591 return -EINVAL; 592 593 iph = ip_hdr(skb); 594 th = tcp_hdr(skb); 595 596 th->check = 0; 597 skb->ip_summed = CHECKSUM_PARTIAL; 598 __tcp_v4_send_check(skb, iph->saddr, iph->daddr); 599 return 0; 600 } 601 602 /* 603 * This routine will send an RST to the other tcp. 604 * 605 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 606 * for reset. 607 * Answer: if a packet caused RST, it is not for a socket 608 * existing in our system, if it is matched to a socket, 609 * it is just duplicate segment or bug in other side's TCP. 610 * So that we build reply only basing on parameters 611 * arrived with segment. 612 * Exception: precedence violation. We do not implement it in any case. 613 */ 614 615 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb) 616 { 617 const struct tcphdr *th = tcp_hdr(skb); 618 struct { 619 struct tcphdr th; 620 #ifdef CONFIG_TCP_MD5SIG 621 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 622 #endif 623 } rep; 624 struct ip_reply_arg arg; 625 #ifdef CONFIG_TCP_MD5SIG 626 struct tcp_md5sig_key *key; 627 const __u8 *hash_location = NULL; 628 unsigned char newhash[16]; 629 int genhash; 630 struct sock *sk1 = NULL; 631 #endif 632 struct net *net; 633 634 /* Never send a reset in response to a reset. */ 635 if (th->rst) 636 return; 637 638 if (skb_rtable(skb)->rt_type != RTN_LOCAL) 639 return; 640 641 /* Swap the send and the receive. */ 642 memset(&rep, 0, sizeof(rep)); 643 rep.th.dest = th->source; 644 rep.th.source = th->dest; 645 rep.th.doff = sizeof(struct tcphdr) / 4; 646 rep.th.rst = 1; 647 648 if (th->ack) { 649 rep.th.seq = th->ack_seq; 650 } else { 651 rep.th.ack = 1; 652 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 653 skb->len - (th->doff << 2)); 654 } 655 656 memset(&arg, 0, sizeof(arg)); 657 arg.iov[0].iov_base = (unsigned char *)&rep; 658 arg.iov[0].iov_len = sizeof(rep.th); 659 660 #ifdef CONFIG_TCP_MD5SIG 661 hash_location = tcp_parse_md5sig_option(th); 662 if (!sk && hash_location) { 663 /* 664 * active side is lost. Try to find listening socket through 665 * source port, and then find md5 key through listening socket. 666 * we are not loose security here: 667 * Incoming packet is checked with md5 hash with finding key, 668 * no RST generated if md5 hash doesn't match. 669 */ 670 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev), 671 &tcp_hashinfo, ip_hdr(skb)->daddr, 672 ntohs(th->source), inet_iif(skb)); 673 /* don't send rst if it can't find key */ 674 if (!sk1) 675 return; 676 rcu_read_lock(); 677 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 678 &ip_hdr(skb)->saddr, AF_INET); 679 if (!key) 680 goto release_sk1; 681 682 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb); 683 if (genhash || memcmp(hash_location, newhash, 16) != 0) 684 goto release_sk1; 685 } else { 686 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 687 &ip_hdr(skb)->saddr, 688 AF_INET) : NULL; 689 } 690 691 if (key) { 692 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 693 (TCPOPT_NOP << 16) | 694 (TCPOPT_MD5SIG << 8) | 695 TCPOLEN_MD5SIG); 696 /* Update length and the length the header thinks exists */ 697 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 698 rep.th.doff = arg.iov[0].iov_len / 4; 699 700 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 701 key, ip_hdr(skb)->saddr, 702 ip_hdr(skb)->daddr, &rep.th); 703 } 704 #endif 705 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 706 ip_hdr(skb)->saddr, /* XXX */ 707 arg.iov[0].iov_len, IPPROTO_TCP, 0); 708 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 709 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0; 710 /* When socket is gone, all binding information is lost. 711 * routing might fail in this case. No choice here, if we choose to force 712 * input interface, we will misroute in case of asymmetric route. 713 */ 714 if (sk) 715 arg.bound_dev_if = sk->sk_bound_dev_if; 716 717 net = dev_net(skb_dst(skb)->dev); 718 arg.tos = ip_hdr(skb)->tos; 719 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr, 720 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len); 721 722 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 723 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS); 724 725 #ifdef CONFIG_TCP_MD5SIG 726 release_sk1: 727 if (sk1) { 728 rcu_read_unlock(); 729 sock_put(sk1); 730 } 731 #endif 732 } 733 734 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 735 outside socket context is ugly, certainly. What can I do? 736 */ 737 738 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack, 739 u32 win, u32 ts, int oif, 740 struct tcp_md5sig_key *key, 741 int reply_flags, u8 tos) 742 { 743 const struct tcphdr *th = tcp_hdr(skb); 744 struct { 745 struct tcphdr th; 746 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 747 #ifdef CONFIG_TCP_MD5SIG 748 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 749 #endif 750 ]; 751 } rep; 752 struct ip_reply_arg arg; 753 struct net *net = dev_net(skb_dst(skb)->dev); 754 755 memset(&rep.th, 0, sizeof(struct tcphdr)); 756 memset(&arg, 0, sizeof(arg)); 757 758 arg.iov[0].iov_base = (unsigned char *)&rep; 759 arg.iov[0].iov_len = sizeof(rep.th); 760 if (ts) { 761 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 762 (TCPOPT_TIMESTAMP << 8) | 763 TCPOLEN_TIMESTAMP); 764 rep.opt[1] = htonl(tcp_time_stamp); 765 rep.opt[2] = htonl(ts); 766 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 767 } 768 769 /* Swap the send and the receive. */ 770 rep.th.dest = th->source; 771 rep.th.source = th->dest; 772 rep.th.doff = arg.iov[0].iov_len / 4; 773 rep.th.seq = htonl(seq); 774 rep.th.ack_seq = htonl(ack); 775 rep.th.ack = 1; 776 rep.th.window = htons(win); 777 778 #ifdef CONFIG_TCP_MD5SIG 779 if (key) { 780 int offset = (ts) ? 3 : 0; 781 782 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 783 (TCPOPT_NOP << 16) | 784 (TCPOPT_MD5SIG << 8) | 785 TCPOLEN_MD5SIG); 786 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 787 rep.th.doff = arg.iov[0].iov_len/4; 788 789 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 790 key, ip_hdr(skb)->saddr, 791 ip_hdr(skb)->daddr, &rep.th); 792 } 793 #endif 794 arg.flags = reply_flags; 795 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 796 ip_hdr(skb)->saddr, /* XXX */ 797 arg.iov[0].iov_len, IPPROTO_TCP, 0); 798 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 799 if (oif) 800 arg.bound_dev_if = oif; 801 arg.tos = tos; 802 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr, 803 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len); 804 805 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS); 806 } 807 808 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 809 { 810 struct inet_timewait_sock *tw = inet_twsk(sk); 811 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 812 813 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 814 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 815 tcptw->tw_ts_recent, 816 tw->tw_bound_dev_if, 817 tcp_twsk_md5_key(tcptw), 818 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 819 tw->tw_tos 820 ); 821 822 inet_twsk_put(tw); 823 } 824 825 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb, 826 struct request_sock *req) 827 { 828 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 829 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 830 */ 831 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ? 832 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt, 833 tcp_rsk(req)->rcv_nxt, req->rcv_wnd, 834 req->ts_recent, 835 0, 836 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr, 837 AF_INET), 838 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 839 ip_hdr(skb)->tos); 840 } 841 842 /* 843 * Send a SYN-ACK after having received a SYN. 844 * This still operates on a request_sock only, not on a big 845 * socket. 846 */ 847 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst, 848 struct request_sock *req, 849 struct request_values *rvp, 850 u16 queue_mapping, 851 bool nocache) 852 { 853 const struct inet_request_sock *ireq = inet_rsk(req); 854 struct flowi4 fl4; 855 int err = -1; 856 struct sk_buff * skb; 857 858 /* First, grab a route. */ 859 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 860 return -1; 861 862 skb = tcp_make_synack(sk, dst, req, rvp, NULL); 863 864 if (skb) { 865 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr); 866 867 skb_set_queue_mapping(skb, queue_mapping); 868 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr, 869 ireq->rmt_addr, 870 ireq->opt); 871 err = net_xmit_eval(err); 872 if (!tcp_rsk(req)->snt_synack && !err) 873 tcp_rsk(req)->snt_synack = tcp_time_stamp; 874 } 875 876 return err; 877 } 878 879 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req, 880 struct request_values *rvp) 881 { 882 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS); 883 return tcp_v4_send_synack(sk, NULL, req, rvp, 0, false); 884 } 885 886 /* 887 * IPv4 request_sock destructor. 888 */ 889 static void tcp_v4_reqsk_destructor(struct request_sock *req) 890 { 891 kfree(inet_rsk(req)->opt); 892 } 893 894 /* 895 * Return true if a syncookie should be sent 896 */ 897 bool tcp_syn_flood_action(struct sock *sk, 898 const struct sk_buff *skb, 899 const char *proto) 900 { 901 const char *msg = "Dropping request"; 902 bool want_cookie = false; 903 struct listen_sock *lopt; 904 905 906 907 #ifdef CONFIG_SYN_COOKIES 908 if (sysctl_tcp_syncookies) { 909 msg = "Sending cookies"; 910 want_cookie = true; 911 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 912 } else 913 #endif 914 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 915 916 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt; 917 if (!lopt->synflood_warned) { 918 lopt->synflood_warned = 1; 919 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 920 proto, ntohs(tcp_hdr(skb)->dest), msg); 921 } 922 return want_cookie; 923 } 924 EXPORT_SYMBOL(tcp_syn_flood_action); 925 926 /* 927 * Save and compile IPv4 options into the request_sock if needed. 928 */ 929 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb) 930 { 931 const struct ip_options *opt = &(IPCB(skb)->opt); 932 struct ip_options_rcu *dopt = NULL; 933 934 if (opt && opt->optlen) { 935 int opt_size = sizeof(*dopt) + opt->optlen; 936 937 dopt = kmalloc(opt_size, GFP_ATOMIC); 938 if (dopt) { 939 if (ip_options_echo(&dopt->opt, skb)) { 940 kfree(dopt); 941 dopt = NULL; 942 } 943 } 944 } 945 return dopt; 946 } 947 948 #ifdef CONFIG_TCP_MD5SIG 949 /* 950 * RFC2385 MD5 checksumming requires a mapping of 951 * IP address->MD5 Key. 952 * We need to maintain these in the sk structure. 953 */ 954 955 /* Find the Key structure for an address. */ 956 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk, 957 const union tcp_md5_addr *addr, 958 int family) 959 { 960 struct tcp_sock *tp = tcp_sk(sk); 961 struct tcp_md5sig_key *key; 962 struct hlist_node *pos; 963 unsigned int size = sizeof(struct in_addr); 964 struct tcp_md5sig_info *md5sig; 965 966 /* caller either holds rcu_read_lock() or socket lock */ 967 md5sig = rcu_dereference_check(tp->md5sig_info, 968 sock_owned_by_user(sk) || 969 lockdep_is_held(&sk->sk_lock.slock)); 970 if (!md5sig) 971 return NULL; 972 #if IS_ENABLED(CONFIG_IPV6) 973 if (family == AF_INET6) 974 size = sizeof(struct in6_addr); 975 #endif 976 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) { 977 if (key->family != family) 978 continue; 979 if (!memcmp(&key->addr, addr, size)) 980 return key; 981 } 982 return NULL; 983 } 984 EXPORT_SYMBOL(tcp_md5_do_lookup); 985 986 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk, 987 struct sock *addr_sk) 988 { 989 union tcp_md5_addr *addr; 990 991 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr; 992 return tcp_md5_do_lookup(sk, addr, AF_INET); 993 } 994 EXPORT_SYMBOL(tcp_v4_md5_lookup); 995 996 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk, 997 struct request_sock *req) 998 { 999 union tcp_md5_addr *addr; 1000 1001 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr; 1002 return tcp_md5_do_lookup(sk, addr, AF_INET); 1003 } 1004 1005 /* This can be called on a newly created socket, from other files */ 1006 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1007 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp) 1008 { 1009 /* Add Key to the list */ 1010 struct tcp_md5sig_key *key; 1011 struct tcp_sock *tp = tcp_sk(sk); 1012 struct tcp_md5sig_info *md5sig; 1013 1014 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET); 1015 if (key) { 1016 /* Pre-existing entry - just update that one. */ 1017 memcpy(key->key, newkey, newkeylen); 1018 key->keylen = newkeylen; 1019 return 0; 1020 } 1021 1022 md5sig = rcu_dereference_protected(tp->md5sig_info, 1023 sock_owned_by_user(sk)); 1024 if (!md5sig) { 1025 md5sig = kmalloc(sizeof(*md5sig), gfp); 1026 if (!md5sig) 1027 return -ENOMEM; 1028 1029 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1030 INIT_HLIST_HEAD(&md5sig->head); 1031 rcu_assign_pointer(tp->md5sig_info, md5sig); 1032 } 1033 1034 key = sock_kmalloc(sk, sizeof(*key), gfp); 1035 if (!key) 1036 return -ENOMEM; 1037 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) { 1038 sock_kfree_s(sk, key, sizeof(*key)); 1039 return -ENOMEM; 1040 } 1041 1042 memcpy(key->key, newkey, newkeylen); 1043 key->keylen = newkeylen; 1044 key->family = family; 1045 memcpy(&key->addr, addr, 1046 (family == AF_INET6) ? sizeof(struct in6_addr) : 1047 sizeof(struct in_addr)); 1048 hlist_add_head_rcu(&key->node, &md5sig->head); 1049 return 0; 1050 } 1051 EXPORT_SYMBOL(tcp_md5_do_add); 1052 1053 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family) 1054 { 1055 struct tcp_sock *tp = tcp_sk(sk); 1056 struct tcp_md5sig_key *key; 1057 struct tcp_md5sig_info *md5sig; 1058 1059 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET); 1060 if (!key) 1061 return -ENOENT; 1062 hlist_del_rcu(&key->node); 1063 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1064 kfree_rcu(key, rcu); 1065 md5sig = rcu_dereference_protected(tp->md5sig_info, 1066 sock_owned_by_user(sk)); 1067 if (hlist_empty(&md5sig->head)) 1068 tcp_free_md5sig_pool(); 1069 return 0; 1070 } 1071 EXPORT_SYMBOL(tcp_md5_do_del); 1072 1073 void tcp_clear_md5_list(struct sock *sk) 1074 { 1075 struct tcp_sock *tp = tcp_sk(sk); 1076 struct tcp_md5sig_key *key; 1077 struct hlist_node *pos, *n; 1078 struct tcp_md5sig_info *md5sig; 1079 1080 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1081 1082 if (!hlist_empty(&md5sig->head)) 1083 tcp_free_md5sig_pool(); 1084 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) { 1085 hlist_del_rcu(&key->node); 1086 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1087 kfree_rcu(key, rcu); 1088 } 1089 } 1090 1091 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval, 1092 int optlen) 1093 { 1094 struct tcp_md5sig cmd; 1095 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1096 1097 if (optlen < sizeof(cmd)) 1098 return -EINVAL; 1099 1100 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1101 return -EFAULT; 1102 1103 if (sin->sin_family != AF_INET) 1104 return -EINVAL; 1105 1106 if (!cmd.tcpm_key || !cmd.tcpm_keylen) 1107 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1108 AF_INET); 1109 1110 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1111 return -EINVAL; 1112 1113 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1114 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen, 1115 GFP_KERNEL); 1116 } 1117 1118 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp, 1119 __be32 daddr, __be32 saddr, int nbytes) 1120 { 1121 struct tcp4_pseudohdr *bp; 1122 struct scatterlist sg; 1123 1124 bp = &hp->md5_blk.ip4; 1125 1126 /* 1127 * 1. the TCP pseudo-header (in the order: source IP address, 1128 * destination IP address, zero-padded protocol number, and 1129 * segment length) 1130 */ 1131 bp->saddr = saddr; 1132 bp->daddr = daddr; 1133 bp->pad = 0; 1134 bp->protocol = IPPROTO_TCP; 1135 bp->len = cpu_to_be16(nbytes); 1136 1137 sg_init_one(&sg, bp, sizeof(*bp)); 1138 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp)); 1139 } 1140 1141 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1142 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1143 { 1144 struct tcp_md5sig_pool *hp; 1145 struct hash_desc *desc; 1146 1147 hp = tcp_get_md5sig_pool(); 1148 if (!hp) 1149 goto clear_hash_noput; 1150 desc = &hp->md5_desc; 1151 1152 if (crypto_hash_init(desc)) 1153 goto clear_hash; 1154 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2)) 1155 goto clear_hash; 1156 if (tcp_md5_hash_header(hp, th)) 1157 goto clear_hash; 1158 if (tcp_md5_hash_key(hp, key)) 1159 goto clear_hash; 1160 if (crypto_hash_final(desc, md5_hash)) 1161 goto clear_hash; 1162 1163 tcp_put_md5sig_pool(); 1164 return 0; 1165 1166 clear_hash: 1167 tcp_put_md5sig_pool(); 1168 clear_hash_noput: 1169 memset(md5_hash, 0, 16); 1170 return 1; 1171 } 1172 1173 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key, 1174 const struct sock *sk, const struct request_sock *req, 1175 const struct sk_buff *skb) 1176 { 1177 struct tcp_md5sig_pool *hp; 1178 struct hash_desc *desc; 1179 const struct tcphdr *th = tcp_hdr(skb); 1180 __be32 saddr, daddr; 1181 1182 if (sk) { 1183 saddr = inet_sk(sk)->inet_saddr; 1184 daddr = inet_sk(sk)->inet_daddr; 1185 } else if (req) { 1186 saddr = inet_rsk(req)->loc_addr; 1187 daddr = inet_rsk(req)->rmt_addr; 1188 } else { 1189 const struct iphdr *iph = ip_hdr(skb); 1190 saddr = iph->saddr; 1191 daddr = iph->daddr; 1192 } 1193 1194 hp = tcp_get_md5sig_pool(); 1195 if (!hp) 1196 goto clear_hash_noput; 1197 desc = &hp->md5_desc; 1198 1199 if (crypto_hash_init(desc)) 1200 goto clear_hash; 1201 1202 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len)) 1203 goto clear_hash; 1204 if (tcp_md5_hash_header(hp, th)) 1205 goto clear_hash; 1206 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1207 goto clear_hash; 1208 if (tcp_md5_hash_key(hp, key)) 1209 goto clear_hash; 1210 if (crypto_hash_final(desc, md5_hash)) 1211 goto clear_hash; 1212 1213 tcp_put_md5sig_pool(); 1214 return 0; 1215 1216 clear_hash: 1217 tcp_put_md5sig_pool(); 1218 clear_hash_noput: 1219 memset(md5_hash, 0, 16); 1220 return 1; 1221 } 1222 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1223 1224 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb) 1225 { 1226 /* 1227 * This gets called for each TCP segment that arrives 1228 * so we want to be efficient. 1229 * We have 3 drop cases: 1230 * o No MD5 hash and one expected. 1231 * o MD5 hash and we're not expecting one. 1232 * o MD5 hash and its wrong. 1233 */ 1234 const __u8 *hash_location = NULL; 1235 struct tcp_md5sig_key *hash_expected; 1236 const struct iphdr *iph = ip_hdr(skb); 1237 const struct tcphdr *th = tcp_hdr(skb); 1238 int genhash; 1239 unsigned char newhash[16]; 1240 1241 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1242 AF_INET); 1243 hash_location = tcp_parse_md5sig_option(th); 1244 1245 /* We've parsed the options - do we have a hash? */ 1246 if (!hash_expected && !hash_location) 1247 return false; 1248 1249 if (hash_expected && !hash_location) { 1250 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1251 return true; 1252 } 1253 1254 if (!hash_expected && hash_location) { 1255 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1256 return true; 1257 } 1258 1259 /* Okay, so this is hash_expected and hash_location - 1260 * so we need to calculate the checksum. 1261 */ 1262 genhash = tcp_v4_md5_hash_skb(newhash, 1263 hash_expected, 1264 NULL, NULL, skb); 1265 1266 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1267 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1268 &iph->saddr, ntohs(th->source), 1269 &iph->daddr, ntohs(th->dest), 1270 genhash ? " tcp_v4_calc_md5_hash failed" 1271 : ""); 1272 return true; 1273 } 1274 return false; 1275 } 1276 1277 #endif 1278 1279 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1280 .family = PF_INET, 1281 .obj_size = sizeof(struct tcp_request_sock), 1282 .rtx_syn_ack = tcp_v4_rtx_synack, 1283 .send_ack = tcp_v4_reqsk_send_ack, 1284 .destructor = tcp_v4_reqsk_destructor, 1285 .send_reset = tcp_v4_send_reset, 1286 .syn_ack_timeout = tcp_syn_ack_timeout, 1287 }; 1288 1289 #ifdef CONFIG_TCP_MD5SIG 1290 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1291 .md5_lookup = tcp_v4_reqsk_md5_lookup, 1292 .calc_md5_hash = tcp_v4_md5_hash_skb, 1293 }; 1294 #endif 1295 1296 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb, 1297 struct request_sock *req, 1298 struct tcp_fastopen_cookie *foc, 1299 struct tcp_fastopen_cookie *valid_foc) 1300 { 1301 bool skip_cookie = false; 1302 struct fastopen_queue *fastopenq; 1303 1304 if (likely(!fastopen_cookie_present(foc))) { 1305 /* See include/net/tcp.h for the meaning of these knobs */ 1306 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) || 1307 ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) && 1308 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1))) 1309 skip_cookie = true; /* no cookie to validate */ 1310 else 1311 return false; 1312 } 1313 fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq; 1314 /* A FO option is present; bump the counter. */ 1315 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE); 1316 1317 /* Make sure the listener has enabled fastopen, and we don't 1318 * exceed the max # of pending TFO requests allowed before trying 1319 * to validating the cookie in order to avoid burning CPU cycles 1320 * unnecessarily. 1321 * 1322 * XXX (TFO) - The implication of checking the max_qlen before 1323 * processing a cookie request is that clients can't differentiate 1324 * between qlen overflow causing Fast Open to be disabled 1325 * temporarily vs a server not supporting Fast Open at all. 1326 */ 1327 if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 || 1328 fastopenq == NULL || fastopenq->max_qlen == 0) 1329 return false; 1330 1331 if (fastopenq->qlen >= fastopenq->max_qlen) { 1332 struct request_sock *req1; 1333 spin_lock(&fastopenq->lock); 1334 req1 = fastopenq->rskq_rst_head; 1335 if ((req1 == NULL) || time_after(req1->expires, jiffies)) { 1336 spin_unlock(&fastopenq->lock); 1337 NET_INC_STATS_BH(sock_net(sk), 1338 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); 1339 /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/ 1340 foc->len = -1; 1341 return false; 1342 } 1343 fastopenq->rskq_rst_head = req1->dl_next; 1344 fastopenq->qlen--; 1345 spin_unlock(&fastopenq->lock); 1346 reqsk_free(req1); 1347 } 1348 if (skip_cookie) { 1349 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1350 return true; 1351 } 1352 if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) { 1353 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) { 1354 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc); 1355 if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) || 1356 memcmp(&foc->val[0], &valid_foc->val[0], 1357 TCP_FASTOPEN_COOKIE_SIZE) != 0) 1358 return false; 1359 valid_foc->len = -1; 1360 } 1361 /* Acknowledge the data received from the peer. */ 1362 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1363 return true; 1364 } else if (foc->len == 0) { /* Client requesting a cookie */ 1365 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc); 1366 NET_INC_STATS_BH(sock_net(sk), 1367 LINUX_MIB_TCPFASTOPENCOOKIEREQD); 1368 } else { 1369 /* Client sent a cookie with wrong size. Treat it 1370 * the same as invalid and return a valid one. 1371 */ 1372 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc); 1373 } 1374 return false; 1375 } 1376 1377 static int tcp_v4_conn_req_fastopen(struct sock *sk, 1378 struct sk_buff *skb, 1379 struct sk_buff *skb_synack, 1380 struct request_sock *req, 1381 struct request_values *rvp) 1382 { 1383 struct tcp_sock *tp = tcp_sk(sk); 1384 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 1385 const struct inet_request_sock *ireq = inet_rsk(req); 1386 struct sock *child; 1387 int err; 1388 1389 req->retrans = 0; 1390 req->sk = NULL; 1391 1392 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL); 1393 if (child == NULL) { 1394 NET_INC_STATS_BH(sock_net(sk), 1395 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 1396 kfree_skb(skb_synack); 1397 return -1; 1398 } 1399 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr, 1400 ireq->rmt_addr, ireq->opt); 1401 err = net_xmit_eval(err); 1402 if (!err) 1403 tcp_rsk(req)->snt_synack = tcp_time_stamp; 1404 /* XXX (TFO) - is it ok to ignore error and continue? */ 1405 1406 spin_lock(&queue->fastopenq->lock); 1407 queue->fastopenq->qlen++; 1408 spin_unlock(&queue->fastopenq->lock); 1409 1410 /* Initialize the child socket. Have to fix some values to take 1411 * into account the child is a Fast Open socket and is created 1412 * only out of the bits carried in the SYN packet. 1413 */ 1414 tp = tcp_sk(child); 1415 1416 tp->fastopen_rsk = req; 1417 /* Do a hold on the listner sk so that if the listener is being 1418 * closed, the child that has been accepted can live on and still 1419 * access listen_lock. 1420 */ 1421 sock_hold(sk); 1422 tcp_rsk(req)->listener = sk; 1423 1424 /* RFC1323: The window in SYN & SYN/ACK segments is never 1425 * scaled. So correct it appropriately. 1426 */ 1427 tp->snd_wnd = ntohs(tcp_hdr(skb)->window); 1428 1429 /* Activate the retrans timer so that SYNACK can be retransmitted. 1430 * The request socket is not added to the SYN table of the parent 1431 * because it's been added to the accept queue directly. 1432 */ 1433 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, 1434 TCP_TIMEOUT_INIT, TCP_RTO_MAX); 1435 1436 /* Add the child socket directly into the accept queue */ 1437 inet_csk_reqsk_queue_add(sk, req, child); 1438 1439 /* Now finish processing the fastopen child socket. */ 1440 inet_csk(child)->icsk_af_ops->rebuild_header(child); 1441 tcp_init_congestion_control(child); 1442 tcp_mtup_init(child); 1443 tcp_init_buffer_space(child); 1444 tcp_init_metrics(child); 1445 1446 /* Queue the data carried in the SYN packet. We need to first 1447 * bump skb's refcnt because the caller will attempt to free it. 1448 * 1449 * XXX (TFO) - we honor a zero-payload TFO request for now. 1450 * (Any reason not to?) 1451 */ 1452 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) { 1453 /* Don't queue the skb if there is no payload in SYN. 1454 * XXX (TFO) - How about SYN+FIN? 1455 */ 1456 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1457 } else { 1458 skb = skb_get(skb); 1459 skb_dst_drop(skb); 1460 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 1461 skb_set_owner_r(skb, child); 1462 __skb_queue_tail(&child->sk_receive_queue, skb); 1463 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 1464 } 1465 sk->sk_data_ready(sk, 0); 1466 bh_unlock_sock(child); 1467 sock_put(child); 1468 WARN_ON(req->sk == NULL); 1469 return 0; 1470 } 1471 1472 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1473 { 1474 struct tcp_extend_values tmp_ext; 1475 struct tcp_options_received tmp_opt; 1476 const u8 *hash_location; 1477 struct request_sock *req; 1478 struct inet_request_sock *ireq; 1479 struct tcp_sock *tp = tcp_sk(sk); 1480 struct dst_entry *dst = NULL; 1481 __be32 saddr = ip_hdr(skb)->saddr; 1482 __be32 daddr = ip_hdr(skb)->daddr; 1483 __u32 isn = TCP_SKB_CB(skb)->when; 1484 bool want_cookie = false; 1485 struct flowi4 fl4; 1486 struct tcp_fastopen_cookie foc = { .len = -1 }; 1487 struct tcp_fastopen_cookie valid_foc = { .len = -1 }; 1488 struct sk_buff *skb_synack; 1489 int do_fastopen; 1490 1491 /* Never answer to SYNs send to broadcast or multicast */ 1492 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1493 goto drop; 1494 1495 /* TW buckets are converted to open requests without 1496 * limitations, they conserve resources and peer is 1497 * evidently real one. 1498 */ 1499 if (inet_csk_reqsk_queue_is_full(sk) && !isn) { 1500 want_cookie = tcp_syn_flood_action(sk, skb, "TCP"); 1501 if (!want_cookie) 1502 goto drop; 1503 } 1504 1505 /* Accept backlog is full. If we have already queued enough 1506 * of warm entries in syn queue, drop request. It is better than 1507 * clogging syn queue with openreqs with exponentially increasing 1508 * timeout. 1509 */ 1510 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) 1511 goto drop; 1512 1513 req = inet_reqsk_alloc(&tcp_request_sock_ops); 1514 if (!req) 1515 goto drop; 1516 1517 #ifdef CONFIG_TCP_MD5SIG 1518 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops; 1519 #endif 1520 1521 tcp_clear_options(&tmp_opt); 1522 tmp_opt.mss_clamp = TCP_MSS_DEFAULT; 1523 tmp_opt.user_mss = tp->rx_opt.user_mss; 1524 tcp_parse_options(skb, &tmp_opt, &hash_location, 0, 1525 want_cookie ? NULL : &foc); 1526 1527 if (tmp_opt.cookie_plus > 0 && 1528 tmp_opt.saw_tstamp && 1529 !tp->rx_opt.cookie_out_never && 1530 (sysctl_tcp_cookie_size > 0 || 1531 (tp->cookie_values != NULL && 1532 tp->cookie_values->cookie_desired > 0))) { 1533 u8 *c; 1534 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS]; 1535 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE; 1536 1537 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0) 1538 goto drop_and_release; 1539 1540 /* Secret recipe starts with IP addresses */ 1541 *mess++ ^= (__force u32)daddr; 1542 *mess++ ^= (__force u32)saddr; 1543 1544 /* plus variable length Initiator Cookie */ 1545 c = (u8 *)mess; 1546 while (l-- > 0) 1547 *c++ ^= *hash_location++; 1548 1549 want_cookie = false; /* not our kind of cookie */ 1550 tmp_ext.cookie_out_never = 0; /* false */ 1551 tmp_ext.cookie_plus = tmp_opt.cookie_plus; 1552 } else if (!tp->rx_opt.cookie_in_always) { 1553 /* redundant indications, but ensure initialization. */ 1554 tmp_ext.cookie_out_never = 1; /* true */ 1555 tmp_ext.cookie_plus = 0; 1556 } else { 1557 goto drop_and_release; 1558 } 1559 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always; 1560 1561 if (want_cookie && !tmp_opt.saw_tstamp) 1562 tcp_clear_options(&tmp_opt); 1563 1564 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 1565 tcp_openreq_init(req, &tmp_opt, skb); 1566 1567 ireq = inet_rsk(req); 1568 ireq->loc_addr = daddr; 1569 ireq->rmt_addr = saddr; 1570 ireq->no_srccheck = inet_sk(sk)->transparent; 1571 ireq->opt = tcp_v4_save_options(skb); 1572 1573 if (security_inet_conn_request(sk, skb, req)) 1574 goto drop_and_free; 1575 1576 if (!want_cookie || tmp_opt.tstamp_ok) 1577 TCP_ECN_create_request(req, skb); 1578 1579 if (want_cookie) { 1580 isn = cookie_v4_init_sequence(sk, skb, &req->mss); 1581 req->cookie_ts = tmp_opt.tstamp_ok; 1582 } else if (!isn) { 1583 /* VJ's idea. We save last timestamp seen 1584 * from the destination in peer table, when entering 1585 * state TIME-WAIT, and check against it before 1586 * accepting new connection request. 1587 * 1588 * If "isn" is not zero, this request hit alive 1589 * timewait bucket, so that all the necessary checks 1590 * are made in the function processing timewait state. 1591 */ 1592 if (tmp_opt.saw_tstamp && 1593 tcp_death_row.sysctl_tw_recycle && 1594 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL && 1595 fl4.daddr == saddr) { 1596 if (!tcp_peer_is_proven(req, dst, true)) { 1597 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 1598 goto drop_and_release; 1599 } 1600 } 1601 /* Kill the following clause, if you dislike this way. */ 1602 else if (!sysctl_tcp_syncookies && 1603 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 1604 (sysctl_max_syn_backlog >> 2)) && 1605 !tcp_peer_is_proven(req, dst, false)) { 1606 /* Without syncookies last quarter of 1607 * backlog is filled with destinations, 1608 * proven to be alive. 1609 * It means that we continue to communicate 1610 * to destinations, already remembered 1611 * to the moment of synflood. 1612 */ 1613 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"), 1614 &saddr, ntohs(tcp_hdr(skb)->source)); 1615 goto drop_and_release; 1616 } 1617 1618 isn = tcp_v4_init_sequence(skb); 1619 } 1620 tcp_rsk(req)->snt_isn = isn; 1621 1622 if (dst == NULL) { 1623 dst = inet_csk_route_req(sk, &fl4, req); 1624 if (dst == NULL) 1625 goto drop_and_free; 1626 } 1627 do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc); 1628 1629 /* We don't call tcp_v4_send_synack() directly because we need 1630 * to make sure a child socket can be created successfully before 1631 * sending back synack! 1632 * 1633 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack() 1634 * (or better yet, call tcp_send_synack() in the child context 1635 * directly, but will have to fix bunch of other code first) 1636 * after syn_recv_sock() except one will need to first fix the 1637 * latter to remove its dependency on the current implementation 1638 * of tcp_v4_send_synack()->tcp_select_initial_window(). 1639 */ 1640 skb_synack = tcp_make_synack(sk, dst, req, 1641 (struct request_values *)&tmp_ext, 1642 fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL); 1643 1644 if (skb_synack) { 1645 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr); 1646 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb)); 1647 } else 1648 goto drop_and_free; 1649 1650 if (likely(!do_fastopen)) { 1651 int err; 1652 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr, 1653 ireq->rmt_addr, ireq->opt); 1654 err = net_xmit_eval(err); 1655 if (err || want_cookie) 1656 goto drop_and_free; 1657 1658 tcp_rsk(req)->snt_synack = tcp_time_stamp; 1659 tcp_rsk(req)->listener = NULL; 1660 /* Add the request_sock to the SYN table */ 1661 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 1662 if (fastopen_cookie_present(&foc) && foc.len != 0) 1663 NET_INC_STATS_BH(sock_net(sk), 1664 LINUX_MIB_TCPFASTOPENPASSIVEFAIL); 1665 } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req, 1666 (struct request_values *)&tmp_ext)) 1667 goto drop_and_free; 1668 1669 return 0; 1670 1671 drop_and_release: 1672 dst_release(dst); 1673 drop_and_free: 1674 reqsk_free(req); 1675 drop: 1676 return 0; 1677 } 1678 EXPORT_SYMBOL(tcp_v4_conn_request); 1679 1680 1681 /* 1682 * The three way handshake has completed - we got a valid synack - 1683 * now create the new socket. 1684 */ 1685 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb, 1686 struct request_sock *req, 1687 struct dst_entry *dst) 1688 { 1689 struct inet_request_sock *ireq; 1690 struct inet_sock *newinet; 1691 struct tcp_sock *newtp; 1692 struct sock *newsk; 1693 #ifdef CONFIG_TCP_MD5SIG 1694 struct tcp_md5sig_key *key; 1695 #endif 1696 struct ip_options_rcu *inet_opt; 1697 1698 if (sk_acceptq_is_full(sk)) 1699 goto exit_overflow; 1700 1701 newsk = tcp_create_openreq_child(sk, req, skb); 1702 if (!newsk) 1703 goto exit_nonewsk; 1704 1705 newsk->sk_gso_type = SKB_GSO_TCPV4; 1706 inet_sk_rx_dst_set(newsk, skb); 1707 1708 newtp = tcp_sk(newsk); 1709 newinet = inet_sk(newsk); 1710 ireq = inet_rsk(req); 1711 newinet->inet_daddr = ireq->rmt_addr; 1712 newinet->inet_rcv_saddr = ireq->loc_addr; 1713 newinet->inet_saddr = ireq->loc_addr; 1714 inet_opt = ireq->opt; 1715 rcu_assign_pointer(newinet->inet_opt, inet_opt); 1716 ireq->opt = NULL; 1717 newinet->mc_index = inet_iif(skb); 1718 newinet->mc_ttl = ip_hdr(skb)->ttl; 1719 newinet->rcv_tos = ip_hdr(skb)->tos; 1720 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1721 if (inet_opt) 1722 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1723 newinet->inet_id = newtp->write_seq ^ jiffies; 1724 1725 if (!dst) { 1726 dst = inet_csk_route_child_sock(sk, newsk, req); 1727 if (!dst) 1728 goto put_and_exit; 1729 } else { 1730 /* syncookie case : see end of cookie_v4_check() */ 1731 } 1732 sk_setup_caps(newsk, dst); 1733 1734 tcp_mtup_init(newsk); 1735 tcp_sync_mss(newsk, dst_mtu(dst)); 1736 newtp->advmss = dst_metric_advmss(dst); 1737 if (tcp_sk(sk)->rx_opt.user_mss && 1738 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss) 1739 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss; 1740 1741 tcp_initialize_rcv_mss(newsk); 1742 tcp_synack_rtt_meas(newsk, req); 1743 newtp->total_retrans = req->retrans; 1744 1745 #ifdef CONFIG_TCP_MD5SIG 1746 /* Copy over the MD5 key from the original socket */ 1747 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1748 AF_INET); 1749 if (key != NULL) { 1750 /* 1751 * We're using one, so create a matching key 1752 * on the newsk structure. If we fail to get 1753 * memory, then we end up not copying the key 1754 * across. Shucks. 1755 */ 1756 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1757 AF_INET, key->key, key->keylen, GFP_ATOMIC); 1758 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1759 } 1760 #endif 1761 1762 if (__inet_inherit_port(sk, newsk) < 0) 1763 goto put_and_exit; 1764 __inet_hash_nolisten(newsk, NULL); 1765 1766 return newsk; 1767 1768 exit_overflow: 1769 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1770 exit_nonewsk: 1771 dst_release(dst); 1772 exit: 1773 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 1774 return NULL; 1775 put_and_exit: 1776 tcp_clear_xmit_timers(newsk); 1777 tcp_cleanup_congestion_control(newsk); 1778 bh_unlock_sock(newsk); 1779 sock_put(newsk); 1780 goto exit; 1781 } 1782 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1783 1784 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb) 1785 { 1786 struct tcphdr *th = tcp_hdr(skb); 1787 const struct iphdr *iph = ip_hdr(skb); 1788 struct sock *nsk; 1789 struct request_sock **prev; 1790 /* Find possible connection requests. */ 1791 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source, 1792 iph->saddr, iph->daddr); 1793 if (req) 1794 return tcp_check_req(sk, skb, req, prev, false); 1795 1796 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr, 1797 th->source, iph->daddr, th->dest, inet_iif(skb)); 1798 1799 if (nsk) { 1800 if (nsk->sk_state != TCP_TIME_WAIT) { 1801 bh_lock_sock(nsk); 1802 return nsk; 1803 } 1804 inet_twsk_put(inet_twsk(nsk)); 1805 return NULL; 1806 } 1807 1808 #ifdef CONFIG_SYN_COOKIES 1809 if (!th->syn) 1810 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt)); 1811 #endif 1812 return sk; 1813 } 1814 1815 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb) 1816 { 1817 const struct iphdr *iph = ip_hdr(skb); 1818 1819 if (skb->ip_summed == CHECKSUM_COMPLETE) { 1820 if (!tcp_v4_check(skb->len, iph->saddr, 1821 iph->daddr, skb->csum)) { 1822 skb->ip_summed = CHECKSUM_UNNECESSARY; 1823 return 0; 1824 } 1825 } 1826 1827 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr, 1828 skb->len, IPPROTO_TCP, 0); 1829 1830 if (skb->len <= 76) { 1831 return __skb_checksum_complete(skb); 1832 } 1833 return 0; 1834 } 1835 1836 1837 /* The socket must have it's spinlock held when we get 1838 * here. 1839 * 1840 * We have a potential double-lock case here, so even when 1841 * doing backlog processing we use the BH locking scheme. 1842 * This is because we cannot sleep with the original spinlock 1843 * held. 1844 */ 1845 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1846 { 1847 struct sock *rsk; 1848 #ifdef CONFIG_TCP_MD5SIG 1849 /* 1850 * We really want to reject the packet as early as possible 1851 * if: 1852 * o We're expecting an MD5'd packet and this is no MD5 tcp option 1853 * o There is an MD5 option and we're not expecting one 1854 */ 1855 if (tcp_v4_inbound_md5_hash(sk, skb)) 1856 goto discard; 1857 #endif 1858 1859 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1860 struct dst_entry *dst = sk->sk_rx_dst; 1861 1862 sock_rps_save_rxhash(sk, skb); 1863 if (dst) { 1864 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1865 dst->ops->check(dst, 0) == NULL) { 1866 dst_release(dst); 1867 sk->sk_rx_dst = NULL; 1868 } 1869 } 1870 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) { 1871 rsk = sk; 1872 goto reset; 1873 } 1874 return 0; 1875 } 1876 1877 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb)) 1878 goto csum_err; 1879 1880 if (sk->sk_state == TCP_LISTEN) { 1881 struct sock *nsk = tcp_v4_hnd_req(sk, skb); 1882 if (!nsk) 1883 goto discard; 1884 1885 if (nsk != sk) { 1886 sock_rps_save_rxhash(nsk, skb); 1887 if (tcp_child_process(sk, nsk, skb)) { 1888 rsk = nsk; 1889 goto reset; 1890 } 1891 return 0; 1892 } 1893 } else 1894 sock_rps_save_rxhash(sk, skb); 1895 1896 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) { 1897 rsk = sk; 1898 goto reset; 1899 } 1900 return 0; 1901 1902 reset: 1903 tcp_v4_send_reset(rsk, skb); 1904 discard: 1905 kfree_skb(skb); 1906 /* Be careful here. If this function gets more complicated and 1907 * gcc suffers from register pressure on the x86, sk (in %ebx) 1908 * might be destroyed here. This current version compiles correctly, 1909 * but you have been warned. 1910 */ 1911 return 0; 1912 1913 csum_err: 1914 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 1915 goto discard; 1916 } 1917 EXPORT_SYMBOL(tcp_v4_do_rcv); 1918 1919 void tcp_v4_early_demux(struct sk_buff *skb) 1920 { 1921 struct net *net = dev_net(skb->dev); 1922 const struct iphdr *iph; 1923 const struct tcphdr *th; 1924 struct sock *sk; 1925 1926 if (skb->pkt_type != PACKET_HOST) 1927 return; 1928 1929 if (!pskb_may_pull(skb, ip_hdrlen(skb) + sizeof(struct tcphdr))) 1930 return; 1931 1932 iph = ip_hdr(skb); 1933 th = (struct tcphdr *) ((char *)iph + ip_hdrlen(skb)); 1934 1935 if (th->doff < sizeof(struct tcphdr) / 4) 1936 return; 1937 1938 sk = __inet_lookup_established(net, &tcp_hashinfo, 1939 iph->saddr, th->source, 1940 iph->daddr, ntohs(th->dest), 1941 skb->skb_iif); 1942 if (sk) { 1943 skb->sk = sk; 1944 skb->destructor = sock_edemux; 1945 if (sk->sk_state != TCP_TIME_WAIT) { 1946 struct dst_entry *dst = sk->sk_rx_dst; 1947 1948 if (dst) 1949 dst = dst_check(dst, 0); 1950 if (dst && 1951 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1952 skb_dst_set_noref(skb, dst); 1953 } 1954 } 1955 } 1956 1957 /* 1958 * From tcp_input.c 1959 */ 1960 1961 int tcp_v4_rcv(struct sk_buff *skb) 1962 { 1963 const struct iphdr *iph; 1964 const struct tcphdr *th; 1965 struct sock *sk; 1966 int ret; 1967 struct net *net = dev_net(skb->dev); 1968 1969 if (skb->pkt_type != PACKET_HOST) 1970 goto discard_it; 1971 1972 /* Count it even if it's bad */ 1973 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS); 1974 1975 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1976 goto discard_it; 1977 1978 th = tcp_hdr(skb); 1979 1980 if (th->doff < sizeof(struct tcphdr) / 4) 1981 goto bad_packet; 1982 if (!pskb_may_pull(skb, th->doff * 4)) 1983 goto discard_it; 1984 1985 /* An explanation is required here, I think. 1986 * Packet length and doff are validated by header prediction, 1987 * provided case of th->doff==0 is eliminated. 1988 * So, we defer the checks. */ 1989 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb)) 1990 goto bad_packet; 1991 1992 th = tcp_hdr(skb); 1993 iph = ip_hdr(skb); 1994 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1995 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1996 skb->len - th->doff * 4); 1997 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1998 TCP_SKB_CB(skb)->when = 0; 1999 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 2000 TCP_SKB_CB(skb)->sacked = 0; 2001 2002 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest); 2003 if (!sk) 2004 goto no_tcp_socket; 2005 2006 process: 2007 if (sk->sk_state == TCP_TIME_WAIT) 2008 goto do_time_wait; 2009 2010 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 2011 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP); 2012 goto discard_and_relse; 2013 } 2014 2015 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 2016 goto discard_and_relse; 2017 nf_reset(skb); 2018 2019 if (sk_filter(sk, skb)) 2020 goto discard_and_relse; 2021 2022 skb->dev = NULL; 2023 2024 bh_lock_sock_nested(sk); 2025 ret = 0; 2026 if (!sock_owned_by_user(sk)) { 2027 #ifdef CONFIG_NET_DMA 2028 struct tcp_sock *tp = tcp_sk(sk); 2029 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 2030 tp->ucopy.dma_chan = net_dma_find_channel(); 2031 if (tp->ucopy.dma_chan) 2032 ret = tcp_v4_do_rcv(sk, skb); 2033 else 2034 #endif 2035 { 2036 if (!tcp_prequeue(sk, skb)) 2037 ret = tcp_v4_do_rcv(sk, skb); 2038 } 2039 } else if (unlikely(sk_add_backlog(sk, skb, 2040 sk->sk_rcvbuf + sk->sk_sndbuf))) { 2041 bh_unlock_sock(sk); 2042 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP); 2043 goto discard_and_relse; 2044 } 2045 bh_unlock_sock(sk); 2046 2047 sock_put(sk); 2048 2049 return ret; 2050 2051 no_tcp_socket: 2052 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 2053 goto discard_it; 2054 2055 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { 2056 bad_packet: 2057 TCP_INC_STATS_BH(net, TCP_MIB_INERRS); 2058 } else { 2059 tcp_v4_send_reset(NULL, skb); 2060 } 2061 2062 discard_it: 2063 /* Discard frame. */ 2064 kfree_skb(skb); 2065 return 0; 2066 2067 discard_and_relse: 2068 sock_put(sk); 2069 goto discard_it; 2070 2071 do_time_wait: 2072 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 2073 inet_twsk_put(inet_twsk(sk)); 2074 goto discard_it; 2075 } 2076 2077 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) { 2078 TCP_INC_STATS_BH(net, TCP_MIB_INERRS); 2079 inet_twsk_put(inet_twsk(sk)); 2080 goto discard_it; 2081 } 2082 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 2083 case TCP_TW_SYN: { 2084 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 2085 &tcp_hashinfo, 2086 iph->daddr, th->dest, 2087 inet_iif(skb)); 2088 if (sk2) { 2089 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row); 2090 inet_twsk_put(inet_twsk(sk)); 2091 sk = sk2; 2092 goto process; 2093 } 2094 /* Fall through to ACK */ 2095 } 2096 case TCP_TW_ACK: 2097 tcp_v4_timewait_ack(sk, skb); 2098 break; 2099 case TCP_TW_RST: 2100 goto no_tcp_socket; 2101 case TCP_TW_SUCCESS:; 2102 } 2103 goto discard_it; 2104 } 2105 2106 static struct timewait_sock_ops tcp_timewait_sock_ops = { 2107 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 2108 .twsk_unique = tcp_twsk_unique, 2109 .twsk_destructor= tcp_twsk_destructor, 2110 }; 2111 2112 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 2113 { 2114 struct dst_entry *dst = skb_dst(skb); 2115 2116 dst_hold(dst); 2117 sk->sk_rx_dst = dst; 2118 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 2119 } 2120 EXPORT_SYMBOL(inet_sk_rx_dst_set); 2121 2122 const struct inet_connection_sock_af_ops ipv4_specific = { 2123 .queue_xmit = ip_queue_xmit, 2124 .send_check = tcp_v4_send_check, 2125 .rebuild_header = inet_sk_rebuild_header, 2126 .sk_rx_dst_set = inet_sk_rx_dst_set, 2127 .conn_request = tcp_v4_conn_request, 2128 .syn_recv_sock = tcp_v4_syn_recv_sock, 2129 .net_header_len = sizeof(struct iphdr), 2130 .setsockopt = ip_setsockopt, 2131 .getsockopt = ip_getsockopt, 2132 .addr2sockaddr = inet_csk_addr2sockaddr, 2133 .sockaddr_len = sizeof(struct sockaddr_in), 2134 .bind_conflict = inet_csk_bind_conflict, 2135 #ifdef CONFIG_COMPAT 2136 .compat_setsockopt = compat_ip_setsockopt, 2137 .compat_getsockopt = compat_ip_getsockopt, 2138 #endif 2139 }; 2140 EXPORT_SYMBOL(ipv4_specific); 2141 2142 #ifdef CONFIG_TCP_MD5SIG 2143 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 2144 .md5_lookup = tcp_v4_md5_lookup, 2145 .calc_md5_hash = tcp_v4_md5_hash_skb, 2146 .md5_parse = tcp_v4_parse_md5_keys, 2147 }; 2148 #endif 2149 2150 /* NOTE: A lot of things set to zero explicitly by call to 2151 * sk_alloc() so need not be done here. 2152 */ 2153 static int tcp_v4_init_sock(struct sock *sk) 2154 { 2155 struct inet_connection_sock *icsk = inet_csk(sk); 2156 2157 tcp_init_sock(sk); 2158 2159 icsk->icsk_af_ops = &ipv4_specific; 2160 2161 #ifdef CONFIG_TCP_MD5SIG 2162 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 2163 #endif 2164 2165 return 0; 2166 } 2167 2168 void tcp_v4_destroy_sock(struct sock *sk) 2169 { 2170 struct tcp_sock *tp = tcp_sk(sk); 2171 2172 tcp_clear_xmit_timers(sk); 2173 2174 tcp_cleanup_congestion_control(sk); 2175 2176 /* Cleanup up the write buffer. */ 2177 tcp_write_queue_purge(sk); 2178 2179 /* Cleans up our, hopefully empty, out_of_order_queue. */ 2180 __skb_queue_purge(&tp->out_of_order_queue); 2181 2182 #ifdef CONFIG_TCP_MD5SIG 2183 /* Clean up the MD5 key list, if any */ 2184 if (tp->md5sig_info) { 2185 tcp_clear_md5_list(sk); 2186 kfree_rcu(tp->md5sig_info, rcu); 2187 tp->md5sig_info = NULL; 2188 } 2189 #endif 2190 2191 #ifdef CONFIG_NET_DMA 2192 /* Cleans up our sk_async_wait_queue */ 2193 __skb_queue_purge(&sk->sk_async_wait_queue); 2194 #endif 2195 2196 /* Clean prequeue, it must be empty really */ 2197 __skb_queue_purge(&tp->ucopy.prequeue); 2198 2199 /* Clean up a referenced TCP bind bucket. */ 2200 if (inet_csk(sk)->icsk_bind_hash) 2201 inet_put_port(sk); 2202 2203 /* TCP Cookie Transactions */ 2204 if (tp->cookie_values != NULL) { 2205 kref_put(&tp->cookie_values->kref, 2206 tcp_cookie_values_release); 2207 tp->cookie_values = NULL; 2208 } 2209 BUG_ON(tp->fastopen_rsk != NULL); 2210 2211 /* If socket is aborted during connect operation */ 2212 tcp_free_fastopen_req(tp); 2213 2214 sk_sockets_allocated_dec(sk); 2215 sock_release_memcg(sk); 2216 } 2217 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2218 2219 #ifdef CONFIG_PROC_FS 2220 /* Proc filesystem TCP sock list dumping. */ 2221 2222 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head) 2223 { 2224 return hlist_nulls_empty(head) ? NULL : 2225 list_entry(head->first, struct inet_timewait_sock, tw_node); 2226 } 2227 2228 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw) 2229 { 2230 return !is_a_nulls(tw->tw_node.next) ? 2231 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL; 2232 } 2233 2234 /* 2235 * Get next listener socket follow cur. If cur is NULL, get first socket 2236 * starting from bucket given in st->bucket; when st->bucket is zero the 2237 * very first socket in the hash table is returned. 2238 */ 2239 static void *listening_get_next(struct seq_file *seq, void *cur) 2240 { 2241 struct inet_connection_sock *icsk; 2242 struct hlist_nulls_node *node; 2243 struct sock *sk = cur; 2244 struct inet_listen_hashbucket *ilb; 2245 struct tcp_iter_state *st = seq->private; 2246 struct net *net = seq_file_net(seq); 2247 2248 if (!sk) { 2249 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2250 spin_lock_bh(&ilb->lock); 2251 sk = sk_nulls_head(&ilb->head); 2252 st->offset = 0; 2253 goto get_sk; 2254 } 2255 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2256 ++st->num; 2257 ++st->offset; 2258 2259 if (st->state == TCP_SEQ_STATE_OPENREQ) { 2260 struct request_sock *req = cur; 2261 2262 icsk = inet_csk(st->syn_wait_sk); 2263 req = req->dl_next; 2264 while (1) { 2265 while (req) { 2266 if (req->rsk_ops->family == st->family) { 2267 cur = req; 2268 goto out; 2269 } 2270 req = req->dl_next; 2271 } 2272 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries) 2273 break; 2274 get_req: 2275 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket]; 2276 } 2277 sk = sk_nulls_next(st->syn_wait_sk); 2278 st->state = TCP_SEQ_STATE_LISTENING; 2279 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2280 } else { 2281 icsk = inet_csk(sk); 2282 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2283 if (reqsk_queue_len(&icsk->icsk_accept_queue)) 2284 goto start_req; 2285 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2286 sk = sk_nulls_next(sk); 2287 } 2288 get_sk: 2289 sk_nulls_for_each_from(sk, node) { 2290 if (!net_eq(sock_net(sk), net)) 2291 continue; 2292 if (sk->sk_family == st->family) { 2293 cur = sk; 2294 goto out; 2295 } 2296 icsk = inet_csk(sk); 2297 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2298 if (reqsk_queue_len(&icsk->icsk_accept_queue)) { 2299 start_req: 2300 st->uid = sock_i_uid(sk); 2301 st->syn_wait_sk = sk; 2302 st->state = TCP_SEQ_STATE_OPENREQ; 2303 st->sbucket = 0; 2304 goto get_req; 2305 } 2306 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2307 } 2308 spin_unlock_bh(&ilb->lock); 2309 st->offset = 0; 2310 if (++st->bucket < INET_LHTABLE_SIZE) { 2311 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2312 spin_lock_bh(&ilb->lock); 2313 sk = sk_nulls_head(&ilb->head); 2314 goto get_sk; 2315 } 2316 cur = NULL; 2317 out: 2318 return cur; 2319 } 2320 2321 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2322 { 2323 struct tcp_iter_state *st = seq->private; 2324 void *rc; 2325 2326 st->bucket = 0; 2327 st->offset = 0; 2328 rc = listening_get_next(seq, NULL); 2329 2330 while (rc && *pos) { 2331 rc = listening_get_next(seq, rc); 2332 --*pos; 2333 } 2334 return rc; 2335 } 2336 2337 static inline bool empty_bucket(struct tcp_iter_state *st) 2338 { 2339 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) && 2340 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain); 2341 } 2342 2343 /* 2344 * Get first established socket starting from bucket given in st->bucket. 2345 * If st->bucket is zero, the very first socket in the hash is returned. 2346 */ 2347 static void *established_get_first(struct seq_file *seq) 2348 { 2349 struct tcp_iter_state *st = seq->private; 2350 struct net *net = seq_file_net(seq); 2351 void *rc = NULL; 2352 2353 st->offset = 0; 2354 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 2355 struct sock *sk; 2356 struct hlist_nulls_node *node; 2357 struct inet_timewait_sock *tw; 2358 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 2359 2360 /* Lockless fast path for the common case of empty buckets */ 2361 if (empty_bucket(st)) 2362 continue; 2363 2364 spin_lock_bh(lock); 2365 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 2366 if (sk->sk_family != st->family || 2367 !net_eq(sock_net(sk), net)) { 2368 continue; 2369 } 2370 rc = sk; 2371 goto out; 2372 } 2373 st->state = TCP_SEQ_STATE_TIME_WAIT; 2374 inet_twsk_for_each(tw, node, 2375 &tcp_hashinfo.ehash[st->bucket].twchain) { 2376 if (tw->tw_family != st->family || 2377 !net_eq(twsk_net(tw), net)) { 2378 continue; 2379 } 2380 rc = tw; 2381 goto out; 2382 } 2383 spin_unlock_bh(lock); 2384 st->state = TCP_SEQ_STATE_ESTABLISHED; 2385 } 2386 out: 2387 return rc; 2388 } 2389 2390 static void *established_get_next(struct seq_file *seq, void *cur) 2391 { 2392 struct sock *sk = cur; 2393 struct inet_timewait_sock *tw; 2394 struct hlist_nulls_node *node; 2395 struct tcp_iter_state *st = seq->private; 2396 struct net *net = seq_file_net(seq); 2397 2398 ++st->num; 2399 ++st->offset; 2400 2401 if (st->state == TCP_SEQ_STATE_TIME_WAIT) { 2402 tw = cur; 2403 tw = tw_next(tw); 2404 get_tw: 2405 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) { 2406 tw = tw_next(tw); 2407 } 2408 if (tw) { 2409 cur = tw; 2410 goto out; 2411 } 2412 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2413 st->state = TCP_SEQ_STATE_ESTABLISHED; 2414 2415 /* Look for next non empty bucket */ 2416 st->offset = 0; 2417 while (++st->bucket <= tcp_hashinfo.ehash_mask && 2418 empty_bucket(st)) 2419 ; 2420 if (st->bucket > tcp_hashinfo.ehash_mask) 2421 return NULL; 2422 2423 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2424 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain); 2425 } else 2426 sk = sk_nulls_next(sk); 2427 2428 sk_nulls_for_each_from(sk, node) { 2429 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) 2430 goto found; 2431 } 2432 2433 st->state = TCP_SEQ_STATE_TIME_WAIT; 2434 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain); 2435 goto get_tw; 2436 found: 2437 cur = sk; 2438 out: 2439 return cur; 2440 } 2441 2442 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2443 { 2444 struct tcp_iter_state *st = seq->private; 2445 void *rc; 2446 2447 st->bucket = 0; 2448 rc = established_get_first(seq); 2449 2450 while (rc && pos) { 2451 rc = established_get_next(seq, rc); 2452 --pos; 2453 } 2454 return rc; 2455 } 2456 2457 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2458 { 2459 void *rc; 2460 struct tcp_iter_state *st = seq->private; 2461 2462 st->state = TCP_SEQ_STATE_LISTENING; 2463 rc = listening_get_idx(seq, &pos); 2464 2465 if (!rc) { 2466 st->state = TCP_SEQ_STATE_ESTABLISHED; 2467 rc = established_get_idx(seq, pos); 2468 } 2469 2470 return rc; 2471 } 2472 2473 static void *tcp_seek_last_pos(struct seq_file *seq) 2474 { 2475 struct tcp_iter_state *st = seq->private; 2476 int offset = st->offset; 2477 int orig_num = st->num; 2478 void *rc = NULL; 2479 2480 switch (st->state) { 2481 case TCP_SEQ_STATE_OPENREQ: 2482 case TCP_SEQ_STATE_LISTENING: 2483 if (st->bucket >= INET_LHTABLE_SIZE) 2484 break; 2485 st->state = TCP_SEQ_STATE_LISTENING; 2486 rc = listening_get_next(seq, NULL); 2487 while (offset-- && rc) 2488 rc = listening_get_next(seq, rc); 2489 if (rc) 2490 break; 2491 st->bucket = 0; 2492 /* Fallthrough */ 2493 case TCP_SEQ_STATE_ESTABLISHED: 2494 case TCP_SEQ_STATE_TIME_WAIT: 2495 st->state = TCP_SEQ_STATE_ESTABLISHED; 2496 if (st->bucket > tcp_hashinfo.ehash_mask) 2497 break; 2498 rc = established_get_first(seq); 2499 while (offset-- && rc) 2500 rc = established_get_next(seq, rc); 2501 } 2502 2503 st->num = orig_num; 2504 2505 return rc; 2506 } 2507 2508 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2509 { 2510 struct tcp_iter_state *st = seq->private; 2511 void *rc; 2512 2513 if (*pos && *pos == st->last_pos) { 2514 rc = tcp_seek_last_pos(seq); 2515 if (rc) 2516 goto out; 2517 } 2518 2519 st->state = TCP_SEQ_STATE_LISTENING; 2520 st->num = 0; 2521 st->bucket = 0; 2522 st->offset = 0; 2523 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2524 2525 out: 2526 st->last_pos = *pos; 2527 return rc; 2528 } 2529 2530 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2531 { 2532 struct tcp_iter_state *st = seq->private; 2533 void *rc = NULL; 2534 2535 if (v == SEQ_START_TOKEN) { 2536 rc = tcp_get_idx(seq, 0); 2537 goto out; 2538 } 2539 2540 switch (st->state) { 2541 case TCP_SEQ_STATE_OPENREQ: 2542 case TCP_SEQ_STATE_LISTENING: 2543 rc = listening_get_next(seq, v); 2544 if (!rc) { 2545 st->state = TCP_SEQ_STATE_ESTABLISHED; 2546 st->bucket = 0; 2547 st->offset = 0; 2548 rc = established_get_first(seq); 2549 } 2550 break; 2551 case TCP_SEQ_STATE_ESTABLISHED: 2552 case TCP_SEQ_STATE_TIME_WAIT: 2553 rc = established_get_next(seq, v); 2554 break; 2555 } 2556 out: 2557 ++*pos; 2558 st->last_pos = *pos; 2559 return rc; 2560 } 2561 2562 static void tcp_seq_stop(struct seq_file *seq, void *v) 2563 { 2564 struct tcp_iter_state *st = seq->private; 2565 2566 switch (st->state) { 2567 case TCP_SEQ_STATE_OPENREQ: 2568 if (v) { 2569 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk); 2570 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock); 2571 } 2572 case TCP_SEQ_STATE_LISTENING: 2573 if (v != SEQ_START_TOKEN) 2574 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock); 2575 break; 2576 case TCP_SEQ_STATE_TIME_WAIT: 2577 case TCP_SEQ_STATE_ESTABLISHED: 2578 if (v) 2579 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2580 break; 2581 } 2582 } 2583 2584 int tcp_seq_open(struct inode *inode, struct file *file) 2585 { 2586 struct tcp_seq_afinfo *afinfo = PDE(inode)->data; 2587 struct tcp_iter_state *s; 2588 int err; 2589 2590 err = seq_open_net(inode, file, &afinfo->seq_ops, 2591 sizeof(struct tcp_iter_state)); 2592 if (err < 0) 2593 return err; 2594 2595 s = ((struct seq_file *)file->private_data)->private; 2596 s->family = afinfo->family; 2597 s->last_pos = 0; 2598 return 0; 2599 } 2600 EXPORT_SYMBOL(tcp_seq_open); 2601 2602 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo) 2603 { 2604 int rc = 0; 2605 struct proc_dir_entry *p; 2606 2607 afinfo->seq_ops.start = tcp_seq_start; 2608 afinfo->seq_ops.next = tcp_seq_next; 2609 afinfo->seq_ops.stop = tcp_seq_stop; 2610 2611 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, 2612 afinfo->seq_fops, afinfo); 2613 if (!p) 2614 rc = -ENOMEM; 2615 return rc; 2616 } 2617 EXPORT_SYMBOL(tcp_proc_register); 2618 2619 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo) 2620 { 2621 proc_net_remove(net, afinfo->name); 2622 } 2623 EXPORT_SYMBOL(tcp_proc_unregister); 2624 2625 static void get_openreq4(const struct sock *sk, const struct request_sock *req, 2626 struct seq_file *f, int i, kuid_t uid, int *len) 2627 { 2628 const struct inet_request_sock *ireq = inet_rsk(req); 2629 long delta = req->expires - jiffies; 2630 2631 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2632 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n", 2633 i, 2634 ireq->loc_addr, 2635 ntohs(inet_sk(sk)->inet_sport), 2636 ireq->rmt_addr, 2637 ntohs(ireq->rmt_port), 2638 TCP_SYN_RECV, 2639 0, 0, /* could print option size, but that is af dependent. */ 2640 1, /* timers active (only the expire timer) */ 2641 jiffies_delta_to_clock_t(delta), 2642 req->retrans, 2643 from_kuid_munged(seq_user_ns(f), uid), 2644 0, /* non standard timer */ 2645 0, /* open_requests have no inode */ 2646 atomic_read(&sk->sk_refcnt), 2647 req, 2648 len); 2649 } 2650 2651 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len) 2652 { 2653 int timer_active; 2654 unsigned long timer_expires; 2655 const struct tcp_sock *tp = tcp_sk(sk); 2656 const struct inet_connection_sock *icsk = inet_csk(sk); 2657 const struct inet_sock *inet = inet_sk(sk); 2658 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq; 2659 __be32 dest = inet->inet_daddr; 2660 __be32 src = inet->inet_rcv_saddr; 2661 __u16 destp = ntohs(inet->inet_dport); 2662 __u16 srcp = ntohs(inet->inet_sport); 2663 int rx_queue; 2664 2665 if (icsk->icsk_pending == ICSK_TIME_RETRANS) { 2666 timer_active = 1; 2667 timer_expires = icsk->icsk_timeout; 2668 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2669 timer_active = 4; 2670 timer_expires = icsk->icsk_timeout; 2671 } else if (timer_pending(&sk->sk_timer)) { 2672 timer_active = 2; 2673 timer_expires = sk->sk_timer.expires; 2674 } else { 2675 timer_active = 0; 2676 timer_expires = jiffies; 2677 } 2678 2679 if (sk->sk_state == TCP_LISTEN) 2680 rx_queue = sk->sk_ack_backlog; 2681 else 2682 /* 2683 * because we dont lock socket, we might find a transient negative value 2684 */ 2685 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2686 2687 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2688 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n", 2689 i, src, srcp, dest, destp, sk->sk_state, 2690 tp->write_seq - tp->snd_una, 2691 rx_queue, 2692 timer_active, 2693 jiffies_delta_to_clock_t(timer_expires - jiffies), 2694 icsk->icsk_retransmits, 2695 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2696 icsk->icsk_probes_out, 2697 sock_i_ino(sk), 2698 atomic_read(&sk->sk_refcnt), sk, 2699 jiffies_to_clock_t(icsk->icsk_rto), 2700 jiffies_to_clock_t(icsk->icsk_ack.ato), 2701 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2702 tp->snd_cwnd, 2703 sk->sk_state == TCP_LISTEN ? 2704 (fastopenq ? fastopenq->max_qlen : 0) : 2705 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh), 2706 len); 2707 } 2708 2709 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2710 struct seq_file *f, int i, int *len) 2711 { 2712 __be32 dest, src; 2713 __u16 destp, srcp; 2714 long delta = tw->tw_ttd - jiffies; 2715 2716 dest = tw->tw_daddr; 2717 src = tw->tw_rcv_saddr; 2718 destp = ntohs(tw->tw_dport); 2719 srcp = ntohs(tw->tw_sport); 2720 2721 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2722 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n", 2723 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2724 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2725 atomic_read(&tw->tw_refcnt), tw, len); 2726 } 2727 2728 #define TMPSZ 150 2729 2730 static int tcp4_seq_show(struct seq_file *seq, void *v) 2731 { 2732 struct tcp_iter_state *st; 2733 int len; 2734 2735 if (v == SEQ_START_TOKEN) { 2736 seq_printf(seq, "%-*s\n", TMPSZ - 1, 2737 " sl local_address rem_address st tx_queue " 2738 "rx_queue tr tm->when retrnsmt uid timeout " 2739 "inode"); 2740 goto out; 2741 } 2742 st = seq->private; 2743 2744 switch (st->state) { 2745 case TCP_SEQ_STATE_LISTENING: 2746 case TCP_SEQ_STATE_ESTABLISHED: 2747 get_tcp4_sock(v, seq, st->num, &len); 2748 break; 2749 case TCP_SEQ_STATE_OPENREQ: 2750 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len); 2751 break; 2752 case TCP_SEQ_STATE_TIME_WAIT: 2753 get_timewait4_sock(v, seq, st->num, &len); 2754 break; 2755 } 2756 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, ""); 2757 out: 2758 return 0; 2759 } 2760 2761 static const struct file_operations tcp_afinfo_seq_fops = { 2762 .owner = THIS_MODULE, 2763 .open = tcp_seq_open, 2764 .read = seq_read, 2765 .llseek = seq_lseek, 2766 .release = seq_release_net 2767 }; 2768 2769 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2770 .name = "tcp", 2771 .family = AF_INET, 2772 .seq_fops = &tcp_afinfo_seq_fops, 2773 .seq_ops = { 2774 .show = tcp4_seq_show, 2775 }, 2776 }; 2777 2778 static int __net_init tcp4_proc_init_net(struct net *net) 2779 { 2780 return tcp_proc_register(net, &tcp4_seq_afinfo); 2781 } 2782 2783 static void __net_exit tcp4_proc_exit_net(struct net *net) 2784 { 2785 tcp_proc_unregister(net, &tcp4_seq_afinfo); 2786 } 2787 2788 static struct pernet_operations tcp4_net_ops = { 2789 .init = tcp4_proc_init_net, 2790 .exit = tcp4_proc_exit_net, 2791 }; 2792 2793 int __init tcp4_proc_init(void) 2794 { 2795 return register_pernet_subsys(&tcp4_net_ops); 2796 } 2797 2798 void tcp4_proc_exit(void) 2799 { 2800 unregister_pernet_subsys(&tcp4_net_ops); 2801 } 2802 #endif /* CONFIG_PROC_FS */ 2803 2804 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb) 2805 { 2806 const struct iphdr *iph = skb_gro_network_header(skb); 2807 __wsum wsum; 2808 __sum16 sum; 2809 2810 switch (skb->ip_summed) { 2811 case CHECKSUM_COMPLETE: 2812 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr, 2813 skb->csum)) { 2814 skb->ip_summed = CHECKSUM_UNNECESSARY; 2815 break; 2816 } 2817 flush: 2818 NAPI_GRO_CB(skb)->flush = 1; 2819 return NULL; 2820 2821 case CHECKSUM_NONE: 2822 wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr, 2823 skb_gro_len(skb), IPPROTO_TCP, 0); 2824 sum = csum_fold(skb_checksum(skb, 2825 skb_gro_offset(skb), 2826 skb_gro_len(skb), 2827 wsum)); 2828 if (sum) 2829 goto flush; 2830 2831 skb->ip_summed = CHECKSUM_UNNECESSARY; 2832 break; 2833 } 2834 2835 return tcp_gro_receive(head, skb); 2836 } 2837 2838 int tcp4_gro_complete(struct sk_buff *skb) 2839 { 2840 const struct iphdr *iph = ip_hdr(skb); 2841 struct tcphdr *th = tcp_hdr(skb); 2842 2843 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 2844 iph->saddr, iph->daddr, 0); 2845 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 2846 2847 return tcp_gro_complete(skb); 2848 } 2849 2850 struct proto tcp_prot = { 2851 .name = "TCP", 2852 .owner = THIS_MODULE, 2853 .close = tcp_close, 2854 .connect = tcp_v4_connect, 2855 .disconnect = tcp_disconnect, 2856 .accept = inet_csk_accept, 2857 .ioctl = tcp_ioctl, 2858 .init = tcp_v4_init_sock, 2859 .destroy = tcp_v4_destroy_sock, 2860 .shutdown = tcp_shutdown, 2861 .setsockopt = tcp_setsockopt, 2862 .getsockopt = tcp_getsockopt, 2863 .recvmsg = tcp_recvmsg, 2864 .sendmsg = tcp_sendmsg, 2865 .sendpage = tcp_sendpage, 2866 .backlog_rcv = tcp_v4_do_rcv, 2867 .release_cb = tcp_release_cb, 2868 .mtu_reduced = tcp_v4_mtu_reduced, 2869 .hash = inet_hash, 2870 .unhash = inet_unhash, 2871 .get_port = inet_csk_get_port, 2872 .enter_memory_pressure = tcp_enter_memory_pressure, 2873 .sockets_allocated = &tcp_sockets_allocated, 2874 .orphan_count = &tcp_orphan_count, 2875 .memory_allocated = &tcp_memory_allocated, 2876 .memory_pressure = &tcp_memory_pressure, 2877 .sysctl_wmem = sysctl_tcp_wmem, 2878 .sysctl_rmem = sysctl_tcp_rmem, 2879 .max_header = MAX_TCP_HEADER, 2880 .obj_size = sizeof(struct tcp_sock), 2881 .slab_flags = SLAB_DESTROY_BY_RCU, 2882 .twsk_prot = &tcp_timewait_sock_ops, 2883 .rsk_prot = &tcp_request_sock_ops, 2884 .h.hashinfo = &tcp_hashinfo, 2885 .no_autobind = true, 2886 #ifdef CONFIG_COMPAT 2887 .compat_setsockopt = compat_tcp_setsockopt, 2888 .compat_getsockopt = compat_tcp_getsockopt, 2889 #endif 2890 #ifdef CONFIG_MEMCG_KMEM 2891 .init_cgroup = tcp_init_cgroup, 2892 .destroy_cgroup = tcp_destroy_cgroup, 2893 .proto_cgroup = tcp_proto_cgroup, 2894 #endif 2895 }; 2896 EXPORT_SYMBOL(tcp_prot); 2897 2898 static int __net_init tcp_sk_init(struct net *net) 2899 { 2900 return 0; 2901 } 2902 2903 static void __net_exit tcp_sk_exit(struct net *net) 2904 { 2905 } 2906 2907 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2908 { 2909 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET); 2910 } 2911 2912 static struct pernet_operations __net_initdata tcp_sk_ops = { 2913 .init = tcp_sk_init, 2914 .exit = tcp_sk_exit, 2915 .exit_batch = tcp_sk_exit_batch, 2916 }; 2917 2918 void __init tcp_v4_init(void) 2919 { 2920 inet_hashinfo_init(&tcp_hashinfo); 2921 if (register_pernet_subsys(&tcp_sk_ops)) 2922 panic("Failed to create the TCP control socket.\n"); 2923 } 2924